-
Notifications
You must be signed in to change notification settings - Fork 64
/
Copy pathMatrix4.js
1240 lines (922 loc) · 28.9 KB
/
Matrix4.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/**
* @author mrdoob / http://mrdoob.com/
* @author supereggbert / http://www.paulbrunt.co.uk/
* @author philogb / http://blog.thejit.org/
* @author jordi_ros / http://plattsoft.com
* @author D1plo1d / http://github.com/D1plo1d
* @author alteredq / http://alteredqualia.com/
* @author mikael emtinger / http://gomo.se/
* @author timknip / http://www.floorplanner.com/
* @author bhouston / http://exocortex.com
* @author WestLangley / http://github.com/WestLangley
*/
/**
* @classdesc 4×4矩阵<br />
* 注释内容部分参照 http://blog.csdn.net/omni360
* @desc 行优先存储<br />
* 0 1 2 3<br />
* 4 5 6 7<br />
* 8 9 10 11<br />
* 12 13 14 15
* @class
*/
THREE.Matrix4 = function () {
/**
* @desc 矩阵内数组
* @type {Float32Array}
*/
this.elements = new Float32Array( [
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1
] );
if ( arguments.length > 0 ) {
console.error( 'THREE.Matrix4: the constructor no longer reads arguments. use .set() instead.' );
}
};
THREE.Matrix4.prototype = {
constructor: THREE.Matrix4,
/**
* @desc 设置4×4矩阵
* @param {float} n11
* @param {float} n12
* @param {float} n13
* @param {float} n14
* @param {float} n21
* @param {float} n22
* @param {float} n23
* @param {float} n24
* @param {float} n31
* @param {float} n32
* @param {float} n33
* @param {float} n34
* @param {float} n41
* @param {float} n42
* @param {float} n43
* @param {float} n44
* @returns {THREE.Matrix4}
*/
set: function ( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ) {
var te = this.elements;
te[ 0 ] = n11; te[ 4 ] = n12; te[ 8 ] = n13; te[ 12 ] = n14;
te[ 1 ] = n21; te[ 5 ] = n22; te[ 9 ] = n23; te[ 13 ] = n24;
te[ 2 ] = n31; te[ 6 ] = n32; te[ 10 ] = n33; te[ 14 ] = n34;
te[ 3 ] = n41; te[ 7 ] = n42; te[ 11 ] = n43; te[ 15 ] = n44;
return this;
},
/**
* @desc 4×4单位矩阵
* @returns {THREE.Matrix4}
*/
identity: function () {
this.set(
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1
);
return this;
},
/**
* @desc 拷贝4×4矩阵
* @param {THREE.Matrix4} m
* @returns {THREE.Matrix4}
*/
copy: function ( m ) {
this.elements.set( m.elements );
return this;
},
/**
* @deprecated 改为THREE.Matrix4.copyPosition(m)
* @desc 提取4×4矩阵的平移分量
* @param {THREE.Matrix4} m
* @returns {THREE.Matrix4}
*/
extractPosition: function ( m ) {
console.warn( 'THREE.Matrix4: .extractPosition() has been renamed to .copyPosition().' );
return this.copyPosition( m );
},
/**
* @desc 提取4×4矩阵平移分量
* @param {THREE.Matrix4} m
* @returns {THREE.Matrix4}
*/
copyPosition: function ( m ) {
var te = this.elements;
var me = m.elements;
te[ 12 ] = me[ 12 ];
te[ 13 ] = me[ 13 ];
te[ 14 ] = me[ 14 ];
return this;
},
/**
* @function
* @desc 提取4×4矩阵的旋转分量到另一个矩阵
* @param {THREE.Matrix4} m
* @returns {THREE.Matrix4}
*/
extractRotation: function () {
var v1 = new THREE.Vector3();
return function ( m ) {
var te = this.elements;
var me = m.elements;
var scaleX = 1 / v1.set( me[ 0 ], me[ 1 ], me[ 2 ] ).length();
var scaleY = 1 / v1.set( me[ 4 ], me[ 5 ], me[ 6 ] ).length();
var scaleZ = 1 / v1.set( me[ 8 ], me[ 9 ], me[ 10 ] ).length();
te[ 0 ] = me[ 0 ] * scaleX;
te[ 1 ] = me[ 1 ] * scaleX;
te[ 2 ] = me[ 2 ] * scaleX;
te[ 4 ] = me[ 4 ] * scaleY;
te[ 5 ] = me[ 5 ] * scaleY;
te[ 6 ] = me[ 6 ] * scaleY;
te[ 8 ] = me[ 8 ] * scaleZ;
te[ 9 ] = me[ 9 ] * scaleZ;
te[ 10 ] = me[ 10 ] * scaleZ;
return this;
};
}(),
/**
* @desc 由欧拉角转换为旋转矩阵
* @param {THREE.Euler} euler
* @returns {THREE.Matrix4}
*/
makeRotationFromEuler: function ( euler ) { //garreet
if ( euler instanceof THREE.Euler === false ) {
console.error( 'THREE.Matrix: .makeRotationFromEuler() now expects a Euler rotation rather than a Vector3 and order.' );
}
var te = this.elements;
var x = euler.x, y = euler.y, z = euler.z;
var a = Math.cos( x ), b = Math.sin( x );
var c = Math.cos( y ), d = Math.sin( y );
var e = Math.cos( z ), f = Math.sin( z );
if ( euler.order === 'XYZ' ) {
var ae = a * e, af = a * f, be = b * e, bf = b * f;
te[ 0 ] = c * e;
te[ 4 ] = - c * f;
te[ 8 ] = d;
te[ 1 ] = af + be * d;
te[ 5 ] = ae - bf * d;
te[ 9 ] = - b * c;
te[ 2 ] = bf - ae * d;
te[ 6 ] = be + af * d;
te[ 10 ] = a * c;
} else if ( euler.order === 'YXZ' ) {
var ce = c * e, cf = c * f, de = d * e, df = d * f;
te[ 0 ] = ce + df * b;
te[ 4 ] = de * b - cf;
te[ 8 ] = a * d;
te[ 1 ] = a * f;
te[ 5 ] = a * e;
te[ 9 ] = - b;
te[ 2 ] = cf * b - de;
te[ 6 ] = df + ce * b;
te[ 10 ] = a * c;
} else if ( euler.order === 'ZXY' ) {
var ce = c * e, cf = c * f, de = d * e, df = d * f;
te[ 0 ] = ce - df * b;
te[ 4 ] = - a * f;
te[ 8 ] = de + cf * b;
te[ 1 ] = cf + de * b;
te[ 5 ] = a * e;
te[ 9 ] = df - ce * b;
te[ 2 ] = - a * d;
te[ 6 ] = b;
te[ 10 ] = a * c;
} else if ( euler.order === 'ZYX' ) {
var ae = a * e, af = a * f, be = b * e, bf = b * f;
te[ 0 ] = c * e;
te[ 4 ] = be * d - af;
te[ 8 ] = ae * d + bf;
te[ 1 ] = c * f;
te[ 5 ] = bf * d + ae;
te[ 9 ] = af * d - be;
te[ 2 ] = - d;
te[ 6 ] = b * c;
te[ 10 ] = a * c;
} else if ( euler.order === 'YZX' ) {
var ac = a * c, ad = a * d, bc = b * c, bd = b * d;
te[ 0 ] = c * e;
te[ 4 ] = bd - ac * f;
te[ 8 ] = bc * f + ad;
te[ 1 ] = f;
te[ 5 ] = a * e;
te[ 9 ] = - b * e;
te[ 2 ] = - d * e;
te[ 6 ] = ad * f + bc;
te[ 10 ] = ac - bd * f;
} else if ( euler.order === 'XZY' ) {
var ac = a * c, ad = a * d, bc = b * c, bd = b * d;
te[ 0 ] = c * e;
te[ 4 ] = - f;
te[ 8 ] = d * e;
te[ 1 ] = ac * f + bd;
te[ 5 ] = a * e;
te[ 9 ] = ad * f - bc;
te[ 2 ] = bc * f - ad;
te[ 6 ] = b * e;
te[ 10 ] = bd * f + ac;
}
// last column
te[ 3 ] = 0;
te[ 7 ] = 0;
te[ 11 ] = 0;
// bottom row
te[ 12 ] = 0;
te[ 13 ] = 0;
te[ 14 ] = 0;
te[ 15 ] = 1;
return this;
},
/**
* @deprecated 改名为makeRotationFromQuaternion
* @desc 由四元数旋转矩阵
* @param {THREE.Quaternion} q
* @returns {THREE.Matrix4}
*/
setRotationFromQuaternion: function ( q ) {
console.warn( 'THREE.Matrix4: .setRotationFromQuaternion() has been renamed to .makeRotationFromQuaternion().' );
return this.makeRotationFromQuaternion( q );
},
/**
* @desc 由四元数转换为旋转矩阵
* @param {THREE.Quaternion} q
* @returns {THREE.Matrix4}
*/
makeRotationFromQuaternion: function ( q ) { //garreet
var te = this.elements;
var x = q.x, y = q.y, z = q.z, w = q.w;
var x2 = x + x, y2 = y + y, z2 = z + z;
var xx = x * x2, xy = x * y2, xz = x * z2;
var yy = y * y2, yz = y * z2, zz = z * z2;
var wx = w * x2, wy = w * y2, wz = w * z2;
te[ 0 ] = 1 - ( yy + zz );
te[ 4 ] = xy - wz;
te[ 8 ] = xz + wy;
te[ 1 ] = xy + wz;
te[ 5 ] = 1 - ( xx + zz );
te[ 9 ] = yz - wx;
te[ 2 ] = xz - wy;
te[ 6 ] = yz + wx;
te[ 10 ] = 1 - ( xx + yy );
// last column
te[ 3 ] = 0;
te[ 7 ] = 0;
te[ 11 ] = 0;
// bottom row
te[ 12 ] = 0;
te[ 13 ] = 0;
te[ 14 ] = 0;
te[ 15 ] = 1;
return this;
},
/**
* @function
* @desc 将对象设定为一个视图矩阵,参数都是Vector3对象,该矩阵只会用到eye和center的相对位置<br />
* 该视图矩阵表示,摄像机在eye位置看向center位置,且向上的向量(这一点稍后解释)为up时的视图矩阵<br />
* 视图矩阵又可以看做摄像机的模型矩阵,所以该函数产生的矩阵又可以表示以下变换:将物体从原点平移至位置center-eye<br />
* 再将其旋转至向上的向量为up。向上的向量up用来固定相机,可以想象当相机固定在一点,镜头朝向固定方向的时候<br />
* 还是可以在一个维度里自由旋转的,up向量固定相机的这个维度
* @param {THREE.Vector3} eye 表示相机位置的Vector3三维向量
* @param {THREE.Vector3} target 表示目标的Vector3三维向量
* @param {THREE.Vector3} up 表示向上的Vector3三维向量
* @return {THREE.Matrix4}
*/
lookAt: function () { //garreet
var x = new THREE.Vector3();
var y = new THREE.Vector3();
var z = new THREE.Vector3();
return function ( eye, target, up ) {
var te = this.elements;
z.subVectors( eye, target ).normalize();
if ( z.length() === 0 ) {
z.z = 1;
}
x.crossVectors( up, z ).normalize();
if ( x.length() === 0 ) {
z.x += 0.0001;
x.crossVectors( up, z ).normalize();
}
y.crossVectors( z, x );
te[ 0 ] = x.x; te[ 4 ] = y.x; te[ 8 ] = z.x;
te[ 1 ] = x.y; te[ 5 ] = y.y; te[ 9 ] = z.y;
te[ 2 ] = x.z; te[ 6 ] = y.z; te[ 10 ] = z.z;
return this;
};
}(),
/**
* @desc 矩阵乘法
* @param {THREE.Matrix4} m
* @param {THREE.Matrix4} n 若n未定义,则为当前矩阵乘m
* @returns {THREE.Matrix4}
*/
multiply: function ( m, n ) {
if ( n !== undefined ) {
console.warn( 'THREE.Matrix4: .multiply() now only accepts one argument. Use .multiplyMatrices( a, b ) instead.' );
return this.multiplyMatrices( m, n );
}
return this.multiplyMatrices( this, m );
},
/**
* @desc 矩阵乘法
* @param {THREE.Matrix4} a
* @param {THREE.Matrix4} b
* @returns {THREE.Matrix4}
*/
multiplyMatrices: function ( a, b ) {
var ae = a.elements;
var be = b.elements;
var te = this.elements;
var a11 = ae[ 0 ], a12 = ae[ 4 ], a13 = ae[ 8 ], a14 = ae[ 12 ];
var a21 = ae[ 1 ], a22 = ae[ 5 ], a23 = ae[ 9 ], a24 = ae[ 13 ];
var a31 = ae[ 2 ], a32 = ae[ 6 ], a33 = ae[ 10 ], a34 = ae[ 14 ];
var a41 = ae[ 3 ], a42 = ae[ 7 ], a43 = ae[ 11 ], a44 = ae[ 15 ];
var b11 = be[ 0 ], b12 = be[ 4 ], b13 = be[ 8 ], b14 = be[ 12 ];
var b21 = be[ 1 ], b22 = be[ 5 ], b23 = be[ 9 ], b24 = be[ 13 ];
var b31 = be[ 2 ], b32 = be[ 6 ], b33 = be[ 10 ], b34 = be[ 14 ];
var b41 = be[ 3 ], b42 = be[ 7 ], b43 = be[ 11 ], b44 = be[ 15 ];
te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41;
te[ 4 ] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42;
te[ 8 ] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43;
te[ 12 ] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44;
te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41;
te[ 5 ] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42;
te[ 9 ] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43;
te[ 13 ] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44;
te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41;
te[ 6 ] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42;
te[ 10 ] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43;
te[ 14 ] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44;
te[ 3 ] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41;
te[ 7 ] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42;
te[ 11 ] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43;
te[ 15 ] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44;
return this;
},
/**
* @desc 将4×4矩阵a,b相乘,并返回新Matrix4(4x4矩阵)赋值给数组对象r
* @param {THREE.Matrix4} a
* @param {THREE.Matrix4} b
* @param {float[]} r
* @returns {THREE.Matrix4}
*/
multiplyToArray: function ( a, b, r ) {
var te = this.elements;
this.multiplyMatrices( a, b );
r[ 0 ] = te[ 0 ]; r[ 1 ] = te[ 1 ]; r[ 2 ] = te[ 2 ]; r[ 3 ] = te[ 3 ];
r[ 4 ] = te[ 4 ]; r[ 5 ] = te[ 5 ]; r[ 6 ] = te[ 6 ]; r[ 7 ] = te[ 7 ];
r[ 8 ] = te[ 8 ]; r[ 9 ] = te[ 9 ]; r[ 10 ] = te[ 10 ]; r[ 11 ] = te[ 11 ];
r[ 12 ] = te[ 12 ]; r[ 13 ] = te[ 13 ]; r[ 14 ] = te[ 14 ]; r[ 15 ] = te[ 15 ];
return this;
},
/**
* @desc 4×4矩阵和标量s的乘法
* @param {float} s
* @returns {THREE.Matrix4}
*/
multiplyScalar: function ( s ) {
var te = this.elements;
te[ 0 ] *= s; te[ 4 ] *= s; te[ 8 ] *= s; te[ 12 ] *= s;
te[ 1 ] *= s; te[ 5 ] *= s; te[ 9 ] *= s; te[ 13 ] *= s;
te[ 2 ] *= s; te[ 6 ] *= s; te[ 10 ] *= s; te[ 14 ] *= s;
te[ 3 ] *= s; te[ 7 ] *= s; te[ 11 ] *= s; te[ 15 ] *= s;
return this;
},
/**
* @desc 矩阵和3维向量相乘<br />
* 几何意义上是对3维向量做投影变换
* @param {THREE.Vector3} vector
* @returns {THREE.Vector3}
*/
multiplyVector3: function ( vector ) {
console.warn( 'THREE.Matrix4: .multiplyVector3() has been removed. Use vector.applyMatrix4( matrix ) or vector.applyProjection( matrix ) instead.' );
return vector.applyProjection( this );
},
/**
* @desc 矩阵和4维向量相乘
* @param vector
* @returns {THREE.Vector4|THREE.Vector3}
*/
multiplyVector4: function ( vector ) {
console.warn( 'THREE.Matrix4: .multiplyVector4() has been removed. Use vector.applyMatrix4( matrix ) instead.' );
return vector.applyMatrix4( this );
},
/**
* @deprecated 改为matrix.applyToVector3Array( array )
* @desc 矩阵和3维向量数组相乘<br />
* 几何意义上是对3维向量做投影变换
* @param {float[]} a
* @returns {float[]}
*/
multiplyVector3Array: function ( a ) {
console.warn( 'THREE.Matrix4: .multiplyVector3Array() has been renamed. Use matrix.applyToVector3Array( array ) instead.' );
return this.applyToVector3Array( a );
},
/**
* @function
* @desc 矩阵和3维向量数组相乘<br />
* 几何意义上是对3维向量做投影变换
* @param {float[]} array
* @param {number} offset 起始位置,忽略则为0
* @param {number} length 需要计算的长度,忽略则为数组长度
* @returns {float[]}
*/
applyToVector3Array: function () {
var v1 = new THREE.Vector3();
return function ( array, offset, length ) {
if ( offset === undefined ) offset = 0;
if ( length === undefined ) length = array.length;
for ( var i = 0, j = offset, il; i < length; i += 3, j += 3 ) {
v1.x = array[ j ];
v1.y = array[ j + 1 ];
v1.z = array[ j + 2 ];
v1.applyMatrix4( this );
array[ j ] = v1.x;
array[ j + 1 ] = v1.y;
array[ j + 2 ] = v1.z;
}
return array;
};
}(),
/**
* @deprecated Vector3.transformDirection(matrix)
* @desc 对参数v三维向量的应用一个旋转变换
* @param {THREE.Vector3} v
* @return {THREE.Vector3}
*/
rotateAxis: function ( v ) {
console.warn( 'THREE.Matrix4: .rotateAxis() has been removed. Use Vector3.transformDirection( matrix ) instead.' );
v.transformDirection( this );
},
/**
* @deprecated Vector3.applyMatrix4(matrix)
* @desc 矩阵和向量的叉乘
* @param {THREE.Vector3} vector
* @returns {THREE.Vector4|THREE.Vector3}
*/
crossVector: function ( vector ) {
console.warn( 'THREE.Matrix4: .crossVector() has been removed. Use vector.applyMatrix4( matrix ) instead.' );
return vector.applyMatrix4( this );
},
/**
* @desc 计算4×4矩阵的行列式<br />
* 几何意义:以基向量为边的平行六面体的有符号体积(可能为负)
* @returns {float}
*/
determinant: function () {
var te = this.elements;
var n11 = te[ 0 ], n12 = te[ 4 ], n13 = te[ 8 ], n14 = te[ 12 ];
var n21 = te[ 1 ], n22 = te[ 5 ], n23 = te[ 9 ], n24 = te[ 13 ];
var n31 = te[ 2 ], n32 = te[ 6 ], n33 = te[ 10 ], n34 = te[ 14 ];
var n41 = te[ 3 ], n42 = te[ 7 ], n43 = te[ 11 ], n44 = te[ 15 ];
//TODO: make this more efficient
//( based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm )
return (
n41 * (
+ n14 * n23 * n32
- n13 * n24 * n32
- n14 * n22 * n33
+ n12 * n24 * n33
+ n13 * n22 * n34
- n12 * n23 * n34
) +
n42 * (
+ n11 * n23 * n34
- n11 * n24 * n33
+ n14 * n21 * n33
- n13 * n21 * n34
+ n13 * n24 * n31
- n14 * n23 * n31
) +
n43 * (
+ n11 * n24 * n32
- n11 * n22 * n34
- n14 * n21 * n32
+ n12 * n21 * n34
+ n14 * n22 * n31
- n12 * n24 * n31
) +
n44 * (
- n13 * n22 * n31
- n11 * n23 * n32
+ n11 * n22 * n33
+ n13 * n21 * n32
- n12 * n21 * n33
+ n12 * n23 * n31
)
);
},
/**
* @desc 计算4×4矩阵的转置矩阵
* @returns {THREE.Matrix4}
*/
transpose: function () {
var te = this.elements;
var tmp;
tmp = te[ 1 ]; te[ 1 ] = te[ 4 ]; te[ 4 ] = tmp;
tmp = te[ 2 ]; te[ 2 ] = te[ 8 ]; te[ 8 ] = tmp;
tmp = te[ 6 ]; te[ 6 ] = te[ 9 ]; te[ 9 ] = tmp;
tmp = te[ 3 ]; te[ 3 ] = te[ 12 ]; te[ 12 ] = tmp;
tmp = te[ 7 ]; te[ 7 ] = te[ 13 ]; te[ 13 ] = tmp;
tmp = te[ 11 ]; te[ 11 ] = te[ 14 ]; te[ 14 ] = tmp;
return this;
},
/**
* @desc 通过参数offset指定偏移量,将矩阵展开到数组(参数array)中,返回新的数组
* @param {float[]} array
* @param {number} offset
* @returns {float[]}
*/
flattenToArrayOffset: function ( array, offset ) {
var te = this.elements;
array[ offset ] = te[ 0 ];
array[ offset + 1 ] = te[ 1 ];
array[ offset + 2 ] = te[ 2 ];
array[ offset + 3 ] = te[ 3 ];
array[ offset + 4 ] = te[ 4 ];
array[ offset + 5 ] = te[ 5 ];
array[ offset + 6 ] = te[ 6 ];
array[ offset + 7 ] = te[ 7 ];
array[ offset + 8 ] = te[ 8 ];
array[ offset + 9 ] = te[ 9 ];
array[ offset + 10 ] = te[ 10 ];
array[ offset + 11 ] = te[ 11 ];
array[ offset + 12 ] = te[ 12 ];
array[ offset + 13 ] = te[ 13 ];
array[ offset + 14 ] = te[ 14 ];
array[ offset + 15 ] = te[ 15 ];
return array;
},
/**
* @function
* @desc 当前矩阵中代表平移的元素值设置给三维向量
* @return {THREE.Vector3}
*/
getPosition: function () {
var v1 = new THREE.Vector3();
return function () {
console.warn( 'THREE.Matrix4: .getPosition() has been removed. Use Vector3.setFromMatrixPosition( matrix ) instead.' );
var te = this.elements;
return v1.set( te[ 12 ], te[ 13 ], te[ 14 ] );
};
}(),
/**
* @function
* @desc 当前三维向量设置到矩阵的平移参数
* @return {THREE.Vector3}
*/
setPosition: function ( v ) {
var te = this.elements;
te[ 12 ] = v.x;
te[ 13 ] = v.y;
te[ 14 ] = v.z;
return this;
},
/**
* @desc 4×4 矩阵的求逆
* @param {THREE.Matrix4} m
* @param {number} throwOnInvertible 异常标记
* @returns {THREE.Matrix4}
*/
getInverse: function ( m, throwOnInvertible ) {
// based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm
var te = this.elements;
var me = m.elements;
var n11 = me[ 0 ], n12 = me[ 4 ], n13 = me[ 8 ], n14 = me[ 12 ];
var n21 = me[ 1 ], n22 = me[ 5 ], n23 = me[ 9 ], n24 = me[ 13 ];
var n31 = me[ 2 ], n32 = me[ 6 ], n33 = me[ 10 ], n34 = me[ 14 ];
var n41 = me[ 3 ], n42 = me[ 7 ], n43 = me[ 11 ], n44 = me[ 15 ];
te[ 0 ] = n23 * n34 * n42 - n24 * n33 * n42 + n24 * n32 * n43 - n22 * n34 * n43 - n23 * n32 * n44 + n22 * n33 * n44;
te[ 4 ] = n14 * n33 * n42 - n13 * n34 * n42 - n14 * n32 * n43 + n12 * n34 * n43 + n13 * n32 * n44 - n12 * n33 * n44;
te[ 8 ] = n13 * n24 * n42 - n14 * n23 * n42 + n14 * n22 * n43 - n12 * n24 * n43 - n13 * n22 * n44 + n12 * n23 * n44;
te[ 12 ] = n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34;
te[ 1 ] = n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44;
te[ 5 ] = n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44;
te[ 9 ] = n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44;
te[ 13 ] = n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34;
te[ 2 ] = n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44;
te[ 6 ] = n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44;
te[ 10 ] = n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44;
te[ 14 ] = n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34;
te[ 3 ] = n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43;
te[ 7 ] = n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43;
te[ 11 ] = n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43;
te[ 15 ] = n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33;
var det = n11 * te[ 0 ] + n21 * te[ 4 ] + n31 * te[ 8 ] + n41 * te[ 12 ];
if ( det == 0 ) {
var msg = "Matrix4.getInverse(): can't invert matrix, determinant is 0";
if ( throwOnInvertible || false ) {
throw new Error( msg );
} else {
console.warn( msg );
}
this.identity();
return this;
}
this.multiplyScalar( 1 / det );
return this;
},
/**
* @ignore
*/
translate: function ( v ) {
console.warn( 'THREE.Matrix4: .translate() has been removed.' );
},
/**
* @ignore
*/
rotateX: function ( angle ) {
console.warn( 'THREE.Matrix4: .rotateX() has been removed.' );
},
/**
* @ignore
*/
rotateY: function ( angle ) {
console.warn( 'THREE.Matrix4: .rotateY() has been removed.' );
},
/**
* @ignore
*/
rotateZ: function ( angle ) {
console.warn( 'THREE.Matrix4: .rotateZ() has been removed.' );
},
/**
* @ignore
*/
rotateByAxis: function ( axis, angle ) {
console.warn( 'THREE.Matrix4: .rotateByAxis() has been removed.' );
},
/**
* @desc 通过预先计算缩放比例向量,将指定的比例向量应用到此 Matrix4(4x4矩阵)
* @param {THREE.Vector3} v
* @returns {THREE.Matrix4}
*/
scale: function ( v ) {
var te = this.elements;
var x = v.x, y = v.y, z = v.z;
te[ 0 ] *= x; te[ 4 ] *= y; te[ 8 ] *= z;
te[ 1 ] *= x; te[ 5 ] *= y; te[ 9 ] *= z;
te[ 2 ] *= x; te[ 6 ] *= y; te[ 10 ] *= z;
te[ 3 ] *= x; te[ 7 ] *= y; te[ 11 ] *= z;
return this;
},
/**
* @desc 获取缩放比例的最大值
* @returns {float}
*/
getMaxScaleOnAxis: function () {
var te = this.elements;
var scaleXSq = te[ 0 ] * te[ 0 ] + te[ 1 ] * te[ 1 ] + te[ 2 ] * te[ 2 ];
var scaleYSq = te[ 4 ] * te[ 4 ] + te[ 5 ] * te[ 5 ] + te[ 6 ] * te[ 6 ];
var scaleZSq = te[ 8 ] * te[ 8 ] + te[ 9 ] * te[ 9 ] + te[ 10 ] * te[ 10 ];
return Math.sqrt( Math.max( scaleXSq, Math.max( scaleYSq, scaleZSq ) ) );
},
/**
* @desc 生成平移矩阵
* @param {float} x
* @param {float} y
* @param {float} z
* @returns {THREE.Matrix4}
*/
makeTranslation: function ( x, y, z ) {
this.set(
1, 0, 0, x,
0, 1, 0, y,
0, 0, 1, z,
0, 0, 0, 1
);
return this;
},
/**
* @desc 生成X轴旋转矩阵
* @param {float} theta
* @returns {THREE.Matrix4}
*/
makeRotationX: function ( theta ) {
var c = Math.cos( theta ), s = Math.sin( theta );
this.set(
1, 0, 0, 0,
0, c, - s, 0,
0, s, c, 0,
0, 0, 0, 1
);
return this;
},
/**
* @desc 生成Y轴旋转矩阵
* @param {float} theta
* @returns {THREE.Matrix4}
*/
makeRotationY: function ( theta ) {
var c = Math.cos( theta ), s = Math.sin( theta );
this.set(
c, 0, s, 0,
0, 1, 0, 0,
- s, 0, c, 0,
0, 0, 0, 1
);
return this;
},
/**
* @desc 生成Z轴旋转矩阵
* @param {float} theta
* @returns {THREE.Matrix4}
*/
makeRotationZ: function ( theta ) {
var c = Math.cos( theta ), s = Math.sin( theta );
this.set(
c, - s, 0, 0,
s, c, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1
);
return this;
},
/**
* @desc 生成绕向量axis轴旋转矩阵
* @param {THREE.Vector3} axis
* @param {float} angle
* @returns {THREE.Matrix4}
*/
makeRotationAxis: function ( axis, angle ) {
// Based on http://www.gamedev.net/reference/articles/article1199.asp