-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTrain_HDNet.py
298 lines (271 loc) · 11.9 KB
/
Train_HDNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
# %% import random
# import numpy as np
# from PIL import Image
from model.HDNet import HighResolutionDecoupledNet
from utils.sync_batchnorm.batchnorm import convert_model
from torch.utils.data import DataLoader
from utils.dataset import BuildingDataset
from eval.eval_HDNet import eval_net
from tqdm import tqdm
from torch import optim
import torch.nn.functional as F
import torch.nn as nn
import torch
import logging
import os
import time
import datetime
def parse_args():
import argparse
parser = argparse.ArgumentParser(description="pytorch HDNet training")
parser.add_argument('--lr', default=0.001, type=float,
help='initial learning rate')
parser.add_argument("-b", "--batch-size", default=8, type=int)
parser.add_argument("--epochs", default=150, type=int, metavar="N",
help="number of total epochs to train")
parser.add_argument(
"--data-path",
default="data/Inria/")
parser.add_argument("--numworkers", default=8, type=int)
parser.add_argument("--num-classes", default=1, type=int)
parser.add_argument("--base-channel", default=48, type=int)
parser.add_argument("--device", default="cuda", help="training device")
parser.add_argument("--read-name", default='')
parser.add_argument("--save-name", default='HDNet_Inria_test')
parser.add_argument("--DataSet", default='Inria')
parser.add_argument("--image-folder", default='train/image')
args = parser.parse_args()
return args
def dice_loss_func(input, target):
smooth = 1.
n = input.size(0)
iflat = input.view(n, -1)
tflat = target.view(n, -1)
intersection = (iflat * tflat).sum(1)
loss = 1 - ((2. * intersection + smooth) /
(iflat.sum(1) + tflat.sum(1) + smooth))
return loss.mean()
def criterion(inputs, target,
loss_weight=torch.tensor(1),
dice: bool = True,
size=512):
bcecriterion = nn.BCEWithLogitsLoss(pos_weight=loss_weight)
if size == 512:
loss = bcecriterion(inputs.squeeze(), target.squeeze().float())
else:
if len(target.shape) == 3:
target = target.unsqueeze(1)
target = F.interpolate(target, mode='bilinear', size=(size, size))
loss = bcecriterion(inputs.squeeze(), target.squeeze().float())
if dice is True:
loss += dice_loss_func(torch.sigmoid(inputs.squeeze()),
target.squeeze().float())
return loss
def train_net(read_name,
save_name,
DataSet,
net,
device,
data_path,
args,
dir_checkpoint='save_weights/',
read_dir='save_weights/',
epochs=5,
batch_size=1,
lr=0.001,
num_workers=24,
save_weights=True):
results_file = "results{}.txt".format(
datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))
traindataset = BuildingDataset(
dataset_dir=data_path,
training=True,
txt_name=args.train_txt,
data_name=args.DataSet,
image_folder=args.image_folder,
label_folder=args.label_folder,
boundary_folder=args.boundary_folder)
valdataset = BuildingDataset(
dataset_dir=data_path,
training=False,
txt_name=args.val_txt,
data_name=args.DataSet,
image_folder=args.image_folder,
label_folder=args.label_folder,
boundary_folder=args.boundary_folder)
train_loader = DataLoader(traindataset,
batch_size=batch_size,
shuffle=True,
num_workers=num_workers,
drop_last=True)
val_loader = DataLoader(valdataset,
batch_size=batch_size,
shuffle=False,
num_workers=num_workers,
drop_last=False)
global_step = 0
logging.info(f'''Starting training:
Epochs: {epochs}
Batch size: {batch_size}
Learning rate: {lr}
Training size: {len(traindataset)}
Validation size: {len(valdataset)}
Saveweights: {save_weights}
Device: {device.type}
''')
optimizer = optim.Adam(net.module.parameters(), lr=lr, weight_decay=1e-5)
scheduler = optim.lr_scheduler.StepLR(optimizer, 1, 0.7)
print('Learning rate: ', optimizer.state_dict()['param_groups'][0]['lr'])
if os.path.exists(os.path.join(read_dir, read_name + '.pth')):
best_val_score = eval_net(
net, val_loader, device, savename=DataSet + '_' + read_name)[0] #
print('Best iou:', best_val_score)
no_optim = 0
else:
print('Training new model....')
best_val_score = -1
start_time = time.time()
for epoch in range(epochs):
net.train()
epoch_loss = 0
with tqdm(total=len(traindataset), desc=f'Epoch {epoch + 1}/{epochs}',
unit='img') as pbar:
for num, batch in enumerate(train_loader):
imgs = batch['image']
true_labels = batch['label'] > 0
dis_masks = batch['distance_map']
imgs = imgs.to(device=device, dtype=torch.float32)
label_type = torch.float32
true_labels = true_labels.to(device=device, dtype=label_type)
dis_masks = dis_masks.to(device=device).float()
edge_masks = ((dis_masks < 3) & (dis_masks > 0)
).to(device=device).float()
(x_seg, x_bd, seg1, seg2, seg3, seg4, seg5, seg6,
bd1, bd2, bd3, bd4, bd5, bd6) = net(imgs)
# x_seg = x_seg.to(device)
# x_bd = x_bd.to(device)
# seg1 = seg1.to(device)
# seg2 = seg2.to(device)
# seg3 = seg3.to(device)
# seg4 = seg4.to(device)
# seg5 = seg5.to(device)
# seg6 = seg6.to(device)
# bd1 = bd1.to(device)
# bd2 = bd2.to(device)
# bd3 = bd3.to(device)
# bd4 = bd4.to(device)
# bd5 = bd5.to(device)
# bd6 = bd6.to(device)
# Mass: 3 / 9 WHU: 7 / 21 Inria: 10 / 30
loss = criterion(x_seg, true_labels, dice=True) + \
0.3 * criterion(seg1, true_labels, dice=True, size=256) + \
0.3 * criterion(seg2, true_labels, dice=True, size=256) + \
0.5 * criterion(seg3, true_labels, dice=True, size=256) + \
0.5 * criterion(seg4, true_labels, dice=True, size=256) + \
0.5 * criterion(seg5, true_labels, dice=True, size=256) + \
0.5 * criterion(seg6, true_labels, dice=True) + \
criterion(x_bd, edge_masks, loss_weight=torch.tensor(9),
dice=True) + \
0.3 * criterion(bd1, edge_masks,
loss_weight=torch.tensor(3),
dice=True, size=256) + \
0.3 * criterion(bd2, edge_masks,
loss_weight=torch.tensor(3),
dice=True, size=256) + \
0.5 * criterion(bd3, edge_masks,
loss_weight=torch.tensor(3),
dice=True, size=256) + \
0.5 * criterion(bd4, edge_masks,
loss_weight=torch.tensor(3),
dice=True, size=256) + \
0.5 * criterion(bd5, edge_masks,
loss_weight=torch.tensor(3),
dice=True, size=256) + \
0.5 * criterion(bd6, edge_masks,
loss_weight=torch.tensor(9), dice=True)
epoch_loss += loss.item()
pbar.set_postfix(**{'loss (batch)': loss.item()})
optimizer.zero_grad()
# with torch.autograd.set_detect_anomaly(True):
loss.backward()
optimizer.step()
pbar.update(imgs.shape[0])
global_step += 1
val_score = eval_net(net, val_loader, device)
with open(results_file, "a") as f:
learning_rate = optimizer.state_dict()['param_groups'][0]['lr']
info = f"[epoch: {epoch}]\n" \
f"batch_loss: {loss.item():.4f}\n" \
f"epoch_loss: {epoch_loss:.4f}\n" \
f"val_IoU: {val_score:.6f}\n" \
f"lr: {learning_rate}\n"
f.write(info + "\n\n")
if val_score > best_val_score:
best_val_score = val_score
torch.save(net.module.state_dict(),
dir_checkpoint + save_name + '_best.pth')
logging.info(f'Checkpoint {save_name} saved !')
no_optim = 0
else:
no_optim = no_optim + 1
torch.save(net.module.state_dict(), dir_checkpoint + save_name +
"_model_{}.pth".format(epoch))
logging.info(f'Checkpoint {save_name} saved !')
if no_optim > 3:
net.module.load_state_dict(torch.load(
dir_checkpoint + save_name + '_best.pth'))
scheduler.step()
print('Scheduler step!')
print('Learning rate: ', optimizer.state_dict()
['param_groups'][0]['lr'])
no_optim = 0
if optimizer.state_dict()['param_groups'][0]['lr'] < 1e-7:
break
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print("training time {}".format(total_time_str))
def main(args, dir_checkpoint='save_weights/', read_dir='save_weights/', read_name=''):
save_name = args.save_name
# Dataset = args.DataSet
print(save_name)
net = HighResolutionDecoupledNet(
base_channel=args.base_channel, num_classes=args.num_classes)
print('HDNet parameters: %d' % sum(p.numel() for p in net.parameters()))
logging.basicConfig(level=logging.INFO,
format='%(levelname)s: %(message)s')
device_name = args.device
if device_name == 'cuda':
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
else:
device = torch.device('cpu')
logging.info(f'Using device {device}')
if read_name != '':
net_state_dict = net.state_dict()
state_dict = torch.load(
read_dir + read_name + '.pth', map_location=device)
net_state_dict.update(state_dict)
net.load_state_dict(net_state_dict)
logging.info('Model loaded from ' + read_name + '.pth')
net = convert_model(net)
net = torch.nn.parallel.DataParallel(net.to(device))
torch.backends.cudnn.benchmark = True
train_net(read_name=read_name,
save_name=args.save_name,
DataSet=args.DataSet,
net=net,
device=device,
args=args,
dir_checkpoint=dir_checkpoint,
read_dir=read_dir,
data_path=args.data_path,
epochs=args.epochs,
batch_size=args.batch_size,
lr=args.lr,
num_workers=args.numworkers,
)
if __name__ == '__main__':
args = parse_args()
dir_checkpoint = 'save_weights/'
if not os.path.exists("./save_weights"):
os.mkdir("./save_weights")
main(args)