|
| 1 | +<!doctype html> |
| 2 | +<html> |
| 3 | + <head> |
| 4 | + <title>TeXZilla</title> |
| 5 | + <meta charset="utf-8"/> |
| 6 | +<!-- This Source Code Form is subject to the terms of the Mozilla Public |
| 7 | + - License, v. 2.0. If a copy of the MPL was not distributed with this |
| 8 | + - file, You can obtain one at http://mozilla.org/MPL/2.0/. --> |
| 9 | + <script type="text/javascript" src="./TeXZilla-min.js"></script> |
| 10 | + </head> |
| 11 | + <body> |
| 12 | + |
| 13 | + <p> |
| 14 | + <select id="mode"> |
| 15 | + <option value="display">Display Mode</option> |
| 16 | + <option value="inline">Inline Mode</option> |
| 17 | + </select> |
| 18 | + |
| 19 | + <select id="dir"> |
| 20 | + <option value="LTR">LTR</option> |
| 21 | + <option value="RTL">RTL</option> |
| 22 | + </select> |
| 23 | + |
| 24 | + <select id="examples"> |
| 25 | + <option value="" selected="selected">-- select an example --</option> |
| 26 | + <option value="\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1">Ellipse Equation</option> |
| 27 | + <option value="\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}">Sum 1/n²</option> |
| 28 | + <option value="∑_{n=1}^{+∞} \frac{1}{n^2} = \frac{π^2}{6}">Sum 1/n² (Unicode)</option> |
| 29 | + <option value="x = \frac{-b\pm\sqrt{b^2-4ac}}{2a}">Quadratic Formula</option> |
| 30 | + <option value="س = \frac{-ب\pm\sqrt{ب^٢-٤اج}}{٢ا}">Quadratic Formula (Arabic)</option> |
| 31 | + <option value="f(x)=\sum_{n=-\infty}^\infty c_n e^{2\pi i(n/T) x} =\sum_{n=-\infty}^\infty \hat{f}(\xi_n) e^{2\pi i\xi_n x}\Delta\xi">Fourier Transform</option> |
| 32 | + <option value="\Gamma(t) = \lim_{n \to \infty} \frac{n! \; n^t}{t \; (t+1)\cdots(t+n)}= \frac{1}{t} \prod_{n=1}^\infty \frac{\left(1+\frac{1}{n}\right)^t}{1+\frac{t}{n}} = \frac{e^{-\gamma t}}{t} \prod_{n=1}^\infty \left(1 + \frac{t}{n}\right)^{-1} e^{\frac{t}{n}}">Gamma function</option> |
| 33 | + <option value="\mathfrak{sl}(n, \mathbb{F}) = \left\{ A \in \mathscr{M}_n(\mathbb{F}) : \operatorname{Tr}(A) = 0 \right\}">Lie Algebra</option> |
| 34 | + <option value="x^2 y^2">Mozilla MathML Torture Test 1</option> |
| 35 | + <option value="\multiscripts{_2}{F}{_3}">Mozilla MathML Torture Test 2</option> |
| 36 | + <option value="\frac{x+y^2}{k+1}">Mozilla MathML Torture Test 3</option> |
| 37 | + <option value="x+y^{\frac 2 {k+1}}">Mozilla MathML Torture Test 4</option> |
| 38 | + <option value="\frac{a}{b/2}">Mozilla MathML Torture Test 5</option> |
| 39 | + <option value="\displaystyle a_0 + \frac{1}{\displaystyle a_1+\frac{1}{\displaystyle a_2+\frac{1}{\displaystyle a_3+\frac{1}{\displaystyle a_4}}}}">Mozilla MathML Torture Test 6</option> |
| 40 | + <option value="a_0 + \frac{1}{a_1+\frac{1}{a_2+\frac{1}{a_3+\frac{1}{a_4}}}}">Mozilla MathML Torture Test 7</option> |
| 41 | + <option value="\binom{n}{k/2}">Mozilla MathML Torture Test 8</option> |
| 42 | + <option value="\binom{p}{2} x^2 y^{p-2} - \frac{1}{1-x} \frac{1}{1-x^2}">Mozilla MathML Torture Test 9</option> |
| 43 | + <option value="\sum_{\substack{ |
| 44 | + 0 \le i \le m \\ |
| 45 | + 0 < j < n |
| 46 | + }} {P(i,j)}">Mozilla MathML Torture Test 10</option> |
| 47 | + <option value="x^{2y}">Mozilla MathML Torture Test 11</option> |
| 48 | + <option value="\sum_{i=1}^p \sum_{j=1}^q \sum_{k=1}^r {a_{i j} b_{j k} c_{k i}}">Mozilla MathML Torture Test 12</option> |
| 49 | + <option value="\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+x}}}}}}}">Mozilla MathML Torture Test 13</option> |
| 50 | + <option value="\left( \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) {| \varphi(x+ i y)|}^2 = 0">Mozilla MathML Torture Test 14</option> |
| 51 | + <option value="2^{2^{2^x}}">Mozilla MathML Torture Test 15</option> |
| 52 | + <option value="\int_1^x \frac{dt}{t}">Mozilla MathML Torture Test 16</option> |
| 53 | + <option value="\iint_D {dx dy}">Mozilla MathML Torture Test 17</option> |
| 54 | + <option value="f(x) = |
| 55 | +\begin{cases} |
| 56 | +1/3 & \text{if} \quad 0 \leq x \leq 1; \\ |
| 57 | +2/3 & \text{if} \quad 3 \leq x \leq 4; \\ |
| 58 | +0 & \text{elsewhere}. |
| 59 | +\end{cases} |
| 60 | +">Mozilla MathML Torture Test 18</option> |
| 61 | + <option value="\overset{k \, \text{times}}{\overbrace{x+\dots+x}}">Mozilla MathML Torture Test 19</option> |
| 62 | + <option value="y_{x^2}">Mozilla MathML Torture Test 20</option> |
| 63 | + <option value="\sum_{p \, \text{prime}} {f(p)} = \int_{t > 1} {f(t) d\pi(t)} ">Mozilla MathML Torture Test 21</option> |
| 64 | + <option value="\{\underset{k+l \, \text{elements}}{ |
| 65 | +\underbrace{ |
| 66 | +\overset{k \, a\text{'s}}{\overbrace{\mathrlap \phantom{(} a,\dots,a}}, |
| 67 | +\overset{l \, b\text{'s}}{\overbrace{\mathrlap \phantom{(} b,\dots,b}} |
| 68 | +}}\}">Mozilla MathML Torture Test 22</option> |
| 69 | + <option value="\begin{pmatrix} |
| 70 | +\begin{pmatrix} a & b \\ c & d \end{pmatrix} & |
| 71 | +\begin{pmatrix} e & f \\ g & h \end{pmatrix} \\ |
| 72 | +0 & |
| 73 | +\begin{pmatrix} i & j \\ k & l \end{pmatrix} |
| 74 | +\end{pmatrix}">Mozilla MathML Torture Test 23</option> |
| 75 | + <option value="\det |
| 76 | +\begin{vmatrix} |
| 77 | +c_0 & c_1 & c_2 & \dots & c_n \\ |
| 78 | +c_1 & c_2 & c_3 & \dots & c_{n+1} \\ |
| 79 | +c_2 & c_3 & c_4 & \dots & c_{n+2} \\ |
| 80 | +\vdots & \vdots & \vdots & & \vdots \\ |
| 81 | +c_n & c_{n+1} & c_{n+2} & \dots & c_{2n} |
| 82 | +\end{vmatrix} |
| 83 | + > 0">Mozilla MathML Torture Test 24</option> |
| 84 | + <option value="y_{x_2}">Mozilla MathML Torture Test 25</option> |
| 85 | + <option value="x^31415_92 + \pi">Mozilla MathML Torture Test 26</option> |
| 86 | + <option value="x^{z^d_c}_{y_b^a}">Mozilla MathML Torture Test 27</option> |
| 87 | + <option value="y_3'''">Mozilla MathML Torture Test 28</option> |
| 88 | + <option value="\begin{aligned} |
| 89 | +\dot{x} & = \sigma(y-x) \\ |
| 90 | +\dot{y} & = \rho x - y - xz \\ |
| 91 | +\dot{z} & = -\beta z + xy |
| 92 | +\end{aligned}">MathJax - The Lorenz Equations</option> |
| 93 | + <option value="\left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)">MathJax - The Cauchy-Schwarz Inequality</option> |
| 94 | + <option value="\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} |
| 95 | +\mathbf{i} & \mathbf{j} & \mathbf{k} \\ |
| 96 | +\frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\ |
| 97 | +\frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0 |
| 98 | +\end{vmatrix}">MathJax - A Cross Product Formula</option> |
| 99 | + <option value="P(E) = {n \choose k} p^k (1-p)^{ n-k}">MathJax - The probability of getting k heads when flipping n coins</option> |
| 100 | + <option value="\frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = |
| 101 | +1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} |
| 102 | +{1+\frac{e^{-8\pi}} {1+\ldots} } } }">MathJax - An Identity of Ramanujan</option> |
| 103 | + <option value="1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = |
| 104 | +\prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, |
| 105 | +\quad\quad \text{for} \quad |q| < 1.">MathJax - A Rogers-Ramanujan Identity</option> |
| 106 | + <option value="\begin{aligned} |
| 107 | +\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ |
| 108 | +\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ |
| 109 | +\nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned}">MathJax - Maxwell’s Equations</option> |
| 110 | + </select> |
| 111 | + </p> |
| 112 | + <textarea id="input" style="width: 100%;" rows="10" dir="ltr"></textarea> |
| 113 | + |
| 114 | + <div id="output"></div> |
| 115 | + |
| 116 | + <script type="text/javascript" src="./index.js"></script> |
| 117 | + |
| 118 | + </body> |
| 119 | +</html> |
0 commit comments