diff --git a/source_inductor/inductor_fem_ann/+fem_ann/get_out_approx_ht.m b/source_inductor/inductor_fem_ann/+fem_ann/get_out_approx_ht.m index 5c97703..5f7a812 100644 --- a/source_inductor/inductor_fem_ann/+fem_ann/get_out_approx_ht.m +++ b/source_inductor/inductor_fem_ann/+fem_ann/get_out_approx_ht.m @@ -26,8 +26,9 @@ k_core = inp.k_core; k_winding_n = inp.k_winding_n; k_iso = inp.k_iso; -h_exposed = inp.h_exposed; -h_internal = inp.h_internal; +h_convection = inp.h_convection; +fact_exposed = inp.fact_exposed; +fact_internal = inp.fact_internal; T_ambient = inp.T_ambient; P_core = inp.P_core; P_winding = inp.P_winding; @@ -42,13 +43,13 @@ R_iso_winding_exposed = d_iso./(S_winding_exposed.*k_iso); % convection resistance of the core (exposed and semi-exposed area in parallel) -R_conv_core_exposed = 1./(h_exposed.*S_core_exposed); -R_conv_core_internal = 1./(h_internal.*S_core_internal); +R_conv_core_exposed = 1./(fact_exposed.*h_convection.*S_core_exposed); +R_conv_core_internal = 1./(fact_internal.*h_convection.*S_core_internal); R_extract_winding = 1./((1./R_conv_core_exposed)+(1./R_conv_core_internal)); % convection resistance of the winding (in insulation resistance, exposed and semi-exposed area in parallel) -R_conv_winding_exposed = 1./(h_exposed.*S_winding_exposed); -R_conv_winding_internal = 1./(h_internal.*S_winding_internal); +R_conv_winding_exposed = 1./(fact_exposed.*h_convection.*S_winding_exposed); +R_conv_winding_internal = 1./(fact_internal.*h_convection.*S_winding_internal); R_extract_core = 1./((1./(R_conv_winding_exposed+R_iso_winding_exposed))+(1./(R_conv_winding_internal+R_iso_winding_internal))); % solve the linear thermal circuit diff --git a/source_input/get_fem_ann_data_init.m b/source_input/get_fem_ann_data_init.m index 47c6b7e..392c114 100644 --- a/source_input/get_fem_ann_data_init.m +++ b/source_input/get_fem_ann_data_init.m @@ -20,8 +20,9 @@ const.k_winding_n = 0.3; % thermal conductivity of the winding (normal direction) const.k_contact = 0.1; % thermal conductivity of the winding/core/insulation contact const.d_contact = 100e-6; % physical gap for winding/core/insulation contact -const.h_exposed = 20.0; % convection coefficient fot the exposed area -const.h_internal = 5.0; % convection coefficient fot the semi-exposed area +const.h_convection = 20.0; % convection coefficient reference value +const.fact_exposed = 1.0; % convection scaling factor for the exposed area +const.fact_internal = 0.25; % convection scaling factor for the semi-exposed area const.T_ambient = 0.0; % ambient temperature for the FEM simulation % FEM mesh control