-
Notifications
You must be signed in to change notification settings - Fork 1
/
wq.py
101 lines (83 loc) · 3.85 KB
/
wq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import requests
import pandas as pd
import numpy as np
# Create a session to persistently store the headers
s = requests.Session()
# Save credentials into session
s.auth = (username, password)
# Send a POST request to the /authentication API
response = s.post('https://api.worldquantbrain.com/authentication')
response.status_code
def Simulation(alpha):
simulate_data = {
"type": "REGULAR",
"settings": {
"instrumentType": "EQUITY",
"region": "USA",
"universe": "TOP3000",
"delay": 1,
"decay": 15,
"neutralization": "SUBINDUSTRY",
"truncation": 0.08,
"pasteurization": "ON",
"unitHandling": "VERIFY",
"nanHandling": "OFF",
"language": "FASTEXPR",
"visualization": False,
},
"regular": alpha
}
simulate_response = s.post('https://api.worldquantbrain.com/simulations', json=simulate_data)
simulation_progress_url = simulate_response.headers['Location']
finished = False
while True:
simulation_progress = s.get(simulation_progress_url)
if simulation_progress.headers.get("Retry-After", 0) == 0:
break
# print("Sleeping for " + simulation_progress.headers["Retry-After"] + " seconds")
import time
time.sleep(float(simulation_progress.headers["Retry-After"]))
# print("Alpha done simulating, getting alpha details")
alpha = simulation_progress.json()["alpha"]
simulation_result = s.get("https://api.worldquantbrain.com/alphas/" + alpha)
pnl = s.get("https://api.worldquantbrain.com/alphas/" + alpha)
return pnl.json()
a = pd.read_csv("fields.csv")
fields = a.values.reshape(1,-1).tolist()[0]
import math
kq = [i for i in range(len(a)-1)]
next_index = len(a)-1
for i in range(next_index,len(fields)-1):
kq.append(Simulation("group_rank(rank({}/{}),sector)".format(fields[i],fields[i+1])))
if i == 0:
pd.DataFrame([kq[i]]).to_csv("alpha.csv",mode="a",header=True)
else:
pd.DataFrame([kq[i]]).to_csv("alpha.csv",mode="a",header=False)
# convert best alpha
results = pd.read_csv('alpha.csv')
results = results.loc[:,['id','is']]
#check fitness and sharp
b = results['is'].tolist()
def change_to_float(a):
while not a[-1].isnumeric():
a = a[:len(a)-1]
change_to_float(a)
return a
for i in range(len(b)):
fitness = float(change_to_float(b[i][b[i].index('fitness')+9:b[i].index('fitness')+15]))
sharpe = float(change_to_float(b[i][b[i].index('sharpe')+9:b[i].index('sharpe')+15]))
if abs(fitness) >= 1 and abs(sharpe) >= 1.25:
results.iloc[i].to_csv("passall.csv",mode = "a",header = False)
elif abs(fitness) >=1 or abs(sharpe) >= 1.25:
results.iloc[i].to_csv("only1.csv",mode = "a",header = False)
# function
def mae3bound(alpha):
return f"le1 = sum(close,20)/20 - sum(close,20)/20 * 0.05; le2 = sum(close,20)/20 - sum(close,20)/20 * 0.1;le3 = sum(close,20)/20 - sum(close,20)/20 * 0.2; alpha = {alpha};low < le3?alpha + 0.5781*abs(alpha):(low<le2?alpha+0.2254*abs(alpha):(low<le1?alpha+0.078*abs(alpha):alpha))"
kq = Simulation(mae3bound("group_rank(rank({}/{}),sector)".format("close","open")))
def MACD(alpha):
return f"WMA12=decay_linear(close,12);WMA26=decay_linear(close,26);MACDLine = WMA12 - WMA26;SignalLine=decay_linear(MACDLine,9);MACDHistogram = MACDLine - SignalLine; alpha = {alpha};MACDHistogram > 0? alpha + 0.11234*abs(alpha):alpha"
def Bollinger_Bands(alpha):
return f"MB=sum(close,20)/20;UB=MB+2*stddev(close,20);LB=MB-2*stddev(close,20);alpha = {alpha};low<LB ? alpha + 0.1531*abs(alpha):alpha"
def RSI(alpha):
return f"AG=sum((delta(close,1) > 0 ? delta(close,1) : 0), 14);AL=sum((delta(close,1)< 0 ? - delta(close,1) : 0), 14);RSI = (100 - 100 / (1 + AG/AL)); alpha = {alpha}; RSI < 30? alpha + 0.2451*abs(alpha): alpha"
def ROC(alpha):