
导体以 $v_0$ 的速度进入磁感应强度为 $B$ 的磁场区域,经过 $s$ 路程后出磁场,导体质量为 $m$,长度为 $L$,电阻为 $R$,求任意时刻路程、速度。
首先列出关于物体状态的式子:
$$
\begin{aligned}
F = -ma = \dfrac{B^2L^2}{R} v \\
\iff -m\dfrac{\mathrm{d}v}{\mathrm{d}t} = \dfrac{B^2L^2}{R}v \\
\iff \dfrac{\mathrm{d}v}{v} = -\dfrac{B^2L^2}{mR}\mathrm{d}t \\
\iff \int \dfrac{\mathrm{d}v}{v} = \int -\dfrac{B^2L^2}{mR}\mathrm{d}t \\
\implies \ln v = -\dfrac{B^2L^2t}{mR} + C
\end{aligned}
$$
另 $t = 0$,解得 $C = \ln v_0$.
$$
\begin{aligned}
\ln v = -\dfrac{B^2L^2t}{mR} + \ln v_0 \\
\iff \ln \dfrac{v}{v_0} = -\dfrac{B^2L^2t}{mR}\\
\iff \ln \dfrac{v_0}{v} = \dfrac{B^2L^2t}{mR}\\
\implies \dfrac{v_0}{v} = e^{(B^2L^2t)/(mR)}\\
\iff v = \dfrac{v_0}{e^{(B^2L^2t)/(mR)}}
\end{aligned}
$$
这样就得到了 $v$ 关于 $t$ 的式子,接下来对该式积分得到关于 $x$ 的式子:
$$
\begin{aligned}
\int v\mathrm{d}t = \int \dfrac{v_0}{e^{(B^2L^2t)/(mR)}} \mathrm{d}t\\
\implies x = v_0 \int e^{-(B^2L^2t)/(mR)} \mathrm{d}t\\
\iff x = v_0 \dfrac{e^{-(B^2L^2t)/(mR)} - 1}{-\dfrac{B^2L^2}{mR}}\\
\end{aligned}
$$
还可以求任意路程的速度,将 $x = d$ 带入:
$$
\begin{aligned}
& -\dfrac{B^2L^2d}{mR} = v_0(e^{-(B^2L^2t)/(mR)} - 1)\\
& v = \dfrac{v_0}{e^{(B^2L^2t)/(mR)}} = v_0e^{-(B^2L^2t)/(mR)}\\
\implies & v = v_0 - \dfrac{B^2L^2}{R} \times \dfrac{d}{m}\\
\end{aligned}
$$
最终的形式相当简洁。
综上所述,在导体棒于磁场中只受安培力的运动中,我们有:
$$
\begin{aligned}
& \text{let } k = -\dfrac{B^2L^2}{mR}\\
& v = v_0e^{kt}\\
& x = \dfrac{v_0(e^{kt} - 1)}{k}\\
& v = v_0 + kd\\
\end{aligned}
$$
此外,还可以通过动量定理来计算任意路程的速度。
$$
\begin{aligned}
& Q = \dfrac{\Delta \phi}{R} = \int I \mathrm{d}t\\
& F = BLI \\
\implies & \int F\mathrm{d}t = BL \times \int I\mathrm{d}t \\
& \Delta p = BLQ = \dfrac{B^2L^2}{R} d \\
\implies & v = v_0 - \dfrac{B^2L^2}{mR} \times d
\end{aligned}
$$