-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathExponential.nb
2662 lines (2636 loc) · 153 KB
/
Exponential.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 156370, 2654]
NotebookOptionsPosition[ 155487, 2620]
NotebookOutlinePosition[ 155836, 2635]
CellTagsIndexPosition[ 155793, 2632]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"p", " ", "=", " ",
RowBox[{"ContourPlot3D", "[",
RowBox[{
RowBox[{"z", "\[Equal]", "y"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"y", ",", "0", ",", "5"}], "}"}], ",",
RowBox[{"{",
RowBox[{"z", ",", "0", ",", "5"}], "}"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<x\>\"", ",", "\"\<f(x)\>\"", ",", "\"\<f'(x)\>\""}],
"}"}]}], ",",
RowBox[{"Ticks", "\[Rule]", " ", "None"}], ",",
RowBox[{"LabelStyle", "\[Rule]", "Larger"}], ",",
RowBox[{"ContourStyle", "\[Rule]",
RowBox[{"Opacity", "[", "0.4", "]"}]}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.7377084595949707`*^9, 3.7377085483951902`*^9}, {
3.7377086695409718`*^9, 3.7377086718761168`*^9}, {3.7377091935800333`*^9,
3.7377091939479322`*^9}, {3.737709241850607*^9, 3.737709246911961*^9}, {
3.737797386114072*^9, 3.737797389511383*^9}, {3.737802742151503*^9,
3.7378027622753057`*^9}, {3.7379081349102135`*^9, 3.7379081673574677`*^9}, {
3.7379093912582016`*^9, 3.7379093967785177`*^9}},
ExpressionUUID -> "8aeed8c2-408d-4f0e-86d1-29ce585a3138"],
Cell[BoxData[
Graphics3DBox[GraphicsComplex3DBox[CompressedData["
1:eJx1nXvQXVV5h8/3JSSElJhEKAxUgxpoiUBSYHDQwDkKAs6oMEhNuVlAoFJl
yk0kCibhEkQuCShQL9yspfYTaFBxqqVAqBAuBUViDQYEkpBQgSAkgUTy5TTj
nOc9mWf7yz+ZeeY3v/Wud71rrb323md/7zrpH488ZbDVat03utUasfn/1R95
fNp3B7bqrHp43vuvevOV9gFL3/3e9atfaXc3fu68CReOanD023xx6SceHbOi
fc3Jo095dmBF6c3Rn/a97WcMbVzTvmb6t742Zv2a0pujX9f6wqKrx65uzxzc
+cQ/DK4ufeIbP7T2wUXrlrc/ecDbpj7zyvL2y3sfsLzbHd3g6NsrZ903Zvzi
9owrVz3xlYHFpTdH/57z7rx18MUn288e+OYpFz/1ZOkTT3lwPPDfH3TZO24b
tbY97Yjr79hmcG21a/7MdVP/b785Ixp5g1v/P8vn3/Jwa7Dz7GeXz79yeH17
7th/mXD9+vWlN0dvH/rlduFJ7/qBexxpN/XLeYM7z/hYD096x4m/OXrHjz5x
1wnjbo7+m79YcPUPNhzWfmSv614YevP6A9GbE4/rFh9zfFKd25/xMkd/1NQ7
Hzlj03B75m/umDd5w3CNrzn6pY9MvvqsrTe1d1g9NLTriE2lNyfOU2a2B4dm
DXR+fNTTo546f6CDjzn63Q+d+cLQxQOdSz51zNefmtPXm6N3u+g9L4jTvOIZ
PWPGvNEb2pMn3bLHPw1uKL057To/+1572rUjun9o73Lsbjft3BrZmTb9+Qcm
DY/ofPKtWyf/tjvc4OiX/9UJF/7FViM73Q//3Sd2GRxZevOJU/cYtfumNxs+
cOvvnvb60cfNbnWsp97M0dsHvXnlJ4yj/cmzOT6Je9yJx/lnvpijd52gTzyN
uzn+zkP5iJc++Kd13vmBp/yYU1deVxl3c/Reb9Gbo/d6iz5xr5/Eb44+rZ/m
xON1Eh9z5pH3L+apOXrvm+jNadc+cO87xG89PPmbo7c/cXrc4c4P3OOCvzl6
1wl5c7vwpLc/PI2j64F4Up0kfcqb65l2E7cP4+X1Cu71Ae71ivjtA096+8O9
/tBu4l5nKn6te9Vu4PYhz24X7vjJc9qXzdE7P+jN0TseuOOpONVfuPtbPtLD
03XR0unbTr9y9qjO0HtWXnzqBaNq3zRHf+M2h0666pJRnZl7njzx7y/s683Z
j65759olm1pjOpPHvnTQ7cNbl485+qNf3vPu7lZjOmu2O+2J2wfHlN6cdpOP
44enOH19QrvpuiXpj2gt/fwZc8Z2bnj91cG1F4wtvTn67R7f7ugz547tfG7j
6fPXXtjXJ+48sH+NXbZw4rKBcZ0dfrN24fs3bVv7uzn6x//9rXXLRo3rrFx+
1uEfGDGu9ObEaR/iMSef7i886d3fur7SOMLTdabrAb05etcDenPWpZ3+ZusX
u923d1rTRz47tPl/fMzRz5rytyt3/tnEzpTHOg+Ovn9i6c3R33jQf57zrYUT
Owc9NGfWpff29Ymn/Dj/8FQ/Kf/m6JNPqvPlJy7+9e4fHN95+Lnz7+u0x/fn
kTh61yH6VJ/3/fLQW0+aM6Ez96jupJNnTSi9OfoHDjvzI0MHje8seOEDoxd+
sB+Pea0PihOe5pHrAb05etcD+sTdL7jjr3Vb9VPrtjj67/xkxQ7LL5rQOf3o
e05dMaefT3P07hfc8eNjPTz11+3Weh7mhfNDns3RO2/ozes8q3qodSlwxwl3
v/A35zrH6xjrhjn6tI4l7vWE6w2v2/ibo/e6gd4cvdcN9Ik7TuJ3PHC3C7c/
3Osb7ZrXdWDImzl65x+9OXqPL3pz9O4X3HmAu1/4p/6menD9130hcfSeX+gT
93qLj+c1evPKs+ZjzRdx9F6X0JujT/M3cfcLH6+T6NP1hv3r/p7yX/cPxdGn
eMzRpzybo/f4ojev+aJxgaf+Oj9wj9fjJ9256uyNrzXO3b9/aPW5Hx9e2+Do
fZ8BvTl634dBb47e5330ift+CNz3N+C+H0K79oH7vhA+5sdsWLVg7835cr/g
1v/5nqdfc8G6VY1zMXpz9Mkntet+wT1e+FgPT3rXCf7m6D2O6BNP42WO3vej
0JsTj+sEH3N8Ul3ZH+77J3DfJ8Hf9zHQm6P3/Q305ujdLnrXW7Wr+zP4uF9T
37Vm6XkLFzWes0za/dWh3Vb8usHR+zyL3vy1kXPe/tj9VxxoH7j1vzzh9bMf
WvN8o13G3Ry9fdCbkwf7kLfUrvNGvZmj93ihTzyNlzn+rqvyES998E/rmPMA
d33ib049eF1ivMzRe71Cb47e6xX6xL3+EL85+rT+mBOP1xl8zKl/r//ML3P0
3kfQm9OufeBet4nfenjyN0dvf+L0uMOdH7jHBX9z9K4T8uZ24Ulvf3gaR9cD
8aQ6SfqUN9cz7SZuH8bL6xXc6wPc6xXx2wee9PaHe/2h3cS9zlT8Wveq3cDt
Q57dLtzxk+e0n5qjd37Qm6N3PHDHU3Gqv3D3t3ykh6frE98fgPs+APuLz/vo
zdH7/I7evK6LFA88xePrAfwT930JuO9LsC/4PgP7pjl6n0/Rm9OufeiX44Qn
veOv6xPlE56urzyO6M3Re1zQmzOvfS7Gxxy9z8vozdH7nF5xBp7y4/zDXbf4
pPynuko+qT59nwSe6sr3PeC+v1HzSP7wVM8eL/Tm6NN9j8QdP9zx13ql8YX7
/gzcccJTPPapdSnUleMnD+bo3S/05nUO0njVvA7cccLdL/zN2We9DjDvzNGn
dSBxz0f2O697+Juj97xDb47e8w594o6T+B0P3O3C7Q/3+kC75nUdEvJmjt75
R2+O3uOL3hy9+wV3HuDuF/6pv6keXP91P0EcvecX+sS9HuLjeY3evPKs+Vjz
RRy91yX05ujT/E3c/cLH6yT6tF/bv+4LKf9130kcfYrHHH3Kszl6jy9685ov
Ghd46q/zA/d4zb/iVyu7s5q/c4H7PAv3uR7ucyLc52W4z/t7rzz9d93uyIY/
3PrF7VGru7Oav+OAJ33yd5xw5wEf6+FJ7zzDnTfa9X0DuM/7+Ph+Anpz8m9/
eNK7XfzdL3iqB58T4T4nwn2ehftc/NOP/nx990/8jgDeeG/tj/+avwuAW3/u
N258rdsdaLxPDrf+83/kzd8v7Lhmv3XdWc3fF6C3D3pz8mAf6sH5gTufjJf1
cN8fwMfjiN7+pZcPes9f+mWO3v2Fp/pJ8ae82afyoP4yXl4HGC9z9F4f0Juj
9/xCb04dul24/eFeB+Ce78Tj9YF4zPFp/N6qN78av4vsca/b+FgP9zpDnNYT
pzl6t4venPXEPnDr8Xec+JvTL48v/h5fuPMM9/jCG79j7eW/8bvRHk96+8PT
uLuuiCdx5wfu/JBnx0OezdG7XfSN3/314m/8XrjH0zh6XYV7XYJ7/SRO+xCn
OXr7oE/+jge9OXqvz+jN6Vfiab57Ha68aR1m3fb4wtM6Zp/qb1jnHQ96c+rT
/YU7n9RP43ejPe7xwifpG7/T7HG3W/Gov/DUr8bvRvH371V7PO3LPr/Dfe6u
60DdT4D7vgHc10vUg8/vcJ/v8PH9BLh94L7PUNdFih+e4nR+4O4vPtbDrWce
+ZwI9zkR7nNoXU+qX3D3i3icT7jHHZ+UT+cfbj0+yT+Nr+8PwF0ntOt8wtO5
2/cH4L4PALc/PPn7/kDNlzCOjgfueGp8lZ+q58DtA3c+8Xd/4e5vzQv1q+o/
cOcHH3P0zg/7gucd+4I5es9H9Gmeen7VfJSe9dnzAu55AXf91/WD2q3rB3H0
bhe9OXrHg94cveNEb05+Erc/3OsD7ZrTrjk+jd/9sY/7d4U9nsYx6ZN/4/dH
Pe7+wh0/7TZ+h9jTp7pyPHD3q+5vaH2o+xvi6L1uoDev+zDygXudwd/zGn/z
6pfWE7jXJbjXE9p1PLRrjo/Xw1pPFE+tJ+LoHSd6c/SOH705eU79dfz4pOsQ
5x/e+J0X9+v8e7oedz7xcT2jb/xursfdLuPS+F0e89q/L+tx5wef1G7j92U9
nurNeYA7/stOPXFcq/V64zwL93kf7vsecJ9/D/7htNGt1rrG/QS47w/AfY6D
p3jsD/e58tv7TH5vq7W6ET/c+t2+ecn+rdaLjfMU3HritD886Z1/uPNJuyl+
5wHuvOFjPTzpHSfccdKuxxHu8zg+rgf05oyv/eFJ73bJszntur/wVOc+j8N9
XiYen5fhPi/D7YO/6xPu8z4+jnP8+/71moHWQ43nFHCf4xa0Vh3aai1r6OHW
n/P4/NtarSUNPdz6ij/kxz7oE3c+qTfnAe48M+7Ww51nfBw/evuXXj7oPb7k
wRy98wBPdZXitw/cPpUH9Zfx9ToD9zoD97yjruwDtw/c6wPc8512vW6gT9zr
MNzrA/7Ww70vMO+sh1uPj9slHucTH+cT7v7CnU+48w93nuGOE+446Zfbhduf
/nqewl3ncM9H/O0DT3r7wz1PaTdxjy/c8676pXnHPHXe4Kn+0/x1u4yX44c7
D/C077hdeGo37YM+L8N9DmXd87kV7vMvPknvduGp3bTfJe5zPdznerjjZ9x9
3oH7/IKP9cTveOBJ7zhrH1Te4M4DcTr/cOcZH+vh1jOPfM6C+5wF9/murh/U
L7j7RTzOJzyNY8qn8w+3Hp/kn+rN50p4qh+fZ+HpHGp/uP3pl8cL7vHCx/HA
HU+tGxpfuM/v+DgeuOPBx3p4ij+1m+rQ/YW7v1Wfyn/Nx8DtA/d44e/+wt3f
mtfqV83fwJ0ffMzROz/sd1434Gnd8Hyv9UF69i/PU7jnKdzzsa5D1C7c/nD7
w+1P/InbB+71BH9z9M5z7e/qF9w+8OTj/Nd5U/UMdz3XeVZ6uOscH9dVxaO6
hbv+4a5b/N0ues+vqlu1C3e7cLdLf1M8ad90HuApz2lepP6mPHu84On7YPN3
OPLrE7da3b7nrsNu+NLG/nf+zflO11s33b3mR2MXt6cec+zh+w4/Wd/BNke/
aJ8dLz13qxXtz/71l5Z9dbj/HX5z2k3624cfOGLG5vPAmHeM3ePHw/2/F2DO
97XMiSdx95fvcSV/x4neHH3yT/l3PvFJef7C893j1wxsah9/y5KVt27sf3c9
8TtO+/gPnps90PnvOyd9521f7n9/2xz/a149acaum88z+zx75mV7Dfe/f26O
j9vl+0U3L/v2XYtaIztLJj75i0e3+J65Od/tMSdv5nwHyZz43S/y6TjxN0fv
/qJPeTDHx/HgY06/XFfkM9Wh6wQfc/LvOif/5viYE0/Su87RJ57iTNx5IP7E
k4/jQW9Ov1Kdm6N3PaA3R+96QG9O/PaBOx76lXjycbvo47px7Ev/ccfm65mX
z57bvXSL7wmbo7948f53X7v5eqb1q/33OniL7wab1/ySD9x6/M/92FfuPX/2
2M72+71yXGuL75Sao//Mg/97/6db4zpTrr/58rs3blt6c9q1D9x61gHHyfw1
r/VH/a31Rxy944E7HnwST/m5/aaJn961M76zy8bdj59+YP+6whz9bk//ZMWO
syd0hm676Jydvtz/jqh57e/ygVuP/007nnjqn903sbPv8c9cvv6/+t81NcfH
nPzYnzyY1/WG4qzrB3H0bhe9OeuA64F1wLzWGdUDeo8v89q81iX54G893HWC
j3mtV/Kv9UccvfuLPq0Pvh4g/+k6wZz6Sdct7hfxJJ7y5jqBu97IZ+KuH+I0
r/06tJt8rK/rBHH0jhN94m6X7wN4/+U7AObovb/DfT2Ajzl6X8+gN+d3/eb8
rj/p3S56c/TuL/qUH+cBn5QfXw/Avb/jb47e1w/o7c/vmj2/+F2wOb/nNScP
5vw+2pw8OB58zNG7X+hTf83xcd7wMSd+1wN5S/Xj8cXHnDy7PsmzOT7mxJP0
rk/0iac4E3ceiD/x5ON40JvTr1TP5uhdD+jN0bse0JsTv33gjod+JZ583C76
uA5oH4d7v675Ij3ceny8z8K9z+JjPdx65qnbZX6Z1/qg+Gt9EEfveOCOB5/E
Ux68L8O9/9a+Jj3ceny8X6M3p1/2IX7z2k8VT+2n4ujdLnpz5pfHkfllXvNX
44je48J8Ma/5Lh/8rYd7fPExr3VA/jWvxdG7v+jTPE37qTl1kvZ3x0+7iaf8
uB7grivylrjrhDjNa78L7SYf62ufFUfvONEn7nb53ZP3L7j3R7j3cX4HZM7v
hpLe/ugTd5z4eL8mTnP0qb/ep+DeB3lvvHEe7L1/bs579ea8/2/O+//m5MHx
0C9z9N6v0ZvTX3N8nB98zOmXx5F+mZOfxBvPlXp5dl3RrjntmjOOycd1go85
cZrj7/jhjedZvX4lnnzcLvFbT/wpn6lfriv8zfFPetcVenPaTdz1Rn26X7Rr
Pe2ak8/G86xeftwv4nH9oLcP/qndxvO4nk9al7xfw70vw71vwr1vkk/7MN8T
dzy1/oijdzzoHQ/6FGfql/dNuPdHuPdH/K2v/U7+td+Jo7c/3P74WE89O//U
s3nNI+WfenM+a55KX/NUHL190JsTj8cL7vjxtx7/xvMa5p2fK/V4qtu0z5pT
J2nfdzzkOcXp/KB3nLUuqV+1/qjeyJvriryZ45/qzf61n4Z27YPenPgTbzwP
Yt/3c6Uetx6fxnO6nt7t1vWA/OH25z1D75u8r+j9CO79HZ/Evb/wnp45/ok7
Tt4DTP6OB33i9sfHeaBf5uhTPr0/4uP9Eb33X/T24T0oz2vevzLn/S5z2nU8
5Mft0l9z9I4ffeqXOT6OBx9z+uXxJQ+JexzxcV2RZ3P0Hnf8zfFxu3DHCbcP
7dqHdj0u6BN3/vFJPNVJyqf19Cv5p/wnH/er5pH2Hbj3qapD6eHW4+P9Ee51
Gx/r4daTT7dL/Sfu+Gs+iqN3POgdD/oUZ8qD9yN42o+sh1uPj/dB9ObEaZ/a
j9Ru7S/i6O0Ptz8+1jMvPI417zRe1LnzX/NXerj1+Hu84I4HH+vpr/cR+pv2
F3PGy5z+ul2446z1RHmo9UTjSL88Xvik8Uo+1tNu4m4X7vGqfUftwtN7RytO
nbT9jluvbj857Yjfze7233Pe6Y33bb/nuMXts9uXHnJbt/+e7foFzxx+/egV
7UNefHju97v995M/c9W00z86cm17wfSXdvt+t/9eceJul/dSzOvvR4d4jjz4
rL0fG7mpPf2SM786u9t/v/e78y57ZO6FA52FR+10412z+u/jHXfaEz+/YuSG
9hsn3LHk2m7//cN3Dj/11q2DIzsrVr71xlC3/56tOT72J37HA3e79Mscvf15
L8X5r7/DrvzUe03Kf72/FLjzX393Vf7oHT/tOg/k7Rv/MGXPRZvHZ/TMZw6/
eVb/fcjtlnzxU6sGx3SmjL33e9d2++8vmeMz78OPzht90djOx264eeDyWf33
GM3J55gf7rzwL0eM65wx9cJjZnf77/WZ45/isT8+91wwd8rPFk7srD7ra3sv
uLf/3po58aQ43W79nfrA7UP8Hxq/34Z//uD4ziPP3fnUT7f4+/Lm9MscH8eP
jzn67iG/nfCjORM6T//bu+fetcXfnTen3cRT3hwneUj99fjin8bdnHZTPI6f
eMyZRx4v5os59ZO466H+zrg4/p535CGtb+a8n5bid7v1d7fFid/jRfyJO/+0
m+Zdyr85eo87/o6Hfpmjtw96c+JJ7TpOfNxfuPU8d/Z6Xu+HaP3n+bX19feV
tP7j432K58KuH95DMKdd7xdw7y/EY47e8fA82vtm/f0v9aveW1B+6v2EwJ23
+nsl8kfv+GnXeai/E6d5VH9/TRy95yn5cb2RB3P87YPedUi/zGk3xeP46++a
BW4f+uv5SPzm6B0n3PMIn8RTf90u8ad4Uv7N8U/tOk7aNac+nU/q0JzxTdzj
VX/3Shx/70f01+sD73WkOO1ff+9JnDidf+JM3Hmm3VT/Kc/m6D2++Dse+mWO
3j7ozYkntes48XF/4dbz/MjrIdzrcD2f1bpaz0PF6/lp0NsffeKOs77nrHW7
vsMsjj711/sR3Os8z19c/zzHMee5jznPp8zpr9slfnP03qfQm9Mvc3ycB3zM
id/jRX8T97jU80fVST3PFa/nxUHv8aVd8/peq+KBN+6f9OJMPPm43frOashD
it/jjk/iHl98Evf41ve9FSf+1tNf+9Mvx1nPQzWO6O2Df2q3cX+p55Pmtfcd
uPc78uB1GL33O+aLfeiv12f8rccn+Tv++g5/4PYhfu9T8LRfpPjtQ5zJ3/lE
b46/20Wf4nH86M0ZF+efunLeqH/r4dbzvoE57SZ/j2N9d128vpcuTv2nukr7
jjnjlfY7x0/eUj5TnObkwfVDHszxdz3gY46POfm0P9z1g785/qneXOfkoXF/
rMetp11z2jUnP4k37gf22nV+0Kc47cPzIO9r9X0t7S9w77P4JO59pJ5vitfz
3MAdZz0/Df6OB33i9q/vpCkP9b0ycfQpn94H8fE+iN77LHr78HzK6wDPucx5
jmZOu46H/Lhd+muO3vGjT/0yx8fx4GNOvzy+5CFxj2M9z1Vd1XNhcfQed/zN
63tTahfuOOH2qe9HyYd2PS7oE3f+8Uk81UnKp/X0K/mn/Ccf94t69n5X39XU
vga3Hh/vp/TX63Z9XzT424d6drvkwes87VqPT/J3PPU9zMDtQ7+8v9Avc/SO
H572o8RTHtwu/U1xerzQp3E0p13Hg0+K0/1Cb864e3ypc48L88t6uPX4Jx/X
Q323UJz4vY/Q37S/mDMu5vQ35cHxEL/HHb3HBb05/bUP3OOFTxpH1w96c+JM
3P7w9Dza+wXPcxv3N3rc+w4+iXt9ru8Cidd3gYI+vY+ReHrvJfXL+wLxex9B
n94zsQ/PGdNzXnOek6b3ZOwPdzxwx8/zUOeNdp2f+p6MxqW+8xO4808e0vsz
jod2E08+bhe9Of11Pok/cecZn5Rnc+K0D3G6XXh6/8f+6FPdpvcTzJkv5tSV
OXkwJw/mxJnabdyv6MVvzvOs9Pw9PU93XeGTeHqOb17fTwj69Hw8cfcLn9Qv
1w/xux7Qp+f+9uG5VXpuaM5zt/R+gv3hjgee3n9w3mjX+anf9Wtc6rsKgTv/
5CG9z+B4aDfx5ON20ZvTX+eT+BN3nvFJeTYnTvsQp9uFp/cx7I8+1W16rm3O
fDGnrszJgzl5MCfO1K7rn/jNue+XuOunfhepuoW7TurvAKre4B4vuMcL7nGB
Ow//Dwjf3YY=
"], {{
{RGBColor[0.880722, 0.611041, 0.142051], Opacity[0.4], EdgeForm[None],
Specularity[
GrayLevel[1], 3],
StyleBox[GraphicsGroup3DBox[
TagBox[Polygon3DBox[CompressedData["
1:eJxN3Hn8PXP5//F5nzNz3lmSbIWUJVu0oexC1jalVJKKkiRpo02lhAqJ7FFk
3/ed7EQkZK3sa1kiqSR+z/vnen1u398fczuv67xmP3NmXtfz8bxmkS233/iL
o67rPj3ddX0+F0kg1l40jSGNWdOeJdMk7XGmOdJ+uXnSXizzTNJ+WabXp71J
1jNuy347HRsnnm5930r84QSvTLxE4p0SLz6qdc+WacW0l840X9rzZHpD2h+Z
rvZSaX8n88+Wbb66a9tMe/ZMC3S1z1N9rcv+zt7W6Xv9r2jH9NGs71Vt3d/N
SpbL5xLWn2n5tD+W/oXTfnPaO6d/s8SLJX5r4u8n3jTxaxO/MfH3Er8pnwtZ
X6YV0v74dLXflvYPJnWenK83Zlq27bf9X7Cds5Uz31RX58w6l800Z9rLtHW8
fVTrsOxKaT86VJ9ztUtWtkw+53Z+2z4u6Tfr6pyvkvZ7Mq2a9vszvVc70/Jp
vyXT6mk/MtSy5v1h1jdPTtKbE78p07zOdaaVbC/T/H19iufPNFemT2VDb2/r
2m1S19E6iddJ/OPEWyReI/GaiXdP/InEKyReLfGuk9qO7a3iXHS1b+s5lraP
W2b+tfK5dub/UeZ/Sz4X7eo38Bs9nv1/R9rrp/2T9D891LFuknjvxO/L58aJ
35fp3Wkv3Nf6bWe+tD+T9b+39e2R+Z8aat6NEu+Z+F3Oodg5THurzP/B1t4r
/R/M5/pdHdOH0v5Apg91dY27ZjfMtIHfsh3z34dal9/ip5Pq2zDTu9o8G4/q
HM/V/iPfyvZ+nvav0z4p868xqnO2cjvGb6Z/n7QPT/vE9P8j69/M75L45853
Pjfv6ruPp/1M+j/c9nUfv08+P5l4C+c67Y9mWq6r39Q5+HSmLf1vMm2atpvF
59PeLtN30v5ctv/ptLdKe7+s75P5fF3ipdt326T/s2lvnfb+6f9cPl/T1X9q
m7S3Tv/H7F/a+6b/84m3TfyFxAck/mf2d+vE2yc+MPEX0r994q8lPiTxv9K/
TVvXwYm/ks9FuvoPOwfbTte+fintg9K/XeKvJN4x8S8Sb594x8TfSnxY4q87
xq624TvLWd4xf16c+b/Vjv2Xmf+Lib+W+BuJD028Qz6/nPibmXby+1hGf6Zv
p/3voc6n8/qrzP/9Uc1rme/5zVxDXV2Tu6f9WddcV9v8oXVne99p7cOz/C7u
s10dk33YNdO7u7pGd0v7K5l/57auIzL/VxP/IPFPEv868c/yOW9X98R90v5a
+ndJe8+0j0z/d93TuvqNnDPf6/9+ph+lvUPm3y3tfdM+OvP/J8f3vbbto9zv
87lJV9fcR9J+p0m7LfPZ6Wrr+1nmP8h9w/0k07pp7zhdse+PndR+2/8fZTog
7a+nf4+0f5H2cek/xH2sq2vINfON9P807cPSPj79h/rfdrWM/8yv3De6usZc
o88Ode26lx+T+X85qmPdpW1jv0yLp71kpv3Tfi7zf6GduxOc31H9V7Zs1+gR
o9pX+3ykvtxzrkj78bQ/lmXXyudqXf3Hj077HaM69h+3//xR/hdp792O4ds5
nv3bvKdke88P1WfdJydeN+s/0LnJtF5fn+IjrS/T+vnuYOcz0wZpHzeqefSd
kPaLWd/RaR+V6aW0/5fp0LSPTd+pk1rGsscnXiN977YO+5bpPWl/L/t3Ttpn
pv9s9998d0ziUxOvmfnfm/jYrr7TZ5nD2vrfkf5xljm9zX9G2qf5jRIfkel0
/43Mf25b/1qZf8g8FyQ+N/FZrtfp6j878ZmJv5P48La/p7mf9xXrXzvLT+W7
ExOflPj0tM/J5/mJL2zrfDbzvyyf/8gD+q7Mf779sv1MF6T94fRfnvbFaa/n
2dPX/l+SeP3Ek0n1i89JezrTpYkvSnxu2i+b1PVwaeLz0p4l02VtfeenvUlf
8+vfIOvbNPFvE1/jP5n2ZpmuT/t3mT7e16R9TeZ/11DzmPeKxBsmvjKff0h8
c6ar0p492/hjm/+CtEeuedd6phcy/yez/B1p357pU2nPnf770/5D5v9N2nem
/adMf850V6aX57vb8nlrpjnSfkWm69K+NtOcab8y01/Svi7LX5j2XJPal2sT
XzSpbdze+t/tXtnX9m5I/J7E82Se+1p8cdob9XV9Op/rpn/zxL9PfFPi9yae
b1Kx478k7d+Oap/vatv0nHGvcM/4adoGaCe15S9N+1WZTkl8cqZ5PU/7Ol+O
//1Z/wL57hHnJ/EVafeTunZuSXxZ2p/N/A+3/g9k/lfnu5vaub887fkn1X9b
4ivdPzL/C4mfTvzJzL9zrt+/Jb478VWen33Ff078wfT/xe/gXtnVmGvb9P89
7Xvdd9O/RV/n2/o3SvwaY5zWf7XnT9b/V79h4msSvy7TvxM/kfh3aS84qfU9
nPi3aS/kmZz4b4mv8/zrK34k8aZZ/8Z9/f/t72aJX+sZ3e53N6T9jP9SV2M2
Y0LjNm3f3e/ZMl3/Lf/1GzP/l7K+ZxI/6jmU9f09n893NaY0JvxB5v9vO1+/
z/xPDHUu/Df/4Hne1/jKOOsb7k9yhgy4Z8n/+YtDrd/x/ivzfybxIpO617gX
3pT2Ygbsmf+fiW82/ujr/Im3Mvbo6/w971mWeOFJ/X7iW9Leqq/7iwH+59K/
eL6byvqeS/+taX8z/aMWf9pYfFKx/flj2kvLIRL3Wf6OtJfMNEn8v/TflvZn
+rpe3b/el+W/k3g6/S8m/nzim53Hrq451+TWfV2vr8j6vpT+l+Vz7sw/R9vG
UpNqz5b2nf6v+Tyvq3vs7Gl/uq//39xpfznLLzGp7Yn/lPay7mktobkn7WUy
zZn45Yn/MqnzLx4Sb5vl35Dv5pmq/fmz6zH9feL/+m+mfxc5SOJ50/+VxLsm
fk3iVyf+auI3uUZbfG/ab/GfbfPfl/Zy7kFtew+l/VbHlHiS+P603zyp9c+f
+EHXdz7nmqpz/tq0d+5r+QXT3iHbWz7zLNz6Hk57kXwumvj1mRYd1/6/sq1v
x8z/3b5+r4UTfz3xnvKlxG9L/EyWf+Okjkf/I663fC6ReCnrTHvXzL9kaz+W
/sUdd1dj1iXS3n26tr1U2n9L/4/kq21fHk/848RvTPyGxE8YPyV+S+JlEz+Z
eDf56lSt66/2J5/LTdU8b0r7bZPal+XS/nvab8/0Jv2Jn0p7hUyvbefnUec3
nzt1NSa2T2/O9JmuxqzWsUe2t3xb99OZf6/EKyVeMfE/Ev808aqJV078bOKV
8rnKVJ0z86ySaY2018y0atpvt49pr51ptbRXyLRs2u/MtHrae09Xn/Y/rW9S
fe9I/Fzaa+RzmcTrWGfaS/qds69fz7RW2kubpuocWWbFLLOa9af9r7SXd4xT
9Z19XibT4lP1m5nnZ9n+emmvm/a/M//KxiCJN0n8Utr7pH/DxOsn/k/ijfO5
X1djVsvsKz9N/7vSfj79G1pnVzmV3+Dn6X93+jdI+7/pXyefe3aVE1pmv/R/
IP3vTfuF9B+W63GjxB/M9EvjQ+PvtDdK///Sv4p9SPyBxC+mfWD6N0/8EQKF
3DefH5uqY7DPH8q0ZldjUse0XqYNpuqY7dPamRaZqmvSNf/RTO9L+1OZNk37
yKzzJ2l/O+0501492/xk6xsnXs0zN/FmiacSfzifH5+qeT6e9uaur6m6xl3T
B8lHW98o7U/k8z1Tdc36Dxyc77ZO+9NpD85dPtedqnO8RdpbZtoq7c+2eX4p
30r7a2nPnvYn87npVP1mn0r7HZOaV3uS/s/kc/2p+k3s8yH57vPWl/Z02mtm
/m0Tb5P4ZfryuX3iL2fa1rYzbZP2VzN9wTPDNZf2Wpm2S3vrTNtN1Tqs8xfT
Na++WdL+ov/AVP2Htk/7pPzGO9j/TCenvcakzr1j7TP/YZm+bfuJZ037S/n8
RuJvtmNe2zPU/qQ9G21nUn3W/fLEO+Rz5an6DzumHe1z2l/J9PW0f5V5vtfa
cxiLyz+tP/Er0j4r+/TdxLtkOjvtMzPtnPaumc7p61P8o0y7Z/qGe2w+f5zp
W+NazvK2sZvt5rtvTdVv5po6N+vYI+09M52X9rqT2jfn9pV+23x+MfGXrGdc
85nfPv4w0/GZ5+B87pW+V6e9Uz6/MFW/qWM4Lt8dYP/Sns+x5nOzqboGd077
6Hz3s7S/n/ZcaR+TaV/Hm3hu5yKfP028t+2lfSy9p7Xnce+YVJ91zSvXzudb
p+oeurv/UqYPT9U1bR8+5hqeqv+M/+xak7p23Btf5b+Wz9XdyxznuK4L14f/
4F6W6Sv/ML77mudV5jlwqo7BPr8/0yZTdczOyeH5PGSqrpEdzZfv9pmqY9g7
7ROyzV+09vxpvzP7s1Pb9wXk5u5RU3UNusYOzedhU7XMEZnek/nP0nYfyfwn
Zzoy8b6JF0z7kr62bz8uT3sf94CpOsc/T3vXTPtP1TZd45f2tX7buUz+6Zim
6je2zqPy+etMv8r0S/+BvsaX+6fv5JyPK/rqN9+VaZ+afTh2qvoXmq77qvur
fTw602n22TlK/+vS3s99vitN81DXal/jwV+lfVrWv/6ktm3fX+O/2df485eJ
T0//wfk8JvGpzlHa78r8p7f+hTP/1X3tj+2dmvmvNf5MfGDiMxJvMKnY9hbN
/DfJJ/3XEl+Y/hsSX+K6T3xW4uv6Wv/Ric+Uv2f581u8WJb/bV/Hd2Lis9N/
+nQtL3592ifl87LEV7j/pP27zH9C2mekfV7mPyPz/KZtbwn/D/esxKdkOjbt
jbK9y9uyi6f/+r62f3biC7L8qT4TX+hcp73hpNbveF+b+W/O/NclPjPx+Zn/
ar/DVI3hrkn7h32NF89P+yL5S5b/XTsfS/s9E1/bln+D/19f480LE1+c+T+U
/j+0eJn03yr/THxx4t+kf/e+xkdXuPYS39bX/JclvoReMKn9czxLOhf5/GPi
2zJdkvYHJvX7OF9LpX+TxHe05ZdNfGU+/5T4z5muci+YVNuxvZF2ls8tpuoZ
7h70J/l02r9L+/Js/6OZ/y+Jf5v4zZl/00lt27reknizxPe1+d9Kq53U8r9P
vFzi27O+mxPfmPiKrO/jkzp+5/Ntnq+Jz279KyS+M/Pf1bZ3mXx9Uss7X8un
/+58Pj5VYxJjkL/0tbz//5WZ/xH5ZuJ7E1+f+A/5vCXxrZluSvsTk2o7dytm
fZ+Sn+tPvFLiO/o6f/b/6ix/j/y89V9D75hU/EfPtcx/V1/nR3xV+u+Tfye+
I/FvE99pPYk/OlVjqDOnq/+utFdJ+32Tuvbt29sTPyg/93slvi7LnyX/butb
Le0t5eetf9XEsya+ml6Qaba0t5jU8o5/9fTf39fyf018a9b3aOJ/JX4o8Y2J
/9jX9fxg4hsSbyW/b/3vMF6Z1Pz617Qvmf/5xP/J9Le+PsXGkB/KtOqkjtV/
be3M/zi9IvF/Mz3h2u/r/+z4f+/3yuc/pmpMaQy69aT+2+5d69AKp+u/67++
lrHbpH7fBxKvQcubrnude+U7jVUndf34P70p8WcntX3Hv27ix/o6vkf9j7L9
h/o6n0DgP9LeRn49qv71pit+Mf3/y/R5+b38Ov2Pp3/99P9Lvpr4mcR3Zn3/
lF+3/juG+r2ezrIvZfpc2nf39bx6Mv23p//pvrY3ZR1pf1E+n/bT6d8g6/+P
fDfx38alL/pe/1y0x7SfT/88af/Lfzf9208q/nfid2f5bSe1P//1LEh8b1/X
u/4/0zcmtf+Wf4/tuQ9N1T31ubT/K79O/6syvdAX48VQcdkp+q98O+0FacNp
f3lSeqjje2/W95XE8yWeN9NX0/5apiey7nHiHdyL+rp/2L+/ZH239HU/9fve
nXhH+XjTV9/X1md7YO0HEn9d/t7O//sTv66dG+doYeehr/7XZnqpr/Npff/L
/Pdk/c/19Xta371DMWIhzg2U2t9Xt/k3mi6mnK9mcO3RUNtfIO35M31zUhx7
uhadMQ/OPa5H9Ix1ztJXHw47HoozYysYC7aNk2JrGBsWO2dfPBPXnM78s/bF
c3HdPvF0XzwYFx6GYp4Ld8W4LINZL9kVk8CycQv8AoPDpjFjbHuJrljyXH21
zfuyrG+Ovvi1eSdDMWf8eqG2TUwaa7WPWDXm//K2rlmGup5nS3uhTN+YFJfG
p+ds1xCuimVhWlgspoxf4pizZ/lRX+fOumcdisku387NbIkX7IuH4CIvp1/2
xUtwkznoi33xJFzpFfS7vngtbjvXUEyYxrhBpvOmi5Ev1hWDdI5fl/nXTnu9
tF85FAd/fVe/gd8Qs8V21++K5a4qJ0l777TfMhTHxXNtE2vfa1SMDBv78ag4
K/aFgWHFmC42jBFjvYv15XdwbcwzFNPFr1dt52jxvubFlecd/o/BW3Y+10Nf
bBKXXZge1zfe7bobiqvha84RFveqvq49nPfVQzFevHvj9h1mzW8xX9vmUpl/
07Q/lvYCQzFarBZLPt/zY1QsExs2zyv6uvZw4AWHYsqfSvyJrliz5Sy/+ajY
NEb86a62YZll++KduOdCQzFgGv12mS6YrmWxSEzSOrbN9LmuGPCXXbt949lp
v4Y+2Fe/+V43FCc2r++waMtgvJ9v63pLX7zcvi2a+Vfsi6/irMsMxfSwYYwY
68OUv9TWc2H275V9/Tdx6MUy/3J9sV1c+PWJl+6LD1p28cQr9LUu3HmJoZgz
be+r7TvMmBZFk8KSMW0sf/O2jeX74sv6lszyb+3r3OC2Sw3FoLHnL7V9WKCv
a8u1OvdQHBtb3qpdQ3wN2PG7238IU6bl7dTOwc6j+i39pj8Y1YRhf6/1YcRY
9LfbPuDUtL/PtN8UF8aHv9sVq/Yf0fad/87KfcW+f1P2b5m+tmfdb0i8aF/7
Ztllh2Lorj/X4UXTxbQx4j0yXTxd16RryzVmHkx7z/Y//U36NzaGS/uuUfGU
ufu6l+K8yw/FdfFd/3msHLPerat7hnsOBrxFV9ecZZbs616H4y+X5VdPvHvi
AxO/baj7jGWt4+BRfa9/5672GafX3r2tY7W+2BSu/fahGDgWbtlLputTjJVb
N+a9dVdM2zKr9MWvcexVh2LetEEaIRaOaWPhe7V5MHDaIo0RG39HX+vSXjnL
r9EXz8a1VxmKO+PP+7bvMGraJQ3zqPa/9f/F1vZuv4vf54B27L5zbp1j867Z
177YtxWHYuDY+GrtGbBdjn+OUY1dNpwuDk57XLM9EzBL7PKYUfHqmQwc5159
KK5zRFdM2Xd48CFtfjzbw/+EfJw4Kh6ML56a+ORR8Wl897TEp4yKZ2PkR7V+
vBq3wq8wYuwaQ8ZOMBRsGb8+O+2zRsWfN+xrX8z7zqH44cXmHxXPfnlfzyr3
qpXS/8G+1o1DrzMU77wh8eWj4rt48SWJLxwVD6XnHN+OB5/Gqx3fb0bFp/H2
U9v8+DTef0jbP3war7a/Z4yKT+PZ1n/ZqPg0P8OVLcan39nXteC3X20ozok9
YVDYM356S9pXj4pP43TrdsUwHdPr+xor+a+9daic56p2fPg0hnxtWx4/xr8e
tP5R8V48+4YW49P4592Jfzcqnozhntx+PzwYz7on8fWj4st48Wnt/OC/xg3G
D9jkA6NiaPgujwC2hu89kPbvR8Xf8N2HEv9xVPwX37b9W0fFe/HzB9v8+DU+
/FDrx2fx4Hvb/uDJH+rr3OC8HxqKnzt/d4yKF+OPj3Z1D3Mvw/cubtvHmzHh
dRI/3taB5+Kp942K/zomfeZxrHj7vW39+Dae/GTiBxN/dCj++UTie0bFlzFj
7BiPvpSe3df6rPcjQy1j2YdGxYfx4+fS/1jiayelf72U+NlR8U+8+LGu7sfX
T4o5Y8+PtPn5I1xvfx0Vf8aoseon2/z4uOWfGhV/3r4v/qx/86GYMe2NBocl
81+c1ebHp83/XFs/fw7mjD0/1panB/4v/f8YFZ//cl882ro+MZSngJ+Bx4LX
AOPGqs2DffNE3NquR34H/Pfp9nvgzxj1DE+g32IoXv90Oz/4Mz1wLL8bFX/m
F3jR8YyKP2/XF0u3ra2HYsRYMR58+6T48ott//HnHfoa2xqbfmoo/v9oWx/+
vGPf/FuJtxiK9w7Z/gttfTv1Fb80Kr6Nd86SeCr3522GmrRH4+LRGDO2irFi
z/jqbPLFcfFg68OPpxNvN5S/56Jsf1b58aSYMDZs+/oxaqx69tbvUzznuNg1
xo/1W377ofrwbczbPPS5hdJeYFx89wd98eg52vx4+qz2d1y8m//E/93x4t38
H+4f+vFrjBvrtvzdk9IX583y84yLX/MbuR/PNy4+Tk+cP/2vGhfPxsNtb9SW
x4fna8vj2/wWz7bl6fP4tf+j6wHvtv8XtecHvo/Hm9//74FJ8e8n2/8X78bA
sXDnWz9e7/d7zbh4Oc5NK6WZYuP8CLO184V/8yPg9a8bF7/G6+drMf6Nvy/Q
jg8fxu8XaOvHw3FqbBAjxNJxbuwUQ8XCf9QXX9f3jaE4NRaLyWLhe/XFy827
k/y1r7Gzvm8l3qOveXHcbyf+aV/rxmm/k3j/vngyrvzDobg0toKxYOEYM1ay
eptnpb7Gwjj394Zi3DPY/1R9t3dfPBgX3nko5o2f20csfM+++DRO/X3jy774
NY79g8Q/74t34967DMW8sbWV23c/6YtX49a7DsV18J0V2zpwbrz7bW0bb+xr
7G3b3838b+8rl8C5vzkU88bS12jr3LevdeGOBw7FsLHtN7dzhoHj58u2c4rp
YvP2Gev9cV+/pfZuQzFxLHKFdk7W6mvsiVPvnv4D++KvOOxPhmLG2CmGiiVj
3Ngthot9H90X78V99838B/WNN7tWhmLeWK512sahffEdnGcP+UJfvAw323Mo
xj6DVU8Ve8e0sV2MF+vGtLFuzBvrXqevsa15f2o83RcPw8X2SnxEX3wap957
KAZHe6fBY3O49gx2PVUsfO2+xtqO7cfGrn3xcX0/M77uy4/hWtxnKK6NLW7W
toF582os184Jxo2FO0fYNy6NT2Pa2DXui/++r53zQ/o6t+b9+VDMG0t0jrDw
Y/riifZ9v/Qf3Ndvg3PvPxTjxhq3bN8d1xe/xrEPGIpRY6WY6Qx2PS5evU27
xjBv7BWDxcJxWXz2c20dJ/TFx/UdlPWd2Ne8uO3hQ3FoPBqzxr4xYawYM8aK
T+2LB+PChwzFtLFh32Hdp/XF0+3bL9K/X1//NVz70KGYNta+XfsOx8aaMWes
+4y+eLRtHZb5j+9r3/X9cigPCW+J/6z/HCaNte7Q9un0vs4NrvyrzH9KX8di
3w4eyo/Fr+b5yP+FUWPf32/nABfGhzFk7Pmovu5dOPFRWf7CvvgnDnqkfKqv
a8e8RwzFYbHR/dsy5/e1Llz610MxZax3k/afwRePT/ugcfHQA/q6N+LKx8hP
+7rWcaejh2LMvA3bt3ku7osn48rHDsW5seJ92jYxZuz2oDYPZoU9H9jW+Zu+
+nDeE4ZixtgzBowl48zYMcaLRV/UF1/Wd9xQXBVf/XVbB+aL1W7U7hH4qOM7
YFz8EOPGht/f/uNX9cVfcdhThmLK2PV+7Rx/pa+xJc57kvymr2OzLycOxT3w
j5PaOnANfMM6LYPHXpP26ePio/jZmYkPHxf/xluPa/uH7/InGj8fNi7+i9ee
4/jGxYvx1nMTHzku/st/aPzq98N/8ZqL0n/cuHgvnnxamx/fxY/F1o9P46/n
JT5qXDz4mr6OBbc9ZyiOg+dc0L77WV/3fv/N44fiyxcnPmFcvJh/z/jovHHx
U3zgjHa8eO2Nfa0L5z13KO6EP13dvsN3nZ+zxsWD8elz2/nDU/Hg49r2lmp8
9oa2PbwXf3W+zx0X38WZsRGMBLvGXy9u52fpxvOuSnzKuHg0vnZ9Wx4/x3dv
dPzj4sP46E2JLxoXD+YZ4S3Zo/3ncVa8FfPFcvHJ221/XHwYX76hLY/34rr4
LuaLZfMjGr9ePi7ey483f9s+Poa/3JP4unHxXnz4zsTXjovv4rF3tuXxaXzt
xrZ9PBgftj+3jf+Ph97dlsdv8cdHE98+Lh6KDz+Y+Ppx8WL8VnzDuPgw3nte
+73wYLzsgTY/vsu/OW7XL36Mm+KnPARYL758Trv+8GK896HEN4+Lr+K54lvG
xWvx7LtbvGLj5ze1/cGv8d572/lZqfGzq9r68GC8/N52/HgxJjf3qDQorO4P
fV2LOPC1Q/E+PPAv4+KPGDb2iYFi23gkPvancfFfPPeZNv+qjQ8/mfiecfFt
PPS5xPeNi/fyI7je7h8XH8U7n2n9eC+e+1j7PfDdB/ri6bb9u6H48HNteTwY
k8V2MV6sFt+2/MPj4reYNhb/eDtG/oiLWj9ejLPj7Rg87wIejKc+Ni4evVBf
2pyx082J/97XWMrY6pbED/d1bmz7tqH49KNt+fUa3xxGxUfxWLwPb/r7uHgs
vjdL4qfGxWOf7GvsZqzzh6HqNyz/xLh47FN9jYWMbW4aSk+cva0Pj+VfP6vp
XepL+E+uzPz/HJfeyD/mme9ZP0fzF/h/PT8uHssv4Xq2PTwWv72y3S/wWPx2
1ra/eCwd07XkmsJm+Z3c/14YF19Vc4pZvb6rWk389dl2feCl/BDPtvln8tQn
2/WFZ+K/zs+L4+Kn+LXt2188Fu/Gn18aF2/Fg+drMX6qRhezUo/4YOIPTldd
rfra+92fpquuVn3tA0PV+GKkalvvG6pmF1PCvNT++k6f+teHh6qxxTQxRrW1
ePMCbX/xWjW0mCSmqPbVPtgX9acPDVWDi1Fm9hm1x2p6MVcMS+2wGllM0j7b
dzWuGB+GqzZZjSSmsnBXtb9qWDFataebT9ekrR71saFqVjFBtZp/Haqmlcaj
hkEtqhrVtZvmo/ZVDew6TeNUm6CmFHPDgNXOWod1qf98Mu1PTldtp3rYvw3F
JOn69P05h6oZxRwxQrWualYxVgxP7aqaa0zab+K3UaOK6WCUak/VOGJMGJZa
SjWbGBxmrPZNTShmiXmq1cX8ZjCUTPMPVcOJEWAMajMxNdwMP3vtUDWaGISa
GrWcaiwxIcxOracaTQxusa5qq9XoYp6O2bFjbjNqVjMtMlRNIIaJoapdVfOJ
wW3ZVS2lGg2a/q8T/3C6ajAxKwxKrafv9B2ZadFJ1SRiUBiXWl4MF4PAJ948
VE0lZoWJqfVU04j5YKhqFdVQYjSYttphNYKYO2au9lvNmdqyw7uqPVOTiLHs
0lVtJQaEe+AfKwxVk4iZYChq+dQQYk48A2rVMTAsDE9+41A1vhgOZqP2UU0w
RqJeUK0khnF82z62sdN01eup+fvvUPV7+IgaL7WAaggxFIxFrbF6vKO6qgFU
24d5qM1TY4WFYBaOT40dlqHmEAP6QVe1pWr+zmz9avHU+M3Q27uq/XNP1a9G
yL0WQ1Hrp2YOW8Es1HJd2hXLwCzUwl3WFcugKdOW6fEfHqreDQ9QY6YWDtNQ
a3d5V6wDk1A7d0VXrAIjUQumJgw7wSDUvqnpwibUn9Fn1bCpfaPpq61Rw0Pr
xwjUnt3XFTtQX3dVVx4ttXkYg9o1NVfYAw1drdj9XWnrGIXaMjU72IUaYgxW
jbFaZQxArdbDXbEBzBP7xFeXHkpPp4eryaLNqwm7u51PtZc0ebVdapRo9TRs
tVc0cNo2Tdz8asho5TRt2jgNndatZgqTwbDUYtG41VbxwNK+MQW1bI90xRrU
XOlX86T2CYPAA9REYRNquDCxI7qqrVKD6fp0Tbo2af5qn3hgsQA5JS8tD6tc
k6bs5k4Tpg3TvNVeMY3Qwmnez7ft08LpzfRuNTe0aDVYz7f9UetGY1YLpKaH
9kyTVSvEA0qrpfnSbmm4tGOar9omNU60YJorb7SaN1osDZp2SkOlTdNw1SLx
iNJ2acpqY3hAac1qXGh6NDO1QGp2aIgYu1pymqhaIDVBtFI1PzRRGqJaHDU9
NFOao9ofNT00HxqZ2hw1PTQhGpDaHzVGNDoaq9ogNTw0SUxeLTmNWO0VzZt2
rKaH5vbZrmr3abhqmdRI0XbV7NBIaU5qiYypjHWMeYzl1ezQ/GiGamXU2NAM
abZqjdTM0BRpvGqb1MTQ4DBjtdpqYGhwNDe1MmpeaHqYtXcdqHGhEdLs1Nao
aXlvG2OrXdl/unyKxrRqX9S0GMPKGXkX1ZDQrGiMamfU4ND4MGS11QYGNDua
ltoTNSQ0N5qd2hQ1UjRoHg3vDlCjQtOjqamtUCNCY6JJqZVQY0JTo8GpFVEj
QpOjMar9URNCI6MxqQ1RE0JzovmqjVLTQTOj8fLyHzpdPnuah9oMNRs0CBoO
b70aDZoITUJth5onmjDNVu2Tmg2aGU1WrZUxLE2L5mZsqyaERkhDVXuESalF
VJOIVanZkMPS9NS2/Hq66i5oYmo91CzQdGhSahfUONB0aDhqIdRc0PhogGpX
1DTQsGiaaneOmq46BBqZ2iA1FTQomqTaHZoBbzmPOS1BTQaNhkalFkONA02c
Bq72S80BTYjGpLbixOny9dOAeO3VZNCYaLRqndQk0MQwALVqJ01XHQJNSS0D
D/8h7f7E+3/KdPn8aUhqE9QAuH+5X6pN5eGnOdG01H7QbCzPM0/LodHM8PZP
lXZDg+GF56GlzahxoFHRoNSi8NSf2JZXW0CT4eXn6afV0GR483nkaTU0H154
nnhaEI/98e388erP8OCPy2NOe5KT8h7zzMpVaSS83DzdtBOaDC88DyethubC
u87DTouhefDC87jTQmgevN083rQQmgbvOg82rYMmwBvO400roCnwhvNc0xpo
Krz4PMy0FhoF7y8PMO1Cjs+bzbMt96dx8KrznNI+jpiuOh6ai9ojGgMv+Vnt
fqXmjCZLE1brxYPNi83DzctN0xDzWNM6eLrvar+P2gU5Oi82T7bcXU7NS81T
LdeWQ9/V1ie35nGmkdEAeaHPni7vNA8zLzONgTedx572IKfn1eZpluvTJHjV
eXxpFTzXvMtybrk3TzaNjAbHW80zTWNcq6t36fBc0yBpjrzVPNN/bcfHi06z
4I3mWaZl8Ezz8j7Rrgf3e95fHmC5tRzf8i+07cvBeaN5buXmckzeXx5luSeP
M68vjy6vrpyYV5mnWa7Mk8qbunhXXiw5Pu8vj6/cn0eZ11iOKlflSebNlTPK
HeXAvMU85HJjOSxv76vb/HJKydFr2vzMuny7mb28qEP5VvlXeW95inlbZ2vb
5wnm+7UaXl8eXT5SHh1eHZ5fvlH+UV5enm3e6xke7L48vHy1/LW8tzy/fLyL
dOUd5MHlxeWh5KXkseW1XaIr7y6PLK/sol15h3lkeWV5Onk7eWr5Rnn8eP14
Zvmm+Kd4Z3lm+aTW7Eqb4ZnlY1u7Ky+sHFOuyXPLe8szyxeyTlfvduKp5Qvk
wePF4yHkJeR/5b3lOeU95YHjheNZ5SPlJ53hdR3Ku8rTytvKg8p3yn/Ku8oD
yfeI4WK5ck65J88k7yRPJd8j/yOvJo8p3yiPH68qzyfvJ88g7yAPKd/hZ7pi
oXJUuSrPLO8sT+kMj1pX73LhoeWD3KorL6ocVC7KU8lbyePJ68lD6t1DPJe8
l5gqtsrjyWfJb8mbyePJ68njyevJMzvDA9vVu5p4fnl/eZ54n3g2+Sb5J3lP
5QO8QXe3fEIOKBf8flfePp7HGR7crt7FxKPKp4lRY9U8kDx3O3f1LiCeSd5J
HkteSzmv3PeHXXkN5aRyUx4/Xj8eLF6sXbvyPvNE8jnyO/La8qzxrvGk8abx
VPJW8nN6F9BMj+JuXb0riIeRL5GnkLeQx4/XDxPGhnkMeQ0xUWyUx5CvkKeM
t4yHkU+RR5BXkMeM1wyTxWZ55Hjl+Ht5f3n++Px47Hjt5LO8ekd1levKl3n/
5MRyY55Nvsvdu/Juyk95xeSwcln5L28cj5z8Wj5LKzy75cM8eXxsPFu8W/JZ
3rpTW/4sn+XFO6Hlp/JVXrPTWv4rX+Wlu6Tlv/JV3reruso15au8b3Jeua98
k5dIzip3lZ/yjt37/+WbvHA3tHxXPst79mDLP3leebfkbHI3+Srv1y0tH5bv
8ZI91PJR8/NmPdbyR54g3qB3duXF51HjM+MB4wXjieKNwsSwMTm73J1HiVeJ
Z+zPLR/1rhMeMV4vOa5cV8y78mzLt+SzvFlXdpXPy2d5t2i29AQ5rFzWOz28
20N+y7v1XMt/5dByaZ5s3mz5LS/Uiy1/5IHiheJ5muF9Gsor82TLt9XwqPWh
8Xs+8mjxaq3flZfKeJmX65m2fZ4n3is5qdxUPss79EBXeoJ8lneHh+cLbX7e
n1lbvim/5cV6tOXT8lcsGBP2Lg2eDt4O/hJeGPkob9TQ8mU5qdzUOym8m0JO
K7edsy0v3+WN4hmS//GM8Y7xq/G2yQ95iS5u+b58mNeJ54n+IV/l5Zml5dvy
Y94kHid6jfyXV2i2lm/Lj3mBFmj5LU8Pbw/PCO8Izw7vDs8O7w6PDt8J/wlv
jXydF2q+lo/y4PDd8N/wCvG04Ox4O68MTxBvEM8P7w8PEN8K/wovDo8OXwpG
iVXy5PDN8M/w5vBE8EbwU/Ce8NzwyfDL8A7x7PDd8MzwzvDs8OnwEPAS8MDw
wvDH8PbwvPCl8KfwvvCs8K7wVPBW8KTg7Hg7bwlPDJ8GvwZvCI8SHxLmjr3z
jPCO8HDwcvCk8Kbws/DG8Lzg2vi2dz/I53mz+nY98Kzg2vg2rwyuwcvAP6EW
n+eD9wPTx/Z5UHhReAx4DXhw+E74T3hVeEL4QPhBeEd4QPg4eCJ4I3iK+D74
P3hFeC54L3ggeCF4Hngf+DN4N3ho+Fx4FngXeEB4QXhAeEF4ZHhl+Gl4b3g8
+Cr4K7z7gIeDb4N/g9eDJ4M3g3/DuwfoT7yVPJbyWx4JHB/P5x3gMeGz4LfA
fXgmeCd4JHgleCz4JvgneC14HvgU+BV4HXgi+B74H3hZeBb4DvgP1JLzJPAm
8C+oZee54IPgGeAd4JHgg+B54H2Qf2HjZ7Z8C1PH1nlGeEfkY9jqeS3/4zng
PeCHUPtOX8P+eQDoefJRXgKeB3qbfBLr5ymgx8lPsVhMlt4mn+QNOK3lmzwQ
fAw8ALwA8k9s9pyWz8rXsffjWr4rv8XSMXX5O48E3wP/A28FDwHfAOaP/ctP
sfxzW/7KA4D7Y67Yq3eUYKwYpXeZyBex+GtaPiv/wiovavm0/BHrxszpcfJV
rBwzp9fJV7H2G1q+Kx/Fuu9s+ab8Eiu+t+Vn8lcs+aaW38rPsOOHWj4qP8We
7275rPwXW7+x5cfyUez7wZb/Ysg4K96K3coHsefbW74sH+dd4JmgV8pPsd7H
Wn7JQ8RXwF/g3RfyR2z4uZaPylexw2dbfiRfxYKvb/k1ZoqdYqRYKUaKlfKD
8c5huFguhovlYrbYLX6sdlj+iGU/0/JVegIW+WTLjzFf7BejxWoxaWwaA8aC
5ZPY76Mt35avWsa88mU5FF6Lx8qt5JPYMMYrH5XvYZd9yy/lg9gopkqvsIxl
MVn5pnwQa8RI5avyUaz2qpZf45VqRiV82CbGJy+SV2F/mKd3JKubxdswUe9I
VieJN/pOn7wSm8Mv1ZjKI7FV+TEWiyHTKzBSeaU8EjvFOL3z2DKWxUDlgfJk
bBTzlKfKK7FQDFVeKY/EVjFQeag8FRu1T/ZNXomNYpre+asucybv1JZHYqEY
rXcsT7VzgWnOzCOxTgxV3iwvxVYxS+8MVqeI5+GbajrlqdgpBmqcKO/ERjFP
7+Q1j3kxN3mPPAaLwzjlifJI7BPjlGfKQ7FPDFWeKw/FVm3TtuWZ2CJmKK+U
l2KJmKY8Wd6JdWKU8kB5H3aJgcpr5JHYKGYqb5WnYakYsbxc3okdY5DGkfI+
bBITlTfKO7FSzF6eLs/H8jFPeb48FgvFzORx8hosDVOUV8vTsEaMVh4pz8Ru
MSJ5qDwRO8Iw5Y3yNGwTo5R3y2OwS0ySjiJvwyoxQ3mXPAtLxBzlUfIwLBKj
lWfLW7FbzFJeKG/DMjFVeaw8HWvFKOke8i7skgccv8BfeMNnMMm+8jiskmec
p1wNAC+5ei3v//QOUe+eVHOFt+FjarHUcOGP5jGvGiu88Jiuaq8wJDVe8jxs
CXOV58lLsVg1N2qQ1GSoxcEk5anyNKxSjZUaLTU9aq/UQOGHeKTaKDVQeCT+
qTbKNm372K7elaomCl+8tKtaKTVReOXlXdVKqfFQE+J9k2o/TNrel+ldmeqZ
vO/SOza9K1ONEx7pHZ5qn9QI4Y33d1U7pGYJv7ymq1omNUZqktRYqT2yjGW9
E9S7I9QQ4XUPd1VbpCYKj8Q71UpZh3V5p6h3Xap5wifxUbVQaozwSDxT7RHG
KK+V52GPaiDwsfu6qo1QgyM/VI+kNkeNER6JV6o9UsMjH1NTo7ZHzQ0+eUVX
tTgYorxD3ogtYobyKnkZlqgGBv/DN9XGYPre8ahuButXE4TPXdZVrRCGKY+T
p2Kbalr+1fJDtS6Wsaw8jpcAA6cz0BWwccxQniovwhIxdO/Ydc259tR84GeP
dFULwqOrxkWNCe+umhT5lRoUtSpqOuR3amLUiqgBwTfxZbUhajzwQ/xP7Yca
jKHla2oz1GjIh9VUqd1Qw4Of4jNqe9SA4Jl4ndoQNTryQTUzaoHUfMzf8kG1
IGro8GrXoGtRjQZeiY+q3eABpMfT23kDMUZ5prwKe8TA6F7yLmwMw6TbyeOw
TQxS3iWPwyYxS3mdPAzLxBjpcvJY7BEzlCfJo7BEjFHeJ0/DHjFTeZm8C0vF
FOV58jKsEdOke8kLsU7MS54mb8LCMEd5prwMi8Ts5HXyGCwPQ5QHyZuwRQxS
HiVPwyYxSLqUvAubxBjlVd6lhz1ijMZJ8jjs0ZhUHifPMlbFEOVJ8ihsEWOU
t8hzsEeMVl4qD8VuMUm6lrwOq8RI6WTySOwUw5QXyoOwTXo5L5sxkrEShicv
lMdie5ijPFOehkVijvIweRoWiTnKY+VpWCTmKG+Rd2GRmKO8yrvksEjMUd4h
b8MiMUd5mzxs5vvi5F3yPGwUc5QXy8uwSMxQnuldb1gipihPlKdhjZiNPM27
4bAcjEaeaJyL3WDA8mh5MjaMKcoL5W1YI8Yn7/GuL+wP45NHyuOwP0xSHifv
wioxS3mcPBDLnMEk+8rzsEoMUh4sz8MmMUZ5uDwPe8Qg5X3yNmwSc5RHyvOw
SAxYXiyvxoYxRrqDPA57xBjlgd5lhj1ioMbx3l2HjfIA0DnoJrwBmKC8UF6J
FWKQ8krvJsMmebzxQf4K3m8ecvwLb+Mt53HHB/FD3neeb/wQj+QFxzjlZfI8
7BNzlOfJ07BInloeUB5mXltMUd4mT8MaeaR5qnl4ead5svFCfJJXmycbf8Qn
ebV52PFQQIa3neca/8MnebF5tPFHvJF3m4eZh5onmreZB5pHWs0abzQPNF7I
f8EbzUONP+KTvNU8yngh3sa7zFOMV+KdvMY8xTzIPK68xjzq+CZ/B+86zzAe
hz/yEvMU43f4Jq8xDzN+yl/C28zzjHfiobzQPNX4Jd7Ja40pymvlgVgjzymP
KE86LyrPL76Fv/IC8wzjtfgjLzFmKW+UV2GZPMD4IR7JG8yzi0/iqby8mKO8
zbuesEhMUF4n55r5fqaZeSC2yIOMd+JrvMlyMrmZvBHbxBDlcfJCbBFzxJnk
jVgkBk7XoEtg496Z5IU8eLN3KWHmdGK6AJbOQ4sf4rm8tTzA+CKeyBvMs8uH
zUPLy8uDiyfio7y5PLb4G77Ie8tTi1/iv7y2PLL4IB7JO+udRd6FhBd6NxAP
Mh6Kv/Ime8eRdyHhh95V5J1R3u2El3qXFE8uvomP8ury3OKX+B8vrnfkeG+R
9xd5dw7PLR6Jl/LiYkq4Fh8k1oS54XJ8oFgcZoRz8WViSTOYT18+MSwIw8I9
+DKxLcwH5+EjxIKMn09uPML4FpPBOfgSsRrjb3zi+DYeMX7EE+5p4xtMBwfi
m8R6jJ/pw/RjtbrGzxc2fmH8a/x8VuMjM8fHlzX93vjMePfyxidmb+ORqxt/
MN40fsY37m7jd+PtM5reb7xofPz7pqcbfxofn9J4ivGr8e6NjXcYP8snjmn8
xnjeePc3jcfIN+QLtzbeYTxtfP3Hpn/LD4yH72h8xXja+Pa+ph8aj2IYuAef
IrZhjPto4wEzx7/4Bv+YWnjj1b82PiE2Zr6z6f3Gp8bT/Hn8e2rjjZefavxF
bDxMv6TXuV8a3/6n8QzjQeNRvGC2lm8ZAxoL9i0/Mz7EJ/jb1HYboxqrzt7G
r/I5evF8bTw6s8b6gvZ7G0/e0/iF8abxMD6AX6hlNsY11p2ljV+Nf/nr5mn9
xr94Ab6jVtn4d56mb7m/Gs/iI+N2/zTmfbDxGONX42H+O/5Ayxu/vqrpee73
xs/4xAJtPCv/XKDpf54P8peXGi9x/MbTeBB91PPS8/GApl9u2O4X9Cx+CPcH
z7dTmp7k/uz5enjTm9xfPH8Pavqq56vn3+lNn/T88rw9sumbM5+HJzR91PPO
8+zypj96vnn+ndv0Ovd/z7OLmv7oeeP5cH/T+9yfPT+Pa/qn+73n4QVNfzSe
N76/tOmLnj+ep9c2vdLz3PPshqZPznw+0nfPa88vzzN685ltPOF5Ry8+pz0/
PV/pmw+0+7fn6c1NXzMe8Py8rulf7tfGE7c0/XTm85beeUN7Xnte3tb0V89b
z6P7mt7o+ed5SH98uj1PPP9ub3qi+7fn38NNL/U8dH+nN/LPuH97vvyt6Yfu
x54vxtOztfu15/E/2/ja88bz6YmmP3oeef7Q82ZtzxvPn6eavuj+7/nzQtNf
PR88L+5p+qjnj3u8ez0fhneXeX7QJ/lbvIvO84K+OV97/ngGeBbwSXg3F82P
9kejolV5BngW8D14lxZNkbZIE6QNemZ4duCi3qXkGeFZwWfgXUru8e71fALe
neQZ4VnBJ+BdRO5x7nW4rneB0EhppTRB2iDNk/ZJo6RV0jxpnzROWqfx3oza
wjbepFHSKmlKtCWaJm2Tpknb9Ez0bOTL8O4t7+Tz7r9XtPNDY6O10dhobTRO
WifNlHZKs6RdGpMYm9BwZ75XjrZJw6Rl0uxodzRKWqVnsGcxDZOWSUOkJfqN
/FY0YdowjY5WJyeWG9MkaZM0S9olzZJ2SeOj9dEUaYs0PFoejZPWSXOkPdJg
abE0TlonTZO2SROljdI0aZs0P9qf39hvPeO9cNOlUS7YxgzGDjRN2qYxg7GD
a8a1Q/Oj/dFAaaE0TFomjXKxNiYxNqH50f7k+HJ9GiotlcZKa6VJ0iZpuLRc
v5HfimZJu6QpznzvGS2RZko7pXHSOl2DrkWaKm2VBkwLltPL7WlOtCfPWM9a
mudb25jE2IRmSjs15jH2cQ27lmmstFaa6Mz3chn70ERpozTfZ9s17dqmWdIu
aaS0Ujm/3J9GSiuVg8vF/Sf8N2iktFIaKa2UxkprpenSdmmsM+s7VmpjNGM1
GjGtmAZCC6GR0kppULQoGgmthCZAG/Af81+jSdGmaJy0TpombZOmSduk0dHq
aGi0NGNqY2saGi2NJkYbo4nRxmjytHkaDi2HpkJboXnRvmhytDmaGG2MJkGb
oJnRzmh0M/39tFgaLC1WjipXpbnQXmhCM9/LMdO/TkuiEdGKMA1sg2ZNu6aB
zHxPBu2HRkQrokHRomg8tB45sdyYJkQbomHQMmhItCSaA+2BBkQLkrPL3Wk6
tB2aCG2EJkQbokHRomhOtCc5ulydxkRroinRlmgktBIaCi2FJjPzvRa0CZrJ
zPcW0CZoRrQjmgxthsZEa6Ih0ZJoRLQiGhQtiuZD+6FB0aJoRLQiGgYtg+ZD
+6Eh0ZJoTrQnmhPticZEa6Jh0DJoQLQgmhfti+ZF+6JJ0aZoKLQUmhJtiUZB
q6B50D5oRLQiGg2thoZES6Jp0Db4P59qz78ZtYbTpQ3RhGhDcjq5HU2BtkDj
ofXQeGg9NCJaEY2H1kMjohXRkGhJNB/aD02ENkLjofVg8/zrNB3aDk2HtkOj
odXQZGgzNB3aDk2GNsP/zvNAg6JF0YBoQXJUueoMDWcojYXWQgOa+V4FWhGN
i9ZFE6ON0YBoQTQz2hnNk/ZJw6Rl0lBoKTQUWgrNhnZDs6HdyInlxjQr2hWN
hdZCU6Gt0FRoKzQCWgGNgFYg55f7y7Fn1tnK5eXkcnM5vFyeBkWLojHRmmgE
tAI5u9ydBkWLounR9uT8cn+aJm1TTi+3pxnQDv4f+0PH1A==
"]],
Annotation[#, "Charting`Private`Tag$37422#1"]& ]],
Lighting->{{"Ambient",
RGBColor[0.30100577, 0.22414668499999998`, 0.090484535]}, {
"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{0, 2, 2}]}, {"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{2, 0, 2}]}}]}, {}, {}, {}, {}}, {
{GrayLevel[0], Line3DBox[CompressedData["
1:eJwl0ktIlFEYxvHjjFNRqdkFUzGtTS2MkDZRixTSUGlTbaJF5SoKutDFsgjS
Lkq5lBBksFISSneKbiJjEIkg0ZDCVoVBiC2qjZTa7+Di4f/8v8P5eOedb3vD
xaMXskIII7Je1koqO4RvqRDy9KL4nH/nxfpWWcdneaG+Lz7jc3y/vkc28x+8
Qq+RMv6T1+m10sh3rArhuf5Eqvlf5536YT2NCed9WM97ccn5CzzCB7DA+Tie
4GNxbv4eT/J3mMc/4Sk+jTn8C87IZxlPhDCBGfyAk4mVHQzhMOYnQ9ggmyxn
DW7EEizFMZzBDH7E1ziFEziKr/ANLsT73vcn3sdSKZMbZinBZbNtw5u8EJd4
MV7hW/AfL8BrPIm/s+NiQjjLl73/F8/i5/gin497xMHV/g99QT8uHTzNj+m9
MsAzvEdPy0s+yrv0p3F+/pZ369eli/fzq3q79PBh/li/F+/wQd6iP5BnfIjf
1x9KqzTZQRvewUt4Hi/jIzyIB7ASK/EQVmGjn3sr7gtvxz3hXWyW03oDnsEO
3Il7cVf8JrEcd0uuJM3yNbXyff8HhKBdfw==
"]]}, {}, {},
{GrayLevel[0.2],
Line3DBox[{563, 562, 1288, 1666, 565, 556, 1285, 1663, 557, 569, 1290,
1668, 570, 551, 1283, 1661, 552, 593, 1301, 1678, 589, 588, 1299, 1676,
591, 600, 1304, 1681, 596, 595, 1376, 1743, 689, 688, 1347, 1715, 693,
1346, 692, 1719, 700, 1349, 699, 1718, 703, 1351, 702, 1728, 721,
1357, 719, 1726, 720, 1360, 728, 1732, 726, 1359, 725, 1730, 709,
708}], Line3DBox[{568, 566, 1289, 1667, 567, 549, 1281, 1659, 546, 545,
1280, 1658, 548, 547, 1282, 1660, 550, 594, 1302, 1679, 597, 574,
1292, 1670, 573, 571, 1291, 1669, 572, 585, 1378, 1745, 682, 680, 1341,
1712, 681, 1342, 678, 1711, 679, 1343, 685, 1714, 687, 1344, 686,
1727, 707, 1353, 706, 1722, 711, 1354, 710, 1723, 714, 1355, 715, 1724,
713, 712}],
Line3DBox[{610, 609, 1308, 1684, 613, 607, 1307, 1683, 608, 626, 1315,
1689, 617, 616, 1336, 1706, 657, 656, 1329, 1700, 646, 645, 1324, 1697,
647, 659, 1330, 1701, 658, 579, 1295, 1673, 580, 733, 1364, 1733, 734,
1371, 751, 1741, 748, 1370, 746, 1738, 747, 1396, 790, 1759, 768,
1384, 767, 1755, 787, 1393, 786, 1756, 783, 1392, 696, 1716, 695,
694}], Line3DBox[{635, 633, 1319, 1693, 634, 631, 1318, 1692, 632, 643,
1323, 1696, 644, 614, 1309, 1685, 615, 671, 1337, 1707, 672, 668,
1335, 1705, 669, 676, 1340, 1710, 677, 577, 1294, 1672, 578, 752, 1374,
1742, 753, 1375, 755, 1749, 758, 1379, 756, 1746, 757, 1381, 760,
1761, 789, 1394, 788, 1760, 792, 1395, 791, 1768, 795, 1397, 794, 1766,
798, 797}],
Line3DBox[{636, 629, 1316, 1690, 628, 627, 1317, 1691, 630, 638, 1320,
1694, 637, 622, 1312, 1687, 623, 666, 1334, 1704, 667, 670, 1339, 1709,
675, 673, 1338, 1708, 674, 575, 1293, 1671, 576, 754, 1383, 1747, 762,
1382, 761, 1748, 759, 1380, 737, 1734, 736, 1365, 735, 1764, 793,
1398, 799, 1767, 800, 1399, 796, 1765, 773, 1387, 771, 1752, 772,
776}], Line3DBox[{642, 640, 1322, 1980, 612, 602, 1306, 1977, 604, 606,
1314, 1979, 625, 619, 1311, 1978, 621, 655, 1328, 1982, 653, 649,
1326, 1981, 651, 663, 1333, 1983, 665, 582, 1297, 1976, 584, 739, 1367,
1984, 732, 1363, 730, 1740, 750, 1373, 745, 1737, 743, 1369, 741,
1763, 775, 1389, 764, 1751, 766, 1386, 770, 1758, 782, 1391, 778, 1754,
780, 785}],
Line3DBox[{661, 660, 1331, 1702, 564, 558, 1286, 1664, 559, 560, 1287,
1665, 561, 555, 1284, 1662, 554, 553, 1300, 1677, 592, 586, 1298, 1675,
587, 590, 1303, 1680, 599, 598, 1377, 1744, 698, 697, 1348, 1717, 691,
1345, 690, 1720, 704, 1352, 705, 1721, 701, 1350, 683, 1713, 684,
1358, 718, 1725, 717, 1356, 716, 1731, 727, 1361, 724, 1729, 723,
722}], Line3DBox[{784, 779, 1753, 777, 1390, 781, 1757, 769, 1385, 765,
1750, 763, 1388, 774, 1762, 740, 1368, 742, 1736, 744, 1372, 749,
1739, 729, 1362, 731, 1735, 1366, 738, 583, 1674, 1296, 581, 664, 1703,
1332, 662, 650, 1698, 1325, 648, 652, 1699, 1327, 654, 620, 1686,
1310, 618, 624, 1688, 1313, 605, 603, 1682, 1305, 601, 611, 1695, 1321,
639, 641}],
Line3DBox[{827, 826, 1412, 1781, 829, 820, 1409, 1778, 821, 834, 1414,
1783, 835, 811, 1405, 1774, 812, 861, 1426, 1795, 857, 856, 1424, 1793,
859, 868, 1429, 1798, 864, 863, 1488, 1857, 935, 934, 1462, 1828, 939,
1461, 938, 1832, 946, 1464, 945, 1831, 949, 1466, 948, 1844, 975,
1475, 973, 1842, 974, 1478, 982, 1849, 980, 1477, 979, 1847, 959,
958}], Line3DBox[{832, 830, 1413, 1782, 831, 809, 1403, 1772, 802, 801,
1400, 1769, 804, 803, 1404, 1773, 810, 862, 1427, 1796, 865, 843,
1418, 1787, 840, 838, 1416, 1785, 839, 851, 1491, 1860, 923, 921, 1454,
1823, 922, 1455, 918, 1822, 919, 1458, 931, 1827, 933, 1459, 932,
1843, 957, 1470, 956, 1836, 961, 1471, 960, 1839, 968, 1473, 969, 1840,
965, 964}],
Line3DBox[{833, 807, 1401, 1770, 806, 805, 1402, 1771, 808, 817, 1407,
1776, 818, 815, 1406, 1775, 816, 841, 1417, 1786, 842, 836, 1415, 1784,
837, 850, 1422, 1791, 853, 852, 1490, 1859, 924, 916, 1452, 1821, 917,
1453, 920, 1826, 927, 1456, 925, 1824, 926, 1457, 930, 1845, 953,
1468, 952, 1835, 955, 1469, 954, 1838, 963, 1472, 962, 1837, 967,
966}], Line3DBox[{875, 874, 1432, 1801, 877, 872, 1431, 1800, 873, 885,
1436, 1805, 879, 878, 1449, 1818, 903, 902, 1444, 1813, 896, 895,
1441, 1810, 897, 905, 1445, 1814, 904, 846, 1420, 1789, 847, 985, 1481,
1850, 986, 1486, 998, 1856, 996, 1485, 994, 1854, 995, 1502, 1020,
1869, 1006, 1495, 1005, 1866, 1019, 1501, 1018, 1867, 1016, 1500, 942,
1829, 941, 940}],
Line3DBox[{890, 888, 1437, 1806, 887, 886, 1438, 1807, 889, 892, 1439,
1808, 891, 882, 1434, 1803, 883, 910, 1448, 1817, 911, 912, 1451, 1820,
915, 913, 1450, 1819, 914, 844, 1419, 1788, 845, 999, 1494, 1861,
1002, 1493, 1001, 1862, 1000, 1492, 989, 1851, 988, 1482, 987, 1871,
1021, 1503, 1023, 1873, 1024, 1504, 1022, 1872, 1010, 1497, 1008, 1864,
1009, 1012}],
Line3DBox[{894, 893, 1440, 1809, 876, 869, 1430, 1799, 870, 871, 1435,
1804, 884, 880, 1433, 1802, 881, 901, 1443, 1812, 900, 898, 1442, 1811,
899, 908, 1447, 1816, 909, 848, 1421, 1790, 849, 990, 1483, 1852, 984,
1480, 983, 1855, 997, 1487, 993, 1853, 992, 1484, 991, 1870, 1011,
1498, 1003, 1863, 1004, 1496, 1007, 1868, 1015, 1499, 1013, 1865, 1014,
1017}],
Line3DBox[{907, 906, 1446, 1815, 828, 822, 1410, 1779, 823, 824, 1411,
1780, 825, 819, 1408, 1777, 814, 813, 1425, 1794, 860, 854, 1423, 1792,
855, 858, 1428, 1797, 867, 866, 1489, 1858, 944, 943, 1463, 1830, 937,
1460, 936, 1833, 950, 1467, 951, 1834, 947, 1465, 928, 1825, 929,
1476, 972, 1841, 971, 1474, 970, 1848, 981, 1479, 978, 1846, 977,
976}]},
{GrayLevel[0.2],
Line3DBox[{1095, 1096, 1342, 1098, 1346, 1105, 1345, 1106, 1371, 1128,
1363, 1362, 1129, 1382, 1139, 1375, 1140, 1453, 1222, 1455, 1224, 1461,
1229, 1460, 1230, 1486, 1249, 1480, 1250, 1493, 1260, 1261}],
Line3DBox[{1099, 1100, 1343, 1103, 1349, 1109, 1352, 1112, 1370, 1135,
1373, 1372, 1136, 1380, 1145, 1379, 1146, 1456, 1225, 1458, 1227, 1464,
1233, 1467, 1236, 1485, 1256, 1487, 1257, 1492, 1265, 1266}],
Line3DBox[{1101, 1102, 1344, 1104, 1351, 1110, 1350, 1111, 1396, 1134,
1369, 1368, 1131, 1365, 1132, 1381, 1147, 1457, 1226, 1459, 1228, 1466,
1234, 1465, 1235, 1502, 1255, 1484, 1252, 1482, 1253, 1267}],
Line3DBox[{1113, 1114, 1353, 1117, 1357, 1124, 1358, 1125, 1384, 1148,
1389, 1388, 1153, 1398, 1155, 1394, 1156, 1468, 1237, 1470, 1239, 1475,
1245, 1476, 1246, 1495, 1268, 1498, 1273, 1503, 1275, 1276}],
Line3DBox[{1115, 1116, 1354, 1118, 1360, 1122, 1356, 1123, 1393, 1149,
1386, 1385, 1150, 1399, 1157, 1395, 1158, 1469, 1238, 1471, 1240, 1478,
1243, 1474, 1244, 1501, 1269, 1496, 1270, 1504, 1277, 1278}],
Line3DBox[{1119, 1120, 1355, 1121, 1359, 1126, 1361, 1127, 1392, 1154,
1391, 1390, 1151, 1387, 1152, 1397, 1159, 1472, 1241, 1473, 1242, 1477,
1247, 1479, 1248, 1500, 1274, 1499, 1271, 1497, 1272, 1279}],
Line3DBox[{1182, 1181, 1419, 1180, 1421, 1184, 1420, 1183, 1489, 1263,
1488, 1262, 1491, 1264, 1490, 1053, 1294, 1052, 1293, 1051, 1296, 1297,
1055, 1295, 1054, 1377, 1142, 1376, 1141, 1378, 1144, 1143}],
Line3DBox[{1197, 1196, 1434, 1199, 1433, 1198, 1449, 1168, 1408, 1167,
1405, 1166, 1404, 1165, 1406, 1069, 1309, 1068, 1312, 1071, 1310, 1311,
1070, 1336, 1037, 1284, 1034, 1283, 1033, 1282, 1032, 1035}],
Line3DBox[{1205, 1204, 1438, 1193, 1430, 1192, 1431, 1170, 1410, 1169,
1409, 1164, 1403, 1163, 1402, 1077, 1318, 1076, 1317, 1065, 1305, 1306,
1064, 1307, 1039, 1286, 1038, 1285, 1031, 1281, 1030, 1029}],
Line3DBox[{1206, 1203, 1437, 1202, 1440, 1195, 1432, 1194, 1446, 1174,
1412, 1173, 1413, 1162, 1401, 1078, 1319, 1075, 1316, 1074, 1321, 1322,
1067, 1308, 1066, 1331, 1043, 1288, 1042, 1289, 1028, 1027}],
Line3DBox[{1208, 1207, 1439, 1201, 1435, 1200, 1436, 1172, 1411, 1171,
1414, 1161, 1400, 1160, 1407, 1080, 1323, 1079, 1320, 1073, 1313, 1314,
1072, 1315, 1041, 1287, 1040, 1290, 1026, 1280, 1025, 1036}],
Line3DBox[{1217, 1216, 1451, 1210, 1442, 1209, 1441, 1186, 1423, 1185,
1424, 1179, 1418, 1175, 1415, 1089, 1335, 1088, 1339, 1082, 1325, 1326,
1081, 1324, 1058, 1298, 1057, 1299, 1050, 1292, 1045, 1044}],
Line3DBox[{1218, 1215, 1448, 1212, 1443, 1211, 1444, 1188, 1425, 1187,
1426, 1189, 1427, 1178, 1417, 1090, 1337, 1087, 1334, 1084, 1327, 1328,
1083, 1329, 1060, 1300, 1059, 1301, 1061, 1302, 1049, 1048}],
Line3DBox[{1220, 1219, 1450, 1214, 1447, 1213, 1445, 1191, 1428, 1190,
1429, 1177, 1416, 1176, 1422, 1092, 1340, 1091, 1338, 1086, 1332, 1333,
1085, 1330, 1063, 1303, 1062, 1304, 1047, 1291, 1046, 1056}],
Line3DBox[{1259, 1258, 1494, 1254, 1483, 1251, 1481, 1232, 1463, 1231,
1462, 1223, 1454, 1221, 1452, 1138, 1374, 1137, 1383, 1133, 1366, 1367,
1130, 1364, 1108, 1348, 1107, 1347, 1097, 1341, 1094, 1093}]},
{GrayLevel[0.2],
Line3DBox[{1506, 1875, 1667, 1512, 1666, 1884, 1702, 1524, 1684, 1896,
1980, 1695, 1528, 1690, 1900, 1693, 1903, 1770, 1926, 1782, 1592, 1781,
1935, 1815, 1601, 1801, 1947, 1809, 1605, 1806, 1951, 1954}],
Line3DBox[{1507, 1876, 1659, 1877, 1663, 1881, 1664, 1882, 1683, 1523,
1977, 1682, 1895, 1691, 1901, 1692, 1902, 1771, 1927, 1772, 1928, 1778,
1932, 1779, 1933, 1800, 1600, 1799, 1946, 1807, 1952, 1953}],
Line3DBox[{1509, 1508, 1660, 1878, 1661, 1879, 1662, 1880, 1706, 1526,
1978, 1686, 1898, 1687, 1525, 1685, 1897, 1775, 1590, 1773, 1929, 1774,
1930, 1777, 1931, 1818, 1603, 1802, 1949, 1803, 1602, 1948}],
Line3DBox[{1510, 1505, 1658, 1874, 1668, 1511, 1665, 1883, 1689, 1527,
1979, 1688, 1899, 1694, 1904, 1696, 1905, 1776, 1589, 1769, 1925, 1783,
1591, 1780, 1934, 1805, 1604, 1804, 1950, 1808, 1955, 1956}],
Line3DBox[{1513, 1885, 1670, 1888, 1676, 1519, 1675, 1892, 1697, 1906,
1981, 1698, 1907, 1709, 1530, 1705, 1912, 1784, 1936, 1787, 1939, 1793,
1596, 1792, 1943, 1810, 1957, 1811, 1958, 1820, 1607, 1963}],
Line3DBox[{1515, 1887, 1679, 1521, 1678, 1520, 1677, 1893, 1700, 1529,
1982, 1699, 1908, 1704, 1911, 1707, 1913, 1786, 1938, 1796, 1598, 1795,
1597, 1794, 1944, 1813, 1606, 1812, 1959, 1817, 1962, 1964}],
Line3DBox[{1518, 1514, 1669, 1886, 1681, 1522, 1680, 1894, 1701, 1909,
1983, 1703, 1910, 1708, 1914, 1710, 1915, 1791, 1593, 1785, 1937, 1798,
1599, 1797, 1945, 1814, 1960, 1816, 1961, 1819, 1965, 1966}],
Line3DBox[{1531, 1916, 1712, 1917, 1715, 1918, 1717, 1919, 1733, 1920,
1984, 1735, 1921, 1747, 1568, 1742, 1922, 1821, 1967, 1823, 1968, 1828,
1969, 1830, 1970, 1850, 1971, 1852, 1972, 1861, 1638, 1973}],
Line3DBox[{1534, 1535, 1714, 1539, 1718, 1542, 1721, 1545, 1738, 1565,
1737, 1736, 1563, 1734, 1564, 1746, 1571, 1824, 1610, 1827, 1613, 1831,
1616, 1834, 1619, 1854, 1635, 1853, 1633, 1851, 1634, 1640}],
Line3DBox[{1538, 1532, 1711, 1533, 1719, 1543, 1720, 1544, 1741, 1566,
1740, 1739, 1567, 1748, 1572, 1749, 1573, 1826, 1608, 1822, 1609, 1832,
1617, 1833, 1618, 1856, 1636, 1855, 1637, 1862, 1641, 1642}],
Line3DBox[{1546, 1547, 1722, 1548, 1726, 1555, 1725, 1556, 1755, 1574,
1751, 1750, 1575, 1767, 1581, 1760, 1582, 1835, 1620, 1836, 1621, 1842,
1626, 1841, 1627, 1866, 1643, 1863, 1644, 1873, 1650, 1651}],
Line3DBox[{1549, 1550, 1724, 1554, 1730, 1560, 1729, 1540, 1716, 1541,
1754, 1753, 1576, 1752, 1577, 1766, 1587, 1837, 1622, 1840, 1625, 1847,
1630, 1846, 1614, 1829, 1615, 1865, 1645, 1864, 1646, 1656}],
Line3DBox[{1551, 1552, 1723, 1553, 1732, 1561, 1731, 1562, 1756, 1578,
1758, 1757, 1579, 1765, 1586, 1768, 1588, 1838, 1623, 1839, 1624, 1849,
1631, 1848, 1632, 1867, 1647, 1868, 1648, 1872, 1655, 1657}],
Line3DBox[{1559, 1557, 1727, 1558, 1728, 1536, 1713, 1537, 1759, 1580,
1763, 1762, 1585, 1764, 1583, 1761, 1584, 1845, 1628, 1843, 1629, 1844,
1611, 1825, 1612, 1869, 1649, 1870, 1654, 1871, 1652, 1653}],
Line3DBox[{1570, 1924, 1745, 1569, 1743, 1923, 1744, 1517, 1673, 1891,
1976, 1674, 1516, 1671, 1889, 1672, 1890, 1859, 1975, 1860, 1639, 1857,
1974, 1858, 1595, 1789, 1942, 1790, 1594, 1788, 1940, 1941}]}}},
VertexNormals->CompressedData["
1:eJztyLENQFAARdEXCnOYQ2GHP4KE1gg2EZswgBjDHAqFETTnNjc57TCXsUpy
NEmdr6tbpnW7+/P9zjnnnHPOOeecc84555xzzjnnnHPOOeecc84555xzzjnn
nHPOOeecc84555xzzjnnnHPOOeecc84555xzzjnnnHPOOeecc84555xzzjnn
nHPOOeecc84555xzzjnnnHPOOeecc84555xzzjnnnHPOOeecc/6XP4anvpA=
"]],
Axes->True,
AxesLabel->{
FormBox["\"x\"", TraditionalForm],
FormBox["\"f(x)\"", TraditionalForm],
FormBox["\"f'(x)\"", TraditionalForm]},
BoxRatios->{1, 1, 1},
DisplayFunction->Identity,
FaceGridsStyle->Automatic,
LabelStyle->Larger,
Method->{"DefaultBoundaryStyle" -> Directive[
GrayLevel[0.3]]},
PlotRange->{{0, 3}, {0, 5}, {0, 5}},
PlotRangePadding->{
Scaled[0.02],
Scaled[0.02],
Scaled[0.02]},
Ticks->{None, None, None}]], "Output",
CellChangeTimes->{{3.737708485466254*^9, 3.73770854892844*^9},
3.737708672951034*^9, 3.7377091944589653`*^9, 3.7377092475028477`*^9,
3.7377093801474123`*^9, 3.737797391211841*^9, 3.737802713490457*^9, {
3.7378027520778313`*^9, 3.737802763477211*^9}, 3.7379080785111694`*^9, {
3.7379081360276685`*^9, 3.7379081679606714`*^9}, 3.7379093973383694`*^9,
3.737910123326113*^9},
ExpressionUUID -> "38f0c1a2-b53a-4784-9958-ed9b63432fad"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"f", "[", "x_", "]"}], ":=",
RowBox[{"If", "[",
RowBox[{
RowBox[{"x", "\[LessEqual]", "1"}], ",",
RowBox[{
RowBox[{"Power", "[",
RowBox[{"x", ",", "2"}], "]"}], "-", "x", "+", "1"}], ",",
RowBox[{"If", "[",
RowBox[{
RowBox[{"x", "\[LessEqual]", "2"}], ",",
RowBox[{
RowBox[{".429",
RowBox[{"(",
RowBox[{
RowBox[{"Exp", "[", "x", "]"}], "-", "E"}], ")"}]}], "+", "1"}],
",",
RowBox[{
RowBox[{"Power", "[",
RowBox[{"x", ",", "2"}], "]"}], "-", "x", "+", "1"}]}], "]"}]}],
"]"}]}], ";",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"f", "[", "x", "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "1"}], ",", "4"}], "}"}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.737908505441324*^9, 3.7379085478770285`*^9}, {
3.73790884597725*^9, 3.7379088593464737`*^9}, {3.7379089031126833`*^9,
3.737908904767581*^9}, {3.7379089543477335`*^9, 3.7379092129180455`*^9}, {
3.7379093163878355`*^9, 3.7379093364578896`*^9}}],
Cell[BoxData[
GraphicsBox[{{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJwVlnk0lmsXxpEpUohCg/EoKkWkJNdLg4iSseSoSCRDVIqcQhFylCgqHCod
iY4kGeJVmcmUMdNrft7ZnGT4nu+Pe93rt571rHVfe1/7WlvRydvShY+Hh2eI
PP+/J5N0q5eWuNToPHrb0pIQ5TH3ZIv3JJcqI8CRezQjRNltGNjXN8KlvpnS
bNvKFqLcHCqdpn7jUll513OcfwhRRLaYKgU941I7K3n5uLlCFKV8hxs8ulyq
4zq+hRvuQhSL5uBtvF4cqkREkZN3uyAlU7Auhq+bRVW6JcEuyhegSMdtqD53
hU6d+t7sOuexjGJ+Zu37iEMjVJnh0FRhX16KqdjF6LTNg1TOaeehaIslsIt/
ZhtG91EzNog6WVX+xnDvhYxig05qos7RtqW6Weib2AbPujZTB/m8zSpZ09Bj
sK4aOVVSXV9W5P++Mokw76GRTTsqqW78N0R9PCbRPNVlJ7ZYQS3NPXOQ6TwJ
96WaPR1PKqhXBUu9OJaTeCr1esGzqZw65lkfv11zEnMGLqFPKGXULebq+5M4
EyiM7Ykb2/iZmm/Wu/iH5wQuByS67vv4gbrNQleEfX0cqWrOunGmH6gGU5vO
LV4aR0OHmhCzJ5fqk74YLH1hHFt0P75K4M+lwtBxuc3JcQxONg1PHs+h+mqP
HJLVG0faj5VV1p1ZVIqi7F9582M4VzpUqnEgheojJdq2P2wM+kTvU726R3D8
YnDF2oaL9Ssu8S2ejce/VnoPdUy4WNjO6/75ZwKOW5R/UtjHRck15T2HlRNR
cS9CV/oPLlKW5TLV96VCT7T2q980B0qxsxG74/6F0VYt3fUJHKzupAyqKeag
Y+ZBxNgQGyuU/ih+GpYD3Sn/Pat/sMF/cXm8KCsHPx0mptHAxtR8kyk77z2e
XIqJ+1jARouCc0622QecTwl3k7/PxiO30GDd6/lQUDp1sWkvG2tnq+UPNpRA
7u2D7pJEFmb4b6/7qEVFvpjqBatYFtok9NeqPaYiw0QyeTyChVppu7thGqW4
Z8vlOXKNhcjt1Tfdp0uBsqIMH0sWhJ2zPLVuf4EvNyk6WoQF/pqrR74kl2Px
zt14wRAmrlhYmtxoLIey96xGoz8TQ20axtp8FUjUKfV64cPE18FRo1cuFYi0
sx49f5aJkIWTepFbK3GSG/3prCETPJoGapaFVfjsZf5TdRkTC/GCQgOttSjI
5GZx/2ZAyeynWKtoHURuLLewDWPgEA8hVWVYB+2+DIuqmww8cKtWeptVh1UX
7njWezOgsifKICD0G2ghD6WdLRkw/SHhJ6nTgJ/1cvJvZRnwiub7S+BiA8rn
sl7XSDIQazR5ezalAe6fqh5OiJLfbRiHvQUboc/7KOjcIh35xbW2Nr6NWHwQ
XtM4SMeR6GhfRdMmTFZ1ra3NpsOREJyRc2mCviURmZRBxyWjW/5SQU1w9Al0
uPGSjrgZ7yChvCZs9tm77mQCHb2Ox6PZis3o8JMSSgqiw2e7VEbBr2ZkPtVK
OGRFR3zjk/7jr1ugfEA+RYGXjhwi8NhfX1rgo+0hkD1PoJ7nTHF6Vwse+JVZ
mMwSENRUfbIk1grK2OMnT7gE/GJyLLJ8W+FW8HUyu5eArWUtVVi/DR3P9WsK
Swj4ur/dpm3TBq1sgwdEIYHokJhnp73acGqVmb7CRwIVOXbX8lLaoPg1/FDW
fwR0Vg9pnBNoxxWeSGWDVAJSLfNJ1Pp27Gl+s6QXRmAHq0+UOdqOpHknVaHb
BMz4v/qv4e1A8/U/dvbcInBHO8LGc2cHMs/XLb7yJzAZJy22LqED6jLPHd95
EliZNRtw6F0HVje9/1DnTkC9vIvwqenAt67GiXFXAk7TqWVV8x3IGdkqb+9E
oNlGI9DvbCcONntQUu0IcDwlGKkBnciV7awUtSEgEjZl9y22ExM5FjpBlgSM
8gp3qlR0YuDH2S9h5gRy1hgzm9R/4B7PijSRAwRi2k/bb5v6gfnnt6LYWgTC
Bb/VXV3VBT0X4Yy6HQRu6uihRL0LnR+WXfioQcA9Vkrl2NkugM+y9j91AgeO
VbMv1XchxdhccasyAb2bu84U0LvADnQ3dVMkoJn1oplXoBuJlDmpbHkCG0Vv
fny4txvyl32indYTmK3QCs5N78anOyWSVmtIPdP/TM5/7YbMtkvGLCkCwypi
5w/2daPNOW5DzGpSf8ioaZt0D64Far9dECdQ9c66eKNmD+wds93KVxEooX3e
7mrWg5T65LKElQTeGCRKzYb0wML++xmnFQSeey6/S0nuQdFV2dQTogQSEv1+
hRf0IFy+OcRehOzXnEWv7FgPjDc+Uw8WJhCgVmLhJNoLvctvxtKECPic2PI1
Q7UX0bYaJ9oECTjmCaTv/bMXDlX3RO0FCFgP+8rdud6LNtvzdln8BI5I0aLq
YnuRc/n9gRUkG+03X5L6rxfcjZe/+y0jsNu30OfPml7cP5G2jM1HQCN101Da
cC8eKJi2epGs0hhny+Hpw5Tf2cPzvATklnird63vQ/4ppsMjkiU0vPfe0u0D
rX5UUo9k4T+7syot++DWaOvO4CGweM9EQdyrD1Zndju/InmqMO/hiYg+pNyM
WvAkmUFXFkh92YejW6z2GJJMk4m5Rqf24fT5qDUKJLcbL9I1u/rQtH33IxGS
6/0uOgTM9CHtru0HHpIHLD1c+4Vp6PIc9eMj+U/G85TQNTRcHmB0riK5I7iz
U02FBo/hM72bSbaWFV9dr0lDlZ/JHXOSG7IPmfmChrDHL2v/Itn08F+ha8xp
SDvgm1tAckXf+5JCexpUg3MMeEl9htcYPx3daBAxc3G3JvnTSkXNZX40HE2L
1H1Psu4rO/d/b9MwHaX0agNZv5x90S+OxNCwyLctL/b/9W0t6+Ym0+AmlOEq
Tdb/tcdv6bhMGnSePil8TrIKv9ax3YU0OBf9fruX7FfKM7fw7koaptwbD9BI
flzTOqcySIPe1SZrM7L/0XOHTkSM0RCS5r9SnPRHmHr+B/YCjVT030IvyX6R
Ty/lyfSjP+dLYPJyAl6FovVyqv24cy9lxX3Sb+cZgVtu7eyHfr1ocyTpRzvT
0yPGR/sxHhO58EKMgEVA4/7MU/3gSCY7fyb9fDjDMFX8Qj94Fg2W6KTfd4uo
OHTe7oe7pFq7gyQBmRqiyb2gH6baycur1xIQnzu5vaGiH3MCG9ZTZEl/qNdG
7WzpR6mh2rkvcuT8RWQZz3P68fAnPY7YQKDTxLf4b5UBGDms8C9SIefNf1Bu
QnMAr27O6EapEqh5bX3dFgNQEvXa6raZQOFy3Z3y9gOwdxLIM9xK4Gn17/Ts
+wPoWt565IY2gYe/PASlkwYwFaj+MW0XgUi1Xmf/DPJ/e7ETXbvJ+Yoo3WhU
PoAyyxt6bvsInDIJjfs+NwCpfbPBwsakX/xnxnWFB9HPU/AkyoTM19euxxKl
B1GmITS6zoyA/nJTEZcdg6ivOqLkcJzA+uqVQTMug2SOXF3n7EDm9a9bPfaX
B+Et8ryPcprACrVxPWrQIAQjTnWqkXk6H/59+u6zQVwv8/Pc4Eag53DCRdmm
QVzQPipz7wqB5CpFO339IdyZDboedJ/AM7uq1wWHhyBpqZzz/SGZHyNe87ts
hhBlFP9mx2NSL/+nVE2vIRwkJnuEkgiEUmxZqilDKD8URNnyhoBHfmSwBP8w
eCyG5w9WE7hgrNkSLT4MM5nUnTrfSD+0tauu2DCMsGsa6hpNBM5MqdQJ7hpG
0Vyx7b5OAlY7qGvmXYehLZWd1Ugn8zZ98s1I7TCcY2mWtSvo0NV9uujcMQyv
mg9hthJ0aFdQjvcPDeN8gkMAU5oOjaG/Z7oWhiHza2OqljwdigqbDZu2jyDq
mx9LR4sO4QSHtqLYEbz94hsgbk9H+91ynphTo+jveXZZ+h0dRkrvWtdfGMXP
lqYBm490ZH5KzEj3G4Vfp1BNajEdQeOXrUtjRvFe5AqPQw0dm08ppXMrR6Gy
0lzMfoiOAI1bx46SvhhJ4P03UI6B9a27k0XF6BgovvLj1H0GuU+rXI6XI3U4
ZZqIxjMwtlz8sPJmOqZXD+2oSGagzGB0XG8/Hdn/WLk6vmXAM/3RQXd/Ojae
2HlFpp6BkhsTrKph8t1m02LvVzFxRilzb1gJA+UHbxuGPGOiYd03gS215F70
4v03/pdMGEhzGhraGRi8mGsXk8nEeuEd52THGbAw2ORSVcxEO/t9VKYyE9JE
k8tbGhNHC4p6msOZMD+2d/HkZhb2WdTekrdiwc/D8d52KguZJiyTstMsXNqa
2DRexYLcfjGpCx4sBNplSJc0szCrcyw9J5SFJo5u/JURFnLXfW88mM+Cq5JM
0MmVbGwd/aHosYENShKL4DvDhtxNxtf8UTYy+ofXtIhwMBNiIe4xzYaLmpvY
lzUcNN/Nc5BfxgG1VZ5apMRBZEzIdOhGDqwctls363Hw+6XcJisbDiYUGg5E
XeSgu9Y0kv2FA8lwCcrOBg7yG7PbUho5+CrLoHd3cRDXukbZupfc08Vnjz4k
ODDvGygq/MVBrHquqQIfue9PBLDv7uBCZG2WcLUOF//IvrFQSuai81tqsvk/
XARulEhqfcNF8OvG3zmZXJxQvkYPL+Cikq4tpVLIhfi2/SHcFi60EpL81Fq5
SAqJtxqb4KLiwKn0afL+H1dtNlc=
"]], LineBox[CompressedData["
1:eJwBQQG+/iFib1JlAgAAABMAAAACAAAAsj401ocG8D+GL9QnnwfwP7GzhYur
PPA/hp61zUZH8D+S2rXuRarwP3aq2HG/yvA/PikGp/+w8D/pT6wo7tLwP+t3
Vl+5t/A/3hC4UCDb8D9EFffPLMXwP/lfQ/qO6/A/9k84sRPg8D+4udvblQzx
P1rFunPhFfE/l9eqIEtP8T8jsL/4fIHxP+uMBw5e1/E/tIXJArRY8j+BRjB1
evLyP24Rib1A6vM/0JKLMy0s9T/QCurAnZ31P/27T6RV2Pc/y+T2ahk09z8+
RNw8M5z6P2TOVpyZwvg/86/k1s6Z/T+kJVgW6nL6P8u+/H+MmABAfV0FN1kG
/D9Lv46Vh3MCQP8CVKCYu/0/iKtg8P6tBEAeuPWQ3Gj/P8egSfuFHAdATsHL
KXj5/z/6rSrJXP0HQOXrp3k=
"]], LineBox[CompressedData["
1:eJwVy30sFGAAx3HO2x2XpzPHOOKk65612yWm5aV+RESp0ZWmFCYqIvIyU0o4
LcXokriUt3LVtPKSTCszFnOpxjK0kXeV15tj2aU/vvv89eWHxwVGMrS0tOhG
/z1pYzm7X0cLsoAMsx4WEyVCC91miTas35YPiF3YkD081xlmy8DH6J5DAwvG
OHPvtJI9yUD9l+WZ0JHNWPeqXi1/r4OYlPcc/2smmBr3TG2T6uL+0KVBXVNT
PHV34PWE6cHwyYqCjnLxOjuJEyXSR2thReuzGnPkSSL8dVT6wHxW6FySBVyG
ntRKewzgk9UckpDJg1OQc0hpMRPPZrz/PL5uDcYNnkNxAgschbpA+4MNyp0V
frKDhnjjKE3r1+Mjd+huk52JEaakHLGVnR2897T7Ppg1gl8uL/5y2FYE5BwR
yRvZmGn8Mbous4cgJEtSdXUTxvo6TPcqt+HrBKuiSGKMRwYH2pZ3bEdX+LiH
iQ2BUiRfy0sXYlj3qVpmR7DPjJWUmSnEfE10nYWAwLyX25CaKwR3dtaKLyJY
a+LkRN0T4mzi4orYlUAWXHQx4IUQKzc1Lw+fINgy3OrlMSSEfbWF5a18goSl
OnGLG8Vun8FedhFBG9M59JMnhd90mbTgPkHa3KnA774UcSJbVbF843e4c1t9
jOJdg6C35jmBW3aKh2csxdEOx5z2ToLO+MSWNTlFRLTKzbebILdM34tbRZFs
2LTUrSR4VeJSuFNBURrgEvatj8CJmZ1xvpFioh9uoz8JTBor5WNKitVUxlLk
JAE71j1Ir4+CzWuvnZ4hiFGlKAWDFLvO+JgvLBCEp33mxkxSeGuzlFdUBOrk
XyP5vymCK7uy1GqCZS9FYv0SxQXvPNf0vwTHx5jdA6sUVycPL2o0BHwJc0qj
ofgHs/gaXg==
"]]},
Annotation[#,
"Charting`Private`Tag$26348#1"]& ], {}}, {{}, {}, {}}}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
ImageSize->{1723., Automatic},
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[
Part[#, 1]],
(Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[
Part[#, 1]],
(Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[
Part[#, 2]]}& )}},
PlotRange->{{-1, 4}, {0., 12.999999285714297`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.7379090870778685`*^9, 3.737909154047988*^9}, {
3.737909191847813*^9, 3.737909213399664*^9}, 3.737909377962254*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"v", "=", ".8"}], ";",
RowBox[{"e", " ", "=", " ",
RowBox[{"ParametricPlot3D", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"t", "+", "1.5"}], ",",
RowBox[{"t", "+", "1.5"}], ",",
RowBox[{
RowBox[{"Power", "[",
RowBox[{
RowBox[{"v", "*", "t"}], ",", "3"}], "]"}], "+",
RowBox[{"v", "*", "t"}], "+", "1.5"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"t", ",",
RowBox[{"-", "1.5"}], ",", "1.5"}], "}"}]}], "]"}]}], ";",
RowBox[{"Show", "[",
RowBox[{"p", ",", "e"}], "]"}]}]], "Input",
CellChangeTimes->{{3.737709165469056*^9, 3.737709219542807*^9}, {
3.737709250779264*^9, 3.737709252277157*^9}, {3.7379081104873276`*^9,
3.737908132047701*^9}, {3.7379086881973476`*^9, 3.7379087845671196`*^9}, {
3.737908865697289*^9, 3.73790889211707*^9}, {3.7379094208120728`*^9,
3.737909543352437*^9}, {3.7379096799640617`*^9, 3.737909812406743*^9}, {
3.737909908645525*^9, 3.7379099138051367`*^9}, {3.737909945764947*^9,
3.7379099850053616`*^9}},
ExpressionUUID -> "406af96b-089f-4a3c-a7fa-adbd30088059"],
Cell[BoxData[
Graphics3DBox[{GraphicsComplex3DBox[CompressedData["
1:eJx1nXvQXVV5h8/3JSSElJhEKAxUgxpoiUBSYHDQwDkKAs6oMEhNuVlAoFJl
yk0kCibhEkQuCShQL9yspfYTaFBxqqVAqBAuBUViDQYEkpBQgSAkgUTy5TTj