-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgap_factor_model.h
411 lines (362 loc) · 16.1 KB
/
gap_factor_model.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
// Copyright 2018 Ghislain Durif
//
// This file is part of the `pCMF' library for R and related languages.
// It is made available under the terms of the GNU General Public
// License, version 2, or at your option, any later version,
// incorporated herein by reference.
//
// This program is distributed in the hope that it will be
// useful, but WITHOUT ANY WARRANTY; without even the implied
// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
// PURPOSE. See the GNU General Public License for more
// details.
//
// You should have received a copy of the GNU General Public
// License along with this program; if not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
// MA 02111-1307, USA
/*!
* \brief definitions of the Gamma Poisson Factor model and derivatives
* \author Ghislain Durif
* \version 1.0
* \date 07/02/2018
*/
#ifndef GAP_FACTOR_MODEL_H
#define GAP_FACTOR_MODEL_H
#include <RcppEigen.h>
#include "model.h"
#include "utils/random.h"
// [[Rcpp::depends(RcppEigen)]]
using Eigen::MatrixXd; // variable size matrix, double precision
namespace pCMF {
/*!
* \brief definition of the Gamma Poisson Factor model
*
* Model:
* * \f$ X_{ij} = \sum_k Z_{ijk} \f$
* * \f$ X | U,V \sim Poisson(U V^t) \f$
* equivalent to \f$ Z_{ijk} | U_{ik}, V_{jk} \sim Poisson(U_{ik} V_{jk}) \f$
* * \f$ U_{ik} \sim Gamma(\alpha_{ik}) \f$ with \f$ \alpha_{ik} = (\alpha_{ik,1}, \alpha_{ik,2}) \f$
* * \f$ V_{jk} \sim Gamma(\beta_{jk}) \f$ with \f$ \beta_{jk} = (\beta_{jk,1}, \beta_{jk,2}) \f$
* Note:
* - In our approach, all \f$ \alpha_{ik} \f$ are identical across i.
* - Similarly, all \f$ \beta_{jk} \f$ are identical across j.
* * Consequence: \f$ (Z_{ijk})_k \sim Multinomial((\rho_{ijk})_k)
* where \f$ \rho_{ijk} = \frac{U_{ik} V_{jk}}{\sum_l U_{il} V_{jl}} \f$
*
* Variational distribution \f$ q \f$:
* * \f$ (Z_{ijk})_k \sim_q Multinomial((r_{ijk})_k)
* * \f$ U_{ik} \sim_q Gamma(a_{ik}) \f$ with \f$ a_{ik} = (a_{ik,1}, a_{ik,2}) \f$
* * \f$ V_{jk} \sim_q Gamma(b_{jk}) \f$ with \f$ b_{jk} = (b_{jk,1}, b_{jk,2}) \f$
*
* Sufficient statitics needed:
* * \f$ E_q[U_{ik}] \f$, \f$ E_q[log(U_{ik})] \f$
* * \f$ E_q[V_{jk}] \f$, \f$ E_q[log(V_{jk})] \f$
* * \f$ \sum_i E_q[Z_{ijk}] = \sum_i X_{ij} r_{ijk} \f$
* * \f$ \sum_j E_q[Z_{ijk}] = \sum_j X_{ij} r_{ijk} \f$
* * \f$ \sum_k exp(E_q[log(U_{ik})] + E_q[log(V_{jk})]) \f$
*
*/
class gap_factor_model : public variational_matrix_factor_model {
protected:
// prior hyper-parameter
MatrixXd m_alpha1cur; /*!< current values of first parameter (shape) of Gamma prior on U, dimension n x K */
MatrixXd m_alpha2cur; /*!< current values of second parameter (rate) of prior Gamma prior on U, dimension n x K */
MatrixXd m_beta1cur; /*!< current values of first parameter (shape) of Gamma prior on V, dimension p x K */
MatrixXd m_beta2cur; /*!< current values of second parameter (rate) of prior Gamma prior on V, dimension p x K */
MatrixXd m_alpha1old; /*!< previous values of first parameter (shape) of Gamma prior on U, dimension n x K */
MatrixXd m_alpha2old; /*!< previous values of second parameter (rate) of prior Gamma prior on U, dimension n x K */
MatrixXd m_beta1old; /*!< previous values of first parameter (shape) of Gamma prior on V, dimension p x K */
MatrixXd m_beta2old; /*!< previous values of second parameter (rate) of prior Gamma prior on V, dimension p x K */
// variational parameters
MatrixXd m_a1cur; /*!< current values of first parameter (shape) of Gamma variational distribution on U, dimension n x K */
MatrixXd m_a2cur; /*!< current values of second parameter (rate) of variational distribution Gamma variational distribution on U, dimension n x K */
MatrixXd m_b1cur; /*!< current values of first parameter (shape) of Gamma variational distribution on V, dimension p x K */
MatrixXd m_b2cur; /*!< current values of second parameter (rate) of variational distribution Gamma variational distribution on V, dimension p x K */
MatrixXd m_a1old; /*!< previous values of first parameter (shape) of Gamma variational distribution on U, dimension n x K */
MatrixXd m_a2old; /*!< previous values of second parameter (rate) of variational distribution Gamma variational distribution on U, dimension n x K */
MatrixXd m_b1old; /*!< previous values of first parameter (shape) of Gamma variational distribution on V, dimension p x K */
MatrixXd m_b2old; /*!< previous values of second parameter (rate) of variational distribution Gamma variational distribution on V, dimension p x K */
// additional sufficient statistics
MatrixXd m_EZ_i; /*!< \f$ \sum_i X_{ij} r_{ijk} = \sum_i E_q[Z_{ijk}] \f$, dimension p x k */
MatrixXd m_EZ_j; /*!< \f$ \sum_j X_{ij} r_{ijk} = \sum_j E_q[Z_{ijk}] \f$, dimension n x k */
MatrixXd m_exp_ElogU_ElogV_k; /*!< \f$ \sum_k exp(E_q[log(U_{ik})]) * exp(E_q[log(V_{jk})]) \f$, dimension n x p */
public:
/*!
* \brief Constructor for the class `gap_factor_model`
*/
gap_factor_model(int n, int p, int K, const MatrixXd &X);
/*!
* \brief destructor for the class `gap_factor_model`
*/
~gap_factor_model();
/*!
* \brief Initialize variational and hyper-parameters with given values
*
* \param[in] alpha1 matrix n x K, intial values for the first parameter (shape) of Gamma prior on U
* \param[in] alpha2 matrix n x K, intial values for the second parameter (rate) of Gamma prior on U
* \param[in] beta1 matrix p x K, intial values for the first parameter (shape) of Gamma prior on V
* \param[in] beta2 matrix p x K, intial values for the second parameter (rate) of Gamma prior on V
* \param[in] a1 matrix n x K, intial values for the first parameter (shape) of Gamma variational distribution on U
* \param[in] a2 matrix n x K, intial values for the second parameter (rate) of Gamma variational distribution on U
* \param[in] b1 matrix p x K, intial values for the first parameter (shape) of Gamma variational distribution on V
* \param[in] b2 matrix p x K, intial values for the second parameter (rate) of Gamma variational distribution on V
*/
void init_all_param(const MatrixXd &alpha1, const MatrixXd &alpha2,
const MatrixXd &beta1, const MatrixXd &beta2,
const MatrixXd &a1, const MatrixXd &a2,
const MatrixXd &b1, const MatrixXd &b2);
/*!
* \brief Initialize variational parameters with given values
*
* \param[in] a1 matrix n x K, intial values for the first parameter (shape) of Gamma variational distribution on U
* \param[in] a2 matrix n x K, intial values for the second parameter (rate) of Gamma variational distribution on U
* \param[in] b1 matrix p x K, intial values for the first parameter (shape) of Gamma variational distribution on V
* \param[in] b2 matrix p x K, intial values for the second parameter (rate) of Gamma variational distribution on V
*/
void init_variational_param(const MatrixXd &a1, const MatrixXd &a2,
const MatrixXd &b1, const MatrixXd &b2);
/*!
* \brief Initialize variational and hyper-parameters with given values
*
* \param[in] alpha1 matrix n x K, intial values for the first parameter (shape) of Gamma prior on U
* \param[in] alpha2 matrix n x K, intial values for the second parameter (rate) of Gamma prior on U
* \param[in] beta1 matrix p x K, intial values for the first parameter (shape) of Gamma prior on V
* \param[in] beta2 matrix p x K, intial values for the second parameter (rate) of Gamma prior on V
*/
void init_hyper_param(const MatrixXd &alpha1, const MatrixXd &alpha2,
const MatrixXd &beta1, const MatrixXd &beta2);
/*!
* \brief Initialize variational parameters with from given
* factor matrices U and V
*
* U is used to initialize the a1 shape variational parameter. The
* a2 rate variational parameter is set to 1, such that a1/a2 = U.
* V is used to initialize the b1 shape variational parameter. The
* b2 rate variational parameter is set to 1, such that b1/b2 = V.
*
* \param[in] U matrix n x K, initial values for U
* \param[in] V matrix p x K, initial values for V
*/
void init_from_factor(const MatrixXd &U, const MatrixXd &V);
/*!
* \brief Initialize variational and hyper-parameters with random values
*
* Each row \code{i} in \code{a1} is
* randomly initialized from a Gamma distribution of parameters
* \code{(1,sqrt(K/mean(X)_i))} where \code{mean(X)_i} is the rowwise mean of
* the corresponding row in the input data matrix \code{X}.
*
* Each row \code{j} in \code{b1} is
* randomly initialized from a Gamma distribution of parameters
* \code{(1,sqrt(K/mean(X)_j))} where \code{mean(X)_j} is the colwise mean of
* the corresponding column in the input data matrix \code{X}.
*
* \param[in,out] rng Boost random number generator
*/
virtual void random_init_model_param(myRandom::RNGType &rng);
/*!
* \brief randomly perturb parameters
*
* \param[in,out] rng random number generator
* \param[in] noise_level level of the perturbation, based on a uniform
* distribution on [-noise_level, noise_level]
*/
virtual void perturb_param(myRandom::RNGType &rng, double noise_level);
/*!
* \brief update variational parameters
*/
virtual void update_variational_param();
/*!
* \brief update prior hyper-parameters
*/
virtual void update_hyper_param();
/*!
* \brief update variational parameters values between iterations
*
* current values of varitional parameters become old values of parameters
*/
virtual void prepare_next_iterate_variational_param();
/*!
* \brief update prior hyper-parameters values between iterations
*
* current values of prior hyper-parameters become old values of parameters
*/
virtual void prepare_next_iterate_hyper_param();
/*!
* \brief compute absolute and normalized gap of parameters between two iterates
*
* \param[out] abs_gap absolute gap.
* \param[out] norm_gap normalized gap.
*/
virtual void gap_between_iterates(double &abs_gap, double& norm_gap);
/*!
* \brief compute a convergence criterion to assess convergence based on
* the RV coefficients
*
* The RV coefficients measures the closeness of the two set of points stored
* in two matrices [1]. Here, we compute:
* f\[
* crit = min( RV_coeff(U_{new}, U_{old}), RV_coeff(V_{new}, V_{old}) )
* f\]
*
* Important: The RV coefficient custom is transformed so that
* it converges to zero when convergence occurs. Thus, this function
* returns f\$ 1 - crit f\$.
*
* \return value of the criterion
*
* [1] Friguet, C., 2010. Impact de la dépendance dans les procédures de tests
* multiples en grande dimension. Rennes, AGROCAMPUS-OUEST.
*/
virtual double custom_conv_criterion();
/*!
* \brief compute the optimization criterion associated to the GaP factor model
* in the variational framework corresponding to the ELBO
*/
virtual double optim_criterion();
/*!
* \brief compute the joint (or complete) log-likelihood associated to the
* Gamma-Poisson factor model
*
* \f[
* \log p(X | \Lambda = UV^t) + \log p(U; \alpha) + \log p(V; \beta)
* \f]
*
* where \f$ \log p(X | \Lambda ) \f$ is the Poisson log-likelihood and
* \f$ \Lambda \f$ the Poisson rate matrix, i.e
*
* \f[
* \log p(X | \Lambda ) = \log p(x_{ij} | \lambda_{ij})
* \f]
*
* and \f$ \log p(U; \alpha) \f$ and \f$ \log p(V; \beta) \f$ are
* the Gamma log-likelihood for U and V respectively
*/
virtual double loglikelihood();
/*!
* \brief compute the evidence lower bound for the model
*/
virtual double elbo();
/*!
* \brief compute the deviance associated to the GaP factor model
*
* \f[
* deviance = -2 \times [ \log p(X | \Lambda = UV^t) - \log p(X | \Lambda = X)]
* \f]
*
* where \f$ \log p(X | \Lambda ) \f$ is the Poisson log-likelihood and
* \f$ \Lambda \f$ the Poisson rate matrix, i.e
*
* \f[
* \log p(X | \Lambda ) = \log p(x_{ij} | \lambda_{ij})
* \f]
*
* This is equivalent to computing the Bregman divergence
* between \f$ X \f$ and \f$ UV^t \f$ in the Poisson framework:
*
* \f[
* d(X,Y) = \sum_{i,j} d(x_{i,j}, y_{i,j})
* \f]
*
* with \f$ d(x,y) = x \log\frac{x}{y} - x + y \f$
*/
virtual double deviance();
/*!
* \brief compute the percentage of explained deviance associated
* to the Gap factor model
*
* \f[
* %deviance = \frac{ \log p(X | \Lambda = UV^t) - \log p(X | \Lambda = \bar{X})}{ \log p(X | \Lambda = X) - \log p(X | \Lambda = \bar{X}) }
* \f]
*
* where \f$ \log p(X | \Lambda ) \f$ is the Poisson log-likelihood and
* \f$ \Lambda \f$ the Poisson rate matrix, i.e
*
* \f[
* \log p(X | \Lambda ) = \log p(x_{ij} | \lambda_{ij})
* \f]
*
* and \f$ \bar{X} \f$ the column-wise empirical mean of \f$ X \f$
*
*/
virtual double exp_deviance();
/*!
* \brief reorder factor according to the 'm_factor_order' attribute
*
* Default behavior is to only reorder U and V
*/
virtual void reorder_factor();
/*!
* \brief create list of object to return
*
* \param[out] results list of returned objects
*/
virtual void get_output(Rcpp::List &results);
// define getters
/*!
* \brief getter for U and V
*
* \param[out] U stores the current value of attribute U
* \param[out] V stores the current value of attribute V
*/
virtual void get_factor(MatrixXd &U, MatrixXd &V);
protected:
//--------------------------------------------//
// parameter updates for standard variational //
//--------------------------------------------//
/*!
* \brief Compute sufficient statistics for U regarding
* the variational distribution
*/
virtual void U_stats();
/*!
* \brief Compute sufficient statistics for V regarding
* the variational distribution
*/
virtual void V_stats();
/*!
* \brief compute partial deviance using a sub-set of factors (among 1...K)
*
* \param[in] factor integer vector of size 'K' giving the sub-set of
* 'k' factors to consider to compute the deviance in first 'k' positions.
* \param[in] k integer, sub-dimension to consider (<='K').
*/
virtual double partial_deviance(const vector<int> &factor, int k);
/*!
* \brief update rule for Poisson intensity matrix
*
* \f$ \Lambda = U V^t \f$
*/
virtual void update_poisson_param();
/*!
* \brief update rule for the multinomial parameters in variational framework
*
* Compute:
* * \f$ \sum_i E_q[Z_{ijk}] = \sum_i X_{ij} r_{ijk} \f$
* * \f$ \sum_j E_q[Z_{ijk}] = \sum_j X_{ij} r_{ijk} \f$
* where $\f r_{ijk} = \frac{exp(E_q[log(U_{ik}) + log(V_{jk})])}{\sum_l exp(E_q[log(U_{il}) + log(V_{jl})])} \f$
*
* Resilient to underflowing and overflowing in exponential
*/
virtual void update_variational_multinomial_param();
/*!
* \brief intemrediate computation when updating the multinomial parameters
* in variational framework
*
* Compute: \f$ \sum_k exp(E_q[log(U_{ik})] + E_q[log(V_{jk})]) \f$
*
* Resilient to underflowing and overflowing in exponential
*/
virtual void intermediate_update_variational_multinomial_param();
/*!
* \update rule for variational Gamma parameter in variational framework
*/
virtual void update_variational_gamma_param();
/*!
* \update rule for prior Gamma parameter in variational framework
*/
virtual void update_prior_gamma_param();
};
}
#endif