-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBSOtest_v2.0.c
292 lines (265 loc) · 8.53 KB
/
BSOtest_v2.0.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
/*
============================================================================
Name : BSOtest.c
Author : 511
Version : 2.0
Copyright : www.DigVan.com
Description :
V1.0:Sequential implementation of Brain Storm Optimization Algorithm
in C based on "Y. Shi, 'Brain storm optimization algorithm', ICSI 2011"
V2.0:output a csv file show different results via different paraments
============================================================================
*/
#include<stdio.h>
#include<math.h>
#include<time.h>
#include<stdlib.h>
#define PI 3.141592653589
#define File_PATH "file\\OptiResuDiffPara.csv"
#define File_title "Population_Size,Cluster_Number,Dimension,Noise_Range,Iteration,Value,Time\n"
#define P_Size 100 //population size
#define DIM 10 //solution dimension
#define Iteration 100000 //iteration number
#define Clu_Num 10 //cluster number
#define NoiseRange 0.02 //the range a noise will be generated
#define Range_L -10.0 //left range
#define Range_R 10.0 //right range
#define P_NewCenter 0.05 //probability to choose a cluster and replace the center
#define P_OneClu 0.85 //probability to generate new solution from one cluster
#define P_One_Center 0.60 //probability to genereta new solution from center of one cluster
#define P_Two_Center 0.60 //probability to generate new solution from center of two clusters
#define Nrand() (((double)rand()/(RAND_MAX+1.0))*NoiseRange) //generate noise
#define Srand() (Range_L+(((double)rand()/(RAND_MAX+1.0))*(Range_R-Range_L))) //generate new solution dimensionly
#define Prand() ((double)rand()/(RAND_MAX+1.0)) //generate probability
#define Crand() ((int)(rand()/(RAND_MAX+1.0)*Clu_Num)) //generate a cluster index
#define SIrand() ((int)(rand()/(RAND_MAX+1.0)*(P_Size/Clu_Num))) //generate solution index
double initSolution[P_Size][DIM]; //initial solution population
double solution[Clu_Num][P_Size/Clu_Num][DIM]; //solution population after cluster and sorting
//evaluation functions: Rastrigin :global min = 0 in (0,0,0,0,0,...)
double Rastrigin(double x[]){
int i;
double y=0.0;
for(i=0;i<DIM;i++){
y+=x[i]*x[i]-10.0*cos(2*PI*x[i])+10.0;
}
return y;
}
//evaluation functions: Rosenbrock :global min = 0 in (1,1,1,1,1,1,...)
double Rosenbrock(double a[]){
int i;
double sum=0.0;
for(i=0;i<DIM-1; i++){
sum+= 100*(a[i+1]-a[i]*a[i])*(a[i+1]-a[i]*a[i])+(a[i]-1)*(a[i]-1);
}
return sum;
}
//evaluation functions: Sphere :global min = 0 in (0,0,0,0,0,...)
double Sphere(double a[]){
int i;
double sum=0.0;
for(i=0; i<DIM; i++){
sum+=a[i]*a[i];
}
return sum;
}
//call the evaluation function and return fitness value
double evaluation(double a[]){
return Sphere(a);
// return Rastrigin(a);
// return Rosenbrock(a);
}
//initial solution
void init(){
int i,j;
// srand((unsigned)time(NULL));
for(i=0; i<P_Size; i++)
for(j=0; j<DIM; j++)
initSolution[i][j] = Srand();
}
//cluster solution
void cluster(){
int i,j,k,count;
for(i = 0, count = 0;i < Clu_Num && count < P_Size; i++)
for(j = 0;j < P_Size/Clu_Num;j++){
for(k = 0;k < DIM;k++)
solution[i][j][k] = initSolution[count][k];
count++;
}
}
//sorting solution:te best solution get lowest index in each cluster
void sorting(){
int i,j,k,m;
double temp[DIM];
for(i = 0;i < Clu_Num;i++)
for(j = 0; j < P_Size/Clu_Num;j++){
for(k = j + 1; k < P_Size/Clu_Num;k++){
if(evaluation(solution[i][k]) < evaluation(solution[i][j])){
for(m = 0;m < DIM;m ++){
temp[m] = solution[i][j][m];
solution[i][j][m] = solution[i][k][m];
solution[i][k][m] = temp[m];
}
}
}
}
}
//to show the best solution yet
double test(){
sorting();
int i,m;
double temp[DIM];
for(m = 0;m < DIM;m ++)
temp[m] = solution[0][0][m];
//find and store the best solution in all clusters yet
for(i = 0;i < Clu_Num;i++)
if(evaluation(solution[i][0]) < evaluation(temp))
for(m = 0;m < DIM;m ++)
temp[m] = solution[i][0][m];
return evaluation(temp);
}
//generate new solution
void refresh(){
/**
* cluIndex0X: randomly generated cluster index
* soluIndex0X: randomly generated solution index in a cluster
* m: count dimension for each solution
*/
int cluIndex,cluIndex01,cluIndex02,soluIndex,soluIndex01,soluIndex02,m;
double newIndivi[DIM];
//refresh center in a randomly cluster
if(Prand() < P_NewCenter){
//randomly choose a cluster
cluIndex = Crand();
//replace this cluster center
for(m = 0;m < DIM;m ++)
solution[cluIndex][0][m] = Srand();
}
//generate solutions from one cluster
if(Prand() < P_OneClu){
//randomly choose a cluster
cluIndex = Crand();
if(Prand() < P_One_Center){
//add noise to center to generate new solution
for(m = 0;m < DIM;m ++)
newIndivi[m] = solution[cluIndex][0][m] + Nrand();
//keep the better one
if(evaluation(newIndivi) < evaluation(solution[cluIndex][0]))
for(m = 0;m < DIM;m ++)
solution[cluIndex][0][m] = newIndivi[m];
}else{
//randomly choose a solution in this cluster
soluIndex = SIrand();
//add noise to this solution to generate new solution
for(m = 0;m < DIM;m ++)
newIndivi[m] = solution[cluIndex][soluIndex][m] + Nrand();
//keep the better one
if(evaluation(newIndivi) < evaluation(solution[cluIndex][soluIndex]))
for(m = 0;m < DIM;m ++)
solution[cluIndex][soluIndex][m] = newIndivi[m];
}
}
//generate solutions from two clusters
else{
//randomly choose two clusters
cluIndex01 = Crand();
cluIndex02 = Crand();
if(Prand() < P_Two_Center){
//generate new solution from two centers
for(m = 0;m < DIM;m ++)
newIndivi[m] = (solution[cluIndex01][0][m]+solution[cluIndex02][0][m])/2 + Nrand();
//keep the better one
if(evaluation(newIndivi) < evaluation(solution[cluIndex01][0]))
for(m = 0;m < DIM;m ++)
solution[cluIndex01][0][m] = newIndivi[m];
if(evaluation(newIndivi) < evaluation(solution[cluIndex02][0]))
for(m = 0;m < DIM;m ++)
solution[cluIndex02][0][m] = newIndivi[m];
}else{
//randomly choose two solutions in clusters
soluIndex01 = SIrand();
soluIndex02 = SIrand();
//generate new solution from these two solutions
for(m = 0;m < DIM;m ++)
newIndivi[m] = (solution[cluIndex01][soluIndex01][m]+solution[cluIndex02][soluIndex02][m])/2 + Nrand();
//keep the better one
if(evaluation(newIndivi) < evaluation(solution[cluIndex01][soluIndex01]))
for(m = 0;m < DIM;m ++)
solution[cluIndex01][soluIndex01][m] = newIndivi[m];
if(evaluation(newIndivi) < evaluation(solution[cluIndex02][soluIndex02]))
for(m = 0;m < DIM;m ++)
solution[cluIndex02][soluIndex02][m] = newIndivi[m];
}
}
}
//main function to test
int main(){
//to count the time
clock_t start,finish;
start=clock();
float duration;
int i,j;
double bestYet; //to store the best solution
FILE *fp = NULL; //pointer to output file
init();
/*
//test init function
for(int i = 0;i < P_Size; i++){
for(int j = 0;j < DIM;j++)
printf("%f\t",initSolution[i][j]);
printf("\n");
}
printf("\n this is initial solution matrix.\n\n");
*/
cluster();
/*
//test cluster function
for(i = 0;i < Clu_Num; i++){
for(j = 0;j < P_Size/Clu_Num;j++){
for(k = 0;k < DIM;k++)
printf("%f\t",solution[i][j][k]);
printf("\n");
}
printf("\n this is a cluster.\n");
}
printf("\n this is clustered solution matrix.\n\n");
*/
sorting();
/*
//test sorting function
for(i = 0;i < Clu_Num; i++){
for(j = 0;j < P_Size/Clu_Num;j++){
for(k = 0;k < DIM;k++)
printf("%f\t",solution[i][j][k]);
printf("\n");
}
printf("\n this is a cluster.\n");
}
printf("\n this is sorted solution matrix.\n\n");
*/
bestYet = evaluation(solution[0][0]);
for(i = 0; i < Iteration;i++){
for(j = 0;j < P_Size;j++){
refresh();
}
if(test() < bestYet)
bestYet = test();
}
//finish counting
finish=clock();
duration=(float)(finish-start)/1000;//1000 in windows; 1000000 in linux
fp = fopen(File_PATH, "a+");
if(NULL == fp){
return -1;
}
// fprintf(fp, File_title); //write title,only run at the first time
//write data
fprintf(fp, "%d,",P_Size);
fprintf(fp, "%d,",Clu_Num);
fprintf(fp, "%d,",DIM);
fprintf(fp, "%.4f,",NoiseRange);
fprintf(fp, "%d,",Iteration);
fprintf(fp, "%.6f,%f\n",bestYet,duration);
fclose(fp);
fp = NULL; //free the pointer
return 0;
}