diff --git a/few_shot_tests.py b/few_shot_tests.py index ef3c53d..1658fe1 100755 --- a/few_shot_tests.py +++ b/few_shot_tests.py @@ -1,27 +1,23 @@ ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -## Created by: Yaoyao Liu -## NUS School of Computing -## Email: yaoyao.liu@nus.edu.sg -## Copyright (c) 2019 +## This file tests few shot learning ## -## This source code is licensed under the MIT-style license found in the -## LICENSE file in the root directory -## of https://github.com/y2l/mini-imagenet-tools +## Prototype learning with tensorflow.keras by D. Schmicker ## -## This file is modified for tensorflow.keras usage by D. Schmicker -## -## original file from https://github.com/y2l/mini-imagenet-tools +## using https://github.com/y2l/mini-imagenet-tools ## ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -import os -import random -import numpy as np -from tqdm import trange -import imageio import ast - +from mini_imagenet_dataloader import MiniImageNetDataLoader +from tensorflow.keras.models import Model +from tensorflow.keras.layers import Activation, Dense, Input, Flatten, Conv2D, Lambda, TimeDistributed, MaxPooling2D +from tensorflow.keras.callbacks import ModelCheckpoint, TensorBoard +import tensorflow.keras.backend as K +import tensorflow.keras +from tensorflow.keras import optimizers as op +import tensorflow as tf import argparse + parser = argparse.ArgumentParser(description='train recurrent net.') parser.add_argument('--pretrained_name', dest='pretrained_name', type=str, default=None) parser.add_argument('--dataset', dest='dataset', type=str, default='train') @@ -42,7 +38,6 @@ #os.environ["CUDA_VISIBLE_DEVICES"] = "-1" ########################################### -from mini_imagenet_dataloader import MiniImageNetDataLoader class OurMiniImageNetDataLoader(MiniImageNetDataLoader): # adding functions we need @@ -89,21 +84,12 @@ def idx_to_big(self, phase, idx): print("epoch training size:", train_epoch_size, base_train_label.shape[0], "epoch testing size", test_epoch_size) class KerasBatchGenerator(object): - -# def __init__(self): - - def generate(self, phase='train'): -# idx = 0 while True: -# episode_train_img, episode_train_label, episode_test_img, episode_test_label = \ -# dataloader.get_batch(phase='train', idx=idx) if phase == 'train': - #print(episode_train_img.shape[0]) for i in range(train_epoch_size): yield base_train_img[i:i+1], base_train_label[i:i+1] else: - #print(episode_test_img.shape[0]) for i in range(test_epoch_size): yield base_test_img[i:i+1], base_test_label[i:i+1] @@ -140,24 +126,12 @@ def generate_add_samples(self, phase = 'train'): print("all data used, starting from beginning") print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!") - #print(episode_train_img.shape[0]) - #assert(episode_train_img.shape[0] == 25) for i in range(train_epoch_size): yield [[episode_train_img[i:i+1]], [network_base_img], [network_base_label]], episode_train_label[i:i+1] else: - #print(episode_test_img.shape[0]) - #assert(0) - #assert(episode_test_img.shape[0] == 75) - #assert(self.idx < 50) for i in range(test_epoch_size): - #print('i',i) yield [[episode_test_img[i:i+1]], [network_base_img], [network_base_label]], episode_test_label[i:i+1] - - - - - keras_gen_train = KerasBatchGenerator() gen_train = keras_gen_train.generate() @@ -172,7 +146,6 @@ def generate_add_samples(self, phase = 'train'): img, l = next(gen_test) print(img.shape,l.shape) -import tensorflow as tf if tf.__version__ < "2.0": from tensorflow.keras.backend import set_session config = tf.ConfigProto() @@ -193,12 +166,6 @@ def generate_add_samples(self, phase = 'train'): # Memory growth must be set before GPUs have been initialized print(e) -from tensorflow.keras.models import Model -from tensorflow.keras.layers import Activation, Dense, Input, Flatten, Conv2D, Lambda, TimeDistributed, MaxPooling2D -from tensorflow.keras.callbacks import ModelCheckpoint, TensorBoard -import tensorflow.keras.backend as K -import tensorflow.keras - inputs = Input(shape=(None,84,84,3)) print('the shape', inputs.shape) conv1 = TimeDistributed(Conv2D(64, 3, padding='same', activation = 'relu'))(inputs) @@ -212,7 +179,6 @@ def generate_add_samples(self, phase = 'train'): conv5 = TimeDistributed(Conv2D(64, 3, padding='same', activation = 'relu'))(pool4) pool5 = TimeDistributed(MaxPooling2D(pool_size = 2))(conv5) -#conv3 = TimeDistributed(Conv2D(5, 5, (3,3) , padding='same', activation = 'relu'))(conv2) flat = TimeDistributed(Flatten())(pool5) #x = TimeDistributed(Dense(100, activation = 'relu'))(flat) #predictions = Activation('softmax')(x) @@ -267,15 +233,11 @@ def call(x): lambda_model = Model(inputs = [input_lambda1, input_lambda2, input_lambda3], outputs = call_lambda_softmax) -from tensorflow.keras import optimizers as op - if args.pretrained_name is not None: from tensorflow.keras.models import load_model lambda_model = load_model(args.pretrained_name, custom_objects = { "keras": tensorflow.keras , "args":args}) print("loaded model",lambda_model) - - # models in models forget the layer name, therefore one must use the automatically given layer name and iterate throught the models by hand # here we can try setting the layer not trainable def all_layers(model): @@ -335,7 +297,7 @@ def all_layers(model): #workers = 0 is a work around to correct the number of calls to the validation_data generator lambda_model.save(args.final_name+'.hdf5') - +# tools for debugging def get_weight_grad(model, inputs, outputs): """ Gets gradient of model for given inputs and outputs for all weights""" grads = model.optimizer.get_gradients(model.total_loss, model.trainable_weights) @@ -354,57 +316,3 @@ def get_layer_output_grad(model, inputs, outputs, layer=-1): x, y, sample_weight = model._standardize_user_data(inputs, outputs) output_grad = f(x + y + sample_weight) return output_grad - - -#weight_grads = get_layer_output_grad(lambda_model, [[episode_train_img[0:1]], [episode_train_img[:]], [episode_train_label[:]]], [episode_train_label[0:1]]) - -#weight_grads = get_layer_output_grad(siamese_net, [episode_train_img[0:1],episode_train_img[0:1]], episode_train_label[0:1]) - -#print(weight_grads) -# -#input_few = Input(shape=(84,84,3)) -#input_labels = Input(shape=(84,84,3)) -# -#output_few = Lambda(call)([input_few,K.variable(episode_train_img), K.variable(episode_train_label)]) -# -#model_few = Model(inputs = [input_few, input_labels], outputs = output_few) -# -#print('test few', K.eval(model_few([K.variable(episode_train_img[0:0+1]),K.variable(episode_train_label)]))) - -##sum_few = np.zeros(episode_train_label[0:1].shape) -#input_few = Input(shape=(84,84,3)) -#for i in range(0,2): -# a = siamese_net([input_few, K.variable(episode_train_img[i:i+1])]) -# if i == 0: -# sum_few = K.variable(episode_train_label[i:i+1]) * a -# else: -# sum_few += K.variable(episode_train_label[i:i+1]) * a -# print(i) -#sum_few_softmax = Activation('softmax')(sum_few) -#full_few_shot = Model(inputs = input_few, outputs = sum_few_softmax) -# -##print('net_ready') -##aa = K.variable(episode_train_img[0:1]) -##a = full_few_shot(aa) -##print('net ready', K.eval(a)) -## -#from tensorflow.keras.optimizers import Adam -#full_few_shot.compile(loss='categorical_crossentropy', optimizer=Adam(), metrics=['categorical_accuracy']) -# -#print(full_few_shot.summary()) -# -# -#print("eval", episode_train_img[0:1]) -#sum_a = np.zeros(episode_train_label[0:1].shape) -#for i in range(0,train_epoch_size): -# a = siamese_net([K.variable(episode_train_img[0:1]), K.variable(episode_train_img[i:i+1])]) -# sum_a += K.variable(episode_train_label[i:i+1]) * a -# print('aaaaa',i,K.eval(a), episode_train_label[0:1], episode_train_label[i:i+1]) -# -# -##print('suma',episode_train_label[0:1], K.eval(K.softmax(sum_a)), K.eval(full_few_shot(K.variable(episode_train_img[0:1])))) -# -#checkpointer = ModelCheckpoint(filepath='checkpoints/model-{epoch:02d}.hdf5', verbose=1) -# -#history = full_few_shot.fit_generator(gen_train.generate(), train_epoch_size, 100, validation_data=gen_test, validation_steps=test_epoch_size) -#