Skip to content
This repository was archived by the owner on Mar 1, 2025. It is now read-only.
This repository was archived by the owner on Mar 1, 2025. It is now read-only.

Rewrite for convolution operation #241

Open
@CheungBH

Description

@CheungBH

Thanks for your great work.
I want to use the inference of sparse conv operation, but the code doesn't provide such a function. Therefore, I am rewriting it like this.
When only_forward=True, the input will be processed directly without the operation of ctx.
However, I found there are nan using such a method. Do you have any ideas for solving it?

class ConvolutionFunction(Function):

@staticmethod
def forward(
        ctx,
        input_features,
        weight,
        bias,
        input_metadata,
        input_spatial_size,
        output_spatial_size,
        dimension,
        filter_size,
        filter_stride,
        only_forward=False):
    output_features = input_features.new()
    if only_forward:
        sparseconvnet.SCN.Convolution_updateOutput(
            input_spatial_size,
            output_spatial_size,
            filter_size,
            filter_stride,
            input_metadata,
            input_features,
            output_features,
            weight,
            bias)
        return output_features

    output_features = input_features.new()
    ctx.input_metadata = input_metadata
    ctx.dimension = dimension
    ctx.save_for_backward(
        input_features,
        input_spatial_size,
        weight,
        bias,
        output_spatial_size,
        filter_size,
        filter_stride)
    sparseconvnet.forward_pass_multiplyAdd_count +=\
        sparseconvnet.SCN.Convolution_updateOutput(
            input_spatial_size,
            output_spatial_size,
            filter_size,
            filter_stride,
            input_metadata,
            input_features,
            output_features,
            weight,
            bias)
    sparseconvnet.forward_pass_hidden_states += output_features.nelement()
    return output_features

@staticmethod
def backward(ctx, grad_output):
    input_features, input_spatial_size, weight, bias, output_spatial_size, filter_size, filter_stride = ctx.saved_tensors
    grad_input = grad_output.new()
    grad_weight = torch.zeros_like(weight)
    grad_bias = torch.zeros_like(bias)
    sparseconvnet.SCN.Convolution_backward(
        input_spatial_size,
        output_spatial_size,
        filter_size,
        filter_stride,
        ctx.input_metadata,
        input_features,
        grad_input,
        grad_output.contiguous(),
        weight,
        grad_weight,
        grad_bias)
    return grad_input, grad_weight, optionalTensorReturn(grad_bias), None, None, None, None, None, None

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions