forked from GMvandeVen/brain-inspired-replay
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_cl.py
executable file
·557 lines (476 loc) · 25.6 KB
/
main_cl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
#!/usr/bin/env python3
import numpy as np
import os
from scipy.stats import entropy
import torch
from torch import optim
from torch.utils.data import ConcatDataset
from torch.nn import functional as F
from time import sleep
# -custom-written libraries
import options
import utils
import define_models as define
from data.load import get_multitask_experiment
from eval import evaluate
from eval import callbacks as cb
import eval.precision_recall as pr
import eval.fid as fid
from train import train_cl
from param_stamp import get_param_stamp
from models.cl.continual_learner import ContinualLearner
## Function for specifying input-options and organizing / checking them
def handle_inputs():
# Set indicator-dictionary for correctly retrieving / checking input options
kwargs = {'single_task': False, 'only_MNIST': False, 'generative': True, 'compare_code': 'none'}
# Define input options
parser = options.define_args(filename="main_cl", description='Compare & combine continual learning approaches.')
parser = options.add_general_options(parser, **kwargs)
parser = options.add_eval_options(parser, **kwargs)
parser = options.add_task_options(parser, **kwargs)
parser = options.add_model_options(parser, **kwargs)
parser = options.add_train_options(parser, **kwargs)
parser = options.add_replay_options(parser, **kwargs)
parser = options.add_bir_options(parser, **kwargs)
parser = options.add_allocation_options(parser, **kwargs)
# Parse, process (i.e., set defaults for unselected options) and check chosen options
args = parser.parse_args()
options.set_defaults(args, **kwargs)
options.check_for_errors(args, **kwargs)
return args
## Function for running one continual learning experiment
def run(args, verbose=False):
# Create plots- and results-directories if needed
if not os.path.isdir(args.r_dir):
os.mkdir(args.r_dir)
if args.pdf and not os.path.isdir(args.p_dir):
os.mkdir(args.p_dir)
# If only want param-stamp, get it and exit
if args.get_stamp:
from param_stamp import get_param_stamp_from_args
print(get_param_stamp_from_args(args=args))
exit()
# Use cuda?
cuda = torch.cuda.is_available() and args.cuda
device = torch.device("cuda" if cuda else "cpu")
# Report whether cuda is used
if verbose:
print("CUDA is {}used".format("" if cuda else "NOT(!!) "))
# Set random seeds
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if cuda:
torch.cuda.manual_seed(args.seed)
#-------------------------------------------------------------------------------------------------#
#----------------#
#----- DATA -----#
#----------------#
# Prepare data for chosen experiment
if verbose:
print("\nPreparing the data...")
(train_datasets, test_datasets), config, classes_per_task = get_multitask_experiment(
name=args.experiment, scenario=args.scenario, tasks=args.tasks, data_dir=args.d_dir,
normalize=True if utils.checkattr(args, "normalize") else False,
augment=True if utils.checkattr(args, "augment") else False,
verbose=verbose, exception=True if args.seed<10 else False, only_test=(not args.train)
)
#-------------------------------------------------------------------------------------------------#
#----------------------#
#----- MAIN MODEL -----#
#----------------------#
# Define main model (i.e., classifier, if requested with feedback connections)
if verbose and (utils.checkattr(args, "pre_convE") or utils.checkattr(args, "pre_convD")) and \
(hasattr(args, "depth") and args.depth>0):
print("\nDefining the model...")
if utils.checkattr(args, 'feedback'):
model = define.define_autoencoder(args=args, config=config, device=device)
else:
model = define.define_classifier(args=args, config=config, device=device)
# Initialize / use pre-trained / freeze model-parameters
# - initialize (pre-trained) parameters
model = define.init_params(model, args)
# - freeze weights of conv-layers?
if utils.checkattr(args, "freeze_convE"):
for param in model.convE.parameters():
param.requires_grad = False
if utils.checkattr(args, 'feedback') and utils.checkattr(args, "freeze_convD"):
for param in model.convD.parameters():
param.requires_grad = False
# Define optimizer (only optimize parameters that "requires_grad")
model.optim_list = [
{'params': filter(lambda p: p.requires_grad, model.parameters()), 'lr': args.lr},
]
model.optimizer = optim.Adam(model.optim_list, betas=(0.9, 0.999))
#-------------------------------------------------------------------------------------------------#
#----------------------------------------------------#
#----- CL-STRATEGY: REGULARIZATION / ALLOCATION -----#
#----------------------------------------------------#
# Elastic Weight Consolidation (EWC)
if isinstance(model, ContinualLearner) and utils.checkattr(args, 'ewc'):
model.ewc_lambda = args.ewc_lambda if args.ewc else 0
model.fisher_n = args.fisher_n
model.online = utils.checkattr(args, 'online')
if model.online:
model.gamma = args.gamma
# Synpatic Intelligence (SI)
if isinstance(model, ContinualLearner) and utils.checkattr(args, 'si'):
model.si_c = args.si_c if args.si else 0
model.epsilon = args.epsilon
# XdG: create for every task a "mask" for each hidden fully connected layer
if isinstance(model, ContinualLearner) and utils.checkattr(args, 'xdg') and args.xdg_prop>0:
model.define_XdGmask(gating_prop=args.xdg_prop, n_tasks=args.tasks)
#-------------------------------------------------------------------------------------------------#
#-------------------------------#
#----- CL-STRATEGY: REPLAY -----#
#-------------------------------#
# Use distillation loss (i.e., soft targets) for replayed data? (and set temperature)
if isinstance(model, ContinualLearner) and hasattr(args, 'replay') and not args.replay=="none":
model.replay_targets = "soft" if args.distill else "hard"
model.KD_temp = args.temp
# If needed, specify separate model for the generator
train_gen = (hasattr(args, 'replay') and args.replay=="generative" and not utils.checkattr(args, 'feedback'))
if train_gen:
# Specify architecture
generator = define.define_autoencoder(args, config, device, generator=True)
# Initialize parameters
generator = define.init_params(generator, args)
# -freeze weights of conv-layers?
if utils.checkattr(args, "freeze_convE"):
for param in generator.convE.parameters():
param.requires_grad = False
if utils.checkattr(args, "freeze_convD"):
for param in generator.convD.parameters():
param.requires_grad = False
# Set optimizer(s)
generator.optim_list = [
{'params': filter(lambda p: p.requires_grad, generator.parameters()),
'lr': args.lr_gen if hasattr(args, 'lr_gen') else args.lr},
]
generator.optimizer = optim.Adam(generator.optim_list, betas=(0.9, 0.999))
else:
generator = None
#-------------------------------------------------------------------------------------------------#
#---------------------#
#----- REPORTING -----#
#---------------------#
# Get parameter-stamp (and print on screen)
if verbose:
print("\nParameter-stamp...")
param_stamp = get_param_stamp(
args, model.name, verbose=verbose,
replay=True if (hasattr(args, 'replay') and not args.replay=="none") else False,
replay_model_name=generator.name if (
hasattr(args, 'replay') and args.replay in ("generative") and not utils.checkattr(args, 'feedback')
) else None,
)
# Print some model-characteristics on the screen
if verbose:
# -main model
utils.print_model_info(model, title="MAIN MODEL")
# -generator
if generator is not None:
utils.print_model_info(generator, title="GENERATOR")
# Define [progress_dicts] to keep track of performance during training for storing and for later plotting in pdf
precision_dict = evaluate.initiate_precision_dict(args.tasks)
# Prepare for plotting in visdom
visdom = None
if args.visdom:
env_name = "{exp}{tasks}-{scenario}".format(exp=args.experiment, tasks=args.tasks, scenario=args.scenario)
replay_statement = "{mode}{fb}{con}{gat}{int}{dis}{b}{u}".format(
mode=args.replay,
fb="Rtf" if utils.checkattr(args, "feedback") else "",
con="Con" if (hasattr(args, "prior") and args.prior=="GMM" and utils.checkattr(args, "per_class")) else "",
gat="Gat{}".format(args.dg_prop) if (
utils.checkattr(args, "dg_gates") and hasattr(args, "dg_prop") and args.dg_prop>0
) else "",
int="Int" if utils.checkattr(args, "hidden") else "",
dis="Dis" if args.replay=="generative" and args.distill else "",
b="" if (args.batch_replay is None or args.batch_replay==args.batch) else "-br{}".format(args.batch_replay),
u="" if args.g_fc_uni==args.fc_units else "-gu{}".format(args.g_fc_uni)
) if (hasattr(args, "replay") and not args.replay=="none") else "NR"
graph_name = "{replay}{syn}{ewc}{xdg}".format(
replay=replay_statement,
syn="-si{}".format(args.si_c) if utils.checkattr(args, 'si') else "",
ewc="-ewc{}{}".format(
args.ewc_lambda,"-O{}".format(args.gamma) if utils.checkattr(args, "online") else ""
) if utils.checkattr(args, 'ewc') else "",
xdg="" if (not utils.checkattr(args, 'xdg')) or args.xdg_prop==0 else "-XdG{}".format(args.xdg_prop),
)
visdom = {'env': env_name, 'graph': graph_name}
#-------------------------------------------------------------------------------------------------#
#---------------------#
#----- CALLBACKS -----#
#---------------------#
g_iters = args.g_iters if hasattr(args, 'g_iters') else args.iters
# Callbacks for reporting on and visualizing loss
generator_loss_cbs = [
cb._VAE_loss_cb(log=args.loss_log, visdom=visdom, replay=(hasattr(args, "replay") and not args.replay=="none"),
model=model if utils.checkattr(args, 'feedback') else generator, tasks=args.tasks,
iters_per_task=args.iters if utils.checkattr(args, 'feedback') else g_iters)
] if (train_gen or utils.checkattr(args, 'feedback')) else [None]
solver_loss_cbs = [
cb._solver_loss_cb(log=args.loss_log, visdom=visdom, model=model, iters_per_task=args.iters, tasks=args.tasks,
replay=(hasattr(args, "replay") and not args.replay=="none"))
] if (not utils.checkattr(args, 'feedback')) else [None]
# Callbacks for evaluating and plotting generated / reconstructed samples
no_samples = (utils.checkattr(args, "no_samples") or (
utils.checkattr(args, "hidden") and hasattr(args, 'depth') and args.depth>0
))
sample_cbs = [
cb._sample_cb(log=args.sample_log, visdom=visdom, config=config, test_datasets=test_datasets,
sample_size=args.sample_n, iters_per_task=g_iters)
] if ((train_gen or utils.checkattr(args, 'feedback')) and not no_samples) else [None]
# Callbacks for reporting and visualizing accuracy, and visualizing representation extracted by main model
# -visdom (i.e., after each [prec_log]
eval_cb = cb._eval_cb(
log=args.prec_log, test_datasets=test_datasets, visdom=visdom, precision_dict=None, iters_per_task=args.iters,
test_size=args.prec_n, classes_per_task=classes_per_task, scenario=args.scenario,
)
# -pdf / reporting: summary plots (i.e, only after each task)
eval_cb_full = cb._eval_cb(
log=args.iters, test_datasets=test_datasets, precision_dict=precision_dict,
iters_per_task=args.iters, classes_per_task=classes_per_task, scenario=args.scenario,
)
# -visualize feature space
latent_space_cb = cb._latent_space_cb(
log=args.iters, datasets=test_datasets, visdom=visdom, iters_per_task=args.iters, sample_size=400,
)
# -collect them in <lists>
eval_cbs = [eval_cb, eval_cb_full, latent_space_cb]
#-------------------------------------------------------------------------------------------------#
#--------------------#
#----- TRAINING -----#
#--------------------#
if args.train:
if verbose:
print("\nTraining...")
# Train model
train_cl(model, train_datasets, replay_mode=args.replay if hasattr(args, 'replay') else "none",
scenario=args.scenario, classes_per_task=classes_per_task, iters=args.iters, batch_size=args.batch,
batch_size_replay=args.batch_replay if hasattr(args, 'batch_replay') else None,
loss_cbs=generator_loss_cbs if utils.checkattr(args, 'feedback') else solver_loss_cbs,
eval_cbs=eval_cbs, sample_cbs=sample_cbs, generator=generator, gen_iters=g_iters,
gen_loss_cbs=generator_loss_cbs, feedback=utils.checkattr(args, 'feedback'),
reinit=utils.checkattr(args, 'reinit'), args=args, only_last=utils.checkattr(args, 'only_last'),
sample_method=args.sample_method if hasattr(args, 'sample_method') else None,
curated_multiplier=args.curated_multiplier if hasattr(args, 'curated_multiplier') else None,
variety_weight=args.variety_weight if hasattr(args, 'variety_weight') else None,
mir_coef=args.mir_coef if hasattr(args, 'mir_coef') else None
)
# Save evaluation metrics measured throughout training
file_name = "{}/dict-{}".format(args.r_dir, param_stamp)
utils.save_object(precision_dict, file_name)
# Save trained model(s), if requested
if args.save:
save_name = "mM-{}".format(param_stamp) if (
not hasattr(args, 'full_stag') or args.full_stag == "none"
) else "{}-{}".format(model.name, args.full_stag)
utils.save_checkpoint(model, args.m_dir, name=save_name, verbose=verbose)
if generator is not None:
save_name = "gM-{}".format(param_stamp) if (
not hasattr(args, 'full_stag') or args.full_stag == "none"
) else "{}-{}".format(generator.name, args.full_stag)
utils.save_checkpoint(generator, args.m_dir, name=save_name, verbose=verbose)
else:
# Load previously trained model(s) (if goal is to only evaluate previously trained model)
if verbose:
print("\nLoading parameters of the previously trained models...")
load_name = "mM-{}".format(param_stamp) if (
not hasattr(args, 'full_ltag') or args.full_ltag == "none"
) else "{}-{}".format(model.name, args.full_ltag)
utils.load_checkpoint(model, args.m_dir, name=load_name, verbose=verbose,
add_si_buffers=(isinstance(model, ContinualLearner) and utils.checkattr(args, 'si')))
if generator is not None:
load_name = "gM-{}".format(param_stamp) if (
not hasattr(args, 'full_ltag') or args.full_ltag == "none"
) else "{}-{}".format(generator.name, args.full_ltag)
utils.load_checkpoint(generator, args.m_dir, name=load_name, verbose=verbose)
#-------------------------------------------------------------------------------------------------#
#-----------------------------------#
#----- EVALUATION of CLASSIFIER-----#
#-----------------------------------#
if verbose:
print("\n\nEVALUATION RESULTS:")
# Evaluate precision of final model on full test-set
precs = [evaluate.validate(
model, test_datasets[i], verbose=False, test_size=None, task=i+1,
allowed_classes=list(range(classes_per_task*i, classes_per_task*(i+1))) if args.scenario=="task" else None
) for i in range(args.tasks)]
average_precs = sum(precs)/args.tasks
# -print on screen
if verbose:
print("\n Accuracy of final model on test-set:")
for i in range(args.tasks):
print(" - {} {}: {:.4f}".format("For classes from task" if args.scenario=="class" else "Task",
i + 1, precs[i]))
print('=> Average accuracy over all {} {}: {:.4f}\n'.format(
args.tasks*classes_per_task if args.scenario=="class" else args.tasks,
"classes" if args.scenario=="class" else "tasks", average_precs
))
# -write out to text file
output_file = open("{}/prec-{}.txt".format(args.r_dir, param_stamp), 'w')
output_file.write('{}\n'.format(average_precs))
output_file.close()
#-------------------------------------------------------------------------------------------------#
#-----------------------------------#
#----- EVALUATION of GENERATOR -----#
#-----------------------------------#
if (utils.checkattr(args, 'feedback') or train_gen) and args.experiment=="CIFAR100" and args.scenario=="class":
# Dataset and model to be used
test_set = ConcatDataset(test_datasets)
gen_model = model if utils.checkattr(args, 'feedback') else generator
gen_model.eval()
# Evaluate log-likelihood of generative model on combined test-set (with S=100 importance samples per datapoint)
ll_per_datapoint = gen_model.estimate_loglikelihood(test_set, S=100, batch_size=args.batch)
if verbose:
print('=> Log-likelihood on test set: {:.4f} +/- {:.4f}\n'.format(
np.mean(ll_per_datapoint), np.sqrt(np.var(ll_per_datapoint))
))
# -write out to text file
output_file = open("{}/ll-{}.txt".format(args.r_dir, param_stamp), 'w')
output_file.write('{}\n'.format(np.mean(ll_per_datapoint)))
output_file.close()
# Evaluate reconstruction error (averaged over number of input units)
re_per_datapoint = gen_model.calculate_recon_error(test_set, batch_size=args.batch, average=True)
if verbose:
print('=> Reconstruction error (per input unit) on test set: {:.4f} +/- {:.4f}\n'.format(
np.mean(re_per_datapoint), np.sqrt(np.var(re_per_datapoint))
))
# -write out to text file
output_file = open("{}/re-{}.txt".format(args.r_dir, param_stamp), 'w')
output_file.write('{}\n'.format(np.mean(re_per_datapoint)))
output_file.close()
# Try loading the classifier (our substitute for InceptionNet) for calculating IS, FID and Recall & Precision
# -define model
config['classes'] = 100
pretrained_classifier = define.define_classifier(args=args, config=config, device=device)
pretrained_classifier.hidden = False
# -load pretrained weights
eval_tag = "" if args.eval_tag=="none" else "-{}".format(args.eval_tag)
try:
utils.load_checkpoint(pretrained_classifier, args.m_dir, verbose=True,
name="{}{}".format(pretrained_classifier.name, eval_tag))
FileFound = True
except FileNotFoundError:
if verbose:
print("= Could not find model {}{} in {}".format(pretrained_classifier.name, eval_tag, args.m_dir))
print("= IS, FID and Precision & Recall not computed!")
FileFound = False
pretrained_classifier.eval()
# Only continue with computing these measures if the requested classifier network (using --eval-tag) was found
if FileFound:
# Preparations
total_n = len(test_set)
n_repeats = int(np.ceil(total_n/args.batch))
# -sample data from generator (for IS, FID and Precision & Recall)
gen_x = gen_model.sample(size=total_n, only_x=True)
# -generate predictions for generated data (for IS)
gen_pred = []
for i in range(n_repeats):
x = gen_x[(i*args.batch): int(min(((i+1)*args.batch), total_n))]
with torch.no_grad():
gen_pred.append(F.softmax(
pretrained_classifier.hidden_to_output(x) if args.hidden else pretrained_classifier(x), dim=1
).cpu().numpy())
gen_pred = np.concatenate(gen_pred)
# -generate embeddings for generated data (for FID and Precision & Recall)
gen_emb = []
for i in range(n_repeats):
with torch.no_grad():
gen_emb.append(pretrained_classifier.feature_extractor(
gen_x[(i*args.batch):int(min(((i+1)*args.batch), total_n))], from_hidden=args.hidden
).cpu().numpy())
gen_emb = np.concatenate(gen_emb)
# -generate embeddings for test data (for FID and Precision & Recall)
data_loader = utils.get_data_loader(test_set, batch_size=args.batch, cuda=cuda)
real_emb = []
for real_x, _ in data_loader:
with torch.no_grad():
real_emb.append(pretrained_classifier.feature_extractor(real_x.to(device)).cpu().numpy())
real_emb = np.concatenate(real_emb)
# Calculate "Inception Score" (IS)
py = gen_pred.mean(axis=0)
is_per_datapoint = []
for i in range(len(gen_pred)):
pyx = gen_pred[i, :]
is_per_datapoint.append(entropy(pyx, py))
IS = np.exp(np.mean(is_per_datapoint))
if verbose:
print('=> Inception Score = {:.4f}\n'.format(IS))
# -write out to text file
output_file = open("{}/is{}-{}.txt".format(args.r_dir, eval_tag, param_stamp), 'w')
output_file.write('{}\n'.format(IS))
output_file.close()
## Calculate "Frechet Inception Distance" (FID)
FID = fid.calculate_fid_from_embedding(gen_emb, real_emb)
if verbose:
print('=> Frechet Inception Distance = {:.4f}\n'.format(FID))
# -write out to text file
output_file = open("{}/fid{}-{}.txt".format(args.r_dir, eval_tag, param_stamp), 'w')
output_file.write('{}\n'.format(FID))
output_file.close()
# Calculate "Precision & Recall"-curves
precision, recall = pr.compute_prd_from_embedding(gen_emb, real_emb)
# -write out to text files
file_name = "{}/precision{}-{}.txt".format(args.r_dir, eval_tag, param_stamp)
with open(file_name, 'w') as f:
for item in precision:
f.write("%s\n" % item)
file_name = "{}/recall{}-{}.txt".format(args.r_dir, eval_tag, param_stamp)
with open(file_name, 'w') as f:
for item in recall:
f.write("%s\n" % item)
#-------------------------------------------------------------------------------------------------#
#--------------------#
#----- PLOTTING -----#
#--------------------#
# If requested, generate pdf
if args.pdf:
# -open pdf
plot_name = "{}/{}.pdf".format(args.p_dir, param_stamp)
pp = evaluate.visual.plt.open_pdf(plot_name)
# -show metrics reflecting progression during training
if args.train and (not utils.checkattr(args, 'only_last')):
# -create list to store all figures to be plotted.
figure_list = []
# -generate figures (and store them in [figure_list])
figure = evaluate.visual.plt.plot_lines(
precision_dict["all_tasks"], x_axes=[
i*classes_per_task for i in precision_dict["x_task"]
] if args.scenario=="class" else precision_dict["x_task"],
line_names=['{} {}'.format(
"episode / task" if args.scenario=="class" else "task", i+1
) for i in range(args.tasks)],
xlabel="# of {}s so far".format("classe" if args.scenario=="class" else "task"), ylabel="Test accuracy"
)
figure_list.append(figure)
figure = evaluate.visual.plt.plot_lines(
[precision_dict["average"]], x_axes=[
i*classes_per_task for i in precision_dict["x_task"]
] if args.scenario=="class" else precision_dict["x_task"],
line_names=['Average based on all {}s so far'.format(
("digit" if args.experiment=="splitMNIST" else "classe") if args.scenario else "task"
)], xlabel="# of {}s so far".format("classe" if args.scenario=="class" else "task"),
ylabel="Test accuracy"
)
figure_list.append(figure)
# -add figures to pdf
for figure in figure_list:
pp.savefig(figure)
gen_eval = (utils.checkattr(args, 'feedback') or train_gen)
# -show samples (from main model or separate generator)
if gen_eval and not no_samples:
evaluate.show_samples(model if utils.checkattr(args, 'feedback') else generator, config, size=args.sample_n,
pdf=pp, title="Generated samples (by final model)")
# -plot "Precision & Recall"-curve
if gen_eval and args.experiment=="CIFAR100" and args.scenario=="class" and FileFound:
figure = evaluate.visual.plt.plot_pr_curves([[precision]], [[recall]])
pp.savefig(figure)
# -close pdf
pp.close()
# -print name of generated plot on screen
if verbose:
print("\nGenerated plot: {}\n".format(plot_name))
if __name__ == '__main__':
args = handle_inputs()
run(args, verbose=True)