-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun_test.py
82 lines (58 loc) · 2.84 KB
/
run_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import argparse
from torch.utils.data import DataLoader
from train_model.dataset_utils import prepare_test_data_set,prepare_eval_data_set
import torch
from train_model.helper import run_model, print_result, build_model
from config.config_utils import finalize_config
from config.config import cfg
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, required=True, help="config yaml file")
parser.add_argument("--out_prefix", type=str, required=True,
help="output file name prefix, will append .json or .pkl")
parser.add_argument("--model_path", type=str, help="path of model", required=True)
parser.add_argument("--batch_size", type=int,
help="batch_size for test, o.w. using the one in config file", default=None)
parser.add_argument("--num_workers",type=int, help="num_workers in dataLoader, default 0", default=5)
parser.add_argument("--json_only", action='store_true', help="flag for only need json result")
parser.add_argument("--use_val",action='store_true',help="flag for using val data for test")
arguments = parser.parse_args()
return arguments
def multi_gpu_state_to_single(state_dict):
new_sd = {}
for k, v in state_dict.items():
if not k.startswith('module.'):
raise TypeError("Not a multiple GPU state of dict")
k1 = k[7:]
new_sd[k1] = v
return new_sd
if __name__ == '__main__':
args = parse_args()
config_file = args.config
out_file = args.out_prefix+".json"
model_file = args.model_path
finalize_config(cfg, config_file, None)
batch_size = cfg['data']['batch_size'] if args.batch_size is None else args.batch_size
if args.use_val:
data_set_test = prepare_eval_data_set(**cfg['data'], **cfg['model'], verbose=True)
else:
data_set_test = prepare_test_data_set(**cfg['data'], **cfg['model'], verbose=True)
data_reader_test = DataLoader(data_set_test, shuffle=False, batch_size=batch_size, num_workers=args.num_workers)
ans_dic = data_set_test.answer_dict
my_model = build_model(cfg, data_set_test)
sd = torch.load(model_file)['state_dict']
if list(sd.keys())[0].startswith('module') and not hasattr(my_model, 'module'):
sd = multi_gpu_state_to_single(sd)
my_model.load_state_dict(sd)
my_model.eval()
print("BEGIN TESTING")
question_ids, soft_max_result = run_model(my_model, data_reader_test, ans_dic.UNK_idx)
pkl_res_file = args.out_prefix + ".pkl" if not args.json_only else None
print_result(question_ids, soft_max_result, ans_dic, out_file, args.json_only, pkl_res_file)
print("DONE")