forked from skcript/tensorflow-resources
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbasic_tf_with_hidden_network.py
39 lines (27 loc) · 1.11 KB
/
basic_tf_with_hidden_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# Tensorflow Basics on NeuralNetwork with hidden layer
import tensorflow as tf
import numpy as np
INPUT_NEURONS = 2
HIDDEN_LAYER_1_NEURONS = 4
OUTPUT_NEURONS = 1
x_data = np.array([[0, 0], [0, 1], [1, 1]])
y_data = np.array([0, 1, 1])
x = tf.placeholder(tf.float32)
y = tf.placeholder(tf.float32)
h1_layer = {'weight': tf.Variable(np.random.rand(INPUT_NEURONS, HIDDEN_LAYER_1_NEURONS).astype(np.float32)),
'bias': tf.constant(0.0)}
output_layer = {'weight': tf.Variable(np.random.rand(HIDDEN_LAYER_1_NEURONS, OUTPUT_NEURONS).astype(np.float32)),
'bias': tf.constant(0.0)}
h1 = tf.matmul(x, h1_layer['weight']) + h1_layer['bias']
h1 = tf.sigmoid(h1)
predict = tf.matmul(h1, output_layer['weight']) + output_layer['bias']
loss = tf.reduce_mean(tf.square(predict - y))
optimizer = tf.train.GradientDescentOptimizer(0.00001).minimize(loss)
sess = tf.Session()
init = tf.initialize_all_variables()
sess.run(init)
for i in range(50000):
if i % 5000 == 0:
print 'Loss: ', sess.run(loss, {x: x_data, y: y_data})
sess.run(optimizer, {x: x_data, y: y_data})
print sess.run(predict, {x: [[1, 1]] })