forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 3
/
test_numba_integration.py
354 lines (286 loc) · 14.3 KB
/
test_numba_integration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import unittest
import torch.testing._internal.common_utils as common
from torch.testing._internal.common_utils import TEST_NUMBA, TEST_NUMPY
from torch.testing._internal.common_cuda import TEST_NUMBA_CUDA, TEST_CUDA, TEST_MULTIGPU
import torch
if TEST_NUMPY:
import numpy
if TEST_NUMBA:
import numba
if TEST_NUMBA_CUDA:
import numba.cuda
class TestNumbaIntegration(common.TestCase):
@unittest.skipIf(not TEST_NUMPY, "No numpy")
@unittest.skipIf(not TEST_CUDA, "No cuda")
def test_cuda_array_interface(self):
"""torch.Tensor exposes __cuda_array_interface__ for cuda tensors.
An object t is considered a cuda-tensor if:
hasattr(t, '__cuda_array_interface__')
A cuda-tensor provides a tensor description dict:
shape: (integer, ...) Tensor shape.
strides: (integer, ...) Tensor strides, in bytes.
typestr: (str) A numpy-style typestr.
data: (int, boolean) A (data_ptr, read-only) tuple.
version: (int) Version 0
See:
https://numba.pydata.org/numba-doc/latest/cuda/cuda_array_interface.html
"""
types = [
torch.DoubleTensor,
torch.FloatTensor,
torch.HalfTensor,
torch.LongTensor,
torch.IntTensor,
torch.ShortTensor,
torch.CharTensor,
torch.ByteTensor,
]
dtypes = [
numpy.float64,
numpy.float32,
numpy.float16,
numpy.int64,
numpy.int32,
numpy.int16,
numpy.int8,
numpy.uint8,
]
for tp, npt in zip(types, dtypes):
# CPU tensors do not implement the interface.
cput = tp(10)
self.assertFalse(hasattr(cput, "__cuda_array_interface__"))
self.assertRaises(AttributeError, lambda: cput.__cuda_array_interface__)
# Sparse CPU/CUDA tensors do not implement the interface
if tp not in (torch.HalfTensor,):
indices_t = torch.empty(1, cput.size(0), dtype=torch.long).clamp_(min=0)
sparse_t = torch.sparse_coo_tensor(indices_t, cput)
self.assertFalse(hasattr(sparse_t, "__cuda_array_interface__"))
self.assertRaises(
AttributeError, lambda: sparse_t.__cuda_array_interface__
)
sparse_cuda_t = torch.sparse_coo_tensor(indices_t, cput).cuda()
self.assertFalse(hasattr(sparse_cuda_t, "__cuda_array_interface__"))
self.assertRaises(
AttributeError, lambda: sparse_cuda_t.__cuda_array_interface__
)
# CUDA tensors have the attribute and v2 interface
cudat = tp(10).cuda()
self.assertTrue(hasattr(cudat, "__cuda_array_interface__"))
ar_dict = cudat.__cuda_array_interface__
self.assertEqual(
set(ar_dict.keys()), {"shape", "strides", "typestr", "data", "version"}
)
self.assertEqual(ar_dict["shape"], (10,))
self.assertIs(ar_dict["strides"], None)
# typestr from numpy, cuda-native little-endian
self.assertEqual(ar_dict["typestr"], numpy.dtype(npt).newbyteorder("<").str)
self.assertEqual(ar_dict["data"], (cudat.data_ptr(), False))
self.assertEqual(ar_dict["version"], 2)
@unittest.skipIf(not TEST_CUDA, "No cuda")
@unittest.skipIf(not TEST_NUMBA_CUDA, "No numba.cuda")
def test_array_adaptor(self):
"""Torch __cuda_array_adaptor__ exposes tensor data to numba.cuda."""
torch_dtypes = [
torch.float16,
torch.float32,
torch.float64,
torch.uint8,
torch.int8,
torch.int16,
torch.int32,
torch.int64,
]
for dt in torch_dtypes:
# CPU tensors of all types do not register as cuda arrays,
# attempts to convert raise a type error.
cput = torch.arange(10).to(dt)
npt = cput.numpy()
self.assertTrue(not numba.cuda.is_cuda_array(cput))
with self.assertRaises(TypeError):
numba.cuda.as_cuda_array(cput)
# Any cuda tensor is a cuda array.
cudat = cput.to(device="cuda")
self.assertTrue(numba.cuda.is_cuda_array(cudat))
numba_view = numba.cuda.as_cuda_array(cudat)
self.assertIsInstance(numba_view, numba.cuda.devicearray.DeviceNDArray)
# The reported type of the cuda array matches the numpy type of the cpu tensor.
self.assertEqual(numba_view.dtype, npt.dtype)
self.assertEqual(numba_view.strides, npt.strides)
self.assertEqual(numba_view.shape, cudat.shape)
# Pass back to cuda from host for all equality checks below, needed for
# float16 comparisons, which aren't supported cpu-side.
# The data is identical in the view.
self.assertEqual(cudat, torch.tensor(numba_view.copy_to_host()).to("cuda"))
# Writes to the torch.Tensor are reflected in the numba array.
cudat[:5] = 11
self.assertEqual(cudat, torch.tensor(numba_view.copy_to_host()).to("cuda"))
# Strided tensors are supported.
strided_cudat = cudat[::2]
strided_npt = cput[::2].numpy()
strided_numba_view = numba.cuda.as_cuda_array(strided_cudat)
self.assertEqual(strided_numba_view.dtype, strided_npt.dtype)
self.assertEqual(strided_numba_view.strides, strided_npt.strides)
self.assertEqual(strided_numba_view.shape, strided_cudat.shape)
# As of numba 0.40.0 support for strided views is ...limited...
# Cannot verify correctness of strided view operations.
@unittest.skipIf(not TEST_CUDA, "No cuda")
@unittest.skipIf(not TEST_NUMBA_CUDA, "No numba.cuda")
def test_conversion_errors(self):
"""Numba properly detects array interface for tensor.Tensor variants."""
# CPU tensors are not cuda arrays.
cput = torch.arange(100)
self.assertFalse(numba.cuda.is_cuda_array(cput))
with self.assertRaises(TypeError):
numba.cuda.as_cuda_array(cput)
# Sparse tensors are not cuda arrays, regardless of device.
sparset = torch.sparse_coo_tensor(cput[None, :], cput)
self.assertFalse(numba.cuda.is_cuda_array(sparset))
with self.assertRaises(TypeError):
numba.cuda.as_cuda_array(sparset)
sparse_cuda_t = sparset.cuda()
self.assertFalse(numba.cuda.is_cuda_array(sparset))
with self.assertRaises(TypeError):
numba.cuda.as_cuda_array(sparset)
# Device-status overrides gradient status.
# CPU+gradient isn't a cuda array.
cpu_gradt = torch.zeros(100).requires_grad_(True)
self.assertFalse(numba.cuda.is_cuda_array(cpu_gradt))
with self.assertRaises(TypeError):
numba.cuda.as_cuda_array(cpu_gradt)
# CUDA+gradient raises a RuntimeError on check or conversion.
#
# Use of hasattr for interface detection causes interface change in
# python2; it swallows all exceptions not just AttributeError.
cuda_gradt = torch.zeros(100).requires_grad_(True).cuda()
# conversion raises RuntimeError
with self.assertRaises(RuntimeError):
numba.cuda.is_cuda_array(cuda_gradt)
with self.assertRaises(RuntimeError):
numba.cuda.as_cuda_array(cuda_gradt)
@unittest.skipIf(not TEST_CUDA, "No cuda")
@unittest.skipIf(not TEST_NUMBA_CUDA, "No numba.cuda")
@unittest.skipIf(not TEST_MULTIGPU, "No multigpu")
def test_active_device(self):
"""'as_cuda_array' tensor device must match active numba context."""
# Both torch/numba default to device 0 and can interop freely
cudat = torch.arange(10, device="cuda")
self.assertEqual(cudat.device.index, 0)
self.assertIsInstance(
numba.cuda.as_cuda_array(cudat), numba.cuda.devicearray.DeviceNDArray
)
# Tensors on non-default device raise api error if converted
cudat = torch.arange(10, device=torch.device("cuda", 1))
with self.assertRaises(numba.cuda.driver.CudaAPIError):
numba.cuda.as_cuda_array(cudat)
# but can be converted when switching to the device's context
with numba.cuda.devices.gpus[cudat.device.index]:
self.assertIsInstance(
numba.cuda.as_cuda_array(cudat), numba.cuda.devicearray.DeviceNDArray
)
@unittest.skipIf(not TEST_NUMPY, "No numpy")
@unittest.skipIf(not TEST_CUDA, "No cuda")
@unittest.skipIf(not TEST_NUMBA_CUDA, "No numba.cuda")
def test_from_cuda_array_interface(self):
"""torch.as_tensor() and torch.tensor() supports the __cuda_array_interface__ protocol.
If an object exposes the __cuda_array_interface__, .as_tensor() and .tensor()
will use the exposed device memory.
See:
https://numba.pydata.org/numba-doc/latest/cuda/cuda_array_interface.html
"""
dtypes = [
numpy.float64,
numpy.float32,
numpy.int64,
numpy.int32,
numpy.int16,
numpy.int8,
numpy.uint8,
]
for dtype in dtypes:
numpy_arys = [
numpy.arange(6).reshape(2, 3).astype(dtype),
numpy.arange(6).reshape(2, 3).astype(dtype)[1:], # View offset should be ignored
numpy.arange(6).reshape(2, 3).astype(dtype)[:, None], # change the strides but still contiguous
]
# Zero-copy when using `torch.as_tensor()`
for numpy_ary in numpy_arys:
numba_ary = numba.cuda.to_device(numpy_ary)
torch_ary = torch.as_tensor(numba_ary, device="cuda")
self.assertEqual(numba_ary.__cuda_array_interface__, torch_ary.__cuda_array_interface__)
self.assertEqual(torch_ary.cpu().data.numpy(), numpy.asarray(numba_ary))
# Check that `torch_ary` and `numba_ary` points to the same device memory
torch_ary += 42
self.assertEqual(torch_ary.cpu().data.numpy(), numpy.asarray(numba_ary))
# Implicit-copy because `torch_ary` is a CPU array
for numpy_ary in numpy_arys:
numba_ary = numba.cuda.to_device(numpy_ary)
torch_ary = torch.as_tensor(numba_ary, device="cpu")
self.assertEqual(torch_ary.data.numpy(), numpy.asarray(numba_ary))
# Check that `torch_ary` and `numba_ary` points to different memory
torch_ary += 42
self.assertEqual(torch_ary.data.numpy(), numpy.asarray(numba_ary) + 42)
# Explicit-copy when using `torch.tensor()`
for numpy_ary in numpy_arys:
numba_ary = numba.cuda.to_device(numpy_ary)
torch_ary = torch.tensor(numba_ary, device="cuda")
self.assertEqual(torch_ary.cpu().data.numpy(), numpy.asarray(numba_ary))
# Check that `torch_ary` and `numba_ary` points to different memory
torch_ary += 42
self.assertEqual(torch_ary.cpu().data.numpy(), numpy.asarray(numba_ary) + 42)
@unittest.skipIf(not TEST_NUMPY, "No numpy")
@unittest.skipIf(not TEST_CUDA, "No cuda")
@unittest.skipIf(not TEST_NUMBA_CUDA, "No numba.cuda")
def test_from_cuda_array_interface_inferred_strides(self):
"""torch.as_tensor(numba_ary) should have correct inferred (contiguous) strides"""
# This could, in theory, be combined with test_from_cuda_array_interface but that test
# is overly strict: it checks that the exported protocols are exactly the same, which
# cannot handle differing exported protocol versions.
dtypes = [
numpy.float64,
numpy.float32,
numpy.int64,
numpy.int32,
numpy.int16,
numpy.int8,
numpy.uint8,
]
for dtype in dtypes:
numpy_ary = numpy.arange(6).reshape(2, 3).astype(dtype),
numba_ary = numba.cuda.to_device(numpy_ary)
self.assertTrue(numba_ary.is_c_contiguous())
torch_ary = torch.as_tensor(numba_ary, device="cuda")
self.assertTrue(torch_ary.is_contiguous())
@unittest.skipIf(not TEST_NUMPY, "No numpy")
@unittest.skipIf(not TEST_CUDA, "No cuda")
@unittest.skipIf(not TEST_NUMBA_CUDA, "No numba.cuda")
def test_from_cuda_array_interface_lifetime(self):
"""torch.as_tensor(obj) tensor grabs a reference to obj so that the lifetime of obj exceeds the tensor"""
numba_ary = numba.cuda.to_device(numpy.arange(6))
torch_ary = torch.as_tensor(numba_ary, device="cuda")
self.assertEqual(torch_ary.__cuda_array_interface__, numba_ary.__cuda_array_interface__) # No copy
del numba_ary
self.assertEqual(torch_ary.cpu().data.numpy(), numpy.arange(6)) # `torch_ary` is still alive
@unittest.skipIf(not TEST_NUMPY, "No numpy")
@unittest.skipIf(not TEST_CUDA, "No cuda")
@unittest.skipIf(not TEST_NUMBA_CUDA, "No numba.cuda")
@unittest.skipIf(not TEST_MULTIGPU, "No multigpu")
def test_from_cuda_array_interface_active_device(self):
"""torch.as_tensor() tensor device must match active numba context."""
# Zero-copy: both torch/numba default to device 0 and can interop freely
numba_ary = numba.cuda.to_device(numpy.arange(6))
torch_ary = torch.as_tensor(numba_ary, device="cuda")
self.assertEqual(torch_ary.cpu().data.numpy(), numpy.asarray(numba_ary))
self.assertEqual(torch_ary.__cuda_array_interface__, numba_ary.__cuda_array_interface__)
# Implicit-copy: when the Numba and Torch device differ
numba_ary = numba.cuda.to_device(numpy.arange(6))
torch_ary = torch.as_tensor(numba_ary, device=torch.device("cuda", 1))
self.assertEqual(torch_ary.get_device(), 1)
self.assertEqual(torch_ary.cpu().data.numpy(), numpy.asarray(numba_ary))
if1 = torch_ary.__cuda_array_interface__
if2 = numba_ary.__cuda_array_interface__
self.assertNotEqual(if1["data"], if2["data"])
del if1["data"]
del if2["data"]
self.assertEqual(if1, if2)
if __name__ == "__main__":
common.run_tests()