-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcalculator.py
70 lines (55 loc) · 2.03 KB
/
calculator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# Code from https://github.com/openai/grade-school-math/blob/master/grade_school_math/calculator.py
from contextlib import contextmanager
import signal
import torch as th
@contextmanager
def timeout(duration, formula):
def timeout_handler(signum, frame):
raise Exception(f"'{formula}': timed out after {duration} seconds")
signal.signal(signal.SIGALRM, timeout_handler)
signal.alarm(duration)
yield
signal.alarm(0)
def eval_with_timeout(formula, max_time=3):
try:
with timeout(max_time, formula):
return eval(formula)
except Exception as e:
signal.alarm(0)
print(f"Warning: Failed to eval {formula}, exception: {e}")
return None
def use_calculator(sample):
if "<<" not in sample:
return None
parts = sample.split("<<")
remaining = parts[-1]
if ">>" in remaining:
return None
if "=" not in remaining:
return None
lhs = remaining.split("=")[0]
lhs = lhs.replace(",", "")
if any([x not in "0123456789*+-/.()" for x in lhs]):
return None
return eval_with_timeout(lhs)
def sample(model, qn, tokenizer, device, sample_len):
# Inefficient version of calculator sampling -- no batches, doesn't
# cache activations from previous tokens
EQUALS_TOKENS = set([28, 796, 47505])
all_ans = []
for _ in range(sample_len):
with th.no_grad():
toks = tokenizer([qn], padding=False, return_tensors="pt").to(device)
orig_len = toks["input_ids"].shape[1]
out = model.generate(
**toks, max_length=orig_len + 1, pad_token_id=model.config.eos_token_id
)
text = tokenizer.batch_decode(out)[0]
if out[0, -1].item() in EQUALS_TOKENS:
answer = use_calculator(text)
if answer is not None:
# print("Triggered calculator, answer", answer)
text = text + str(answer) + ">>"
all_ans.append(answer)
qn = text
return qn, all_ans