-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathjust-intonation.js
895 lines (811 loc) · 24.6 KB
/
just-intonation.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
import { PRIME_LOOKUP, PRIME_OCTAVE_LOOKUP, LIST_OF_PRIMES, EDO, USE_OCTAVE_REDUCED_PRIMES } from './configs.js';
import { mod } from './helpers.js';
function primeFactors(n) {
const factors = {};
let divisor = 2;
if (!Number.isInteger(n)) {
return factors;
}
while (n >= 2) {
if (n % divisor === 0) {
if (!(divisor in factors)) {
factors[divisor] = 0;
}
factors[divisor] += 1;
n = n / divisor;
} else {
divisor++;
}
}
return factors;
}
/**
* Adjusts distance scale globally.
*
* @type {number}
*/
const DIST_SCALE_FACTOR_3D = 20;
/**
* Each successive prime's unit vector has phi rotated by this amount.
* (phi is the angle between the Y-axis and the XZ plane).
*
* Rotation is taken modulo 1 * pi (backwards rotations are handled by theta).
*
* This should be an irrational number that don't have similar nearby values when multiples of it are taken modulo pi.
*
* See https://www.desmos.com/calculator/ciawfuzaoy for a visualization of the rotations of the first N unit vectors
* for why these constants are chosen.
*/
const PHI_OFFSET = 10 * Math.PI * 2 * Math.SQRT2 / 2 / Math.sqrt(382) / 1.89999;
/**
* Each successive prime's unit vector has theta rotated by this amount.
* (theta is the angle starting from the X-axis toward the direction of the Z-axis)
*
* Rotation is taken modulo 2 * pi.
*
* This should be an irrational number that don't have similar values when multiples of it are taken modulo 2*pi.
*
* See https://www.desmos.com/calculator/ciawfuzaoy for a visualization of the rotations of the first N unit vectors
* for why these constants are chosen.
*/
const THETA_OFFSET = 10 * Math.PI * 2 * Math.SQRT2 / 1.89999;
/**
* The unit vector distance of each prime. Uses a squashed logarithmic scale with prime 2 as the unit length 1.
*
* @param {number} prime
* @returns
*/
function primeDistanceFunction(prime) {
return Math.log10(prime) - (Math.log10(2) - 1);
}
/**
* Unit vectors of all the primes, in the same order as {@linkcode LIST_OF_PRIMES}.
*
* Each element is a 3-element array `[x, y, z]`.
*
* @type {number[][]}
*/
const PRIME_UNIT_VECTORS = (() => {
let vecs = [
// Swap these two when playing many octaves so that octaves can fit on the screen.
[0, primeDistanceFunction(2), 0], // Octave should point upward.
[primeDistanceFunction(3), 0, 0], // Fifths should point right.
];
for (let idx in PRIME_LOOKUP) {
if (idx == 0 || idx == 1)
continue;
let prime = LIST_OF_PRIMES[idx];
let i = idx - 1; // start from one multiple of the offset.
let r = primeDistanceFunction(prime);
let phi = (Math.PI - PHI_OFFSET * i) % Math.PI;
let theta = (THETA_OFFSET * i - 0.5 * Math.PI) % (Math.PI * 2);
// spherical coords ()
let x = r * Math.sin(phi) * Math.cos(theta);
let y = r * Math.cos(phi);
let z = r * Math.sin(phi) * Math.sin(theta);
vecs.push([x, y, z]);
}
return vecs;
})();
export class HarmonicCoordinates {
/**
* N-dimensional coords array. Each element is the power of a prime, starting from 2, then 3,
* etc...
*
* if {@linkcode USE_OCTAVE_REDUCED_PRIMES} is true, all non-octave primes are octave reduced.
* E.g., the second element corresponds to powers of (3/2) third element corresponds to powers
* of (5/4) etc...
*
* This value must be immutable. Do not write directly to this value anywhere else except in the
* constructor.
*
* @type {number[]}
*/
_coords;
/**
* Memoized ratio of this coordinate. Lazily evaluated when {@linkcode toRatio} is called.
*
* `[numerator, denominator]`
*/
#ratio = null;
/**
* Memoized absolute power of 2. Lazily evaluated when {@linkcode p2absolute} is called, or
* initialized in constructor if {@linkcode USE_OCTAVE_REDUCED_PRIMES} is `false` making it
* trivial.
*
* @type {number}
*/
#p2absolute = null;
/**
* Memoized {@link edosteps} of this coordinate. Lazily evaluated when getter {@linkcode edosteps} is accessed.
* @type {number}
*/
#edosteps
/**
* @param {number[]} coords List of powers of primes starting from 2, 3, 5. If
* {@linkcode USE_OCTAVE_REDUCED_PRIMES} is `true`, make sure that the first element is the
* octave reduced power of 2, not the absolute one.
*
* @param {number?} p2absolute If we already calculated the absolute octave offset, pass it so
* that we don't have to recalculate {@linkcode HarmonicCoordinates.p2absolute}. Only applicable
* if {@linkcode USE_OCTAVE_REDUCED_PRIMES} is `true`.
*/
constructor(coords, p2absolute = null) {
if (coords instanceof HarmonicCoordinates) {
coords = coords.coords;
}
coords = coords.slice() || [0]; // copy to prevent mutation of original array (is this worth the performance hit?)
while (coords.length >= 1 && coords[coords.length - 1] == 0) {
// remove trailing zeroes, so that the array length of any two equal HarmonicCoordinates
// are equal.
coords.pop()
}
if (coords.length != 0) {
this._coords = Object.freeze(coords);
}
else {
this._coords = Object.freeze([0]);
}
this.#p2absolute = p2absolute;
if (!USE_OCTAVE_REDUCED_PRIMES) {
this.#p2absolute = this._coords[0];
}
}
/**
* Construct a new {@linkcode HarmonicCoordinates} object from JSON.
*
* @param {number[]} json Serialized {@linkcode HarmonicCoordinates} (coords array).
*/
static fromJSON(json) {
return new HarmonicCoordinates(json);
}
/**
* The serialized JSON object of a {@linkcode HarmonicCoordinates} object is just the
* {@linkcode coords} array.
* @returns {number[]}
*/
toJSON() {
return this._coords;
}
get primeLimit() {
return LIST_OF_PRIMES[this._coords.length - 1];
}
/**
* N-dimensional coords array. Each element is the power of a prime, starting from 2, then 3,
* etc...
*
* if {@linkcode USE_OCTAVE_REDUCED_PRIMES} is true, all non-octave primes are octave reduced.
* E.g., the second element corresponds to powers of (3/2) third element corresponds to powers
* of (5/4) etc...
* @type {number[]}
*/
get coords() {
return this._coords;
}
set coords(_) {
throw new Error("HarmonicCoordinates: coords is immutable.");
}
/**
* Helper property for getting the power of the first prime (2, octaves).
*/
get p2() {
return this._coords[0];
}
/**
* Helper property for getting power of the second prime (3, or 3/2 if
* {@linkcode USE_OCTAVE_REDUCED_PRIMES})
*/
get p3() {
return this._coords[1] ?? 0;
}
/**
* Absolute power of 2. Will be equal to first element of {@linkcode coords} if
* {@linkcode USE_OCTAVE_REDUCED_PRIMES} is `false`.
*
* Otherwise, this value contains the absolute unreduced power of 2, as {@linkcode coords}
* assume octave reduced primes.
*
* E.g. when octave reduction is active, [0, 1] correspond to 3/2, so `p2absolute` will be `-1`
* as 1/2 = 2^-1.
*
* This value is lazily evaluated if {@linkcode USE_OCTAVE_REDUCED_PRIMES} is `true` and a
* precomputed `p2absolute` value was not passed in the constructor.
*/
get p2absolute() {
if (this.#p2absolute !== null)
return this.#p2absolute;
this.#p2absolute = this.coords[0];
if (USE_OCTAVE_REDUCED_PRIMES) {
for (let i = 1; i < this.coords.length; i++) {
this.#p2absolute -= PRIME_OCTAVE_LOOKUP[LIST_OF_PRIMES[i]] * this.coords[i];
}
}
return this.#p2absolute;
}
/**
* The number of edosteps this coordinate is from 1/1.
* @returns {number}
*/
get edosteps() {
if (this.#edosteps !== undefined)
return this.#edosteps;
this.#edosteps = this.toP2AbsoluteArray().reduce((acc, numPrimeIntervals, primeIdx) => acc + numPrimeIntervals * VALS[EDO][primeIdx], 0);
return this.#edosteps;
}
/**
*
* @param {this|[number]} hc
* @returns {this}
*/
add(hc) {
let coords = (hc instanceof Array) ? hc : hc.coords;
let newCoords = [];
let maxLength = Math.max(this.coords.length, coords.length);
for (let i = 0; i < maxLength; i++) {
let x = 0;
if (i < this.coords.length)
x += this.coords[i];
if (i < coords.length)
x += coords[i];
newCoords.push(x);
}
return new this.constructor(newCoords);
}
/**
*
* @param {this|[number]} hc
* @returns {this}
*/
subtract(hc) {
let coords = (hc instanceof Array) ? hc : hc.coords;
let newCoords = [];
let maxLength = Math.max(this.coords.length, coords.length);
for (let i = 0; i < maxLength; i++) {
let x = 0;
if (i < this.coords.length)
x += this.coords[i];
if (i < coords.length)
x -= coords[i];
newCoords.push(x);
}
return new this.constructor(newCoords);
}
/**
* Returns a new {@linkcode HarmonicCoordinates} (or child class) with every coordinate element
* rounded to the nearest integer.
*
* Useful for quantizing an 'average' harmonic coordinate to a valid point in the lattice.
*
* @return {this}
*/
round() {
return new this.constructor(this.coords.map(x => Math.round(x)));
}
/**
* @param {number} numerator
* @param {number} denominator
* @returns {this}
*/
static fromRatio(numerator, denominator) {
let numFacs = primeFactors(numerator);
let denFacs = primeFactors(denominator);
let primeUnion = numFacs; // union of prime factors of numerator and denominator
for (let denPrime in denFacs) {
if (denPrime in primeUnion) {
primeUnion[denPrime] -= denFacs[denPrime];
} else {
primeUnion[denPrime] = -denFacs[denPrime];
}
}
let coords = [0];
// when octave reduced primes are used, compensate octave offset of each prime so that prime intervals are
// octave reduced:
// e.g. 3/2: [-1, 1] becomes [0, 1]
// 5/4: [-2, 0, 1] becomes [0, 0, 1]
let octOffset = 0;
for (let prime in primeUnion) {
let power = primeUnion[prime];
coords[PRIME_LOOKUP[prime]] = power;
octOffset += PRIME_OCTAVE_LOOKUP[prime] * power;
}
for (let i = 0; i < coords.length; i++) {
if (coords[i] === undefined)
coords[i] = 0;
}
let p2abs = coords[0];
if (USE_OCTAVE_REDUCED_PRIMES) {
coords[0] += octOffset;
// NOTE: There was a bug here where coords was kept empty (the fraction was 1/1), and
// because of that, coords[0] is undefined, resulting in [NaN] being passed as coords.
// This was fixed only in v0.2.0
}
return new this(coords, p2abs);
}
/**
*
* @returns {[number, number]} [numerator, denominator]
*/
toRatio() {
if (this.#ratio !== null)
return this.#ratio;
let num = 1, den = 1;
if (this.p2absolute > 0) {
num *= 2 ** this.p2absolute;
} else if (this.p2absolute < 0) {
den *= 2 ** (-this.p2absolute);
}
for (let i = 1; i < this.coords.length; i++) {
if (this.coords[i] > 0)
num *= LIST_OF_PRIMES[i] ** this.coords[i];
else if (this.coords[i] < 0)
den *= LIST_OF_PRIMES[i] ** (-this.coords[i]);
}
this.#ratio = [num, den];
return this.#ratio;
}
toRatioString() {
let [num, den] = this.toRatio();
return `${num}/${den}`;
}
toUnscaledCoords() {
let coords = [0, 0, 0];
for (let i = 0; i < this.coords.length; i++) {
coords = coords.map((x, j) => x + this.coords[i] * PRIME_UNIT_VECTORS[i][j]);
}
return [
DIST_SCALE_FACTOR_3D * coords[0],
DIST_SCALE_FACTOR_3D * coords[1],
DIST_SCALE_FACTOR_3D * coords[2],
];
}
/**
* Returns the frequency of this relative ratio, respective to the given `fundamental`.
*
* @param {number} fundamental Fundamental frequency of 1/1
* @returns
*/
toFrequency(fundamental) {
this.coords.forEach((pow, idx) => {
if (pow != 0 && idx != 0)
fundamental *= LIST_OF_PRIMES[idx] ** pow
});
fundamental *= 2 ** this.p2absolute;
return fundamental;
}
/**
* @returns {number} The relative frequency multiplier of this interval relative to 1/1.
*/
toMultiplier() {
return this.toFrequency(1);
}
/**
* Monzos always assume non-octave reduced primes.
* @returns {string}
*/
toMonzoString() {
return `[ ${this.toP2AbsoluteArray().join(" ")} >`;
}
toString() {
return this.coords.toString();
}
/**
* DEPRECATED. Use {@linkcode coords} instead
* @returns
*/
toArray() {
return this.coords;
}
/**
* Same as {@linkcode coords} but assuming no octave reduced primes. Helpful for calculations.
*
* This value will be the same as {@linkcode coords} if {@linkcode USE_OCTAVE_REDUCED_PRIMES} is
* `false`.
*/
toP2AbsoluteArray() {
return [this.p2absolute, ...this.coords.slice(1)];
}
/**
* Check if this coordinate can be directly connected
* to another coordinate in the lattice.
* @param hc
* @returns {number} 0 if not adjacent, otherwise, a positive/negative number equivalent to the
* prime number that the two coordinates differ by.
* E.g. if returns -5, that means that `hc` is a major third below `this`.
*/
checkAdjacent(hc) {
let diff = hc.subtract(this);
let diffArr = diff.coords;
if (diffArr.some(x => Math.abs(x) > 1))
return 0;
let prime = 0;
for (let i = 0; i < diffArr.length; i++) {
let x = diffArr[i];
if (x === 1 || x === -1) {
if (prime !== 0)
return 0; // only allow one prime to be different.
prime = LIST_OF_PRIMES[i];
prime *= x; // invert number if negative.
}
}
if (prime !== 0)
return prime;
else
return 0;
}
/**
* A heuristic measure to evaluate the distance/norm between two {@linkcode HarmonicCoordinates} / {@linkcode NoteName}
*
* This value is always positive.
* @param other {this}
*
* @see {@linkcode harmonicDistanceFromOrigin}
*/
harmonicDistance(other) {
return other.subtract(this).harmonicDistanceFromOrigin();
}
/**
* The heuristic distance of this coordinate from the origin 1/1.
*
* This value is always based on non-reduced primes.
*
* @returns {number}
*/
harmonicDistanceFromOrigin() {
let hDist = 0;
// TODO: Adjust harmonic distance formula.
this.toP2AbsoluteArray().forEach((pow, idx) =>
hDist += Math.pow(Math.abs(pow), 0.8) * Math.log2(LIST_OF_PRIMES[idx]));
return hDist;
}
equals(hc) {
if (this.coords.length != hc.coords.length)
return false;
return this.coords.every((x, i) => x == hc.coords[i]);
}
/**
* Assumes that this coordinate uses octave reduced primes (3/2, 5/4, 7/4, ...), even when
* {@linkcode USE_OCTAVE_REDUCED_PRIMES} is `false`.
*
* Then, converts the octave reduced primes to absolute primes (3/1, 5/1, 7/1, ...).
*
* @returns {this}
*/
convOctReducedToAbs() {
let coords = this.coords.slice();
if (USE_OCTAVE_REDUCED_PRIMES) {
return new HarmonicCoordinates(this.toP2AbsoluteArray());
}
for (let i = 1; i < coords.length; i++) {
coords[0] -= PRIME_OCTAVE_LOOKUP[LIST_OF_PRIMES[i]] * coords[i];
}
return new this.constructor(coords);
}
}
function arrayOfHarmonicCoordinates(fractions) {
let x = [];
for (let [a, b] of fractions)
x.push(HarmonicCoordinates.fromRatio(a, b));
return x;
}
/**
* @type {Object.<number, HarmonicCoordinates[]>}
*/
const RATIOS31 = {
// do
0: [HarmonicCoordinates.fromRatio(1, 1)],
1: arrayOfHarmonicCoordinates([
[45, 44],
[49, 48],
[128, 125],
[36, 35]
]),
2: arrayOfHarmonicCoordinates([
[25, 24], [21, 20], [22, 21]
]),
3: arrayOfHarmonicCoordinates([
[16, 15] //, [15,14]
]),
4: arrayOfHarmonicCoordinates([
[12, 11], [11, 10]//, [35, 32]
]),
// re
5: arrayOfHarmonicCoordinates([
[9, 8], [10, 9]//, [28,25]
]),
6: arrayOfHarmonicCoordinates([
[8, 7]//, [144,125]
]),
7: arrayOfHarmonicCoordinates([
[7, 6]//, [75,64]
]),
8: arrayOfHarmonicCoordinates([
[6, 5]//, [25,21]
]),
9: arrayOfHarmonicCoordinates([
[11, 9]//, [27,22], [60, 49], [49, 40]
]),
// mi
10: arrayOfHarmonicCoordinates([
[5, 4]
]),
11: arrayOfHarmonicCoordinates([
[9, 7], [14, 11], [32, 25]
]),
12: arrayOfHarmonicCoordinates([
[21, 16]//, [125,96]
]),
// fa
13: arrayOfHarmonicCoordinates([
[4, 3]
]),
14: arrayOfHarmonicCoordinates([
[11, 8], [15, 11]
]),
15: arrayOfHarmonicCoordinates([
[7, 5], [45, 32], [25, 18]
]),
16: arrayOfHarmonicCoordinates([
[10, 7], [64, 45], [36, 25]
]),
17: arrayOfHarmonicCoordinates([
[16, 11]//, [22,15]
]),
// so
18: arrayOfHarmonicCoordinates([
[3, 2]
]),
19: arrayOfHarmonicCoordinates([
[32, 21]//, [192,125]
]),
20: arrayOfHarmonicCoordinates([
[14, 9], [11, 7], [25, 16]
]),
21: arrayOfHarmonicCoordinates([
[8, 5]
]),
22: arrayOfHarmonicCoordinates([
[18, 11], [44, 27]//, [49,30], [80,49]
]),
// la
23: arrayOfHarmonicCoordinates([
[5, 3]//, [42,25]
]),
24: arrayOfHarmonicCoordinates([
[12, 7]//, [128,75]
]),
25: arrayOfHarmonicCoordinates([
[7, 4]//, [125,72]
]),
26: arrayOfHarmonicCoordinates([
[16, 9], [9, 5]//, [25,14]
]),
27: arrayOfHarmonicCoordinates([
[11, 6]//, [20,11], [64,35]
]),
// ti
28: arrayOfHarmonicCoordinates([
[15, 8]
]),
29: arrayOfHarmonicCoordinates([
[48, 25], [40, 21], [21, 11]
]),
30: arrayOfHarmonicCoordinates([
[88, 45], [96, 49],
//[125,64],
[35, 18]
])
};
/**
* @type {Object.<number, HarmonicCoordinates[]>}
*/
const RATIOS22 = {
// do
0: arrayOfHarmonicCoordinates([
[1, 1]
]),
1: arrayOfHarmonicCoordinates([
[36, 35], [33, 32]
]),
2: arrayOfHarmonicCoordinates([
[16, 15], [15, 14]
]),
3: arrayOfHarmonicCoordinates([
[12, 11], [11, 10], [10, 9]
]),
// Re
4: arrayOfHarmonicCoordinates([
[9, 8], [8, 7]
]),
5: arrayOfHarmonicCoordinates([
[7, 6]
]),
6: arrayOfHarmonicCoordinates([
[6, 5], [11, 9]
]),
7: arrayOfHarmonicCoordinates([
[5, 4], //[96, 77]
]),
// Mi
8: arrayOfHarmonicCoordinates([
[14, 11], [9, 7]
]),
// Fa
9: arrayOfHarmonicCoordinates([
[4, 3]
]),
10: arrayOfHarmonicCoordinates([
[11, 8], [15, 11]
]),
11: arrayOfHarmonicCoordinates([
[7, 5], [10, 7], [45, 32]
]),
12: arrayOfHarmonicCoordinates([
[16, 11], [22, 15]
]),
// So
13: arrayOfHarmonicCoordinates([
[3, 2]
]),
14: arrayOfHarmonicCoordinates([
[14, 9], [11, 7]
]),
15: arrayOfHarmonicCoordinates([
[8, 5], //[77, 48]
]),
16: arrayOfHarmonicCoordinates([
[5, 3], [18, 11]
]),
// La
17: arrayOfHarmonicCoordinates([
[12, 7]
]),
18: arrayOfHarmonicCoordinates([
[7, 4], [16, 9]
]),
19: arrayOfHarmonicCoordinates([
[9, 5], [11, 6], [20, 11]
]),
20: arrayOfHarmonicCoordinates([
[28, 15], [15, 8]
]),
// Ti
21: arrayOfHarmonicCoordinates([
[64, 33], [35, 18]
]),
};
/**
* @type {Object.<number, HarmonicCoordinates[]>}
*/
const RATIOS12_11LIM = {
0: arrayOfHarmonicCoordinates([
[1, 1]
]),
1: arrayOfHarmonicCoordinates([
[16, 15], [15, 14], [135, 128], [2187, 2048], [256, 243]
]),
2: arrayOfHarmonicCoordinates([
[9, 8], [10, 9], [8, 7]
]),
3: arrayOfHarmonicCoordinates([
[6, 5], [7, 6], [32, 27]
]),
4: arrayOfHarmonicCoordinates([
[5, 4], [9, 7], [81, 64]
]),
5: arrayOfHarmonicCoordinates([
[4, 3]
]),
6: arrayOfHarmonicCoordinates([
[45, 32], [64, 45], [729, 512], [1024, 729], [7, 5], [10, 7], [11, 8], [16, 11]
]),
7: arrayOfHarmonicCoordinates([
[3, 2]
]),
8: arrayOfHarmonicCoordinates([
[8, 5], [128, 81], [25, 16], [14, 9]
]),
9: arrayOfHarmonicCoordinates([
[5, 3], [27, 16], [12, 7]
]),
10: arrayOfHarmonicCoordinates([
[16, 9], [9, 5], [7, 4]
]),
11: arrayOfHarmonicCoordinates([
[15, 8], [243, 128], [28, 15], [256, 135], [486, 256]
]),
}
/**
* @type {Object.<number, HarmonicCoordinates[]>}
*/
const RATIOS12 = {
0: arrayOfHarmonicCoordinates([
[1, 1]
]),
1: arrayOfHarmonicCoordinates([
[16, 15], [135, 128], [2187, 2048], [256, 243]
]),
2: arrayOfHarmonicCoordinates([
[9, 8], [10, 9]
]),
3: arrayOfHarmonicCoordinates([
[6, 5], [32, 27]
]),
4: arrayOfHarmonicCoordinates([
[5, 4], [81, 64]
]),
5: arrayOfHarmonicCoordinates([
[4, 3]
]),
6: arrayOfHarmonicCoordinates([
[45, 32], [64, 45], [729, 512], [1024, 729]
]),
7: arrayOfHarmonicCoordinates([
[3, 2]
]),
8: arrayOfHarmonicCoordinates([
[8, 5], [128, 81], [25, 16]
]),
9: arrayOfHarmonicCoordinates([
[5, 3], [27, 16]
]),
10: arrayOfHarmonicCoordinates([
[16, 9], [9, 5],
]),
11: arrayOfHarmonicCoordinates([
[15, 8], [243, 128], [256, 135], [486, 256]
]),
}
/**
* Convert edosteps into a list of plausible HarmonicCoordinates.
*
* @param {Number} edosteps
* @returns {HarmonicCoordinates[]} An array of {@linkcode HarmonicCoordinates} representing possible coordinates this edostep maps to.
*/
export function convertStepsToPossibleCoord(steps) {
let octaves = math.floor(steps / EDO);
let edosteps = mod(steps, EDO);
// the .add function causes this function to return an entirely new copy of HarmonicCoordinates
// objects so it is now ok to modify the returned coordinates from this function.
if (EDO == 31)
return RATIOS31[edosteps].map(x => x.add([octaves]));
else if (EDO == 22)
return RATIOS22[edosteps].map(x => x.add([octaves]));
else if (EDO == 12)
return RATIOS12_11LIM[edosteps].map(x => x.add([octaves]));
else
alert("EDO not supported");
}
/**
* A key-value-pair mapping edosteps to number of fifths spanned.
*
* This only works for edos where the fifth is a generator for the whole tuning.
*
* E.g. in 24 it won't work because there are 2 disjoint circles of fifths...
*
* This should be used for COSMETIC purposes only (like setting color hue based on fifths)
*/
export const EDOSTEPS_TO_FIFTHS_MAP = (() => {
let x = {};
let d = 0;
// Number of edosteps for the best P5 approximation.
// Assumes patent val/common 'default' 3-limit map.
let fifthsize = Math.round(EDO * Math.log2(3 / 2));
for (let fifths = 0; fifths < EDO; fifths++) {
x[d] = fifths;
d = (d + fifthsize) % EDO;
}
return x;
})();
/**
* The vals covector that maps (non-octave-reduced) prime intervals to edosteps.
*
* @type {Object.<number, [number]>}
*/
export const VALS = (() => {
let vals = {};
let primes = [2, 3, 5, 7, 11];
for (let edo of [12, 22, 31]) {
vals[edo] = primes.map(prime => Math.round(edo * Math.log2(prime)));
}
return vals;
})();