-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathzi_sparse_gap_factor_model.h
369 lines (330 loc) · 14.8 KB
/
zi_sparse_gap_factor_model.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
// Copyright 2018 Ghislain Durif
//
// This file is part of the `pCMF' library for R and related languages.
// It is made available under the terms of the GNU General Public
// License, version 2, or at your option, any later version,
// incorporated herein by reference.
//
// This program is distributed in the hope that it will be
// useful, but WITHOUT ANY WARRANTY; without even the implied
// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
// PURPOSE. See the GNU General Public License for more
// details.
//
// You should have received a copy of the GNU General Public
// License along with this program; if not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
// MA 02111-1307, USA
/*!
* \brief definitions of the Zero-Inflated sparse Gamma Poisson Factor model
* \author Ghislain Durif
* \version 1.0
* \date 10/04/2018
*/
#ifndef ZI_SPARSE_GAP_FACTOR_MODEL_H
#define ZI_SPARSE_GAP_FACTOR_MODEL_H
#include <RcppEigen.h>
#include "sparse_gap_factor_model.h"
#include "utils/random.h"
// [[Rcpp::depends(RcppEigen)]]
using Eigen::MatrixXd; // variable size matrix, double precision
using Eigen::MatrixXi; // variable size matrix, integer
using Eigen::VectorXd; // variable size vector, double precision
namespace pCMF {
/*!
* \brief definition of the Zero-inflated Sparse Gamma Poisson Factor model
*
* Zero-inflation concerns the conditional distribution over the data X
*
* The sparsity concerns the factor matrix V
*
* Model:
* * \f$ X_{ij} = \sum_k Z_{ijk} \f$
* * \f$ X_{ij} | (U_{ik},V_{jk})_k,D_{ij} \sim (1-D_{ij}) delta_0(X_{ij}) + D_{ij} * Poisson(U V^t) \f$
* where \f$ D_{ij} \sim Bernoulli(pi_j^d) \f$ is the drop-out indicator for \f$ X_{ij} \f$
* ( \f$ D_{ij} = 0 \f$ corresponds to a drop-out event)
* and \f$ pi_j^d \f$ the drop-out probability for gene \f$ j \f$,
* which corresponds to the zero-inflated distribution:
* \f[
* X_{ij} | (U_{ik},V_'jk})_k \sim (1-pi_{j}^d) delta_0(X_{ij}) + pi_{j}^d * Poisson(U V^t) \f$
* \f]
* thus \f$ Z_{ijk} | U_{ik}, V_{jk}, D_{ij} \sim (1-D_{ij}) delta_0(Z_{ijk}) + D_{ij} * Poisson(U_{ik} V_{jk}) \f$
* * \f$ U_{ik} \sim Gamma(\alpha_{ik}) \f$ with \f$ \alpha_{ik} = (\alpha_{ik,1}, \alpha_{ik,2}) \f$
* * \f$ V_{jk} \sim (1-p_{k}^s) delta_0(V_{jk}) + p_{k}^s Gamma(\beta_{jk}) \f$ with \f$ \beta_{jk} = (\beta_{jk,1}, \beta_{jk,2}) \f$
* which corresponds to a two-group prior in a spike-and-slab setting (for probabilistic variable selection).
* In practice, we introduce the variables \f$ V'_{jk} \sim Gamma(\beta_{jk}) \f$ and Bernoulli
* variables \f$ S_{jk} \sim Bernoulli(pi_j^s) \f$ indicating is \f$ V_{jk} \f$ is selected or not \f$.
* Note:
* - In our approach, all \f$ \alpha_{ik} \f$ are identical across i.
* - Similarly, all \f$ \beta_{jk} \f$ are identical across j.
* * Consequence 1: \f$ Z_{ijk} | D_{ij}, U_{ik}, V'_{jk}, S_{jk} \sim Poisson(D_{ij} U_{ik} V'_{jk} S_{jk}) \f$
* * Consequence 2: \f$ (Z_{ijk})_k \sim Multinomial((\rho_{ijk})_k)
* where \f$ \rho_{ijk} = \frac{U_{ik} V'_{jk} S_{jk}}{\sum_l U_{il} V'_{jl} S_{jl}} \f$
*
* Variational distribution \f$ q \f$:
* * \f$ (Z_{ijk})_k \sim_q Multinomial((r_{ijk})_k)
* * \f$ U_{ik} \sim_q Gamma(a_{ik}) \f$ with \f$ a_{ik} = (a_{ik,1}, a_{ik,2}) \f$
* * \f$ V'_{jk} \sim_q Gamma(b_{jk}) \f$ with \f$ b_{jk} = (b_{jk,1}, b_{jk,2}) \f$
* * \f$ S_{jk} \sim_q Bernoulli(p_{jk}^s) \f$
*
* Sufficient statitics needed:
* * \f$ E_q[U_{ik}] \f$, \f$ E_q[log(U_{ik})] \f$
* * \f$ E_q[V'_{jk}] \f$, \f$ E_q[log(V'_{jk})] \f$
* * \f$ \sum_i E_q[D_{ij}] E_q[Z_{ijk}] = \sum_i p_{ij}^d * X_{ij} r_{ijk} \f$
* * \f$ \sum_j E_q[D_{ij}] E_q[Z_{ijk}] = \sum_j p_{ij}^d * X_{ij} r_{ijk} \f$
* * \f$ \sum_k exp(E_q[log(U_{ik})] + E_q[log(V_{jk})]) \f$
*
*/
class zi_sparse_gap_factor_model : public sparse_gap_factor_model {
protected:
// ZI compartment
MatrixXd m_prob_D; /*!< matrix of probability for variational distribution over drop-out indicator D, dimension n x p */
VectorXd m_prior_prob_D; /*!< vector of probability for prior distribution over drop-out indicator D, length p */
VectorXd m_freq_D; /*!< vector of frequence of non null values in each column of X, length p */
public:
/*!
* \brief Constructor for the class `zi_sparse_gap_factor_model`
*/
zi_sparse_gap_factor_model(int n, int p, int K, const MatrixXd &X);
/*!
* \brief destructor for the class `zi_sparse_gap_factor_model`
*/
~zi_sparse_gap_factor_model();
/*!
* \brief Initialize variational and hyper-parameters with given values
*
* \param[in] alpha1 matrix n x K, intial values for the first parameter (shape) of Gamma prior on U
* \param[in] alpha2 matrix n x K, intial values for the second parameter (rate) of Gamma prior on U
* \param[in] beta1 matrix p x K, intial values for the first parameter (shape) of Gamma prior on V
* \param[in] beta2 matrix p x K, intial values for the second parameter (rate) of Gamma prior on V
* \param[in] a1 matrix n x K, intial values for the first parameter (shape) of Gamma variational distribution on U
* \param[in] a2 matrix n x K, intial values for the second parameter (rate) of Gamma variational distribution on U
* \param[in] b1 matrix p x K, intial values for the first parameter (shape) of Gamma variational distribution on V
* \param[in] b2 matrix p x K, intial values for the second parameter (rate) of Gamma variational distribution on V
*/
void init_all_param(const MatrixXd &alpha1, const MatrixXd &alpha2,
const MatrixXd &beta1, const MatrixXd &beta2,
const MatrixXd &a1, const MatrixXd &a2,
const MatrixXd &b1, const MatrixXd &b2);
/*!
* \brief Initialize variational parameters with given values
*
* \param[in] a1 matrix n x K, intial values for the first parameter (shape) of Gamma variational distribution on U
* \param[in] a2 matrix n x K, intial values for the second parameter (rate) of Gamma variational distribution on U
* \param[in] b1 matrix p x K, intial values for the first parameter (shape) of Gamma variational distribution on V
* \param[in] b2 matrix p x K, intial values for the second parameter (rate) of Gamma variational distribution on V
*/
void init_variational_param(const MatrixXd &a1, const MatrixXd &a2,
const MatrixXd &b1, const MatrixXd &b2);
/*!
* \brief Initialize variational and hyper-parameters with given values
*
* \param[in] alpha1 matrix n x K, intial values for the first parameter (shape) of Gamma prior on U
* \param[in] alpha2 matrix n x K, intial values for the second parameter (rate) of Gamma prior on U
* \param[in] beta1 matrix p x K, intial values for the first parameter (shape) of Gamma prior on V
* \param[in] beta2 matrix p x K, intial values for the second parameter (rate) of Gamma prior on V
*/
void init_hyper_param(const MatrixXd &alpha1, const MatrixXd &alpha2,
const MatrixXd &beta1, const MatrixXd &beta2);
/*!
* \brief Initialize variational parameters with from given
* factor matrices U and V for Gamma compartment
*
* U is used to initialize the a1 shape variational parameter. The
* a2 rate variational parameter is set to 1, such that a1/a2 = U.
* V is used to initialize the b1 shape variational parameter. The
* b2 rate variational parameter is set to 1, such that b1/b2 = V.
*
* \param[in] U matrix n x K, initial values for U
* \param[in] V matrix p x K, initial values for V
*/
void init_from_factor(const MatrixXd &U, const MatrixXd &V);
/*!
* \brief Initialize variational and hyper-parameters with random values
*
* Each row \code{i} in \code{a1} is
* randomly initialized from a Gamma distribution of parameters
* \code{(1,sqrt(K/mean(X)_i))} where \code{mean(X)_i} is the rowwise mean of
* the corresponding row in the input data matrix \code{X}.
*
* Each row \code{j} in \code{b1} is
* randomly initialized from a Gamma distribution of parameters
* \code{(1,sqrt(K/mean(X)_j))} where \code{mean(X)_j} is the colwise mean of
* the corresponding column in the input data matrix \code{X}.
*
* \param[in,out] rng Boost random number generator
*/
virtual void random_init_model_param(myRandom::RNGType &rng);
/*!
* \brief initialize variational and hyper-parameter from ZI compartment
*
* Prior probabilities over D i.e. \f$ (pi_j^d)_j \f$ are initialized with
* frequences of non null values in the corresponding column of X
*
* Variational probabilities over D i.e. \f$ (p_{ij}^d)_j \f$ are
* initialized with frequences of non null values in the corresponding
* column of X
*/
virtual void init_zi_param();
/*!
* \brief initialize variational and hyper-parameter from ZI compartment
*
* Prior probabilities over D i.e. \f$ (pi_j^d)_j \f$ and variational
* probabilities over D i.e. \f$ (p_{ij}^d)_j \f$ are
* initialized with given input parameter values.
*
* \param[in] prob_D matrix of dimension n x p to intialize attribute
* m_prob_D (variational probabilities over D).
* \param[in] prior_D vector of length p to intialize attribute
* m_prior_prob_D (prior probabilities over D).
*/
virtual void init_zi_param(const MatrixXd &prob_D,
const VectorXd &prior_D);
/*!
* \brief randomly perturb parameters
*
* \param[in,out] rng random number generator
* \param[in] noise_level level of the perturbation, based on a uniform
* distribution on [-noise_level, noise_level]
*/
virtual void perturb_param(myRandom::RNGType &rng, double noise_level);
/*!
* \brief update variational parameters
*/
virtual void update_variational_param();
/*!
* \brief update prior hyper-parameters
*/
virtual void update_hyper_param();
/*!
* \brief compute the optimization criterion associated to the GaP factor model
* in the variational framework corresponding to the ELBO
*/
virtual double optim_criterion();
/*!
* \brief compute the joint (or complete) log-likelihood associated to the
* Gamma-Poisson factor model
*
* \f[
* \log p(X | \Lambda = UV^t, (p_j^d)_j) + \log p(U; \alpha) + \log p(V'; \beta)
* + log p(S; (p_j^s)_j) + \log p(D; (p_j^d)_j)
* \f]
*
* recalling that \f$ V_{jk} = S_{jk} V'_{jk} \f$
*
* where \f$ \log p(X | \Lambda, (p_j^d)_j) \f$ is the zero-inflated Poisson
* log-likelihood and \f$ \Lambda \f$ the Poisson rate matrix, i.e
*
* \f[
* \log p(X | \Lambda, (p_j^d)_j ) = \log p(x_{ij} | \lambda_{ij}, p_j^d)
* \f]
*
* \f$ \log p(U; \alpha) \f$ and \f$ \log p(V'; \beta) \f$ are
* the Gamma log-likelihood for U and V respectively
*
* and \f$ \log p(S; (p_j^s)_j) \f$ the Bernoulli log-likelihood
*/
virtual double loglikelihood();
/*!
* \brief compute the evidence lower bound for the model
*/
virtual double elbo();
/*!
* \brief compute the deviance associated to the GaP factor model
*
* \f[
* deviance = -2 \times [ \log p(X | \Lambda = D * (U (S * V)^t)) - \log p(X | \Lambda = X)]
* \f]
*
* where \f$ \log p(X | \Lambda ) \f$ is the Poisson log-likelihood and
* \f$ \Lambda \f$ the Poisson rate matrix, i.e
*
* \f[
* \log p(X | \Lambda ) = \log p(x_{ij} | \lambda_{ij})
* \f]
*
* and \f$ . * . \f$ is the element-wise product between two matrices.
*
* This is equivalent to computing the Bregman divergence
* between \f$ X \f$ and \f$ D * (U (S * V)^t) \f$ in the Poisson framework:
*
* \f[
* d(X,Y) = \sum_{i,j} d(x_{i,j}, y_{i,j})
* \f]
*
* with \f$ d(x,y) = x \log\frac{x}{y} - x + y \f$
*/
virtual double deviance();
/*!
* \brief compute the percentage of explained deviance associated
* to the Gap factor model
*
* \f[
* %deviance = \frac{ \log p(X | \Lambda = D* (U (S * V)^t)) - \log p(X | \Lambda = \bar{X})}{ \log p(X | \Lambda = X) - \log p(X | \Lambda = \bar{X}) }
* \f]
*
* (c.f. deviance doc for \f$ \log p(X | \Lambda = U (S * V)^t) \f$ definition)
*
* where \f$ \log p(X | \Lambda ) \f$ is the Poisson log-likelihood and
* \f$ \Lambda \f$ the Poisson rate matrix, i.e
*
* \f[
* \log p(X | \Lambda ) = \log p(x_{ij} | \lambda_{ij})
* \f]
*
* and \f$ \bar{X} \f$ the column-wise empirical mean of \f$ X \f$
*
*/
virtual double exp_deviance();
/*!
* \brief create list of object to return
*
* \param[out] results list of returned objects
*/
virtual void get_output(Rcpp::List &results);
protected:
//--------------------------------------------//
// parameter updates for standard variational //
//--------------------------------------------//
/*!
* \brief compute partial deviance using a sub-set of factors (among 1...K)
*
* \param[in] factor integer vector of size 'K' giving the sub-set of
* 'k' factors to consider to compute the deviance in first 'k' positions.
* \param[in] k integer, sub-dimension to consider (<='K').
*/
virtual double partial_deviance(const vector<int> &factor, int k);
/*!
* \brief update rule for the multinomial parameters in variational framework
*
* Compute:
* * \f$ \sum_i E_q[Z_{ijk}] = \sum_i p_{ij}^d * p_{jk}^s * X_{ij} r_{ijk} \f$
* * \f$ \sum_j E_q[Z_{ijk}] = \sum_j p_{ij}^d * p_{jk}^s * X_{ij} r_{ijk} \f$
* where $\f r_{ijk} = \frac{S_{jk} * exp(E_q[log(U_{ik}) + log(V_{jk})])}{\sum_l S_{kl} * exp(E_q[log(U_{il}) + log(V_{jl})])} \f$
*
* Resilient to underflowing and overflowing in exponential
*/
virtual void update_variational_multinomial_param();
/*!
* \brief update rule for variational Gamma parameter in variational framework
*/
virtual void update_variational_gamma_param();
/*!
* \brief update rule for variational parameter from ZI compartment
*/
virtual void update_variational_zi_param();
/*!
* \brief update rule for variational parameter from sparsity compartment
*/
virtual void update_variational_sparse_param();
/*!
* \brief update rule for prior parameter from ZI compartment
*/
virtual void update_prior_zi_param();
/*!
* \brief update rule for prior parameter from sparsity compartment
*/
virtual void update_prior_sparse_param();
};
}
#endif