-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrungeKuttaMethod4.py
executable file
·48 lines (38 loc) · 1018 Bytes
/
rungeKuttaMethod4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#!/usr/bin/env python2.7
# Will Fritz
# 12/4/2017
# Using Runge Kutta Method of order 4 to approximate y(1) if the following IVP:
# (dy/dt) = 0.3 - 0.1y(t), 0 <= t <= 1
# y(0) = 0
import numpy as np
import math
# globals
x0 = 0
y0 = 0
xf = 1
h = 0.2 # h = (xf-x0)/(n-1)
n = 6
# eqn used to describe (dy/dt) = f(x,y)
def f(x,y):
return (0.3-0.1*y)
# initialize x and y
x = np.linspace(x0, xf, n)
y = np.zeros([n])
# initial values
y[0] = y0
w = y0
# populate y using Runge Kutta of order 4
for i in range(1, n):
k1 = h*f(0, w)
k2 = h*f(0, w + k1/2)
k3 = h*f(0, w + k2/2)
k4 = h*f(0, w + k3)
w = w + (k1 + 2*k2 + 2*k3 + k4)/6
y[i] = w
print("w({}) = {}".format(i, w))
yApprox = y[-1]
yExact = -3*math.exp(-0.1*(1))+3
print("\nApproximation for y(1) with h = 0.2: y(1) = {}".format(yApprox))
print("Exact y(1): y(1) = {}".format(yExact))
print("\nRelative accuracy: abs((yApprox - yExact)/yExact)")
print("Relative accuracy = {}".format(abs((yApprox - yExact)/yExact)))