-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathintegrators.py
35 lines (26 loc) · 1.11 KB
/
integrators.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
class Integrator:
def __init__(self, derivative_fn):
self.derivative_fn = derivative_fn
@staticmethod
def new(name, derivative_fn):
for subclass in Integrator.__subclasses__():
if subclass.__name__.lower() == name.lower():
return subclass(derivative_fn)
def step(self, dt, *X):
pass
class Euler(Integrator):
def step(self, dt, *X):
return self.derivative_fn(dt, *X)
class RK2(Integrator):
def step(self, dt, *X):
dX = self.derivative_fn(dt, *X)
return self.derivative_fn(dt*0.5, *(x + dx*dt*0.5 for x,dx in zip(X,dX)))
class RK4(Integrator):
def step(self, dt, *X):
dX1 = self.derivative_fn(dt, *X)
dX2 = self.derivative_fn(dt*0.5, *(x + dx*dt*0.5 for x,dx in zip(X,dX1)))
dX3 = self.derivative_fn(dt*0.5, *(x + dx*dt*0.5 for x,dx in zip(X,dX2)))
dX4 = self.derivative_fn(dt, *(x + dx*dt*0.5 for x,dx in zip(X,dX3)))
return ( (dx1 + 2*dx2 + 2*dx3 + dx4) / 6.0 for dx1,dx2,dx3,dx4 in zip(dX1,dX2,dX3,dX4) )
if __name__ == "__main__":
print(Integrator.new('euler'))