-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrules.py
221 lines (159 loc) · 6.17 KB
/
rules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import numpy as np
from numpy.core.umath_tests import inner1d
from collections import Counter
class Rule:
@staticmethod
def from_dict(rtype, params):
c = [ Rule ]
o = []
while len(c):
cls = c.pop()
c += cls.__subclasses__()
o.append(cls)
for cls in o:
if cls.__name__.lower() == rtype:
return cls(**params)
raise NotImplementedError(f"Unknown class: {rtype}")
class Force(Rule): pass
class CorrectiveForce(Rule): pass
class Gravity(Force):
def __init__(self, G):
self.G = G
def compute(self, nbs, dt, buf_items, buf_pairs):
r2i = nbs.pdist2i_dense[:,np.newaxis]
m1m2 = np.outer(nbs.M, nbs.M)[nbs.tidx][:,np.newaxis]
v = nbs.unit_p1p2_dense
Fg = self.G * m1m2 * r2i * v
buf_pairs[nbs.tidx] = Fg
buf_pairs[nbs.lidx] = -Fg
return buf_pairs.sum(axis=0)
class Drag(Force):
def __init__(self, K):
self.K = K
def compute(self, nbs, dt, buf_items, buf_pairs):
if self.K != 0:
return -self.K * nbs.V
else:
buf_items.fill(0)
return buf_items
class Collision(CorrectiveForce):
def compute(self, nbs, dt, buf_items, buf_pairs):
F = buf_items
F.fill(0)
dPcorr = np.zeros_like(F)
# detect collisions
overlaps, b1_idx, b2_idx = nbs.overlapping_pairs
if len(overlaps):
vdv = inner1d(nbs.V[b1_idx], nbs.V[b2_idx])
approaching = vdv < -0.01
if np.sum(approaching):
hits = overlaps[approaching]
b1h_idx = b1_idx[approaching]
b2h_idx = b2_idx[approaching]
# unit collision vector
dPh = nbs.unit_p1p2_dense[hits]
# masses and velocities of colliding pairs
M1h = nbs.M[b1h_idx]
M2h = nbs.M[b2h_idx]
V1h = nbs.V[b1h_idx]
V2h = nbs.V[b2h_idx]
# project V1 and V2 onto dP
bdb = inner1d(dPh, dPh)
V1p = (inner1d(V1h, dPh) / bdb)[:, np.newaxis] * dPh
V2p = (inner1d(V2h, dPh) / bdb)[:, np.newaxis] * dPh
# orthogonal component sticks around
V1o = V1h - V1p
V2o = V2h - V2p
# new velocities after collision
V1f = ((M1h - M2h) / (M1h + M2h))[:, np.newaxis] * V1p + (2 * M2h / (M1h + M2h))[:, np.newaxis] * V2p
V2f = (2 * M1h / (M1h + M2h))[:, np.newaxis] * V1p - ((M1h - M2h) / (M1h + M2h))[:, np.newaxis] * V2p
F[b1h_idx,:] += M1h[:, np.newaxis] * ((V1f + V1o) - V1h) / dt
F[b2h_idx,:] += M2h[:, np.newaxis] * ((V2f + V2o) - V2h) / dt
dPh = nbs.unit_p1p2_dense[overlaps]
hdr = 0.5 * (nbs.pdist_dense[overlaps] - nbs.r1r2_dense[overlaps])[:,np.newaxis]
Mr = (nbs.M[b1_idx] / (nbs.M[b1_idx] + nbs.M[b2_idx]))[:,np.newaxis]
dPcorr[b1_idx,:] -= Mr * dPh * hdr
dPcorr[b2_idx,:] += Mr * dPh * hdr
return F, dPcorr
class Avoidance(Force):
def __init__(self, dist, k):
self.dist = dist
self.k = k
def compute(self, nbs, dt, buf_items, buf_pairs):
F = buf_pairs
F.fill(0)
near, b1_idx, b2_idx = nbs.near_pairs(self.dist)
if len(near) > 0:
# avoidance vector
dPv = nbs.unit_p1p2_dense[near] / nbs.pdist2_dense[near,np.newaxis] * self.k
F[b1_idx,b2_idx,:] = -dPv
F[b2_idx,b1_idx,:] = dPv
return F.sum(axis=0)
class Cohesion(Force):
def __init__(self, dist, k):
self.dist = dist
self.k = k
def compute(self, nbs, dt, buf_items, buf_pairs):
C = buf_items
C.fill(0)
near, b1_idx, b2_idx = nbs.near_pairs(self.dist)
if len(near) > 0:
# centroids
cidx, ccts = np.unique(np.append(b1_idx,b2_idx), return_counts=True)
np.add.at(C, b1_idx, nbs.P[b2_idx])
np.add.at(C, b2_idx, nbs.P[b1_idx])
C[cidx] /= ccts[:,np.newaxis]
V = C[cidx] - nbs.P[cidx]
V = self.k * V / np.linalg.norm(V, axis=1)[:,np.newaxis]
C[cidx] = V
return C
class Alignment(Force):
def __init__(self, dist, k):
self.dist = dist
self.k = k
def compute(self, nbs, dt, buf_items, buf_pairs):
VC = buf_items
VC.fill(0)
near, b1_idx, b2_idx = nbs.near_pairs(self.dist)
if len(near) > 0:
# average velocity
cidx = np.unique(np.append(b1_idx,b2_idx))
np.add.at(VC, b1_idx, nbs.V[b2_idx])
np.add.at(VC, b2_idx, nbs.V[b1_idx])
vlen = np.linalg.norm(VC[cidx], axis=1)
vlen[vlen==0.0] = 1.0
VC[cidx] = self.k * VC[cidx] / vlen[:,np.newaxis]
return VC
class Attractor(Force):
def __init__(self, point, k, atype='linear'):
self.k = k
self.point = point
if atype == 'linear':
self.compute = self.compute_linear
elif atype == 'square':
self.compute = self.compute_square
elif atype == 'inverse_linear':
self.compute = self.compute_inverse_linear
elif atype == 'inverse_square':
self.compute = self.compute_inverse_square
def compute_linear(self, nbs, dt, buf_items, buf_pairs):
rv = self.point - nbs.P
return rv * self.k
def compute_square(self, nbs, dt, buf_items, buf_pairs):
rv = self.point - nbs.P
r = np.linalg.norm(rv, axis=1)[:,np.newaxis]
return rv * r * self.k
class SphereBoundary(Force):
def __init__(self, point, radius, k):
self.k = k
self.point = point
self.radius = radius
def compute(self, nbs, dt, buf_items, buf_pairs):
F = buf_items
F.fill(0)
rv = self.point - nbs.P
d = np.linalg.norm(rv,axis=1)
outside = d > self.radius
if outside.shape[0] > 0:
F[outside] = rv[outside] * self.k
return F