Skip to content

Files

Latest commit

0dc9728 · Sep 26, 2019

History

History
This branch is 258 commits behind chainer/chainer:master.

wavenet

WaveNet

A Chainer implementation of mel-spectrogram vocoder using WaveNet.

Usage

  1. Install requirements.
    • pip3 install -r requirements.txt
  2. Download dataset.
    • wget http://homepages.inf.ed.ac.uk/jyamagis/release/VCTK-Corpus.tar.gz
    • tar -xf VCTK-Corpus.tar.gz
  3. Start training.
    • python train.py -g <gpu id> --dataset <directory of dataset e.g. ./VCTK-Corpus/>
    • You can change other parameters. Please see args.
  4. Generate audio with trained model.
    • python generate.py -i <input file> -m <trained model e.g. snapshot_iter_500000>

Details

  • Default parameters of WaveNet are same as nv-wavenet.
  • Mel-spectrograms are calculated with librosa.
  • If you want to get more audible results, use MoL Wavenet with exponential moving average.