-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy paths_ms_display_dsig_rmse_fig3_6.m
419 lines (354 loc) · 16.6 KB
/
s_ms_display_dsig_rmse_fig3_6.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
function s_ms_display_dsig_rmse_fig3_6(trackingType,lmax,bval,rep,volume)
%
% s_ms_test_connectomes_display_dwi(trackingType,lmax,bval,rep)
%
% Load a series of FE structures for conectomes of the occipital lobe.
% Saves figures of the occipital diffusion signal (measured, predicted, error).
%
% This is part of a series of reproducible science scritps to be published
% with the LiFE mansucript.
%
% Franco (c) Stanford Vista Team 2013
if notDefined('trackingType'),trackingType = 'deterministic';end
if notDefined('lmax'), lmax = 8;end
if notDefined('bval'), bval = 2000;end
if notDefined('rep'), rep = 1;end
if notDefined('diffusionModelParams'), diffusionModelParams=[1,0];end
if notDefined('saveDir'), saveDir = fullfile('/home/frk/Dropbox','pestilli_etal_revision',mfilename);end
doFD = 0;
% Figures, slices, axis and plotting.
dirs = [65];
slices = [-70];
xlim = [-70 67];
zlim = [-22 75];
dsig_colormap = 'jet';
figVisible = 'on';
% High-resolution Anatomy
t1File = '/azure/scr1/frk/150dirs_b1000_b2000_b4000/150dirs_b2000/t1/t1.nii.gz';
t1 = niftiRead(t1File);
% Information on the path to the files to load.
feFileToLoad{1} = '/azure/scr1/frk/150dirs_b1000_b2000_b4000/results/life_mrtrix_rep1/fe_hemispheres/fe_culled_FP_150_B2000_LMAX8_right.mat';
feFileToLoad{2} = '/azure/scr1/frk/150dirs_b1000_b2000_b4000/results/life_mrtrix_rep1/fe_hemispheres/fe_culled_FP_150_B2000_LMAX8_left.mat';
for isl = 1:length(slices)
for idir = 1:length(dirs)
volume = [0 slices(isl) 0 dirs(idir)];
for ih = 1:2
disp('Loading the FE structure...')
load(feFileToLoad{ih});
% Indices into the 4D volume toaddress the signal without the
% B0 measurements
volSiz = feGet(fe,'volumesize')-[0 0 0 10];
% Get the xform and the coordinates
xform = feGet(fe,'xform img 2 acpc');
coords{ih} = feGet(fe,'roicoords')+1; % This is weird, it appears that i need to add 1 to all the coordinates
if doFD
% Get the fiber density
fd{ih} = feGet(fe,'fiber density');
fdImg{ih} = feValues2volume(fd{ih}(:,1)',coords{ih},volSiz);
end
% Get the signal into an image.
dSig{ih} = feGet(fe,'dsigdemeanedvox');
dSigImg1{ih} = feValues2volume(dSig{ih},coords{ih},volSiz);
% Get the signal into an image.
dSig{ih} = feGetRep(fe,'dsigdemeanedvox');
dSigImg2{ih} = feValues2volume(dSig{ih},coords{ih},volSiz);
% Predicted signal
pSig{ih} = feGet(fe,'psigfvox');
pSigImg{ih} = feValues2volume(pSig{ih},coords{ih},volSiz);
% The last terms do not have a 4th dimension
volSiz = volSiz(1:3);
% Error model
eSig{ih} = feGetRep(fe,'voxrmse');
eSigImg{ih} = feValues2volume(eSig{ih},coords{ih},volSiz);
% Error data
edSig{ih} = feGetRep(fe,'voxrmsedata');
edSigImg{ih} = feValues2volume(edSig{ih},coords{ih},volSiz);
% Rrmse
rSig{ih} = feGetRep(fe,'voxrmseratio');
rSigImg{ih} = feValues2volume(rSig{ih},coords{ih},volSiz);
end
if doFD
% Combine the informantion of the left and right hemisphere
fdImgB = nan(size(fdImg{1}));
fdImgB(~isnan(fdImg{1})) = fdImg{1}(~isnan(fdImg{1}));
fdImgB(~isnan(fdImg{2})) = fdImg{2}(~isnan(fdImg{2}));
end
% Combine the informantion of the left and right hemisphere
dSigImgB1 = nan(size(dSigImg1{1}));
dSigImgB1(~isnan(dSigImg1{1})) = dSigImg1{1}(~isnan(dSigImg1{1}));
dSigImgB1(~isnan(dSigImg1{2})) = dSigImg1{2}(~isnan(dSigImg1{2}));
dSigImgB1(1,1,1,volume(end)) = 300;
dSigImgB1(1,2,1,volume(end)) = -300;
% Combine the informantion of the left and right hemisphere
dSigImgB2 = nan(size(dSigImg2{1}));
dSigImgB2(~isnan(dSigImg2{1})) = dSigImg2{1}(~isnan(dSigImg2{1}));
dSigImgB2(~isnan(dSigImg2{2})) = dSigImg2{2}(~isnan(dSigImg2{2}));
dSigImgB2(1,1,1,volume(end)) = 300;
dSigImgB2(1,2,1,volume(end)) = -300;
% Combine the informantion of the left and right hemisphere
pSigImgB = nan(size(pSigImg{1}));
pSigImgB(~isnan(pSigImg{1})) = pSigImg{1}(~isnan(pSigImg{1}));
pSigImgB(~isnan(pSigImg{2})) = pSigImg{2}(~isnan(pSigImg{2}));
pSigImgB(1,1,1,volume(end)) = 300;
pSigImgB(1,2,1,volume(end)) = -300;
% Combine the informantion of the left and right hemisphere
eSigImgB = nan(size(eSigImg{1}));
eSigImgB(~isnan(eSigImg{1})) = eSigImg{1}(~isnan(eSigImg{1}));
eSigImgB(~isnan(eSigImg{2})) = eSigImg{2}(~isnan(eSigImg{2}));
eSigImgB(1,1,1) = 100;
eSigImgB(1,2,1) = 0;
% Combine the informantion of the left and right hemisphere
edSigImgB = nan(size(edSigImg{1}));
edSigImgB(~isnan(edSigImg{1})) = edSigImg{1}(~isnan(edSigImg{1}));
edSigImgB(~isnan(edSigImg{2})) = edSigImg{2}(~isnan(edSigImg{2}));
edSigImgB(1,1,1) = 100;
edSigImgB(1,2,1) = 0;
% Combine the informantion of the left and right hemisphere
rSigImgB = nan(size(rSigImg{1}));
rSigImgB(~isnan(rSigImg{1})) = rSigImg{1}(~isnan(rSigImg{1}));
rSigImgB(~isnan(rSigImg{2})) = rSigImg{2}(~isnan(rSigImg{2}));
if doFD
% Create the nifti structure
niFD = niftiCreate('data',fdImgB(:,:,:,volume(end)), ...
'qto_xyz',xform, ...
'fname','fd', ...
'data_type',class(fdImgB));
end
% Create the nifti structure
niMs1 = niftiCreate('data',dSigImgB1(:,:,:,volume(end)), ...
'qto_xyz',xform, ...
'fname','dwi_measured_signal', ...
'data_type',class(dSigImgB1));
% Create the nifti structure
niMs2 = niftiCreate('data',dSigImgB2(:,:,:,volume(end)), ...
'qto_xyz',xform, ...
'fname','dwi_measured_signal', ...
'data_type',class(dSigImgB2));
% Create the nifti structure
niP = niftiCreate('data',pSigImgB(:,:,:,volume(end)), ...
'qto_xyz',xform, ...
'fname','dwi_predicted_signal', ...
'data_type',class(pSigImgB));
% Create the nifti structure
niE = niftiCreate('data',eSigImgB, ...
'qto_xyz',xform, ...
'fname','dwi_rmse_signal', ...
'data_type',class(eSigImgB));
% Create the nifti structure
niED = niftiCreate('data',edSigImgB, ...
'qto_xyz',xform, ...
'fname','dwi_rmse_signal', ...
'data_type',class(edSigImgB));
% Create the nifti structure
niR = niftiCreate('data',rSigImgB, ...
'qto_xyz',xform, ...
'fname','dwi_rmse_signal', ...
'data_type',class(rSigImgB));
% Directory to save the figures
saveDirF = fullfile(saveDir,['slice',num2str(slices(isl))],['dir',num2str(dirs(idir))]);
if doFD
% Measured signal 1
figName = sprintf('FiberDensity_slice%i_dir%i_%s_lmax%i_bval%i_rep%i_diffMode%i_%i',...
slices(isl),dirs(idir),trackingType,lmax,bval,rep, ...
100*diffusionModelParams(1),100*diffusionModelParams(2));
fh = figure('name',figName,'visible',figVisible,'color','w');
sh = mbaDisplayOverlay(t1, niFD, volume(1:3), [], 'hot');
% Tick marks for the colorbar
mm = minmax(niFD.data(:));
barticks = [mm(1) 0 mm(2)];
% Information to display in the title
M = nanmean( niFD.data(:));
m = nanmedian(niFD.data(:));
SD = nanstd( niFD.data(:));
saveMap(fh, figName, saveDirF,M,m,SD,barticks,xlim,zlim,'hot');
end
% Measured signal 1
figName = sprintf('dwi_measured_signal_1_slice%i_dir%i_%s_lmax%i_bval%i_rep%i_diffMode%i_%i',...
slices(isl),dirs(idir),trackingType,lmax,bval,rep, ...
100*diffusionModelParams(1),100*diffusionModelParams(2));
fh = figure('name',figName,'visible',figVisible,'color','w');
sh = mbaDisplayOverlay(t1, niMs1, volume(1:3), [], dsig_colormap);
% Tick marks for the colorbar
mm = minmax(niMs1.data(:));
barticks = [mm(1) 0 mm(2)];
% Information to display in the title
M = nanmean( niMs1.data(:));
m = nanmedian(niMs1.data(:));
SD = nanstd( niMs1.data(:));
saveMap(fh, figName, saveDirF,M,m,SD,barticks,xlim,zlim,dsig_colormap);
% Measured signal 2
figName = sprintf('dwi_measured_signal_2_slice%i_dir%i_%s_lmax%i_bval%i_rep%i_diffMode%i_%i',...
slices(isl),dirs(idir),trackingType,lmax,bval,rep, ...
100*diffusionModelParams(1),100*diffusionModelParams(2));
fh = figure('name',figName,'visible',figVisible,'color','w');
sh = mbaDisplayOverlay(t1, niMs2, volume(1:3), [], dsig_colormap);
% Tick marks for the colorbar
mm = minmax(niMs2.data(:));
barticks = [mm(1) 0 mm(2)];%[-200 0 200];
% Information to display in the title
M = nanmean( niMs2.data(:));
m = nanmedian(niMs2.data(:));
SD = nanstd( niMs2.data(:));
saveMap(fh, figName, saveDirF,M,m,SD,barticks,xlim,zlim,dsig_colormap);
% Predicted signal
figName = sprintf('dwi_predicted_signal_slice%i_dir%i_%s_lmax%i_bval%i_rep%i_diffMode%i_%i',...
slices(isl),dirs(idir),trackingType,lmax,bval,rep, ...
100*diffusionModelParams(1),100*diffusionModelParams(2));
fh = figure('name',figName,'visible',figVisible,'color','w');
sh = mbaDisplayOverlay(t1, niP, volume(1:3),[],dsig_colormap);
% Tick marks for the colorbar
mm = minmax(niP.data(:));
barticks = [mm(1) 0 mm(2)];%[-200 0 200];
% Information to display in the title
M = nanmean( niP.data(:));
m = nanmedian(niP.data(:));
SD = nanstd( niP.data(:));
saveMap(fh, figName, saveDirF,M,m,SD,barticks,xlim,zlim,dsig_colormap);
end
if doFD
saveDirFD = fullfile(saveDir,'fiber_density');
% Make a histogram plot of the fiber density and of the Rrmse
xBins = [0 1 2 4 8 16 32 64];
x = 1:length(xBins);
figName = sprintf('FiberDensity_hist');
fh = figure('name',figName,'visible',figVisible,'color','w');
colors{1} = [.6 .6 .6];
colors{2} = [.35 .35 .35];
% Fiber density
FD = fd{:};
y = hist(FD(:,1),xBins);
ynorm = y./sum(y);
% Compute the dynamic range
dyrng = prctile(FD(:,1),99) / max([prctile(FD(:,1),1),1]) ;
plot(x,ynorm,'ko-','color',colors{2}, ...
'markerfacecolor',colors{2},'markeredgecolor', ...
'w','markersize',8)
ylabel('Probability')
xlabel('Fibers per voxel')
set(gca,'tickdir','out','ticklength',[0.025 0],'box','off','FontSize',20,'ylim',[0 0.4], ...
'xlim',[0 max(x)+1],'xtick',x,'xticklabel',xBins);
title(sprintf('Dynamic range %2.2f',dyrng))
saveFig(fh,fullfile(saveDirFD,figName),1)
end
% Directory to save the figures
saveDirF = fullfile(saveDir,'errors');
% Make a histogram plot of the fiber density and of the Rrmse
nBins= logspace(log10(.5),log10(2),25);
x = 1:length(nBins);
Rrmse = rSig{:};
[y,x] = hist(Rrmse,nBins);
nSum = sum(y);
y = y./nSum;
figName = sprintf('Rrmse_hist');
fh = figure('name',figName,'visible',figVisible,'color','w');
colors{1} = [.35 .35 .35];
px = x(x<=1);
px =[px px(end)];
py = [y(x<=1) 0];
pp = patch(px,py,[.8 .8 .8],'edgecolor',[.8 .8 .8]);
hold on
plot([1 1],[0 .16],'k--')
plot(x,y,'o-','color',colors{1}, ...
'markerfacecolor', colors{1}, ...
'markeredgecolor','w',...
'markersize',18,'linewidth',2)
set(gca,'tickdir','out','box','off', ...
'fontsize',20,'ylim',[0 .16],'ytick',[0 .08 .16], ...
'xtick',[.5 1 2], 'xscale','log','ticklength',[0.025 0])
ylabel('Probability','fontsize',20)
xlabel('R_{rmse}','fontsize',20)
title(sprintf('Proportion R_{rmse}<= 1: %2.3f',sum(y(x<=1))),'fontsize',20)
saveFig(fh,fullfile(saveDirF,figName),1)
% RMSE
figName = sprintf('dwi_rmse_model_slice%i_%s_lmax%i_bval%i_rep%i_diffMode%i_%i',....
slices(isl),trackingType,lmax,bval,rep, ...
100*diffusionModelParams(1),100*diffusionModelParams(2));
fh = figure('name',figName,'visible',figVisible,'color','w');
sh = mbaDisplayOverlay(t1, niE, volume(1:3));
% Tick marks for the colorbar
mm = round(minmax(niE.data(:)));
barticks = [mm(1) mean(mm) mm(2)];
% Information to display in the title
M = nanmean( niE.data(:));
m = nanmedian(niE.data(:));
SD = nanstd( niE.data(:));
saveMap(fh, figName, saveDirF,M,m,SD,barticks,xlim,zlim,'hot');
% RMSE data
figName = sprintf('dwi_rmse_data_slice%i_%s_lmax%i_bval%i_rep%i_diffMode%i_%i',....
slices(isl),trackingType,lmax,bval,rep, ...
100*diffusionModelParams(1),100*diffusionModelParams(2));
fh = figure('name',figName,'visible',figVisible,'color','w');
sh = mbaDisplayOverlay(t1, niED, volume(1:3));
% Tick marks for the colorbar
mm = round(minmax(niED.data(:)));
barticks = [mm(1) mean(mm) mm(2)];
% Information to display in the title
M = nanmean( niED.data(:));
m = nanmedian(niED.data(:));
SD = nanstd( niED.data(:));
saveMap(fh, figName, saveDirF,M,m,SD,barticks,xlim,zlim,'hot');
% Rrmse
figName = sprintf('dwi_Rrmse_slice%i_%s_lmax%i_bval%i_rep%i_diffMode%i_%i',...
slices(isl),trackingType,lmax,bval,rep, ...
100*diffusionModelParams(1),100*diffusionModelParams(2));
fh = figure('name',figName,'visible',figVisible,'color','w');
sh = mbaDisplayOverlay(t1, niR, volume(1:3));
% Tick marks for the colorbar
mm = minmax(niR.data(:));
barticks = [0.5 1 2];
% Information to display in the title
M = nanmean( niR.data(:));
m = nanmedian(niR.data(:));
SD = nanstd( niR.data(:));
saveMap(fh, figName, saveDirF,M,m,SD,barticks,xlim,zlim,'hot');
drawnow
end
end
%---------------------------------%
function saveMap(fh,figName,saveDir,M,m,SD,barticks,xlim,zlim,mapType)
% This helper function saves two figures for each map and eps with onlythe
% axis and a jpg with only the brain slice.
% The two can then be combined in illustrator.
%
% We save only the slice as jpeg.
set(fh,'Units','normalized','Position',[0 .1 0.35 0.95]);
set(gca,'fontsize',20,'ztick',[-40 -20 0 20 40 60], ...
'xtick',[-50 -25 0 25 50], ...
'xlim',xlim,'zlim',zlim,'tickdir','out','ticklength',[0.025 0])
axis off
saveFig(fh,fullfile(saveDir,figName),'png')
% Then we save the slice with the axis as
% eps. This will only generate the axis
% that can be then combined in illustrator.
axis on
grid off
% Title and lables information
title(sprintf('mean %2.2f | median %2.2f | SD %2.2f', M,m,SD),'fontsize',16)
zlabel('Z (mm)','fontsize',20)
xlabel('X (mm)','fontsize',20)
% Build a colormap
cmap = colormap(eval(sprintf('%s(255)',mapType)));
ch = colorbar('ytick',linspace(0,1,3),'yticklabel', ...
barticks, 'tickdir','out', ...
'ticklength', [0.025 0], 'fontsize',20);
drawnow
saveFig(fh,fullfile(saveDir,figName),'eps');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function saveFig(h,figName,eps)
if ~exist( fileparts(figName), 'dir'), mkdir(fileparts(figName));end
fprintf('[%s] saving figure... \n%s\n',mfilename,figName);
switch eps
case {0,'jpeg'}
eval(sprintf('print(%s, ''-djpeg90'', ''-opengl'', ''%s'')', num2str(h),figName));
case {1,'eps'}
eval(sprintf('print(%s, ''-cmyk'', ''-painters'',''-depsc2'',''-tiff'',''-r500'' , ''-noui'', ''%s'')', num2str(h),figName));
case 'png'
eval(sprintf('print(%s, ''-dpng'',''-r500'', ''%s'')', num2str(h),figName));
case 'tiff'
eval(sprintf('print(%s, ''-dtiff'',''-r500'', ''%s'')', num2str(h),figName));
case 'bmp'
eval(sprintf('print(%s, ''-dbmp256'',''-r500'', ''%s'')', num2str(h),figName));
otherwise
end
end