diff --git a/few_shot_tests.py b/few_shot_tests.py index fcbada0..f488139 100755 --- a/few_shot_tests.py +++ b/few_shot_tests.py @@ -60,16 +60,12 @@ class OurMiniImageNetDataLoader(MiniImageNetDataLoader): def idx_to_big(self, phase, idx): if phase=='train': all_filenames = self.train_filenames -# labels = self.train_labels elif phase=='val': all_filenames = self.val_filenames -# labels = self.val_labels elif phase=='test': all_filenames = self.test_filenames -# labels = self.test_labels else: print('Please select vaild phase') - one_episode_sample_num = self.num_samples_per_class*self.way_num return ((idx+1)*one_episode_sample_num >= len(all_filenames)) @@ -144,11 +140,6 @@ def get_batch(self, phase='train', idx=0, dont_shuffle_batch = False): printdeb('mode is',args.dataset) dataloader.load_list(args.dataset) -#print('train',dataloader.train_filenames) -#print('val',dataloader.val_filenames) -#print('test',dataloader.test_filenames) - - base_train_img, base_train_label, base_test_img, base_test_label = \ dataloader.get_batch(phase=args.dataset, idx=0) @@ -160,14 +151,14 @@ def get_batch(self, phase='train', idx=0, dont_shuffle_batch = False): print("epoch training size:", train_epoch_size, base_train_label.shape[0], "epoch testing size", test_epoch_size) class KerasBatchGenerator(object): - def generate(self, phase='train'): - while True: - if phase == 'train': - for i in range(train_epoch_size): - yield base_train_img[i:i+1], base_train_label[i:i+1] - else: - for i in range(test_epoch_size): - yield base_test_img[i:i+1], base_test_label[i:i+1] + # def generate(self, phase='train'): + # while True: + # if phase == 'train': + # for i in range(train_epoch_size): + # yield base_train_img[i:i+1], base_train_label[i:i+1] + # else: + # for i in range(test_epoch_size): + # yield base_test_img[i:i+1], base_test_label[i:i+1] def generate_add_samples(self, phase = 'train'): self.idx = 0 @@ -212,18 +203,18 @@ def generate_add_samples(self, phase = 'train'): yield [[episode_test_img[i:i+1]], [network_base_img], [network_base_label]], episode_test_label[i:i+1] keras_gen_train = KerasBatchGenerator() -gen_train = keras_gen_train.generate() +#gen_train = keras_gen_train.generate() -gen_test = KerasBatchGenerator().generate('test') +#gen_test = KerasBatchGenerator().generate('test') -print('train data check') -for _ in range(3): - img, l = next(gen_train) - print(img.shape,l.shape) -print('test data check') -for _ in range(3): - img, l = next(gen_test) - print(img.shape,l.shape) +# print('train data check') +# for _ in range(3): +# img, l = next(gen_train) +# print(img.shape,l.shape) +# print('test data check') +# for _ in range(3): +# img, l = next(gen_test) +# print(img.shape,l.shape) if tf.__version__ < "2.0": from tensorflow.keras.backend import set_session @@ -302,7 +293,6 @@ def set_bias(self, do_bias): self.set_weights([was_weights[0],np.array([0])]) self.trainable = False - def call(self, x): return self.bias * self.bias_enable + x * (1-self.bias_enable) @@ -312,6 +302,8 @@ def compute_output_shape(self, input_shape): def get_config(self): return {'proto_num': self.proto_num, 'do_bias' : self.do_bias,'bias_num' : self.bias_num} +# Network definition starts here + inputs = Input(shape=(None,84,84,3)) printdeb('the shape', inputs.shape) conv1 = TimeDistributed(Conv2D(args.hidden_size, 3, padding='same', activation = 'relu'))(inputs) @@ -335,8 +327,6 @@ def get_config(self): print(model_img.summary(line_length=180, positions = [.33, .55, .67, 1.])) - - input1 = Input(shape=(None,84,84,3)) input2 = Input(shape=(None,84,84,3)) #, tensor = K.variable(episode_train_img[0:0])) @@ -367,14 +357,10 @@ def get_config(self): def call(x): [k0,l2] = x - #k0 = siamese_net([x1,x2]) - #k1 = K.expand_dims(tf.reshape(k0, (-1,1)), axis=0) k2 = k0 * l2 r = K.sum(k2, axis = 1) printdeb('l2',l2.shape,'k0',k0.shape, 'k2',k2.shape, 'r',r.shape) return r -#def call_shape(input_shape): -# return (5,) call_lambda = Lambda(call)([s_res, input_lambda3]) call_lambda_softmax = Activation('softmax')(call_lambda) @@ -437,14 +423,6 @@ def all_layers(model): #after loading to set learning rate lambda_model.compile(loss='categorical_crossentropy', optimizer=op.SGD(args.lr), metrics=['categorical_accuracy']) print(lambda_model.summary(line_length=180, positions = [.33, .55, .67, 1.])) -#lambda_model.get_layer("dense_1").trainable = False - -# testing with additional batch axis ?! -#i=1 -#test_lambda = lambda_model([K.expand_dims(K.variable(base_train_img[0:0+1]),axis=0),K.expand_dims(K.variable(base_train_img), axis=0), K.expand_dims(K.variable(base_train_label), axis=0)]) -# -#print('test lambda', K.eval(test_lambda)) - #print('vor fitting', lambda_model_layers[17].get_weights()[0]) @@ -466,11 +444,8 @@ def all_layers(model): print(functor([K.expand_dims(K.variable(keras_gen_train.e_t_i[i:i+1]),axis=0), K.expand_dims(K.variable(keras_gen_train.n_b_i),axis=0), K.expand_dims(K.variable(keras_gen_train.n_b_l),axis=0)])) - - find_conv_model = None - def print_FindModels(model): found = 0 for l in model.layers: @@ -482,7 +457,7 @@ def print_FindModels(model): return found #check if allways one -print('number of models found', print_FindModels(lambda_model)) +print('number of find models found', print_FindModels(lambda_model)) find_conv_model = get_FindModel(lambda_model) @@ -492,11 +467,11 @@ def print_FindModels(model): calc_out = functor([K.expand_dims(K.variable(keras_gen_train.n_b_i),axis=0)]) -print('calc_out',calc_out[0]) +printdeb('calc_out',calc_out[0]) for l in lambda_model_layers: if isinstance(l,BiasLayer) and l.bias_num == 2: - print('vor', l.get_weights()[0]) + printdeb('vor', l.get_weights()[0]) if args.set_model_img_to_weights: print('\n!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!') @@ -509,10 +484,6 @@ def print_FindModels(model): print('!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n') - - - - for l in range(len(lambda_model_layers)): l2=lambda_model_layers[l] p='normal' @@ -527,8 +498,7 @@ def print_FindModels(model): l2.do_bias = l2.trainable = args.biaslayer1 if (l2.bias_num == 2): l2.do_bias = l2.trainable = args.biaslayer2 - print('past',l2.bias_num, l2.do_bias,args.biaslayer1,args.biaslayer2, debug(l2.bias)) - + printdeb('past',l2.bias_num, l2.do_bias,args.biaslayer1,args.biaslayer2, debug(l2.bias)) print('{:10} {:10} {:20} {:10} {:10}'.format(l, p,l2.name, ("fixed", "trainable")[l2.trainable], l2.count_params()), debug(l2.get_weights())) for l in range(len(lambda_model_layers)):