-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhands.py
47 lines (42 loc) · 1.53 KB
/
hands.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from cv2 import cv2
import mediapipe as mp
from util import (
draw_landmark_bbox,
draw_handmarks_label,
)
from gesture_calc import GestureCalculator
mp_drawing = mp.solutions.drawing_utils
mp_hands = mp.solutions.hands
# For webcam input:
hands = mp_hands.Hands(
min_detection_confidence=0.5, min_tracking_confidence=0.5, max_num_hands=2
)
cap = cv2.VideoCapture(0)
while cap.isOpened():
success, image = cap.read()
if not success:
print("Ignoring empty camera frame.")
# If loading a video, use 'break' instead of 'continue'.
continue
# Flip the image horizontally for a later selfie-view display, and convert
# the BGR image to RGB.
image = cv2.cvtColor(cv2.flip(image, 1), cv2.COLOR_BGR2RGB)
# To improve performance, optionally mark the image as not writeable to
# pass by reference.
image.flags.writeable = False
results = hands.process(image)
# Draw the hand annotations on the image.
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:
mp_drawing.draw_landmarks(image, hand_landmarks, mp_hands.HAND_CONNECTIONS)
gesture_calc = GestureCalculator(hand_landmarks)
gest_code = gesture_calc.process()
if gest_code:
draw_handmarks_label(image, gest_code, hand_landmarks)
cv2.imshow("MediaPipe Hands", image)
if cv2.waitKey(5) & 0xFF == 27:
break
hands.close()
cap.release()