Skip to content
This repository has been archived by the owner on Oct 25, 2021. It is now read-only.

Latest commit

 

History

History
79 lines (61 loc) · 2.22 KB

物理电磁感应任意时刻速度、路程与任意路程速度.md

File metadata and controls

79 lines (61 loc) · 2.22 KB

物理电磁感应任意时刻速度、路程与任意路程速度

hackmd-github-sync-badge

tags: Physics

导体以 $v_0$ 的速度进入磁感应强度为 $B$ 的磁场区域,经过 $s$ 路程后出磁场,导体质量为 $m$,长度为 $L$,电阻为 $R$,求任意时刻路程、速度。

首先列出关于物体状态的式子:

$$ \begin{aligned} F = -ma = \dfrac{B^2L^2}{R} v \\ \iff -m\dfrac{\mathrm{d}v}{\mathrm{d}t} = \dfrac{B^2L^2}{R}v \\ \iff \dfrac{\mathrm{d}v}{v} = -\dfrac{B^2L^2}{mR}\mathrm{d}t \\ \iff \int \dfrac{\mathrm{d}v}{v} = \int -\dfrac{B^2L^2}{mR}\mathrm{d}t \\ \implies \ln v = -\dfrac{B^2L^2t}{mR} + C \end{aligned} $$

$t = 0$,解得 $C = \ln v_0$.

$$ \begin{aligned} \ln v = -\dfrac{B^2L^2t}{mR} + \ln v_0 \\ \iff \ln \dfrac{v}{v_0} = -\dfrac{B^2L^2t}{mR}\\ \iff \ln \dfrac{v_0}{v} = \dfrac{B^2L^2t}{mR}\\ \implies \dfrac{v_0}{v} = e^{(B^2L^2t)/(mR)}\\ \iff v = \dfrac{v_0}{e^{(B^2L^2t)/(mR)}} \end{aligned} $$

这样就得到了 $v$ 关于 $t$ 的式子,接下来对该式积分得到关于 $x$ 的式子:

$$ \begin{aligned} \int v\mathrm{d}t = \int \dfrac{v_0}{e^{(B^2L^2t)/(mR)}} \mathrm{d}t\\ \implies x = v_0 \int e^{-(B^2L^2t)/(mR)} \mathrm{d}t\\ \iff x = v_0 \dfrac{e^{-(B^2L^2t)/(mR)} - 1}{-\dfrac{B^2L^2}{mR}}\\ \end{aligned} $$

还可以求任意路程的速度,将 $x = d$ 带入:

$$ \begin{aligned} & -\dfrac{B^2L^2d}{mR} = v_0(e^{-(B^2L^2t)/(mR)} - 1)\\ & v = \dfrac{v_0}{e^{(B^2L^2t)/(mR)}} = v_0e^{-(B^2L^2t)/(mR)}\\ \implies & v = v_0 - \dfrac{B^2L^2}{R} \times \dfrac{d}{m}\\ \end{aligned} $$

最终的形式相当简洁。

综上所述,在导体棒于磁场中只受安培力的运动中,我们有:

$$ \begin{aligned} & \text{let } k = -\dfrac{B^2L^2}{mR}\\ & v = v_0e^{kt}\\ & x = \dfrac{v_0(e^{kt} - 1)}{k}\\ & v = v_0 + kd\\ \end{aligned} $$


此外,还可以通过动量定理来计算任意路程的速度。

$$ \begin{aligned} & Q = \dfrac{\Delta \phi}{R} = \int I \mathrm{d}t\\ & F = BLI \\ \implies & \int F\mathrm{d}t = BL \times \int I\mathrm{d}t \\ & \Delta p = BLQ = \dfrac{B^2L^2}{R} d \\ \implies & v = v_0 - \dfrac{B^2L^2}{mR} \times d \end{aligned} $$