-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpretrainFtFeedback2.py
250 lines (203 loc) · 8.68 KB
/
pretrainFtFeedback2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import numpy as np
import pandas as pd
import os, gc, re, warnings
from sklearn.metrics import mean_squared_error
from transformers import AutoModel,AutoTokenizer
import torch
import torch.nn.functional as F
from tqdm import tqdm
from sklearn.svm import SVR
from sklearn.linear_model import Ridge
from sklearn.model_selection import GridSearchCV
warnings.filterwarnings("ignore")
import os
# for dirname, _, filenames in os.walk('/kaggle/input'):
# for filename in filenames:
# print(os.path.join(dirname, filename))
train_df = pd.read_csv("./input/feedback-prize-english-language-learning/train.csv")
train_df["type"]="train"
test_df = pd.read_csv("./input/feedback-prize-english-language-learning/test.csv")
test_df["type"]="test"
all_df = pd.concat([train_df,test_df],ignore_index=True)
TARGET = ['cohesion', 'syntax', 'vocabulary', 'phraseology', 'grammar', 'conventions',]
print(all_df.head())
import sys
sys.path.append('./input/iterativestratification')
from iterstrat.ml_stratifiers import MultilabelStratifiedKFold
FOLDS = 5
skf = MultilabelStratifiedKFold(n_splits=FOLDS, shuffle=True, random_state=42)
for i,(train_index, val_index) in enumerate(skf.split(train_df,train_df[TARGET])):
train_df.loc[val_index,'FOLD'] = i
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output.last_hidden_state.detach().cpu()
input_mask_expanded = (
attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
)
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(
input_mask_expanded.sum(1), min=1e-9
)
BATCH_SIZE = 4
class EmbedDataset(torch.utils.data.Dataset):
def __init__(self,df):
self.df = df.reset_index(drop=True)
def __len__(self):
return len(self.df)
def __getitem__(self,idx):
text = self.df.loc[idx,"full_text"]
tokens = tokenizer(
text,
None,
add_special_tokens=True,
padding='max_length',
truncation=True,
max_length=MAX_LEN,return_tensors="pt")
tokens = {k:v.squeeze(0) for k,v in tokens.items()}
return tokens
ds_tr = EmbedDataset(train_df)
embed_dataloader_tr = torch.utils.data.DataLoader(ds_tr,\
batch_size=BATCH_SIZE,\
shuffle=False)
ds_te = EmbedDataset(test_df)
embed_dataloader_te = torch.utils.data.DataLoader(ds_te,\
batch_size=BATCH_SIZE,\
shuffle=False)
tokenizer = None
MAX_LEN = 640
def get_embeddings(MODEL_NM='', MAX=250, BATCH_SIZE=4, verbose=True):
global tokenizer, MAX_LEN
DEVICE="cuda"
model = AutoModel.from_pretrained( MODEL_NM )
# tokenizer = AutoTokenizer.from_pretrained( MODEL_NM )
tokenizer = AutoTokenizer.from_pretrained( 'roberta-base' )
MAX_LEN = MAX
model = model.to(DEVICE)
model.eval()
all_train_text_feats = []
for batch in tqdm(embed_dataloader_tr,total=len(embed_dataloader_tr)):
input_ids = batch["input_ids"].to(DEVICE)
attention_mask = batch["attention_mask"].to(DEVICE)
with torch.no_grad():
model_output = model(input_ids=input_ids,attention_mask=attention_mask)
sentence_embeddings = mean_pooling(model_output, attention_mask.detach().cpu())
# Normalize the embeddings
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
sentence_embeddings = sentence_embeddings.squeeze(0).detach().cpu().numpy()
all_train_text_feats.extend(sentence_embeddings)
all_train_text_feats = np.array(all_train_text_feats)
if verbose:
print('Train embeddings shape',all_train_text_feats.shape)
te_text_feats = []
for batch in tqdm(embed_dataloader_te,total=len(embed_dataloader_te)):
input_ids = batch["input_ids"].to(DEVICE)
attention_mask = batch["attention_mask"].to(DEVICE)
with torch.no_grad():
model_output = model(input_ids=input_ids,attention_mask=attention_mask)
sentence_embeddings = mean_pooling(model_output, attention_mask.detach().cpu())
# Normalize the embeddings
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
sentence_embeddings = sentence_embeddings.squeeze(0).detach().cpu().numpy()
te_text_feats.extend(sentence_embeddings)
te_text_feats = np.array(te_text_feats)
if verbose:
print('Test embeddings shape',te_text_feats.shape)
return all_train_text_feats, te_text_feats
# MODEL_NM = './input/huggingface-deberta-variants/deberta-base/deberta-base'
MODEL_NM = './output'
all_train_text_feats, te_text_feats = get_embeddings(MODEL_NM)
def GetBasedModel():
basedModels = []
basedModels.append(('SVR' , SVR(C=1,kernel='poly',epsilon=0.2,gamma='scale')))
basedModels.append(('RGE' , Ridge(alpha=0.1,solver='saga')))
return basedModels
models = GetBasedModel()
# FOLDS = 10
# def comp_score(y_true,y_pred):
# rmse_scores = []
# for i in range(len(TARGET)):
# rmse_scores.append(np.sqrt(mean_squared_error(y_true[:,i],y_pred[:,i])))
# return np.mean(rmse_scores)
# param_grid_RGE = {
# 'solver': ['auto', 'svd', 'cholesky','lsqr', 'sparse_cg','sag', 'saga', 'lbfgs'],
# 'alpha': [0.1,0.2,0.3]
# }
# param_grid_SVR = {
# 'C': [0.1,0.5,1.0],
# 'kernel': ['linear','poly','rbf','sigmoid'],
# 'gamma': ['scale', 'auto'],
# 'epsilon': [0.1,0.2,0.3]
# }
# for name, clf in models:
# print(name)
# preds = []
# scores = []
# for fold in range(FOLDS):
# print('#'*10)
# print('### Fold',fold+1)
# print('#'*10)
# train_df_ = train_df[train_df["FOLD"]!=fold]
# val_df_ = train_df[train_df["FOLD"]==fold]
# tr_text_feats = all_train_text_feats[list(train_df_.index),:]
# ev_text_feats = all_train_text_feats[list(val_df_.index),:]
# ev_preds = np.zeros((len(ev_text_feats),6))
# test_preds = np.zeros((len(te_text_feats),6))
# for i,t in enumerate(TARGET):
# print(t,', ',end='')
# CV = GridSearchCV(clf,param_grid_SVR, cv=3, n_jobs= 1)
# CV.fit(tr_text_feats,train_df_[t].values)
# print(CV.best_params_)
# print(CV.best_score_)
# #clf.fit(tr_text_feats, train_df_[t].values)
# #ev_preds[:,i] = clf.predict(ev_text_feats)
# #test_preds[:,i] = clf.predict(te_text_feats)
# #print()
# #score = comp_score(val_df_[TARGET].values,ev_preds)
# #scores.append(score)
# #print("Fold : {} RSME score: {}".format(fold,score))
# #preds.append(test_preds)
# #print('#'*10)
# print('Overall CV RSME =',np.mean(scores))
FOLDS = 5
def comp_score(y_true,y_pred):
rmse_scores = []
for i in range(len(TARGET)):
rmse_scores.append(np.sqrt(mean_squared_error(y_true[:,i],y_pred[:,i])))
return np.mean(rmse_scores)
for name, clf in models:
print(name)
preds = []
scores = []
for fold in range(FOLDS):
print('#'*10)
print('### Fold',fold+1)
print('#'*10)
train_df_ = train_df[train_df["FOLD"]!=fold]
val_df_ = train_df[train_df["FOLD"]==fold]
tr_text_feats = all_train_text_feats[list(train_df_.index),:]
ev_text_feats = all_train_text_feats[list(val_df_.index),:]
ev_preds = np.zeros((len(ev_text_feats),6))
test_preds = np.zeros((len(te_text_feats),6))
for i,t in enumerate(TARGET):
print(t,', ',end='')
clf.fit(tr_text_feats, train_df_[t].values)
ev_preds[:,i] = clf.predict(ev_text_feats)
test_preds[:,i] = clf.predict(te_text_feats)
print()
score = comp_score(val_df_[TARGET].values,ev_preds)
scores.append(score)
print("Fold : {} RSME score: {}".format(fold+1,score))
preds.append(test_preds)
print('#'*10)
print('Overall CV RSME =',np.mean(scores))
sub = test_df.copy()
sub.loc[:,TARGET] = np.average(np.array(preds),axis=0) #,weights=[1/s for s in scores]
sub_columns = pd.read_csv("./input/feedback-prize-english-language-learning/sample_submission.csv").columns
sub = sub[sub_columns]
sub.to_csv(f"submission_{name}.csv",index=None)
sub.head()
pred_SVR = pd.read_csv('submission_SVR.csv')
pred_RGE = pd.read_csv('submission_RGE.csv')
submission_file = pd.read_csv("./input/feedback-prize-english-language-learning/sample_submission.csv")
submission_file.loc[:,TARGET] = (pred_SVR.loc[:,TARGET] + pred_RGE.loc[:,TARGET])/2
submission_file.to_csv(f"submission.csv",index=None)
submission_file.to_csv(f"submission_V2.csv",index=None)
print(submission_file.head())