forked from AndresQuichimbo/DRYP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_DRYP.py
192 lines (154 loc) · 6.53 KB
/
run_DRYP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# -*- coding: utf-8 -*-
"""
DRYP: Dryland WAter Partitioning Model
"""
import numpy as np
import pandas as pd
from components.DRYP_io import inputfile, model_environment_status
from components.DRYP_infiltration import infiltration
from components.DRYP_rainfall import rainfall
from components.DRYP_ABM_connector import ABMconnector
from components.DRYP_routing import runoff_routing
from components.DRYP_soil_layer import swbm
from components.DRYP_groundwater_EFD import gwflow_EFD, storage, storage_uz_sz
from components.DRYP_Gen_Func import (
GlobalTimeVarPts, GlobalTimeVarAvg, GlobalGridVar,
save_map_to_rastergrid, check_mass_balance)
# Structure and model components ---------------------------------------
# data_in: Input variables
# env_state:Model state and fluxes
# rf: Precipitation
# abc: Anthropic boundary conditions
# inf: Infiltration
# swbm: Soil water balance
# ro: Routing - Flow accumulator
# gw: Groundwater flow
def run_DRYP(filename_input):
data_in = inputfile(filename_input)
daily = 1
# setting model fluxes and state variables
env_state = model_environment_status(data_in)
env_state.set_output_dir(data_in)
env_state.points_output(data_in)
# setting model components
rf = rainfall(data_in, env_state)
abc = ABMconnector(data_in, env_state)
inf = infiltration(env_state, data_in)
swb = swbm(env_state, data_in)
swb_rip = swbm(env_state, data_in)
ro = runoff_routing(env_state, data_in)
gw = gwflow_EFD(env_state, data_in)
# Output variables and location
outavg = GlobalTimeVarAvg(env_state.area_catch_factor)
outavg_rip = GlobalTimeVarAvg(env_state.area_river_factor)
outpts = GlobalTimeVarPts()
state_var = GlobalGridVar(env_state, data_in)
t = 0
t_eto = 0
t_pre = 0
gw_level = []
pre_mb = []
exs_mb = []
tls_mb = []
gws_mb = []
uzs_mb = []
dis_mb = []
rch_mb = []
aet_mb = []
egw_mb = []
rch_agg = np.zeros(len(swb.L_0))
etg_agg = np.zeros(len(swb.L_0))
dt_GW = np.int(data_in.dt)
while t < rf.t_end:
for UZ_ti in range(data_in.dt_hourly):
for dt_pre_sub in range(data_in.dt_sub_hourly):
swb.run_soil_aquifer_one_step(env_state,
env_state.grid.at_node['topographic__elevation'],
env_state.SZgrid.at_node['water_table__elevation'],
env_state.Duz,
swb.tht_dt)
env_state.Duz = swb.Duz
rf.run_rainfall_one_step(t_pre, t_eto, env_state, data_in)
abc.run_ABM_one_step(t_pre, env_state,
rf.rain, env_state.Duz, swb.tht_dt, env_state.fc,
env_state.grid.at_node['wilting_point'],
env_state.SZgrid.at_node['water_table__elevation'],
)
rf.rain += abc.auz
inf.run_infiltration_one_step(rf, env_state, data_in)
aux_usz = np.sum((swb.L_0*env_state.hill_factor)[env_state.act_nodes])
aux_usp = np.sum((swb_rip.L_0*env_state.riv_factor)[env_state.act_nodes])
swb.run_swbm_one_step(inf.inf_dt, rf.PET, env_state.Kc,
env_state.grid.at_node['Ksat_soil'], env_state, data_in)
env_state.grid.at_node['riv_sat_deficit'][:] *= (swb_rip.tht_dt)
ro.run_runoff_one_step(inf, swb, abc.aof, env_state, data_in)
tls_aux = ro.tls_flow_dt*env_state.rip_factor
rip_inf_dt = inf.inf_dt + tls_aux
swb_rip.run_swbm_one_step(rip_inf_dt, rf.PET, env_state.Kc,
env_state.grid.at_node['Ksat_ch'], env_state,
data_in, env_state.river_ids_nodes)
swb_rip.pcl_dt *= env_state.riv_factor
swb_rip.aet_dt *= env_state.riv_factor
swb.pcl_dt *= env_state.hill_factor
swb.aet_dt *= env_state.hill_factor
rech = swb.pcl_dt + swb_rip.pcl_dt - abc.asz# [mm/dt]
etg_dt = gw.SZ_potential_ET(env_state, swb.gwe_dt)
etg_agg += np.array(etg_dt) # [mm/h]
rch_agg += np.array(rech) # [mm/dt]
# Water balance storage and flow
pre_mb.append(np.sum(rf.rain[env_state.act_nodes]))
exs_mb.append(np.sum(inf.exs_dt[env_state.act_nodes]))
tls_mb.append(np.sum(tls_aux[env_state.act_nodes]))
aux_usz1 = np.sum((swb.L_0*env_state.hill_factor)[env_state.act_nodes])
aux_usp1 = np.sum((swb_rip.L_0*env_state.riv_factor)[env_state.act_nodes])
uzs_mb.append(aux_usp1+aux_usz1-aux_usp-aux_usz)
aet_mb.append(np.sum((swb_rip.aet_dt+swb.aet_dt)[env_state.act_nodes]))
egw_mb.append(np.sum(etg_dt[env_state.act_nodes]))
rch_mb.append(np.sum(rech[env_state.act_nodes]))
#aux_ssz = storage_uz_sz(env_state, 0, 0)
if dt_GW == data_in.dtSZ:
# Change units to m/h
env_state.SZgrid.at_node['discharge'][:] = 0.0
env_state.SZgrid.at_node['recharge'][:] = (rch_agg - etg_agg)*0.001 #[mm/dt]
gw.run_one_step_gw(env_state, data_in.dtSZ/60, swb.tht_dt,
env_state.Droot*0.001)
rch_agg = np.zeros(len(swb.L_0))
etg_agg = np.zeros(len(swb.L_0))
dt_GW = 0
dt_GW += np.int(data_in.dt)
gws_mb.append(storage_uz_sz(env_state, np.array(swb.tht_dt), gw.dh))#-aux_ssz)
dis_mb.append(np.sum(env_state.SZgrid.at_node['discharge'][env_state.act_nodes])-gw.flux_out)
#Extract average state and fluxes
outavg.extract_avg_var_pre(env_state.basin_nodes,rf)
outavg.extract_avg_var_UZ_inf(env_state.basin_nodes,inf)
outavg.extract_avg_var_UZ_swb(env_state.basin_nodes,swb)
outavg_rip.extract_avg_var_UZ_swb(env_state.basin_nodes,swb_rip)
outavg.extract_avg_var_OF(env_state.basin_nodes,ro)
outavg.extract_avg_var_SZ(env_state.basin_nodes,gw)
#Extract point state and fluxes
outpts.extract_point_var_UZ_inf(env_state.gaugeidUZ,inf)
outpts.extract_point_var_UZ_swb(env_state.gaugeidUZ,swb)
outpts.extract_point_var_OF(env_state.gaugeidOF,ro)
outpts.extract_point_var_SZ(env_state.gaugeidGW,gw)
state_var.get_env_state(t_pre, rf, inf, swb,
ro, gw, swb_rip, env_state)
env_state.L_0 = np.array(swb.L_0)
t_pre += 1
t_eto += 1
t += 1
mb = [pre_mb, exs_mb, tls_mb, rch_mb, gws_mb,
uzs_mb, dis_mb, aet_mb, egw_mb]
outavg.save_avg_var(env_state.fnameTS_avg+'.csv', rf.date_sim_dt)
outavg_rip.save_avg_var(env_state.fnameTS_avg+'rip.csv', rf.date_sim_dt)
outpts.save_point_var(env_state.fnameTS_OF, rf.date_sim_dt,
ro.carea[env_state.gaugeidOF],
env_state.rarea[env_state.gaugeidOF])
state_var.save_netCDF_var(env_state.fnameTS_avg+'.nc')
check_mass_balance(env_state.fnameTS_avg, outavg, outpts,
outavg_rip, mb, rf.date_sim_dt,
ro.carea[env_state.gaugeidOF[0]])
# Save water table for initial conditions
fname_out = env_state.fnameTS_avg + '_wte_ini.asc'
save_map_to_rastergrid(env_state.SZgrid, 'water_table__elevation', fname_out)
if __name__ == '__main__':
run_DRYP(filename_input)