A Chainer implementation of mel-spectrogram vocoder using WaveNet.
- Install requirements.
pip3 install -r requirements.txt
- Download dataset.
wget http://homepages.inf.ed.ac.uk/jyamagis/release/VCTK-Corpus.tar.gz
tar -xf VCTK-Corpus.tar.gz
- Start training.
python train.py -g <gpu id> --dataset <directory of dataset e.g. ./VCTK-Corpus/>
- You can change other parameters. Please see args.
- Generate audio with trained model.
python generate.py -i <input file> -m <trained model e.g. snapshot_iter_500000>
- Default parameters of WaveNet are same as nv-wavenet.
- Mel-spectrograms are calculated with librosa.
- If you want to get more audible results, use MoL Wavenet with exponential moving average.