-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathproblem142.rb
executable file
·45 lines (41 loc) · 1.05 KB
/
problem142.rb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# Find the smallest x + y + z with integers x > y > z > 0 such that x + y, x − y, x + z, x − z, y + z, y − z are all perfect squares.
#This is NOT a good solution. It takes too long (but finds the right answer).
require 'common'
def list_all_pairs(max_sum)
results = []
(0...max_sum).each {|i| (0...i).each {|j| results << [i,j]}}
results
end
class Array
def all_pairs
return [] if empty?
list_all_pairs(length).collect{|pair| [self[pair.first],self[pair.last]]}
end
end
n = 2
while true
results = []
a = 1
while a**2 <= n / 2
if (n-a**2).square?
b = (n-a**2).integer_sqrt
results << [(b**2+a**2) / 2, (b**2 - a**2) / 2] if a%2 == b%2
end
a += 1
end
# puts "#{n}: #{results.inspect}" unless results.empty?
results.all_pairs.each do |pair|
vals = [pair.first.last, pair.last.last]
y,z = vals.max, vals.min
x = pair.first.first
puts "checking #{x}, #{y}, #{z}"
if (y-z).square? and (y+z).square?
puts "found!"
puts "#{x}, #{y}, #{z}"
puts x+y+z
exit
end
end
puts n
n += 1
end