-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
124 lines (116 loc) · 3.08 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
# reference : https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/Pytorch/object_detection/YOLOv3/config.py
import albumentations as A
import cv2
import torch
from albumentations.pytorch import ToTensorV2
from utils import seed_everything
DATASET = 'AIRCRAFT'
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# seed_everything() # If you want deterministic behavior
NUM_WORKERS = 4
BATCH_SIZE = 32
IMAGE_SIZE = 512
NUM_CLASSES = 36
LEARNING_RATE = 0.0001
WEIGHT_DECAY = 0.0001
NUM_EPOCHS = 300
CONF_THRESHOLD = 0.05
MAP_IOU_THRESH = 0.5
NMS_IOU_THRESH = 0.45
S = [IMAGE_SIZE // 32, IMAGE_SIZE // 16, IMAGE_SIZE // 8]
PIN_MEMORY = True
LOAD_MODEL = False
SAVE_MODEL = True
COSINE_ANNEALING = True
CHECKPOINT_FILE = "/content/drive/MyDrive/yolov3/checkpoint.pth.tar"
IMG_DIR = DATASET + "/images/"
LABEL_DIR = DATASET + "/labels/"
# YOLOv3 ANCHORS
ANCHORS = [
[(0.28, 0.22), (0.38, 0.48), (0.9, 0.78)],
[(0.07, 0.15), (0.15, 0.11), (0.14, 0.29)],
[(0.02, 0.03), (0.04, 0.07), (0.08, 0.06)],
] # Note these have been rescaled to be between [0, 1]
scale = 1.1
train_transforms = A.Compose(
[
A.LongestMaxSize(max_size=int(IMAGE_SIZE * scale)),
A.PadIfNeeded(
min_height=int(IMAGE_SIZE * scale),
min_width=int(IMAGE_SIZE * scale),
border_mode=cv2.BORDER_CONSTANT,
),
A.RandomCrop(width=IMAGE_SIZE, height=IMAGE_SIZE),
A.ColorJitter(brightness=0.6, contrast=0.6, saturation=0.6, hue=0.6, p=0.4),
A.OneOf(
[
A.ShiftScaleRotate(
rotate_limit=90, p=0.5, border_mode=cv2.BORDER_CONSTANT
),
A.IAAAffine(shear=15, p=0.5, mode="constant"),
],
p=0.7,
),
A.OneOf([A.HorizontalFlip(),
A.VerticalFlip(),], p = 0.4),
A.Blur(p=0.1),
A.CLAHE(p=0.1),
A.Posterize(p=0.1),
A.ToGray(p=0.1),
A.ChannelShuffle(p=0.05),
A.GaussNoise(p=0.1, var_limit=(60, 130)),
A.Cutout(p=0.1, num_holes=8, max_h_size=6, max_w_size=6),
A.Normalize(mean=[0, 0, 0], std=[1, 1, 1], max_pixel_value=255,),
ToTensorV2(),
],
bbox_params=A.BboxParams(format="yolo", min_visibility=0.4, label_fields=[],),
)
test_transforms = A.Compose(
[
A.LongestMaxSize(max_size=IMAGE_SIZE),
A.PadIfNeeded(
min_height=IMAGE_SIZE, min_width=IMAGE_SIZE, border_mode=cv2.BORDER_CONSTANT
),
A.Normalize(mean=[0, 0, 0], std=[1, 1, 1], max_pixel_value=255,),
ToTensorV2(),
],
bbox_params=A.BboxParams(format="yolo", min_visibility=0.4, label_fields=[]),
)
AIRCRAFT_CLASSES = [
"A10",
"A400M",
"AG600",
"B1",
"B2",
"B52",
"Be200",
"C130",
"C17",
"C5",
"E2",
"EF2000",
"F117",
"F14",
"F15",
"F16",
"F18",
"F22",
"F35",
"F4",
"J20",
"JAS39",
"MQ9",
"Mig31",
"Mirage2000",
"RQ4",
"Rafale",
"SR71",
"Su57",
"Tu160",
"Tu95",
"U2",
"US2",
"V22",
"XB70",
"YF23"
]