-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_model.py
177 lines (154 loc) · 7.79 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import os
import sys
import time
import glob
import numpy as np
import torch
from utils import utils
import logging
import argparse
import torch.nn as nn
import torch.utils
from tensorboardX import SummaryWriter
import torch.nn.functional as F
from ASVRawDataset import ASVRawDataset
from models.model import Network
from func.architect import Architect
from pathlib import Path
from func.functions import train_from_scratch, validate
from utils.utils import Genotype
from func.p2sgrad import P2SGradLoss
if __name__ == '__main__':
parser = argparse.ArgumentParser('ASVSpoof2019 model')
parser.add_argument('--data', type=str, default='/path/to/your/LA',
help='location of the data corpus')
parser.add_argument('--valid_freq', type=int, default=1, help='validate frequency')
parser.add_argument('--report_freq', type=int, default=1000, help='report frequency in training')
parser.add_argument('--layers', type=int, default=8, help='number of cells of the network')
parser.add_argument('--init_channels', type=int, default=64, help='number of the initial channels of the network')
parser.add_argument('--gru_hsize', type=int, default=1024, help='number of the features in the hidden state of gru layers')
parser.add_argument('--gru_layers', type=int, default=3, help='number of gru layers of the network')
parser.add_argument('--sinc_scale', type=str, default='mel', help='the type of sinc layer')
parser.add_argument('--sinc_kernel', type=int, default=128, help='kernel size of sinc layer')
parser.add_argument('--trainable', dest='is_trainable', action='store_true', help='whether using trainable sinc layer')
parser.add_argument('--pre_trained', type=str, default=None)
parser.add_argument('--arch', type=str, help='the searched architecture')
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--num_epochs', type=int, default=100)
parser.add_argument('--no-mask', dest='is_mask', action='store_false', help='whether use freq mask')
parser.add_argument('--sr', type=int, default=16000, help='default sampling rate')
parser.add_argument('--lr', type=float, default=5e-5, help='intial learning rate')
parser.add_argument('--lr_min', type=float, default=2e-5, help='mininum learning rate')
parser.add_argument('--weight_decay', type=float, default=3e-4)
parser.add_argument('--seed', type=int, default=None, help='random seed')
parser.add_argument('--comment', type=str, default='EXP', help='Comment to describe the saved mdoel')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
parser.add_argument('--unrolled', action='store_true', default=False, help='use one-step unrolled validation loss')
parser.add_argument('--drop_path_prob', type=float, default=0.0, help='drop path probability')
parser.add_argument('--rand', dest='is_rand', action='store_true', help='whether use rand start of input audio')
# by default, use fixed first 4 seconds of the original audio file, not using randomly selected 4 seconds
parser.set_defaults(is_rand=False)
parser.set_defaults(is_mask=True)
parser.set_defaults(is_trainable=False)
args = parser.parse_args()
args.comment = 'train-{}-{}'.format(args.comment, time.strftime("%Y%m%d-%H%M%S"))
utils.create_exp_dir(args.comment, scripts_to_save=glob.glob('*.py'))
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
format=log_format, datefmt='%m/%d %I:%M:%S %p')
fh = logging.FileHandler(os.path.join(args.comment, 'log.txt'))
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
# models will be saved under this path
model_save_path = os.path.join(args.comment, 'models')
if not os.path.exists(model_save_path):
os.mkdir(model_save_path)
train_protocol = 'ASVspoof2019.LA.cm.train.trn.txt'
dev_protocol = 'ASVspoof2019.LA.cm.dev.trl.txt'
OUTPUT_CLASSES = 2
# set random seed
if args.seed:
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.enabled = True
torch.cuda.manual_seed_all(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
logging.info("args = %s", args)
device = 'cuda'
criterion = P2SGradLoss()
criterion = criterion.cuda()
# get the network architecture
genotype = eval(args.arch)
# initialise the model
model = Network(args.init_channels, args.layers, args, OUTPUT_CLASSES, genotype)
model = model.to(device)
# to make sure never use pre trained front-end while setting it to trainable
# i.e., never update pre trained front-end sinc layer
assert not (args.pre_trained and args.is_trainable), "Warning: when using pre-trained sinc layer, these parameter should be set to not trainable."
# load pre trained front-end from the saved models, only parameters of the sinc layer is loaded
if args.pre_trained:
checkpoint = torch.load(args.pre_trained)
model_dict = model.state_dict()
pretrained_dict = {k: v for k, v in checkpoint.items() if k in ['sinc.low_hz_', 'sinc.band_hz_', 'sinc.conv.weight', 'sinc.conv.bias']}
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
logging.info("loaded pre-trained sinc layer")
if args.sinc_scale == 'conv':
for name, para in enumerate(model.parameters()):
if name < 2:
para.requires_grad = False
logging.info("freezed pre-trained conv layer")
logging.info("param size = %fM", utils.count_parameters(model))
train_dataset = ASVRawDataset(Path(args.data), 'train', train_protocol, args.is_rand)
dev_dataset = ASVRawDataset(Path(args.data), 'dev', dev_protocol, is_rand=False)
train_loader = torch.utils.data.DataLoader(
dataset=train_dataset,
batch_size=args.batch_size,
num_workers=0,
pin_memory=True,
shuffle=True,
drop_last=True,
)
dev_loader = torch.utils.data.DataLoader(
dataset=dev_dataset,
batch_size=args.batch_size,
num_workers=0,
pin_memory=True,
shuffle=True,
drop_last=True,
)
optimizer = torch.optim.Adam(
model.parameters(),
args.lr,
weight_decay=args.weight_decay)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer, float(args.num_epochs), eta_min=args.lr_min)
begin_epoch = 0
best_acc = 85
best_loss = 1e3
writer_dict = {
'writer': SummaryWriter(args.comment),
'train_global_steps': begin_epoch * len(train_loader),
'valid_global_steps': begin_epoch // args.valid_freq,
}
for epoch in range(args.num_epochs):
lr = scheduler.get_last_lr()[0]
logging.info('Epoch: %d lr: %e', epoch, lr)
model.drop_path_prob = args.drop_path_prob * epoch / args.num_epochs
train_acc, train_loss = train_from_scratch(args, train_loader, model, optimizer, criterion, epoch, writer_dict)
logging.info('train_loss %f', train_loss)
logging.info('train_acc %f', train_acc)
# validation
if epoch % args.valid_freq == 0:
dev_acc, dev_loss = validate(dev_loader, model, criterion, epoch, writer_dict, validate_type='dev')
logging.info('dev_loss %f', dev_loss)
logging.info('dev_acc %f', dev_acc)
if dev_acc > best_acc:
print('*'*50)
logging.info('found the best acc model')
print('*'*50)
best_acc = max(dev_acc, best_acc)
torch.save(model.state_dict(), os.path.join(model_save_path, 'epoch_{}.pth'.format(epoch)))
scheduler.step()