-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathlosses.py
67 lines (57 loc) · 1.97 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import math
import torch
from torch import nn
from math import pi
import numpy as np
class CosFace(nn.Module):
def __init__(self, s=64.0, m=0.40):
super(CosFace, self).__init__()
self.s = s
self.m = m
def forward(self, cosine, label):
index = torch.where(label != -1)[0]
m_hot = torch.zeros(index.size()[0], cosine.size()[1], device=cosine.device)
m_hot.scatter_(1, label[index, None], self.m)
cosine[index] -= m_hot
ret = cosine * self.s
return ret
class Softmax(nn.Module):
def __init__(self, s=64.0, m=0.40):
super(Softmax, self).__init__()
self.s = s
self.m = m
def forward(self, cosine, label):
ret = cosine * self.s
return ret
class ArcFace(nn.Module):
def __init__(self, s=64.0, m=0.5):
super(ArcFace, self).__init__()
self.s = s
self.m = m
def forward(self, cosine: torch.Tensor, label):
index = torch.where(label != -1)[0]
m_hot = torch.zeros(index.size()[0], cosine.size()[1], device=cosine.device)
m_hot.scatter_(1, label[index, None], self.m)
cosine.acos_()
cosine[index] += m_hot
cosine.cos_().mul_(self.s)
return cosine
class CombineLoss(nn.Module):
def __init__(self, s=64.0, m=1.0): #m2 Arcface, m3CosineFace
super(CombineLoss, self).__init__()
self.s = s
self.m1 = m
self.m2 = 0.3
self.m3 = 0.2
def forward(self, cosine: torch.Tensor, label):
index = torch.where(label != -1)[0]
m_hot = torch.zeros(index.size()[0], cosine.size()[1], device=cosine.device)
m_hot.scatter_(1, label[index, None], self.m2)
m_hot3 = torch.zeros(index.size()[0], cosine.size()[1], device=cosine.device)
m_hot3.scatter_(1, label[index, None], self.m3)
cosine.acos_()
cosine[index] += m_hot
cosine.cos_()
cosine[index] -= m_hot3
cosine.mul_(self.s)
return cosine