-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalgorithm_simple_factor.h
109 lines (93 loc) · 3.65 KB
/
algorithm_simple_factor.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
// Copyright 2018 Ghislain Durif
//
// This file is part of the `pCMF' library for R and related languages.
// It is made available under the terms of the GNU General Public
// License, version 2, or at your option, any later version,
// incorporated herein by reference.
//
// This program is distributed in the hope that it will be
// useful, but WITHOUT ANY WARRANTY; without even the implied
// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
// PURPOSE. See the GNU General Public License for more
// details.
//
// You should have received a copy of the GNU General Public
// License along with this program; if not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
// MA 02111-1307, USA
/*!
* \brief definitions of the template 'simple_factor_algo' class
* \author Ghislain Durif
* \version 1.0
* \date 26/02/2018
*/
#ifndef SIMPLE_ALGORITHM_H
#define SIMPLE_ALGORITHM_H
#include <RcppEigen.h>
#include "algorithm.h"
#include "utils/random.h"
// [[Rcpp::depends(RcppEigen)]]
using Eigen::VectorXd; // variable size vector, double precision
namespace pCMF {
/*!
* \brief template class definition for a generic optimization/inference algorithm
* \tparam model the statistical model considered for the inference framework
*/
template <typename model>
class simple_factor_algo : public algorithm<model> {
public:
/*!
* \brief Constructor for the class `simple_factor_algo`
* \tparam model the statistical model considered for the inference framework
*
* \param[in] n number of observation in the data matrix (rows)
* \param[in] p number of recorded variables in the data matrix (columns)
* \param[in] K dimension of the latent subspace to consider
* \param[in] X count data matrix of dimension n x p
*
* \param[in] verbose boolean indicating verbosity in the output
* \param[in] monitor boolean indicating if log-likelihood, elbo, deviance, etc. should be monitored during optimization
* \param[in] iter_max maximum number of iterations
* \param[in] iter_min minimum number of iterations
* \param[in] epsilon precision value to assess convergence
* \param[in] additional_iter number of iterations where model parameter values are stable to confirm convergence
* \param[in] conv_mode how to assess convergence: 0 for absolute gap and 1 for normalized gap between two iterates
*/
simple_factor_algo(int n, int p, int K, const MatrixXd &X,
bool verbose, bool monitor, int iter_max, int iter_min,
double epsilon, int additional_iter, int conv_mode)
: algorithm<model>(n, p, K, X, verbose, monitor, iter_max, iter_min,
epsilon, additional_iter, conv_mode) {};
/*!
* \brief Destructor for the class `algorithm`
*/
~simple_factor_algo() {};
/*!
* \brief Initialization of the model parameters with given values
*
* \param[in] U initial values for the factor matrix U
* \param[in] V initial values for the factor matrix V
*/
virtual void init(const MatrixXd &U, const MatrixXd &V) {
this->m_model.init_model_param(U, V);
};
/*!
* \brief order factor according to the deviance criterion
*/
virtual void order_factor() {
this->m_model.order_factor();
this->m_model.reorder_factor();
};
// define getters
/*!
* \brief getter for U and V
*
* \param[out] U stores the current value of attribute U
* \param[out] V stores the current value of attribute V
*/
void get_factor(MatrixXd &U, MatrixXd &V) {
this->m_model.get_factor(U, V);
};
};
}
#endif // SIMPLE_ALGORITHM_H