From 6583924414bf765a512d53ae175655cd236ef468 Mon Sep 17 00:00:00 2001 From: detlef Date: Thu, 22 Aug 2019 17:51:37 +0200 Subject: [PATCH] - cleaning up few shot test start --- few_shot_tests.py | 603 ++++++++++++++++++++++++++++++++++++ mini_imagenet_dataloader.py | 61 ++-- 2 files changed, 637 insertions(+), 27 deletions(-) create mode 100755 few_shot_tests.py diff --git a/few_shot_tests.py b/few_shot_tests.py new file mode 100755 index 0000000..dc2148a --- /dev/null +++ b/few_shot_tests.py @@ -0,0 +1,603 @@ +##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +## Created by: Yaoyao Liu +## NUS School of Computing +## Email: yaoyao.liu@nus.edu.sg +## Copyright (c) 2019 +## +## This source code is licensed under the MIT-style license found in the +## LICENSE file in the root directory +## of https://github.com/y2l/mini-imagenet-tools +## +## This file is modified for tensorflow.keras usage by D. Schmicker +## +## original file from https://github.com/y2l/mini-imagenet-tools +## +##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ + +import os +import random +import numpy as np +from tqdm import trange +import imageio +import ast + +import argparse +parser = argparse.ArgumentParser(description='train recurrent net.') +parser.add_argument('--pretrained_name', dest='pretrained_name', type=str, default=None) +parser.add_argument('--dataset', dest='dataset', type=str, default='train') +parser.add_argument('--lr', dest='lr', type=float, default=1e-3) +parser.add_argument('--epochs', dest='epochs', type=int, default=10) +parser.add_argument('--final_name', dest='final_name', type=str, default='final_model') +parser.add_argument('--shuffle_images', dest='shuffle_images', action='store_true') +parser.add_argument('--enable_idx_increase', dest='enable_idx_increase', action='store_true') +parser.add_argument('--use_independent_base', dest='use_independent_base', action='store_true') +parser.add_argument('--train_indep_and_dependent', dest='train_indep_and_dependent', action='store_true') +parser.add_argument('--tensorboard_log_dir', dest='tensorboard_log_dir', type=str, default='./logs') +parser.add_argument('--enable_only_layers_of_list', dest='enable_only_layers_of_list', type=str, default=None) +parser.add_argument('--episode_test_sample_num', dest='episode_test_sample_num', type=int, default=15) + +args = parser.parse_args() + +# uncomment the following to disable CuDNN support +#os.environ["CUDA_VISIBLE_DEVICES"] = "-1" +########################################### + +class MiniImageNetDataLoader(object): + def __init__(self, shot_num, way_num, episode_test_sample_num, shuffle_images = False): + self.shot_num = shot_num + self.way_num = way_num + self.episode_test_sample_num = episode_test_sample_num + self.num_samples_per_class = episode_test_sample_num + shot_num + self.shuffle_images = shuffle_images + metatrain_folder = './processed_images/train' + metaval_folder = './processed_images/val' + metatest_folder = './processed_images/test' + + npy_dir = './episode_filename_list/' + if not os.path.exists(npy_dir): + os.mkdir(npy_dir) + + self.npy_base_dir = npy_dir + str(self.shot_num) + 'shot_' + str(self.way_num) + 'way_' + str(episode_test_sample_num) + 'shuffled_' + str(self.shuffle_images) + '/' + if not os.path.exists(self.npy_base_dir): + os.mkdir(self.npy_base_dir) + + self.metatrain_folders = [os.path.join(metatrain_folder, label) \ + for label in os.listdir(metatrain_folder) \ + if os.path.isdir(os.path.join(metatrain_folder, label)) \ + ] + self.metaval_folders = [os.path.join(metaval_folder, label) \ + for label in os.listdir(metaval_folder) \ + if os.path.isdir(os.path.join(metaval_folder, label)) \ + ] + self.metatest_folders = [os.path.join(metatest_folder, label) \ + for label in os.listdir(metatest_folder) \ + if os.path.isdir(os.path.join(metatest_folder, label)) \ + ] + + def get_images(self, paths, labels, nb_samples=None, shuffle=True): + if nb_samples is not None: + sampler = lambda x: random.sample(x, nb_samples) + else: + sampler = lambda x: x + images = [(i, os.path.join(path, image)) \ + for i, path in zip(labels, paths) \ + for image in sampler(os.listdir(path))] + if shuffle: + random.shuffle(images) + return images + + def generate_data_list(self, phase='train', episode_num=None): + if phase=='train': + folders = self.metatrain_folders + if episode_num is None: + episode_num = 20000 + if not os.path.exists(self.npy_base_dir+'/train_filenames.npy'): + print('Generating train filenames') + all_filenames = [] + for _ in trange(episode_num): + sampled_character_folders = random.sample(folders, self.way_num) + random.shuffle(sampled_character_folders) + labels_and_images = self.get_images(sampled_character_folders, range(self.way_num), nb_samples=self.num_samples_per_class, shuffle=self.shuffle_images) + labels = [li[0] for li in labels_and_images] + filenames = [li[1] for li in labels_and_images] + all_filenames.extend(filenames) + np.save(self.npy_base_dir+'/train_labels.npy', labels) + np.save(self.npy_base_dir+'/train_filenames.npy', all_filenames) + print('Train filename and label lists are saved') + + elif phase=='val': + folders = self.metaval_folders + if episode_num is None: + episode_num = 600 + if not os.path.exists(self.npy_base_dir+'/val_filenames.npy'): + print('Generating val filenames') + all_filenames = [] + for _ in trange(episode_num): + sampled_character_folders = random.sample(folders, self.way_num) + random.shuffle(sampled_character_folders) + labels_and_images = self.get_images(sampled_character_folders, range(self.way_num), nb_samples=self.num_samples_per_class, shuffle=self.shuffle_images) + labels = [li[0] for li in labels_and_images] + filenames = [li[1] for li in labels_and_images] + all_filenames.extend(filenames) + np.save(self.npy_base_dir+'/val_labels.npy', labels) + np.save(self.npy_base_dir+'/val_filenames.npy', all_filenames) + print('Val filename and label lists are saved') + + elif phase=='test': + folders = self.metatest_folders + if episode_num is None: + episode_num = 600 + if not os.path.exists(self.npy_base_dir+'/test_filenames.npy'): + print('Generating test filenames') + all_filenames = [] + for _ in trange(episode_num): + sampled_character_folders = random.sample(folders, self.way_num) + random.shuffle(sampled_character_folders) + labels_and_images = self.get_images(sampled_character_folders, range(self.way_num), nb_samples=self.num_samples_per_class, shuffle=self.shuffle_images) + labels = [li[0] for li in labels_and_images] + filenames = [li[1] for li in labels_and_images] + all_filenames.extend(filenames) + np.save(self.npy_base_dir+'/test_labels.npy', labels) + np.save(self.npy_base_dir+'/test_filenames.npy', all_filenames) + print('Test filename and label lists are saved') + else: + print('Please select vaild phase') + + def load_list(self, phase='train'): + if phase=='train': + self.train_filenames = np.load(self.npy_base_dir + 'train_filenames.npy').tolist() + self.train_labels = np.load(self.npy_base_dir + 'train_labels.npy').tolist() + + elif phase=='val': + self.val_filenames = np.load(self.npy_base_dir + 'val_filenames.npy').tolist() + self.val_labels = np.load(self.npy_base_dir + 'val_labels.npy').tolist() + + elif phase=='test': + self.test_filenames = np.load(self.npy_base_dir + 'test_filenames.npy').tolist() + self.test_labels = np.load(self.npy_base_dir + 'test_labels.npy').tolist() + + elif phase=='all': + self.train_filenames = np.load(self.npy_base_dir + 'train_filenames.npy').tolist() + self.train_labels = np.load(self.npy_base_dir + 'train_labels.npy').tolist() + + self.val_filenames = np.load(self.npy_base_dir + 'val_filenames.npy').tolist() + self.val_labels = np.load(self.npy_base_dir + 'val_labels.npy').tolist() + + self.test_filenames = np.load(self.npy_base_dir + 'test_filenames.npy').tolist() + self.test_labels = np.load(self.npy_base_dir + 'test_labels.npy').tolist() + + else: + print('Please select vaild phase') + + def process_batch(self, input_filename_list, input_label_list, batch_sample_num, reshape_with_one=True): + new_path_list = [] + new_label_list = [] + for k in range(batch_sample_num): + class_idxs = list(range(0, self.way_num)) + random.shuffle(class_idxs) + for class_idx in class_idxs: + true_idx = class_idx*batch_sample_num + k + new_path_list.append(input_filename_list[true_idx]) + new_label_list.append(input_label_list[true_idx]) + + img_list = [] + for filepath in new_path_list: + this_img = imageio.imread(filepath) + this_img = this_img / 255.0 + img_list.append(this_img) + + if reshape_with_one: + img_array = np.array(img_list) + label_array = self.one_hot(np.array(new_label_list)).reshape([1, self.way_num*batch_sample_num, -1]) + else: + img_array = np.array(img_list) + label_array = self.one_hot(np.array(new_label_list)).reshape([self.way_num*batch_sample_num, -1]) + return img_array, label_array + + def one_hot(self, inp): + n_class = inp.max() + 1 + n_sample = inp.shape[0] + out = np.zeros((n_sample, n_class)) + for idx in range(n_sample): + out[idx, inp[idx]] = 1 + return out + + def get_batch(self, phase='train', idx=0): + if phase=='train': + all_filenames = self.train_filenames + labels = self.train_labels + elif phase=='val': + all_filenames = self.val_filenames + labels = self.val_labels + elif phase=='test': + all_filenames = self.test_filenames + labels = self.test_labels + else: + print('Please select vaild phase') + + one_episode_sample_num = self.num_samples_per_class*self.way_num + this_task_filenames = all_filenames[idx*one_episode_sample_num:(idx+1)*one_episode_sample_num] + epitr_sample_num = self.shot_num + epite_sample_num = self.episode_test_sample_num + + this_task_tr_filenames = [] + this_task_tr_labels = [] + this_task_te_filenames = [] + this_task_te_labels = [] + for class_k in range(self.way_num): + this_class_filenames = this_task_filenames[class_k*self.num_samples_per_class:(class_k+1)*self.num_samples_per_class] + this_class_label = labels[class_k*self.num_samples_per_class:(class_k+1)*self.num_samples_per_class] + this_task_tr_filenames += this_class_filenames[0:epitr_sample_num] + this_task_tr_labels += this_class_label[0:epitr_sample_num] + this_task_te_filenames += this_class_filenames[epitr_sample_num:] + this_task_te_labels += this_class_label[epitr_sample_num:] + + this_inputa, this_labela = self.process_batch(this_task_tr_filenames, this_task_tr_labels, epitr_sample_num, reshape_with_one=False) + this_inputb, this_labelb = self.process_batch(this_task_te_filenames, this_task_te_labels, epite_sample_num, reshape_with_one=False) + + return this_inputa, this_labela, this_inputb, this_labelb + +class OurMiniImageNetDataLoader(MiniImageNetDataLoader): + # adding functions we need + def idx_to_big(self, phase, idx): + if phase=='train': + all_filenames = self.train_filenames +# labels = self.train_labels + elif phase=='val': + all_filenames = self.val_filenames +# labels = self.val_labels + elif phase=='test': + all_filenames = self.test_filenames +# labels = self.test_labels + else: + print('Please select vaild phase') + + one_episode_sample_num = self.num_samples_per_class*self.way_num + return ((idx+1)*one_episode_sample_num >= len(all_filenames)) + + +cathegories = 5 +dataloader = OurMiniImageNetDataLoader(shot_num=5 * 2, way_num=cathegories, episode_test_sample_num=args.episode_test_sample_num, shuffle_images = args.shuffle_images) #twice shot_num is because one might be uses as the base for the samples + +dataloader.generate_data_list(phase='train') +dataloader.generate_data_list(phase='val') +dataloader.generate_data_list(phase='test') + +print('mode is',args.dataset) +dataloader.load_list('all') + +#print('train',dataloader.train_filenames) +#print('val',dataloader.val_filenames) +#print('test',dataloader.test_filenames) + + +base_train_img, base_train_label, base_test_img, base_test_label = \ + dataloader.get_batch(phase='train', idx=0) + +train_epoch_size = base_train_img.shape[0] +if not args.train_indep_and_dependent: + train_epoch_size = int(train_epoch_size / 2) # as double is generated for the base and train +test_epoch_size = base_test_img.shape[0] + +print("epoch training size:", train_epoch_size, base_train_label.shape[0], "epoch testing size", test_epoch_size) + +class KerasBatchGenerator(object): + +# def __init__(self): + + + def generate(self, phase='train'): +# idx = 0 + while True: +# episode_train_img, episode_train_label, episode_test_img, episode_test_label = \ +# dataloader.get_batch(phase='train', idx=idx) + if phase == 'train': + #print(episode_train_img.shape[0]) + for i in range(train_epoch_size): + yield base_train_img[i:i+1], base_train_label[i:i+1] + else: + #print(episode_test_img.shape[0]) + for i in range(test_epoch_size): + yield base_test_img[i:i+1], base_test_label[i:i+1] + + def generate_add_samples(self, phase = 'train'): + self.idx = 0 + while True: + batch_train_img, batch_train_label, episode_test_img, episode_test_label = \ + dataloader.get_batch(phase=args.dataset, idx=self.idx) + + # this depends on what we are trying to train. + # care must be taken, that with a different dataset the labels have a different meaning. Thus if we use a new dataset, we must + # use network_base which fits to the database. Therefore there must be taken images with label from the same dataset. + network_base_img = batch_train_img[:train_epoch_size] + network_base_label = batch_train_label[:train_epoch_size] + + #only half is used now, as the rest is reserved for independend base + episode_train_img = batch_train_img[train_epoch_size:] + episode_train_label = batch_train_label[train_epoch_size:] + + if not args.use_independent_base: + network_base_img = episode_train_img + network_base_label = episode_train_label + if args.train_indep_and_dependent: #train_epoch_size wrong, before should be old .... + network_base_img = batch_train_img[:int(train_epoch_size/2)] + network_base_label = batch_train_label[:int(train_epoch_size/2)] + episode_train_img = batch_train_img + episode_train_label = batch_train_label + if phase == 'train': + if args.enable_idx_increase: + self.idx += 1 # only train phase allowed to change + if dataloader.idx_to_big(args.dataset, self.idx): + self.idx=0 + print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!") + print("all data used, starting from beginning") + print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!") + + #print(episode_train_img.shape[0]) + #assert(episode_train_img.shape[0] == 25) + for i in range(train_epoch_size): + yield [[episode_train_img[i:i+1]], [network_base_img], [network_base_label]], episode_train_label[i:i+1] + else: + #print(episode_test_img.shape[0]) + #assert(0) + #assert(episode_test_img.shape[0] == 75) + #assert(self.idx < 50) + for i in range(test_epoch_size): + #print('i',i) + yield [[episode_test_img[i:i+1]], [network_base_img], [network_base_label]], episode_test_label[i:i+1] + + + + + + +keras_gen_train = KerasBatchGenerator() +gen_train = keras_gen_train.generate() + +gen_test = KerasBatchGenerator().generate('test') + +print('train data check') +for _ in range(3): + img, l = next(gen_train) + print(img.shape,l.shape) +print('test data check') +for _ in range(3): + img, l = next(gen_test) + print(img.shape,l.shape) + +import tensorflow as tf +if tf.__version__ < "2.0": + from tensorflow.keras.backend import set_session + config = tf.ConfigProto() + #config.gpu_options.per_process_gpu_memory_fraction = args.gpu_mem + config.gpu_options.allow_growth = True + set_session(tf.Session(config=config)) +else: + #tensorflow 2.0 sets memory growth per default + gpus = tf.config.experimental.list_physical_devices('GPU') + if gpus: + try: + # Currently, memory growth needs to be the same across GPUs + for gpu in gpus: + tf.config.experimental.set_memory_growth(gpu, True) + logical_gpus = tf.config.experimental.list_logical_devices('GPU') + print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs") + except RuntimeError as e: + # Memory growth must be set before GPUs have been initialized + print(e) + +from tensorflow.keras.models import Model +from tensorflow.keras.layers import Activation, Dense, Input, Flatten, Conv2D, Lambda, TimeDistributed, MaxPooling2D +from tensorflow.keras.callbacks import ModelCheckpoint, TensorBoard +import tensorflow.keras.backend as K +import tensorflow.keras + +inputs = Input(shape=(None,84,84,3)) +print('the shape', inputs.shape) +conv1 = TimeDistributed(Conv2D(64, 3, padding='same', activation = 'relu'))(inputs) +pool1 = TimeDistributed(MaxPooling2D(pool_size = 2))(conv1) +conv2 = TimeDistributed(Conv2D(64, 3, padding='same', activation = 'relu'))(pool1) +pool2 = TimeDistributed(MaxPooling2D(pool_size = 2))(conv2) +conv3 = TimeDistributed(Conv2D(64, 3, padding='same', activation = 'relu'))(pool2) +pool3 = TimeDistributed(MaxPooling2D(pool_size = 2))(conv3) +conv4 = TimeDistributed(Conv2D(64, 3, padding='same', activation = 'relu'))(pool3) +pool4 = TimeDistributed(MaxPooling2D(pool_size = 2))(conv4) +conv5 = TimeDistributed(Conv2D(64, 3, padding='same', activation = 'relu'))(pool4) +pool5 = TimeDistributed(MaxPooling2D(pool_size = 2))(conv5) + +#conv3 = TimeDistributed(Conv2D(5, 5, (3,3) , padding='same', activation = 'relu'))(conv2) +flat = TimeDistributed(Flatten())(pool5) +#x = TimeDistributed(Dense(100, activation = 'relu'))(flat) +#predictions = Activation('softmax')(x) + +model_img = Model(inputs=inputs, outputs=flat) + +#model_img.compile(loss='categorical_crossentropy', optimizer='Adam', metrics=['categorical_accuracy']) + +print(model_img.summary(line_length=180, positions = [.33, .55, .67, 1.])) + + + +input1 = Input(shape=(None,84,84,3)) +input2 = Input(shape=(None,84,84,3)) #, tensor = K.variable(episode_train_img[0:0])) + +encoded_l = model_img(input1) +encoded_r = model_img(input2) + +# Add a customized layer to compute the absolute difference between the encodings +L1_layer = Lambda(lambda tensors:K.abs(tensors[0] - tensors[1])) +L1_distance = L1_layer([encoded_l, encoded_r]) + +# Add a dense layer with a sigmoid unit to generate the similarity score +prediction = Dense(1)(L1_distance) + +# Connect the inputs with the outputs +siamese_net = Model(inputs=[input1,input2],outputs=prediction) + +#siamese_net.compile(loss='categorical_crossentropy', optimizer='Adam', metrics=['categorical_accuracy']) +print(siamese_net.summary(line_length=180, positions = [.33, .55, .67, 1.])) + + +input_lambda1 = Input(shape=(1,84,84,3)) +input_lambda2 = Input(shape=(None,84,84,3)) +input_lambda3 = Input(shape=(None,cathegories)) + +s_res = siamese_net([input_lambda1, input_lambda2]) + +def call(x): + [k0,l2] = x + #k0 = siamese_net([x1,x2]) + #k1 = K.expand_dims(tf.reshape(k0, (-1,1)), axis=0) + k2 = k0 * l2 + r = K.sum(k2, axis = 1) + print('l2',l2.shape,'k0',k0.shape, 'k2',k2.shape, 'r',r.shape) + return r +#def call_shape(input_shape): +# return (5,) + +call_lambda = Lambda(call)([s_res, input_lambda3]) +call_lambda_softmax = Activation('softmax')(call_lambda) + +lambda_model = Model(inputs = [input_lambda1, input_lambda2, input_lambda3], outputs = call_lambda_softmax) + +from tensorflow.keras import optimizers as op + +if args.pretrained_name is not None: + from tensorflow.keras.models import load_model + lambda_model = load_model(args.pretrained_name, custom_objects = { "keras": tensorflow.keras , "args":args}) + print("loaded model",lambda_model) + + + +# models in models forget the layer name, therefore one must use the automatically given layer name and iterate throught the models by hand +# here we can try setting the layer not trainable +def all_layers(model): + layers = [] + for l in model.layers: + #print(l.name, l.trainable, isinstance(l,Model)) + if isinstance(l, Model): + a = all_layers(l) + #print(a) + layers.extend(a) + else: + layers.append(l) + return layers + +lambda_model_layers = all_layers(lambda_model) +for l in range(len(lambda_model_layers)): + l2=lambda_model_layers[l] + p='normal' + if isinstance(l2,TimeDistributed): + l2=l2.layer + p='timedi' + if args.enable_only_layers_of_list is not None: + l2.trainable = False + print('{:10} {:10} {:20} {:10} {:10}'.format(l, p,l2.name, ("fixed", "trainable")[l2.trainable], l2.count_params())) + +if args.enable_only_layers_of_list is not None: + print('\nenable some layers for training') + + for i in ast.literal_eval(args.enable_only_layers_of_list): + lambda_model_layers[i].trainable = True + + for l in range(len(lambda_model_layers)): + l2=lambda_model_layers[l] + p='normal' + if isinstance(l2,TimeDistributed): + l2=l2.layer + p='timedi' + print('{:10} {:10} {:20} {:10} {:10}'.format(l, p,l2.name, ("fixed", "trainable")[l2.trainable], l2.count_params())) + +#after loading to set learning rate +lambda_model.compile(loss='categorical_crossentropy', optimizer=op.SGD(args.lr), metrics=['categorical_accuracy']) +print(lambda_model.summary(line_length=180, positions = [.33, .55, .67, 1.])) +#lambda_model.get_layer("dense_1").trainable = False + +# testing with additional batch axis ?! +i=1 +test_lambda = lambda_model([K.expand_dims(K.variable(base_train_img[0:0+1]),axis=0),K.expand_dims(K.variable(base_train_img), axis=0), K.expand_dims(K.variable(base_train_label), axis=0)]) +# +print('test lambda', K.eval(test_lambda)) + + + +checkpointer = ModelCheckpoint(filepath='checkpoints/model-{epoch:02d}.hdf5', verbose=1) +tensorboard = TensorBoard(log_dir = args.tensorboard_log_dir) +lambda_model.fit_generator(keras_gen_train.generate_add_samples(), train_epoch_size, args.epochs, + validation_data=keras_gen_train.generate_add_samples('test'), validation_steps=test_epoch_size, callbacks = [tensorboard], workers = 0) +#workers = 0 is a work around to correct the number of calls to the validation_data generator +lambda_model.save(args.final_name+'.hdf5') + + +def get_weight_grad(model, inputs, outputs): + """ Gets gradient of model for given inputs and outputs for all weights""" + grads = model.optimizer.get_gradients(model.total_loss, model.trainable_weights) + symb_inputs = (model._feed_inputs + model._feed_targets + model._feed_sample_weights) + f = K.function(symb_inputs, grads) + x, y, sample_weight = model._standardize_user_data(inputs, outputs) + output_grad = f(x + y + sample_weight) + return output_grad + + +def get_layer_output_grad(model, inputs, outputs, layer=-1): + """ Gets gradient a layer output for given inputs and outputs""" + grads = model.optimizer.get_gradients(model.total_loss, model.layers[layer].output) + symb_inputs = (model._feed_inputs + model._feed_targets + model._feed_sample_weights) + f = K.function(symb_inputs, grads) + x, y, sample_weight = model._standardize_user_data(inputs, outputs) + output_grad = f(x + y + sample_weight) + return output_grad + + +#weight_grads = get_layer_output_grad(lambda_model, [[episode_train_img[0:1]], [episode_train_img[:]], [episode_train_label[:]]], [episode_train_label[0:1]]) + +#weight_grads = get_layer_output_grad(siamese_net, [episode_train_img[0:1],episode_train_img[0:1]], episode_train_label[0:1]) + +#print(weight_grads) +# +#input_few = Input(shape=(84,84,3)) +#input_labels = Input(shape=(84,84,3)) +# +#output_few = Lambda(call)([input_few,K.variable(episode_train_img), K.variable(episode_train_label)]) +# +#model_few = Model(inputs = [input_few, input_labels], outputs = output_few) +# +#print('test few', K.eval(model_few([K.variable(episode_train_img[0:0+1]),K.variable(episode_train_label)]))) + +##sum_few = np.zeros(episode_train_label[0:1].shape) +#input_few = Input(shape=(84,84,3)) +#for i in range(0,2): +# a = siamese_net([input_few, K.variable(episode_train_img[i:i+1])]) +# if i == 0: +# sum_few = K.variable(episode_train_label[i:i+1]) * a +# else: +# sum_few += K.variable(episode_train_label[i:i+1]) * a +# print(i) +#sum_few_softmax = Activation('softmax')(sum_few) +#full_few_shot = Model(inputs = input_few, outputs = sum_few_softmax) +# +##print('net_ready') +##aa = K.variable(episode_train_img[0:1]) +##a = full_few_shot(aa) +##print('net ready', K.eval(a)) +## +#from tensorflow.keras.optimizers import Adam +#full_few_shot.compile(loss='categorical_crossentropy', optimizer=Adam(), metrics=['categorical_accuracy']) +# +#print(full_few_shot.summary()) +# +# +#print("eval", episode_train_img[0:1]) +#sum_a = np.zeros(episode_train_label[0:1].shape) +#for i in range(0,train_epoch_size): +# a = siamese_net([K.variable(episode_train_img[0:1]), K.variable(episode_train_img[i:i+1])]) +# sum_a += K.variable(episode_train_label[i:i+1]) * a +# print('aaaaa',i,K.eval(a), episode_train_label[0:1], episode_train_label[i:i+1]) +# +# +##print('suma',episode_train_label[0:1], K.eval(K.softmax(sum_a)), K.eval(full_few_shot(K.variable(episode_train_img[0:1])))) +# +#checkpointer = ModelCheckpoint(filepath='checkpoints/model-{epoch:02d}.hdf5', verbose=1) +# +#history = full_few_shot.fit_generator(gen_train.generate(), train_epoch_size, 100, validation_data=gen_test, validation_steps=test_epoch_size) +# diff --git a/mini_imagenet_dataloader.py b/mini_imagenet_dataloader.py index 67fdfd8..dc2148a 100644 --- a/mini_imagenet_dataloader.py +++ b/mini_imagenet_dataloader.py @@ -38,12 +38,17 @@ args = parser.parse_args() +# uncomment the following to disable CuDNN support +#os.environ["CUDA_VISIBLE_DEVICES"] = "-1" +########################################### + class MiniImageNetDataLoader(object): - def __init__(self, shot_num, way_num, episode_test_sample_num): + def __init__(self, shot_num, way_num, episode_test_sample_num, shuffle_images = False): self.shot_num = shot_num self.way_num = way_num self.episode_test_sample_num = episode_test_sample_num self.num_samples_per_class = episode_test_sample_num + shot_num + self.shuffle_images = shuffle_images metatrain_folder = './processed_images/train' metaval_folder = './processed_images/val' metatest_folder = './processed_images/test' @@ -52,7 +57,7 @@ def __init__(self, shot_num, way_num, episode_test_sample_num): if not os.path.exists(npy_dir): os.mkdir(npy_dir) - self.npy_base_dir = npy_dir + str(self.shot_num) + 'shot_' + str(self.way_num) + 'way_' + str(episode_test_sample_num) + 'shuffled_' + str(args.shuffle_images) + '/' + self.npy_base_dir = npy_dir + str(self.shot_num) + 'shot_' + str(self.way_num) + 'way_' + str(episode_test_sample_num) + 'shuffled_' + str(self.shuffle_images) + '/' if not os.path.exists(self.npy_base_dir): os.mkdir(self.npy_base_dir) @@ -92,7 +97,7 @@ def generate_data_list(self, phase='train', episode_num=None): for _ in trange(episode_num): sampled_character_folders = random.sample(folders, self.way_num) random.shuffle(sampled_character_folders) - labels_and_images = self.get_images(sampled_character_folders, range(self.way_num), nb_samples=self.num_samples_per_class, shuffle=args.shuffle_images) + labels_and_images = self.get_images(sampled_character_folders, range(self.way_num), nb_samples=self.num_samples_per_class, shuffle=self.shuffle_images) labels = [li[0] for li in labels_and_images] filenames = [li[1] for li in labels_and_images] all_filenames.extend(filenames) @@ -110,7 +115,7 @@ def generate_data_list(self, phase='train', episode_num=None): for _ in trange(episode_num): sampled_character_folders = random.sample(folders, self.way_num) random.shuffle(sampled_character_folders) - labels_and_images = self.get_images(sampled_character_folders, range(self.way_num), nb_samples=self.num_samples_per_class, shuffle=args.shuffle_images) + labels_and_images = self.get_images(sampled_character_folders, range(self.way_num), nb_samples=self.num_samples_per_class, shuffle=self.shuffle_images) labels = [li[0] for li in labels_and_images] filenames = [li[1] for li in labels_and_images] all_filenames.extend(filenames) @@ -128,7 +133,7 @@ def generate_data_list(self, phase='train', episode_num=None): for _ in trange(episode_num): sampled_character_folders = random.sample(folders, self.way_num) random.shuffle(sampled_character_folders) - labels_and_images = self.get_images(sampled_character_folders, range(self.way_num), nb_samples=self.num_samples_per_class, shuffle=args.shuffle_images) + labels_and_images = self.get_images(sampled_character_folders, range(self.way_num), nb_samples=self.num_samples_per_class, shuffle=self.shuffle_images) labels = [li[0] for li in labels_and_images] filenames = [li[1] for li in labels_and_images] all_filenames.extend(filenames) @@ -167,8 +172,6 @@ def load_list(self, phase='train'): def process_batch(self, input_filename_list, input_label_list, batch_sample_num, reshape_with_one=True): new_path_list = [] new_label_list = [] - #assert(input_filename_list[0].startswith('./processed_images/test')) - #print('process batch', input_filename_list[0]) for k in range(batch_sample_num): class_idxs = list(range(0, self.way_num)) random.shuffle(class_idxs) @@ -199,22 +202,6 @@ def one_hot(self, inp): out[idx, inp[idx]] = 1 return out - def idx_to_big(self, phase, idx): - if phase=='train': - all_filenames = self.train_filenames -# labels = self.train_labels - elif phase=='val': - all_filenames = self.val_filenames -# labels = self.val_labels - elif phase=='test': - all_filenames = self.test_filenames -# labels = self.test_labels - else: - print('Please select vaild phase') - - one_episode_sample_num = self.num_samples_per_class*self.shot_num - return ((idx+1)*one_episode_sample_num >= len(all_filenames)) - def get_batch(self, phase='train', idx=0): if phase=='train': all_filenames = self.train_filenames @@ -228,7 +215,7 @@ def get_batch(self, phase='train', idx=0): else: print('Please select vaild phase') - one_episode_sample_num = self.num_samples_per_class*self.shot_num + one_episode_sample_num = self.num_samples_per_class*self.way_num this_task_filenames = all_filenames[idx*one_episode_sample_num:(idx+1)*one_episode_sample_num] epitr_sample_num = self.shot_num epite_sample_num = self.episode_test_sample_num @@ -245,14 +232,32 @@ def get_batch(self, phase='train', idx=0): this_task_te_filenames += this_class_filenames[epitr_sample_num:] this_task_te_labels += this_class_label[epitr_sample_num:] - #print(this_task_tr_filenames[0][23:33],this_task_tr_labels[0],this_task_te_filenames[0][23:33],this_task_te_labels[0]) this_inputa, this_labela = self.process_batch(this_task_tr_filenames, this_task_tr_labels, epitr_sample_num, reshape_with_one=False) this_inputb, this_labelb = self.process_batch(this_task_te_filenames, this_task_te_labels, epite_sample_num, reshape_with_one=False) return this_inputa, this_labela, this_inputb, this_labelb +class OurMiniImageNetDataLoader(MiniImageNetDataLoader): + # adding functions we need + def idx_to_big(self, phase, idx): + if phase=='train': + all_filenames = self.train_filenames +# labels = self.train_labels + elif phase=='val': + all_filenames = self.val_filenames +# labels = self.val_labels + elif phase=='test': + all_filenames = self.test_filenames +# labels = self.test_labels + else: + print('Please select vaild phase') + + one_episode_sample_num = self.num_samples_per_class*self.way_num + return ((idx+1)*one_episode_sample_num >= len(all_filenames)) + + cathegories = 5 -dataloader = MiniImageNetDataLoader(shot_num=5 * 2, way_num=cathegories, episode_test_sample_num=args.episode_test_sample_num) #twice shot_num is because one might be uses as the base for the samples +dataloader = OurMiniImageNetDataLoader(shot_num=5 * 2, way_num=cathegories, episode_test_sample_num=args.episode_test_sample_num, shuffle_images = args.shuffle_images) #twice shot_num is because one might be uses as the base for the samples dataloader.generate_data_list(phase='train') dataloader.generate_data_list(phase='val') @@ -397,9 +402,11 @@ def generate_add_samples(self, phase = 'train'): pool3 = TimeDistributed(MaxPooling2D(pool_size = 2))(conv3) conv4 = TimeDistributed(Conv2D(64, 3, padding='same', activation = 'relu'))(pool3) pool4 = TimeDistributed(MaxPooling2D(pool_size = 2))(conv4) +conv5 = TimeDistributed(Conv2D(64, 3, padding='same', activation = 'relu'))(pool4) +pool5 = TimeDistributed(MaxPooling2D(pool_size = 2))(conv5) #conv3 = TimeDistributed(Conv2D(5, 5, (3,3) , padding='same', activation = 'relu'))(conv2) -flat = TimeDistributed(Flatten())(pool4) +flat = TimeDistributed(Flatten())(pool5) #x = TimeDistributed(Dense(100, activation = 'relu'))(flat) #predictions = Activation('softmax')(x)