forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 3
/
test_tensorboard.py
757 lines (644 loc) · 30.5 KB
/
test_tensorboard.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import io
import numpy as np
import os
import shutil
import sys
import unittest
import uuid
TEST_TENSORBOARD = True
try:
import tensorboard.summary.writer.event_file_writer # noqa F401
from tensorboard.compat.proto.summary_pb2 import Summary
except ImportError:
TEST_TENSORBOARD = False
HAS_TORCHVISION = True
try:
import torchvision
except ImportError:
HAS_TORCHVISION = False
skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision")
TEST_CAFFE2 = True
try:
from caffe2.python import brew, cnn, core, workspace
from caffe2.python.model_helper import ModelHelper
except ImportError:
TEST_CAFFE2 = False
skipIfNoCaffe2 = unittest.skipIf(not TEST_CAFFE2, "no caffe2")
TEST_MATPLOTLIB = True
try:
import matplotlib
if os.environ.get('DISPLAY', '') == '':
matplotlib.use('Agg')
import matplotlib.pyplot as plt
except ImportError:
TEST_MATPLOTLIB = False
skipIfNoMatplotlib = unittest.skipIf(not TEST_MATPLOTLIB, "no matplotlib")
import torch
from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_ASAN
def tensor_N(shape, dtype=float):
numel = np.prod(shape)
x = (np.arange(numel, dtype=dtype)).reshape(shape)
return x
class BaseTestCase(TestCase):
""" Base class used for all TensorBoard tests """
def setUp(self):
if not TEST_TENSORBOARD:
return self.skipTest("Skip the test since TensorBoard is not installed")
self.temp_dirs = []
def createSummaryWriter(self):
temp_dir = str(uuid.uuid4())
self.temp_dirs.append(temp_dir)
return SummaryWriter(temp_dir)
def tearDown(self):
super(BaseTestCase, self).tearDown()
# Remove directories created by SummaryWriter
for temp_dir in self.temp_dirs:
if os.path.exists(temp_dir):
shutil.rmtree(temp_dir)
if TEST_TENSORBOARD:
from tensorboard.compat.proto.graph_pb2 import GraphDef
from torch.utils.tensorboard import summary, SummaryWriter
from torch.utils.tensorboard._utils import _prepare_video, convert_to_HWC
from torch.utils.tensorboard._convert_np import make_np
from torch.utils.tensorboard import _caffe2_graph as c2_graph
from torch.utils.tensorboard._pytorch_graph import graph
from google.protobuf import text_format
from PIL import Image
class TestTensorBoardPyTorchNumpy(BaseTestCase):
def test_pytorch_np(self):
tensors = [torch.rand(3, 10, 10), torch.rand(1), torch.rand(1, 2, 3, 4, 5)]
for tensor in tensors:
# regular tensor
self.assertIsInstance(make_np(tensor), np.ndarray)
# CUDA tensor
if torch.cuda.device_count() > 0:
self.assertIsInstance(make_np(tensor.cuda()), np.ndarray)
# regular variable
self.assertIsInstance(make_np(torch.autograd.Variable(tensor)), np.ndarray)
# CUDA variable
if torch.cuda.device_count() > 0:
self.assertIsInstance(make_np(torch.autograd.Variable(tensor).cuda()), np.ndarray)
# python primitive type
self.assertIsInstance(make_np(0), np.ndarray)
self.assertIsInstance(make_np(0.1), np.ndarray)
def test_pytorch_autograd_np(self):
x = torch.autograd.Variable(torch.Tensor(1))
self.assertIsInstance(make_np(x), np.ndarray)
def test_pytorch_write(self):
with self.createSummaryWriter() as w:
w.add_scalar('scalar', torch.autograd.Variable(torch.rand(1)), 0)
def test_pytorch_histogram(self):
with self.createSummaryWriter() as w:
w.add_histogram('float histogram', torch.rand((50,)))
w.add_histogram('int histogram', torch.randint(0, 100, (50,)))
def test_pytorch_histogram_raw(self):
with self.createSummaryWriter() as w:
num = 50
floats = make_np(torch.rand((num,)))
bins = [0.0, 0.25, 0.5, 0.75, 1.0]
counts, limits = np.histogram(floats, bins)
sum_sq = floats.dot(floats).item()
w.add_histogram_raw('float histogram raw',
min=floats.min().item(),
max=floats.max().item(),
num=num,
sum=floats.sum().item(),
sum_squares=sum_sq,
bucket_limits=limits[1:].tolist(),
bucket_counts=counts.tolist())
ints = make_np(torch.randint(0, 100, (num,)))
bins = [0, 25, 50, 75, 100]
counts, limits = np.histogram(ints, bins)
sum_sq = ints.dot(ints).item()
w.add_histogram_raw('int histogram raw',
min=ints.min().item(),
max=ints.max().item(),
num=num,
sum=ints.sum().item(),
sum_squares=sum_sq,
bucket_limits=limits[1:].tolist(),
bucket_counts=counts.tolist())
ints = torch.tensor(range(0, 100)).float()
nbins = 100
counts = torch.histc(ints, bins=nbins, min=0, max=99)
limits = torch.tensor(range(nbins))
sum_sq = ints.dot(ints).item()
w.add_histogram_raw('int histogram raw',
min=ints.min().item(),
max=ints.max().item(),
num=num,
sum=ints.sum().item(),
sum_squares=sum_sq,
bucket_limits=limits.tolist(),
bucket_counts=counts.tolist())
class TestTensorBoardUtils(BaseTestCase):
def test_to_HWC(self):
test_image = np.random.randint(0, 256, size=(3, 32, 32), dtype=np.uint8)
converted = convert_to_HWC(test_image, 'chw')
self.assertEqual(converted.shape, (32, 32, 3))
test_image = np.random.randint(0, 256, size=(16, 3, 32, 32), dtype=np.uint8)
converted = convert_to_HWC(test_image, 'nchw')
self.assertEqual(converted.shape, (64, 256, 3))
test_image = np.random.randint(0, 256, size=(32, 32), dtype=np.uint8)
converted = convert_to_HWC(test_image, 'hw')
self.assertEqual(converted.shape, (32, 32, 3))
def test_convert_to_HWC_dtype_remains_same(self):
# test to ensure convert_to_HWC restores the dtype of input np array and
# thus the scale_factor calculated for the image is 1
test_image = torch.tensor([[[[1, 2, 3], [4, 5, 6]]]], dtype=torch.uint8)
tensor = make_np(test_image)
tensor = convert_to_HWC(tensor, 'NCHW')
scale_factor = summary._calc_scale_factor(tensor)
self.assertEqual(scale_factor, 1, msg='Values are already in [0, 255], scale factor should be 1')
def test_prepare_video(self):
# At each timeframe, the sum over all other
# dimensions of the video should be the same.
shapes = [
(16, 30, 3, 28, 28),
(36, 30, 3, 28, 28),
(19, 29, 3, 23, 19),
(3, 3, 3, 3, 3)
]
for s in shapes:
V_input = np.random.random(s)
V_after = _prepare_video(np.copy(V_input))
total_frame = s[1]
V_input = np.swapaxes(V_input, 0, 1)
for f in range(total_frame):
x = np.reshape(V_input[f], newshape=(-1))
y = np.reshape(V_after[f], newshape=(-1))
np.testing.assert_array_almost_equal(np.sum(x), np.sum(y))
def test_numpy_vid_uint8(self):
V_input = np.random.randint(0, 256, (16, 30, 3, 28, 28)).astype(np.uint8)
V_after = _prepare_video(np.copy(V_input)) * 255
total_frame = V_input.shape[1]
V_input = np.swapaxes(V_input, 0, 1)
for f in range(total_frame):
x = np.reshape(V_input[f], newshape=(-1))
y = np.reshape(V_after[f], newshape=(-1))
np.testing.assert_array_almost_equal(np.sum(x), np.sum(y))
freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440]
true_positive_counts = [75, 64, 21, 5, 0]
false_positive_counts = [150, 105, 18, 0, 0]
true_negative_counts = [0, 45, 132, 150, 150]
false_negative_counts = [0, 11, 54, 70, 75]
precision = [0.3333333, 0.3786982, 0.5384616, 1.0, 0.0]
recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0]
class TestTensorBoardWriter(BaseTestCase):
def test_writer(self):
with self.createSummaryWriter() as writer:
sample_rate = 44100
n_iter = 0
writer.add_hparams(
{'lr': 0.1, 'bsize': 1},
{'hparam/accuracy': 10, 'hparam/loss': 10}
)
writer.add_scalar('data/scalar_systemtime', 0.1, n_iter)
writer.add_scalar('data/scalar_customtime', 0.2, n_iter, walltime=n_iter)
writer.add_scalars('data/scalar_group', {
"xsinx": n_iter * np.sin(n_iter),
"xcosx": n_iter * np.cos(n_iter),
"arctanx": np.arctan(n_iter)
}, n_iter)
x = np.zeros((32, 3, 64, 64)) # output from network
writer.add_images('Image', x, n_iter) # Tensor
writer.add_image_with_boxes('imagebox',
np.zeros((3, 64, 64)),
np.array([[10, 10, 40, 40], [40, 40, 60, 60]]),
n_iter)
x = np.zeros(sample_rate * 2)
writer.add_audio('myAudio', x, n_iter)
writer.add_video('myVideo', np.random.rand(16, 48, 1, 28, 28).astype(np.float32), n_iter)
writer.add_text('Text', 'text logged at step:' + str(n_iter), n_iter)
writer.add_text('markdown Text', '''a|b\n-|-\nc|d''', n_iter)
writer.add_histogram('hist', np.random.rand(100, 100), n_iter)
writer.add_pr_curve('xoxo', np.random.randint(2, size=100), np.random.rand(
100), n_iter) # needs tensorboard 0.4RC or later
writer.add_pr_curve_raw('prcurve with raw data', true_positive_counts,
false_positive_counts,
true_negative_counts,
false_negative_counts,
precision,
recall, n_iter)
v = np.array([[[1, 1, 1], [-1, -1, 1], [1, -1, -1], [-1, 1, -1]]], dtype=float)
c = np.array([[[255, 0, 0], [0, 255, 0], [0, 0, 255], [255, 0, 255]]], dtype=int)
f = np.array([[[0, 2, 3], [0, 3, 1], [0, 1, 2], [1, 3, 2]]], dtype=int)
writer.add_mesh('my_mesh', vertices=v, colors=c, faces=f)
class TestTensorBoardSummaryWriter(BaseTestCase):
def test_summary_writer_ctx(self):
# after using a SummaryWriter as a ctx it should be closed
with self.createSummaryWriter() as writer:
writer.add_scalar('test', 1)
self.assertIs(writer.file_writer, None)
def test_summary_writer_close(self):
# Opening and closing SummaryWriter a lot should not run into
# OSError: [Errno 24] Too many open files
passed = True
try:
writer = self.createSummaryWriter()
writer.close()
except OSError:
passed = False
self.assertTrue(passed)
def test_pathlib(self):
import pathlib
p = pathlib.Path('./pathlibtest' + str(uuid.uuid4()))
with SummaryWriter(p) as writer:
writer.add_scalar('test', 1)
import shutil
shutil.rmtree(str(p))
class TestTensorBoardEmbedding(BaseTestCase):
def test_embedding(self):
w = self.createSummaryWriter()
all_features = torch.Tensor([[1, 2, 3], [5, 4, 1], [3, 7, 7]])
all_labels = torch.Tensor([33, 44, 55])
all_images = torch.zeros(3, 3, 5, 5)
w.add_embedding(all_features,
metadata=all_labels,
label_img=all_images,
global_step=2)
dataset_label = ['test'] * 2 + ['train'] * 2
all_labels = list(zip(all_labels, dataset_label))
w.add_embedding(all_features,
metadata=all_labels,
label_img=all_images,
metadata_header=['digit', 'dataset'],
global_step=2)
# assert...
def test_embedding_64(self):
w = self.createSummaryWriter()
all_features = torch.Tensor([[1, 2, 3], [5, 4, 1], [3, 7, 7]])
all_labels = torch.Tensor([33, 44, 55])
all_images = torch.zeros((3, 3, 5, 5), dtype=torch.float64)
w.add_embedding(all_features,
metadata=all_labels,
label_img=all_images,
global_step=2)
dataset_label = ['test'] * 2 + ['train'] * 2
all_labels = list(zip(all_labels, dataset_label))
w.add_embedding(all_features,
metadata=all_labels,
label_img=all_images,
metadata_header=['digit', 'dataset'],
global_step=2)
class TestTensorBoardSummary(BaseTestCase):
def test_uint8_image(self):
'''
Tests that uint8 image (pixel values in [0, 255]) is not changed
'''
test_image = np.random.randint(0, 256, size=(3, 32, 32), dtype=np.uint8)
scale_factor = summary._calc_scale_factor(test_image)
self.assertEqual(scale_factor, 1, msg='Values are already in [0, 255], scale factor should be 1')
def test_float32_image(self):
'''
Tests that float32 image (pixel values in [0, 1]) are scaled correctly
to [0, 255]
'''
test_image = np.random.rand(3, 32, 32).astype(np.float32)
scale_factor = summary._calc_scale_factor(test_image)
self.assertEqual(scale_factor, 255, msg='Values are in [0, 1], scale factor should be 255')
def test_list_input(self):
with self.assertRaises(Exception) as e_info:
summary.histogram('dummy', [1, 3, 4, 5, 6], 'tensorflow')
def test_empty_input(self):
with self.assertRaises(Exception) as e_info:
summary.histogram('dummy', np.ndarray(0), 'tensorflow')
def test_image_with_boxes(self):
self.assertTrue(compare_image_proto(summary.image_boxes('dummy',
tensor_N(shape=(3, 32, 32)),
np.array([[10, 10, 40, 40]])),
self))
def test_image_with_one_channel(self):
self.assertTrue(compare_image_proto(
summary.image('dummy',
tensor_N(shape=(1, 8, 8)),
dataformats='CHW'),
self)) # noqa E127
def test_image_with_one_channel_batched(self):
self.assertTrue(compare_image_proto(
summary.image('dummy',
tensor_N(shape=(2, 1, 8, 8)),
dataformats='NCHW'),
self)) # noqa E127
def test_image_with_3_channel_batched(self):
self.assertTrue(compare_image_proto(
summary.image('dummy',
tensor_N(shape=(2, 3, 8, 8)),
dataformats='NCHW'),
self)) # noqa E127
def test_image_without_channel(self):
self.assertTrue(compare_image_proto(
summary.image('dummy',
tensor_N(shape=(8, 8)),
dataformats='HW'),
self)) # noqa E127
def test_video(self):
try:
import moviepy # noqa F401
except ImportError:
return
self.assertTrue(compare_proto(summary.video('dummy', tensor_N(shape=(4, 3, 1, 8, 8))), self))
summary.video('dummy', np.random.rand(16, 48, 1, 28, 28))
summary.video('dummy', np.random.rand(20, 7, 1, 8, 8))
def test_audio(self):
self.assertTrue(compare_proto(summary.audio('dummy', tensor_N(shape=(42,))), self))
def test_text(self):
self.assertTrue(compare_proto(summary.text('dummy', 'text 123'), self))
def test_histogram_auto(self):
self.assertTrue(compare_proto(summary.histogram('dummy', tensor_N(shape=(1024,)), bins='auto', max_bins=5), self))
def test_histogram_fd(self):
self.assertTrue(compare_proto(summary.histogram('dummy', tensor_N(shape=(1024,)), bins='fd', max_bins=5), self))
def test_histogram_doane(self):
self.assertTrue(compare_proto(summary.histogram('dummy', tensor_N(shape=(1024,)), bins='doane', max_bins=5), self))
def test_custom_scalars(self):
layout = {
'Taiwan': {
'twse': ['Multiline', ['twse/0050', 'twse/2330']]
},
'USA': {
'dow': ['Margin', ['dow/aaa', 'dow/bbb', 'dow/ccc']],
'nasdaq': ['Margin', ['nasdaq/aaa', 'nasdaq/bbb', 'nasdaq/ccc']]
}
}
summary.custom_scalars(layout) # only smoke test. Because protobuf in python2/3 serialize dictionary differently.
def test_hparams_smoke(self):
hp = {'lr': 0.1, 'bsize': 4}
mt = {'accuracy': 0.1, 'loss': 10}
summary.hparams(hp, mt) # only smoke test. Because protobuf in python2/3 serialize dictionary differently.
hp = {'use_magic': True, 'init_string': "42"}
mt = {'accuracy': 0.1, 'loss': 10}
summary.hparams(hp, mt)
mt = {'accuracy': torch.zeros(1), 'loss': torch.zeros(1)}
summary.hparams(hp, mt)
def test_hparams_wrong_parameter(self):
with self.assertRaises(TypeError):
summary.hparams([], {})
with self.assertRaises(TypeError):
summary.hparams({}, [])
with self.assertRaises(ValueError):
res = summary.hparams({'pytorch': [1, 2]}, {'accuracy': 2.0})
# metric data is used in writer.py so the code path is different, which leads to different exception type.
with self.assertRaises(NotImplementedError):
with self.createSummaryWriter() as writer:
writer.add_hparams({'pytorch': 1.0}, {'accuracy': [1, 2]})
def test_hparams_number(self):
hp = {'lr': 0.1}
mt = {'accuracy': 0.1}
self.assertTrue(compare_proto(summary.hparams(hp, mt), self))
def test_hparams_bool(self):
hp = {'bool_var': True}
mt = {'accuracy': 0.1}
self.assertTrue(compare_proto(summary.hparams(hp, mt), self))
def test_hparams_string(self):
hp = {'string_var': "hi"}
mt = {'accuracy': 0.1}
self.assertTrue(compare_proto(summary.hparams(hp, mt), self))
def test_hparams_domain_discrete(self):
hp = {"lr": 0.1, "bool_var": True, "string_var": "hi"}
mt = {"accuracy": 0.1}
hp_domain = {"lr": [0.1], "bool_var": [True], "string_var": ["hi"]}
# hparam_domain_discrete keys needs to be subset of hparam_dict keys
with self.assertRaises(TypeError):
summary.hparams(hp, mt, hparam_domain_discrete={"wrong_key": []})
# hparam_domain_discrete values needs to be same type as hparam_dict values
with self.assertRaises(TypeError):
summary.hparams(hp, mt, hparam_domain_discrete={"lr": [True]})
# only smoke test. Because protobuf map serialization is nondeterministic.
summary.hparams(hp, mt, hparam_domain_discrete=hp_domain)
def test_mesh(self):
v = np.array([[[1, 1, 1], [-1, -1, 1], [1, -1, -1], [-1, 1, -1]]], dtype=float)
c = np.array([[[255, 0, 0], [0, 255, 0], [0, 0, 255], [255, 0, 255]]], dtype=int)
f = np.array([[[0, 2, 3], [0, 3, 1], [0, 1, 2], [1, 3, 2]]], dtype=int)
mesh = summary.mesh('my_mesh', vertices=v, colors=c, faces=f, config_dict=None)
self.assertTrue(compare_proto(mesh, self))
def remove_whitespace(string):
return string.replace(' ', '').replace('\t', '').replace('\n', '')
def get_expected_file(function_ptr):
module_id = function_ptr.__class__.__module__
test_file = sys.modules[module_id].__file__
# Look for the .py file (since __file__ could be pyc).
test_file = ".".join(test_file.split('.')[:-1]) + '.py'
# Use realpath to follow symlinks appropriately.
test_dir = os.path.dirname(os.path.realpath(test_file))
functionName = function_ptr.id().split('.')[-1]
return os.path.join(test_dir,
"expect",
'TestTensorBoard.' + functionName + ".expect")
def read_expected_content(function_ptr):
expected_file = get_expected_file(function_ptr)
assert os.path.exists(expected_file)
with open(expected_file, "r") as f:
return f.read()
def compare_image_proto(actual_proto, function_ptr):
expected_str = read_expected_content(function_ptr)
expected_proto = Summary()
text_format.Parse(expected_str, expected_proto)
[actual, expected] = [actual_proto.value[0], expected_proto.value[0]]
actual_img = Image.open(io.BytesIO(actual.image.encoded_image_string))
expected_img = Image.open(io.BytesIO(expected.image.encoded_image_string))
return (
actual.tag == expected.tag and
actual.image.height == expected.image.height and
actual.image.width == expected.image.width and
actual.image.colorspace == expected.image.colorspace and
actual_img == expected_img
)
def compare_proto(str_to_compare, function_ptr):
expected = read_expected_content(function_ptr)
str_to_compare = str(str_to_compare)
return remove_whitespace(str_to_compare) == remove_whitespace(expected)
def write_proto(str_to_compare, function_ptr):
expected_file = get_expected_file(function_ptr)
with open(expected_file, 'w') as f:
f.write(str(str_to_compare))
class TestTensorBoardPytorchGraph(BaseTestCase):
def test_pytorch_graph(self):
dummy_input = (torch.zeros(1, 3),)
class myLinear(torch.nn.Module):
def __init__(self):
super(myLinear, self).__init__()
self.l = torch.nn.Linear(3, 5)
def forward(self, x):
return self.l(x)
with self.createSummaryWriter() as w:
w.add_graph(myLinear(), dummy_input)
actual_proto, _ = graph(myLinear(), dummy_input)
expected_str = read_expected_content(self)
expected_proto = GraphDef()
text_format.Parse(expected_str, expected_proto)
self.assertEquals(len(expected_proto.node), len(actual_proto.node))
for i in range(len(expected_proto.node)):
expected_node = expected_proto.node[i]
actual_node = actual_proto.node[i]
self.assertEquals(expected_node.name, actual_node.name)
self.assertEquals(expected_node.op, actual_node.op)
self.assertEquals(expected_node.input, actual_node.input)
self.assertEquals(expected_node.device, actual_node.device)
self.assertEquals(
sorted(expected_node.attr.keys()), sorted(actual_node.attr.keys()))
def test_mlp_graph(self):
dummy_input = (torch.zeros(2, 1, 28, 28),)
# This MLP class with the above input is expected
# to fail JIT optimizations as seen at
# https://github.com/pytorch/pytorch/issues/18903
#
# However, it should not raise an error during
# the add_graph call and still continue.
class myMLP(torch.nn.Module):
def __init__(self):
super(myMLP, self).__init__()
self.input_len = 1 * 28 * 28
self.fc1 = torch.nn.Linear(self.input_len, 1200)
self.fc2 = torch.nn.Linear(1200, 1200)
self.fc3 = torch.nn.Linear(1200, 10)
def forward(self, x, update_batch_stats=True):
h = torch.nn.functional.relu(
self.fc1(x.view(-1, self.input_len)))
h = self.fc2(h)
h = torch.nn.functional.relu(h)
h = self.fc3(h)
return h
with self.createSummaryWriter() as w:
w.add_graph(myMLP(), dummy_input)
def test_wrong_input_size(self):
with self.assertRaises(RuntimeError) as e_info:
dummy_input = torch.rand(1, 9)
model = torch.nn.Linear(3, 5)
with self.createSummaryWriter() as w:
w.add_graph(model, dummy_input) # error
@skipIfNoTorchVision
def test_torchvision_smoke(self):
model_input_shapes = {
'alexnet': (2, 3, 224, 224),
'resnet34': (2, 3, 224, 224),
'resnet152': (2, 3, 224, 224),
'densenet121': (2, 3, 224, 224),
'vgg16': (2, 3, 224, 224),
'vgg19': (2, 3, 224, 224),
'vgg16_bn': (2, 3, 224, 224),
'vgg19_bn': (2, 3, 224, 224),
'mobilenet_v2': (2, 3, 224, 224),
}
for model_name, input_shape in model_input_shapes.items():
with self.createSummaryWriter() as w:
model = getattr(torchvision.models, model_name)()
w.add_graph(model, torch.zeros(input_shape))
class TestTensorBoardFigure(BaseTestCase):
@skipIfNoMatplotlib
def test_figure(self):
writer = self.createSummaryWriter()
figure, axes = plt.figure(), plt.gca()
circle1 = plt.Circle((0.2, 0.5), 0.2, color='r')
circle2 = plt.Circle((0.8, 0.5), 0.2, color='g')
axes.add_patch(circle1)
axes.add_patch(circle2)
plt.axis('scaled')
plt.tight_layout()
writer.add_figure("add_figure/figure", figure, 0, close=False)
self.assertTrue(plt.fignum_exists(figure.number))
writer.add_figure("add_figure/figure", figure, 1)
self.assertFalse(plt.fignum_exists(figure.number))
writer.close()
@skipIfNoMatplotlib
def test_figure_list(self):
writer = self.createSummaryWriter()
figures = []
for i in range(5):
figure = plt.figure()
plt.plot([i * 1, i * 2, i * 3], label="Plot " + str(i))
plt.xlabel("X")
plt.xlabel("Y")
plt.legend()
plt.tight_layout()
figures.append(figure)
writer.add_figure("add_figure/figure_list", figures, 0, close=False)
self.assertTrue(all([plt.fignum_exists(figure.number) is True for figure in figures])) # noqa F812
writer.add_figure("add_figure/figure_list", figures, 1)
self.assertTrue(all([plt.fignum_exists(figure.number) is False for figure in figures])) # noqa F812
writer.close()
class TestTensorBoardNumpy(BaseTestCase):
def test_scalar(self):
res = make_np(1.1)
self.assertIsInstance(res, np.ndarray) and self.assertEqual(res.shape, (1,))
res = make_np(1 << 64 - 1) # uint64_max
self.assertIsInstance(res, np.ndarray) and self.assertEqual(res.shape, (1,))
res = make_np(np.float16(1.00000087))
self.assertIsInstance(res, np.ndarray) and self.assertEqual(res.shape, (1,))
res = make_np(np.float128(1.00008 + 9))
self.assertIsInstance(res, np.ndarray) and self.assertEqual(res.shape, (1,))
res = make_np(np.int64(100000000000))
self.assertIsInstance(res, np.ndarray) and self.assertEqual(res.shape, (1,))
@skipIfNoCaffe2
def test_caffe2_np(self):
workspace.FeedBlob("testBlob", tensor_N(shape=(1, 3, 64, 64)))
self.assertIsInstance(make_np('testBlob'), np.ndarray)
@skipIfNoCaffe2
def test_caffe2_np_expect_fail(self):
with self.assertRaises(RuntimeError):
res = make_np('This_blob_does_not_exist')
def test_pytorch_np_expect_fail(self):
with self.assertRaises(NotImplementedError):
res = make_np({'pytorch': 1.0})
@skipIfNoCaffe2
@unittest.skipIf(TEST_WITH_ASAN, "Caffe2 failure with ASAN")
def test_caffe2_simple_model(self):
model = ModelHelper(name="mnist")
# how come those inputs don't break the forward pass =.=a
workspace.FeedBlob("data", np.random.randn(1, 3, 64, 64).astype(np.float32))
workspace.FeedBlob("label", np.random.randn(1, 1000).astype(np.int))
with core.NameScope("conv1"):
conv1 = brew.conv(model, "data", 'conv1', dim_in=1, dim_out=20, kernel=5)
# Image size: 24 x 24 -> 12 x 12
pool1 = brew.max_pool(model, conv1, 'pool1', kernel=2, stride=2)
# Image size: 12 x 12 -> 8 x 8
conv2 = brew.conv(model, pool1, 'conv2', dim_in=20, dim_out=100, kernel=5)
# Image size: 8 x 8 -> 4 x 4
pool2 = brew.max_pool(model, conv2, 'pool2', kernel=2, stride=2)
with core.NameScope("classifier"):
# 50 * 4 * 4 stands for dim_out from previous layer multiplied by the image size
fc3 = brew.fc(model, pool2, 'fc3', dim_in=100 * 4 * 4, dim_out=500)
relu = brew.relu(model, fc3, fc3)
pred = brew.fc(model, relu, 'pred', 500, 10)
softmax = brew.softmax(model, pred, 'softmax')
xent = model.LabelCrossEntropy([softmax, "label"], 'xent')
# compute the expected loss
loss = model.AveragedLoss(xent, "loss")
model.net.RunAllOnMKL()
model.param_init_net.RunAllOnMKL()
model.AddGradientOperators([loss], skip=1)
blob_name_tracker = {}
graph = c2_graph.model_to_graph_def(
model,
blob_name_tracker=blob_name_tracker,
shapes={},
show_simplified=False,
)
compare_proto(graph, self)
@skipIfNoCaffe2
def test_caffe2_simple_cnnmodel(self):
model = cnn.CNNModelHelper("NCHW", name="overfeat")
workspace.FeedBlob("data", np.random.randn(1, 3, 64, 64).astype(np.float32))
workspace.FeedBlob("label", np.random.randn(1, 1000).astype(np.int))
with core.NameScope("conv1"):
conv1 = model.Conv("data", "conv1", 3, 96, 11, stride=4)
relu1 = model.Relu(conv1, conv1)
pool1 = model.MaxPool(relu1, "pool1", kernel=2, stride=2)
with core.NameScope("classifier"):
fc = model.FC(pool1, "fc", 4096, 1000)
pred = model.Softmax(fc, "pred")
xent = model.LabelCrossEntropy([pred, "label"], "xent")
loss = model.AveragedLoss(xent, "loss")
blob_name_tracker = {}
graph = c2_graph.model_to_graph_def(
model,
blob_name_tracker=blob_name_tracker,
shapes={},
show_simplified=False,
)
compare_proto(graph, self)
if __name__ == '__main__':
run_tests()