forked from mortberg/yacctt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEval.hs
922 lines (820 loc) · 39.6 KB
/
Eval.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
{-# LANGUAGE TypeSynonymInstances, FlexibleInstances, TupleSections #-}
module Eval where
import Debug.Trace
import Control.Monad
import Control.Monad.Gen
import Data.List
import qualified Data.Map as Map
import qualified Data.Set as Set
import qualified Data.Traversable as T
import Cartesian
import CTT
debug :: Bool
debug = False
traceb :: String -> a -> a
traceb s x = if debug then trace s x else x
-----------------------------------------------------------------------
-- Lookup functions
look :: String -> Env -> Eval Val
look x (Env (Upd y rho,v:vs,fs,os)) | x == y = return v
| otherwise = look x (Env (rho,vs,fs,os))
look x r@(Env (Def _ decls rho,vs,fs,Nameless os)) = case lookup x decls of
Just (_,t) -> eval r t
Nothing -> look x (Env (rho,vs,fs,Nameless os))
look x (Env (Sub _ rho,vs,_:fs,os)) = look x (Env (rho,vs,fs,os))
look x (Env (Empty,_,_,_)) = error $ "look: not found " ++ show x
lookType :: String -> Env -> Eval Val
lookType x (Env (Upd y rho,v:vs,fs,os))
| x /= y = lookType x (Env (rho,vs,fs,os))
| VVar _ a <- v = return a
| otherwise = error ""
lookType x r@(Env (Def _ decls rho,vs,fs,os)) = case lookup x decls of
Just (a,_) -> eval r a
Nothing -> lookType x (Env (rho,vs,fs,os))
lookType x (Env (Sub _ rho,vs,_:fs,os)) = lookType x (Env (rho,vs,fs,os))
lookType x (Env (Empty,_,_,_)) = error $ "lookType: not found " ++ show x
lookName :: Name -> Env -> II
lookName i (Env (Upd _ rho,v:vs,fs,os)) = lookName i (Env (rho,vs,fs,os))
lookName i (Env (Def _ _ rho,vs,fs,os)) = lookName i (Env (rho,vs,fs,os))
lookName i (Env (Sub j rho,vs,r:fs,os)) | i == j = r
| otherwise = lookName i (Env (rho,vs,fs,os))
lookName i _ = error $ "lookName: not found " ++ show i
-----------------------------------------------------------------------
-- Nominal instances
instance Nominal Ctxt where
occurs _ _ = False
subst e _ = return e
swap e _ = e
instance Nominal Env where
occurs x (Env (rho,vs,fs,os)) = occurs x (rho,vs,fs,os)
subst (Env (rho,vs,fs,os)) iphi = do
vs' <- subst vs iphi
fs' <- subst fs iphi
return $ Env (rho,vs',fs',os)
swap (Env (rho,vs,fs,os)) ij = Env $ swap (rho,vs,fs,os) ij
instance Nominal Val where
occurs x v = case v of
VU -> False
Ter _ e -> occurs x e
VPi u v -> occurs x (u,v)
VPathP a v0 v1 -> occurs x [a,v0,v1]
VLineP a -> occurs x a
VPLam i v -> if x == i then False else occurs x v
VSigma u v -> occurs x (u,v)
VPair u v -> occurs x (u,v)
VFst u -> occurs x u
VSnd u -> occurs x u
VCon _ vs -> occurs x vs
VPCon _ a vs phis -> occurs x (a,vs,phis)
VHCom r s a ts u -> occurs x (r,s,a,u,ts)
VCoe r s a u -> occurs x (r,s,a,u)
VVar _ v -> occurs x v
VOpaque _ v -> occurs x v
VApp u v -> occurs x (u,v)
VLam _ u v -> occurs x (u,v)
VAppII u phi -> occurs x (u,phi)
VSplit u v -> occurs x (u,v)
VV i a b e -> x == i || occurs x (a,b,e)
VVin i m n -> x == i || occurs x (m,n)
VVproj i o a b e -> x == i || occurs x (o,a,b,e)
VHComU r s t ts -> occurs x (r,s,t,ts)
VBox r s t ts -> occurs x (r,s,t,ts)
VCap r s t ts -> occurs x (r,s,t,ts)
subst u (i,r) | i `notOccurs` u = return u -- WARNING: this can be very bad!
| otherwise = case u of
VU -> return VU
Ter t e -> Ter t <$> subst e (i,r)
VPi a f -> VPi <$> subst a (i,r) <*> subst f (i,r)
VPathP a u v -> VPathP <$> subst a (i,r) <*> subst u (i,r) <*> subst v (i,r)
VLineP a -> VLineP <$> subst a (i,r)
VPLam j v | j == i -> return u
| not (j `occurs` r) -> VPLam j <$> subst v (i,r)
| otherwise -> do
k <- fresh
VPLam k <$> subst (v `swap` (j,k)) (i,r)
VSigma a f -> VSigma <$> subst a (i,r) <*> subst f (i,r)
VPair u v -> VPair <$> subst u (i,r) <*> subst v (i,r)
VFst u -> fstVal <$> subst u (i,r)
VSnd u -> sndVal <$> subst u (i,r)
VCon c vs -> VCon c <$> subst vs (i,r)
VPCon c a vs phis -> join $ pcon c <$> subst a (i,r) <*> subst vs (i,r) <*> subst phis (i,r)
VHCom s s' a us u0 -> join $ hcom <$> subst s (i,r) <*> subst s' (i,r) <*> subst a (i,r) <*> subst us (i,r) <*> subst u0 (i,r)
VCoe s s' a u -> join $ coe <$> subst s (i,r) <*> subst s' (i,r) <*> subst a (i,r) <*> subst u (i,r)
VVar x v -> VVar x <$> subst v (i,r)
VOpaque x v -> VOpaque x <$> subst v (i,r)
VAppII u s -> join $ (@@) <$> subst u (i,r) <*> subst s (i,r)
VApp u v -> join $ app <$> subst u (i,r) <*> subst v (i,r)
VLam x t u -> VLam x <$> subst t (i,r) <*> subst u (i,r)
VSplit u v -> join $ app <$> subst u (i,r) <*> subst v (i,r)
VV j a b e ->
vtype <$> subst (Name j) (i,r) <*> subst a (i,r) <*> subst b (i,r) <*> subst e (i,r)
VVin j m n ->
vin <$> subst (Name j) (i,r) <*> subst m (i,r) <*> subst n (i,r)
VVproj j o a b e ->
join $ vproj <$> subst (Name j) (i,r) <*> subst o (i,r) <*> subst a (i,r) <*> subst b (i,r) <*> subst e (i,r)
VHComU s s' ts t -> join $ hcomU <$> subst s (i,r) <*> subst s' (i,r) <*> subst ts (i,r) <*> subst t (i,r)
VBox s s' ts t -> join $ box <$> subst s (i,r) <*> subst s' (i,r) <*> subst ts (i,r) <*> subst t (i,r)
VCap s s' ts t -> join $ cap <$> subst s (i,r) <*> subst s' (i,r) <*> subst ts (i,r) <*> subst t (i,r)
-- This increases efficiency as it won't trigger computation.
swap u ij =
let sw :: Nominal a => a -> a
sw u = swap u ij
in case u of
VU -> VU
Ter t e -> Ter t (sw e)
VPi a f -> VPi (sw a) (sw f)
VPathP a u v -> VPathP (sw a) (sw u) (sw v)
VLineP a -> VLineP (sw a)
VPLam k v -> VPLam (swapName k ij) (sw v)
VSigma a f -> VSigma (sw a) (sw f)
VPair u v -> VPair (sw u) (sw v)
VFst u -> VFst (sw u)
VSnd u -> VSnd (sw u)
VCon c vs -> VCon c (sw vs)
VPCon c a vs phis -> VPCon c (sw a) (sw vs) (sw phis)
VHCom r s a us u -> VHCom (sw r) (sw s) (sw a) (sw us) (sw u)
VCoe r s a u -> VCoe (sw r) (sw s) (sw a) (sw u)
VVar x v -> VVar x (sw v)
VOpaque x v -> VOpaque x (sw v)
VAppII u psi -> VAppII (sw u) (sw psi)
VApp u v -> VApp (sw u) (sw v)
VLam x u v -> VLam x (sw u) (sw v)
VSplit u v -> VSplit (sw u) (sw v)
VV i a b e -> VV (swapName i ij) (sw a) (sw b) (sw e)
VVin i m n -> VVin (swapName i ij) (sw m) (sw n)
VVproj i o a b e -> VVproj (swapName i ij) (sw o) (sw a) (sw b) (sw e)
VHComU s s' ts t -> VHComU (sw s) (sw s') (sw ts) (sw t)
VBox s s' ts t -> VBox (sw s) (sw s') (sw ts) (sw t)
VCap s s' ts t -> VCap (sw s) (sw s') (sw ts) (sw t)
-----------------------------------------------------------------------
-- The evaluator
eval :: Env -> Ter -> Eval Val
eval rho@(Env (_,_,_,Nameless os)) v = case v of
U -> return VU
App r s -> join $ app <$> eval rho r <*> eval rho s
Var i
| i `Set.member` os -> VOpaque i <$> lookType i rho
| otherwise -> look i rho
Pi t@(Lam _ a _) -> VPi <$> eval rho a <*> eval rho t
Sigma t@(Lam _ a _) -> VSigma <$> eval rho a <*> eval rho t
Pair a b -> VPair <$> eval rho a <*> eval rho b
Fst a -> fstVal <$> eval rho a
Snd a -> sndVal <$> eval rho a
Where t decls -> eval (defWhere decls rho) t
Con name ts -> VCon name <$> mapM (eval rho) ts
PCon name a ts phis ->
join $ pcon name <$> eval rho a <*> mapM (eval rho) ts <*> pure (map (evalII rho) phis)
Lam{} -> return $ Ter v rho
Split{} -> return $ Ter v rho
Sum{} -> return $ Ter v rho
HSum{} -> return $ Ter v rho
Undef{} -> return $ Ter v rho
Hole{} -> return $ Ter v rho
PathP a e0 e1 -> VPathP <$> eval rho a <*> eval rho e0 <*> eval rho e1
LineP a -> VLineP <$> eval rho a
PLam i t -> do
j <- fresh
VPLam j <$> eval (sub (i,Name j) rho) t
AppII e phi -> join $ (@@) <$> eval rho e <*> pure (evalII rho phi)
HCom r s a us u0 ->
join $ hcom (evalII rho r) (evalII rho s) <$> eval rho a <*> evalSystem rho us <*> eval rho u0
Com r s a us u0 ->
join $ com (evalII rho r) (evalII rho s) <$> eval rho a <*> evalSystem rho us <*> eval rho u0
Coe r s a t -> join $ coe (evalII rho r) (evalII rho s) <$> eval rho a <*> eval rho t
-- Comp a t0 ts -> compLine (eval rho a) (eval rho t0) (evalSystem rho ts)
V r a b e -> vtype (evalII rho r) <$> eval rho a <*> eval rho b <*> eval rho e
Vin r m n -> vin (evalII rho r) <$> eval rho m <*> eval rho n
Vproj r o a b e ->
join $ vproj (evalII rho r) <$> eval rho o <*> eval rho a <*> eval rho b <*> eval rho e
Box r s ts t -> join $ box (evalII rho r) (evalII rho s) <$> evalSystem rho ts <*> eval rho t
Cap r s ts t -> join $ cap (evalII rho r) (evalII rho s) <$> evalSystem rho ts <*> eval rho t
_ -> error $ "Cannot evaluate " ++ show v
evals :: Env -> [(Ident,Ter)] -> Eval [(Ident,Val)]
evals rho bts = mapM (\(b,t) -> (b,) <$> eval rho t) bts
evalII :: Env -> II -> II
evalII rho phi = case phi of
Name i -> lookName i rho
_ -> phi
evalEqn :: Env -> Eqn -> Eqn
evalEqn rho (Eqn r s) = eqn (evalII rho r,evalII rho s)
evalSystem :: Env -> System Ter -> Eval (System Val)
evalSystem rho (Triv u) = Triv <$> eval rho u
evalSystem rho (Sys us) =
case Map.foldrWithKey (\eqn u -> insertSystem (evalEqn rho eqn,u)) eps us of
Triv u -> Triv <$> eval rho u
Sys sys' -> do
xs <- sequence $ Map.mapWithKey (\eqn u ->
join $ eval <$> rho `face` eqn <*> pure u) sys'
return $ Sys xs
app :: Val -> Val -> Eval Val
app u v = case (u,v) of
(Ter (Lam x _ t) e,_) -> eval (upd (x,v) e) t
(Ter (Split _ _ _ nvs) e,VCon c vs) -> case lookupBranch c nvs of
Just (OBranch _ xs t) -> eval (upds (zip xs vs) e) t
_ -> error $ "app: missing case in split for " ++ c
(Ter (Split _ _ _ nvs) e,VPCon c _ us phis) -> case lookupBranch c nvs of
Just (PBranch _ xs is t) -> eval (subs (zip is phis) (upds (zip xs us) e)) t
_ -> error $ "app: missing case in split for " ++ c
(Ter (Split _ _ ty _) e,VHCom r s a ws w) ->
traceb "split hcom" $ eval e ty >>= \x -> case x of
VPi _ f -> do
j <- fresh
fill <- hcom r (Name j) a ws w
ffill <- VPLam j <$> app f fill
w' <- app u w
ws' <- mapSystem (\alpha _ w -> do u' <- u `face` alpha
app u' w) ws
com r s ffill ws' w'
_ -> error $ "app: Split annotation not a Pi type " ++ show u
(Ter Split{} _,_) -- | isNeutral v
-> return (VSplit u v)
(VCoe r s (VPLam i (VPi a b)) u0, v) -> traceb "coe pi" $ do
j <- fresh
let bij = b `swap` (i,j)
w <- coe s (Name j) (VPLam i a) v
w0 <- coe s r (VPLam i a) v
bijw <- VPLam j <$> app bij w
coe r s bijw =<< app u0 w0
(VHCom r s (VPi a b) us u0, v) -> traceb "hcom pi" $ do
us' <- mapSystem (\alpha _ u -> app u =<< (v `face` alpha)) us
join $ hcom r s <$> app b v <*> pure us' <*> app u0 v
(VHCom _ _ _ (Triv u) _, v) -> error "app: trying to apply vhcom in triv"
_ -> return $ VApp u v -- error $ "app \n " ++ show u ++ "\n " ++ show v
fstVal, sndVal :: Val -> Val
fstVal (VPair a b) = a
-- fstVal u | isNeutral u = VFst u
fstVal u = VFst u -- error $ "fstVal: " ++ show u ++ " is not neutral."
sndVal (VPair a b) = b
-- sndVal u | isNeutral u = VSnd u
sndVal u = VSnd u -- error $ "sndVal: " ++ show u ++ " is not neutral."
-- infer the type of a neutral value
inferType :: Val -> Eval Val
inferType v = case v of
VVar _ t -> return t
VOpaque _ t -> return t
Ter (Undef _ t) rho -> eval rho t
VFst t -> inferType t >>= \t' -> case t' of -- LambdaCase?
VSigma a _ -> return a
ty -> error $ "inferType: expected Sigma type for " ++ show v
++ ", got " ++ show ty
VSnd t -> inferType t >>= \t' -> case t' of
VSigma _ f -> app f (VFst t)
ty -> error $ "inferType: expected Sigma type for " ++ show v
++ ", got " ++ show ty
VSplit s@(Ter (Split _ _ t _) rho) v1 -> eval rho t >>= \t' -> case t' of
VPi _ f -> app f v1
ty -> error $ "inferType: Pi type expected for split annotation in "
++ show v ++ ", got " ++ show ty
VApp t0 t1 -> inferType t0 >>= \t' -> case t' of
VPi _ f -> app f t1
ty -> error $ "inferType: expected Pi type for " ++ show v
++ ", got " ++ show ty
VAppII t r -> inferType t >>= \t' -> case t' of
VPathP a _ _ -> a @@ r
VLineP a -> a @@ r
ty -> error $ "inferType: expected PathP/LineP type for " ++ show v
++ ", got " ++ show ty
VHCom r s a _ _ -> return a
VCoe r s a _ -> a @@ s
VVproj _ _ _ b _ -> return b
VHComU _ _ _ _ -> return VU
VCap _ _ _ t -> inferType t >>= \t' -> case t' of
VHComU _ _ _ a -> return a
ty -> error $ "inferType: expected VHComU type for " ++ show v
++ ", got " ++ show ty
_ -> error $ "inferType: not neutral " ++ show v
(@@) :: ToII a => Val -> a -> Eval Val
(VPLam i u) @@ phi = u `subst` (i,toII phi)
v@(Ter Hole{} _) @@ phi = return $ VAppII v (toII phi)
v @@ phi = do
t <- inferType v
case (t,toII phi) of
(VPathP _ a0 _,Dir 0) -> return a0
(VPathP _ _ a1,Dir 1) -> return a1
_ -> return $ VAppII v (toII phi)
-- v @@ phi = error $ "(@@): " ++ show v ++ " should be neutral."
-------------------------------------------------------------------------------
-- com and hcom
com :: II -> II -> Val -> System Val -> Val -> Eval Val
com r s a _ u0 | r == s = return u0
com _ s _ (Triv u) _ = u @@ s
com r s a us u0 = do
us' <- mapSystem (\alpha j u -> a `face` alpha >>= \a' -> coe (Name j) s a' u) us
join $ hcom r s <$> a @@ s <*> pure us' <*> coe r s a u0
-- apply f to each face, eta-expanding where needed, without freshening
mapSystemUnsafe :: (Eqn -> Val -> Eval Val) -> System Val -> Eval (System Val)
mapSystemUnsafe f us = do
j <- fresh
let etaMap e (VPLam i u) = VPLam i <$> f e u
etaMap e u = do
uj <- u @@ j
VPLam j <$> f e uj
case us of
Sys us -> do bs <- T.sequence $ Map.mapWithKey etaMap us
return (Sys bs)
Triv u -> Triv <$> etaMap (eqn (Name (N "_"),Name (N "_"))) u
-- apply f to each face, with binder, with freshening
mapSystem :: (Eqn -> Name -> Val -> Eval Val) -> System Val -> Eval (System Val)
mapSystem f us = do
j <- fresh
let etaMap e (VPLam i u) = VPLam j <$> f e j (u `swap` (i,j))
etaMap e u = do
uj <- u @@ j
VPLam j <$> f e j uj
case us of
Sys us -> do bs <- T.sequence $ Map.mapWithKey etaMap us
return (Sys bs)
Triv u -> Triv <$> etaMap (eqn (Name (N "_"),Name (N "_"))) u
mapSystemNoEta :: (Eqn -> Val -> Eval Val) -> System Val -> Eval (System Val)
mapSystemNoEta f (Sys us) = runSystem $ Sys $ Map.mapWithKey (\alpha u -> f alpha u) us
mapSystemNoEta f (Triv u) = runSystem $ Triv $ f (eqn (Name (N "_"),Name (N "_"))) u
hcom :: II -> II -> Val -> System Val -> Val -> Eval Val
hcom r s _ _ u0 | r == s = return u0
hcom r s _ (Triv u) _ = u @@ s
hcom r s a us u0 = case a of
VPathP a v0 v1 -> traceb "hcom path" $ do
j <- fresh
us' <- insertsSystem [(j~>0,VPLam (N "_") v0),(j~>1,VPLam (N "_") v1)] <$>
mapSystemUnsafe (const (@@ j)) us
aj <- a @@ j
u0j <- u0 @@ j
VPLam j <$> hcom r s aj us' u0j
VLineP a -> traceb "hcom line" $ do
j <- fresh
us' <- mapSystemUnsafe (const (@@ j)) us
aj <- a @@ j
u0j <- u0 @@ j
VPLam j <$> hcom r s aj us' u0j
VSigma a b -> traceb "hcom sigma" $ do
j <- fresh
us1 <- mapSystemUnsafe (const (return . fstVal)) us
us2 <- mapSystemUnsafe (const (return . sndVal)) us
let (u1,u2) = (fstVal u0,sndVal u0)
u1fill <- hcom r (Name j) a us1 u1
u1hcom <- hcom r s a us1 u1
bj <- VPLam j <$> app b u1fill
VPair u1hcom <$> com r s bj us2 u2
VU -> hcomU r s us u0
v@VV{} -> vvhcom v r s us u0
v@VHComU{} -> hcomHComU v r s us u0
Ter (Sum _ n nass) env
| n `elem` ["nat","Z","bool"] -> return u0 -- hardcode hack
-- Ter (Sum _ _ nass) env -- | VCon n vs <- u0, all isCon (elems us)
-- -> error "hcom sum"
-- Ter (HSum _ _ _) _ -> error "hcom hsum" -- return $ VHCom r s a (Sys us) u0
VPi{} -> return $ VHCom r s a us u0
_ -> -- error "hcom: undefined case"
return $ VHCom r s a us u0
-----------------------------------------------------------
-- Coe
coe :: II -> II -> Val -> Val -> Eval Val
coe r s a u | r == s = return u
coe r s (VPLam i a) u = case a of
VPathP a v0 v1 -> traceb "coe path" $ do
j <- fresh
aij <- VPLam i <$> (a @@ j)
out <- join $ com r s aij (mkSystem [(j~>0,VPLam i v0),(j~>1,VPLam i v1)]) <$> u @@ j
return $ VPLam j out
VLineP a -> traceb "coe line" $ do
j <- fresh
aij <- VPLam i <$> (a @@ j)
out <- join $ coe r s aij <$> u @@ j
return $ VPLam j out
VSigma a b -> traceb "coe sigma" $ do
j <- fresh
let (u1,u2) = (fstVal u, sndVal u)
u1' <- coe r (Name j) (VPLam i a) u1
bij <- app (b `swap` (i,j)) u1'
v1 <- coe r s (VPLam i a) u1
v2 <- coe r s (VPLam j bij) u2
return $ VPair v1 v2
VPi{} -> return $ VCoe r s (VPLam i a) u
VU -> return u
v@VHComU{} -> coeHComU (VPLam i v) r s u
v@VV{} -> vvcoe (VPLam i v) r s u
Ter (Sum _ n nass) env
| n `elem` ["nat","Z","bool"] -> return u -- hardcode hack
| otherwise -> error $ "coe sum: " ++ show n
Ter (HSum _ n nass) env
| n `elem` ["S1","S2","S3"] -> return u -- hardcode hack
| otherwise -> error "coe hsum"
_ -> -- error "missing case in coe" --
return $ VCoe r s (VPLam i a) u
coe r s a u = return $ VCoe r s a u
-------------------------------------------------------------------------------
-- | HITs
pcon :: LIdent -> Val -> [Val] -> [II] -> Eval Val
pcon c a@(Ter (HSum _ _ lbls) rho) us phis = case lookupPLabel c lbls of
Just (tele,is,ts) -> evalSystem (subs (zip is phis) (updsTele tele us rho)) ts >>= \t' -> case t' of
Triv x -> return x
_ -> return $ VPCon c a us phis
Nothing -> error "pcon"
pcon c a us phi = return $ VPCon c a us phi
-------------------------------------------------------------------------------
-- | V-types
-- TODO: eta for V-types?
-- We are currently using RedPRL/UniMath style equiv between A and B:
-- f : A -> B
-- p : (x : B) -> isContr ((y : A) * Path B (f y) x)
-- with isContr C = (s : C) * ((z : C) -> Path C z s)
equivFun :: Val -> Val
equivFun = fstVal
equivContr :: Val -> Val
equivContr = sndVal
vtype :: II -> Val -> Val -> Val -> Val
vtype (Dir Zero) a _ _ = a
vtype (Dir One) _ b _ = b
vtype (Name i) a b e = VV i a b e
vin :: II -> Val -> Val -> Val
vin (Dir Zero) m _ = m
vin (Dir One) _ n = n
vin (Name i) m (VVproj j o _ _ _) | i == j = o -- TODO?
vin (Name i) m n = VVin i m n
vproj :: II -> Val -> Val -> Val -> Val -> Eval Val
vproj (Dir Zero) o _ _ e = app (equivFun e) o
vproj (Dir One) o _ _ _ = return o
vproj (Name i) x@(VVin j m n) _ _ _
| i == j = return n
| otherwise = error $ "vproj: " ++ show i ++ " and " ++ show x
vproj (Name i) o a b e = return $ VVproj i o a b e
-- Coe for V-types
vvcoe :: Val -> II -> II -> Val -> Eval Val
vvcoe (VPLam i (VV j a b e)) r s m | i /= j = traceb "vvcoe i != j" $ do
vj0 <- VApp (equivFun e) (VCoe r (Name i) (VPLam i a) m) `subst` (j,0)
vj1 <- VCoe r (Name i) (VPLam i b) m `subst` (j,1)
let tvec = mkSystem [(j~>0,VPLam i vj0),(j~>1,VPLam i vj1)]
(ar,br,er) <- (a,b,e) `subst` (i,r)
vr <- vproj (Name j) m ar br er
vin (Name j) <$> coe r s (VPLam i a) m
<*> com r s (VPLam i b) tvec vr
vvcoe (VPLam i (VV j a b e)) r s m | i == j = traceb "vvcoe i == j" $ do
(ar,br,er) <- (a,b,e) `subst` (i,r)
(as,bs,es) <- (a,b,e) `subst` (i,s)
m' <- vproj r m ar br er
n <- coe r s (VPLam i b) m'
c <- app (equivContr es) n
let fibty = VSigma as (VLam "a" as (VPathP (VPLam (N "_") bs) (VApp (VFst es) (VVar "a" as)) n))
-- This is kinda bad, how to implement it properly?
osys <- case r of
Dir Zero -> Triv `liftM` app (sndVal c) (VPair m n)
Dir One -> return eps
_ -> do or0 <- (VApp (sndVal c) (VPair m n)) `face` (eqn (r,0))
return $ mkSystem [(r~>0,or0)]
o <- hcom 1 0 fibty osys (fstVal c)
-- TODO: we probably need to take appropriate faces in the branches
p <- hcom 1 0 bs (mkSystem [(s~>0,sndVal o),(s~>1,VPLam (N "_") n),(eqn (r,s),VPLam (N "_") m')]) n
return $ vin s (fstVal o) p
vvcoe _ _ _ _ = error "vvcoe: case not implemented"
-- hcom for V-types
vvhcom :: Val -> II -> II -> System Val -> Val -> Eval Val
vvhcom (VV i a b e) r s us m = traceb "vvhcom" $ do
j <- fresh
-- i can occur in e and a
ti0 <- VPLam j <$> (VApp (equivFun e) (VHCom r (Name j) a us m)) `subst` (i,0)
ti1 <- VPLam j <$> (VHCom r (Name j) b us m) `subst` (i,1)
let tvec = [(i~>0,ti0),(i~>1,ti1)]
us' <- mapSystem (\alpha _ n -> (VVproj i n a b e) `face` alpha) us
m' <- vproj (Name i) m a b e
vin (Name i) <$> hcom r s a us m
<*> hcom r s b (insertsSystem tvec us') m'
vvhcom _ _ _ _ _ = error "vvhcom: case not implemented"
-------------------------------------------------------------------------------
-- | Universe
-- TODO: eta for box/cap?
-- This doesn't have to be monadic
box :: II -> II -> System Val -> Val -> Eval Val
box r s _ m | r == s = return m
box _ s (Triv t) _ = return t
box r s ts m = return $ VBox r s ts m
cap :: II -> II -> System Val -> Val -> Eval Val
cap r s _ m | r == s = return m
cap r s (Triv b) m = coe s r b m
cap r s _ (VBox r' s' _ t) | r == r' && s == s' = return t -- TODO: error if false?
cap r s ts t = return $ VCap r s ts t
hcomU :: II -> II -> System Val -> Val -> Eval Val
hcomU r s _ u0 | r == s = return u0
hcomU r s (Triv u) _ = u @@ s
hcomU r s ts t = return $ VHComU r s ts t
-- Helper function that only substitutes on faces of a system
substOnFaces :: Nominal a => System a -> (Name,II) -> Eval (System a)
substOnFaces (Sys xs) f =
mkSystem <$> mapM (\(eqn,a) -> (,) <$> subst eqn f <*> pure a) (Map.assocs xs)
substOnFaces (Triv x) f = return $ Triv x
coeHComU :: Val -> II -> II -> Val -> Eval Val
coeHComU (VPLam i (VHComU si s'i (Sys bisi) ai)) r r' m = traceb "coe hcomU" $ do
-- First decompose the system
let -- The part of bis that doesn't mention i in its faces
bs' = Sys $ Map.filterWithKey (\alpha _ -> i `notOccurs` alpha) bisi
-- The part of bis that mentions i in its faces
bsi = Map.filterWithKey (\alpha _ -> i `occurs` alpha) bisi
-- Substitute for r and r' directly every *except* for the system
-- (the reason is that we need to recover the B_i without the
-- substitution!)
(sr,s'r,ar) <- (si,s'i,ai) `subst` (i,r)
(sr',s'r',ar') <- (si,s'i,ai) `subst` (i,r')
-- Do the substitution, *only* on the faces, not on the types
bsi <- Sys bsi `substOnFaces` (i,r')
-- We can use this in otm as we never need the original B_i!
bisr <- Sys bisi `subst` (i,r)
-- Define O
let otm z = do
-- Here I do not use ntm like in Part 3. Instead I unfold it so
-- that I can take appropriate faces and do some optimization.
-- z' is the name bound in bi.
osys <- mapSystem (\alpha z' bi -> do
let m' = VCoe s'r (Name z') (VPLam z' bi) m
(VCoe (Name z') sr (VPLam z' bi) m') `face` alpha) bisr
ocap <- cap sr s'r bisr m
hcom s'r z ar osys ocap
-- Define P(r'/x)
ptm <- do
otmsr <- otm sr
-- TODO: psys is quite sketchy!
psys <- mapSystem (\alpha x bi -> do
let m' = VCoe r (Name x) (VPLam i (VAppII bi s'i)) m
(VCoe s'i si (VPLam (N "_") bi) m') `face` alpha) bs' -- NB: we only take (r'/x) on the faces!
psys' <- if Name i `notElem` [si,s'i] && isConsistent (eqn (si,s'i))
then do m' <- (VCoe r (Name i) (VPLam i ai) m) `face` (eqn (si,s'i))
return $ insertSystem (eqn (si,s'i),VPLam i m') psys
else return psys
com r r' (VPLam i ai) psys' otmsr
-- Define Q_k. Take the face alpha (s_i = s'_i), free variable w
-- (called z) and bk without (r'/x)
let qtm alpha w bk = do
(bk,m,bs') <- (bk,m,bs') `face` alpha
qsys <- mapSystem (\alpha' z' bi -> do
(bia,s'r'a,ra,r'a,ma) <- (bi,s'r',r,r',m) `face` alpha'
bia' <- bia `subst` (z',s'r'a)
ma' <- coe ra r'a (VPLam i bia') ma
bia <- bia `subst` (i,r'a)
coe s'r'a (Name z') (VPLam z' bia) ma') bs' -- NB: we only take (r'/x) of the faces!
bk' <- bk `subst` (i,r')
qsys' <- if isConsistent (eqn (r,r'))
then do (srr',bk'r,mr) <- (s'r',bk',m) `face` (eqn (r,r'))
l <- fresh
m' <- coe srr' (Name l) (VPLam l bk'r) mr
return $ insertSystem (eqn (r,r'),VPLam l m') qsys
else return qsys
com sr' w bk' qsys' ptm
-- The part of outtmsys where the faces of the system depend on i
-- (i.e. where we have to use qtm as the system doesn't simplify).
tveci <- mapSystem (\alpha z bi -> do
(bia,sr'a,r'a) <- (bi,sr',r') `face` alpha
bra <- bia `subst` (i,r'a)
coe (Name z) sr'a (VPLam z bra) =<< qtm alpha (Name z) (VPLam z bia)) bsi
-- The part of outtmsys where the faces of the system doesn't depend on i
-- (i.e. where qtm simplifies).
tvec' <- mapSystem (\alpha z bi -> do
(bia,sr'a,s'r'a,ra,r'a,ma) <- (bi,sr',s'r',r,r',m) `face` alpha
bia' <- bia `subst` (z,s'r'a)
biar' <- bia `subst` (i,r'a)
ma' <- coe ra r'a (VPLam i bia') ma
ma'' <- coe s'r'a (Name z) (VPLam z biar') ma'
coe (Name z) sr'a (VPLam z biar') ma'') bs'
let outtmsys = mergeSystem tveci tvec'
tvec <- if isConsistent (eqn (r,r'))
then do k <- fresh
otmk <- otm (Name k)
-- TODO: can we take the eqn into account like this:
otmk' <- otmk `face` (eqn (r,r'))
return $ insertSystem (eqn (r,r'),VPLam k otmk') outtmsys
else return outtmsys
outtm <- hcom sr' s'r' ar' tvec ptm
-- Like above we only use qtm when i does not occur in the faces
uveci <- mapSystemNoEta (\alpha bi -> qtm alpha s'r' bi) bsi
-- And in the case when i does occur in the face we do the simplification
uvec' <- mapSystemNoEta (\alpha bi -> (VCoe r r' (VPLam i (VAppII bi s'r')) m) `face` alpha) bs'
let uvec = mergeSystem uveci uvec'
box sr' s'r' uvec outtm
coeHComU _ _ _ _ = error "coeHComU: case not implemented"
hcomHComU :: Val -> II -> II -> System Val -> Val -> Eval Val
hcomHComU (VHComU s s' bs a) r r' ns m = traceb "hcom hcomU" $ do
-- Define P and parametrize by z
let ptm bi z = do
-- TODO: take alpha into account
psys <- mapSystem (\alpha _ ni -> coe s' (Name z) (VPLam z bi) ni) ns
pcap <- coe s' (Name z) (VPLam z bi) m
hcom r r' bi psys pcap
-- Define F[c] and parametrize by z
let ftm c z = do
fsys <- mapSystem (\alpha z' bi -> do
let c' = VCoe s' (Name z') (VPLam z' bi) c
(VCoe (Name z') s (VPLam z' bi) c') `face` alpha) bs
fcap <- cap s s' bs c
hcom s' z a fsys fcap
-- Define O
otm <- do
-- TODO: take alpha into account
osys <- mapSystem (\alpha _ ni -> ftm ni s) ns
ocap <- ftm m s
hcom r r' a osys ocap
-- Define Q
qtm <- do
-- TODO: take alpha into account?
qsys1 <- mapSystem (\alpha z ni -> do ni' <- ni `subst` (z,r')
ftm ni' (Name z)) ns
qsys2 <- mapSystem (\alpha z bi -> do p' <- ptm bi z
coe (Name z) s (VPLam z bi) p') bs
k <- fresh
m' <- ftm m (Name k)
-- TODO: take r=r' into account in m'
let qsys = insertSystem (eqn (r,r'),VPLam k m') $ mergeSystem qsys1 qsys2
hcom s s' a qsys otm
-- inline P and optimize
outsys <- mapSystemNoEta (\alpha bj -> (VHCom r r' bj ns m) `face` alpha) bs
box s s' outsys qtm
hcomHComU _ _ _ _ _ = error "hcomHComU: case not implemented"
-------------------------------------------------------------------------------
-- | Conversion
class Convertible a where
conv :: [String] -> a -> a -> Eval Bool
-- relies on Eqn invariant
isCompSystem :: (Nominal a, Convertible a) => [String] -> System a -> Eval Bool
isCompSystem ns (Triv _) = return True
isCompSystem ns (Sys us) =
and <$> sequence [ join (conv ns <$> getFace alpha beta <*> getFace beta alpha)
| (alpha,beta) <- allCompatible (Map.keys us) ]
where
getFace a b = do
usa <- us Map.! a `face` a
ba <- b `face` a
usa `face` ba
-- getFace a@(Eqn (Name i) (Name j)) (Eqn (Name k) (Dir d))
-- | i == k || j == k = us ! a `subst` (i,Dir d) `subst` (j,Dir d)
-- getFace a@(Eqn (Name k) (Dir d)) (Eqn (Name i) (Name j))
-- | i == k || j == k = us ! a `subst` (i,Dir d) `subst` (j,Dir d)
-- getFace a b = (us ! a) `subst` toSubst b
instance Convertible Env where
conv ns (Env (rho1,vs1,fs1,os1)) (Env (rho2,vs2,fs2,os2)) =
conv ns (rho1,vs1,fs1,os1) (rho2,vs2,fs2,os2)
instance Convertible Val where
conv ns u v | u == v = return True
| otherwise = do
j <- fresh
case (u,v) of
(Ter (Lam x a u) e,Ter (Lam x' a' u') e') -> do
v@(VVar n _) <- mkVarNice ns x <$> eval e a
join $ conv (n:ns) <$> eval (upd (x,v) e) u <*> eval (upd (x',v) e') u'
(Ter (Lam x a u) e,u') -> do
v@(VVar n _) <- mkVarNice ns x <$> eval e a
join $ conv (n:ns) <$> eval (upd (x,v) e) u <*> app u' v
(u',Ter (Lam x a u) e) -> do
v@(VVar n _) <- mkVarNice ns x <$> eval e a
join $ conv (n:ns) <$> app u' v <*> eval (upd (x,v) e) u
(Ter (Split _ p _ _) e,Ter (Split _ p' _ _) e') -> pure (p == p') <&&> conv ns e e'
(Ter (Sum p _ _) e,Ter (Sum p' _ _) e') -> pure (p == p') <&&> conv ns e e'
(Ter (HSum p _ _) e,Ter (HSum p' _ _) e') -> pure (p == p') <&&> conv ns e e'
(Ter (Undef p _) e,Ter (Undef p' _) e') -> pure (p == p') <&&> conv ns e e'
(Ter (Hole p) e,Ter (Hole p') e') -> pure (p == p') <&&> conv ns e e'
-- (Ter Hole{} e,_) -> return True
-- (_,Ter Hole{} e') -> return True
(VPi u v,VPi u' v') -> do
let w@(VVar n _) = mkVarNice ns "X" u
conv ns u u' <&&> join (conv (n:ns) <$> app v w <*> app v' w)
(VSigma u v,VSigma u' v') -> do
let w@(VVar n _) = mkVarNice ns "X" u
conv ns u u' <&&> join (conv (n:ns) <$> app v w <*> app v' w)
(VCon c us,VCon c' us') -> pure (c == c') <&&> conv ns us us'
(VPCon c v us phis,VPCon c' v' us' phis') ->
pure (c == c') <&&> conv ns (v,us,phis) (v',us',phis')
(VPair u v,VPair u' v') -> conv ns u u' <&&> conv ns v v'
(VPair u v,w) -> conv ns u (fstVal w) <&&> conv ns v (sndVal w)
(w,VPair u v) -> conv ns (fstVal w) u <&&> conv ns (sndVal w) v
(VFst u,VFst u') -> conv ns u u'
(VSnd u,VSnd u') -> conv ns u u'
(VApp u v,VApp u' v') -> conv ns u u' <&&> conv ns v v'
(VSplit u v,VSplit u' v') -> conv ns u u' <&&> conv ns v v'
(VOpaque x _, VOpaque x' _) -> return $ x == x'
(VVar x _, VVar x' _) -> return $ x == x'
(VPathP a b c,VPathP a' b' c') -> conv ns a a' <&&> conv ns b b' <&&> conv ns c c'
(VLineP a,VLineP a') -> conv ns a a'
(VPLam i a,VPLam i' a') -> conv ns (a `swap` (i,j)) (a' `swap` (i',j))
(VPLam i a,p') -> join $ conv ns (a `swap` (i,j)) <$> p' @@ j
(p,VPLam i' a') -> join $ conv ns <$> p @@ j <*> pure (a' `swap` (i',j))
(VAppII u x,VAppII u' x') -> conv ns (u,x) (u',x')
(VCoe r s a u,VCoe r' s' a' u') -> conv ns (r,s,a,u) (r',s',a',u')
-- -- TODO: Maybe identify via (- = 1)? Or change argument to a system..
-- conv ns (a,invSystem phi One,u) (a',invSystem phi' One,u')
-- conv ns (a,phi,u) (a',phi',u')
(VHCom r s a us u0,VHCom r' s' a' us' u0') -> conv ns (r,s,a,us,u0) (r',s',a',us',u0')
(VV i a b e,VV i' a' b' e') -> pure (i == i') <&&> conv ns (a,b,e) (a',b',e')
(VVin _ m n,VVin _ m' n') -> conv ns (m,n) (m',n')
(VVproj i o _ _ _,VVproj i' o' _ _ _) -> pure (i == i') <&&> conv ns o o'
(VHComU r s ts t,VHComU r' s' ts' t') -> conv ns (r,s,ts,t) (r',s',ts',t')
-- TODO: are the following two cases correct?
(VCap r s ts t,VCap r' s' ts' t') -> conv ns (r,s,ts,t) (r',s',ts',t')
(VBox r s ts t,VBox r' s' ts' t') -> conv ns (r,s,ts,t) (r',s',ts',t')
_ -> return False
instance Convertible Ctxt where
conv _ _ _ = return True
instance Convertible () where
conv _ _ _ = return True
(<&&>) :: Monad m => m Bool -> m Bool -> m Bool
u <&&> v = do
b1 <- u
b2 <- v
return (b1 && b2)
instance (Convertible a, Convertible b) => Convertible (a, b) where
conv ns (u,v) (u',v') = conv ns u u' <&&> conv ns v v'
instance (Convertible a, Convertible b, Convertible c)
=> Convertible (a, b, c) where
conv ns (u,v,w) (u',v',w') =
conv ns u u' <&&> conv ns v v' <&&> conv ns w w'
instance (Convertible a,Convertible b,Convertible c,Convertible d)
=> Convertible (a,b,c,d) where
conv ns (u,v,w,x) (u',v',w',x') =
conv ns u u' <&&> conv ns v v' <&&> conv ns w w' <&&> conv ns x x'
instance (Convertible a,Convertible b,Convertible c,Convertible d,Convertible e)
=> Convertible (a,b,c,d,e) where
conv ns (u,v,w,x,y) (u',v',w',x',y') =
conv ns u u' <&&> conv ns v v' <&&> conv ns w w' <&&> conv ns x x' <&&>
conv ns y y'
instance (Convertible a,Convertible b,Convertible c,Convertible d,Convertible e,Convertible f)
=> Convertible (a,b,c,d,e,f) where
conv ns (u,v,w,x,y,z) (u',v',w',x',y',z') =
conv ns u u' <&&> conv ns v v' <&&> conv ns w w' <&&> conv ns x x' <&&>
conv ns y y' <&&> conv ns z z'
instance Convertible a => Convertible [a] where
conv ns us us' = do
bs <- sequence [ conv ns u u' | (u,u') <- zip us us' ]
return (length us == length us' && and bs)
instance (Convertible a,Nominal a) => Convertible (System a) where
conv ns (Triv u) (Triv u') = conv ns u u'
conv ns (Sys us) (Sys us') = do
let compare eqn u u' = join $ conv ns <$> u `face` eqn <*> u' `face` eqn
bs <- T.sequence $ Map.elems (Map.intersectionWithKey compare us us')
return $ Map.keys us == Map.keys us' && and bs
instance Convertible II where
conv _ r s = return $ r == s
instance Convertible (Nameless a) where
conv _ _ _ = return True
-------------------------------------------------------------------------------
-- | Normalization
class Normal a where
normal :: [String] -> a -> Eval a
instance Normal Env where
normal ns (Env (rho,vs,fs,os)) = Env <$> normal ns (rho,vs,fs,os)
instance Normal Val where
normal ns v = case v of
VU -> return VU
Ter (Lam x t u) e -> do
w <- eval e t
let v@(VVar n _) = mkVarNice ns x w
u' <- eval (upd (x,v) e) u
VLam n <$> normal ns w <*> normal (n:ns) u'
Ter t e -> Ter t <$> normal ns e
VPi u v -> VPi <$> normal ns u <*> normal ns v
VSigma u v -> VSigma <$> normal ns u <*> normal ns v
VPair u v -> VPair <$> normal ns u <*> normal ns v
VCon n us -> VCon n <$> normal ns us
VPCon n u us phis -> VPCon n <$> normal ns u <*> normal ns us <*> pure phis
VPathP a u0 u1 -> VPathP <$> normal ns a <*> normal ns u0 <*> normal ns u1
VLineP a -> VLineP <$> normal ns a
VPLam i u -> VPLam i <$> normal ns u
VCoe r s a u -> VCoe <$> normal ns r <*> normal ns s <*> normal ns a <*> normal ns u
VHCom r s u vs v -> VHCom <$> normal ns r <*> normal ns s <*> normal ns u <*> normal ns vs <*> normal ns v
VV i a b e -> VV i <$> normal ns a <*> normal ns b <*> normal ns e
VVin i m n -> VVin i <$> normal ns m <*> normal ns n
VVproj i o a b e -> VVproj i <$> normal ns o <*> normal ns a <*> normal ns b <*> normal ns e
VHComU r s ts t -> VHComU <$> normal ns r <*> normal ns s <*> normal ns ts <*> normal ns t
VCap r s ts t -> VCap <$> normal ns r <*> normal ns s <*> normal ns ts <*> normal ns t
VBox r s ts t -> VBox <$> normal ns r <*> normal ns s <*> normal ns ts <*> normal ns t
VVar x t -> VVar x <$> normal ns t
VFst t -> VFst <$> normal ns t
VSnd t -> VSnd <$> normal ns t
VSplit u t -> VSplit <$> normal ns u <*> normal ns t
VApp u v -> VApp <$> normal ns u <*> normal ns v
VAppII u phi -> VAppII <$> normal ns u <*> normal ns phi
_ -> return v
instance Normal (Nameless a) where
normal _ = return
instance Normal Ctxt where
normal _ = return
instance Normal II where
normal _ = return
instance (Nominal a, Normal a) => Normal (System a) where
normal ns (Triv u) = Triv <$> normal ns u
normal ns (Sys us) = do
us' <- T.sequence $
Map.mapWithKey (\eqn u -> join (normal ns <$> u `face` eqn)) us
return $ Sys us'
instance (Normal a,Normal b) => Normal (a,b) where
normal ns (u,v) = do
u' <- normal ns u
v' <- normal ns v
return (u',v')
instance (Normal a,Normal b,Normal c) => Normal (a,b,c) where
normal ns (u,v,w) = do
u' <- normal ns u
v' <- normal ns v
w' <- normal ns w
return (u',v',w')
instance (Normal a,Normal b,Normal c,Normal d) => Normal (a,b,c,d) where
normal ns (u,v,w,x) = do
u' <- normal ns u
v' <- normal ns v
w' <- normal ns w
x' <- normal ns x
return (u',v',w',x')
instance Normal a => Normal [a] where
normal ns = mapM (normal ns)