-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathinference_streaming.py
183 lines (157 loc) · 5.98 KB
/
inference_streaming.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""
Test with:
python inference_streaming.py --input assets/videos/1.mp4 --output_dir outputs/
"""
import os
import ffmpeg
import numpy as np
import subprocess
import torch
import tqdm
import videoseal
from videoseal.models import Videoseal
from videoseal.evals.metrics import bit_accuracy
def embed_video_clip(
model: Videoseal,
clip: np.ndarray,
msgs: torch.Tensor
) -> np.ndarray:
clip_tensor = torch.tensor(clip, dtype=torch.float32).permute(0, 3, 1, 2) / 255.0
outputs = model.embed(clip_tensor, msgs=msgs, is_video=True)
processed_clip = outputs["imgs_w"]
processed_clip = (processed_clip * 255.0).byte().permute(0, 2, 3, 1).numpy()
return processed_clip
def embed_video(
model: Videoseal,
input_path: str,
output_path: str,
chunk_size: int,
crf: int = 23
) -> None:
# Read video dimensions
probe = ffmpeg.probe(input_path)
video_info = next(stream for stream in probe['streams'] if stream['codec_type'] == 'video')
width = int(video_info['width'])
height = int(video_info['height'])
fps = float(video_info['r_frame_rate'].split('/')[0]) / float(video_info['r_frame_rate'].split('/')[1])
codec = video_info['codec_name']
num_frames = int(probe['streams'][0]['nb_frames'])
# Open the input video
process1 = (
ffmpeg
.input(input_path)
.output('pipe:', format='rawvideo', pix_fmt='rgb24', s='{}x{}'.format(width, height), r=fps)
.run_async(pipe_stdout=True, pipe_stderr=subprocess.PIPE)
)
# Open the output video
process2 = (
ffmpeg
.input('pipe:', format='rawvideo', pix_fmt='rgb24', s='{}x{}'.format(width, height), r=fps)
.output(output_path, vcodec='libx264', pix_fmt='yuv420p', r=fps, crf=crf)
.overwrite_output()
.run_async(pipe_stdin=True, pipe_stderr=subprocess.PIPE)
)
# Create a random message
msgs = model.get_random_msg()
with open(output_path.replace(".mp4", ".txt"), "w") as f:
f.write("".join([str(msg.item()) for msg in msgs[0]]))
# Process the video
frame_size = width * height * 3
chunk = np.zeros((chunk_size, height, width, 3), dtype=np.uint8)
frame_count = 0
pbar = tqdm.tqdm(total=num_frames, desc="Watermark embedding")
while True:
in_bytes = process1.stdout.read(frame_size)
if not in_bytes:
break
frame = np.frombuffer(in_bytes, np.uint8).reshape([height, width, 3])
chunk[frame_count % chunk_size] = frame
frame_count += 1
pbar.update(1)
if frame_count % chunk_size == 0:
processed_frame = embed_video_clip(model, chunk, msgs)
process2.stdin.write(processed_frame.tobytes())
process1.stdout.close()
process2.stdin.close()
process1.wait()
process2.wait()
return msgs
def detect_video_clip(
model: Videoseal,
clip: np.ndarray
) -> torch.Tensor:
clip_tensor = torch.tensor(clip, dtype=torch.float32).permute(0, 3, 1, 2) / 255.0
outputs = model.detect(clip_tensor, is_video=True)
output_bits = outputs["preds"][:, 1:] # exclude the first which may be used for detection
return output_bits
def detect_video(
model: Videoseal,
input_path: str,
chunk_size: int
) -> None:
# Read video dimensions
probe = ffmpeg.probe(input_path)
video_info = next(stream for stream in probe['streams'] if stream['codec_type'] == 'video')
width = int(video_info['width'])
height = int(video_info['height'])
codec = video_info['codec_name']
num_frames = int(probe['streams'][0]['nb_frames'])
# Open the input video
process1 = (
ffmpeg
.input(input_path)
.output('pipe:', format='rawvideo', pix_fmt='rgb24')
.run_async(pipe_stdout=True, pipe_stderr=subprocess.PIPE)
)
# Process the video
frame_size = width * height * 3
chunk = np.zeros((chunk_size, height, width, 3), dtype=np.uint8)
frame_count = 0
soft_msgs = []
pbar = tqdm.tqdm(total=num_frames, desc="Watermark extraction")
while True:
in_bytes = process1.stdout.read(frame_size)
if not in_bytes:
break
frame = np.frombuffer(in_bytes, np.uint8).reshape([height, width, 3])
chunk[frame_count % chunk_size] = frame
frame_count += 1
pbar.update(1)
if frame_count % chunk_size == 0:
soft_msgs.append(detect_video_clip(model, chunk))
process1.stdout.close()
process1.wait()
soft_msgs = torch.cat(soft_msgs, dim=0)
soft_msgs = soft_msgs.mean(dim=0) # Average the predictions across all frames
return soft_msgs
def main(args):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
video_model = videoseal.load("videoseal")
video_model.eval()
video_model.to(device)
video_model.compile()
# Create the output directory and path
os.makedirs(args.output_dir, exist_ok=True)
args.output = os.path.join(args.output_dir, os.path.basename(args.input))
# Embed the video
msgs_ori = embed_video(video_model, args.input, args.output, 16)
print(f"Saved watermarked video to {args.output}")
# Detect the watermark in the video
soft_msgs = detect_video(video_model, args.output, 16)
bit_acc = bit_accuracy(soft_msgs, msgs_ori).item() * 100
print(f"Binary message extracted with {bit_acc:.1f}% bit accuracy")
if args.do_audio:
pass
if __name__ == "__main__":
import argparse
import videoseal.utils as utils
parser = argparse.ArgumentParser(description="Process a video with Video Seal")
parser.add_argument("--input", type=str, help="Input video path")
parser.add_argument("--output_dir", type=str, help="Output directory", default="outputs")
parser.add_argument("--do_audio", type=utils.bool_inst, default=False)
args = parser.parse_args()
main(args)