forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 3
/
test_utils.cpp
141 lines (122 loc) · 4.19 KB
/
test_utils.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#include <test/cpp/jit/test_utils.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/clear_undefinedness.h>
namespace torch {
namespace jit {
Stack createStack(std::vector<at::Tensor>&& list) {
return Stack(
std::make_move_iterator(list.begin()),
std::make_move_iterator(list.end()));
}
void assertAllClose(const tensor_list& a, const tensor_list& b) {
ASSERT_EQ(a.size(), b.size());
for (size_t i = 0; i < a.size(); ++i) {
ASSERT_TRUE(a[i].is_same_size(b[i]));
ASSERT_TRUE(a[i].allclose(b[i]));
}
}
std::vector<at::Tensor> run(
InterpreterState& interp,
const std::vector<at::Tensor>& inputs) {
std::vector<IValue> stack(inputs.begin(), inputs.end());
interp.run(stack);
return fmap(stack, [](const IValue& i) { return i.toTensor(); });
}
static void unpackReturnTuple(Stack& stack) {
auto tuple = pop(stack).toTuple();
stack.insert(stack.end(), tuple->elements().begin(), tuple->elements().end());
}
std::pair<tensor_list, tensor_list> runGradient(
Gradient& grad_spec,
tensor_list& tensors_in,
tensor_list& tensor_grads_in) {
static const auto as_tensorlist = [](const Stack& stack) {
return fmap(stack, [](const IValue& i) { return i.toTensor(); });
};
ClearUndefinedness(grad_spec.df);
Code f_code{grad_spec.f, ""}, df_code{grad_spec.df, ""};
InterpreterState f_interpreter{f_code}, df_interpreter{df_code};
auto f_stack = fmap<IValue>(tensors_in);
f_interpreter.run(f_stack);
Stack df_stack;
df_stack.insert(
df_stack.end(), tensor_grads_in.begin(), tensor_grads_in.end());
for (auto offset : grad_spec.df_input_captured_inputs)
df_stack.push_back(tensors_in[offset]);
for (auto offset : grad_spec.df_input_captured_outputs)
df_stack.push_back(f_stack[offset]);
df_interpreter.run(df_stack);
unpackReturnTuple(df_stack);
// Outputs of f needs to be sliced
f_stack.erase(f_stack.begin() + grad_spec.f_real_outputs, f_stack.end());
return std::make_pair(as_tensorlist(f_stack), as_tensorlist(df_stack));
}
std::shared_ptr<Graph> build_lstm() {
const auto graph_string = R"IR(
graph(%0 : Tensor,
%1 : Tensor,
%2 : Tensor,
%3 : Tensor,
%4 : Tensor):
%5 : Tensor = aten::mm(%0, %3)
%6 : Tensor = aten::mm(%1, %4)
%7 : int = prim::Constant[value=1]()
%8 : Tensor = aten::add(%5, %6, %7)
%9 : Tensor, %10 : Tensor, %11 : Tensor, %12 : Tensor = prim::ConstantChunk[chunks=4, dim=1](%8)
%13 : Tensor = aten::sigmoid(%9)
%14 : Tensor = aten::sigmoid(%12)
%15 : Tensor = aten::tanh(%11)
%16 : Tensor = aten::sigmoid(%10)
%17 : Tensor = aten::mul(%16, %2)
%18 : Tensor = aten::mul(%13, %15)
%19 : int = prim::Constant[value=1]()
%20 : Tensor = aten::add(%17, %18, %19)
%21 : Tensor = aten::tanh(%20)
%22 : Tensor = aten::mul(%14, %21)
return (%22, %20))IR";
auto g = std::make_shared<Graph>();
torch::jit::parseIR(graph_string, g.get());
g->lint();
return g;
}
at::Tensor t_use(at::Tensor x) {
return x;
}
at::Tensor t_def(at::Tensor x) {
return x.t();
}
bool checkRtol(const at::Tensor& diff, const std::vector<at::Tensor> inputs) {
double maxValue = 0.0;
for (auto& tensor : inputs) {
maxValue = fmax(tensor.abs().max().item<float>(), maxValue);
}
return diff.abs().max().item<float>() < 2e-6 * maxValue;
}
bool almostEqual(const at::Tensor& a, const at::Tensor& b) {
return checkRtol(a - b, {a, b});
}
bool exactlyEqual(const at::Tensor& a, const at::Tensor& b) {
return (a - b).abs().max().item<float>() == 0.f;
}
std::pair<at::Tensor, at::Tensor> lstm(
at::Tensor input,
at::Tensor hx,
at::Tensor cx,
at::Tensor w_ih,
at::Tensor w_hh) {
auto gates = input.mm(t_use(w_ih)) + hx.mm(t_use(w_hh));
auto chunked_gates = gates.chunk(4, 1);
auto ingate = chunked_gates[0];
auto forgetgate = chunked_gates[1];
auto cellgate = chunked_gates[2];
auto outgate = chunked_gates[3];
ingate = ingate.sigmoid();
outgate = outgate.sigmoid();
cellgate = cellgate.tanh();
forgetgate = forgetgate.sigmoid();
auto cy = (forgetgate * cx) + (ingate * cellgate);
auto hy = outgate * cy.tanh();
return {hy, cy};
}
} // namespace jit
} // namespace torch