-
Notifications
You must be signed in to change notification settings - Fork 1
/
problem12.rb
executable file
·63 lines (55 loc) · 1.28 KB
/
problem12.rb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be:
#
# 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
#
# Let us list the factors of the first seven triangle numbers:
#
# 1: 1
# 3: 1,3
# 6: 1,2,3,6
# 10: 1,2,5,10
# 15: 1,3,5,15
# 21: 1,3,7,21
# 28: 1,2,4,7,14,28
#
# We can see that 28 is the first triangle number to have over five divisors.
#
# What is the value of the first triangle number to have over five hundred divisors?
class Array
def count(x)
self.inject(0) {|sum, y| (x==y)?(sum+1):(sum)}
end
def count_and_join
self.uniq.collect{|x| [x,self.count(x)]}
end
end
def each_triangle_number
sum = 0
counter = 1
while true
sum += counter
counter += 1
yield(sum)
end
end
def first_divisor(num)
(2..num).each {|i| return i if num % i == 0}
end
def ultra_naive_factor(num)
return [] if (num == 1 or num == 0)
factors = []
factors << first_divisor(num)
factors += ultra_naive_factor(num / factors.first)
return factors
end
class Integer
def num_divisors
ultra_naive_factor(self).count_and_join.inject(1){|prod, x| prod * (x[1]+1)}
end
end
each_triangle_number do |x|
if x.num_divisors > 500
puts x
break
end
end