forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcheckpoint_test.py
338 lines (288 loc) · 13.2 KB
/
checkpoint_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from caffe2.python.schema import Struct, ConstRecord
from caffe2.python import core, workspace, model_helper
from caffe2.python.session import LocalSession
from caffe2.python.dataset import Dataset
from caffe2.python.pipeline import pipe
from caffe2.python.checkpoint import (
CheckpointManager, MultiNodeCheckpointManager, Job, JobRunner, epoch_limiter,
UploadTaskGroupBuilder, db_name)
from caffe2.python.net_builder import ops
from caffe2.python.task import Node, Task, TaskGroup, WorkspaceType, Cluster
from caffe2.python.test_util import TestCase
from caffe2.python.dataio import ReaderWithLimit
import numpy as np
import os
import shutil
import tempfile
def build_pipeline(node_id):
with Node('trainer_%d' % node_id):
with Job.current().init_group, Task():
data_arr = Struct(('val', np.array(list(range(10)))))
data = ConstRecord(ops, data_arr)
ds = Dataset(data, name='dataset:%d' % node_id)
full_reader = ds.reader(ops)
total = ops.Const([100])
def inc_total(rec):
ops.Add([total, rec.val()], [total])
epoch_reader = ReaderWithLimit(full_reader, num_iter=3)
pipe(epoch_reader, processor=inc_total)
Job.current().add_stop_condition(epoch_reader.data_finished())
return [total]
EXPECTED_TOTALS = [103, 115, 136, 145]
def local_copy_op(src, dest):
def copy_op(inputs, outputs):
shutil.copyfile(src, dest)
return copy_op
class UploadToLocalFile(UploadTaskGroupBuilder):
def __init__(self, dest_dir):
self.dest_dir = dest_dir
def build(self, epoch, checkpoint_manager):
with TaskGroup(WorkspaceType.GLOBAL) as upload_task_group:
for node, manager in checkpoint_manager._node_managers:
with Node(str(node)), Task():
src_path = db_name(epoch, manager._node_name, manager._db_prefix)
dest_path = os.path.join(self.dest_dir, str(node))
ops.Python((local_copy_op,
[src_path, dest_path], {}))([], [])
return upload_task_group
class TestCheckpoint(TestCase):
def run_with(self, builder):
with Cluster():
with Job() as job:
outputs = build_pipeline(node_id=0)
output_fetcher = Task(step=core.Net('empty'), outputs=outputs)
def fetch_total(session):
session.run(output_fetcher)
return output_fetcher.outputs()[0].fetch()
session, checkpoint = builder()
job.compile(LocalSession)
num_epochs = JobRunner(job, checkpoint).train(session)
self.assertEquals(num_epochs, len(EXPECTED_TOTALS))
self.assertEquals(fetch_total(session), EXPECTED_TOTALS[-1])
for initial_epoch in range(1, num_epochs + 1):
session, checkpoint = builder()
JobRunner(
job,
checkpoint, resume_from_epoch=initial_epoch
).train(session)
self.assertEquals(fetch_total(session), EXPECTED_TOTALS[-1])
for epoch in range(1, num_epochs + 1):
session.run(checkpoint.load(epoch))
self.assertEquals(fetch_total(session),
EXPECTED_TOTALS[epoch - 1])
def test_single_checkpoint(self):
# test single node
try:
tmpdir = tempfile.mkdtemp()
def builder():
ws = workspace.C.Workspace()
session = LocalSession(ws)
checkpoint = CheckpointManager(tmpdir, 'temp_node', 'minidb')
return session, checkpoint
self.run_with(builder)
finally:
shutil.rmtree(tmpdir)
# test multi-node
try:
tmpdir = tempfile.mkdtemp()
def builder():
ws = workspace.C.Workspace()
session = LocalSession(ws)
checkpoint = MultiNodeCheckpointManager(tmpdir, 'minidb')
return session, checkpoint
self.run_with(builder)
finally:
shutil.rmtree(tmpdir)
def test_ckpt_name_and_load_model_from_ckpts(self):
try:
num_nodes = 3
tmpdir = tempfile.mkdtemp()
# First, check if the checkpoint name generation mechanism is
# correct.
checkpoint = MultiNodeCheckpointManager(tmpdir, 'minidb')
with Cluster():
with Job() as job:
for node_id in range(num_nodes):
build_pipeline(node_id)
job.compile(LocalSession)
checkpoint.init(job.nodes_to_checkpoint())
for node_id in range(num_nodes):
epoch = 5
node_name = 'trainer_%d' % node_id
expected_db_name = tmpdir + '/' + node_name + '.5'
self.assertEquals(
checkpoint.get_ckpt_db_name(node_name, epoch),
expected_db_name)
shutil.rmtree(tmpdir)
# Next, check mechanism to load model from checkpoints.
tmpdir = tempfile.mkdtemp()
workspace.ResetWorkspace()
for node_id in range(num_nodes):
ws = workspace.C.Workspace()
session = LocalSession(ws)
checkpoint = MultiNodeCheckpointManager(tmpdir, 'minidb')
with Cluster():
with Job() as job:
build_pipeline(node_id)
job.compile(LocalSession)
job_runner = JobRunner(job, checkpoint)
num_epochs = job_runner.train(session)
self.assertEquals(num_epochs, len(EXPECTED_TOTALS))
# There are 17 global blobs after finishing up the job runner.
# (only blobs on init_group are checkpointed)
self.assertEquals(len(ws.blobs), 17)
ws = workspace.C.Workspace()
session = LocalSession(ws)
self.assertEquals(len(ws.blobs), 0)
model_blob_names = ['trainer_1/task_2/GivenTensorInt64Fill:0',
'trainer_2/task_2/GivenTensorInt64Fill:0']
checkpoint = MultiNodeCheckpointManager(tmpdir, 'minidb')
with Cluster():
with Job() as job:
for node_id in range(num_nodes):
build_pipeline(node_id)
job.compile(LocalSession)
job_runner = JobRunner(job, checkpoint)
job_runner.load_blobs_from_checkpoints(
blob_names=model_blob_names, epoch=1, session=session)
# Check that we can successfully load from checkpoints of epochs
# 1 to 4, but not epoch 5.
for epoch in range(1, 5):
self.assertTrue(
job_runner.load_blobs_from_checkpoints(
blob_names=model_blob_names, epoch=epoch,
session=session))
# Check that all the model blobs are loaded.
for blob_name in model_blob_names:
self.assertTrue(ws.has_blob(blob_name))
self.assertEquals(
ws.fetch_blob(blob_name),
np.array([EXPECTED_TOTALS[epoch - 1]]))
self.assertFalse(
job_runner.load_blobs_from_checkpoints(
blob_names=model_blob_names, epoch=5, session=session))
finally:
shutil.rmtree(tmpdir)
def test_upload_checkpoint(self):
try:
tmpdir = tempfile.mkdtemp()
upload_dir = os.path.join(tmpdir, "upload")
os.mkdir(upload_dir)
num_nodes = 3
# The uploaded files do not exist yet.
for node_id in range(num_nodes):
node_name = 'trainer_%d' % node_id
upload_path = os.path.join(upload_dir, node_name)
self.assertFalse(os.path.exists(upload_path))
# Create and run the job runner.
for node_id in range(3):
ws = workspace.C.Workspace()
session = LocalSession(ws)
checkpoint = MultiNodeCheckpointManager(tmpdir, 'minidb')
with Cluster():
with Job() as job:
build_pipeline(node_id)
job.compile(LocalSession)
local_upload_builder = UploadToLocalFile(upload_dir)
job_runner = JobRunner(
job, checkpoint,
upload_task_group_builder=local_upload_builder)
num_epochs = job_runner.train(session)
self.assertEquals(num_epochs, len(EXPECTED_TOTALS))
# The uploaded files should exist now.
for node_id in range(num_nodes):
node_name = 'trainer_%d' % node_id
upload_path = os.path.join(upload_dir, node_name)
self.assertTrue(os.path.exists(upload_path))
finally:
shutil.rmtree(tmpdir)
def test_ckpt_save_failure(self):
num_nodes = 3
# The goal of this test is to ensure that the job runs
# successfully even if saving a checkpoint fails.
# Hence tmpdir is a non existent directory to emulate a failure
# while saving checkpoints
tmpdir = "/tmp/path_does_not_exist/"
# Check the saving checkpoint failure does not cause job failure
workspace.ResetWorkspace()
for node_id in range(num_nodes):
ws = workspace.C.Workspace()
session = LocalSession(ws)
checkpoint = MultiNodeCheckpointManager(tmpdir, 'minidb')
with Cluster():
with Job() as job:
build_pipeline(node_id)
job.compile(LocalSession)
job_runner = JobRunner(job, checkpoint)
num_epochs = job_runner.train(session)
# make sure all epochs are executed even though saving the checkpoint failed
# Saving checkpoint failure should not cause job failure
self.assertEquals(num_epochs, len(EXPECTED_TOTALS))
def test_download_group_simple(self):
"""
A simple test that ensures we have download task group
executed between epoch_group and exit_group.
"""
model = model_helper.ModelHelper(name="test_model")
download_net = core.Net("download_net")
for name in ["input1", "input2", "output", "download_result"]:
model.param_init_net.ConstantFill([],
[name],
shape=[8, ],
value=1.0,
run_once=0)
model.net.Add(["input1", "input2"], ["output"])
download_net.Copy(["output"], ["download_result"])
# All blob values are initialized as 1.0, after download_net executed
# we expect to see download result is the same as training result.
with Job() as job:
with Node("trainer:0"):
with job.init_group:
Task(step=model.param_init_net)
with job.epoch_group:
with Task():
with ops.loop(1):
ops.net(model.net)
with job.download_group:
Task(step=download_net)
epoch_limiter(job, 1)
ws = workspace.C.Workspace()
session = LocalSession(ws)
job_runner = JobRunner(job)
job_runner.train(session)
expected_result = np.full(8, 2.0).astype(np.float32)
self.assertTrue(np.array_equal(expected_result,
ws.fetch_blob("output")))
self.assertTrue(np.array_equal(expected_result,
ws.fetch_blob("download_result")))
def test_reuse_checkpoint_manager(self):
"""
A simple test that ensures we can reuse a MultiNodeCheckpointManager
object.
"""
try:
tmpdir = tempfile.mkdtemp()
ws = workspace.C.Workspace()
session = LocalSession(ws)
checkpoint = MultiNodeCheckpointManager(tmpdir, 'minidb')
with Job() as job:
outputs = build_pipeline(node_id=0)
output_fetcher = Task(step=core.Net('empty'), outputs=outputs)
job.compile(LocalSession)
def fetch_total(session):
session.run(output_fetcher)
return output_fetcher.outputs()[0].fetch()
num_epochs = JobRunner(job, checkpoint).train(session)
for initial_epoch in range(1, num_epochs + 1):
JobRunner(
job,
checkpoint,
resume_from_epoch=initial_epoch
).train(session)
self.assertEquals(fetch_total(session), EXPECTED_TOTALS[-1])
finally:
shutil.rmtree(tmpdir)