-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmanager_30_retune_after_fast_tuning.py
63 lines (56 loc) · 2.63 KB
/
manager_30_retune_after_fast_tuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import sys
import glob
import shutil
import os
from pathlib import Path
from F_post_processsing import F100_analyze_hindcast_output
from A_config import a10_config
import tuner
import threading
import manager_0_user_params as upar
from manager_20_tune import monitor_condor_q
if __name__ == '__main__':
"""
This manager collect outputs from the quick_tuning run(dir output_fast_tuning), take teh best n models according to RMSE_val,
rerun them properly with standard tuning and place it, together with benchmarks in dir output
"""
# USER PARAMS
metric = upar.metric #metric for best model selection, RMSE_val is the only one avail in fast_tuning
n = upar.n # ml models to rerun (obsrvation show that the best model found by standard tuning is within the first 10 found by fast tuning
config_fn = upar.config_fn
run_name = upar.run_name
tune_on_condor = upar.tune_on_condor
# END OF USER PARAMS
config = a10_config.read(config_fn, run_name, run_type='fast_tuning') #only to get where the fast tuning was stored
out_fast = config.models_out_dir
F100_analyze_hindcast_output.gather_output(config)
pro = input('Type Y to proceed\n')
if pro != 'Y':
sys.exit()
runIDs2rerun = F100_analyze_hindcast_output.compare_fast_outputs(config, n, metric2use=metric)
# move the benchmark and run properly the ml to be rerun
config = a10_config.read(config_fn, run_name, run_type='tuning')
out_standard= config.models_out_dir
Path(out_standard).mkdir(parents=True, exist_ok=True)
# copy benchmarks (names in mlsettings.benchmarks)
mlsettings = a10_config.mlSettings(forecastingMonths=0)
spec_files_list = []
for ben in mlsettings.benchmarks:
spec_files_list.extend(glob.glob(os.path.join(out_fast, '*'+ben+'*')))
for filename in spec_files_list:
if os.path.isfile(filename):
shutil.copy(filename, out_standard)
# rerun the needed models
# get full path of spec names to be rerun
spec_files_list = []
for id in runIDs2rerun:
myID = f'{id:06d}'
spec_files_list.extend(glob.glob(os.path.join(config.models_spec_dir, myID + '*')))
tuner.tuneB(run_name, config_fn, tune_on_condor, 'tuning', spec_files_list)
if tune_on_condor:
print('Condor runs launched, start the monitoring')
# Start the monitoring loop in a separate thread to avoid blocking the main program
thread = threading.Thread(target=monitor_condor_q,
args=(10, 'ml4castproc', config, run_name)) # 60 is min to wait for checking
thread.start()
print('end')