-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathGraphAlgorithms.html
495 lines (453 loc) · 19.3 KB
/
GraphAlgorithms.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
<html>
<!-- THIS FILE WAS GENERATED BY A SCRIPT: DO NOT EDIT IT! -->
<head>
<link href="style.css" rel="stylesheet" type="text/css"/>
<title>
Design and Analysis of Algorithms: Graph Algorithms
</title>
</head>
<body>
<div id="header">
<div id="logo">
<img src="graphics/Julia.png">
</div>
<div id="user-tools">
<a href="index.html">Home</a>
<a href="about.html">About</a>
<a href="feedback.html">Feedback</a>
</div>
</div>
<h1>
Design and Analysis of Algorithms: Graph Algorithms
</h1>
<div style="text-align:center">
<p>
<img
src="https://upload.wikimedia.org/wikipedia/commons/thumb/5/5b/Wikipedia_multilingual_network_graph_July_2013.svg/220px-Wikipedia_multilingual_network_graph_July_2013.svg.png">
</p>
</div>
<details>
<summary class="sum1">
Seven Bridges of Königsberg
</summary>
<p>
<img
src="https://upload.wikimedia.org/wikipedia/commons/thumb/5/5d/Konigsberg_bridges.png/180px-Konigsberg_bridges.png">
<img
src="https://upload.wikimedia.org/wikipedia/commons/thumb/9/91/7_bridges.svg/179px-7_bridges.svg.png">
<img
src="https://upload.wikimedia.org/wikipedia/commons/thumb/a/af/Koenigsberg_Bridges_Variations_Graph7.png/150px-Koenigsberg_Bridges_Variations_Graph7.png">
<br>
<br>
Can one walk the city crossing every bridge once and only
once?
<br>
<br>
Euler answered "No." Why?
<br>
View the land as vertices. The bridges are edges. There is
an <i>Eulerian walk</i> on a graph only if it is connected
and has either zero or two edges of odd degree.
<br>
<br>
Graph theory was born to solve a problem of movement in space.
<br>
<br>
But it is also used for:
</p>
<ul>
<li>Task management</li>
<li>Tournament design</li>
<li>Social networks</li>
<li>Map coloring</li>
<li>Voting theory</li>
<li>Cellular telephone networks</li>
<li>Words in a dictionary</li>
</ul>
<p>
Elements:
</p>
<ul>
<li>Walks: Any wandering about from vertex to vertext
following edges.</li>
<li>Paths: A walk with no repetition of vertices or
edges.</li>
<li>Cycles: Got back to where we were.</li>
<li>Trees: Connected graphs with no cycles.</li>
<li>Forests: Unconnected trees.</li>
<li><a
href="https://en.wikipedia.org/wiki/Tournament_(graph_theory)">
Tournaments
</a>
</li>
</ul>
</details>
<details>
<summary class="sum1">
Representations of graphs
</summary>
<p>
<img
src="https://upload.wikimedia.org/wikipedia/commons/thumb/a/a2/Directed.svg/125px-Directed.svg.png">
<br>
<br>
There are two standard representations:
</p>
<ol>
<li>Adjancency lists</li>
<li>Adjancency matrices</li>
</ol>
<p>
Consider the following graph:
<br>
<br>
<img
src="https://cdn.kastatic.org/ka-cs-algorithms/social_network_num.png">
<br>
<br>
Following our text, we will prefer adjancency lists.
But, as CLRS point out, in an especially dense graph,
or when we need to detect an edge quickly, we might
prefer a matrix.
<br>
<br>
Here are the two different representations of this
graph:
<br>
<br>
Adjacency list:
<br>
<img src="graphics/AdjList.png">
<br>
<br>
Adjacency matrix:
<br>
<img src="graphics/AdjMatrix.png">
<br>
<br>
For the adjancency matrix:
<br>
<br>
<img src="graphics/GraphsEq1.gif">
<br>
<br>
</p>
<details>
<summary class="sum2">
Trade-offs
</summary>
<ul>
<li>Adjacency list is generally smaller and at
worst as large as adjacency matrix. We use it
for sparse graphs, where E is singificantly
less than V<sup>2</sup>.
</li>
<li>Adjacency matrix is simpler. It also allows
quicker search for whether some specific edge
is present or not.
</li>
</ul>
<p>
Both forms can be used to represent directed,
undirected, and weighted graphs.
<br>
For weighted graphs, we can store 0 or the weight
in the matrix instead of just 0 or 1.
For the list, we store a tuple (vertex, weight)
in the adjancency list of a vertex.
<br>
For directed graphs, in a list, <i>i</i>,
say, would have an entry for <i>j</i>,
but <i>j</i> would not for <i>i</i>.
In a matrix, m[i][j] would be 1,
but m[j][i] would be 0.
</p>
</details>
<details>
<summary class="sum2">
Representing attributes
</summary>
<p>
For pseudo-code, we just represent attribute <i>f</i> of
edge <i>(u, v)</i> as <i>(u, v).f</i>. (<i>f</i> might
represent the edge already having been visited, for
instance.)
<br>
<br>
In a real program, there are many, many ways to store
additional information. How to best do this will very much
depend on your application. I have found this can work:
</p>
<ul>
<li>Create a class <i>node</i>.
</li>
<li><i>node</i> has an instance variable
<i>adj_list</i>.
</li>
<li>Anything you want to put in a graph should
sub-class node.
</li>
<li>Voila! You can store any attributes whatsoever with
each node.
</li>
</ul>
</details>
</details>
<details>
<summary class="sum1">
Breadth-first search
</summary>
<p>
<img
src="https://upload.wikimedia.org/wikipedia/commons/thumb/3/33/Breadth-first-tree.svg/300px-Breadth-first-tree.svg.png">
<br>
<br>
We assume a <b>source</b> vertex <i>s</i>.
<br>
We then find every vertex at distance 1 from the
source. (Connected by a direct edge.)
<br>
Then we process those vertices, finding every vertex at
distance 2 from the source vertex.
<br>
We continue in the same fashion until we run out of
vertices.
<br>
<br>
<b>Coloring vertices:</b>
<br>
Vertices start out "white."
<br>
They are colored gray when they are discovered.
<br>
They are colored black when all of their adjacent vertices
have been discovered.
</p>
<details>
<summary class="sum2">
Analysis
</summary>
<ul>
<li>After initialization, BFS never whitens a
vertex. So each will go on and off the queue at
most once. So queue time is O(V).
</li>
<li>The adjacency list for each vertex is scanned
once, when the vertex is dequeued. The length
of all adjacency lists is the number of edges,
E. So this runs in O(E).
</li>
<li>The overhead for initialization is O(V).
</li>
<li>Thus, we get a running time for BFS of O(V +
E).
</li>
</ul>
</details>
<details>
<summary class="sum2">
Shortest paths
</summary>
<p>
Breadth-first search computes shortest path distances.
</p>
<p>
<b>Lemma 22.1</b>
<br />
For any edge (u, v) ∈ E,
<br />
δ(s, v) ≤ δ(s, u) + 1
</p>
</details>
</details>
<details>
<summary class="sum1">
Depth-first search
</summary>
<p>
<img
src="https://upload.wikimedia.org/wikipedia/commons/thumb/1/1f/Depth-first-tree.svg/300px-Depth-first-tree.svg.png">
<br>
<br>
This search goes as "deep" as it can before it ventures
back up the graph to explore other nodes nearer the
source.
<br>
<br>
<b>Coloring vertices:</b>
<br>
Vertices start out "white."
<br>
They are colored gray when they are discovered.
<br>
They are colored black when they are "finished,"
meaning when all of the nodes on their adjacency list
have been completely explored.
</p>
<details>
<summary class="sum2">
Properties of depth-first search
</summary>
<p>
<b>Running time</b>: O(V + E)
</p>
</details>
<details>
<summary class="sum2">
Classification of edges
</summary>
<p>
Types of edges:
</p>
<ol>
<li><b>Tree edges</b>:
<br>
Edges of the depth-first forest
G<sub>π</sub>. Edge <i>(u, v)</i> is a tree edge if
<i>v</i> was first discovered by
exploring edge <i>(u, v)</i>.
</li>
<li><b>Back edges</b>:
<br>An edge <i>(u, v)</i> that connects
<i>u</i> to an ancestor <i>v</i>.
</li>
<li><b>Forward edges</b>:
<br>Non-tree edge <i>(u, v)</i> that connects
<i>u</i> to an descendant <i>v</i>.
</li>
<li><b>Cross edges</b>:
<br>All other edges.
</li>
</ol>
<p>
In DFS, when we first explore <i>(u, v)</i> the color
of <i>v</i> tells us:
</p>
<ol>
<li><b>WHITE:</b> This is a tree edge.
</li>
<li><b>GRAY:</b> This is a back edge.
</li>
<li><b>BLACK:</b> This is a forward edge or cross edge.
</li>
</ol>
</details>
</details>
<details>
<summary class="sum1">
Topological sort
</summary>
<p>
<img
src="https://upload.wikimedia.org/wikipedia/commons/thumb/0/03/Directed_acyclic_graph_2.svg/180px-Directed_acyclic_graph_2.svg.png">
<br>
<br>
Can only be performed on directed acyclical graphs (DAGs).
The sort makes no sense on undirected graphs or cyclical
graphs.
<br>
<br>
<b>Property</b>: If G contains an edge <i>(u, v)</i>,
then <i>u</i> appears before <i>v</i>
in the topological ordering.
<br>
<br>
Our book's topological sort algorithm is somewhat weird:
<br>
TOPOLOGICAL-SORT(G)
</p>
<ol>
<li>call DFS(G) to compute finishing times <i>v.f</i>
for each vertex <i>v</i>.
</li>
<li>as each vertex is finished, insert it into the
front of a linked list
</li>
<li><b>return</b> the linked list of vertices.
</li>
</ol>
</details>
<details>
<summary class="sum1">
Strongly connected components
</summary>
<p>
<img
src="https://upload.wikimedia.org/wikipedia/commons/thumb/2/20/Graph_Condensation.svg/330px-Graph_Condensation.svg.png">
<br>
<br>
These are components of directed graphs that can each
be reached from the other.
<br>
Many advanced graph algorithms rely on de-composing a
graph into strongly directed components, and then
processing those, and then combining the results:
<i>divide-and-conquer</i>!
</p>
<p>
Algorithm:
</p>
<ol>
<li>
Call DFS(G) to compute finish times for each vertex.
</li>
<li>
Compute
</li>
</ol>
</details>
<details>
<summary class="sum1">
Source Code
</summary>
<p>
<a
href="https://github.com/gcallah/algorithms/blob/master/Python/GraphAlgorithms/">
Python
</a>
<br>
<a
href="https://github.com/gcallah/algorithms/blob/master/Ruby/graph.rb">
Ruby
</a>
<br>
</p>
</details>
<details>
<summary class="sum1">
For Further Study
</summary>
<ul>
<li>
<a href="https://en.wikipedia.org/wiki/Graph_(abstract_data_type)">
Graph (abstract data type)
</a>
</li>
</ul>
</details>
<details>
<summary class="sum1">
Credits
</summary>
<ul>
<li>Graphics of list versus matrix representations:
https://www.khanacademy.org/computing/computer-science/algorithms/graph-representation/a/representing-graphs
</li>
</ul>
</details>
</body>
<script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','https://www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-97026578-2', 'auto');
ga('send', 'pageview');
</script>
</html>