-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
140 lines (116 loc) · 3.56 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import os
import shutil
import numpy as np
import librosa
import cv2
import open3d as o3d
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from threading import Timer
def warpgrid(bs, HO, WO, warp=True):
# meshgrid
x = np.linspace(-1, 1, WO)
y = np.linspace(-1, 1, HO)
xv, yv = np.meshgrid(x, y)
grid = np.zeros((bs, HO, WO, 2))
grid_x = xv
if warp:
grid_y = (np.power(21, (yv+1)/2) - 11) / 10
else:
grid_y = np.log(yv * 10 + 11) / np.log(21) * 2 - 1
grid[:, :, :, 0] = grid_x
grid[:, :, :, 1] = grid_y
grid = grid.astype(np.float32)
return grid
def makedirs(path, remove=False):
if os.path.isdir(path):
if remove:
shutil.rmtree(path)
print('removed existing directory...')
else:
return
os.makedirs(path)
class AverageMeter(object):
def __init__(self):
self.initialized = False
self.val = None
self.avg = None
self.sum = None
self.count = None
def initialize(self, val, weight):
self.val = val
self.avg = val
self.sum = val*weight
self.count = weight
self.initialized = True
def update(self, val, weight=1):
val = np.asarray(val)
if not self.initialized:
self.initialize(val, weight)
else:
self.add(val, weight)
def add(self, val, weight):
self.val = val
self.sum += val * weight
self.count += weight
self.avg = self.sum / self.count
def value(self):
if self.val is None:
return 0.
else:
return self.val.tolist()
def average(self):
if self.avg is None:
return 0.
else:
return self.avg.tolist()
def magnitude2heatmap(mag, log=True, scale=200.):
if log:
mag = np.log10(mag + 1.)
mag *= scale
mag[mag > 255] = 255
mag = mag.astype(np.uint8)
mag_color = cv2.applyColorMap(mag, cv2.COLORMAP_JET)
mag_color = mag_color[:, :, ::-1]
return mag_color
def istft_reconstruction(mag, phase, hop_length=256):
spec = mag.astype(np.complex) * np.exp(1j*phase)
wav = librosa.istft(spec, hop_length=hop_length)
return np.clip(wav, -1., 1.)
def kill_proc(proc):
proc.kill()
print('Process running overtime! Killed.')
def run_proc_timeout(proc, timeout_sec):
# kill_proc = lambda p: p.kill()
timer = Timer(timeout_sec, kill_proc, [proc])
try:
timer.start()
proc.communicate()
finally:
timer.cancel()
def save_points(path, xyz, colors=None):
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(xyz)
if colors is not None:
pcd.colors = o3d.utility.Vector3dVector(colors)
o3d.io.write_point_cloud(path, pcd)
def plot_loss_metrics(path, history):
fig = plt.figure()
plt.plot(history['train']['epoch'], history['train']['err'],
color='b', label='training')
plt.plot(history['val']['epoch'], history['val']['err'],
color='c', label='validation')
plt.legend()
fig.savefig(os.path.join(path, 'loss.png'), dpi=200)
plt.close('all')
fig = plt.figure()
plt.plot(history['val']['epoch'], history['val']['sdr'],
color='r', label='SDR')
plt.plot(history['val']['epoch'], history['val']['sir'],
color='g', label='SIR')
plt.plot(history['val']['epoch'], history['val']['sar'],
color='b', label='SAR')
plt.legend()
fig.savefig(os.path.join(path, 'metrics.png'), dpi=200)
plt.close('all')