Skip to content
This repository has been archived by the owner on May 8, 2019. It is now read-only.

Latest commit

 

History

History
39 lines (24 loc) · 1.33 KB

README.md

File metadata and controls

39 lines (24 loc) · 1.33 KB

languagemodel

"A statistical language model assigns a probability to a sequence of m words P(w_1,\ldots,w_m) by means of a probability distribution." (Wikipedia)

This module provides a unigram-based cross-lingual language model, inspired by: Leuski Anton, Traum David. A Statistical Approach for Text Processing in Virtual Humans tech. rep.University of Southern California, Institute for Creative Technologies 2008.

A CrossLanguageModel can be used as a multi-class classifier/ranker, but, it also takes into account the structure of the output classes.

install

npm install languagemodel

use

var CrossLanguageModel = require('languagemodel').CrossLanguageModel;

var model = new CrossLanguageModel({
    smoothingFactor : 0.9
});

model.trainBatch([
    {input: {i:1, want:1, aa:1}, output: {a:1}},
    {input: {i:1, want:1, bb:1}, output: {b:1}},
    {input: {i:1, want:1, cc:1}, output: {c:1}},
    ]);

console.dir(model.similarities({i:1, want:1, aa:1, and:1, bb:1}));

==>

[ { output: { a: 1 }, similarity: -0.29506393100486217 },
  { output: { b: 1 }, similarity: -0.29506393100486217 },
  { output: { c: 1 }, similarity: -0.6413224201123425 } ]