This repository has been archived by the owner on Oct 31, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 67
/
Copy pathsnn_eval.py
346 lines (296 loc) · 9.41 KB
/
snn_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import argparse
import logging
import pprint
from collections import OrderedDict
import numpy as np
import torch
import src.resnet as resnet
import src.wide_resnet as wide_resnet
from src.data_manager import (
init_data,
make_transforms
)
logging.basicConfig()
logger = logging.getLogger()
logger.setLevel(logging.INFO)
parser = argparse.ArgumentParser()
parser.add_argument(
'--use-pred', action='store_true',
help='whether to use a prediction head')
parser.add_argument(
'--model-name', type=str,
help='model architecture',
default='resnet50',
choices=[
'resnet50',
'resnet50w2',
'resnet50w4',
'wide_resnet28w2'
])
parser.add_argument(
'--pretrained', type=str,
help='path to pretrained model',
default='')
parser.add_argument(
'--split-seed', type=float,
default=152,
help='seed for labeled data-split')
parser.add_argument(
'--device', type=str,
default='cuda:0',
help='device to run script on')
parser.add_argument(
'--unlabeled-frac', type=float,
default='0.9',
help='fraction of training data unlabeled')
parser.add_argument(
'--normalize', type=bool,
default=True,
help='whether to standardize images before feeding to nework')
parser.add_argument(
'--root-path', type=str,
default='/datasets/',
help='root directory to data')
parser.add_argument(
'--image-folder', type=str,
default='imagenet_full_size/061417/',
help='image directory inside root_path')
parser.add_argument(
'--dataset-name', type=str,
default='imagenet_fine_tune',
help='name of dataset to evaluate on',
choices=[
'imagenet_fine_tune',
'cifar10_fine_tune'
])
parser.add_argument(
'--subset-path', type=str,
default='imagenet_subsets/',
help='name of dataset to evaluate on',
choices=[
'imagenet_subsets/',
'cifar10_subsets/'
])
logging.basicConfig()
logger = logging.getLogger()
logger.setLevel(logging.INFO)
_GLOBAL_SEED = 0
np.random.seed(_GLOBAL_SEED)
torch.manual_seed(_GLOBAL_SEED)
torch.backends.cudnn.benchmark = True
pp = pprint.PrettyPrinter(indent=4)
def main(
pretrained,
subset_path,
unlabeled_frac,
dataset_name,
root_path,
image_folder,
model_name=None,
use_pred=True,
normalize=True,
device_str='cuda:0',
split_seed=152
):
device = torch.device(device_str)
torch.cuda.set_device(device)
num_classes = 1000 if 'imagenet' in dataset_name else 10
def init_pipe(training):
# -- make data transforms
transform, init_transform = make_transforms(
dataset_name=dataset_name,
subset_path=subset_path,
unlabeled_frac=unlabeled_frac if training else 0.,
training=training,
split_seed=split_seed,
basic_augmentations=True,
force_center_crop=True,
normalize=normalize)
# -- init data-loaders/samplers
(data_loader,
data_sampler) = init_data(
dataset_name=dataset_name,
transform=transform,
init_transform=init_transform,
u_batch_size=None,
s_batch_size=16,
stratify=False,
classes_per_batch=None,
world_size=1,
rank=0,
root_path=root_path,
image_folder=image_folder,
training=training,
copy_data=False,
drop_last=False)
return transform, init_transform, data_loader, data_sampler
if type(pretrained) == str:
encoder = init_model(
device=device,
model_name=model_name,
use_pred=use_pred,
pretrained=pretrained)
else:
encoder = pretrained
encoder.eval()
transform, init_transform, data_loader, data_sampler = init_pipe(True)
embs, labs = make_embeddings(
device,
data_loader,
data_sampler,
encoder=encoder)
transform, init_transform, data_loader, data_sampler = init_pipe(False)
return evaluate_embeddings(
device,
data_loader,
encoder=encoder,
labs=labs,
embs=embs,
num_classes=num_classes,
temp=0.1)
def evaluate_embeddings(
device,
data_loader,
encoder,
labs,
embs,
num_classes,
temp=0.1,
):
ipe = len(data_loader)
embs = embs.to(device)
labs = labs.to(device)
# -- make labels one-hot
num_classes = num_classes
labs = labs.long().view(-1, 1)
labs = torch.full((labs.size()[0], num_classes), 0., device=device).scatter_(1, labs, 1.)
snn = make_snn(embs, labs, temp)
logger.info(embs.shape)
logger.info(labs.shape)
logger.info(len(data_loader))
top1_correct, top5_correct, total = 0, 0, 0
for itr, data in enumerate(data_loader):
imgs, labels = data[0].to(device), data[1].to(device)
z = encoder(imgs)
probs = snn(z)
total += imgs.shape[0]
top5_correct += float(probs.topk(5, dim=1).indices.eq(labels.unsqueeze(1)).sum())
top1_correct += float(probs.max(dim=1).indices.eq(labels).sum())
top1_acc = 100. * top1_correct / total
top5_acc = 100. * top5_correct / total
if itr % 50 == 0:
logger.info('[%5d/%d] %.3f%% %.3f%%' % (itr, ipe, top1_acc, top5_acc))
logger.info(f'top1/top5: {top1_acc}/{top5_acc}')
return top1_acc, top5_acc
def make_embeddings(
device,
data_loader,
data_sampler,
encoder
):
ipe = len(data_loader)
z_mem, l_mem = [], []
for itr, (imgs, labels) in enumerate(data_loader):
imgs = imgs.to(device)
with torch.no_grad():
z = encoder(imgs)
z_mem.append(z.to('cpu'))
l_mem.append(labels.to('cpu'))
if itr % 50 == 0:
logger.info(f'[{itr}/{ipe}]')
z_mem = torch.cat(z_mem, 0)
l_mem = torch.cat(l_mem, 0)
logger.info(z_mem.shape)
logger.info(l_mem.shape)
return z_mem, l_mem
def make_snn(embs, labs, temp=0.1):
# --Normalize embeddings
embs = embs.div(embs.norm(dim=1).unsqueeze(1)).detach_()
softmax = torch.nn.Softmax(dim=1)
def snn(h, h_train=embs, h_labs=labs):
# -- normalize embeddings
h = h.div(h.norm(dim=1).unsqueeze(1))
return softmax(h @ h_train.T / temp) @ h_labs
return snn
def load_pretrained(
encoder,
pretrained
):
checkpoint = torch.load(pretrained, map_location='cpu')
pretrained_dict = {k.replace('module.', ''): v for k, v in checkpoint['encoder'].items()}
for k, v in encoder.state_dict().items():
if k not in pretrained_dict:
logger.info(f'key "{k}" could not be found in loaded state dict')
elif pretrained_dict[k].shape != v.shape:
logger.info(f'key "{k}" is of different shape in model and loaded state dict')
pretrained_dict[k] = v
msg = encoder.load_state_dict(pretrained_dict, strict=False)
logger.info(f'loaded pretrained model with msg: {msg}')
logger.info(f'loaded pretrained encoder from epoch: {checkpoint["epoch"]} '
f'path: {pretrained}')
del checkpoint
return encoder
def init_model(
device,
pretrained,
model_name='resnet50',
output_dim=None,
use_pred=True
):
if 'wide_resnet' in model_name:
encoder = wide_resnet.__dict__[model_name](dropout_rate=0.0)
hidden_dim = 128
else:
encoder = resnet.__dict__[model_name]()
hidden_dim = 2048
if 'w2' in model_name:
hidden_dim *= 2
elif 'w4' in model_name:
hidden_dim *= 4
output_dim = hidden_dim if output_dim is None else output_dim
# -- projection head
encoder.fc = torch.nn.Sequential(OrderedDict([
('fc1', torch.nn.Linear(hidden_dim, hidden_dim)),
('bn1', torch.nn.BatchNorm1d(hidden_dim)),
('relu1', torch.nn.ReLU(inplace=True)),
('fc2', torch.nn.Linear(hidden_dim, hidden_dim)),
('bn2', torch.nn.BatchNorm1d(hidden_dim)),
('relu2', torch.nn.ReLU(inplace=True)),
('fc3', torch.nn.Linear(hidden_dim, output_dim))
]))
# -- prediction head
encoder.pred = None
if use_pred:
mx = 4 # 4x bottleneck prediction head
pred_head = OrderedDict([])
pred_head['bn1'] = torch.nn.BatchNorm1d(output_dim)
pred_head['fc1'] = torch.nn.Linear(output_dim, output_dim//mx)
pred_head['bn2'] = torch.nn.BatchNorm1d(output_dim//mx)
pred_head['relu'] = torch.nn.ReLU(inplace=True)
pred_head['fc2'] = torch.nn.Linear(output_dim//mx, output_dim)
encoder.pred = torch.nn.Sequential(pred_head)
encoder.to(device)
encoder = load_pretrained(encoder=encoder, pretrained=pretrained)
return encoder
if __name__ == '__main__':
global args
args = parser.parse_args()
pp.pprint(args)
args.num_classes = 10 if 'cifar10' in args.dataset_name else 1000
main(pretrained=args.pretrained,
subset_path=args.subset_path,
root_path=args.root_path,
image_folder=args.image_folder,
unlabeled_frac=args.unlabeled_frac,
dataset_name=args.dataset_name,
model_name=args.model_name,
use_pred=args.use_pred,
normalize=args.normalize,
device_str=args.device,
split_seed=args.split_seed)