forked from graykode/nlp-tutorial
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSeq2Seq.py
122 lines (94 loc) · 4.58 KB
/
Seq2Seq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# %%
# code by Tae Hwan Jung @graykode
import numpy as np
import torch
import torch.nn as nn
# S: Symbol that shows starting of decoding input
# E: Symbol that shows starting of decoding output
# P: Symbol that will fill in blank sequence if current batch data size is short than time steps
def make_batch():
input_batch, output_batch, target_batch = [], [], []
for seq in seq_data:
for i in range(2):
seq[i] = seq[i] + 'P' * (n_step - len(seq[i]))
input = [num_dic[n] for n in seq[0]]
output = [num_dic[n] for n in ('S' + seq[1])]
target = [num_dic[n] for n in (seq[1] + 'E')]
input_batch.append(np.eye(n_class)[input])
output_batch.append(np.eye(n_class)[output])
target_batch.append(target) # not one-hot
# make tensor
return torch.FloatTensor(input_batch), torch.FloatTensor(output_batch), torch.LongTensor(target_batch)
# make test batch
def make_testbatch(input_word):
input_batch, output_batch = [], []
input_w = input_word + 'P' * (n_step - len(input_word))
input = [num_dic[n] for n in input_w]
output = [num_dic[n] for n in 'S' + 'P' * n_step]
input_batch = np.eye(n_class)[input]
output_batch = np.eye(n_class)[output]
return torch.FloatTensor(input_batch).unsqueeze(0), torch.FloatTensor(output_batch).unsqueeze(0)
# Model
class Seq2Seq(nn.Module):
def __init__(self):
super(Seq2Seq, self).__init__()
self.enc_cell = nn.RNN(input_size=n_class, hidden_size=n_hidden, dropout=0.5)
self.dec_cell = nn.RNN(input_size=n_class, hidden_size=n_hidden, dropout=0.5)
self.fc = nn.Linear(n_hidden, n_class)
def forward(self, enc_input, enc_hidden, dec_input):
enc_input = enc_input.transpose(0, 1) # enc_input: [max_len(=n_step, time step), batch_size, n_class]
dec_input = dec_input.transpose(0, 1) # dec_input: [max_len(=n_step, time step), batch_size, n_class]
# enc_states : [num_layers(=1) * num_directions(=1), batch_size, n_hidden]
_, enc_states = self.enc_cell(enc_input, enc_hidden)
# outputs : [max_len+1(=6), batch_size, num_directions(=1) * n_hidden(=128)]
outputs, _ = self.dec_cell(dec_input, enc_states)
model = self.fc(outputs) # model : [max_len+1(=6), batch_size, n_class]
return model
if __name__ == '__main__':
n_step = 5
n_hidden = 128
char_arr = [c for c in 'SEPabcdefghijklmnopqrstuvwxyz']
num_dic = {n: i for i, n in enumerate(char_arr)}
seq_data = [['man', 'women'], ['black', 'white'], ['king', 'queen'], ['girl', 'boy'], ['up', 'down'], ['high', 'low']]
n_class = len(num_dic)
batch_size = len(seq_data)
model = Seq2Seq()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
input_batch, output_batch, target_batch = make_batch()
for epoch in range(5000):
# make hidden shape [num_layers * num_directions, batch_size, n_hidden]
hidden = torch.zeros(1, batch_size, n_hidden)
optimizer.zero_grad()
# input_batch : [batch_size, max_len(=n_step, time step), n_class]
# output_batch : [batch_size, max_len+1(=n_step, time step) (becase of 'S' or 'E'), n_class]
# target_batch : [batch_size, max_len+1(=n_step, time step)], not one-hot
output = model(input_batch, hidden, output_batch)
# output : [max_len+1, batch_size, n_class]
output = output.transpose(0, 1) # [batch_size, max_len+1(=6), n_class]
loss = 0
for i in range(0, len(target_batch)):
# output[i] : [max_len+1, n_class, target_batch[i] : max_len+1]
loss += criterion(output[i], target_batch[i])
if (epoch + 1) % 1000 == 0:
print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss))
loss.backward()
optimizer.step()
# Test
def translate(word):
input_batch, output_batch = make_testbatch(word)
# make hidden shape [num_layers * num_directions, batch_size, n_hidden]
hidden = torch.zeros(1, 1, n_hidden)
output = model(input_batch, hidden, output_batch)
# output : [max_len+1(=6), batch_size(=1), n_class]
predict = output.data.max(2, keepdim=True)[1] # select n_class dimension
decoded = [char_arr[i] for i in predict]
end = decoded.index('E')
translated = ''.join(decoded[:end])
return translated.replace('P', '')
print('test')
print('man ->', translate('man'))
print('mans ->', translate('mans'))
print('king ->', translate('king'))
print('black ->', translate('black'))
print('upp ->', translate('upp'))