From 7ff2ad7c613e9ed4fd85e06e4674ef3e0e91ef6a Mon Sep 17 00:00:00 2001 From: mdenolle Date: Mon, 14 Oct 2024 18:05:10 +0000 Subject: [PATCH] deploy: 7f9b55d9a3940b7878d488c642233ef654b5719b --- Chapter2-DataManipulation/2.6_resampling.html | 966 ++++++++++-- _images/2.6_resampling_10_0.png | Bin 21676 -> 0 bytes _images/2.6_resampling_12_0.png | Bin 0 -> 22675 bytes _images/2.6_resampling_14_0.png | Bin 39283 -> 0 bytes _images/2.6_resampling_16_0.png | Bin 0 -> 37298 bytes _images/2.6_resampling_20_1.png | Bin 40987 -> 0 bytes _images/2.6_resampling_24_0.png | Bin 20499 -> 0 bytes _images/2.6_resampling_25_1.png | Bin 0 -> 38988 bytes _images/2.6_resampling_29_0.png | Bin 25359 -> 0 bytes _images/2.6_resampling_32_0.png | Bin 0 -> 18589 bytes _images/2.6_resampling_37_0.png | Bin 0 -> 24849 bytes _images/2.6_resampling_37_1.png | Bin 89557 -> 0 bytes _images/2.6_resampling_41_1.png | Bin 2066 -> 0 bytes _images/2.6_resampling_45_1.png | Bin 15574 -> 0 bytes _images/2.6_resampling_46_1.png | Bin 0 -> 21998 bytes _images/2.6_resampling_47_1.png | Bin 25127 -> 0 bytes _images/2.6_resampling_49_2.png | Bin 26040 -> 0 bytes _images/2.6_resampling_50_1.png | Bin 0 -> 21998 bytes _images/2.6_resampling_51_2.png | Bin 28623 -> 0 bytes _images/2.6_resampling_55_2.png | Bin 0 -> 19559 bytes _images/2.6_resampling_59_1.png | Bin 0 -> 16754 bytes _images/2.6_resampling_61_1.png | Bin 0 -> 45931 bytes _images/2.6_resampling_63_2.png | Bin 0 -> 42890 bytes _images/2.6_resampling_65_2.png | Bin 0 -> 42672 bytes .../2.6_resampling.ipynb | 1317 ++++++++++++++--- searchindex.js | 2 +- 26 files changed, 1991 insertions(+), 294 deletions(-) delete mode 100644 _images/2.6_resampling_10_0.png create mode 100644 _images/2.6_resampling_12_0.png delete mode 100644 _images/2.6_resampling_14_0.png create mode 100644 _images/2.6_resampling_16_0.png delete mode 100644 _images/2.6_resampling_20_1.png delete mode 100644 _images/2.6_resampling_24_0.png create mode 100644 _images/2.6_resampling_25_1.png delete mode 100644 _images/2.6_resampling_29_0.png create mode 100644 _images/2.6_resampling_32_0.png create mode 100644 _images/2.6_resampling_37_0.png delete mode 100644 _images/2.6_resampling_37_1.png delete mode 100644 _images/2.6_resampling_41_1.png delete mode 100644 _images/2.6_resampling_45_1.png create mode 100644 _images/2.6_resampling_46_1.png delete mode 100644 _images/2.6_resampling_47_1.png delete mode 100644 _images/2.6_resampling_49_2.png create mode 100644 _images/2.6_resampling_50_1.png delete mode 100644 _images/2.6_resampling_51_2.png create mode 100644 _images/2.6_resampling_55_2.png create mode 100644 _images/2.6_resampling_59_1.png create mode 100644 _images/2.6_resampling_61_1.png create mode 100644 _images/2.6_resampling_63_2.png create mode 100644 _images/2.6_resampling_65_2.png diff --git a/Chapter2-DataManipulation/2.6_resampling.html b/Chapter2-DataManipulation/2.6_resampling.html index 2c3e8bd2..296ab9b5 100644 --- a/Chapter2-DataManipulation/2.6_resampling.html +++ b/Chapter2-DataManipulation/2.6_resampling.html @@ -801,12 +801,32 @@

2.6 Resampling Methods
+
# fix the random seed for reproducibility. Place it on the top to reproduce the entire notebook exactly once. But use it in every cell to re-run each cells independently.
+np.random.seed(42)
+
+
+
+
+
+
# We define a random generator
 rng = np.random.default_rng()
 
+
+
+
rng
+
+
+
+
+
Generator(PCG64) at 0x318353900
+
+
+
+

1. Examples of resampling techniques (Level 1)#

@@ -816,6 +836,8 @@

1.1 Randomization

@@ -933,7 +955,7 @@

1.2 Bootstrapping -../_images/2.6_resampling_14_0.png +../_images/2.6_resampling_16_0.png

We can verify that the Pearson correlation coefficient is close to our target using the numpy function corrcoef.

@@ -941,14 +963,32 @@

1.2 Bootstrapping
# The correlation matrix of the first and second columns of correlated_data
 correlation_matrix = np.corrcoef(correlated_data[:, 0], correlated_data[:, 1])
-
-# Check the correlation coefficient
+
+
+ + +
+
+
correlation_matrix
+
+
+
+
+
array([[ 1.        , -0.72540304],
+       [-0.72540304,  1.        ]])
+
+
+
+
+
+ +
+
+
subset 
+
+
+
+
+
array([[ 1.08149552, -0.75473902],
+       [-0.15064708, -0.88421426],
+       [ 0.03331803,  0.51951422],
+       [ 0.58669726,  0.51967288],
+       [ 0.42511267,  0.47888931],
+       [-0.05371048,  0.15998988],
+       [ 0.13428352,  0.24026582],
+       [-0.13976786,  0.57151718],
+       [-0.74081486,  0.22763649],
+       [ 0.02037839, -0.36898269]])
+
+
+
+
+
+
+
nsubset=10
 
+subset
+
+
+
+
+
array([[ 1.08149552, -0.75473902],
+       [-0.15064708, -0.88421426],
+       [ 0.03331803,  0.51951422],
+       [ 0.58669726,  0.51967288],
+       [ 0.42511267,  0.47888931],
+       [-0.05371048,  0.15998988],
+       [ 0.13428352,  0.24026582],
+       [-0.13976786,  0.57151718],
+       [-0.74081486,  0.22763649],
+       [ 0.02037839, -0.36898269]])
+
+
+
+
+

We now estimate \(\pi\) by using the length of the number points in the circle and in the quarter as approximation to their area.

@@ -1091,7 +1203,7 @@

1.3 Monte Carlo -
We estimate the value of pi to be: 3.04.
+
We estimate the value of pi to be: 3.28.
 
@@ -1111,35 +1223,50 @@

2.1 Plate Motion - Geodetic Data
# The station designation
 sta="P395"
-file_url="http://geodesy.unr.edu/gps_timeseries/tenv/IGS14/"+ sta + ".tenv"
-r = requests.get(file_url).text.splitlines()  # download, read text, split lines into a list
-ue=[];un=[];uv=[];se=[];sn=[];sv=[];date=[];date_year=[];df=[]
-for iday in r:  # this loops through the days of data
-    crap=iday.split()
-    if len(crap)<10:
-      continue
-    date.append((crap[1]))
-    date_year.append(float(crap[2]))
-    ue.append(float(crap[7])*1000)
-    un.append(float(crap[8])*1000)
-    uv.append(float(crap[9])*1000)
+
+print("http://geodesy.unr.edu/gps_timeseries/tenv/IGS14/" + sta + ".tenv")
+zip_file_url="http://geodesy.unr.edu/gps_timeseries/tenv/IGS14/"+ sta + ".tenv"
+r = requests.get(zip_file_url)
+
+
+# create a list of strings with itemized list above
+ll = ['station ID (SSSS)','date (yymmmdd)',
+'decimal year','modified Julian day','GPS week','day of GPS week',
+'longitude (degrees) of reference meridian','delta e (m)',
+'delta n (m)','delta v (m)','antenna height (m)',
+'sigma e (m)','sigma n (m)','sigma v (m)',
+'correlation en','correlation ev','correlation nv']
+      
+
+# transform r.content into a pandas dataframe
+# first split r.content with \n separator
+# Decode the content if it's in bytes
+content_str = r.content.decode('utf-8')
+
+# Split the content by the newline character
+lines = content_str.split('\n')
+
+# Now `lines` is a list of strings, each representing a line from the content
+print(lines[0])
+
+# then transform lines into a pandas dataframe
+df = pd.DataFrame([x.split() for x in lines])
+# assign column names to df a
+df.columns = ll
+
+#convert columns to numeric
+df = df.apply(pd.to_numeric, errors='ignore')
+
+df.dropna()
+df.head()
 

- -
-
-
# We now make a data frame
-crap={'station':sta,'date':date,'date_year':date_year,'east':ue,'north':un,'up':uv}
-if len(df)==0:
-    df = pd.DataFrame(crap, columns = ['station', 'date','date_year','east','north','up'])
-else:
-    df=pd.concat([df,pd.DataFrame(crap, columns = ['station', 'date','date_year','east','north','up'])])
-df.describe()
+
+
http://geodesy.unr.edu/gps_timeseries/tenv/IGS14/P395.tenv
+P395 06JAN25 2006.0671 53760 1359 3 -123.9  3347.67917   4987420.31375   53.03678  0.0083 0.00069 0.00105 0.00327 -0.04832  0.01695 -0.31816
 
-
-
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + + + + + + + + - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
station ID (SSSS)date (yymmmdd)decimal yearmodified Julian dayGPS weekday of GPS weeklongitude (degrees) of reference meridiandelta e (m)delta n (m)delta v (m)antenna height (m)sigma e (m)sigma n (m)sigma v (m)correlation encorrelation evcorrelation nvnew delta e (m)new delta n (m)new delta v (m)
0P39506JAN252006.067153760.01359.03.0-123.93347.679174.987420e+0653.036780.00830.000690.001050.00327-0.048320.01695-0.318160.000000.000000.00000
50%2015.3922003.347626e+064.987420e+0953038.6700001P39506JAN262006.069853761.01359.04.0-123.93347.680864.987420e+0653.030030.00830.000690.001040.00321-0.046480.00271-0.309700.00169-0.00067-0.00675
75%2020.0670503.347653e+064.987420e+0953042.4500002P39506JAN272006.072653762.01359.05.0-123.93347.680724.987420e+0653.039060.00830.000690.001050.00326-0.023670.00817-0.319410.001550.001010.00228
max2024.7420003.347683e+064.987420e+0953065.4400003P39506JAN282006.075353763.01359.06.0-123.93347.679384.987420e+0653.043820.00830.000690.001050.00324-0.036810.00908-0.305150.00021-0.001500.00704
4P39506JAN292006.078053764.01360.00.0-123.93347.680424.987420e+0653.035130.00830.000680.001050.00328-0.048150.00619-0.330290.00125-0.00162-0.00165
@@ -1227,20 +1588,15 @@

2.1 Plate Motion - Geodetic Data
-
# Plot the GPS time series
-fig,ax=plt.subplots(3,1,figsize=(11,8),sharex=True)
-ax[0].plot(df['date_year'][df['station']==sta],df['east'][df['station']==sta]);ax[0].grid(True);ax[0].set_ylabel('Easting (mm)')
-ax[1].plot(df['date_year'][df['station']==sta],df['north'][df['station']==sta]);ax[1].grid(True);ax[1].set_ylabel('Northing (mm)')
-ax[2].plot(df['date_year'][df['station']==sta],df['up'][df['station']==sta]);ax[2].grid(True);ax[2].set_ylabel('Up (mm)')
-ax[2].set_xlabel('Time (years)')
+
plt.plot(df['decimal year'], df['new delta e (m)'], label='East displacement')
 
-
Text(0.5, 0, 'Time (years)')
+
[<matplotlib.lines.Line2D at 0x319394a90>]
 
-../_images/2.6_resampling_37_1.png +../_images/2.6_resampling_46_1.png

@@ -1260,21 +1616,389 @@

2.2 Linear regression\(R^2\) is to one.

+
# remove nans with dropna for the specific delta e column and replace df with the new dataframe
+df = df.dropna(subset=['delta e (m)'])
+
+
+
+
+
+
+
df.head()
+
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
station ID (SSSS)date (yymmmdd)decimal yearmodified Julian dayGPS weekday of GPS weeklongitude (degrees) of reference meridiandelta e (m)delta n (m)delta v (m)antenna height (m)sigma e (m)sigma n (m)sigma v (m)correlation encorrelation evcorrelation nvnew delta e (m)new delta n (m)new delta v (m)
0P39506JAN252006.067153760.01359.03.0-123.93347.679174.987420e+0653.036780.00830.000690.001050.00327-0.048320.01695-0.318160.000000.000000.00000
1P39506JAN262006.069853761.01359.04.0-123.93347.680864.987420e+0653.030030.00830.000690.001040.00321-0.046480.00271-0.309700.00169-0.00067-0.00675
2P39506JAN272006.072653762.01359.05.0-123.93347.680724.987420e+0653.039060.00830.000690.001050.00326-0.023670.00817-0.319410.001550.001010.00228
3P39506JAN282006.075353763.01359.06.0-123.93347.679384.987420e+0653.043820.00830.000690.001050.00324-0.036810.00908-0.305150.00021-0.001500.00704
4P39506JAN292006.078053764.01360.00.0-123.93347.680424.987420e+0653.035130.00830.000680.001050.00328-0.048150.00619-0.330290.00125-0.00162-0.00165
+
+
+
+
+
plt.plot(df['decimal year'], df['new delta e (m)'], label='East displacement')
+
+
+
+
+
[<matplotlib.lines.Line2D at 0x3195279a0>]
+
+
+../_images/2.6_resampling_50_1.png +
+
+
+
+
df.head()
+
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
station ID (SSSS)date (yymmmdd)decimal yearmodified Julian dayGPS weekday of GPS weeklongitude (degrees) of reference meridiandelta e (m)delta n (m)delta v (m)antenna height (m)sigma e (m)sigma n (m)sigma v (m)correlation encorrelation evcorrelation nvnew delta e (m)new delta n (m)new delta v (m)
0P39506JAN252006.067153760.01359.03.0-123.93347.679174.987420e+0653.036780.00830.000690.001050.00327-0.048320.01695-0.318160.000000.000000.00000
1P39506JAN262006.069853761.01359.04.0-123.93347.680864.987420e+0653.030030.00830.000690.001040.00321-0.046480.00271-0.309700.00169-0.00067-0.00675
2P39506JAN272006.072653762.01359.05.0-123.93347.680724.987420e+0653.039060.00830.000690.001050.00326-0.023670.00817-0.319410.001550.001010.00228
3P39506JAN282006.075353763.01359.06.0-123.93347.679384.987420e+0653.043820.00830.000690.001050.00324-0.036810.00908-0.305150.00021-0.001500.00704
4P39506JAN292006.078053764.01360.00.0-123.93347.680424.987420e+0653.035130.00830.000680.001050.00328-0.048150.00619-0.330290.00125-0.00162-0.00165
+
+
+
+
# now let's find the trends and detrend the data.
 from scipy import stats
 # linear regression such that: displacement = Velocity * time
 # velocity in the East component.
-Ve, intercept, r_value, p_value, std_err = stats.linregress(df['date_year'][df['station']==sta],df['east'][df['station']==sta])
+
+Ve, intercept, r_value, p_value, std_err = stats.linregress(df['decimal year'],df['new delta e (m)'])
 # horizontal plate motion:
-print(sta,"overall plate motion there",Ve,'mm/year')
+print(sta,"overall plate motion there",Ve,'m/year')
 print("parameters: Coefficient of determination %f4.2, P-value %f4.2, standard deviation of errors %f4.2"\
       %(r_value,p_value,std_err))
 
-
P395 overall plate motion there 0.0 mm/year
-parameters: Coefficient of determination 0.0000004.2, P-value 1.0000004.2, standard deviation of errors 0.0000004.2
+
P395 overall plate motion there -0.0064397312911273945 m/year
+parameters: Coefficient of determination -0.9970084.2, P-value 0.0000004.2, standard deviation of errors 0.0000064.2
+
+
+
+
+
@@ -1363,16 +2087,18 @@

2.3 Bootstrapping# the data shows clearly a trend, so the predictions of the trends are close to each other: print("mean of the velocity estimates %f4.2 and the standard deviation %f4.2"%(np.mean(vel),np.std(vel))) -plt.hist(vel,50);plt.title('Distribution of eastward velocities (mm/year)');plt.grid(True) +plt.hist(vel,10);plt.title('Distribution of eastward velocities (mm/year)');plt.grid(True) +# only show a few values in the x-axis + plt.show()

-
mean of the velocity estimates 0.0000004.2 and the standard deviation 0.0000004.2
+
mean of the velocity estimates -0.0064404.2 and the standard deviation 0.0000064.2
 
-../_images/2.6_resampling_45_1.png +../_images/2.6_resampling_59_1.png
@@ -1414,10 +2140,10 @@

2.4 Cross validation -
<matplotlib.legend.Legend at 0x30baba520>
+
<matplotlib.legend.Legend at 0x3196996a0>
 
-../_images/2.6_resampling_47_1.png +../_images/2.6_resampling_61_1.png

Now fit the data and evaluate the error

@@ -1452,16 +2178,16 @@

2.4 Cross validation -
Training set: Coefficient / Velocity eastward (mm/year):  0.0
+
Training set: Coefficient / Velocity eastward (mm/year):  -0.006437910455226973
 MSE (mean square error) on training set (mm): 0.00
-Coefficient of determination on training set: 1.00
-MSE on validation set (mm): 0.00 and coefficient of determiniation on 1.00
+Coefficient of determination on training set: 0.99
+MSE on validation set (mm): 0.00 and coefficient of determiniation on 0.99
 
Text(0.5, 1.0, 'Random selection for data split')
 
-../_images/2.6_resampling_49_2.png +../_images/2.6_resampling_63_2.png

We can also select the training and validation to be chronological. If the “state” of the data changes through time, this may induce a bias in the training. But let’s see.

@@ -1498,14 +2224,14 @@

2.4 Cross validation -
 Training set: Coefficient / Velocity eastward (mm/year):  0.0
-Validation set MSE (mm) and Coef of Determination: 0.00,1.00
+
 Training set: Coefficient / Velocity eastward (mm/year):  -0.006250720119447979
+Validation set MSE (mm) and Coef of Determination: 0.00,0.92
 
Text(0.5, 1.0, 'Chronological selection for data split')
 
-../_images/2.6_resampling_51_2.png +../_images/2.6_resampling_65_2.png

Now you see that the choice of training vs validating data is important to fit a model that will generalize.

@@ -1560,7 +2286,7 @@

2.5 Leave One Out Cross Validation -
mean of the velocity estimates 0.0000004.2 and the standard deviation 0.0000004.2
+
mean of the velocity estimates -0.0064404.2 and the standard deviation 0.0000004.2
 CV = 0.00
 
@@ -1612,7 +2338,7 @@

2.6 K-fold cross validation -
mean of the velocity estimates 0.00 and the standard deviation 0.00
+
mean of the velocity estimates -0.01 and the standard deviation 0.00
 mean MSE for training set : 0.00 and the validation set: 0.00
 
diff --git a/_images/2.6_resampling_10_0.png b/_images/2.6_resampling_10_0.png deleted file mode 100644 index 7e477582e51df985c3ee30627e4ee7fe76f1e46d..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 21676 zcmdUX2UJwqwk@`;w%BT`AO-{j20%eXK#^oXEwV((DuQH?AQ?=E0YwX?B%@@CAUT7I zfLb6Klqf1WDN*vDo4)tOd*8qJhd2K3VGmHKs&n>Ud#$ht9PMKO}mCQMAK z8!0D_syYS@v^Y7g?wXtb(Xe~F%kZ|hQEN*H*OyCQuOnYSN;&>QzHa^v_s_(1ZgKl^^3{B+ z*dlznx^i%d?#uG+f`Tfg54QLg78bIvI(3w`7{9Q;qxR+?l!AgK+N&*tzJ0ss>E)#@S-R-6)*m6}IgWHa zDJiD**xS5*m(_=JzS~P(Ep(j}WAfBXzA!)Eca`b2%9%I&CYXj7i_DWdySnn`ZgNL2 zu6_TNd=>uZ?*E^9@eP-wY)nj^*NWQrbg#83-=I>tlZih3>Q8 ztPkl#-CDUhCygR2Tl3<4k!p^e$>h{joI&XWQRmSZ*}yk%PK@=`oKlEZ!5_D&(W+RL z=)?(bvUOR~EXIynsYds2{l4+Je4wz&tt#z`MPu3-9i1SdeR_Ex z4QJmz+9BjI=UVPBc&e`KpT2GX3^yl531TdSfXy!bf82^rJ_Q8gm_z;?xtI zgFpO%+j*JrTuFT7@#Du_6z1Q5x6>?e9y7(K#mYS4*|h)M)wOHa#@h=B2#7ii2H_43 z_pMm5LgoG@p|tZwODWYQ_cwRgi6(sJqO9C3{J5qktx<<>-#+F>(-ZsWE++2SdASIlo)qcJ_``B z3MrT#Jfaq()E?Iqbm;Q2QxDkB7#qiM#ag!H@aW}b`SI&prr)`DuO?A9w>IX?4vO-{ zixE^RHO-K*o?hNr9{A+(Y+rs7et>3GnL*3(&3Z`V{=H}{0NW8YTw#rZ_ zXYB0KI9$IU^}KbfxANI>=c%4(HN?31_m_*+o91Sx&B~q%@TkQ-{$=rEp)37o>*6(Q zHn}BXgH3Cq?l1j)L)dDGpHkF=)}N))t=d8!jgy7`s2tYblRwew%Ozw|{l;(-iMB3D zUlP$Kcf?_^wv^K&UL{(A``|%UL|k20s0W{ihX;N3+dJQm!NEk_V^5jCplNGfwo%#B zXBUd^YFZdoge0^Vd1;3a+xLGwgBRz|?Iua-v)||aB~P#OeKC3%6tp+GCN?61E5w86 zi}Jd4-zMrkFLfy2;-p!<<2_}ww>M?;?In}KbzKN*~w!zm}u^PHp?g65RjaFFt99>ih~t;#6t=_zOO`F`tJBc03p;uP zxi{i~;rni1MTs*LgDpEL05vL(j#=yZ_2O||X85-_z5Et2{l5gI=Jw5O# z^^_W2J>S#<>DERxSVl%hSxV~VSl_QK&arov54-T5r9M6|ljSPAl+{|=(`TXl-@SQk zbRf4yA*xT zNNGGgGMk0XA95AHdDGpTZOdoz`t@to@RKX)<^OyYz`K-|%2Kc2xS`v)blEcPzAs=fqeqcTQN*j9CEoYg@ra4dG%73yZ)#wDiFlgEgyidAOIVw=?X{u_br7kPKUUQ^8V8NAvM#Jo=}84tz!!VZcRhCRo0_y&c^$_M)!tmbPBq)c zP%TkMbKNevhdw?&&SSlX=>u(rg(cn_!<8dtxcBc@0+vxL4-l#&$Ur&Ww5~Qve)Gx= z`=vNtzhC1r`TX*lXl!k?)!{Mk-X83R(_4ucCM&tdTHc7Z<3GwJ7 zl!fejYx`WTle@Fr=-Df-=(%y|&P(aMuAW}UikkbcGOeZ^D^#kAE3B9%W0ij2KlGGYbm~7bj;ZeeTPzpX)DpSLu7qMj~`6%ErdV4+fT_ zSqeM-{_Wcr*HvPbBbjs9nU=gk*iauod>DrR*saBIvLRAYu)UE(;sm?&uo-j+Ey{ z$cdXI-SZ@VeqLN$TpVlBl(9rt`PoaQ4kl~goQ<3|A|)(#%U{Y5HRyY&0Yt^A#y+o* zn3iMZQLR*zoQ){uaFJ_spH3jD^ySN!zr^m_vEw*Sm!+lW#Lx(BqWs$8WvU5ULUll4 zrH0w|f}_$3tJn{1rC@hzVo=^^J%|4TZJ!1r4D&STWj&`@O0(eWm$+;|_XPqt0Rx1OHZ7ccg& z7a2~9bH4a?-GF1+MP1pfmQ`)#(L{I@DhUQ_4M>KntO#^ ze_BgROKXlGODlaXx!*A`knsJxHQrDsHa50?3UOlJU3nDvFiz>&bwDq-x`KCa-&S^4 zg{wV3vHS^-nv4(99jixL_Gm`_F8KiC>IjNf?v(`WT);sSYDY@mc(GOCtdUDDkaQfd z;_%3bN}#X>wxvsX!ef3~zs0F5czASF6`&Sy+%!Q}MyC4ZwZ*I~ED=|)G6|X0%Sq0B zKmNci-L^}C{0-MaK@ldY6gG){8*UC!Ptx0mC?cPQoJr6?s!=(K zWL$$f61a+#)K%y4{@B8~DMsUm4dD%XF7lae?zwsS`6!F~W`{iHZ6_W2kra7UW42mZ zS*ayxsm;$#6zV>3`*EdAq}B2GvuDr9=cAGPa-jBS?oa{!{S#gWgCYCs)hp-jXI?h_ z>$HD2r^v`0pvoyLD<7p@|HaQ{IO|NB_j5yK1rGjh8|Ix9IXO**B|CQ(Z|Hgbn5ulv zFpTNj=*TpnZYLnHFtTU%i_g`o-`@{0ci*oVbm%;m(|`Z@V}51MkUU2ERORSToNtd2%4Ltql3L+>6uQ zcpyn5NiXV5_(`LI#`I2_zPmtD;atv-(b0p`;{$>v8wAljs^mFdu0bS^%ucigio1+I z#bU2xXE&c437tPXeHgv#@>Q#ZNnH>qc?#fC^>cF4|DEsdK)2~}|DnS9*4jkfrqRBJ zipD4$w5XH!HyIV(T4{vnCLdhV)YK#wB6hfG&S|Vp<9A*-3$ zS@~#%;CSIPXU-VCxxGf+W7UTJFHf928IYBA$QJ$FUYf3~{>PR?>3i#qaL{+{+Et=T zS1%v!tz*PZwm7s2A-s*=Kjt^l1a&&<`8xId!m_<)YPKs99Xgpdtqu+9$@I|>RN_qup9`tYAe`< z=1^>^JDeo3&c38VVF?L|`Ys3Dd(_$F3!T8bLSC!39B9h45+UK5I@_=FV|MH2o4W&l zQ_Q;k-Ohf=>K&Gy%C_w)v&d}mvp^sGbj^;FPh(>C&}MZC_9nSK3LGHUU^aVX zD9-?3FkuoIaHLGI;-b?BUX8?qixw^F?EjR?$KX|uH}Q@Zr|pE#t%(ea?%mn2>Y)c9frc@ zA3vugp$QHQ5qB|iiGOutS>Q5G*UEsQrp%-}w{P$7stC>Wvma=zvm0t{LC65@lCwuq zQ26kJoiAl`h+`+ZR4J;fYs7r6MXc0=;MHaGEzhs?Sg3bAUa&q2ey=dA$yanEumDS?P(UwSL=jPJUmDEoi8O%DqQ|9s8@n&Bt zm84~x0=9|E$@;@QNp9yIj&O2vs>PqJ3Rt~zrP{G$*CSSB@^gS2Ee{l_NXdBmbVFoB zL{`5d6>!c#Jku^4VMA9>&>9{aOZRKRc_W_)Vuh8RJ*eZ#r|i+78#iureEk~UWL4N= z_zB_8MUkAJN&OHaPRCzz`ge$n>!zDEWOTN9%)8BYNzPXxb4LkY`mhH-0Q-~45O!#F zioVOrYgF!a>y~NPhhS<1Udgk4`|Bz5Op}_EtHr)wbxr&+zlnfBDJuJ_9;*JX72!CF z@7k@qaiFejbf12Xj245S;L**odoZ27A@OxlQ97b=pMHT3;-(VVb!@6H$qbQ`b>b9zm$Kj8mnyjDJ8PiZ9*5M-1`o;K2T=m zA>!JrC1+kR_+KLMY(AADLD-dUaX34Ig4_EsIb8Hgf6TVyx4Iu38La#ed_*nxiiP3D zi+i?hJ37(k;gM)IP)DZ`Zl=jHSKiXna;m9q&M1Md68*q^s%N)aoGLfNg04o78tJMq zLlMa73UT40xJ(R||8SE91BI#zR?>Hqh~-`iAx1A;xS)y(pwr+H3j~oq{>*OMuaEil z^>D&fk)V>!>PIVVK|jc7Y0*XRl$l=9TSqtREc2Iz}#eohu#=Z+3htuM&I)$8H227Ougi@bTvm1KYv!anZAx0ryk3e zEeW7ldlE8RtC8>0QQFLE->l!KwdcSA<=`U@_0^HG$VuBQKE5~#cpRT$(d5@LhfCkb z&(A+L(4>LPQ;q6)5ElVDe0M`;e}^9$(vk;T=&1ZA*dtNv&sVSXe|(0Mdhfb{G8xLgtRF@u0~#|F{sSDckY}4{u%pn zj~^W@h3qG?o4wm;)v26`Ru}sQT?Z2Y@+stjgsw|bilK>QZwyMj&ybZ(HaKO`nx_d$ zIiojTzp%i4=EteA!Imb&7F~yyNB~vi`MKGg`MGIwP>?8WnOCk%Zy`l_cU$&hV%*m+zSph4j0DZ+`Uc6s#OP_ zReIaDhR?-p`n4k!l1YS0Bit=+yI^k03=H#8>S%YkPn;}`ueUWnmoyOTb}MA*c&3D( zxU-fp(E&ncQJ_J35Z(>oP@)joBLSukPj$qOW`g>rC?gvS*>=j&GWT7&c+nV(r&ZvZ zZ6Dg3z;*brCQdnpLSg>xw>{l9N>~3v%UYe}F7jbyUi{GZ_TKZ?Ha?=vp=NHzN0O9P zBJcUIMMSVnm1;fov6-558}HZLBIc-sZp=EH=a;bV9j%sIG=J%fFBmZnoe_LbhvTQX+*^nstdzcbq zM5zP0r55S>$-{@|bRXq(7tYTP39%6smC2J5^19~dkFR5|SMU>c0DIZdZcToYnJ2bV zZ4SK}Au^DLQ_-)6p$_EAT}jZ*RmYAfojv>X&p!5ZN&yHGn?vk;DuBYejS-QNCLdp% zM-57Ib#o&TwME>yHd6k=h3BXuJECj2!D53a{Kj}X|MI@|Tz>(6Xu5D5(CyJ5}lA`!IZgj zk+w407cLVtuFTBL%6Hc8WMO5EBstbO*A5vCg(wFb*^8K_MxaB|0%TP(GK%6Nv^q!_AMx?0>9ZilYf~>Nnz`eA znKox7<3d@XZKC?~3JKL|=@+;<<&Rd&l3W|45Dm%dp`ot7zrQnjP&Kq~AZ+7wvTd9v zJ7_y8Xs4(}?Uii$uFt@0yhVc#D#0e(!U_kS&`9n-+rh?fz{Wnb>#%S+<-?)o!y(SH zVZ$DMeSI)5iYU5%Tw4xVO9hMCD}&6MnVC^7baz95zrHfhr<9OI`OuTBLIqZfv`1zHwdBv??)~(MfXUeZir=5 zE~R# z!W!*QtuWGVQc)C-BrKQjZpC_>-)N*oNFSw<dXA3s$v$oM6>NNj;wK&bk`gQ>niB>7{81_{{vb*n>CS*K)Ii21 zHkR(wN+YNIAlTZmp*DT$<42F45yZ})_Z^+n4SHRIwg!Q0zx?tGInTr`K-ee7R-^16 zU>#!t4GCmOzcQeO{;V&Orl$-rKKj*1@_kX!4#jEd!EfAR^59Jv9aU9TkZhClLy@1! z>*{B~$?c?I%j?i~MPt2s@v?g0R z22EToBz{ub)E%|5Z6epMTUVEEra@7LJfS;ffKsfLa`8^V%rHaDEBdf)=iBmf`FTL* z_^$D2pg;5m#;8Ml;fi0U-l;gg|Iju+=g?wXA@2P3zKD4`7;VY}S}b6lbDf)`lT!~E zw|ca>!4`qIJ~WaHb$J{R<6-W>@W;{p^J@+j`UG=c8EQ>{E=N0>JeWVBhi1AP+sLDl z7(~hfiT=^Y*U_Ixao#nwtG~iTdAbSd*1KEmd&xY5yUj6`amyC2t18;z1`|qER zg3FYrs=_KluYcm_7X{w0>*Jv5bn*@)OVV9muj#-B3AxWWx&dLMvwQj>R5A%ry!(55 zQHD=du7j2I$&={%4B(2Y0h>|>BEqclE*vQN!|!>gW=1N;riTi(hgOe`l~30d-w8yPp1RWUMghbUh}(#?`fC6p6uf%>YKD7CW5s2GE)b;>U zKLjCzBA18*N0iSycka~N9;x>1dJN?#0;ya7a=fh7sGk|Mq!3T8uEjjkO*ZZYWo0E}M&x_iX5a+uTf@0wMxW7T*b)!BC z!Gbc~JnqN#gjd5aGc!{?Q76^|oT^i+kC&I%fddC@%x%$l^Z^VLt#15*62-9j*{C5p+j?o zw1rT849gKZr$RmEvf*uF`Qwj=ea??0hYvP})b!Z-!_-k1L0Jd?(OI-ejG;~Fb*=B9 zN*9-u=4TUo$A*WiNg5%d1!?TSyoC{K6nKE_ zMnxc`gheHDGb4(Tk&(JpQI{%0n3pddNf0lfk7;% zIsUjHKK{`FaL$jcZK20J@5xtYjcKt9r6dxnbsVrbIeUz{M_}<}&FbT;1S`bCaj^7D zHh^?HgTho{UryTL=9ZQ*9J)SoB3G`g3-^%-pu36v{Cs1fEfcngL((KQjUXG@&8t_h z-lv@*M_N@h<92g1PHIVdx@guOpa|U;AAY;Tv^M6E42>^gcZlOLI03RHLXn&4a8@+t z*wb-FY>Klv&};!p`vHrP-Wf=n7xC9LD<5!>GXJwwlI${MxE^G|Ot3ZaV_>9-@el>X|w6Q2wLzU=*@PxHGCO%X}A`s>0ZFtC8Dgdvv7X%HPM~Y@4ZTStbO11bWMCp zy|j?>VwA33%DA@u!{EdXF#k=MFH0qKax|8q7&&}UW{@I%Mea(|- z(0sHiNj})H979g>k~h8jnoqGkRx{Oz$dV7X95LEAjcA3SA44xVyotP@h2)F$&w`|K0>T{;6%)D90*kd1{kgmtu*6DZDZu~ zq@F#b^D4HvO#~x@TIQdQ2kVE^_4L+i&cvy)zP=Afh6v}CDEo}OqtZhg))0~b7cE|T zagur#?Ik>ZJ*3IX{6c;q?8RF($EkKNPU!xD<_(#qbuzH=HRu2dFm0t^=d0jMv^5tr zDES?$y1nf|HrDqr`zjbEy$9Wv=BhL9k8*Q!;fnAv z<0C$0O$MLb-m@>Hkb6tm?1I51D*`1w7b5sv-v2;xq&!p(z=wj(IvejkM+Xm>Mws4D ziSxjHteZADmrLXBKX+dAu0pS!r)zHe)jEX@E^K)0CFY4D4NFa0|q(Z%Oy zM$lpQv-T0+0n%11j_IU2I}pzO3*L_dwD$W7OnOKFROJ9fkG)#PxkpS)2NB)dm`-OT z7|%|Pso*n6#U!rEty`sTEM2MW>^!w|_QGhRSyB%Odm7R?*pWyiVUPN$dzo4Lfbjts ze50c;Wh}mp-d<>H&7wOw{Qsg z@w^tAEg6JfAw30J27=Oa?0POF1PYn?A?xf02kd$CCP{k;`WG#kpte;J`Z|8VfC?aj z>H)5IQi%14AYq`G7(xJp4M4(uI3STK>J^{3%YAmNAx=9p5wO;7dLYvbFm7_K`gz5~ zTRa})pDuww5<`b1jSW@<+kgX{2EisDloaT>#5dtU_55&?7V3>=-8V-y$A1g0Czh3!@%CZ~58aHqQme|0$?29&p&m?kbNqKqsA@)_! z*@#+Y(v*>K*zx;0O9zLV(|=D_E*vcNee=eSA-Ckel9dHYvfLFcM;`}P7y_JZ6u9t) zl>y~yXn5YdIqUL*l!y~vp90aPJ}W!hAAOU7w*bzH5SqYU=%GzVfZR7qN=o`ZdUPK0 zwl|GN`}E@c4MsB2Z6U3jcncUILQYaOUz|Joz}^E(Q_|Mf2J7l}#u$)=VDUXR5m;ak zhgh9Banm1=Og0dyaC3BxN%<)Vybz1J&Q?ScmlKzNO|)WekP51c-vG2y`JU>?a-aqC zeSM!&qkF*CWR#vheR@B&48;i=BfFSm<>>=QuJpehX7|n>ZW{$HCjzsRwaEy0_NSGV zO1aT@&2{Exw;suMr&!|S35SZ5Puk-HB{4P~?|C#+E?PPul9h~q{?y6(MOCS^fP+Xl zP&LW}eBi(W=P*9lLVx)14+`ltzS&Y1LBB&QRs|A=I1M1a#UTsxP0K4PYM_|t`r+X6 zmudl?5P*OrWz@85`}Si5V!F8>-ohKrtAcA*f=+{9u^;|M>FaF(>{UaBqz@JXhmagZ zloe2cdxV74^xejuNX(9^(23!MAX1by`6+aFx(~nz-WLnj05OKP$W)j0aRd;1u(*r5 z$Ltu5QMe<~N5?Dr9{dBbC=Okh_8}K9DQVA=$o$Ze39|)iq;B#|ZLErB!Mzb>w$RXI zL7q@JpWWN_QE{Md^rf_79}HV3c!IkI2Hffl^ei~9blAls-qCr91uJ6zV~ae(UOrE^wP}Ow0w)4%mPGI`P&*BH)2D zn?xs;6biM)P_*mhFhP0FqutxEcu)9rr|t@4sa2p^si9>b>#jPEgtD*<1lU6Z@I_OO5D4*LROSQ#!6{UE_nx@fHsd5Pi!$vCC{$zDy;#8;ywjKNtYo2e)i?jVYlp^J_V<__hgnZSBZY7o|ttS)@< zH=c)wCyWui65=uELd&F%v20@R0%#%4gt_hnD(}@Z!%DCZZ^qaj;H1yutsOAUd zeSf_|)UNv>@jMQUoFR}3Y<4XCrM>t(;#P{^R>eS}+bC$%&EPL20D?qY_kEGpw`wcd zATenZ!JJ5q#Ll8M*x4Bcu3`@cJ#c&~0UAajSaoG3{Yg5=qHd{!d>H$5DKvZL$Z2JA zp#Xg3BocK9U@?aHnV~>B#c^hL?WeWr+}Vpt&47KDo4Y4&V%^tzzksJ(3p20pq%3GP z-^Sdy+Y)|eII`$28QZa2Xl#DB z{T)IC0+JFewE*Ypl^slbqyX{=-_qP{Qy}2;r>PR}iS}FpajbFjj6L8MJ?UpZ}KzxG=@^H6%W zxtT;A__J@-yD)cyW>^J1MqrG#GdYH3G(AjV1sQDdPnCW*XODCiozpCxbvsz`xPaZ!ee(4jONzkZ+LD(l1qT zz~d*xaKYo!NVSUbGUPYI6CssF~ zUN``1!y~!h?PczM>(kz97{1{QFRQ6hfu*exfQgHY zW}&69HCeZQeH1+3XDuM)?*R;20!Q`77tbJ2)a~MhVwGk&Vk;WVyn1!T(4TVII_|V~ zZn*5Jxc&YVu|tPGYO!&0@{_3Dt9hVQ_~=m$y^X(-*{6#gFlUjK5!!Ot=3BrAvVkwl z%V8|e3Sd}i68pPw6tTb0nNGw0_ZXcDAAMmafzFer5dteQSI=Ggalp0ux)?wnU}Ro2 zgr&lzKAeRY=E1*~vTCH04cmIeQ&@~>$k2p{=$pP5ejP9x1d(w4RR+>+d{bOZybtPu z;5>mgOo%lv5d9yhg?B_{Vq(%z3CkQHJSfs)a_4Feu^5OM08K=gA+r#>*~zqE+NcE zTGw5>=UB1sp+jERa*<7vg^RvLADb>)7-D7F_1};p{+3hwzjeCwKaS@9Z{0KIdWrC4 zeTaRD-9=7HER{=AQlH}SskM58t((j*OwD##!wbpz|H!=Ttz%n4fB?_|>qOy1nB@zc z1ZzNshtd8M(mvFE>YX7c3_^s50mrrvav+&hgFu*H6-~&a&$~2YihQ|<@fo~wY80AO ztv)@M0ik>tF#|;HY}uOpyu_^@0M3f&(<@!@|j#1T5ME$@s314~+{0PPyj9Wt?yie+6y?M)$V} z?3V+|Qi!ezfJ<-WM;W=kW^-nHM^iM$WMC1>vkIg)GO&rNAU?F+tEfHYzCh<)Lt1JL z@u&VZ1#K*1i{U7sOlkg{GMOD~186<$hx^rS* z6Yl~MZGce!ZMu{AFVo#-mVLC`URuOqIe#E#$jRA|1p{1O44S+ zZ%+hjfO2)@9|YM!n{TJ(pYA^jJfaRPEp-0%uaiH260(QN1^VtkPi6KAOW}=~UeJ}i zqQO(g0nU?-MGZX}Y+*`}6P3~Ua`k{nYw#DmbP!F(&Rx6WzyoS!nES(co!|yz_TQe; zIeRpixN5EjJ}lZ`z?^eC@TiSV3hERlksRlGcKLB;zH(xteGnV*&@bE@eAuBp_gCwd z$WQ1SJ+~sm_YOg|Gi<+$qf?Mhs|V0t9p&8B9ZG zpBN^)K!p45Indri8ei~6V`YLB#%RC^yH%HAp^X+UD@=AV(^mb%><x$#1@V3~h|d zLw~xMEss+Oz!pCVfr_GRV>3L)%ObMGfGarvn;DbHq8;3m)TA>Xb&^7p*e1+=-deep zljY9$Q3%#NnAw55g^vLrGApK{I)wk?2}(N4!NK9KYx<`AYrhjEX{N1ViPmza=?|xE z*4wRld#%RFZQe}*qc|--i$2$DaJ{aPrnOlbdA}Q9pB5eBEQ6z#(J2V^75oh-hr3Pn ziDz&)kg$kmw&d4eS?msrh))T6RE197n=8{Fy)?MdfRF${w5)dAOqPqJw~L{h*1~WX zT&pU_j=g5p2P{`rv43co$%IN)@WXTC-0f$2-~cGVRyxhw8t+}uWUAy z43bQFmCm#F&jbE4ef!@#;MT|U!1NL&3LwtB(EQ`yXi@CkR^(H-ke|>RU|bb{dTXM6 z&_zD^Dhy8Ex2WCPA9dEzfSK+>Ihr#B}I!^76o96P2 z;rr(cEk@;N3%k1_^G_?FEHO~jg^(*hw>0Y-jH{MG3SDYVhM0f>su%&AaFzkXy%{pM z6Fjp?kn!5c}c36RQD-+vpjZp+oa!FQ?&m zyHm~Qq3Hy|h)`ts3EnF?^pZ*1_eFf0$Gd>Iy}5j!K6P9imzzyF0QgdoyfRdgDJwZ^ z_~tR9rlR6&fcS|wgs%*Oc{Nxl<`*f~Ga>1s>jcn#sa22pn!~{#=;P&Ji^xP66kLMg zA#`N5cC6>YrohE}c~Xa>Oemy*T#QZYRTV(4ZOpI;1S{;&Vw%74Tcjj^oNjIgtWHFY z1i#bk?B^u=b!0h{$olr>p31JSd0gCRqYRy3(@IZ_Ay-BoAi=nC{klzmAS7W^Os7tP zpgD+H7>kx1G9wEh&^Wd?Q)v>(?+GYidW9O|*l(Z$P6{wIBRO@>f^TI#ZsB1H)^&iSrU2Y6%V zM3Rt)VZPeOfeKJ5XBL{i7JT=JUa%bFAixphLv5jbT2|_inbhI0NzCG*)^sgAXk;90 z33jX2o<3&ukTzE)gV?}fjGy64I{o=CEAONZxrb1QIsLgH&TxvVkhTa*4oyGlEYx;A zx3RiDo3iUhnUc5*sKgNvwii5sT*Q5iCY|Jufv>@TJ{jZk^5{%a^ufeu#h~#oxT!JH z;hGH*|8a*fc8R#TbullJAqQej1=hqQvwTloy(vLnu$+68LyKnKkfnKXoju_f=~D2^ zM#K-u!H`>76IHCG?|3n zq@fh86!R@Z6128?XGN&h_(0PoGEW}jI!xK|t}OUSW|+b=rNdxr#%9k@o!|#5C$~v% z-MbwdwdDTyo1345Xg*oZO3bP8!qhS-iV2e-kOeK953O6f_JWwWxI9SUa@@TY#J)-p z$8tzb_t7Q)n3xcOYF2QeyGwR@1kTL^IDdF@!D9g;1Od_t5_Jjwk^)%!ejy$OGEIeA z48xfy{3Js4IpC!OpdZl2=^9DGU}%NOPr*ZX0y5;jVr8?;?x_F^RHuqLB^a;#!6*d) zuT<>SN{eBN;|t|Yyb zsf<6p-RH`O@Ms0{KpO~RgLq_%IgM3_s4k>GLHU1+*(2~{OLXBD$y&7l=|t4wha?_C z3Ki-&JR)S`AQpI?5T(t{bMtMg7&RnATxRa5w-~9agE-dF)kPb?Ff$l6;tRuES{Md0 zz}Bv}qoA`9{rrBN(yzpzdHM2XLNpi5j%&j)sfy_nB@iC=FoV!_VQ9pbB}{?^>BhCH z;3Q){>d8P#GicMojCDNcmaSq}0>ek1)c`&ZSI_e2+k=gjen|Yd$BvPyB%)k^NlYu4 z>g9EVZX6(BaI0>xx@jD%0@-d9etEnW59bhN7*a>!Y@tKvfXEhskBh_x6T!3IeR`}f z8lhu`!A>;NM6$6-Z`o{>_Y7GGe~}>y2qpsKh0#?z6V8c)gAd{Zd6ogBuhe>E+X~Z$ z#9$mz!U#eq>qb2*OD^pE5KPCAf(j}OkA6WOl=X`Vm=3suZz2##?=d(4GpOd^4wzwy zjd2b`sDx;O(Xgg)Zj2uTPTeT=Dp)UArbZzX=9<%xgdn`}?Adb~qlV-uM8pYfHj975 z2Jc1-%YeW{1O^DtI^$=ErvVL|kJ#{SbXU0M!(<|HL1tdLMN}1oPec&|9WQkG%NzFT zU-1B>+uwhcqSnHc1Z6=MDTZO=2F7|YZ$#n#MnST%&~VKC7_hwZldW}kcPEkzo;kt~ zVHSH|(!pE}yB^W^yuec;%r5r6UBlF2;eCOBHmi0>9j_lgjB zW{j5pIoY~bzd(#J0z+b#9N>wLA4u3Yrw`x+l-rOe!uXSk$GtAFGLmAHF!|@4Ys}uv zLSvlwlG4&rP|4a19CK2ftzZs}HzY*|9m_#{giVLcxc#%P#@>VKiYux;OCN2wutrVJq9VnCU7n5iaftbOwYrz<5~&v)p$0 zNoXBNLv@Jg_(@`xg!j0iiO^LO~B`Cr@!f zT)=}=8X!xBW1zJM^gjsLGFFWcQbqgB;6etB?K?y~IRM=dBGgE}Bf0`s**p}_t&?8T zzWk~ofD)0Rga&p%TSm;*!N{6)Rs&2(pP9aXo0x?L6dam8rUx(sK;>E($E-&KKxXbV z;#aI(iEWDiB~oBl>DP<9>5aCcp(uHHIF>1POQWBTp(s4;1P_HE#txFL$cQP_6%6N9 zvfi-%W*3AN=myZ8f;lK1k8~i%hR{^xB!~s$c@~*Gn8>75Bl8fyHjvDjhO|)fB0$Q_ zrH8Uwn{>&<37MhAHsEn>_xAb-z+3(VgOG!R;{~(C*0=ENvJ5;~jZ83TXao;GM_wgt z8gWWjY(=ZCfR(DjVA>Fp*o1yVgdyUy!WaZ;Ac*}Rte^#z6c}i?PNWUPSZf%L zo2JI&eqsS8S`@k)WArvt$mn>4(*@lYa2afWgk0TDMmgcIR6{-{!;`=&G9)*mzR}GJ z0x8(AzdUSne)W^HoZUCWk{8q=inPLs J#AD~K{|~+}&&&V- diff --git a/_images/2.6_resampling_12_0.png b/_images/2.6_resampling_12_0.png new file mode 100644 index 0000000000000000000000000000000000000000..90a3d9c610d940a1062a55e9ce29dad56de48ac5 GIT binary patch literal 22675 zcmdVC30%&3|1KT|gTWY*wZ{VuCo29_UHY5JWIrxc0%+vsW+hHwp*jmN>q_y3#GX`vjj#*orHn%=)bo^Ia zgELk}=4K*{?TpQvem!MvZDA!YBxL&c4=~Kn7z&9#O^U)r=2;v#V#UU`_!#{^BV0Pn zh>h(q8*}e2)w6zG_4eBAgOdf{hL?O`1wB4}Ww)6TBQ50cwX|~%_3>pD2hDYp>Qu}P z>VMJNDo|cKn5?TJSJV+2Y7m>o{_%pcrkQW(hP`R$e!lQxc-XCa#Qq1%m$NIX`@h|D zE4IrP>G%Eitoco`lSl3f{U7ioY`m%w9~txqw%FO1Hq!4;&i79L%eJ2b=&#S_yjV)V zzyJO0O!|HGj~Ej+wxhF}=h5${f0dYl-_9)zxsh?sL`GLPV9{D}ZdX^=9cylVWX#3) zj=I15_Njn<`SMWZknazK&&i#*{%*B-=CO{72>tPiiJLh&IYu>!5l0eF-AR%V5-M?D zyR+)jl`E@+goKu^U2B?bTH6|bbLmF;d+YXGx%ceZ@1H(>(igY=dTP;{?M-EEukNgG zeLk0K>x>yQHvIbQGl}m_7hAu)3*u1gJU?r$JNJg^|3XbH#E0!>vGLA#6V4C6w@Euy z(ag*&QZp%%+o-kJ*P+E*BhjE}dA&nt%>C__k9D2C$-KEIyr(isqk4f*=0j1Fs#9%m z{riT8S=^GNUxGAKEgqdLzV`?Zb90rb?EYJ8l#U;NTvu1e&Frd4Dt~@)?%>;J9n@?}Ilp%N{AYeeP@)FgPiD zEUec0%k9sdTJG#K#W=HP$GNt*x6fa^xcaGn!Dnmn8yRcZs#A|IRG7`D5$mUG-@-0A z-kUpr!GiLuOV$s(T&i%uGd>}Kea)KaYfCp8H$6KqD<`LNc|Q99hA7-|xZ5*$kJ}v8Z;aJUGUi*iZr7pvTkml5aC7tW^ULnE{i=vJJ6-7=5Wom4k4Q}1 z`eNyIZjp^DE=$L`nJe|TOiD|P_?xNho0F3^Lt|y*g=*=BoEh5kJgu#bb#>Zrd`0&A z`ubkKe!Z+A%hB7@^YOiVE22EY!onU01+jB+2{C049;_(5yHRKK(&ft$wp}&qfi|60 zh3(dw&zYY0x0&*Xl^YH69k8`cE-NqB*+2_TEcWL($kc(nge@n|tq$9XrGw22MS4b{XqRaT=SL7;fy>sT6;JQJFb&ruIKxvTaK~ z@6MfCckbMoKX2ZgwxtM!7d`G^tHCRSygg=M4!7 zG0MHNP(5(4vsyq<@J+`odOi;2XfDsO3KfM2oeW!AMc9a*6}NsOS;k4XUS@K3v@4~tBE!y{XXD1AcI!y9 z`gG0AvrlUhjn*?A#=jMKdwYlMx;UpD7d0*mzUITwF?Pws@d}X;zo!c8pB7Yr?FhNu1&&Q)k*#b276%t4_*>Z z3v{Q>PR+5{;hkzY9mO7U|Mq8``p*Tq>w|mF%y<}Vv3*UR&I_4O`lD=Ysp+YG|CPY_ zpS$6|iK_p%efdgRo(|i&PLJGX-tJ#8&5WI~|4ZZg=WFhHdL?Y$(hcF3pYjn^H53(Z zr(3r__TOojKG0s961QfNTTw-#kqS%d!-o&6#I3_$vxJ27^z>{xDwuN@b6U4s4SZ1= z?5@|64^zRfEXUz0#K+iyb(En}<+1i?x6E108GY%}4}x0B2gBt3l@A_t-y$NSGfIoL zu&}Ty@zlHDSS{=KxtC_z_ix3naPEI2_WIQ;MYlz3y&gO;8EpTM5a#LWnRxcwaY5b8 z!-x?b^%=uzJLGA7S7(>yrS<3C;K(Re2$a%6gh5DC?QeY(W2>N`aQV`uWvMq2HV-}6 zc8JTV_q=9`nIIF}*9XBT$!X+FUVgsu*iaX3h+lsBr6QQQlv$S1lO2Vv+*OyRf?$%m zd;gEPPm_bv;{bbv@w?pK0vc~aoUu#i&!4Y6*il)T_mFJB%u zJ$CF^q)tZi$4{Sln4MKIcgx!oFWlu8HLX!a=ZJrGhEA_XY z`Fx<>zRjP$SJ@D&v-3@Wq?VrRMAC*s_k(Y)7K=0}@_GICtq*rdaPX_#+&%cK%?Diz zizkS?(NcKxk)f5#mYo>fQGIFN(&)Az#0?6u)sLoUV-9<#siWcQEhnyKPfa?~7&E%+ zGwf2bV{yAxqQ=3my#+dpgmP4?V|7Y0B=y}f`J%2v)oqBQ|08~AU=a& zS?YQ3s{#thVU-tVFGxJoB3o}=e(3Vh!i5Xf5TBA9hs~JE2M%04bLNaSRtU=_A|hh` zqD9H0<3qLPBgunfJvmy=Z(G{iBhH;;V-bFNb~Ea5?p@)1d#?QSt}e}LaIjiWV9S=i z3!Q7EoDL(Qdl}Q$)*pcLopJZvZm(!ZKvNK9Xyibl2uk# z7A-|1t9b8tmZ^Df)AP~Z+{J?gEL0lrsHr>Pi6EG71P>ewW-O8LA;RM zG{6Ad+Wbez)w(V!ku}o#z%zKcpk`_!ElcOIA@2td9weL9M-Df->J{8ttAZEm&K@&! zMg+#zOBq%8m+|(Dl~uxMG1dW+O2WRD&Web;q4NF?EsJT>KeKs$%w0H7=Vj8bl9D>u zfWS5qQi(0s_y6t3esnmu9J{t6)lz?CY)pWc_kd2i^}DzJ zJ9S1^=r7~o2z&Bmv%RBZl+2Cgqs?wy+M_274Nbn3KH}HQ&UA8iu8dIGxK`q9X-LVt zp#7D|^*j9K@ryz;)>=lH+jIyMSBh>nLcm%jarOzKUE=8vTl~dsWQB!=Ul$iAj%JSc z6*+VzRd2QFP&KVfRRVG{E)TtVi%Z&UaHa6^ORaAngzd0u{qn#(TWR0EE8^B)9s*-V zDU<|AdV6^VBLlX&tT*h85tQPylA9SQ2uNaIRyn)dAlkC0`OdH9rKxuz+Vva zp8($_tk&z!x{=Z4`j=UMWKpvpdA<}3i*|}nEPr|A56}{B7=Td1%|uMQ%Z+HM0Z4oO z+O?;nXB`~)#ljwRfxa7e&Ft zPktBBh^;szR(~SN?b4+K%GptS5Vfl+!*AdIx#jccFMx-aheiM;`?`iPmnC*;oj)PN z&i>(t)IXD0-l_n1;Z;a5t#AFK;&LW6ft(pd>({Sm|K*p*NLEKo|BLYXGM|p$PA)83 zsqx-D&XXf;6fk2qV}WB!6g69%dUD7B-eJ{R6qOSd*c4Rz?qkt28(Z`7yj#Kgp+O8z5g9%7pY z&0?|@0L>@<4w^GdLeu4QW?L@*qmn!RjP@=YZ~Om$$W)fYj-E76P)tl?qe8%@?k#M~ zX4%=Vszs`NYJk=gTAG=IJatcl={lmmpL2&>=NN zMa4%cz0)Zwb)CO`eqljD*gb(6igjzJXEyx5{kB^r z^dMjN7RH0eYZMx@ohw7+I83q;Nmn7LiB7czx^^@;_Ne{-`#C_KTWfc!AFaK~%V5Z3 zBc9p5=DxJ6izQ3tx9O|K3KJH|ahX`QeEEjOix;cKY9GmUTU_0o>vkg}@fY*%x-+2pK8fVVL`^g)gHx;`Ngke&bYUzNw)7#H48s#>-9g}BfP!~p5dymWH zh#}%wgu`G5cCW{>l`A8-T)yveof>N#tklpWZUAvez^4Y7pv7XlYNTr6#MpRR+exf* zTFQt$I;U#$(wD!LIX3k5!+K^%U7ASA?0}Y<@kXTf)LjcXB@T0Pa%!eqN1*&yi%{lC zGO3m?VhL4avqpvmy3~YBp)jpXFjN>B8R6Ts>EP68b&j@AL0(>ja)@l-zg`;A`S1N#}1%!m+oKn&k zuHJU=-Me>HPEJml_r=T^=H})U)!#okM(M{VEHpGyzu;Ei(2)9x6Tx^Z=jT>;A3TUc zn2bE=yJh}QKULtC41IUGzy$MJB!kO@i@^!KYPJZ+Y|c(*AJj$)6H2buia&A9xGI`Y zT3Y(gDuZE@Gu+^qK3Jtis1s-pk@BUckB?92j9GJdu`t0~8Gncm$sX&@*j-Xt6{A%d zZy<;8B7l;6)|{Udk??}c0p^V>A^CK^}r?^v@)@JRe#6#J}{loZY6(-9RF zs?L}$nh<24ilF_ACjdLE9P(FW;n~sw3tPInVlc<;Ia3pHMN|5;m{zXj!(b2rGBw^N ztuy4@YFn(K=dAYV(Ia~8rso%R_7ypPx+$g_qbX`{Z_l@V`{ChwJH1D3FPG2KLW*+d zzU$+oUKi4|%KMK0v1J>Bw)?t&b)OPFxnjM4z?Lo7Q=Sza_+_cec@?IWzsrJ;n=WU$ z8X6e*a=DJbJ7HkpZ}zHa=frN_TYN$#Ro{TP-)~>DNW^9Q`%KnwPh+E(pjOrA33Er( zJ=-QHCr`e(H18y6xK?0vG0=A>+si`oSLjPk45%#q`RAj+yeC{nS~wD1CLH>a-VWDx zqJA@~iuOH{aPsCzdstwxKwRc=P)Bc2dAJMb9}JYLPtC}9aPrN4U-O)aD#Vc76DLmG zLo)0SoEk5vc^jb;b`WKbJ@(B_;e4m5iQ)W`l9Gb~5+ARz2{` zms286-z_?whVasRWn_Fme?DRLy|;O0Eu%&Iy-pmW`pHlEH#Z0izpIEoQaR9#!a`s>*uH4WUC&lZN%*xdg#G@^X!rQ z(+!y)unsEs?%)3abY6me|H*`tZ&oc`vEr1jLpzU2R#$)>Vf+vB-C^(!P9ca%l zFE5YQOnSXS|De45E&HJlhHtQui%X=ZPGj5+uqBHz9;Z!%@DS7dZQrZ)Cs7!mY<_V$ zzo4MNVZy8~^<8ROn(t!i@zSrgDJAq6mkU4AW(UzC3kx*8?kx=wyu7>nPoG*^48R=dBv+yYEf3o7(cf)S z`fyh((o|CG*g(5J>e18S-VBoJU8g2OK`7G(9Q!Il8xTzG0?8{PU$1Nout#c6mA^Mt z|JZiOR9#6)iQ)YC@#E+vo!vQ8E{A-#$cQyMB@hGxq>e)D<=071+-BZ@WFDyz*B$Qy z-goA#Suyq))yf#H>JWuE-K=Ho>>)&6BRwP-mZ)QmsNr3i%3$7IM%y>Cw7$6uzb+~& z2jPr;$na+9XrhRY_i4n61S}}F_mC76JcR0TgQKH2b*6<_nKowYppv;87Z+D)Td>xSS4c=< zr(L(Ig@wiWPXCe*1#8x<*~G=gRqxdQhGDvT+v(ff6W>31h+BTV1mg2k{7pZvfaDFX;I`*X(oZp6pOd)>VoRBM*;#=u|8JWCDXt;z|NItq7wCKW?8@L9=Vd!s-R zw0TM|dq5)1uS_YavZ;U(ULWULMR3qa3v@R|u6ZE%utna2TIwyxv(`HeU#Oiun`+x# z7XdtMG}70yYU`=nBp<}+W@#d@BeknwAd7^;JwLa#89H}$b@})B-orl8!Qi~}+X2EY z$io`hp$fy zwi=aj1CEj$32;5ol#I`JR)MI&Wy%mbt&t_Ze{I1|GZ?$BX$AxFWnhEZ&NbCk;^ifO2~HXOO_ln zd5~mWSyt>T;_d5eq~kma9tblO;iOT>ND;Yc^tCak(SYqvLX1v^`kVWrKQPd!{OiuK;c9tthSN1mN^7wPMn_`I*H%5rkx%c^8f>eNx zYFQ38*fVmAB?oR(iG~PijC@8)8FD#B3)hOPda4HPTlhEW0Sblpy?fy~6J6#Une!=+W(}0d0p^^O6Kf-R+dagPdc0E;yiZMz{kqTo#yV|su$;kO^dYA1ywv3A_ z&UO3~7hXr@d~IiC6e}|`vm#7^3*_4&s#Z%M?E%@*b0gcJ=QwB+6I6H8Yu2juVAqF) z{aVSV-vMQrzwz6lQr0dIjR7q4O9vAyoNAqY&D>|g*~Y>xR|mxzgk6>qaC2M3{p*Ly75J&F})Ire)rvb z_QXh)hbd?vz5v}fC2v<>0#-;oQTWT+9cT7}l&-=; z2_ta`GSHC1E1t6`e<&Il10@m&rZsHQyjy19K3Pvr`_D^kx@y!wJ8RtCaLD?5?=e=C zqOBL7%02)vH6(F0h*?wm?5Bi)| z;g&3v(m9~@vmxKti818vnhd+R-`20!iM`I2`tALMy@gVV1SpYbqYj0hJYaCDoXpH< zwvLVI%273*>Z7fCR$L_VMsBkrhyiUML|XwAns}@9(|J@Z|IV~jYHlwsbp^7cg*Mym zIq|FKI%V!$;cvvEZHb+h24xd}bA4NmxSM!9Z$7CA8o_VR_GAq+(l*nLc$wFi1?1mc z9o81$D33gy1w>}YM{WGKK}@0n^Mq1brT@0iu@L_Q?ABB+NA0R%Pm;jI3T5_QAod3$Jm?~h!x}JHY>@X0N7ehfyj%qyR0}`9aq_D-{^#O6`1&vq>0|*p_%@(LzPeD@kly4ld9`a7T zICpUec9|mH_H$=v6e58U$`j9ENynjZY!B!sK9Jm3iJ3(MOVmo`AV}U}u{5%^=D96g z9g5am?KHv|kLC2^$viY4$7wvoV%Q=5F8$5O|%efD#?ObluynK$avL_)`j z!_o+Moto_H>r+NpN5GH$RN!HPy-fNzvAsaLCJ0zn+Ylu}3OF4PdM4U*szZ3|Kw(^+ zXjDFc%b2{ny^g3us(fPlUkk*2@ih#1Cq4PiqrYm~$>J4RsLSt5*vEHg_RB-ZHUZho za1J>8aUQ4#Cc+*I>OCpfg0!GePK1Ju);dOfkzIIVoyX_W8mX@2f!9$q0}iT6Xm|EC7)pz@*O09J-1C zkAv77dOlIksZV~p941n-)87)ZArB9a5&o^CJj|o3EBZ*nKEhj&6hRgF_3X+)@HK`< zhS3Q`wwEdxCm;mUq&%cX5By0s62hX%R}VzZfbl=3`Q+$%Zj{gRAaW)RCU_8Xno91v zzBa$0_w?&d{exGWB%OrpcbaE@yMk0B3gREol@J%m{o6FWl4D;J5dYGSB-KoLJqmVtOg2u9b991z(-R9dSJG zI-^Y=q6w+JpexFMb0a+?9JS#noFe+OyV}dcqChnPJ9-~Ke*Ai(juw3_ngpR zP?^=%78Vz)lD7l{ss>8Q{Jb-uR%ajUrj^PdOdN?wc4WH&=0zU&B9R0F0hm&zrvm^h zHn}m%a?fDUPT_Vv4HS{OG!e99(@~HL@bkZJ;jdb2SN90_f}o>FsSX|?8vC1Tb|?cS zR+1Bn)?}ko|4qfC67o3TjsCg4fRh4M7W@uFsR+nvAVanQUYRED6;>H>rvk^)l|0#pWC`~W0vx;BOD zg_?K3%&~MGn4plJQb-_y17?}*Y?;Nc3@3$PDATD?@Z0_f(QBD~M(TC|skZ*6i;Ft| zl&hoSvW=r$Gi6;@{#id0CqKy z<3LALTqIb10P1PngKShgmO3$1s}>^5PP2}^7!EYs)>kkI$Y<2|x$yoLgX@4s>*1P! z+V!~98PrP+)f#^#42k#%%Up;Blu4Ai!D}xi zYwJWZ!_A&On~{Zl7E3oAa~Z zoqzzBBOVLb*t|9^a{CltC$8a#cL>26D(2anS5N>=Tn}ZA7k6h`7@tZgF9rsg9!%~1 z&Brd>;*^X;TG6Tn0dd~td-GgYZNv4)7(W^Vz?OlOoQarMwclX$Lb3eFxuYs3igvg- z%nau>0;^(mq7b<{0vx;VSdXp@fBaK=Dfne_Hi*?*-=(?88E+9{jD4v~OW<_s-Ng*M zSb`cOM!;rv1T;X;yLV$ofEPQ#R86hSoU?G%7m&c}5E8+zGSYRmIb~Lv#$j79$|Z;E zf>7vn#JNsH%~`bO?1$_4u|L?A7}BDE%*ueHh}9LS2%a`jtZz)61jmn}?&+xCJT1co z^XJEpE;|9>N{DY61hx;iFltT8!66}_Zwd`+a$Ixp1i>h|Pa%xdJk@uTni{vd3CUpn z{#ytmVXj>}`|HXPyrT^tP$~q1&XDNg_UC+dtUld_bXPL6z#c)F2xvPi+#xG7lMI7j zz7=p)Q$EFp;YDEz?lL31YcF6H#8fK0u+f_P+`2^^2EIIkBu8ZuuyD+DjR!gpik3eX zvGg1Nof>e+jG|_(z(AX9zINkXl!g%1>O$GyALGYTtOY+}X<;OasK6po0tUs)lMQ_S zE@r2(Rw+GhGpz~U&uPE6yStk)CIFFH+^#zstIZfsL+I+tVy;-kGF|Hl-unoV341PM z$pN`kV53p#fYLVWbRMa={XO2L-hy|${CL@9ekU0LZ|eL=xm)T zsoKAI`gljr6H?pAL!QaXM zYMC~w8mB8si-VH1V^3BXE!MGKBqD@qAi~xTK=7Qx3a!o%+KmnFPNu;tJiA8c6u=;T$Cn;Rk(BSM#(f!gF;e{Lp2PHDkV8sp+XLc!E=FFo={q7(r3?^6RDkcW|gEvA{M*;&1{W-?Vvmw zEJ=@&%-;UG97F>wxUr6*mCbOjC1eYe&a)hBeewuZ)N zr9=X=N9ty!gM1GHSTVu=XMCz9mk*pBN^n(LgSLDH)^h;|BeC1WI~YS3h13gwff6io z6h{|JeSgU7wg?Z=G)FDiFaV|kA0fS1tgVbh^Y>47!MHIJAe7G8TfCIPj?zb>|5B6( ze3tJmWdiMiysTD=fBVVKZuqx_gVP!^kItPJDwrKnuro;LuZ+h4^9SGSdqiM}Suxw` zb$R(vaKd5~2^3EiEmorvtZwX3Bk_|?JxGEru}kQa*LCjft6cyyD-s?}ZP)v!d-7M{ zvqh_#>6zJL#W-wQ+Ci-Vb0m4e!92~NURks@5;-pdmP3-`k`NCBlzHj%%ffEVS3m`+ z1YgyHHKuRdt;sn}jueKLCH_72DV0<(3i2kFpe|JnJ?LAMT!KeOEv5Z#N$_x2?MAoU zM+oi$$&0mJIM@TA=Iz8p4P_STA3yGO@7~!$8LAJDwk=rN-&T^tkmf)Bcf}S4aWLX} zAqvCY^$2vaQQ9lb_HqmsmqU|MZ~D2VDqogW)dSvq`Wj6&C)}053COY-WkG{J$mXwM z1qR8Maa8Zmvb1cHZ6~ASwMyP~_9UeAe#X?~SP%QERSth#pzLK{UOVdJa*(?*y}cGA z-@kvs2kg?=V<2R8l!e@&vLCJwI4n+K99|a|K7|)(02EaxfVB_wMl7o^lCrA$L{d^o zhXg_385Y)NA9!B+Z0|$PvrRLg*~w>TXB$_9-@yj!QSPCT00YmFfPjE4`Kj7Qq@$8t zN5m}D?kex(3ud)iC>sE)xIqAV3+d@18YTH49Ldr3(Ix<8pK=S>iW;dD6wamCrA=kF zsA1^SRE=?yQPZx$K8y+|sxrTn?gC%Cqi5R!@hcZ%H!$G*$FBEcu~<|xfk%=DPaBUS z^o`5}^C4Zx}X$b@xvF)D7vnY-6C) zV^C@Qh-?V;<&aE89fwXwl>nlE-wwez7(@CW#R85*K}r;-7x%;`uBlRT8)7_(FxG@X zNf<;eTyYl()wZ0ja?$ z)x>0>KG=Hn8QWk_<5XtBL<>tV5(~-!Le?Ps|GXPF?$>h}2}zQ`9{_7IF*%PQ8`BJQ zz;sIjYG>vUh+2dU6%?=I0nAx3bbfQ(R$ z_{~}Kw$G*`kLPkZDN-RuBq5QZASiEh1F9q+sC_B3g<~BLPaZt~zF2u8uw99`PCE6Y z9)AE#UwFyQ?ExgNyPlqBgdb#{1pHaa+#o0zlPdRIlz;usTweKomRnYSSUF`DEK7>)#`6{~OmYn0?qTK1=~p77V-FIC z@H(gSfYQyCBKz`JFg?K_LieM}efHeBdc_+Mpe!!K+`%M#EXoD7Ei+SsSP5!m2u3*u z?@K`lks8#(f_3A+-Eub=f6EVMPIIW{4|e>rq{fEn|bl@YJgWlhJwgSdHKz^8Rb3Q8Wn;mb&un+NBQ-}5V_T$jj)o@ zl+g+7fX1M^+`t6#P=d)Z9wSACDAdO2XLoMj{uMSAVr>Y(!WNO_I_1J@dvN_R2q@wu zf-pz#SMBO?LW2wZ@Q%-&V-7#v?K;t^*DqL$5@hoGr^TeTps$3*jfK$uxD$im3qEHM zHAN?C?K03!LeOxh3Bn}jG21MZtm%No+)R)NhaS~NVZh)!h{a|T*c&jmQgPv`t)(!Z zssUEsh~;1vgxp*QMeke`B(h!i#cd+V(hmmX6{I>W{cdPok@Bv`lk+tGJn;OOh`SHaaz zSJz|j-Q<$iB~L6|vddPjibOX7FA892+Q}(Pq0_+!^abqcZSa6Fa0kYfynm_>EFwVK z%wmb&b3|%ja%4TECsRQ?abq|zf>UMdJtQ83piXnT<)wqF7u8nH#b9Ql0rvKdJ_;8@?OC`g7p+T&)7S0y4|E|97ffGb5Hd{Ws#;K-6A zldRtyx@Vgod(7a7JGI9dE9c>1D(}F0)g%~tfNvu6FSWbDL{*9z>nTe?Inz;-6h(Ch zRyWe27BO{lfdEty*ssum(;x?hf(3&3`c`uiTeb6pVPGZ3h}wdvxdHx->+bHE;pvhR z5{cIB%AgP;kY33I3Aaed%>9)D#UM1p@UsX^Mw_!#BzcU1t4Zdox2-iLTa+lb1FE5| z`uRUOBa5NH@gb`TrA7|5+?7aoWf<3R_#&mBKG+{VV`2?D|F092u5{^-i?bMnrvoBTV$*y zV>I&K=jLXmQ?AtGnYxY^4Rj+}dHE`=t?Otu%%e(y$iN8Y%Z>N`uvBis8m3|q$VnO8 zizRE;!xcn-TDO-a$4dO+r+fpM0l*YtJx^!;xnFM0SdWE=UQ%=m@vK=a1U}g7CvCEc z{QHK|zrGzC+y7!W>i>=}lQ$kJN(II1%a;N6Php-IMK^`fyrF`~otc$Y3EF{Ve}*&K zE=A#ICLjvjivsWNB2I}fWo=04M9`yz!Y{~WF_>?i<{;AGEF}4=dcBZAkX%W|ggpt# zX0XO2j{XMmE{Fhc=%LkMuj@KQKvjd*QLt()eg|nd2vsPdTcRKWQO@&&R)tt!^)c@T znd0Gs(fjsk`Ysa|Fke}6tYiKmqp7eMI^6!*9dMF{E?K|t%e9RGx2;F{RbX@@Vd?y= zxuj~c^Q)Eu$vp%mCg(}(2Y8M6m8Vai)?_cS>g|6RkcWK3sN(10kwLwwPHmEaasTD!(O*^v{Jl-I>t9>lC&=oquxr}t zzWz_EJF|esu&GARt_^=v{YwxoCf^$m5@%+kr!-j*)4&JL3(1~u4oRJ zc*5t1XmE*m?sH%92tYFmK^%(4{d^BDA()j0zkX2hM0YW{zEEoYQ{z!Mib&63Y=lVU ztB%H;oCe@rX4$zJvnn3#nOnP_T*Pd@qoEH3a69;`d`!}lNPmRAPa8538IA~w z!GCcIRupp5SNVb%LLnOiz`-XVActzb4D~h2nUjOQApFVkd-HWQWTbwV2`G4U;cC5>i;|9!+)(${-5sb#pos<`yx1^ z>UjKe_bZ2T7nYQ0lm(7Btk91&V?tQJ@vl+>I`04JN`JMV|Igd?|G)e4o@$hVRMYh+SJC6{= zc*Vq0wlAVx@=P?++LFU!9ppaSv>NLx!u!Dgyn~e~2Bp8O=gGHz5szc;(B+HUa> zp=_&Z%~rBB8AF`qhN<`nbyK6DXJ5VAQO#pET{0=^rJg<6SYEt%K_>dSoM(TRo*GZ! zHX?G<$u_e!$seI613MNSqwe% z#NiVNK_vw!I~)9G6#T+iQPfF+AQp#wM8K4qabOc7l8EW~FPT@H)xXk}->czua83ic z7A8=wP~`>k|4*bx*wi}^xp9r$%%93nedI9 zYks$S+jJtVt`M1qgo@h#CpvL(YzJGDF@`cP#mbJU5I9)|6YDTZ5^(irLxqP0-7Y?)3* zr&AxjD92GJk6yhx0CY~0t0wljCF=*aX9jH++hfz_;nWqegJ(yv+(d!zB%v!1NkZHi z3K;pZ;U1yxGF*~PdzRU~-T^?v2)!JaX-gFnvN2dribKS!*3m3s?bZD}Yv1S3pQ!{Q z`;nX@q7E$G3$!;vB}X@Xl@pKxH=m^BM0|CdwYbpOHl>*>nH%4Zj=D|-XKb618u^{E zi7)o$Sm%dY(JNDWY^?4pKPtG6e{+LJ7zc}dE#t)LBA{?)R#S`tv`e%QFdzGH=HOj{`8k;JQ?d=06|IJHiip$Pb5OjI~?5-GXj!{ z9DT4YNW6Dgf>H|&hOv-ucz^x%VQNuYtYvH*qK%c|BA_zRYtvq)4xU~>?W2v*ufH~>pIw^0+~O~n3hRHvzLAYp zv{3jcSVy;2+fIjrT}ew6!eIemoCQK7r$=4R4DIHg)F4l+6#3vF{*!SHCIvl+fd?#E zbMV2YRTjCI!hn@K!7@646ZL|V3=Uc99HnB?l4Yv{cXI`}f&TiL*NQx>oNX+#<2c_A zR_2Y&IoEHsBENgurMDn`-L!e0?VOy&(sb>j90{;<#|Kd_%}KLGvY1+evhAk4?1>+R*$#zUdvELe&rnT7ifrI@O27ILz-o z^eH4nX^$keA1@hR3D3T@{aTGE^)7xjr!Mq?k++5#khLc4O=msZ@sq`D>JQrP|8~Jp z5xQzXg0_h>>tCR|}@@cz{!1;mk2UPQtZR#)#Mnh&k`@TEPiK`O%u zI`+@4z~t}~^MVSKkh`*qN}P3CwLAPH03Yd@8+iCOY-r7FvjO8jGFkxI25UmxzV9=8 z)S!c+SHJT<5V??!P%CH>Eu|4(yn1<@DVv4N+1*b8MecBeJI+X)J9n;Dk>V3P7w*+! zvUvV{{((A*Uue{*g4sHTJSpH;h|xiv9CrebfC1QpoXIhG{~(je_hbqve}GDbrXvu)c!)9)e;>`=+NkFO7#lhyJ8|>9xNp8E0`WYjNTTMk_Z$eN_vi=SqReYBp`UJ3z7q+(~h- zlK;`=9D!CePkHHCPf;@-^4tFH`qzZu1jlUX41Y@9U+^3(?ijrsT^OFwrRdu=vG$Kc zE-dE7iERO?1DBm5(W-E?=qFJm#DOdf3x5>%bc9uiDISeR4~GxMoyw|Cf9%(Dff~iD zd)c4i$=)jY1*tWS_Jd`;2bT06=3^&7@0L*t7~EngUoj)3_iXo<7qRQs zPJk^F%|?rtu3BY`1aRZi&#`@+S!Q#2yby7 z9S{aM$QjLJS&$NY2%GaJ@|Y3KQb%BuNs6X^I&pDy)`B!88!7$kwX0V*qm!>yE%tkj zt#F$ox)MXdz2+mpQLkkk&VXsf>}|Rd87FCY#a`Nu-aze6%l$UEq3&KAuC#D)z;n|{=FcTMW{C$Ii zl@JnI+S=?Il2^aMqCj5Lgy}4b@PfF1o(>K&Nu3E$TX*iy?1Bo%OQ!)vDZr;oLNZFg zB2=9aB}gxcZb9S?0<$lKy@}`@1v4nAYV#%a0-c9^sl=uS{-dWL-iPo6S=bPQ&{R)W zsF^8CU`Zv@JtixFBn@1MPQ`ou=1nD5Pc(8m(m*?uZtEjLpc1Kz`48V5`ElX%wyWxc z-0>g19nM|xub}N!iwO9fN(M?&3 zRzz}>kQo(?+}N`uJCb}4*Uz-V(&UJ)F*+wIYjU)cNYDm{PQgyw7XT(Q`}b4J0g~qf zIxUJKK72H__9b%AC`l$&=|~$&w{)k}%Ym z9iH=SVF=<0bt}(ibi(K!0q>fq5Mh&&`(%nak>SnQ>8(*<`=DEBTR)r;W>I@ZgbFB$*LE!t zpj4}>5k?Was$58Bg0V6jGjCj*97Eo4$a=K}vvK^@h29^Y#Y36}^Q>F84K)B!&9KSt zY>bCwbXad}bac6qB#aC!16&SOtS7g*dC!6>9Jsb0FhjU89;ax`tmflYT%|w1zGP&X zs^hVOyHKyu-;B}aZ%js!x}G_TiHk*}^cS2cp@vXIhY^6z5^DT)&E>AJT^Hw2Csg)m zhX8d1A+oC==?^weO{N?un8)^P@OtkLzk5=@q6vOZt#%Bfoun00@AyIsi;(J_)Vc{< zPZ(U9Q2-9JyFVdItL)u-NtTs7{3#9qmWV*@8q~sMlev-Jp}GuLP?VLu4hq`2!SMD! zTZR+net05)WJFzK@MhUSI*$M>p*@Do)RjCqCCP_60kxIR(%^LYehjT4%TwPV&>6w)MJIp&bu*~#5Um%Lke-Al zKWhhrErr2fmPBmoLWDmNd9agf>bn~j1vit9L8Z1#6kZgZJ8)`(jZ9%Ix(`f1pOV=a zs5u0k=&H1sD&ak_SVeh_sx&O`>sPN*Ye^D}FccWcwjnfP41&{xnoj^PBH%$HvnxF> zRxP`OOhkC6f9D&qMr!t?xo<}yMCLoVDfpOlm}yF*OB5^}6uNNlRcMPx$yH>v-;m7U z)Z;{+cT#vU$5GUw25^@Z-mkn2OO#GF#Uzl0H3})gq3QfwdS#?KIq|hl|H3$HEbZdr zLd~dfo&}?npe##;rhN(Eju^iiU&osH50RvOX#sB~S literal 0 HcmV?d00001 diff --git a/_images/2.6_resampling_14_0.png b/_images/2.6_resampling_14_0.png deleted file mode 100644 index bb401bab9289278bba3de7dc9e39e5d9e0c195de..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 39283 zcmb4rWmr{P*exm|-3`*6f`mv3Y`VL=U$?=Ng1sj!(hlh*%Yfetb|MvwB zXE$q3-r9z8a1j(28C`b-1T0hd&qpPq#kL3tX+LElVjA9Ae>(j9$*i*vALbJa4YFDl z$>md|@FW$pKl7pRT_hIW+UOB7wOKQ}m;{M4aq1YU9H2$q6mDg)cews~E1OibAgq-1 zxL9jHi%6qknSrg!vPs^r1Y(sa_y{8s|mC!)lFz`#wR-j@^pxh=a@$Cr1$W91EO zV?r-8u5Qu~8=fM($3YasMik=_s6019fPcb<&{L^Oz(0g?{(pTy{_gjvVRI|h*h*RS zjz_=N?5Vx2ZRw>OaxfKgu*)NanvH?@dL1^Hp8o88nk2nlPQYK=6dAhT9q8~cP|1B# zVS1rB{jt+nBj2h&iXf&|ooMUJv{L!0-G5i;b)OI(z=ejI4rsEmsP;-I6=!>rLP_C& z*@inyO`1tH4SpSD<4K zSD9f69U=Jr40<;Il*piqqji@iWnyQqgXiCXNZ%78y!YkI*U+jm7^>>H(7Wiy3YeU| z$@M!B_&zn&O-M+{R2)u)oIjo=ElORhs!?>ixluhd`{?Y z*02Hx@6U=wYu(2Mq_4jc8T%)6T&+jLCMJY04cJqp!EDbXAnZ4F-m$Y1MxPs@PQA$r z`1^~EG&W^cx~dd1){7-NIxet7e$j)*S#xpWnW9v@uwb2A>Hmq8GI=stvY-fnR=Uh{hLD4ydXA*2a$!FQhf8)`=JBHT;Jw71ei1^ICpOQ5I#@YVixu9nZxb7eiUA+oZjpJft zZB-SA=bWKeLJc+iVx&_%YsJfLUiFN*{)zBqgFnB6nOQzZa5xt%j#6|y?ztc=j$ELp z(Qy%m8ur+HzdCq(Fo72Sz5T1>jkmg#;9#kWCJxcH9klNK?udzU-JPWV{_Wd0eEKUz zT02q{#p(Gxi3lB*WbV+hcbCi7$Qc?e{g}^RTL@BQgH6j68y5D|^K4i3%u70+!V(P) zO;gY_PsN1t_UAKQHbV0}mB>on`tWzZ)pN}PuX-uVJV*8F92fa6eklk3IQ#LvQa_eS zwm>4k2m;QJ?0lBrK?{QzZTM&S;|+K9KI~+B<*d=~;G;hET=Chd1+!Aa(gS}42N#zQ z@IB!0aDTTy*LlyoSZn?)Gb_si94bt|iv?@e00n;dM(Mac8PQw}WWr}@V>YU!QdLKS zLV_`{uriIvC@2`j0G_DQ|0cPAm>&>y_E}m6dU`TH>~27@6WtE4X}m)gBwzPyj(hu7{LKJN-I6M4I zaB6F65MsD=baYAv@3(h$sFUR$nUBt^mEw<1OlVs?fW05EalMlpVSKwzbaZ<Mg_H8?1M`5-u#h;bPIUY46+r~7T3rAN zP~t`YGA+6EVqha9{ybgD{-UK zGO8$;&Y$qbHSqh>fQ=ckRy#oP1mV4~-^Ck!eKLpTR)V6UqMxaqxAeEi@qwW-bdQ@> ze9LQd@felf(BTH@JGDGTK!~FdMx8VAV;8#m8FF;B5l^-^Y*mkdpu$GDmgPPk1RwAb z7&}tHY36Dd6p!)eir?W=81e1u!%g5L1OUMl@4tW7x;lKg>+CIv7eV#A*bgd{PwmMO z_KPvE)~!bZD2&3t>i_cgw{~YRYjr!Wp1%HCf;5Gyk$Ib6Z{;0>syfa2m9!)_;?%x| z_zc3#eI9q_*kg0_Z@+l{-W>Yx2zC*Nz%il5YK*k`s0U54GjK<66$QTi5DkOF)xTuFsfKx@`4~`^vhcqECzh8}h7o z7Yncn_{v>=z3hNZaCY8u1K{ok|0TSo$3kt#bgS_gob?8}r_Rf*vx!0#au)VhztcZ~ zTG4I$mzxETBAXsvhucz}}sf(SKizDO}sVZeLBZ>1MNP9MB3!-&nBRs#gV zv)l-Jf_?S^rnI$U;Mz~%FkPhRFk7Zs(b18;43NqpAYf&>MdW0Vc7Mrzg15u-pk=4d z`0ls%{^n2;%zphZ*t0r3q`cdLnrOJZ^fhMvsNZL2EoD&&lOoz$Tj!$)Sbw*F8&;b@ z6b3~%K|HUk(RtO$*Ad`$N~dD7*>daKio(LMyLF<@H-Qf$#`lTYt}v2{`g-*iEDmp6 zD5Brll=Q+F|LSN8hvBfu->LYzxvv)u`<#K-XnxmQsk&6yCJ)!S4@2-pGxys}ke)xE zGj`s$|MjgfrEj_OI(2hZ6i)_{&Yfg0_+yQL%&t~+k5zqxH<6Z91#H}v>rfa zgz(v<#D1)^KP?=3gbdLTYRJhxa3wlAI;NafTZz9kr?ZpGFDM9sSEzk3!zsnV5SngK zS@%a^elxidRFP6|ZZnhQ3g>5LJ`TwnVVKt2&9Yqlo$JiG+v~h%^}D~`QS7_{crxPD zdFOdC?)7#0#l?cd_p=-az7al$d6V0Ak6&sR+x(sB%ixgjPv%KD`1)oD-yZc=bav)u z10aT1vr7G@@h_4EssnG0{Ez$hFBYAxpJ7p0R905*A3oe4#;)EC1l~St+s%)j2RzBB z(dX1E1q`Y>;GA`OM08)OU00VjA`O!zV57suXNhG5UY{ECZ;=6UA~dMW(& zxjawD`0L@Iw6C7~7vFqebhp`M^KrtdZc7zX2!E)Tp z4-O*xtwR~-?=Dv-s=ofUyC|T%8+465^qKIR2gmKDXFq{<4Iof|;0O;p1SM|(HZZUN zw&(zb&nC_VpkQft7fqeK??loS>Hr2_Y$hq!fu%<}ukgR9&$UcSO4<*+jeqEd5Ap&& zPy0ogPG%2(I`5j)I32fY#+r{wlB)vrDpY2P#IOt1obp|2bwb(o8$SiQU#%8_4{vI9 zD*D{mg|0V~j_xlzDf6e8zBDw5(ImWA_Fu<48htrIe5hM*g#l)1^?l&&Kwu~!L}CC! z_o~{)uim}R4%hDdJNpl;K|M1C_2>l`m+9?&VX9FuK%~773JiIbl^Ec%?dO%wVYv^t zI|wc;s?7xj5-qU2JZh7eZsE%%bKg6xz^f+)9#fK&D=V0WhK5J8)d2)609v{wi3}~; zcc!E%!@zL6z7@&`aUm%S9f#7Z5+nQ!ysLhA3a^!5&_PvuE`J*4GU6HlT3&%uVDIaA zx;^HyV42E1X9$I?5hBoGZ>#70FBhJ-EzZ_D+~VQAT=vRkR&}tmi*j6UZ73V~Or4K7 zb=wXQcOS}_V`4v7#p{F9{w5IZ7P{QA_B}xT3VNhaiFZa^KxY|Dbw6x|{(yG?l!tdd z1&VKsY9covPiyE<(jMM(g~@;4LGFQ?bP&Da!D<)9GDrV2Q4dI4*~Jb{d~ZY~H_RrI zNsNa&nkhTUMV9^m1(!F}-aC+jO)UO$r_?i;;*f@gfq5ERHQ0v2TcQz8kKr5ctr5nQ z%t}?#q3VM3iUPy?I?EBZWm{6y;-!8fMnkND5nC~WPTj)!iUW0~5=gA|c+KO@55F4dp^J3hJZQvR%VuC6cW>FAhbo#>&&3LU^p7&vkIM=MUgr_x3JTL#rMpj(%$X13^WYH>yCpWmj&#Vu2vn*e-;nc*j7(9g zVZ|wX9`0<0b7FIEC)PiutSf{WV|1=QB@@GreF7y7mBQvde^FORnycsgaX*e8m9%=V z#LFof{v8Q>Fg8LuJ8V)hKr;Bq)vAt53sqrp^k^As5ZMm&8e@#WjxZWA>}V`pUgTIB zJ3Gn37-jZe#*gLQZB81gVmE{f#q!_#F z14>Vb24*f+)`r_|HXsl#jKBuuZWSXxRw>n$pB4H(RUoaH)PV&`Jz#%!r0TU`U%S!$r!=hrlw%Noi zCNCI@W$b~gkW8_@J7<~-sO;N9shooFF3vT^>NWi8HI~k;V2yQu7806MKU^-L@(S~^ zND(_DNf9og)kYY*W?apM$k}pR+gB}1nLv1wg4H}qDtY9hoxeZ(o&zaFKhC9GgMfgZ z6Aw|WIRb(aoC}F1+W0;D{_pb76xJn{*+W=0Ek1Z~77Qr-!eAXDw4eO;3ehifDL;FA zyjLR+CQD8nOcqvt5jkhbe}5P^SswaqoU+`IJ5e>Dpgh#5GQt z8LAn%8I7BG-v&WM{^0IPD&eVo{#&YdXe zbf=9g(|xBIAIjQt^58w7pPNfy%C0iFsvNX>YJ*@+AnxityN^}u*z4qh{_*_ zS!tshTwbB4E5K5z`{gE)dp=SjKm7DlJp~F6mDv2~s27WM^%PhkT|GU)wFIbPMH8hs zt|yO^?b()5X#|6|H0ODPg9bu1L45|5KIxg<8DxmM(JlVjWc#dmfFNZs)$jOf$uYQi zdN{&*K&bW^vv*ka0>w=i{R3rL?&iDFK5>D)BNmQ*#FRyBaw65VG+g6qN!)7hSfJw1 zE-u7h5F^5f`^>neulvku>%vmVaF*Dp%cQW25XG+0jH5Gv+A4r64QW*sPG!Z0hZ4Wz z$H~9BPG}-o)=HUoGBihM>35L0U{u)1Z-gkMJ9v{FkeQ6jt?*FCXu5!-h3U^~Cjurp zq{!A~a}Z}D_gq4HO|6}?aQmVe2a-Ho$~;i6p&0*hKN+Xv<@%vnZ5p@q;D}e{iJhtp zAe#L#hme2IM|m?pKt&kc4XTLNH<8;HH>ER-7i#4-`-rNA<+;N{5@q4is3W-v{EE{+ z#N@4zR#V_J9?K3jA&RkS`7_#abeyT}?(V*qh`{W24mc$Xsu}u6uM89Y0!9eMJ$7a*x-Bb)S)SWB5vfmyE5@4hvh3Y!8s;ahn#UmB|TWi4Rl8ar4O8ee?!6NMYwop zQAQx*_QOjgx7ydc0+;&L)JTwz9pL7%m&5DUpz5QB1+Vp^Aceem@xla0%t)BGjQ3Zo zlbl-0#FSzwKRqTM;#3SAo(oD;eX!kH3}%JsS+G!YEn*gu`+-KX2(iY0qKxgM_`prUA-681M$5#s2keBd+0Jg#S zrxEv5mS4=>LUjFRI7moH=o{mgvCtq3Zj_fVUk<-ZeW|+WxGSkpL-4eBcbDmPU!peT zS1V?MOy89uP_`=*6CE>0@$E$_Oo**j5`3AGtaSiV6_l09#1pHP{W*z@{=1z7xSeu7 zOmVk=B%m!3(@5VX`&!5AdlRf{FZguD^2KlBgARr>-&SI9RT_9v1_DM0W3pWN-E}-#K)lL z=%{APK)z+%U-9(xl<=62@+CGhaW9W0HPp}xmj`ekR`@2NvqM;7e5~!R^`ZSRApz%0 zX?E2fgK`2}0L#=IeY%3Uvoj}4hW82k_EQ#oR2$qEtDQ?4%7jF2yUc{qntd;6yqE}u z`Ta4vO(wC8P8vRjk&Z>uAm{7C3oXCuMz~#yfB6M_glV6fg-^H|^WM6d5@z?<=%~(# zJ}}J`l$0_Oovp2{6?drOD7(JXpz(7ROW_l*x1?nD1{>-h6R!&l`|#X0$a%*BT0r^; z91FmpH0lL%m%m!p=9l&S`t#>}U-m2u{h#b-U!!XEkPEBr<+!Y|P*3dOCS^)jZ@!8{T(vErgDNp((i! zTz?H<`oO1thLoSCERlk)!c4X*Jh41TL)eBpJ;pY>>@5QmV9nNYSsh= zaP$dz&6qo0wY2H5_3ZDnv2^vhP=ytPvGRbiekid;XIT^Lks^;Y!r($o8QF>n;BXs+ zI_Ie%16XmCB+y!k^~r2>Sa=L@N$z-C!-yk_#fQ?VEWgGjt(lYSBdmP3Pes2pr^wD1 z2_;x(37`v=>h$f=wOamwv7~_0?b_9F*dQ1!tkNr=+}uv57{{TAcVoOliZvX>71A`E$ z^oaViA!tqEqlU$(IZtKQIj@Q=mM)nMq6%73VZX1f7-Zv6!2`tfT3j$M|n2an00O*q^Pl_5!as8%$dB|qx^uup(oU?8w zn{!RSs(#`NH_Y?%O4Se>f46T+LFcVyCh-vS{^wENyluPH3XwujUGO1m_hsA{Vf6hD ziaZ;}RdYl*8j0Z?Mo{l1Bg5LTDPv1JIi4o*x)+V#L*F4H9-7(1^J5_?X=%lrVmCy- z@3fJK!eZE4KrQ9rKrr6C-Qm(qlnWcl3Y}V7%CcUgBOBLYvtq@zJcL+V7dtj1u?D6H zB1b<4G=}VE?ap!Ya>Z?gUFr&rl@seI9Lm zNA``8I@81LGXpRoUJ#k#`(S!`GSISAY|q~#Q(@H;P`%eW_1)Ot@GQ_3AR=D;yHVzH$y2SQUj+ zIjpo@w;!8%=`qZ zR9Ye17oM`wSa_j~&s!MB>EfPSY23MT+^!K$^zw&WP7*mGz96??81=Ox8DbawYqnWE## z$f-j;kzOgujCL=r4xZCG`5&2=(v1As0flSpl~8xH3KLMYPZXyWf>~2X#DGo=3VO8Y zqM@veMe4Smn{ev1|CLD9Wj;Gojwz~eUuRJHB4$459LkGDyj=W{1eJa^(41dNI2}#Vj>s}42 zqlbW8L0VSUnFr+%%}jK+a-mv^k+9j765;D}Y$T(nyjwHa5KBOzCfUGvQ2NhHMn8ll zcmtPf4P+haA`$NWoNP3adZY8|Z^*Y*hj&g>P?ndHUW$msk?ONm&??VRFtPKx6vCk-C&in&Nf6|A|j-V^AL1EpKhM0ac235N`VXGf;jzS}P_J;0EAltJ0IAq2d~@bYbehRG0;Bj^totww8dnMEwxdE4!;6b$dF zY)zJ&K!7AIjFPRWSq~1Xelh}0Xu~{xI6OFznxpYlqyUU?3lVyQ-z#j^kKa}5CvFg3 zWIMUK>P&)#6F;Ds_qy0=P-!*d%8z2(J_TE;;FgRQxf5QC(jge{JMl1tk4|kC{!VdL<194`_qa$nCl3T=;#YOu?RjpCY zF4DT8n~m@wGE9N2fyFCxBsKcREV)?8c!d|lJYhM2VaLSArhn%kb#)C5@y~uS5oL$> zG^WUwVTzis7f+b$#HVoDcJUD7l%f>Lq%5Xs_qz6m;#x&jG|YvGM-sab=Nbu(A>(I)Qm@Fvf%J^#dV4}=I!L2W{{?93kEdA-3=E(|XO{hVwSLLP z&%YxWk3^4y2eE~(E9eIAB~I$K^wlzI3NSY}H4&W;mI(2>6)!C;=*kBmD-ZXhM+n`1 z<6tZTNtW;BGt<-N+*fYv<@+Svh+-nS{G?k@0Ujp^2ErSLB(b@!XL@EvEL;imj>vLb zrC^_>lyU9*0xz_Xv6$p(w0;S2F57{?%hQD@R_1Qo{lOhT{HV_v?vDXzZmD{ecV%B( zEAX?vyOgvpMVXaXS5JI=V!q?pBlOyd)d!-A2bMOevtQ96r`VP>CO)3*nx}3T8?QRM z$NS`t9*tBWReHR%yWQE1leBFLD_|hrNGG_20SK`S$(b2F3!W(X_N?^Rp82rKwGaI% zSHcPk3U2_z?~ntuaq9iyQj7Y60Y~!dSt4nn#@%1Am4ON@Jb65&JSo+z7s4u!bf&*y)7zZ!~>C;7ESGK`=-Bjh7Z@WlK*^kqa zWrtc_h*1^0^K1TBuOj)9>+uxJ8Xt5z$yT07ad2wWqZ+@R)eJBBApA1_!-rliA%!rE zZjEGy;5Gn~LOFFsqkAd==}20N4=zK4@a zN}rX9ep#P?Z|5D?zD;bhhc8VOne${pA1{8u6!fHX#wF38xfXClm!+f-%FyAayc-ta zaf^#(LhU;xAUie953f}pyVqDDuR!l8EPTqN$ofn0qabSZQ5GGCO`qS>a?%Zyp8P=< zTwR^5ayYH0Z5=5B8Gy$kr2Is0x!TW=E3; zbo=%KcmkC7Wp?Ibv8xE1x`GoSUSfY`K|${cDPhh!^^0TPl~2_f)KbSc8nFRCX+B1D zSxm)fem0%8b$Tsw>TdTD+rFS8gen8WI4T45b$SD@IUoA3HXP>EpM*eSg*~O3^^{YS zGfE3GWX8hc$it7h@6!Dgm&gldx-)NyPnMXDiOZO`{gWh|=VKUMV;+4!!aUXR##kJk z$jn4Sdi+Rzf?U_atiE>hVJDoTOBtSZddv! zx!V8fLHnr^E-wKr7N<&!;!VrTw_uk7G=+)cLUqu$y1L#=z8SpP>Ttc{y8N>k5f!_# zVkE&9+G`3gP-i?GIRH%C9KxdQ_V)LA#JPcC6h4_q_9$GOdW%YF^izsiC|cO#3^ckZ z{FV&#k-Kivvq#N)R~2?E5hx}KlN##YJZer@VmxSH@p);SAY&ksgaBesFwj^gY$#za z?q%igIWL?4X+Pk`xvA8m6Y}bKsaa>C&5P5Q!|as|zUWDp%oIZO#|{o70xfSQ!ssHDr4xpUceuswskj_#`ER}&sjI6O)tvyWTKsIU;8GIG z`<+C$!O6jJ{kqJTP#`Q)rUDysPNn(;A=S{6mK4Tgxf0tBeUE1hz#%1EqpHgF`_MPcp4`Mtj83`}=|jB~N>Quk6i^-6;onEW z>v^rR&ZTkretMK$b>3u^#Myx<0tWmtA?TGIJ%TzWrdSq`ZarobrOdnwO*kxkS>HL( zNFBI&`Oor?*AH>RFajw>m1{riH-I1MJ$z2FssL!;GOvI%lD#S(I+E$#-*ZB0;MYmE zNA5fawUgqx!j=P|jRm(Q% zbgQ7CV66F&?C9;eT2JMyOp$YFpdaECGAIZ-`vAVa6dA{!e6eZr{3_LA7EY$g^|>!| za6z~q@YIcF;1$%kZb<2K%7JnNg`#{xt4`v|$jxnvF+QSkfJY9d?X?YDpMvJN?s$Z8 zE>LCH!sf+^ky}Rvnf4&YrO*yTau}w4zKP1L`(gO8?0yn0gX>-^rhF=gBsZrcV zLJI*w?cD{($FheVOW(ygC@a(4I;Q5JS1D6xZS!nJgXQTnO!7DK<=60hjYk||r}|V0 zLz3*4&!A}saOk3Sq6aoo+6il|F^KR0rw1t@v1uOpoOq_spql>t*&R}}aS|Zb=5@&T ze1~lHD!lab^V2BPU|=Y*;KkSab&?L9&6Ww#MOt;I=5K>kn&!7Z z^Yg@{sOpB!Tzynd+Q#o1>YOpmi{)k|Yk$rRz{UuHePQ3#Yi<@Pjqg}DAgkn^!hdf# zBo%nL(m^;SBp_fLI=Oi->UKzqP|kGQL-f_;H4J1~?dTpY`t-wHrPYX6jPgoCgaa?Z z$e3?-BlkF;We`ZRS@|>D9duk8oyBj_ry8vPK8-e<;mIV^$EU9o!+9oU)`Nt=27_L* zuMsGnyz7(TcKf!QNH4E&sEYByB1TMEIo|SdV-go2&^5Nx43}kD&2fu}I4yaZRi$`SMy*G#>bvc#8#xQ~6fICl zA?JU)Qk(fWVn)b2mgW+9?ws%xlkZX*apV_vY%>!QnB!QxG;blNc20_TeOzcZ-@OON z_J|1#8BN`inOK6W2J|k#~RLHqD&E|)%-*v9XZ4v z`P33LyyaFB`E!xPI?MF00AX}q9;R;AkW{?(_23GP0^6WbJ~()reWPGx8<0)Kt#q8Q z1b@TLVY*S9XCYz(@1k$Ig!tM#|I}p_`!7p6r+bU8`tDT@ZycktES&a<8Z+UWfIh*w z%&{Lb8tbun^rbBmK6k8%%K3w<#7mL?9VW(`4KPkI3I=9U{8|Tnwqlq}@w8k>F)l{C zoZNxqhNt@p$MFM@sFOTnHVOl)jF_Q);WlP-kp0zlEt5eB?n6*NN6r)brRZ>LD+Wf+ z*OtRHh3zb=F&S$5_WWiwwbNHlK_+MJ>=dNMo`r;jeA;^r>QgUB{$Lzp8xQ>aNwvS) zNg3Qt1(c+|+xg~;e4PtXQBmi``RbWK7n5)Q$E1;=P8!)HwJd-r^56gL??do1 zYca}?Kq8|t2OFgDllm>YsRNu@Ona*f+A#y}J;zY10mPo&Y*WCI4;i~QK4CXcjv*;7 zhxFcui<~Y{G+Acb5f*_HT*3o*smu%yBTKLK9Fx**#ct6+qE1LRRZLu5{@T+V^WHSx z9Y_N-j{wMTBouj4m^k{pfR~q-{)v2RYb#s$^V3N{r*zspEB~}sxBh0CzJ?Q+X5}p? zwBJmMDfTitp_=o-8Q#xH&?8Lp?}ZQ(rrxD}FYY963qNGg?iIyGn z+{5j}<8T-kI#t-ZWJ*zukBucU8~df>xpiU2G&J7Ucc?h~(KYy=UI0UK2Sch@MGMUK z6Sv^+NQ-wl`YAS0)zSV=w9ELJB{$3jq%Dgs7s5VmHUPq0Ute$YG}_^;&-^v?SpDc6D0vnAXhp0_Bm(`m|mZ34dc2NE8_E%eKuH`cLq!Dfv$-e`$}EDJ={~A1N58O z2w%D>_Mz4*X7VxPm5|hjM{5YMdye6@JWELQLCJUfSCFO+N~9=F?nE_U#lVFJ?N7QS zS)E3Q^!_9&)Ivb^JVt};l2~)#X{aRA?QFOHnox2hT=^EzmSJBhc|-L+ykj5NR(=62 z>CZU9gBPK>i*)9$8sEChu(er>LP0PvQGiu7@Ec|iB#iQuX{uTJe`zsxb9u**N z4RY0vvhF2(&MPtF(d#R`927pK{veP6Sc?2$EY`E+PND_BM!!p^#X1*Ni$RQ&n%~T| z&Iv3ApMSftAEd@7f-nbsQFYkzVa^zB?cUinQhxb3{o>UAFr3wir6qEZ-4zZ$PRxaE zk;v=J$^#p~2la)-$f?cxaWgYIh+8?_{4U{BoR0ZyC1^T5HDyW+Z?l6KI4dFmT?1+# zd(gbf7WB#pEqDdqQW%Y#lf>*d1TR|@UBWXGJWj_q+3D$AK1FboZ_WsFPEk=2uCl9K zK|2C$;~Bqt(_SRd0%^?8jo`7IVnDT%LuZH_1}$3C+DOv({mXiWgosPgG>k`4Ye*su zeoju9@Eo(&^$FhBW@Xo`N2|s2PQd5B*i=wdOvepb{P9C!Il7h{#|N*M7wEvGV(E(4 zs7N74mCo5<)?90fKnk`&0=g95Hmi9R@zZpNjlVx>#Ie6m%V(bYAuj1ST+4&cqc6{JmG&b^WWI#{rUzpPRwSxe>ZC2Y-hzusLSqs~G%Lpy+=4Z=$ zJ!T3*(J(KRd|h~bod=G^%KljOpz<&rp^$ROxUPr%JUnK;<8{S03T6AaxL^a{L`Ajm zN2<*{e0xutZy;Nk!s0stl>x#z&a7xA(UH-VwhDeAaeciGmVTub(`pyECNKq7d#=0; z5IXLtyZnr6w#o^;LY!iQ?<`JX1c1qgJ8%ZJ5XZ*Gx+f<;OubO%yPC3@(WE4= z&NSqR(^=og=L7Mgj~lp{5$t#)*=6?Y=jV51a7~o$ZC=! z{dOFo1zn-Ws|R=x0CW)QV>dUle74i81ko1_`J3{sEG+sw-dQT+n{QW*)zz$#RYxYW ze!CiFz7{0FOO6N+Hv!gZxHaZYj!$QS+hMoANPKvah9=0bG>5#;33qU7_j}pEAY!>RzftrmD71sS{?Ss%m>DQ@dg8?SVq5A}H#awmL&bpU0uoIPntZ#vB||c< zrqkd~w6wHE$EfY{wP~x=P9v$D{CBst@$W{>x&Xmh@?3N*x|RpIZP5F))iVdSc7y#~ zh6rN{r=a7~lLFg}9n)+l__AuKROvMg(_wCX6*=}MSKNmoiUS~ox8@{-uie35l^Bw^ zI;7EmX^QVJZdoR)`83bFZ6J$-xF{knZ*&AOyrZf6kSKq*I;AsI?!6`#@}8WJpARD5 zBVPh8?=M&Lrng>RAUl@wc>yRxKxaS{5EO8@M-`^pTm#QP2*KWnd}V`cv1H2?@GfP> zjyVVm{=of;Tg{mwLC1HTB-+d0rslDq5vjgpuZdAIJi>CW6I~jWK&A1IA=JP6aLTy3 zAa#N*>B@m)#n#8@J!(?wW>Vw0P-i)O6tgr-h!BIa;qPd6QagPNcz}XvwO#`%Xfwvz z(^M6Jyb4I^YuBkHPJ~2sYp7RP#zS{)>+GqRa+BJJguVM9TYBC?HM$yZ_gc&YdJ1<% z$dAD(0_m0q+HLBibY&f=3l(>CL)15hx?aWfaZZyqy+49k9T5^k) zB#z9~v84B;$BgK$0S)&gZRAYtEz6B-**X~#GP3%1jwlQtyaC;#_F}gxS|VHt2?=<& zf&@yzp zIVbA^G*DVusP}z*CdF%|MbNBeznKLb@bBN4J9FsQ{14rT1ef3Dlam+k;{4j1cf$B# zcsInyhjl7U#K|u6m({J+5CF!quS_pf{d-3gV%a2D!^-B3P^m| z$X#BYH-_^3COB;Y)Jl~PTV;%G81~rBz%8K_N(PV*LR{yQCE_x`JZSW$0l*2usrn~+ z!wY?r%b>L}HKlVFX(IbQ|NWXi=!lgLQ8a=>Y8epAq;!2r9}tl*qfn^EpiGd<&C$Dv zXd=PcGDu8H8VtZQK#TW!kz+~nogMOe^?!S=nF$}Y=(FDaW)&_1i!uhn{YMTFuGFN5 zHBa!mFCK{Kf%r`=GS#Skf()I)O5)Iv?4VUW%%5r0FL(>qya1{^2Cbm5Fa}7@*?bu2 zpd;gV`r?nI-wUQsF|QbqEs&Jq>v%@iL{%+$%K^yjlpOc<%}%nzQb_O9koiefd_EjoUW^es1s(O&b^8dk3+SmG$?@cNtXGCzy_*Q$`2xgr|*cEGL-iF!&MCDY&1*qHjEzhgI+aJEC{GQ zJfaW(Yw-xsmt|y>ViEAl4LZpCv0p3d1g44S{Ujdl`OY-HkjVP$;$XS_Y#(aM*#!MH zhOTLkGYiZ~03LzCEgf5>L;8&lwREt?h6a-Qpqg*``&jjM0r6S&2_swZ&;_n16hc!p zOv|4SX;50gUWCT0Fj-V&?=%C7){4tqxQTYWw=MMwTDYXtBQ^I{zLcMc7ophAc+)&8 z*uu=Lr|u9S#YjU^7}i9Cs%Ade?$cS!$8GB)P?zi5@(G-%fJ26Lx)}0XW-Dsp4KQ{FbxG;T^=kqn$mNSUY+CM8UJaN z8x208iMj`Gx9MIB0xd1TX-1HC)iId!F(-#Y;zMNcz`>G*Dy?7iW*M`t!4L(SLnxA# z?G91N6K+*oz+OR+$|$RhWpfD%-ZD*!Oo&ZPTVh2es}+}U@*a>3Ay2{e8$LQl%2x%M z2SR0tz}NxE3xYS6(h;9LR1a@ZE44N5k*SYcrCvE`S8iH9te@{Z_xFj5S^A=~a>YBx zGe)DQF{ewOM|~j8`$mH>*K_6hvB9kd2_%Q~U&tS1uCkgd%evZGYjs9xsG9R|+@Ei* z(CIvou(8pn#yojn$Zcn0(lv8CK4!JE459!*z?TQ@g-~#)llW!WhEgQdK;v`w%br`m z6czT1c7`->SJc>+We~pvXG=Xz8vlz~8Y5_Xg^`@b?Sm$m&&vAw#!4>WJp(?5>+P(^ zBJQ+xa=&<%N>r3ERN4QV6Qy=6tg^hvqlC@{ zb0=7f`J<6QGlcjCgo0|EmS21P;3ZNidy%-Cj)PH`wPDVG{^L(0P&M;kY}GY=&rK-! zD)eN=ZF|1TbN0yQOn)4+O5Pdh9|4&`_Dd420L}yBEV1wVD7_kY|M&c65b-O&Pg^7_ zKfyWW>|>s9t?C8eo;v7R|7z(x0D_u0j}s&aGm6C62qhxaqB4tY!4bDD&0mM9O!E*^ zQ1DeMq6ZBkX`{~`1?A+a$mot6{Px^Vw-yH>Rr$?Yc7W`f+J;-c59L~w!61nYu#iVH zc4$_L#n}i%A^;?`v9PALp^m)Myf|EqkE(Lui;iOC@a(&hA4S1Eq}6=v`%>(kU8LQ= zs-fs^PEvZDVX-%-v>;KXj~$%_F)(AFMtBKjrXbR zC#LMm`1oxAd(Bb$oQ0);!}?ae0m3n_T}HU4u9bpeGM(RR4fm8Q;z%ILwNa-0cZ-+S zi1sLAvy-me0se!sBtP&Iyh1u~WHz{(`^qezP%2l541bGCmDLn&omh-ts(Dmu+GGz>{ zIu6pnRJX{iS2Bp6HY6&5;r7x>2*%zTx((>>@tft?5!G&zzuM9_6F7Uhod zozrkec6`*9GPiZ;y3RL&Lkf1!r;T`T^Is$vyO$r}@he`j{CbqPM3hhRuMb*OH}h?F z|D$@ZBvPY@4||!)W39MoMV}POkHol%c&_HP#6VT+$1(ao_ttH>4b7D+R0xK!VE|H8 zWbR5k0>a0SbjVqTswY6O6NID}x332EfdxxCIkfSt4}Ty^@UUF6+gGfe?k1wp}05t(zQ^SRihBXL-x;h)QHn-ttmgY zV2-HWCoMj{i=sh6+kq6Q&gd8HwHEHcQ;Ot_NkclmYmrZI`ahetlymUM=;V?flQ)|> zIy*OoiY+;<3#7iDgE|8R3fiWs?L!1|S)jvbmz$lPJ^B5+RhdXnOq+joIZGLcn<`#b zcpsWSQRzP%JD~7%e>hcPxzL^M6#LC6!Grg|BVuL$q@k&{{x$o8^?(*EFffHR7@(#M zEsvu`)6MO1^bd%lB|&H4Wx(8ja)zOIaOdUm99&D8h3xnY<~-(iFWyuf^X(3vhS{}!!U@%6FN4@cA*V7O&pqQlbJ^&@D@7ytq>-GU7`c>DrKd+wXeu6q) z1DAk)rhBfRHE$m=F7rqQn8z8J823t1TS+MiLAqW_>5@+AQlwKPB?S&Ck|K>t zhkytONJ*#>_NNp zo1;!`59ZwC{Me%0h|veg1p7ejP`oSDbK%U z?d{_e?bjPmiR>-0G&=T-7ux~IiHb(Q`j?bz+oHiFs^u`K9n0wOfK0SQ+Q2i2ZwCpT21C!dcw9M|FrpD_&r^M>HC?#$*a{Aan zC!`T_G)`j6W6v$m$#>nEQ{cU!JW8!NP3-eMY+q2|RBCSyYz)Y0m`et8N>_dyV4$sh z(6%%66iBO{6f6#n^!{Cxo$o7C2c4@)=T2(aPUz6A3HN&EO516e<$e`DMNVZV^I27F05&PwPv4a9~ECpI{bFFH59_ z;J!8sGP6)-oAKl;{DxHE$IqX0e@odxWU+>XUgPhTvEI$Z>%EZBTZc1)Ch|r@&`ck)C#Qcm)-(_FRXJOQMycc z+|!a=NI?5^FRaB@f$u+I+J`v{X%U*tPi{HFd5mNGpiie9!&MXh2R{rK0=NGeaG#D!G=8T_d<3&FO!527sSdpQ{fdW5%^V?`M$;qex#hbW4 zjJhfz>X#UQec|_ik^BWiZq)8;-z>cCcYlrW2ne8q06yv0e{h}(IemXp6d}K=$`Ely zu!Rm%oH}9sgqsAIy^pP%p>;Uc=;bOu2TVQIQB?7FHG8O-+}%#uwM(3;9R?3bKqVz; z(m*3tgu1r3HnCir1V}O9Z26`Aa{*rCH3xTS-EBP1>VH z0$e{$&@lwM886u$A87grr16JSP5a0aN6g}0Ilc`n3y7i#@eLK2%kEMitzA4>A3_Pk zyrEq8(8HsKwT2Cdh}+r7zB{DL;?Jw!EB?i+B_!XN52TeJVj*rtdtYpeD8|HA3z=TV zzoMJ`{!ra@#&7?n;aPIPA*t?rf3ZL0z*Hg|`E*4Cdlb0DOwJVm`YJl6AiUvCqA=Ap zc+tQZg9gglTf3Is%R5XL_;`5G;HNlLLf^+zUgwAT^u38|!g7dRk)0H3T8_Hi&$EbA zBt8L9JEb^u?t2>Zfld$0nB-P4WUZM~>Z#P=x`1n4?4$wh=*3K;E6PGt0{q^;zu6Xj zsm0_sSyshU0sUqIf&UAT+va@R@>`YH%9H~|K*BRV3(040)r(=Rl)$m1bDzX=ZVS4y zPqA4ZmdrDVEjanTSW0nvGAQU^2{pcuH%R*~d{mhvU4_^R61a<+N-;_M3`Uw;A{`yt zUHcaW{HE=#J>Q7FcE`mAd7VPLM-KXTRL&-t7T9>(&v!&8uqf5$lhoa<+`@afA4x;$ zkWjwl<8U^%45CxbdQssC`E=N#Q1kLEK8Nzk8|MgEM2Ze7oUO7d7ejT-Og0t`Ue#eh z4^yw@{^X@#1BpTDR*aNlDevPW-AeOt`EqD1KEP^T6^oaCY1pD%-T$=e^)=gk1^FE3 z&Ah@{M(}Rh2>Bafzz&H5i7=|-hyT4Eh%cl=`xSq^EtZwpBO?3Kp<7L%{*i-}NX?Xc z+E4E=Gjd>^L*{VMqtl#oEJ|t)i5J)>y?Ir+^Iy9AH|x?X5os^g$Es_WQf)umR=O^$ z%s)UH=F`M=D`hr#d9^?QN19TX_%m93R7~!c98=!)JNue@5p!imdPG&G2x1^wx=nKp zs6>(O6TA>$H{^bzN5C&5R^j8_j>VKk7feUVJ^rMYTALgUeIPE&j#t`!$Q>-4Z-#?# z&?v-*P)0SBMFBuOcEc0YdPmtVB(|))cW7dzv(?HU2jHMTv%2WUM}hb~0OPsJb75g1 zHYSFxRZn+&^INs8@&+p-XNr)+PVT*u1+K^SA51p8lAN1#&5@*Y296lzyK{D9t@{>!f3p-x(v7)$?o0G(Y zDauMpXiuttYmGdPrj#8Ss!>pqp~tuIZ0n9RW_}KWI{4+3j0^Km31nk z-SFVxg)PrU`W!jp4r^dFv`>MeBXOB5S~juCitM(I+*YOMq4#E`k1%dQRTUvrz=(4O z=th3h;N3&tA4alira17`G5h(lwMp7RjAkT#L^gUa%tqZ=-4(n}TEXJxyS<|irRdJ5 z+ZNpAG|vm^*up0yzQgVZ?jwhR37|2r%F1wop9b8bkKez)8vMA2@Npt2xOCh8GuHdO zc>?d1(6uX>--}asg8VvIA3t7sQ_}*rJyF{(nQfCZGq_0V(?pVN0wddA;G&rZ39JhC;8SwvO;?ptz%)6)#vYP8@sD^8x&*93L~;gO~#^vBN$y(B}CPJYMV1CeXKwY8e|#v0lfW@l289yV1BS z{-G#>rEdFv{}g7h6as$o)#*&b8=5yx^{$&brVgzzL9j#K*gDmcEs?Z|iBiC>{AvgU zG}xK$exCq-0Bvs4#RAH-tODm?qT%@ID$!Y*z=}&mQYLB!YcK?zXE)rs_G4p1&^{VmLUJf-{r^!Oq(-Lqkw|eVXXY)Z*M^6z1yu)(UEGo`I5nCv?v1yZl`j*w0P5$%4Okjf@|0D z`&33``r=i^F(=;HKLaS}08Fc{!PBX;wl#C@A0@O%*&|FvYlTAKYpJ*+%}RCa5t}cPas|{Y_ye=4AdcF!8>~ zlq1#O8`YBOgE!s;8a?apeN6U~`P&Jg3WRDxa53JKItvdZO#c2faJ0rT-;7L# zlx+wa#rCB#DEhc^&liZ4es`C(EV-6buktb+g~n754R!b^v}#^om5J_&M)3fNX6r*(W*Yb!ys}tCP-`;hI*MNFH)DrL zzrIDpeV%G=OK5eXW+492{eHqN`o;x(ES2nXt=HPwwt$Ac6XphLC%wwT$ynl7GwLWU z*DTNzp!A22*Je)bhdLk1!=AaA_OUhoUd6a5TE8&AifqbtmOA_iM6)M;!)3hI>bMw+vjun(HmKjty@QavLqntI;aLB%z8-Q311DwMwDvv-C!PSUU(-;DAt;r?1Uo1I zI&pV%LJIlj?#gc!>96kRe@_g)EIEqd;%483I#6y%{jsJ2P0D1#UD)+-0^-7tCuA`-+q z$sm%d#!CYBJCK>XU(Yd#Cc&2T_ND-y1r~JWfME-Lj5JF(>r`}j-Jk#U+-RMg)SrqE zWaWMNkLH9o^1*(QaBtxO2MK8SXm?*3CkpAS0R+NM7`Zs`jojm~D2viqYZ{&OcAb9z zkD^xgLeCf5h)omfs7p&8tON_x<%9WaBHK;#>(t?6GfevjTmk6?0|QQU=+y|}B(}Xn z{7W-koZ%pw1h1{0nMlSp(X#tkYf!p_$z&OYnMG&SJH2O!jHhb)K!c*?sMS zA`Q+`2EJ?X!4bdmGpTIjTl%n6ZEZmoB*aN!qQFb!JDEQ*X*+@M`V7S1&J2z@SCM2G zsFp8F*-0Zus4~g1(Csn&BbK?YQ6?6kKV&D3axs%Wq=2JY(=b}M89Ec3+3MVc&5C(R zm-sNx{@s{-`l%HphZE@+otYAj`67d3JcVRWl>kftM9ZR#yd>B0)=NIdQed~jnO=?J zN5~}5nC@eJ(Ck}BN8eTr$w-&^EfUGxVg;b6$ucj%KQxm7HYyH{=v8FNHPpH?3qjud zpp;uczJVs~$31c?svwXM-Um%pdMfO5;cG%7Put6?MQ0xxUT3l?CMGCuM^iR+{tKdD ztFunlj%HwmS$%KY?~*cs@O1w^)crt)<}k@c5`=>Tp9uf#cyjEI#Gi zi34W2^fnbH(@795$g<@!+ai^JxHA~9imF0zK#I7nx$c>QDY1vq&(-)btOz18{`P;u z6lN2y!oH`IS;Y!V`HhK|^c-h@FAN>fVPxSJK8`WIlFe1mUC=YUM4QRlJZkL@ej;%* zGtffbrf|YVdoKWtf{<*|fj3~dN8bNYz?n;ng-EK5)U1H*6)NymUS9i`g8Uaq8TC^n z>Aj$HsWvERT{7IWxxC`V1m>C;_O*&F?}v%<%jEsr+&7C~j6fC!iE&bP$aaGLDsF=U zM>tI!xF`7RuU8ZExp+#i&bRD$wucDW#q+x1CVGm-FwGRVJaj2k!ZPc|EK%`uT%fr% z*|iUb7O4kY*-572fJ!N|x)uPq$)Q)-=3LVH^b$tY3fDER!HFdzHZbpW=0_zsn(mwH zJ&)K|!Lkjy_tCbCa4rC zj|f}oTs+JZ3!d=WUc4P(Ads2!0m$K@@Kr$LoHTj?4dljRkrA-{G%XT1l%RBgqJ}SO z@ohH)Yx&HM?d(l~ww;Bh=mnn-4yEypCXA=(kIsEK&-*R$8R~csYzCs@<2D<1%X`(f_)+EAC=O2ex^& ze|YDana^BW^NaH~WsR58T;f%PdP)AeKq^R~5A+tLa$n|17$ zDJkXYavUU8zu)UMc~`eLFnQZ9_|i5Hzflj~^+IeJYPj@O66gZg-nHtU#|q5?9%NyZoZ!n~}; z_!&sJ|H8$1)fZQ+MELo&UWgbhrY85g4gKUp^DGm>--mFC$i(MNT3Q6R@l@;dGRIA`3=phC*-&W@Xsv@sxwD=*d!!w(>H5lw>l7xL5AD*Tu+w)mc!tPw|J;Xc z8(K24{Y78+u%SDht;X^JN)U@ID0P@BNTX$y!^g({a~*%xn|XcfQR1@Hbk^jKEKyn| z8TjqdrV=vxWKDX@l^-d&ZPazA6=_+J4Ep|sc%_Fg9>(%5g?O;3w`b1PRS-s7oU2j2 z>pKYCGq9f3p1~v6d?q0>U%YY$zGFPb2U|1Yk_At&CM}i0X0j`7+*XJ@fb}j17YD`Z z2q4`!4R%CRCJv2iJp_XoWed`c3tmc3C)BXsORT=AsWUE5BjYyoP#)rVrUpDg#tT!? z9&N7+WKW~0XcEPgL2?#$eru>S1uf^oJ#YjuyY)d=T5QDgqF~6=NLKNdyVD-f;Hm1r zbDfj*D_`H^=4~GyT%eWm^i|GbmOJ=V8jG3oY`yi~wHXqxyBgO%^6?o4r=JgMPM+vW z4sT{ghFc@Xi|+sAg(AW-MFoMveTbZp`AG*yb^^8!FVe(ziuuSX^cBTPM22Uhew8uE zmInw9S6Mp$?et-*+ox}%*YdWWvh)U&@V3%vI=ZT638LZ{5a5)0@5ka_a>eujWI>O1m-B)jw?{WeAjG^ZZ`?s zx@GE%0U5SiWu?CJ5|c;J@`o{U--@F$5Lytp>fLwVpvoF(7hHFK3Hls9)GA2Kb~h^s z>D~9kivP$nDxj527eN13|Mt38YfJU9cy=cLUpGD|4jvefTBqoo*4p!gh>b)T5)D3C zauG(rr@akxtku-x@K(n5N+XAIPx{xZKM^j8r+a!MVxJ=5qSNL|3(T_Bue~*3x2zjO z4E_KQXZ|GFs<-(J*iAR;v4)_gQ=t!m;D*(SWw$p{>JUYX>G;`ptJMn|DjOJXHP>~(_Q}kw)j;2 zTGOXeg6PbiFjLNh3L3Fu<<-DXqu=+cqB6D{OAH!Fh$&UF+GTmd04O&c|+S8r8246N_QR;O*RYG6H~d>WkiUnCuuvzV!i3!sjR)`cNFJ!0mN zojy=rbkoEnPaI_?2!Hjyb=x65hR!1rdW`v(4I9!KyoUJtQnDDmV|glm3_n)a&l06% zr-?;+v3V1YU=U>$*7>?{|6A&lO~Lb6cx%^cV0|yPnzTYA;)2t|aQb!bN97Oy4XqO#KZ%K{(5fS^9R#!9G+P zCctkNu>WRWtQ0>AknQ(=kqsF!g*h<|%-B3qI#cFh_Lt99`7q9Jht1~aFLzfC;S0Ka zmydVg(-9)OQga)@3*PdlX(=f$veqjqaDA!Iix|$V_Km<383^;QF5rt zp%qC;If>%qj9T%`WA@USbx%kzp+%zp>}BsF$22p|EtiKDiQVQ(Gp^9HHMq1T z@?BUR!2&>jor1^Z;F3~8(_N>6OR>#@;oM{z{EFpw+lj_5YUeMV4ckPHH4~@IbL$#$ zkJHk2`OIusD6JryYlsViK)qD)jIU0-I~DhxT~7($SrX zQ$)8wMS~ouSRARCUD|&LOf60C>?IXFdsIy{=`mq{*Bcp=up^R7ba%wK$!3Zaadsg;{BnqH7LZA*Web2s5Jt zM?QHg(6NlY4|w05rrFQ5?-&=HZWF&jN^_CGRSWe{l%__xa48Env^DAF!#Ov+;LIUD z&w|gnL;l6Y9r%=Yd$6w^rh3_4o^JWDJ|ii1g+g8UFF}Ql$0kuz(QCE+7=(|y zza_CcCa!4zib?!%0#nlY44!7k9l-YA6v&La<<8&)&9!|DjV;7{mS@J06U}}pOr`U$S zf=zkEC;tmj8Y~`Js(;VdU|kHuD9+sew>NH8m-@3+n_lwyw%pRr>I~Gi%Y?c)aaf_P z&%4d-u4Ec?;q2V(qQUb@15a2#W>brV(v?ENOSWvCW#Ji5Y#>$F$DIN2j+_9**6Ys-D1hk_pd#z=h7Iu*w46&-UD+&NMiANsaG3yn z054^_xce;Z$p>G*eT!HJV$hh1Z)XqjRuO+wIT)?3<6)YDAc*BA0K2txlcg_FKEe zWSMocPXUlG%&`)PPT?AF*YC)B5V0RZQ3Kfyrjp0YGJ7Z2?tw$j7ADo~X1&3B%Lg zSk_ouHG}scLQ=T34ygp@6EF{f13F=1-ZDzs)|MT@j1-$&u_LbIeU?yVc!Jae(MGZB z>kg z-&^*MQgV_a!K}S>L zQ@ktD$9{-+8#L3K{Bv~igKsRo!P}9abTDOM2In-xQqWbgsn<-9CO!F7HVgWDrHh_m zs0j%@d}(3r!1J=8$A;}R6GkiK>=Tl<0xl6!&N{lH*Z;m#_IEA8xlRsyR_0AlL(`MQ z*`AL3U~C8;7`#oRtmfYt3p)Bzz4D?bv0|>H4^o0=n+}?%mt#dKE~LdoyT!B< zoO#`Z)13@=J4Yr!0n#N-m4i#HM|%MF25Rf>$nv zs@t`AROkD(hEF5ldKr2Sm7^xVsFr&sfx#%JFe5Nh;T2KtZh^reO(wb)tyu^YnXQ6> zQ}s)t;>$%R(tQ>aixF@d-~mS*0%2(CmM*Jo;pxDMy0{*8gx{oH%*N6T`5Q2o!55 z4hsk8u60WGfd51Cx;NvqqmRS(26>incQmT?`c&#cVQRfsrERU$*&uQUsIO6?UaV>ABhRz(L7DF& zy9taWcz5)m{xK_+kP}*86{xMHUS}<^&NwKXYR!nutX`I6xVbbzcg@&h<)EABes^c7ze1kl+wa7lXbu7v33CH7ew=n&@pZ3l(Q&}aJ&L<>$^l~{vG z@9?0uQemQ;2&6}~FcC@LD;n@J5Y^7l&xfd4!`u}_%bUON2ZNewf+8lfNp`Kby8jrV%kX#-n}m;|O-Nx=iE_z3-fe+~|P=3k?}KP+necY!@tr zpxp$0+kASQJ=lb(9GlBWIG$tjI9I?rLTIUQla0>7H@^EOlu%#yZo_VbWcE>UDZwan z0x_bl^5`b zuw%ij+41Lz%yQ~O6MhJ1VryD{Ij|&IV zp7U*PXqZ3|R|Br_+0CGii>7Dp@Xoea*F7v%myY_=I|dBue05tN>UQh9r<q?l{`W9f37OkdF_jr`>NWHTW~deN_i1OVW1Fi69Xw`Rs`5N} zw$6m9M}^M1Tqd;m0uibMGj>cZ`hgPxA5`Lq8I+kHP=UCmJGTuyADMFD)P+UJ=E6SY z?Cyr#H@|y)PAru1ZW+j#v?rUuo)UG+1q51QKKD8e!}yMh&)5;Pf zpX+ig*@WG+jB4la34bTzzRCl=T8FJkIB$K=j%EZgpHn*2ULe*Moc7GMxM~T4U9gG< zwwsH785^nGH1zvRz|oIh7I7-wpLC6lV`uO;GF6E?_S-s6h05sX<8O~SP7SP5Ep3`v zBDA?^7R)WgEu~67y%^Q!G?8SS+HLj7v4l#I#&=WlphK|v0-Wamw=G9!EUiZqj35Zo zIi9>XyjB-JOREJ3_duJXX*sECiWMrO*k2~@^Z2+mn@GnUauISrnz>oqw?~b-!Hh=N zc@vfsCVPDjHa9SL9EAK%fxwXVli!(0Mo}@6HT%!I35VMTw&Dbm>CK#>({1Lq>sm;W zjhJT#OC<%_uQqDg6PahT?|&{@ln$Apb)ul22~Snzs=It5=d;nYUq1~yB!}qu&PID= za$CO$L1ep9ODPfE55`CG0uC#l>Y0 zPDy|4$ozQGN$X9^M}Pkh*60w@*r3buz#3lphay_^~wH z0M085PW`t^^oi`5-_hR7=CYSB$sc0{>9%l%E&(^9k~=0t?ZdQ=!d&wZ_+=T%?fQIL z326!~#5phP`&9TdNv0^Sa+}bXb&nWEB@`3bBKlM8a_cW+9jy$eDKbR&MH7OspC^Rc zMMwquh@t3JN2qvU-vTna^%C;wh0@J*0kT#^>EHrXPRKChKi}zx`|w4yZT_Kd!3HfH^8wW8kWbuxRjYKKxlgOKD%zM%a&Q2%nFVTVDWsfq)V8;Soybu@idP!Ei5L=luMgC zT=V7qr`nuM8 zYOPkm!OzA0L#5V~15;q=W>8}^@b^oTVE_>D56q(5O$YC5#{g+nOzh2X z3PdeDqUxTuy7)o7RqS>OPaI)U`$oz}vX2wnAS~ESpDAtVmvd^j^g*zKsCvD8=IX|V z9CnaFUZ_sRf-G9NA^o`7&C+{@qsUp7-io~k72nTq2GFL;CpmS`#xGkIhWz8!!dN5g z^m1r`yRq>Hz5&eZ*g!7GF%eEwPcBQdYrH4fTDSZ4A+;F4sm5(mdg$#UR{g>f%_^CX z#lVU#WWNn_eH*ykawglueE(W2{;yuZ8a^l3cS_K}*7zyTzlidMR1n(ZHJ&yyl7pk8 z7>B;obCMqjd=<&bZ)}J_txFK?W*``Bv@lTU@}P}%7Hv^kG!{rTJ9s{WphrsyO03O< zauKpZ5?p-{l|!_7?29HLH%BckbA`(vnl8mJWq3ihKz9QK$w;d4Zl(O7D&JbG zI~Tl%LJICvm9U1iB1S)lTB-RjQ+K*^N>SNbth|yVs(s+T3A#j?D$U-~{5(-HAA_t3 zx~JO0S)r}6X@tXHh6tGD$E zRh4(nzx*tQ&G^Xh%21UKF7DSoqs-Sq!GV(@g`NlU=@3qtwo<$23TkRb@dR?7&P&X|jhy6(II;dYjtX?_R6`Im#w#vRP2)u$CgGHoSxGpuCs$ z$H$d-b|f{j1(428V1-S+{=t5#4%?u5N+IoePz~~E6c;n2p($y>{GL$pya|U*-K>Tr zF(nm{{@-R56B0{BvsuZlJUL_^35pjZZZ@znY5jO+Bdn=O;(=aT)1vyUK)+4Qm59i;J1^WfvYlMLOhy# zrD0AR=hRjQa%?&&KPH`v{vbr1~q@o}(LqPO5dP1G>4w ziGy=P`4+8RQ>PB2ftXn!*Mf3c;1PzRZ2zLm50*2cR%o%9ZD$ABJ!mL@9VBzbUFjPekx}HC}kf#ci5{a+VSn zjyylruIAK_ku!aArNhl4+A<|uE6(EKzG}Hyo+<2NMBe;Hzm9;IdCU!Dhm!lwU-cfn z?2p`kz4c40{PmcImc%&uA#@{SqVQq~aYB_7b&5CIdc6`DR0_R&&i*aw2*&NlF0O)u zKf3zXWF{$O3&i1;NFx35@zkMtIqzc+|O>dnxzit{fUMeQloV{z7pA>%vau`+F+?=k*O03nd|2?J|fp0k`k$_54vdloL8Xy4a+jK8z^ep>SvA z$FKQH$5hg2WEkmd6mCe(!&c?oVx3GyXh| zNFIdR1Xm+^U)AFrK?}%+=w*4@sK}eqrzOdI-^AUMDuSxe_QtgsjZz){GF~SA)t;k8 znMeM83x;=mo0CL)r232KQ<0$rH*K!A7@_Ka-BYoe1}QbGQd`=5H|86M=z7tWh*0fv zf<28p*Lpi&wBwU3srN0ml*%)*M=l(b3ND^hmcL9*t&Gb4zLA!d#a)NWv=Tkv{$WdU zd&a2ZUsrY%03L^?;@urX1W!+dN)}MQ{_~i&P zgrf3Xw!)?J93#-m0VPb6Sm<5BetkJ_yzfH8_)?zOLc^&mDEFS)rA5UVGBur7*%`(eX8!+_K?R zJdeU!k1AYPQstkRPw`{;Xi<>k^eE1 z-ZaMzRNQ|1$IEIg3ku%_F7ky9iTw)}66HJnh1)7@dfl2T?@2jIz*#2olSN$buvZp! z!LI^^h*ZF;6js~!z!|q*!izIC|059ne$+c$rPurJbYVD*j)kJ_C-%QbD$$jDK?XOZ zhXr!sJSww=d%E3aAX&*faP}_l>=~|@fBk0|B23*b2Xvn;aFjSmGzEHFzk+cM0GVm< z8L4r0oJ_>Y8s3J=R(J*fz^tnQ-#eaV->O{nmgwP?b-04~R<1<~X10cC+<{J!l7ZHp zwFQ$Fng4|7G6X5!Qp(X?Bb-(ZafGy+R}N#xeG3GZTg`UB+lFDl6(^G zA$Joc=qOiRc2LNbrF1F}@PiY6&^d3*pn5336Rpo1-YDsdJUxfg3qWE?F%g zn@6_eB8q9K@M8^zZh*Fn>fv;9MnQg@ltAKU5P!s7+sFU&y2&XiB=-JS_i=&dO2wah zM0`1Nclp@Pdx!>@Y2M_y53aG6_2FcchL07X_ZH3OphgPv@#AfK@%5r_ex{)QpT}s7 zj`O-?wvHA^@`&wKhYcamCE9z)hfMn%OJ{HARK+?bJc-#*8QAxScM zyNNI7E<&!&J&; zgV99BsdQO;-Q|&IUkfk3QU4cJk1_TVI2>G(XQ6ug>^61vndh$Oa4Q*qi)K?Af0!YU zmWp!IKrThXFG*X})35)S8+fNO{tA|#9^B$!uId42_&Qct#Sxl!di@k=Xu#%GniWaZ z1szcHjtXBOhCS~&t5EU)w}b+NoqVZps`f*i#Ly4)`y?7UUC&>?D`vz)nU=!Dsek|p zistxH4ekvY{+Jb=0ZoQ~uhPNwK~G4*_%3KoFO)X+{V|`iLI;f)>&P{74MU~1^UCQ4 z1toWgy1=hS!Ds_lLEcpqH=UaNylOVC2TBu7pfY9WT(OELGe5UmMC$WC{p~j(Sm6r+ zgO|EMEs}Y~Ms!?rN5ErP5$(l~BCLP!&Adj>&|51W5SD;zcCHVvvMU{KQt8~v2Kt?%~66Af;N&B0b8mF`Y{5JP9qu!WL z(MkKmpAHm;MYq}rH=pAAqCsK<+`h}uw)F*6FqG8DcW}rbdhs&znlW+O(Q0T1EAasg zqI5b6VW`{xX~2bWpBcrfQ7?*Vp&Ny#(w-f3{+-DRsjcYg!8}0k*MK^-IX>Y3_53=n zYT*SxU8E?huSO>L#8l&584>8J<~!IWB2Cywi8mAQla1=TVk02o(4+Iub-bh&S$?0f zze0PKvc{HEYjtGq$RUVF?G1DN5%x@EDgym(7V9+i?1^zVZeE0W^JJii1&kgKTZy6e z*K2z;cCVOfg|~^=+g)8@Klc|S3T-HlVbY1VMlI)88#b6ChoHcJ=fNUo%I5>>yuo~j zF0A7}{LFme5dxj)$1x807;4*`aH2x_0SHr_erZYdXwPjOZeBHO{080EMgIpLD7rhW ziP#k!e8-UZQ5yilHJP2yRsrR&P3$Pws4}2G((zr@U=-oBqG)KtWuj&TALO_)z@;Xl za%wgBf(s8%HUe;CMYqG&kXh4|8v&r&dsR??0h60?m{l`>`-=7y!5!ug>aUDkjpX|# zTnwHqOt{z^YtP*5w0BQtjh8tntQzQ2`s`l4p0XQ^l~TK>8AicPCFV`ke`kfmbF^Xl z3bRT&i!~(eR|B0Cn+TIuum!uuO27UfphVQlyHzaMJKyTF-X`pJTUBC=gSvgtusn?`?;-h12a;X>YA+Z z3S6F*;mn#|Ni>=tNf{Uzc*yq3lP3D%1vPtV{o=dU0%iJDZ)%XilIM3|LnrWy`j3+> zRr@}o%K*AJ6{Y%^(3_fXbnzP4{#BmhsUuY=%zuF^N8Rf3rA6~ki~K-OQjEbi%FP%9 zesDfr?py`L4>q<*1!9)I=eZh=bo#3Q^Kas;g46;tc*}zDiC?Fe?*P^TV+f4YrB}6H z@kJJ(zw&x;5k+wxVPTZgFKe|ass?=qQ1sf`j3xJ3UO-biaR9^y=oMdA(@`5nO2TY? zFs%g2NErJ?zkAhhxF-c<>X6u!?+ye0uF$?BT!&fqvpyzd^mvun8Zq`lqHa!7?Uu`M ztET3PZ{~xA;RF{IQ%_ECe3i2Im5~AR5zHI|?k1QYU4`(D-4xeVgbbcTR#csRav>Lr z&J>EzBW%Cb%Yue%y#G@WW9AaIQ0D{U6w1q)TNADTwzkEm1Y#l%W#guOk*w!*XP8D! z>>!F^dO!c`h-$S!N%iLaL?4yyYEleO^otjUJg=7ddAIR%eZ7|N@-G~QJ)jHKH&=}+ zU4eyq&k~hpbpVZk|AwqloBV;v7YU8F(Ns@Q66f@6gEUSp|E0AzY@QzQW%gOBGmL}q z3SggRTpE!ZRhV8uhWZwvBK!bX zd<1YzEf-8jH-jIzJ$_v7(Y%wf+7-vJ3OayQux0K!fg!HtxpJ{N??t?Svpm$*WwC97 z7Kr^!^VIKeof43%D)z=`B^jQpfjRd*VBIn*PI$2vXT+K&Ya;gD5HfCE>g}u7 z;*%zwmwnozie%Y=g^Z@pgw;PMm|Z=&TO{8)@=5MvahAC{uqi=?tx2Yk`Alogwp=%R zlMqI&QVYXPHyq4Gj)xO6E0vu=km6~<0Tq>Ih{mxJeVj448s?8q1_5*FcCh_B`-u)@ zJURR+pm`um{H017D<1hq$f%ry!vcvD)*-iy6Buo5rYg2eG~_ll24gvCy-vl!1l_t1 zF?;ue*~bGb%%`;c1bWyPypa1Pc40PP5{=%uIWBuY;tj^4H*4|Y;&a88_N<-1qs_=W z@d@jif|`%DPf)MFq7nH^Av;{=O$rp(_9Z$$e-8Ia<*^0)ii_32ytEEwU$y8zf=6KC z6@MR!GNR&@7f|{cc()I9$ySW-s8iJCmM2$_Y>OA9!%~Ocp<8~msgGZgQ1kkAqD_((P#}x z=Iv_|bjT(Sv=W_M8b4sA%~NOPUoQG4tO76bb+o%{$5OkCb<3H^3urs0H~fm3 znC6d8jn%MkTxv*omMkt6ois0#69UuB3Pr{~<*iNB2;Q4>y%0B35y&nw;Bf zfU6cVvU-AKK51e0fk4VlSbg|f#AT{SBQ!SSVZ+5=U=r%!b1i@3z6EP17WEYHKdsn& z;H;@oS)Rokb}SD0P1f<|5Cq>MEJu4=Qor z+IMD{HkWt*u8wcyD8Z)9QqFK-NC}_KT_ik8;wj%_#hyuR!c~!z!)So9@nbMZms5%( z?tVE;ji_o^ukWqt!GWc68P|Mnk{)%_x7&CRB2>?+_-84 z4zSrooc#BE$EVe+TNPZ|NI9u zsUE>}(JH=GLdqkEnNidd{*C?Y1~8Hjc|opX@F~OpYuIQ$;)p&eOf7Ey_w&obp|YzF zeE$Wl2l~JHDptGzmtzuM6DhEc-JHI3MJwRkeee{sK#YMs|j9h=u8p@QRQZ?GR#J}1W zPRK!q1qArG{PexGM{tewfYZZO42gpaKEDU$#xp#oyJ-TBo%i-?-ZxG6(!+=QqT`A+ z9ZhXmLg2m~)H^Y~C*Tedzk|$dWwh)OslL+%fP9n z=1AXnL0Ns&Yjmoyk%v4DaVab@1K+LoBq|tF>2rFxJPv1ya(64=TEi*dV#4|(7|L$o z{WEX1s36l+;^e1l;)c&wJLx!L4sm=8FJXlYy`(1c>Rx@=b_(_gpEp1Abm;PsnIpeE z4l|Z*=J`|i3=Ae!emYR7Vw*+z&0aS$2CvIU;1gvE3SB$!IoUhWG4#sg&8W`JeO5Vy zTucZ0$dCexqdun#IR_$lm`_EaJaqpvADSC6KZsw2L5Nc^MdSJX!u$zhzdQ!h1G?6m zj~qy@ULHG|-WRuAwgT#Ia~n*(kBWX#i##YcWZ-l9?eB=2=4XpBC93{CxQ+ z(_}z&Cu+?HN`r^s1F*OYr(UHD{YT_Pa0k{$?VZer`^4~4RMaA&6Ite?!+`(?0s%NX zA-2RK*M;Hek7hW%-uapa&!{J=*I zA-qFI+X^Gt$KlW#1BtM8)ZMXqx7S6!@P7CUVwc(7g>;?6pgsY7r^-j0*4>bcuU?`( zKwDW^F$0GH%UP$|>0Tt8@NENaxh_~LTI3TZItq#_>wPg`LnhYz`^K=l5ulhsPw95e!3At^;4^jk)C#^Y{l}Vr{!KZ5 z{`jF5LGnv===lFNO#MFt*Z;qt7^}MxEfLaXf~nV?vLNL9UafIzSmPVFRu4~|?~J|O zk;2;+h5S5hX%_ObcU5&HBX@gY8@v=d`8{L@dg~I9&ut$eFBT&KCJeT*`kr^`@taA> z(QfL;8UORgpwcKN+8FF`Jq{AHH*bD@dU{U2W_`mPX_B{IC`dT8sep+c+lXwU!pG~~1W8&#k!1!pFF zr86lc_k+LrLX-Ue<1duc$4i2@4MxXdOolEP>Q6NLiTM2aS+LSn5;E7#oMldX{2gN) z{3gbMi8T&ex0|bB_14}OMeY$FYwS*99sQ5*9Hx4ph1UU2nZLcc3rr4115R|_0qyRc zc{jlxl+h6` z_j^e-jlp7ne&p^NYPW7RZTQ97gRy{By$1w`as&~8pWnNoZq^D`2Lt|_&uGi#X#EnV zU|+0mb<#d^3^iEo8F4? zD2KniomR9aYX+7}72@l(%5HRc&1dr?#`xL(*-5~vvZFU4z{X|!UnnAwcxwlJtJVB8 zhvIz=3S{zARjl8t8An=QB@{`>8L<~4*!UEFFQ6Fy#Wm%jF>vf_M`GyShfBES*STt+ z7(5=l$B{Jv_hBK;I7I^%zh;hJy${DA-gg13_g7PT$l^EKGK(1qu}InRt0^I5Vdivg zW(@LUYi$mam8OLH9WW?J#m2%a-|*Y;>97U0mHFR`B>SOUWr75~0=eT+7-zI=s3KhjLnPhTsz)nvVJ+de^qv=VFb;?xaWtIlO^k!rul#2r zU}Sv&BXhkC3q0(8WYtdL#EWm5#dhRrIz_%J5?kCJ5YIBhAwXspbxJetw7nqj-bw9I zjx5(|x@&*YzDrMtO!OtAgBH>;7?&{){^?^dBaf1r`VG7VshzX|=~JHb(W?x!hxeP3 zrTB#4oWK(C+P)bHrkKVaQ8%M2NP({Qxjpmzh$ zc*AGrXv{Qh%&SQyiWkWws=$KjdDA@g#^2l>RggHEq)|#}k`LGTeH%^Jkl|{X@9{kC zBZ;%af$`ImBX}Ai=19oT4y7?2w>v+|Unp{!ygz8?{?$}ciTTy%LiN%-?U|4d03{Yj znILRG4tVs48F+{0V1#W4@)jf^ga+t!!3=7{vY{bWiN1b`GhgITEQiLRwwGJ5@vLf;;o2nltqzd!SL zhXJ)!py12vXJ?PS$81x3pY_Umwijd>>~;TzwDr1q10*zt>?*_EVx0=`St$SdwS69q zW7+?~DyVDzZfBqwRMkNF+pz+)ztx;buHyNgFv}}wW6a`Pm`N%Hi1rdG**auN2qf|u zK(wYXYzCw4p6(Y1u-aYzfICu3NB|)D_tCKHl$zIFKpEw=n_==-Hp`2{pUasLoF zmevluPs9m0yaC)W4oZ3tfW3pSaZ%12)6dH#^emK4d~_-h_8AKSkZ zxM}t9>$vY$JAg?RSiW^R0FPG&mF*u`yVZX-g3JAQXK)V!*whCe$N&)`pV6`G$&-_l zbAUthQfa4;I;x5c!X;PRqE&lJT@HfEA=TvV4Ck(64 zSKkA+`Q88vB>CTxp{RD-MC{Q1#W7#v{HMR+$w&m%kMQ{H7exLrn z;<)tTgE|`*uP`v|e$d1n0nDPnt0xV9A5ph+T&Ug@u>{mCS@iPf zQ~mmrW_fo`#C_}v-!T90n{;3s|5~*tu&Kf5C87pYu@iV*(hcAq+8e_DHV6CUY@^;k z1$G_PPXL=+F2TmOwrAsh-@3jDRI9uJZgNfp4uqxvum1%W6-)1V1HE_*xDFHO-lxD! zkv=`9i1YV{cKb8`zUBX)b{BX*5!mU#L&UxJPIm(if`G>pE`K_zUpH~@pHHXX04L1T zdJLDnw)ze1Q=GN?zVrM>_4zfM_H_ddeirbf6KL=gVC=ssU0*G0UGhSp`fPSw@~^wV zYrNb*bqJTU;1MO@npkLK;E+GCO#r;To(bF`qy?ktzx=WtN8Eo+%hF{40#8>zmvv4F FO#q?6oc{m- diff --git a/_images/2.6_resampling_16_0.png b/_images/2.6_resampling_16_0.png new file mode 100644 index 0000000000000000000000000000000000000000..6b5f8a3d1ffd8b2fbea4a1d0a26f32e76317eb53 GIT binary patch literal 37298 zcmb5VbyU>d8$CLr7$8UvN_U4K-5@31Js=H3cL^wplz<2f-QC@#zz`xJFmwrsG>CM1 z&-i|S_pWu<{pY@G`OXaUna`X#=Q+=__kQ*XS67wC!6Lh8F23seQgD+8E(!+j5Xd7l^uJq05`}gUNG#P087Xa_wB2-n5Auoh z^-5H^(+3Xhxf;ra@|=aoZ)45nBht7T2~*pspQXN=QBk%2#Ql>#HQn-0nkZwOCI827 zzg?#B?mvA@R%xUAvUWf!>ZjNPX-)HIZ1V*4RoNo%=mixVsa+}Qmgz-<&v&WPjOJU8 zTPJj`)g_Lu)3olPU@*^Zujc*6z!64T+FM|h5cPFlJ%98Q2xJYCgPsHk&Mg@n^dl)o z7%BRZ_YNMIA_&CxJ~bTu_#ICYg?`MUxeq=XIiSSVPM_ho#WFfO%bJpsQX)oIlY;*+Q73)JtNzcQgGc(8h@q=>3(XuzT|$%s#2 z)6@0kMZf*K``L&nou8lIj^}(2`0&_To!gq?zY%2(GZP61OM;pG{~8>7aT0pi_1(o< zg*{Y%&-&nxZlfR^92~SnSP8Gl|J@-H3qRcSYK6o+FtB6x`7OSlCpKv`EiEmIC3N>R zZbKk1HDZGca&w=j1zv12zi;WGp*;wdxROc}bd|nOBjfGuJ=zys1m>^GHci;`E0ouM zvaI;TMKY?&VTOn19UhZv8Xg4&g=}jM9`i$Rx6zN>yoH&8ehKmza2#K?cmf;Df8R3t zX7IsA{A$MQBD<$hD75EbwQuG$no5Ebyny=3fM4->1)?!7$=uonN zN#h)_)HDvdKAxbIn-P3S3JCN(Eu4r1pGBZGg$>q{QBg12Yu2xU{x!QgQpIvtT z^~aCtL;hJCL}p$MWTGc)ZvXFg=S`{L>W61Nf6pcU%BOiR`qGj{MYQ{$MvSY946V^# zob^d?q6hE}Z$+Tu$o0+|NhgVlsrM{c39pBt6q?oTs|E{W0n^o4`-FU+kuCvOX^x$gfPzuot;ans~`95CQ5XU#+0~5!J5A) zFE95vp3ob&h!K-pI_ni+Cc+v8^Q%REK%t)Zzl!-rwY_7%ySafL_nak7tLIeT|!iEg|@=-AF78eWqf%56; z=^k^AjWd0|2S}3Q+S)j$_G4XITH(MeL74w;{n7X5k49HxB%ET{;s)^WN3X6#(}Ql# zkG?z#{Fo7VVdrrekK>+f02UuxQ%dsMGJrlh8BvYDP^iJeSa)CK(w zG;DBqvb)r|Bz}tiiKTj#1*y&*$$=N+nPU@rrYb{2Lq{9AF{JC$+l#+j1D}I;Z-@vKVyQx}<^*!SJvR zd(%r&$LXp!CO*rUQ?BT6*8sCEcK$OidI~+EW9t%seQEs+Q1@vzmP4t$b`B3>g3=a$ zzZaMeiiwKSpeM*iZ;9URi&}}xXBS6>5{`e{11`NTdYHtQr{zib_I*eEH-?-8Yb`QI z!0kO2eb;A#GQn7mrh=}gPL{aZj|e%iyq{_c&xd5yWgeyZy0rD+hg4jWHx(M;550lCS&h`!BKKQi-#p>jy}j-t(@Z zXXqbO4WD48=^3mR&@=JPpRTiu)33FT(yulTX*yl>N6yb1XW0iFjmjf2NsNE^>;_|V z;z?X@sv$wj-V}`3c&&2h{n*^x#E%g>NoqR( zm5Qvf8thrR*byB#0g;;PvzebL!%Rf5^!Mfz+5Jeu!8u0!qNr*4J=u;0hf%{f z;-<^lsSe#V&q;%oVUc~J5%J41g~IWb%D)$tyQiHe^_Ah3LD$u8X&(BACUMD=Xg<{}vkVP~!@VkzPorc9RskMwX_=6-E zOD8X5Z*LFFTe}5${eX{IFhMaK%BtW!-6d zN(zDL^_Ct|E$|Pa>*0_rVwF#|NeasdQs8kjNf6J zdhv4cGy-57?T3#ZMP~lJT3>l{j}oudYnK4M>9C^@+V=x0&p?Wyu4wzCcrfhUp_S$} zYj@(mJyl7vy1Ke@bGc7~j)1e&&U3PZNYksXgL9Cu3knO7gleKRf!EunwTJ|@po?*H zH#g0zaf$1=f3*(;)s4!$$GFPMv&?hlYAqxFf4B>U14?gZz{$+YmwQx1HtC)SACOBp zhK0A;50-A`f(S`We6j`oj*9f#{p#EI3ni}Y4zBluOwkJzbWs>YU<$&oN0tOe4}SWG zXTx~@r+dUC#x8Hr+bbz8jVKhCf&c&+eChkuAQ8HPXpTS+ZY9lq82{h8A05?kZI92` zWO6h(%+Lm&byG#0cAU0HpWa*s{oOZz`BD^8s<9Uy*~JQAkPOb-HH zwAyRekblt{T=xo879vn23pcj62~97?5_|MI{tzF4n{oa4fXHNAAveSMipGBcH}rIM z1?xAvS=EOEV5Stkp5d>0b+s-*vOQVuu8$vFRaN!5WhTUD=F@Ef|9}-w=QCI*z81JN ztHRda{#gXH?v24LD(Z3*VdR9L%I`?PrdL6P{s)4m;|#rOyJl!4oF!L8rV$4!GT)Rj z9p$UvQU^cYK8g@%TgF+T*!KzTUvop3Ozvz2`&GbNf?kA?Q?slk&y&%) zIiq|Ha3|*X3`D~ZUTH@A=QznkeMO_t#*Sl-gUhAAi#qihYv=2kBqI`k+pbT+53GIM zjfR_&P|M41s+%80#~7cfZhqgRdDm)dinpbR68+Opw{mqjLISpU8an@>6Gq$N@Uy)j zP=Q1M%tS{fR04qPk!H&+NLB=1>=}|PkmlF=dZ`$Z`g8Q>!J-bYWFE50*%27_CI0Z?nQtP{dgM^g6RrMeB|z2W8^FG zeIKsOk$=wtaDUtdh*imbK&!+BegEVMx~{wv^x8=RusoE*;m>&+`U(0E|K9NZW0@ci z_^A>JpenCEf{0x14h7YUPbjcYzMVplYT`~#6W$HuG*C7~bbKsB6t9^bY+sGIh zrRwYJ2 zT9NewV7unvP!;LiH1xZWM>0bMlHwEYPei?!0vdfl#_P-j7gxIhuo@8^jjN~bqNWxj zRtU&aPJMlSjs*$E3K0aNOnq7WC06Yi@Te*h3(mJp$;uIzd#xiTWh8(l0aj`7#{KHd z6-_unf`IM{UuoLTqiYH}Bkm?W3QtP}H%FJnrix0$FB$I;92}f*5JJK|EWwGlAW^~l z$EgTBY;0@*217zZ;E$|E`_~WS74sGDOBHKJ{QC7PEX>x&C+QvD2|~4ScjVj1$oOQr z5yhnvc#AnfaTL6;3k(e8=E|oI>|Iz|QX8-wc$aPB9bS=q~QN1CE`zRCU`1{j$0S>aYsMrfGqMGiPe7vp&7GD+J!RL?$mMF;^hkjb9iEF0 z4G;Sn!aohVH{VgMYQ;$#7L%%QLy%3=)Yxdh9tx5B_LZaw3wI zdmkH<%S^|wtgu)gaMJ4^Q7=>L;!3zT>r1sxJXF04g6(e3`)qt!m29M=m)B(DQ*{zY zmX{uHayv}=+ciq^8H-YpBR2zRtLeLPLj$D*ay2|{B`u!hyqlZAxnpYsgxGt1 zcDZW(545piuF8>)Po!D|AX)ftz<{(ho@dX9;WKl+?sQHow{JBBC!j>Kx90T~rWK0P2-KNaPq$;R*k#WrAXO&slck6T9IKuC! z`fPHG*Ar;Hy~Kv7v!mC65v;@IPov$(2t%pNdlfk~h7OgpU2=~IVvy#1=M*b97!V?* z?(me-ik67G_wLytBZ%t&Nb&0vS(K8vIf%JUkqct6nT2t#Xw(?1L{@5_m;rP6^XJ#F ztg57tCS&(r19;9TvjIXUZt|nyV8v|+>K+agoU>(vcD6G}!m8H5?`%1AbL8*U$UqG{ zn#!(UK3*f@i)#2-dZ+xyTo@ZJW6NKNP5bO9G1A_8%$Vy)lcZ~W@M-BRZSOYv_OVq;#tGp~Mp{gX+8W$SSjil`uoYFN5Ul9)fR zw%D?qSckm?JJWPKBy+zgX+O5rnnhhY`{SzqA46@koWP9IfbNN2yF1%**_WjnWtwYu zgYnos!L45bEL{MYobao&r()Mf<0mITZv1k}{gnldkal=Y^=5S{|D$SQfI%HV3xkTe zMk2wzTW8e;nAJ@K+rN6$nTc}h?WbCLsc=K>UcP*tUMr2fj;QvUpwn*}`s{fRAq;}@ zNLJbj=qslIAKb!I@_*l6^?s9_p3c#fX;@V8k-^f*X_y9XUY*npw=h7IQfEwExpzIU zT-H>CQNkV$L=o~Mte)5}C1I4eFFMmpJ+I@vfhBZl`h3LrECV)>n>we)II~*32_h*u z`H4KzxDvB>TX1}QJbKmV8m}}m#mXRFf&N3+=MmTA>S&-{@RHWY#0^R_+(x_ql6#NE5FS;sUBrR?crWmo8=RQb23w zu-mK*q8%tDB=V#(+a|cdcH7$B^$ZU#H)_=6Pvx+^wK81Z+F)pCsP8?pu~BsG&6DgA zFp|ax6r^!mm3Ry$(x}oJ*Ti)upjjGME;!r2b`{GsFAn(5}a?P1?7`4#L!wwyk z(L6A$QyeN7<6tR(81CI$^l(z02H3s@$Oy*4s+4qzgF>@3E>8@{F1jBSxCkm|tM}tV z5z5NS(+G00_j1t;3MX+?+$2$Qw~ZFsm>U`HV+%Yoc7MroTcaDIvHIRfGOs8Z01Xa; z`4vOX(-1xDkF0od^6~+HKVOEMj#k1*NJeerK`z|2{|VnLa^+oESSZ_gK~Hc}T{~0u z{EmvUvS0^^@8a5E;$?-_>e`=YRtc_=W_a6*LKv@_Kk%HlyI~R}lHSj`t3(k-dN+)e zGT_ZR)Iy@TckN7SE#u<&04QEG>Ug!8%5)1b`f_b}Rn0?9U5QL(#;6swKt{@#+F*_J zb#-RT)BZ6I+hk?NkM)Dw;U<5bEUNWq%GspK@Ba~5VHGW1abn?`KZcTEN;dyDhus{% z=ezWZ5Q;*XSvrFeEDUqb>7){TX3AX!t*vwQXQh2w7EWOQxBo6lWhZ?c)3@718uyaD zQ0WV=b4VFqzUVp0HoxXNFKLvpab`)=>Z~$5!cQDg!w;!Gj&Rt9yxht^wLTYrc?FmkI$zcgae zZQeIDj8P=kM&3Q!!gx=H4RwMbI6;-d+Xt&8pcj#CM*7HZh_wi@doQBhG(*6WSGG^FVi zsDIPOQ^ff#`}!&5^BozS+cHCJ8{&RCGBULIbM>_LUHzE)jkenG(PEj0Z=7U-tn5i1 z1T5HRSi3u#EHkRv9)fkxN2>s?EW&YCO+2 zP8L#FyZdizN}>cc0*;KU3OqPAu}uZZ3p|8j2OeW?y?9B+HgJ~;R^y{2QrO45al5{o zScP}&gE_IW_=&%KQjq4LD0l*#WgA{5Mac znxZat^$4rc-NvQ8DoMb)X-hIa#-w%cw13WmGq7kEsgXz<|C$!)IKY|I%prN4mX!2z z#7?pG*M0M4)NYAwAa zE(t7$r$KnE;wK_)??SXG!${x5BU22O2fnSjl@XgcIYoOmyP({36+b$yHX9F5n^4Cp zJf6ee_%c4`*<)qDxtg4rSqPG-Kfa!QjrJI(R(T6kS`xUQjvqUy>bC&UP01`JsYRYo2==jh^S&6$1q!f^A)E!T?nlYZS z@$oMR6JmwHX_*DXum>uCv((4&*(`sxu66i+ko`Q=p_*>>6WEl4?Nei8(%~|}AQeUF zX3xyb)C}1*%jD?!Lh1>s3@Kl`&w==!Nb`q6)X6{@&^AKhO*qZ6GQlk$(R*gXn+C4# zUS2q+|0s;(BOwwM5ReB`yEol#H3*e=sW$eRn0`ESM+-*~H$=M5X+bzq#{sari;D~L zFEs?4H7tGeiF3qTg&%V>GKO_Deqq!{QV>G2KwHVI2or#Ef6U&td9@2#t#T&odfKNp zYr-BIANLs(O=!a-V`4A+Z&X3fteIgS8X1}Ug1qQT9a(ogpwkG!X)H$K0LnJ^qlR3U z=lJ5-P;ATB5>mUgFW)GgQbN2PrQVFdIsO%R8=?&bOJRt|S8rX+jfu5gspHSBF`lUs znKx_nf<(MTDZGD;k;tlf4Cd zu3@k%0a_^~Ybfr1)_C6tf%IZYbkEi`#=W3`)}UP0wU9>qsh;`igGj^rhs6`wIy8k? z-EZF9N=ZxehyulQ?Ch-R`NO;CdnzitYr6d^`W5jfS#Jhi9B--5fkmUf92f#Yg@cPr zYVm}9ux3?SIn%VPEDxOqh-IB%Fj#aFv6I=_uc^BG?kl~eM!xD&I^-zr+TDxGX+19h_D)OEQ)Wkc*MEr0}i_Jw+Qc}0H!uIwBh96g)XY*|? zx{1;hlkF+~7unOF*WgBUw;Q4a}4;(rL_nK|-d5pyx9d=9`on#7mv24c}tZqeL*SzV^q60%%UT47GI z;v+f?#X-qN8T!k06nfRD(i1pb-nKhtuKT^Uw6L?oUansq+_hYlUQteEF;io8a;`mE zz}Zn#5cSG=ceXxSE*U@o4XrSDsipyq6ku|rmGxO`dqT422z#-|290Db^kV3 zHCc~XX+z5QzJ$RwTQ|2cv+|bhidJLy?BRRH>JSt^$gvYpzQAIu(&%CHo(G#&M=Ggx zlP<-ZZlYi}xt7`TDjxWx0p@G_>eYN8jPnnOdXV^D^`ZJPVVx&4GX|s-6#3d)Yktq* z1(RTR+X4ztg9}2+F?p1OijgF(Wngu~otvLu4zRplp)uK=yc1Ouarcv9K-W%bkY>r^ymqy_wQAzaIrriA%fIDkimK09+qMl)yZA`_z4W? zD0Ma?lzl?Fl_tAqt@-&OXb`JHXR1a|Q0KX=`*qFjgq9pD#6jsENg7+vpi_o1=eo${ z3lgz{6ye*qZT?m!-vT<$D+C zOcXKrY05;Q{}C?k?2z8EGKba+j5vQ4lAwuil6N3PXz{{C21mouTG3Zyb5^8;`1!(Q z1#J7w$TPPn(nFNeTl;}-Iri3iYilb-W%1^YUpguAL~y~qEVm_CcDy|cs)2%Nm4<+d! zAnU3DrQ!rWn^bfpsDn>{6+(`kWMzPEojxJq^lR0Dy;Jo*KgnTmfdI9={V^D_ni`}0;>B-*tA&K>>uoF@|bGe>g%x_^+ z33xe4Wu&KD*;j7#QIU}yw&{AtqDuF+DjLE5CL|;*BYUxscd1NiI$69dUf5uxzTgp*rx-S(v@hgg4K&{~-%pe@ z6%#ET7=$Ihm7G}d@LLw+5{RDtrgg2%nvetfaDwlGNqx!+@V0f|$tnKVg(21+~)FHjLO2 z?v?fsqKE0upNg}iSn_X7SYS+I;VFJ+)n$3-FtLV?>7u@jq@<_4eeb%>&;%t)jhHu9 zp@%pzH!x#cvqGR66`}xoxoC0Z&L=~8`Q5H^z4M7V5)UsgVOH@>&@Vjc02`3zCAwJ+ zI`&?c*T6R;Z{y0Do>p6=fV$ufxx-G9#BR#9er->XSAwU#F8PQu5sBU2p?CetLrgk#FLvkArIB?$k;qygNzTP;MZ~s`& znmQz$Vq9{V-@u@r`D23C9}cf&Z(1z6NFFS8s565KV2P8A6XBuDtC23kZQ5r->gt(jKev1CVQ<2L_c*du$5dh ze+6STNEcj#+}7|5dz3Bm_}5VCOv7zJ3;7*qWzgh{NC(Dy5nLu7;J*3?E|e9)BE}|f zeXwD{3w!46#OZ0!vZQT~*oz+L5Ja*UnY1GW6JOFCSk{aU#QW*gxtl^ zPj)lsJCTw0hkCj&&wi!pvrXgS2Z@H2Qkaq)AP^uLwLbl%&*mQmawg^iTGTpE54W0K zTr>%NtwHwaB7Bf~1rtk8URF%*J3Ez~jv_q)?kHX)(&5$wK(xENyB#trHa3OnxAG%% zTm&7cv^<$Sy}U?aFfeht<%U*&%dx4oD3UFC1`O3u*I1aBZqR&7o)@4Q>&DxNDmQF- z%@>ZrWoFzz`;+({y)4_*AKIehK6>MicX1`30!%>-hlZjFC^@<1cAyI<<^-IYq!`>F zARxd2-oU#+5|R3ygwu&;c^2X$7O?In1g`X8m-Lf|Ph5}B%-9v$Z0|9QGu~Ece!1o% zxYPgZ(_wyO0$57Zg|;4w@l8bB=FV0J0Ad|7iJU$Y zA2`}Sxm8cH#kq`@%F-3weckmhY}j%AI3BY&C`Ts3C)7_f0ju#49unWYh`LnA4DI;n z!p#s^GmN#HJ1L_;I?74qzHfkOpY z1HvWhnw4B}1A-myn_GXhvSJ85-6T9!kCUFFif?^Zejbs6?!X^`mTc@^%Qk0Nity*7 zJCxxvJF=mXuFK|66uCz)%cF8nOju>FiXt;xUT3-w3t`Ht02V$Hu;(5<<+VGDv=(`A z;8w}RHz+r`z~YhNBdSU!;AD9UYxUwluDZ?w8$fAI^$X*zNuil_#m;+2!C@_et0v1vnZcjC;mn z3DwoyxeRjr@FP0T;G_*~%%5ApaS!v-{SxtuNtoq3XZ zbsun^#xS409pW$?v!av8ZLs<1M09LO7aNvqm$T(H-RPXjWp>y+5-?2jE-z~o8I`7{ z1!>6SAi_Ey{{Cqlhzc$N_X_q!DP#N#;MfN>*mjnd?>yxl7u#mc+O=S6^V3H^oX4+= zdr>|^nSoroJQS^yGBRSvIk%&*WpMCef#+*GkBDSc)>w$Nw3zjIfCm5V+e7~yH}T?> zz^db<$9yk!yz7&oy6tx(zHR&=G@@IV9D$6#t(f?1AmLO997!4=qm1UP+GzFF0-0&b z`-{Q4gnkMLn~Oc~&cWe9Amr1v8%4bst+W8_ z#3V@>M=<1vh5J!S4=B`A(>NCc2 z185J}ft|+2Bj)<*a1EI(ES@6hKiw%ZR8Q7y#!}NXi-b;)Cvk9wlT2qC^s`1&`0U9g zru|QLs!524{mg0_lAx4gpOe^fD;rh5bY*4mIhOn@rqs~l2B7>Kk-#_O30?yulCdlWH#AKxJw}2e6ksV5z17M3O$ZN&0 zqe8pmdxoY@70=)Nf-V&ov+)1cZh59`Hc~MZu9Lr4xQ}dN!Jl!iuXvSazq}obAW8|3OE2Q zf~dJ#cX<9c($6Y0-U>0X-(lFuA8T-el{H}w&3=8v8XKEJbgZhDBI#9@IeV&)VyXavz8r*N7`Wg#<^f_R*roCA*x5 z9nf(xQF*r_oemjBYQZBcyj25F{-vH#+1%XxGST%MR(hDrb!1H12;bErvGydRq~te@ zL-`NKJZ70%G2L-xwNfdrCvvai{SQM02*$N8=C_jna#BSBQlZHh$Bl&@hm=!U%E-v@ z%71B7Yk;ObL?3F|2l0Q9;f5ABHYS2j@U%NHdyE2r`h2IjJ?`gxQcc58U(n{YwY2PU zEz{)JnFfqzw#w`+7dP4hT3apbhkQwM=lJAAxF++e$+9T~#0pWFrLlv&&)yA(u6{f% zEi3V>`-9a$F-LM zRSazOIk#1LQ84@#=*xi7hoRlksz3a&Ji+!@@B{1X@%zV@9OQ?GFBfa9uqi}+zU$4s zmEJc(SdAF5L)|Td26hTTRx$lj+ftva&R_xi4De_z#@PO~PFa=uf^kcjy6Gtae!n_K z6!7WXmQmU5=D3f%kxYf&xP8OoQi!E6%F|*P@`(1F@}w z#H-AtBxb?8mF}lUN8f>|M#Pk{R98=rWKKp)@l0KXeVyB>N*oPR@!xPxv_t2Yw0}RG1Ss?q`E@+HL9n01O!xm^tQIy|hA2eTp z*`&G3Nl9sa*e+4u`5@j0nsYz{B)34UN6F=81SJ1lsq7PSwRjXF-4Lmi*$A-OT`PAN zbJqRbz>UO3s#^+rKiN#?XI+*)!perA7@GDU>M2VtX>Oj; zs4=Ceb@(vg8OK=%{J7^|Ya(Q5dl}<^GqP7M8_?f9Qyu2Z((h2*(9LhpMm*YwVeT{s zxqTBwPU25&^7PD3=A?``Z_-4b#VV)+K_b`f8HpML+XKRLqqED)%c$bjz`Z&1kQc?l z_n)X{P5u|?FcjwV0>^C(c~7yk^EWz~W5*En`r=<`w~m(=0^QX@niA`T%XC!>mSU%0 zjZ%@5*Rc@~K4jIoPfUPiKUGoB@icAi7m&r=DfE^+xci$YEj`UE-+ydjJ|Mgz!wT8x zC3E&@o(D56T8ib~h297Z?@_#efyUM(Z%HGS{AVaY;=J0+PFq9q64760ub{6WuvH+`#^% z?Ar$3qFBzd$uJF)K6U0EC}Oqet>{umz@_m%Ku2nWF-}98FpUoc#l zDy4F<-u+KCJveYR-D9mtshlq;DA-}0a69-F95mtK?HQ}e7>7IfAx*3Dwd;f%o&66V zjw^(fhN&qP8w7PmEph5t%`KGQ+mi)o;&s|c8-poSFrwL#>(f72$y6yaAjFrTN^JO zTwS%%MVVlcUC-B;R}0$!36dxI!)SY=0{xCI6l8CQZWK_Yfe8t7e-4g~ZK?Lg@PCC=*+9Iay==z87Sak;QRwzK0f0h647 zYD1F#^`(lbg0GrVzwMPwFaW>V-a;#d#AJ7Ockki7>b(u0iJ1ceK42mOHYkT%NRBpe zTEgpdWt-QNB=$?90n9iy{z7NBTZ@g(R3XwdhSlbn3!YQ3=m3-tl|(A#kJ63`FFdf( zdj)Ci@&N)V1YNCW_@oak^+W5xnw!^7)Cb>Bv_MvGzLRSgC#~W6ELro{#J0wQk>53S zeP#01H(->8)?+uR)?*SwO#TaJlE4g7m0O?S{Ge}`4`Po0CYY^6_k*YWby>%ca+CI1 zv$Y@ZqUy92u%q-iD8wceU=9;Rp5uHQ*iL$Si2;F?f`q=&kAlv+E2dIYQfz^=jr--# z8duOv^$3o@{L8wkq<5xDN|6*J^gV;RaX^q)Sf2#Y-b3*{K;n}G2cSN_!ca&kX0!up%2 ztzH_pzhUV4jm+56Jczr6oOm6(xpp!A6N7burKFW9U9}Y>qdCM#?TfCzDFDRiwpeor z`mB)G4sfVrR`SIv2(oK1n&n`>2IqM$IHPS-raWV5!(%7#AjnUua z0G8qp(uJtjWBtfh#rZ#@!tT5Y;HnkU%Zl1aa3DHuKNv{O=9|dLYwklmUxj?fwfXEk|{Y$0(kE z5cv4H`rnQh5P(>h)Uvk5OEUiKS}oAHiEn;QVf;fL0>G&cvDOgbwGU9tF&DT)SZ^)) zZI`13_*P0~pnKmBp`Lg>p<*bkJ(&DKL!-8>?Og;>IT;5hGC@X?Byv6e)MHq=Uc_5v##I7Vzw9qEv}RLz z%XifM{aZ&9y3_Tnt%^DGWN4R5lYhOreb2aB#(uJl#h@RJZb~@7`9cx%K)jJwc1}*#7QpE#`fo|bOiCiG0;;;?#NVg>GI}6TiM$0@B|}(kJZZO)(wb4Pc4t@^o8e ze8cBJ%5k#$VUj5EJ2GJ{yY;(eC+z}HmLVJapqs~E zL~);Sd*bNmsN`M}ke~1*;4QTs11)?l`hUjvq@2+BkL^7XpUk4?t0q@xz_4j-!4bu* z7NG(T%9wFL`otcA+=oJ;ERC|2#j^9*s=hxS+pOC*Oa)r`=Qp=cuJf@{ftqDOyi0w` zz>_RV2fRHXghb+VIp3#zEfXly#*DtW-JyRhsEi#s%V11G;MN8&w9!c_h86*dXUf=J zMI*A=!_!5q05~?gCvt)~H=6V6r33FtSy%wsabsgNmzSH{>>eq}Gh7;zin!d?$ULNS z0L+mh+bJXhZ!0tQx)L>I$(R(V2F_olTd}q2m8U$b!hNIo-$;z&bAwr?5U=gu72gCg zuoad_>|DgOJxrP)Y0+o@<(3Ujqh)$#pBEGC$cK4&cvS6|8`ekc9{fBNz2J5R%Q=@& z)Yl7e`jc{rEmv&;Rp14)8blC#Gy~MtZ0@C5oLKsxlrvL-UK$8?n6MY1uR|MqpUfg} zYGQQN=BNSt&xPkL_2Emm>eAcY!gpBzL!Y}E(I(G~y)?3^bhTb`>%D#7zZ6%HNp%7` zWr=g>_Ub`=#(*U=kS@Rp#^DyaBPcF>StKBq@7RV_t}2PYo-u}#9#}j;EtY>HyeZzY z8ZCkm^*rWsbbMlBch#!f;3onWRw*fo4kxX$5sUQ`D2g$KXiK}WA?|+zsL(#Y9kjLBo0N;es^|-C1 zYBX{IIKCc_6!XKhk>MT4)q`N<&nEk+NFR=k>HO+eP+zRAD+9|uz}dDNkP6>+1@8Ki&B`}xT2iDj+9s(ChN^!#`L2y}2{ zEM~9c(kWC{&N)Shm-lDOB$U_|)KPEVMOjM@|bZ3BVU?QQ_81jutFd^^~#w1<5%#D7Qe<-zVKI z(8k&tbkGs$&pKuQcx=l8ZGeq*jgPqIDInN2oNNZv)t#N0H8T#>gP&MzXXsyA{(j07 zhCNj6kOaT*ekLfW0BlVLN6Pd)V4(lYHQG59A(>RVT-=r=&vUqF83`}@`@>w9u|vC2 zqoct8cmy$TK0Z2{){UlCTlh2UVKy~Czr&{EzuFrGAVhy}hr*ZKzE>`D$5We-6d*>G+Foctqc*Y!pyz`)W6^Gen~^RB}0|fxF#n z=gyQNb%LT$32y0BaZ4U*5(ADj4lo9%a_a)G{p3~B0H}%RTSWm6)V;No3O0rLsE0c^ zq|D@z$c=_MC$`igjm~ioVaK{KqAiCCXK+%_JAd09`en|!bAjR2RYcM9@^VUDSQfxz zy#H!!lnRSPSqb$@#A2*TAtfQ5%Y7-?iOCj9T+npryq_MuP?jtb64q0!4(~2BtGoa{|RIU>5 zYdP@i*w`>p2z&I`W@US@rC<@41S!3lLZM^;x!{b9AR21PS5om^PchxPwB|`p`2drW zHB*1_56qHgng{6%v4ys5FcCZeEoLhYdiY=Jfb206jhVbS!Ur`PYrwSLtw{Y0<}uY< z0c$m$N*uCw#J4tp0$bI&8wu#Ufiug|+aEVKfy>4Fi_?z~c7Cu2D6PCA7546 zL{vjVN>;w^rr1{;5NmHWVpZrlGs8Zd5%a^jN&r0Khb7xPQVX<)yxXf;x%0Lz?5w(j zh~NX@?qaF{QNyC<=iPIZTZ%1XxOKvS+4%d9AJp~?ac_EfJUfjS+Eh;4>5K5B?h+Nz z|Jyd7vD>>FE-biKb+9nE{lt!cxe1|#?rorM4>d!dapnso_~kF>XCjU2ZSUCmQ)9mP zc>UJFq)VavoEDkEsgD|7fM>FJ8iA9n+oEGBS_<(+E5KGgL(8C`*kYFny0EniD}6u- z({_K7Rne&XeH;3M#1g2}rB3+x&Yq(oVWI`12v(V<=u_ePq-0Fe+yBKI$+%XblNmTe zDf4sb9arh??MuJ>xKdi#X!(5>dVzL}M!ezI6K>del_O{Pc#O+=*5@0C1W|GCsOKL!<1oi;WLlr!D$7c+vTnxK4j2I+_vrS2H@8dx=9jsH0YZ;C9+)mQl# zz)-&N6sQTr!(`?6;Os9;va)aqJe6G#Jub8X6L_TY?pzmZJ-X1zbUKFK-O9=5gv=9G z1X9APilSKGPO9RsSe=F#ljn{ygUyP$*Zq@t)!fbOg%bKud-Zhsi>KwVRs{NBTIx{C zyEhJWu_Nm+igFc<5JG5#VbGr(0K!95v##*+%xQ;zqs%T+hDE7^`Wk zWm%@tkk|-|u3{LUsRQ`DOE2nX-)Ub5>DVT}6XmJ>pT+u?)N+P!_i|P4%aoM66<&XI zji`(GoKQ^06&m@Rf=3sEQUdkAGmW!Upcqcz8#4BwTuQ1Sr-AhBt7|x!s`j-UD3YFR zA>C%APoB^W)?gI`2nYy_1G{ciPMONqRm_JEX9Si04%yk+@pzypv}Dp}sH}ujQ;xv>7k*ifkC;3RE=;Zu zbVH(?RAMpY1G>_alU zy&koOwM-YXjSX3C#hmH9j4H?IGQ>fje5!HtZ=*TL7P2r#`Ng-I7khdy8n= z7>iCmc=MmfaqPkX}u2Z4FI*LA+*b_M+~SK8jN`B+;6Ya++q*qoynB088Y#u z-LQMBm6^}Q)gao0OM4Zsrp%*yC%N7aGo^OXmPk_l_%S?eaBPB^kTf{PQQy#y>V$xu zY2%5072WH)&EsQZ%Wf)VQ=lS)BwjG8(j&HA9=k|S?>dTx^Fm|PkoFk_paX9m4bER9 zsR6}PIL65NI{Lo4TQ*iv@dlL?{EZ1a$G+<-1ww@gY;smOTe|@jKPNA-OX&q9|1@AJ z^eryt6?WalaY1hThV%Ew0RA}3!z{=BpN^An(ShRP&c^)CL)x<)D>S45#?emGG{G`$ zj6B+FKOaeGY1F0pvAk_{3+aQgm4pEu9mZH(xG`oSMar?v zSjuaTWRZ|Svh#=x=CrnDUzLbg)`ZigK7i$r8xMSycpVJsr3$HT0c3t;3UvJ5K=BQR zW?LXU^BmMm?E4>Gs91>C8#2^%&!la2%0~N|zfs#ZuCYI&%J;m0=}K8y*&Yq!AN@uW z##m2VJ3Ffx8S=9;c^7wQEMJ%K$RP(P>2|+t)DJa9@@>IUH5RfY)R_sHYAQzKZ!}w@ zIbY>;2Zi2+JP~UO^{mm?qb$y+OD#qxp!S$keg3+W21vWS&YYU0KNPO{i!Xd6u?|T} z4-oKcrq|tr5;!#Tl>^LEr}o43$`YtNdIwj2nV%9(-6cO98oFRNT3MRb9%M9xtJ5nm zHYf?wuX3^LG5Mr2$v&8QVuj`0DTFYyR0+9eiRYGm;7MVq650>G8rW=Xpzv|KY`^jN>frK`}TDUfdejd@0T)sN@e93q+}1v%>|S=sO?G-9g32 zfY=*|_`OiS4Ry`dm`ssqeB9Q)t@ZAWn&W&aOsQ#|e39%vDT!-%=ivVCuUph>lb>u0 zDw?$NxHDxjy~ChR0;n(~k-NQIUeE9px3IrESl4NI%c=c*te2cjfuy|{_i$I{-$c#C z;x?7ALe1l$c()6sx2u(zZYAGLRz0y>Hm}20Wb8-6Cm5#kUACj+*0?grjBKPHuKQ$~ z9qtY?liy&|#EpQiMfl+1PU>NNr^w9Z&6^)^xU>D=wDm(-MRqoFY4{K_MApO7o1YAG z-}ky5te&7|HZ9`UGxKupxu{cG*=WwE+X5Zkgt)kCjOMnhvjZ7`1h1;41u_-g3O`Us z+PSkyk{1r%!^CIOruuIU@N_jH5VV^#mIko>9*_8YpP|g0{>JNrl9Fr%8BMs()F zZz6RV%z=VN546zHG?b+*A;N>YY*fYhJeBuNK}TmnwU1j6@VQVqST7#`&5BkH8x#R{ zn~Bt{2SIU)d-Ld?N4+x7Cgwt{1~Zpn|EIrxjhJ-bueZkBnBa`?=+8BkJvcZB&wo=5 z;wTuTHyl0)D?CW@m#8`4!8rQhde+~T@Q8@pBcv!aaltLMimt-V;{b4auW)@L$UhDs zN6@c;MGbX|4M3+08d(6iZC5rb2gAk`oQmBEXw5UVln%%!vKs*c6Z-p*Tro1bQY?zh zB;7^SXzp^&`<7}BWvBM%3*=DnHQsK`H_d9`kk6v>82{CAE1FcRqyH|yTBRNR88&FoQh`tvsRJrbQj3FOxT08~o9 zm|JmZPu^2Kh@76dWT|M&?EO@Q(cawLuS37};YXKlTi~wguw1=#i77ocU)1B2R|S^l z(x}JBhaGg|QlGKf9O`R#+zX_6J~}q;WY0~YNWFY~B!-#pxm*~pbmjzf>uuB2_;?1! zC!FR2boj?Il@IDk0zbT-)X-{VHhxi_>KV7U^|pPQEw;Vr(3{lxSfS{clk4Jbv#_uYVpF$dtVfm>h^D!-h(3?vRpZhZ*;pPWZY_qO7o0lJv1Bmza=^?$hpB2i ze%Ax;E7w4bm584yA3GgSQrPhISpWm} z<>;<-%_D6Mq^(AA3sW+uk0NJDbFpp-`3lr=EwLEQOlkFFdOTm6i7j(3>6P8voQy;# zI}y+BVQC24i(wh`R5~xTF^VGS{bTH|_lw5k5`be`EEWYLWgD1e37R@fNcfgj#>FKh zIG#+9VUz;dfd~19b>3nIG1DB|gU~t##<&yXDLL_ zNt3)dnf?l36qQj-wU{4#{N8MGpQ9H}#VwFq7E89s3Pmam>BfOx8FaFmECAI6_~(qf zfoG$y3r(yEkGf5UeVSEZdAkw7`~2Oa->dW1^Kf`)16c6vteuU`JD5gSttLUOt(s-R z!^p#PuPly2ggEz`$0Sk8=`r29Iw%AYnXStc*CQ3WXJ^@_9Yrc3-?@^`4V+X+@PXB? zSI5p^x?GSi)Qg)$`Q0&2<36VU_}}~}(W7{iim7)0&N0tZx15jZ+!Cvu0$H68w2z&O z0Q3rY1SyNHM->rt*Eq|rIon$%)6RKE(wuOv`ki2Vr&%Mfr6)oVMuu@(f>rW$a)RB4 zDo?uo8Z|BM)23lhTRQm zG>2{f7#(8jD!1HT@fCgvkH<#>%>W8*BZawV^U-uq&hd?8W@()$CG{|%Qh7GVtUNy_ zMXXJG)V|%#iabtTv4J3uV+sakJE5$CLwXpUZo0|~v_=Sz8Wy3!h9Y`C>9_3WoJ60d zGI~KdQE>I{{8n76Wm`(+=*S4dd!-RJCF8iIX55_*IT=6y#Qfy-h%W|a%7f7g*NyiI z4L-gaH9Htn9=C)02F-)!y7Pkg)I`^_eRl)K>J-ThH_x#s{gNV%I&pMaO=*-_n`VAR+=p4YD<1D%x=H_-kN?M~2GOF$(tP$n|l|;ClhZy*xoW=j%K)wI4>Xj;dW>4hR^?gxhpmEEto2|7U=qL^!+|E_}LY&Sz-qnvK-wBin}s1JkQcTj+eeq-V? zXy)UkvCeIBH@Y}9YImhL@~XDv&OdaA4_&`@zQnO-WG{JcY|tM_`<6m&rBl^#T~&MV zwc+i|*Fmf24}ryah3^7%VO$0xuLC|9Ru|;1x4WIp&C|IC$iD9>*m1rSvH_@niR+4~ z9^4iK;!#&`p#sy_gDiyxo%wXE(|EC2i&8E$JT4Bpdd<8W?1Jm$0^&!dCB8%R6vx!d zOIuD|!NOh|J+yHkt=4P{Cs%>D>ihrzs?qG7q8~i)D5L#t%FBp=AT$SW*WL}%YtV%h z1O75-40=4>AfvU^(#c_kK2k}z5^tXQ(?F-YWhHHdk2l~G#4bo%N}i01H@n_HCzzz9 zmEhI^6=}*6;@)@wmxn zd0dgv5mQuXRMyF04SENF4>pUAK<4sr-dW{-v@oE_H>*n#i!dBDI1GoL2vXjJ32e0)0U^DO?!{$r_}GqHCsBZ^mxB38$0rKK4zpY4N&-sM6w zhem2<1LHPk)CM;Vx@Tx8&dUU4ShwrJ=Xb5;xD5N@*nY!XscwR!c!H72Xc%kxsb8v@ zj~a*-OEd);IxWb_ps=pePu-nLRJfjv#RkJ{31Os^%0L5$)KF~0EfI2wp&8ys8r9JG zoJo3i)>D~RDy^;z8r;BT0~q6TvQsr<9YEcIV}V#zqp$%WRAJ_dW#3vV-o{*vf0%D5 zx<9rq6`;s)?7Dxg%F2S@iFkF%qqE`RocfA^Cd&1Zsv9(QjTRv}Lx6t`-&;t6Q3n(k z$r)+IcPeexV$m#R*@iJzr*DXZs41Zl3&4t+E7SKwE>%D;(sPZ=GMK;SkwHw+q2@b2 z5=u_*&AmUdb&v04d7B~F?Z%5bWf-%C_q+Gg#??^gyMTe*%qQY|PW##y&EvvH$7c); zet$Cigt|wgQXH2?((69-uDjJACuisHG0BLkS>DfIBX|Ck!Y!z&sgd(dOKn$M4KQb5se`SXaETNZ}THkoA1Lq%1NJahBUzjXap$-@f#JKIKB4kex!{XkUlhT z@erS46(Vhn!4k?fiC}%&2go#E#~G_gab@BE-XP>SinkrT87Un@#?B^QQd@l=70gcK zOvQE|=De~sl$qY!ok8B*$qCo_l$3+YFNltPz%nMHGA)5WySgBFxO%=1J_o=@wfVwJ zOG~o-RgoP6_;ncT7k}l0#-DNIh?i!I$4xOYyT`9lih(mD#@-EzeD;$bDkllP{9CSu zxQ`gQH?5YTXkJ!S(Eh0kWH{k`$3Rw(TvUhlBQQ3@4=z7)SND%;j~;k@jv8fqQjj@m z!3Sg32i3)$Q5DmH#B0QB`{iBLo579d;TLitm>~Uo1c7?%iHpJLhN+>HMf>~v-F3qt zeACA87}5bR11-`6PcD{ld6=EZd#d{!&F{Ic(0vKb7q3VVI!Xz@lbtVnnqB&MO1w8L zjb}OMf&xYpH#qpH1eaY%J3ni8P5?uCMJuubiY{2Hfa)xEa&mS381ohiE6CxHT$J6K zqXKEuK$Fdm0ov0RRdXJqY)Iwqo`$!bKIa)%Y>E-$s8LSlVrS)pYL~?47)`) z9;-Iz@9&Qwn^QD*{lr8>Y@9?K{A36G*{L>0Mn*0Rn>IzsxvtGfj=yk_KvBs3z?Q9x4txUB2_a50nxEB^? z?0)4Id(?!PDx}E($$45IZ_W*a*^Ec$kYU{rHwkF&@YUa=H3(=Dy>n;rHnDN1#=9YA zuS1afg%!N%+7^6Yhbwn5GlZ!iHfpz$ebksV7}}Wty9;2lS7JQ=OD|9V!B!^ey!dY} z!2r=8?d!PR`ZI3C$ZDWdS0fVqk~pFvm7rpI~VJOa92MEe3f^JTc zAD~)qCbSKaom*IVRssYXLm0xir91CAJeH9+1*8m?M_S!DO&91mtuc~Dc^TB(=7(tpLxwBkl<8} zpfCbEME#&OcPyPmfX-t+9~>GbBB$Zl%IQFM$CfGqp9Hd256|Anc3MVZuFZ(TB1pO+nzw4>4 z)t^9%OkVCy^(QEmOy8Q_qPg`5#T7bVsX?4YPo_*!v^XQKy&|YOr9hdF);yW8`(GCZ z3*J-#f0}AJaHJhqko9B%9c9|k$I^WdUb)?k?C3Exm!qW4Kuq>17Tyw+pcF;=rTcTmi}KTp^Q}P zOd6K=8s%)i+oAr;kfmi1|0;5Rhq?H77{zjlz4HUk4a?N785__h!@tbGI?g%SX!~~Q zMERC-5ij6EQ_|%Rs+T!9oc8exgSTbwL2CgRII)7Vq*Mjl={%48! z+}G&6wz3MbPHsfyQ^oes=exRH`MkQu$^i)pdAe+!4?hxfj?K%SQbDjA^upP$z*##Y zJgM4Ef3EN$#T!nHMaVEdmeU2C3Br)|ztPk|Lsm9AgZ;wL^#Ugb5G0%?&0JbucG17!^gsx(JRT~v2>7a? z;&+0iw90sTkM$SA@SW#lly~w{eBflP8H6Kz4!VWR#95xBbxCp3$^W$lUVJ4|nfaa4 zDS{4~SADJHT@j$}K^F@` zdK1oTIl=E+@OT9vSZ*5r-k_nX99E}gH~v*)-hPs*(x-1upo*S@lvYjfNB2=wBKWCN zG&hnd?Yf)JotjWX7}7sC zK$FmW@<(E>@xPn&S!ETtu2h;IM$S{f6^14a2K7oBLHdLK0x?O#SK7l`B^0Efa9uc>Gb7F&*Hpe$J0c z?VxKAUc`LvRN!=zt=0+#dQ`gGaIRB1kI(U4`STZqML`Ap*7r%R02KtJqSxZVk=*El zmqJMS1ot!Jeo9DuSBtSKT4vdy)3X|g$bG>%+syqF5>}*KUCBi!Cb;CCn1kNVkIA0K z*dLFzmJzipgqj&z|3tC$aaNjX>W}?rqm|An=?aE18%_`1O^l;$@av`%oKW-vx7r5y zi%mkOcZDGHsXVK?4Jb=Zp4fG-@pz(bn5>Fz^-eH%6+tIuFC_?;u{%klR>4nuiGMdx z-BkJe4b&=|o~IniZjRI!BsJ*C(8K6-iQK$tvC>YR{&Xq0 zVC3mLM9z#z=48Xl3%Bh@ckfWjX7aVIyjrMW_AjdlWp+NREY)l(4f!#S%^F9?k7SLv zZ!avQ+^kS^&NYDq$U*!*hW&~@N^vR`#%*&Tp`8V&SPdg1BaLRj^rY=SrMbF8xAi`M z>rAhwu0!F13fbG%_oFn@4}Z=M_(PXf)bPyHxxSGdkoPnqHsA@WtdbX#!zPxXTHXI# zBH|7RHf5cGOvqJxvOfaICy%!hus43eZ6~B=LQo0cDt?eD1;tvtDL3TzkdouAHW$Se zIa0?Ta8>pz7!FF*PB^%^#pP?=ojQ9m`l2R) z>Sx;m29J0IWi3^ zp{-y{gSqA>N8^G%k!muO&0wpL^Z>7gxGiO)mW|&co zEV{@arhkSe9F|3i<-r}(Nra1SwbxS7i|&~_Rym(Zvwu@CC(2K9Mf-}({ma5nUpQmu z3W`Av0fG7jF}YvyxLCQB?I{-@?-Dpxx{3F|_$Dc6>w zm~Y5eDB+f$95smIkX7vNLz)N^30myh&HV@2w0D<_T}1#->FM6 z9S>2qGyohBOM{qE=gRJt zgv;ZAFV3L;3W>SbUt=Em6K5~qFho^XzR4|8g!~uTNp60>i_?VlQhq2(Ia^@k?Q(*8 zEW#`)Zqcq}*v~uD78A}2K3D#(hVr^nGheiyXSyIK!Mm%_f7Y1+<&DoZ>j86+`3kYU z#gE}#5USKKa;#YzDsavDHAO@#_^6%X+AKEDUTKw$vdv>#v#^1>?&Do!r1`UaQP4%M ztOQmLfCXH+w~NQ4^@QG}F6}N9KAQPHMaPeyMN-P=^1Wfq3zT!%T_oZ|W$4+dd}SDK zc9Xckalmn1$oqaX> z@%*x}`RvjR(nQd193X|R=uzSxoB@!(?c$-QF;qI1pf;J5AM``mT(Tc#W1mehJKl^xjqp>N_#i?f)(G5p_DRwfwy0z0yG~sqBImsd8m<7@ zo ztxwr09t!mr{UUU&;8S$CzVJsshMLXfIbe_Eq?l&ZLPQH!OlSzFhjh&^6tjm*020XzpUfk3ATlNk^K?RBw?Mc!95$PZZ71W zv>|q7_8bPW8E?$*(cg+~Yd=LdO2?Qlgo;rWpgV)3Z?VK`m~f(Itewa8xgM6(W)qW$ zDEU>o8$1O*BwK3N@Ui-l{nj{|zAe)>SA)B%HydL!s~vg z=9)S4-W6ZHf1uFMDwug()Lkz3icIJgFx}T)i3X5?iOMyQ`x|{)f2OI?tTb(#+MzP7 z$B4b}Q+P z6K5%vtiFQIA!s}nl-N|%(aGf6!~9{hS{3i%T%@Z^S$gfu6sVo^C_7VLFN2T-H>FcH>F?sqTZ zLc__3Nco{p&(HiWjs}%nMSy`pJ8))K8FmkB2tDPnk_*^@v}-hM;b}1mXZ6wDNY5pp1 z^>9$VPHwdvTF=GedULcxWxFCUmf)MSxpm3uub(>i8V^?PV~YpDQN!XzFIJ}i0k5(F z4-$Q}ImmDh%a?X`04kF`kh^(8)87R+Q#J>?_|2jUQ+fVQ*}_0ZT4@`NZekTsPJ_V} z^mG@^pBR>xH>%cV8s=zI3JD46K9$-;)VX7zJ(xlGakplchaZo>mVV7zSqZut9aTSm zRrk_h6&pLXInEbR{^vOh&l(K>ZHdE@sC2r$}zt59jYsR#8HUR-DZb`7g>(-gO3b z8>jNyICCG(p{F_lmQv`{&BzJ6e~~5LKS|Vb{bzpYteJFKUjlv zr|oy_ZaMzdd-$j=wbD_uQc!+Fa+XGoFjj>=t&g?(XV09Wwi275F;Nw8SSByHa4GhI zPH-hlQosDwXRvmeORfjdSn@6?s<)%*K6EUlwpxNN<=-? zwK{6Z5wM+Az2CxW*h#8hz-oAa{k~yQIEZ1lq`qNQmOYxGlKv2;a|PSvJQ?>4m4w^< zAKz0y?LDEUZ7WAnoyRFfcQ=8*8&InVSRWX3GSbzH30fB~UVI??zIw)Ty&dymh}UJ& zF#m{%aa?jOo6sLU(|ugF{fg&Ls~9kbNx2=)p*XSTCS@Du5f1I+b3lQ!2*38w`7Qdn z$W14gm9Zt!Kr<(Y9I_fHt%n`cNO}4dF{HeL?aJIAvd9v^Y9_3-fh(Z#Y7E`KK0ZNI zV55tCd}mhW^{>BfVESy-VqeY)qgFp8P+~%;YnsBS&dxs)$&IMRqP;3|_ee|#Fv8Ol z4{@P@yd}EQtJrr6+!+2aaTC6zr+ke$MG=0jQ(c`g%vJo0?xZ>JxNPB?mKHUq5#5`io7IU+RuacM)qVMLNg8x?eG^U4;&Uw8q z?;yQ73AFeFF)}Ktx-;()mmsp~HgA5s?;ATJKYhJ6ZdGT_5IQZ80lw^)3DiLy1&!tv zb8_0wiK4h?XO7M{$sKFl3%P?zP`5A^dvzTZQY3z&ktUz><#SP8;xJJc7(bm0c5C{Q z?UlE&RephvT4I2(@G~g+o{wlY;S+)cZOLOfR&%Apqc}!8v2pjxe*(=Nf!)5R6lB`( z5^hDurGj7COVEG$&KDLQt_h@b6EeAow;D!lPksB5g?!MnlSlQ7@e{H1+0W|1RBKpA@`7NBDLTMYI$ZM*oJYS;Q~~ zVcg)ExrK5{{TD2(3}TqXjGmO<0PL_e0f&FU2@(>0TI1I*9(#?JX)qyukR!GQ;7B&?Jo|Dp7o*r9xyg z9;=g?fZ9ShTF)impaXQfvGm>1F11H?&QJuY!||X|W8hK# zD%smZIiBOpLL$Adc93IbM2xi3D^1Bwt!UruV}Sc(`wccJw=d|9%Ja%J3-+DXB$qAp z%YAsvq2NM%+oG#RHz(;rA~u40tJ2$h`57ch;dRi7B=lnaBkEK{p)EjlE)Qxn=4Q_? znpzidSS;|~3AoPe-;wgb7$^3|fvQ`ztTvgV~9%9q{Ao53`=4mfZL23F@@1k|1{y!N1QGJ4|A>iQL6 zL7YIfQfzGFQ>gV3Rbhw&`i9$-+}@KciedCWjiEVysn8*t`<$GdoUybNHM57aY5&)^ zAh17!SaP&l8aoI$YUMKT1tOFl(tO#yup~ z#u0n*^;VcxtKLd{ME-N23D75N`g?cIsnR;OA0$LFc)~cI zT4uCgTMkLn4Ul$zHnpSkAfqY`r%MJ&ESg4MlTGl><+C6AgDOOFoGOKSzqB7=p5UGw zmnb?jPniEm9HK0utYLHub3u=C%UdW>Fh!oGjx(xN3*~a}-RA*-+}vu$1-x_W<9>KK zn4L$Sn5>iCOkKs{b4} zM{yicXyJNKNRVM-(UN9KFc7z(JZ;FPCgJn0x^Q?7sOpFk>)Hkx!BcQb7xjLeXmIWZHrz_zg?%_rzVkJWssC}K<8?-5Ey z)XVvw3*WCiX}PIUaa_EA9Y{wXmQI0wNGKmeBTow^^FpHdiv0C?_FtLL_KMzbQ@#hq z)ibp*jJA&-=l%9~{nh69FM%hx#<5QXBTf#Q)wyX8O%ru~?uyIb1)@uEL~}u=Ihdv{ zX^DS5>7p%-8KeBd4D^5@*_dp15u$kqrSc1Uj)SPYOyB|3ur-3Ez!XJ!>|N_4U-lq%klTMckyoRyYh&Ij=b-vvhDW6z_IG8i>3( z7q!$|pLM~b02LqGcaeu6ImK3C_ynuAhj~7>@~E9*#A%}o3|NW`j2)9o*{rYQFOX@U zqEo~@pSeB$ZVNmuLB~ceLgKG5aFW&K=L(KIh=Z{hVW0UXF8Le z=5g51Gk2BG5a0uW!mK-$A5A}d?Mo5<;e#Anl+Gf}T?!>j3@5){BJ`o8gu%iXarfAW z_1THtm_YN=I3rz@d9<{|XAjqD)S=|y`r8}w+*MoEO)>xA`71h}BhicsZ@WA~Z=u*U zm`qfkxYb{p1p~f~jXt$uBMM|C(C?EH6$EMu`oQe_o_hj^<^xvbcm>&Z04zyRc;&K93e2RX01Y8@UNIhpLZ zc`lda-*`%ZrgZnXNv<@S%`Hhe-7X@^A$?{46zA`U=q!h?Ezw$F!(1>w?U~`I{-sg`|G@Rh=Qg>ZWd2q z{R4n~30hDZJy!nmHAe^C?w7;*pWyV$Vwb^RlJx)cZu{oV4R*eWLpw-=?Uf>? zlYge}fs?p#Gc2WYYdbq?m^k}(0num+O~zCH`7h{cD?T3n)UkfEIf9;cxa^5*sKH4F zI4~L?iLYODSRCSuRKy_0Z7(U(XN&rQztHGa2mbJg-9h+DSqj)(-{PH!1D{Lni_Tw^ zFq-D@h5#HyUJ3M}v%of8@*4i}Ltl#NB{=@3v-Q00nrZAzzI~-|X{4gh!SpP6~EuB zzv|7wjd}w955DpH+iM|75fO1N?u?l1XpFTtmgga`5q`gV?0&Dfq)C0td9d2T4aYWS^o2;-9 z;jgb%@NKP$z{CzQv#W1v1;B0)lYF=~7mX|_2Llmjw#(ws11fFIa~Jk6r{tZ(-+vHs zoC@m6*I&7&egQr*U0v~~1I8~#2@}&)`r*Shp4x45hlz$$dfjCuKjBhvn8Z%R7ZUL% zrIO+f2{JrqFirGb4gM-gEbC35JhS*y+3G9MhDH<#;9m%U6K;8*%l7retR8Je1 zVb1WJECI|(^&gMdjz-&q6nZ0|JR89#{q%!LIHBMzot3zQ{4_&G`^}A2#f~Fan`Y0h zOBK~#sf8-K-7p;$A5u1u$Iy+rL_k1CUb^lIeIh_MG>>~cns;=*)-|)f=)SQwwZ0=c zc#Y77*NpU^{U~w~L}v!LW81Tm>{u0p+m98#nDB(pqx0KasWUTv`h|FN9Ga8JV_&ST z9ELWZ!s1B9$LwzyN2)5VW~Nj8;c_P$x8N0A7yU>UVwk9ng8ood8O^J(wSzqbc$QXX z>T9Tz@uX^2#vX@G1N`QEjHZkfJ9cO~J;_1j$PHHVidG(5Hg&8Tc%~wrv&bGWrb&l= zN1PJX*L1pUVGx2uCJz~_{pO%>jx z=gpVkb2g)t(jNwruiSR|Jgt=l#*|?1+p1BZ{rH3M(O(EIoJ5Tt!yh9&GOF#SK$a+c z2E)IH`@dmWiwnzk-y0t1;c7pZmF$u*ySz*Tp5|0)VtDP+Kw^0B7j*CJWjX?AP1$O9 zI-Z0yU-eWTfvF>6#ZJ2d$9}FD7jg->lg`84j!sV6h;j1-;!+G1WUaXWs~Gr4$%CHm zGu$9SJstuS$-78A(dxbfHt@(VmK}P-W~8xjL*6Ev(0S7PoOBQ(J8i!6XWG0YLD1aZ zUKNmkZbzoY!^!#(Eo9Wxx){U2>y>~2t)e5_0l*^$ATr-6J3;@vd+hLI>Or0xOg0*7 zw#GOC#8VCqgaNTzi;x0UgTL*EvghJ;7h;dT9fx{vz#LKou0T`(9y zFTsO&Qi5wPZ>PlJbF-sE85W-pPF7h309gP&=bitkiN^BXM6N@>5+|Fs3N31|u%j&W z99?Jt4p{?)xQ5u;4Q2-rc(I7TF>bV76U{_*u(` zU#9G_F8P5tJA)^&I&DmXUd_DDMAi6#eQ6-Fg#HIL?SYHj+f_ zjX}6<{QC7PV??&gzc-zK`9F9PyS0*DI@;uEs{cPdi4Cv7(GM3d$`Gj#gq%Ry99CqB zuw%z*1i%;gviNg-Pyj}emvR7YU&j+P@c&m1-UL(usQ5?)1ZJbv7^y>2w{Yv|R!AoI z^z|`8RJvRU#kAo2v{Qu0P9{))1idB1yS~{LmbDWxIj`V^ z`3b@Qg}uy$4f$Hk)ByKQYdR8n&(FM$qdd6pHur)P;BrVAUXBt#L?R%-*MkeP*q$Lb z_EpT0@$o!1O9sB4H44SCP?U-!5pXwQoS$Gt_xUn4$+Ic)Z(0v-$OnA6Or5C@mp^v&i#x~HwJ&_rKwgCn5c$*Re%bdc^4ZoW zj~>9$_l*j+7T`eIl$2p|xnfZX#LwU*krFr5kPjkxrXA;zn88eqL{WklO~f!xhd%;D zM*;c2y$|wpBnDy$oPm)`YX)-!d-48fxp2AXl>#YagROTTbLhktkv8KD+oRRz_$wS>WH zx&6JmL(kGcZ7n3pnXr4}nHbb)4oBC$5onF~U)AhzK-|?~))fR)I6&(#@Kj8lTN|>7 z(DBq4Y~(H*VFZwaCGF^Kh=7f*wd=_!^4x0_g492OOHDPt|NB;>MT8g&qSU{(JsE*U zexv`YZpSJR>-7;E(FxFcp{_7ieGZP;v{kMvG-lghX>-I%5+)%`Q>=IlRyBYD=r0sG zhGl#FaL)&==KbgG1lnvr{U|7={+&w=0aN*W2&@G^?&el?N z4AJ;1pL(Oz(647^(iqv#0+~BwvMO4Mr{XD&c1 zn}%z?Q7+~p%wQVG~udg8;mTt0cW$ZlBZBpo@DA%k>euGney`s&rMWD|SihqZ3) zMq?9h2i#BG(dCDK_i_a|x=+GhKFL7j?SC3^ryl_czKN~6!x~|DbdX)ET|;p+%!qG^ z6g}T@ECMn$->qA$&^XHxd!I0koRGjd%GmA>6xUvQ_k!*>a>NKb&qsk4j8pa4_wVf9 zYiKiV8|}0)2F5k4nwMhrvUA~ifFt!^RaIF7b)g{O+QGn%Lww^Md9afxcjxVuY7}`p zj~`sypBg+N zSgmgs-{j*H73Em2S`mi|B}XhN0U*yo0D>iBczNOSWh(MJt1rqyNVfrC6o%80@xIw> z!Bp&x*SH0`;Jg+I)P6=3pTU~?T+`U?SHOf|p?la6l&#kGrlNB7n#&lB^7V6+h3*}; z4S;0XM%QhV?co9Lu@>%Hoe{!x98W?S9O1QSfvh&o{1J zHjj)XZ6j+E0PGD|t*nN6atW@N6y`8MH3uK*{wv1R+qf)oW|!p=c9`MXk&Oc*W1@%( z2H4}lsRxUXHpe9nce)ypmm%w&t379;1r-?ae2NLFlFThFWlBDM`Y})kau-F9zZY{v z6bM0-sJ%9}J5UyaWT{a2Im{%xh9F%!mykIyTi6X~l zZjWu%HjmweRbx;ZsCzTc+h=oS9JYD?=@p;Dy(OPV2zd?>@NrtH+0ymYCzeY7Pmot) zeU0Qg1ZO}{68S$J;ZeHrKZbwg1^??5IE_aHwjC1Mw|Nhz>x50s^z|vAoSUFOT%*qw z;3tqQl}scekR1Kfm-<(`8r1V?K(~()`E~&m(#9Thn2E!KxOT>E^SJjk_X!NmOGLpkJK3O2hTLj{{LC<9=Nzq(Z|1>mHk zosF!mr((xG$RKqUP7Lu2ZvcmJHk?r|+=5RlC0$Mb* zN6#J7HKe+ijDCTEmck%-WocJ~<_hijPN!=F^p|uT=5g$Ne0)e+oFgVc@R{*A^rh15 z-9c%;(JI!2w zQw%RZa49`svNb!8tiDE2p3oTma*TlHN_i@jdaY3XG+Y|rmUGx%eXv$JSkt*SCQEB_ z-SqjIZ23C^ee?gfP}w_$JkB!+><0e)pFP(9_6CRaTAbVk1?_i6kvG04t143N)a{6%v{D1ojUXj3w4kKY-Q5h`A)z#kfJk>qODf&npfX4|h|(P*aL@Sr zzI*?;KKg(Y?|a^J_St)_wbzMMQIf^OCdYuKrgX6xk0%PGjo%}#6M?(Xa+%*EyKe?P$K z*%{vJ4e=n7y8JDoAC@cnCIe6b(Zkl!mVW_C9t8e}Ocda!vsSwF<{1=aj z(PH}-sd>w!MvuqEAH===_JzkvR z@^XyIDZ8t-xzlF)yP>g^LTI-)`?vUkm&3*;U?g>Ot%rRS2YnPyWP$BRLr;2BsKKoE z9{)^t>bkkUTG_2%;yl$z(e3IA#mQ}K6e<#SC1HY7zutMOQ}0OCa`R_fMO*v6zrX)M zg;(pa=T%un6Lv+*(GdOEd$3GLFQmLzLPdHo{x>+`)@68?k&X2Qs-t4LF_zPI&@zBo4r z;o{F969@hI^G8iNJeBG1VQgSX@cjo}M;pT&6~(3Q;+NL}I(7DsAP{#?&#t=vtH{=|BHY)5GZbQ4)uw?*!RNmse(|C z-R6H~vep+JRz(nGwbbU{=gAHSLr+nwc3G1VTnQmsZrZMRg19D5i;5{>B}psn%zE~k z7K(V(_4DRxUjSW^9UA=X^_gIutTkC!i53W=<&L*^*I(bqr+kx|n%YA1xv;R$#qZ`g zd;IEYSseK2b45kGk7}$F+pVpw2MhZF^?dO|Z=$M^2^3&n&UR+ZF;nA}gs~tU5BX~3 zqfE)H>Qvay|Kf19nEbuv3cQqW*r^#_9%RYpGfEfns<6F6Eh^m3?%4A$-1=~}w;(I% z$+TMhU2w6c=4Qo84==CJIp8Wk@|rf|2N@x62A>5UEWZ$R|D|FSJ2yXX|L)Hp-{O*z zr#AuDr&FdYU7^lXhF+b0(G;d*8A4V5SDp>4QBRgbh?KZ@H^E#4+wj4C9p>sBs^F7s zDZJMBp9~ra1O7~83y)cXd35f?Anm{)HGtrda)vO;Cv|wW9aFs@?z;Z192oR@T#N$B zp@)9_b2Rut;6?Yr$%Hb+{*p^SRh9FK#B`$@3%hX}<niMrGhs`=Ls9!rfAs9H&=WcGi86H1$Wxh3AXZu5y#4ar$5S=eJaf4m8U;!I` zoZkLy7Kk3zCZ*6TYgF6aDj!SgpG2aK-353+($!wuwx`F^zH}{BrUdF;Psj=VF zzsKUYyrPFaM9#CeMU8((ew6F4%q`vU``unGg|lRNqXirU({vOh8)1vzUXD|VpC4!6 zQu>L}C@3g&;0eq_#BUB`SAOU_!4_}-Zi+v6Aa+5Ei;LSaJxxYS|95xkhNI>5hkhS_ zW!oRNf0xV#ALAAl#;$BR!uI>gn?1OcVc4Vp#ApzcFgw1wo|ufWCRxt zGBz@@-ckv&#JgTIOb8jG*V)}2d2)Vo;!bTf0(P{Y(d%89-`~Uj!`dmMVPBdfr;lX4 ze;nrP94LNFO;H5yFSXO$fmAl{2~T(?8wUtg=zi`ynT-wnYc6^=Z64ju5Qlkoa*|Sa zx#!i6*#1%e`Poev9)^4>IMD4%lSI5RWzk;CmOf=hxYHNp`qZ2DnKBRy5ksRmm^uSAlc*h_x<-@N1rFN>!Ll;`t$~bNSF8M=5gxJ z7S|0qod)Mz+jIq=U%BDS?|8@Fn8!YYLfLgp8cGX`iVXL=cmHmVrr+-rRlu!}9N)4p)UskJ?gBO-t>TB*z;zRMlEWsw;=8D?cNtb6UcW zj*jMj_6)Bm(~}%k@_e$}$s-Ka)y=PF{5q4;*ipF_RLT2idkc1#{f{E0O!gOBH5;pv z+5XL$#EoJ^uNjD3c#T=I{Jg2TIm6$n!0Tk&T>p!e@aWqI_kthdhns@DT4g`OGojPu zUb5EK-`~#>NE7(?aQW1C#cdWoOeqaI(M0j z28HRW85=uM{3^87o5Ui2bA%7EAS)CtW<383vdBs=sd0#1MdLlx!Z!RaOkbXAzp1rN ze^SwaR?)P@)&L6gN=Z>xP(Sr++&YK3d*Xk-#ZsPUDlo6u8DEi$UarSinfK#2fZD$T zf)O3^W-V5ndQ5N)_u_kU8+!ZouG31KEcM%Q|2;P_1uJ0PxzAMf^>K`^x3o>o%+SEb zUg{M8+b!NPTWhz{L!=BYp{^u^fkH4B^?_Fc-hX}cM++=s zUY+d*zkPd0em4~rM{qcNS^Q>Ad>QpTsAQCM-H;i`3ecTJh;wx$O%bRigC}dfzjttX zn+f)OP6b}v>^>$v|68hAwp=8B&5GI~RaT?qDH$1GEH?cP5ym0%kQ5`;5O{W}vym{G?xx z|BxWyw9GiwfFG6Y5nOF#W5V0)D9AICDMGr}a;&s=J)tCm$Ju(KcF`x$cE`}r(D~O_ zI>D=*&kmc&>1j-_d6)Ztui9@#TDA@MgGSQ@xMYOLBSA6etv#c!1bRX>iF~s z9t9U~RKWvDwaWds8mMGSec9Q&w_3;F)RtpJ_TC^kn+DWo>eF1B_U9{>>`P2}3W-mB zq~0HaoW|b&iaEZ@wEG?kbqHNWnGU^~`ITiobQcO!kVyc0BRJs^01@s0ce#wdy?fuJ zI}9(0j9l~A&O&oNZD-e(3#iSe6NQSD6W!cC%-ZKf-4>E!^U4NAVJ?a#+sDpCssM@h zVL@Teb(eAIaU-zrgm0P#429bx?6w`S!d1zVCfwdJ3I>4 z`p`nTK!ep1z!iDY#1#-x0uN4cisXL#2^6FoV}3)3XB!y!Rha zhX5QioU<*Aj&{e!(J>4a2Yr2ga?fDF(G&t*(xiqOTeccZ>~Oh|fz`M{FQ_t%U984( zd&W9D6g8xemSy0NJv!cV4{*_jYSy(h23g42&YkJ%wO@f$!s43 zR2vf$69~WKJSJEBU)Rpq(S$pKh?LaS7myAB($thOii(P!LJ@QjG6pDO1r)^27^43v zkM$FWY9++X@vn|rEqEeJG}xSu6}&!qiy9?tCn~!(o+Uo7-ZL${XgQm;ySP}3U9+of zO}bXvYokz|czEYVm~Z#jHpZ%Q;2$D1$llE7aKAthaF~#buaXaR#Xi42ca)NvZ+$I* z2D#}E{CmH`sFnQgTS%7oYUIVQ{8;jApR*b3L)4byG-!ATszms{?^N@_?ak7yT}$>$ z#)EE}8}6}eahmkBv;(*7E6TQuRm6WKGv#I!0@+(?7vG=CBm6Ih!Gu1qCT+HdW^1s8 z+D%n3)e~LmH+wo5g+$Mp2x9ZJuT9$oNa_<>Bp z!0Y%n1&3oZ+b{ZVb9^c*>js+y(>Ug zPH6;mB}2%~`TEZ(3ONzc_^cC1jVK`JeKs@u_yhm0(YWl*H(m@I-w+ZIEM4z;t&wOO zyr91QF3;5qYSrY49#5(iqyr2Vyf0us{RWKEG;6HE*F-g*Zi5ysS3O|Wd_g>sx9-la z`_)1?RxR@7R!gbvN~P!2tUU{h>gU(>tvPZ1BJ_C=QBmZ*-+I0ZGF&7;P?D8X2mrN* zUm_J06;scAy0BQtB&@(2zm6|a1NNS=On#JyMR4eJd*)PKR|nl3&vqh*ylMY4S@|$d zIvV5yo{yALcxEmObd8*1y#@&-<|RSQ6sl^a7!7))H)=T2g$L`5a9`i~$h54izsmDr zDAeO&*k4k@iVpb;=!tcU7oZDMc|V7qRPxiy!!fV-4&%UizBi>R@TbumnUgEA&#&FY33LYAj4pFokqjtD1v(vgIH-SU#4O zJ<+j5^%6h^ZG##MthPT}Wtfn{oWqT6~TbDhCZ*2bnGaw4@*) zXg@7?T8ScgasYU4P3CyG*a=+=C0A z+d(qVMH;K9Ph?3hS||>s`Y~9;6+orlEi5ct0F=E9$lyUm^In$;cZBgp7wJO+m)+Ug z3lzK{ibO|+t1>8kYRE5jb*l#l++qOrUVMuUAO`a#u;_i4fB?X8i59>&odM#x$iBVI z1{;}W6_i<9fO!GWt*Wjj5WgH$UhU~Y7dsx|6%-VVxIK7qYl4m*hzjtE3eNfVKylPA z_Ff-|YcWR1g@8#M;a3e#nOjxodQe-Z)$fVNx=nmsuHiy&1NTtU~D9|cghs8W)Kc%$6AaCK1f0Q{QRqc7aag}&a)T@66nDQ?|4rr4(aNAqnpddP@*@W zV=Hq`?a>ht0G@q(dLN?n8(LL7_#RFG>(yZ&=D1=_HrKSX$LS`H3Ysj5l)~043M;Wc zqJuZ&Iftr#I=cEFd@H|wud!FM&6k7ZNC#kZS_;!r5|;(Ou1`OVlyKD_iru)pvChVr zZl%a6+WZxGzAyeqxSJRgC{rC4VR`|^j(d-xPSu8-4tGJ-U&(sC_ZEm!x{-A~AI?opP3c1ot6K|geGJ`8%&}aBk{&9cWR{aj z!l1$EhlAE!MQ}&YK~S9KbdVafsqU9!?sv-jFp>!sBpOtMA_;vj?N@b1M>zpHki$Zx zVfQ*D?<ZL0M8M!*vVTsI#zjv3{M)Pl#>Y1itz zGZKwf`Wt17inVnrCT!UPOMXPC)#ViFAWlp+^2I{^r>3(As8#n|&R!n=e{hJ!&Z6uU z5G?>voc>}PpFjB=kMSNv7DuvhPMdtjK=RZr$e?2Q`h4jDOQ!pW!}DLi9s{l<)*Nq^ zBKkH0#TA@dPoW_abO+wk#pA^IQX!}i!>1O-L^1xPBeZWg3=LRhovw#wl8qi6&C%D6{kVOw_Kmi6=Y%a$^))M$0r~lsi+ve@eB$> zpQMG?C~{OV$}2vd$Xvj#H|SxMZo?q#CJw4!3ZMXAA5~KhPQ^g}_z^U@?r>F^5+E@ZhQ& zRu$7dPAX4;<27&$1H`@So|G-XC|GBOPX zsQ@GoJM^Zc3Aix*+uVL7g7lz5sS(YKvaB`P*oXN>oQ3`@Zwt1YT*jIztQp&eR{m;~ zz4NPRs-Tc4*Wm1x%b5=WKr>N(GLk$INM-bp<;B+5hJl6T?6B0m=C6o?c*r-8g@*!; zy|09H@^(J))ac-#qk){JlgQcYr-F|f%~tM~^yq}LI3VY-&(2bI`BBLV2oYoqsR~+t z3egI}PgE)p1^O@68LN0mJU6O3)VtUco|>T_4oy8K zk2bTjd-BIm3>|_SDp7ch6)GWw!y!Q5pk|=4L96g6tc0^v5BYaO{F(@;v(>iJFG|>9 zp*O1IJ=h85y^o1rBs`E;s5QXR3Iu*){%Vz#o3yZi_Utb|EZ{F*v4{y>B!Li+10ev!c$)3)ZI|(^XBU8>lC4c@8+)|I!XLsS z8ev~Xdej)Ih@?V`)#HZ^j&0-Aq-TIib`R|iqWJgrHm{|WW%|~xR+V!aUpM#XxKbjR zr}7X$B5vRU1hCZi+Y|mx(qA5ugu0dN#w&xTu_ULamH|3>BXn(T?NL!h*%Up|6d~ys zbD&?UdVq2aYFNA-r3~vlRqq!h<_mrpEHpko9$Ni%e*WFvyLSa)Fw5Ec@y+fZKeXP- z9oLMPFVF4r(sqy0xZvmzPhm}I~L&Bzt zwZE6g-!_kRgM$3UXnb3ZG6bBm4vpBM-I0-43I%F~4e2`UVL)it)mK3wdP1zDD>>$P zvehvnnaeAJ`|9#{G2q({4NnPC! zddiSuEOfL6-&1(EYkWBdQ+kITL32Xvb4x(`TtlVtUce&L%yiVEbnQM8d%)+d1S18> zo7pQ=9*4xeWaM%bWtz0WiAofQ+e{Xv^2{s~A}rHV+}B&R5+r}NsE z!hK*tS>cXtmsXMwXAC#1tDgeIE}1~u zzO>lW8*>~V5IAFlr;M?=xpX`?G823mSy}w-JQC9BC6W;%KResgAFF9rY$w#)Vx$KN38rUMj!tZ(wchU*(ezPHFVP>{J&y<&SsIMRu z>d=DXUSD5Z5Xr|86l@FM3x2WI`tzri`D>TGnWjLb5NLaV3<<=k!FQiPZZ$VI4|`91 z9A8h;g}56IvV(;V@}Wk2vCEq8;Ky8x!eWGlv2pgG-cvC#NBbhqf%5WlpL$wLJxgt! zbcx)DKafZ=mnU!py5`4sv9T0dgp+LF=jPJCQSSWwxZPAjvba!8};zYJ|%wnN?5NMqzmN0de7s%A2MKI1GzYsOKedpJv1EHJ2n49y ze*sD^b^f*^bcf{QUUPkYGCRCzyJ=AEV^p>u(j!tPe|mOSE{d7JPhR&eP|6>nv!7K$ zC)ImHw|ucfC48#i6_Z3+4o9a1k8kpZB>Qq`=Jq|y1Nlz_HBIToE|PTWZM$dXO{VMa z7PaAO{Ktf5N*nDs|yot@YE10Yb*m9e@QsD$Lnmfu)2f+XINUsLUeVg{N6HW=Tv(FsD&bQH9mYkcb()i#1Jw zgRW<%Js~XAKHsF?30CU^mbzx?*~Lnq z=ZDNDapW~0ZUm6M8Cl%Juu zejeGVMz1)MUtRr;e#Byhxt{=V!{&H|4yi}+OR*W~qI0z@=K_L?QS=1~J za8^svzXf_620=3rl|qA1GeiXI?Td~WD#C~y(oy@Ii?pY0Cg%$d4leYW&5TWpL(a|F zr8Tn;xsoJ;QMoUbyqzvBj#K}=F}46UC0OQHcbJ>+&OGboR%iq%{Ef7t&-({Bgp;e! z>)->NRY2lIx~Uo}nO$55P?D3o5^HMs3RpVm0m`DJs5lc<@BVwErdaKKh51R8Yxv;R z2SZzWeMQe&OFLV(kCs5apTR?r1I0Hn_7@kEzJUeKyQO`B0yh>yETA(avwqcXa1y1C z9ZY2C|50246Y>@$k52m|GAQx9?yCxvK=<9CBc0T&8WRo%j7(37<340~$(27r^QFDVk6w*wm)M&CBhC>_(5t~paaG#ldo!TXUE&h zb=%Hvj|??@R%lq4{Hw=-MZ&B)znqaiF2Xj((L8FWCa;(r=IJ7_^%Rwzzb7W)g^tvj zgHQq69ygDL<`9rvd#* z)-13VdLn24WJz6uz2sRt^0i#%I106Xhb2aL)QND_s?eW4f}Y@ZPooMoGVfk>m1Y3W z3!$drj8Ax}dMp`YEc!q0-Mhz*aS;+KgZapC3hyn$8O!~Zw0Whg^EGpU#fa=X9e9vm z)dZTvM_ze)x9j^MggCC(RF|TEuC5f5iVV>CH5no>o^^9K0_Os1G0aS_o^HhZH4cBr z$}cG?c^4YrWd*?tX z_C7%e*#zX`RqTCGJb0i{j-f^N8%LLZsEwiCYjL@6|2b#=$AePz7vtOtm#CW>pl&K+ zy@~J>H7p{M0hMNZYimFnsU)cC!sjZ^;^CO!fz~nK{whWjl}N#6A0*5>qZ2EGHaCO5 zg5n&&5g8d7J%RQ%9Sjg}DMG%Bu_f6>0)Ei&@~IChdD}YDoIfle#j7qguZa1m^Fb*)Ri&4QTir|PVCjx>-VFFwz zK&mIVxcVt5dv!tgmTeTG*lYCk^w_~(4I?^Viml|-H6!4wsY*rbuwgVSF^`YM{z^}z zpz}d0DH+}?d~>np0*ABZU(bdC=#&JN4t&+@E6qw@+cQ>RBh}((gl$Dh9dhRkceaEY{ zW$yUq?(*%$6>;x|g}{wWr0t+KZMk#FAiZ)-L7c3BoBDgSs)e@qwV~B*m~rG*5@)aY5xwRH@t zadUH7pIKHz+I!2QTY#I4`q!EDMt#|| ztUpjg)RAv~Y{J-x8u>l{el_dk_ch+jJ?yu0fj9+q13dqGi+k06e!IOlE=tKH=2JG` zw@+75{nBjvN@M=)&+>t7D`6Dux{~l(v&N)oGHQsZih4YMp^TlaivuioOc4(odYx@i zug^!$w4hX-(ku)^`oHiGUlq{`g=+ew4v`Z{Lrct)heFqWz;(B#g~CdJy#FvExR{mY z`?cWa@Vg2}aX~>F-zXXyntBpgr^#1A$GW5n`?ZMm>G;J(BiGK|U%xt}=uKH6fd8bT z-C)J`KfU^`05Je9`QN-syEr>ziqI%vBYFM$HOHOr33lbp&2txf6Il1)-?S=&{gkoj zBu8~ylyv)s21DaZR7yhFWy4C)!62%NFP}IDWE`(>s)xoEvzK`y?{QDX#D&}ZO(`F6 zy=nwE6^g;+R{9UoPw>SrNA<6z$Q4xO=XZajs`a~cHSZKBiuq9xCp~&6_P#jXX^!h3 zBa6-zcSlbNRVB+JgMd=Y9;{L$l_rcO$1x4x#;p%*1vo_-j{0GyI>`4LABtH&rnAM< zY#MB?5Nnif3&YdGJUl$6kw^<&zuq7UOmtjQxw^e7_w4xLi?Um;)fZ9+Wremfby|Gn zu--rw7`)DY#?18^0;%JJt*}x*2)GwxB^@0bqsJ~n9os)p_`%SlG{s$5K+|I2?T9PG zxCyt7ffEpb85kHIEy$K)j#_la_KqYbPihgDeq{~i9?(#6Q^4z9Ck6X3ksglyNW~y( z1Xq)6upfXz0jEWKf;+4J)n8{h$Wqzem9q2Mqy53*}%Z|4S#}W`f=7d z9gL#!lBxR2%5jTlFYBj=%-8`d2Qd1uerdm7<*@~3u?CwZ-!S0kVH>hKtn0o4wY9as zPJMy2{ezG6@(L`e%rnZTA&D{>h==;6>B>Dj3d+h9{fW|wY>8dqLDZ?pbrbjn1k8cS z=FfEi;+LG4a>-ISxwus0M>)&i&UUrz$${p$>Wcr3F<3|E*rUhjpL2 zhR#Xoz%%Nq5!+RW+-d~Tp>JyvJF`%?9Ok{J57?Mx7PabbzC3=UUNb3W!RrBPqgl|p z|Ii+_kU93@uV-}Q(i434PEPe-!ZE|UnY9g@-~+$g9$fmb{466TRcic8VV(ki3#cAb zBzeykKA-z*M?iz?f|#?P!j3i{Z@-QI8pk2*`GfiCx-Tz0ERoF{cmxJh$S!Na^vo0j zoL}{~_`1BO4(y@k=4M0v7aDPs-@lthjmH7plO`nXPvf{Xt5J#*j`5(|0v{+)azwC* z$yCBpvA6Ygb;4Q+iRL85LH1iWJzca={K-s~p$m1KkD1eQ$#8ak3qP^!!Bb+;`Z6); z;Pdh!NY)oDo{FsbG>xa*0jzw4RIX1&X9)ANw85gSoy+LP?vR_zaxB(t^#6WMtSDVJ z7}{OI8a9ZJ3Q1;o={Ge=EZoUV$!8@j@vi{S>;iPNhBo~n3D`In)8?_d*sYQ6lU=TG zgQ(2YH*zqoO^|e#Z7v7auM#HuLtnqF9T<@8*;eVt1iBJGzm=}SgzksO8gULRUy2F~ z?XQIJ9y|bA7`J6D*809V9A3J`PEIK`!aak^#~-8=tJNhCmV`xF8k0H8Kv?)rZ*E

f-$UL4g#6^@d6%k?}^aU5vO?kq>+7?8lnTd~* z%rPoqJ+9ZnJtfBl%{8`-p((kFVi7^XUk%RFnvIFQTA;wO-s>BjmC|*ew>lcgV8{b(3UV{r{){ zcsTN&)!R2kypd%H$F|M*-|=OJJ^{699FvI0@pez5#ymVdKS*z6NW~k@1ePvF7vIS* zOrFEQc3Nzic}P-fDFY=eos(-QDP~UbWSxd*l6%B7RiFe-Q0DV*Vhq2+I*hO6ErT+@ zCND&lek~fyH;^LGhm$e$qL?Mf!Wf?7UtH(jNa)1yL_f{>$y(3(p5uOLEieYGZB3T( z3X{%IF+x2wH71cr6Gp=79rfs3Rdag_Rod)IgOpf87(^CvJ)`SZ%y*KOMvmm;DBD*l zf6UHc_8}xEZl8qBP5~Wrn4TeXAkQodnWbL?Q+-zCIwZWBLLN3q3F4X^{#`P)2j_Rz zkhL;Ztx*0;+oT0CPvt(P&AcY#;#qE^O49rH?kQ~kJhL_68%_vL-*{u;g9M!eqx^aG zE)3>&X6zG^@4b%$vpvgcLNG}*x<2FvbY`e+) zz&qDKbHn1PS&Cd9xOrv3>65=__3hDKOa20gG|@FH0!|Ie=M~R9EL7LduQ(8a++<(a z69Aot-pSq5M)nc(@BIEv*DGUZS4Ia#dkX;^-{ORiGkXf;R;p0Mf{l$0w*e1OpTfSX z;oJe~c}^w+8I(3kpP|4!s6(s!v3SNpW9NZp&Vz4;z1GdE{t1vmbVa&QS)txDZiNDs z#5|e4=wct>+HkS5>LVMpaMePj8L+iPNjGRbqA=Uj*a_8RO=f$@lAZqW$y~h?%eb`X z{lQgP2QpT!4%e%cIq1)6O;CR2;>>c;0o4GQ zH!5Q?s%s}Fk7D}`HN6wf$#y9-idQuS4p$`2~2JZ^X1J%SlEhP9uO`W3u+0Y6GYpXY`~ z&ovH99~5J^(7V0bd$)Uhsc=YL1CzARR$!+3{Jv)sY3Aw(WvKn*$eff0tTy@~!J>ht zFFx?r?|f1e%N`e$9l~DeJAGN;ig+zuvB5A^>=G6JA=cFE!N=`JCLD?_5u#8$%_$vO zSy>tSHkCUal)>HHvLG>W&zZw(@Xk2G-$lE-X=C6`rs}bu9IZ0d#f3&sD`gaAe0LB4 z=2b;Uih6`9eH^zY>tc;1!cKJ!^tXGXNT75dZPTP%1~#ei!xf=aau=$CjnuuDK+7SN z?Ly1DXR8eKB=l&u0gL3vnp)32<~WSoGVJfTjKZc;elC3dYC65OsM}|Ue0lu2mNn@T6khU3DZN& zWspX7Lj@Mh_?|s;ux)=IS=9&{)ryt=pf}S$JF7Q*8LmW7@qX zPha~&raBoufhW|>x=;ri-(Gw3uL`vg-vB_>h)HT!_fd_O$*_r4uxw5J{yUJ37$i2GFWNA{!8Jl zuy7TMS;(dFldf9>Tay(IjN2g(o}D}tJNYUJ%q{se*O)ZEzvw{4cRlq1vdsC~V+1RF z@0(2m?kq7Pn$3Bga}tiY^8gZHHb~fFGDtWNc{7~E*$aHdk5)U^4pZi#o-gV_rug_| zWY2e)^PZ1^|LJ6%haDuQuyojr&X9^ipnLzEqJn0HI^IyU#zvh(3EuHpxW}u2^AFhh z^$|bg;t0A!3xC|I+D*~wNu%t3_QHL@E&xZrBcj_2WdFG)JGDQ5tWfz>oPBB}Qkl7rxp($O<_ zW{A>VS~+uai1_crW#A)uw+rIgf#M|^gwwcf{`(z~1+#>gjLzWXLfs?Lri%2RwCK?n zft6G8P4N~4h4_~q%??t&^^^k&uyOz!`&U*>ceb`_YTp2wP+J?Ps|r7G2GF*yj{n5B zHS8DhdD*;=zlBAQI~6E018dkX7|!yo(n{POk(2Z6i3n-Qw>_|QVcg@GJS`a$AT?FD zeZYVl?^LRWTpzLr3qj^wd@slsa`2ghvYcPsRN(Mb+01tG-p>lk=ne8+ST!3Sr z@g93^m5KpUJ(p$E%gnr-4rB>6Cy*n7~*!@C6)G0AnOTPD8;9m-PENr#Xjpd38cRM?>}wZmK9 zmqHonLXdB)MaqKUOhCexQ5XSD#&1eeRGvwXbjeCwxZqZVwKi9NZC|dE&R^)-*Euf0 zg_KX5hJWx}2DAagwnHonPqD^u{DmJ+Y7b~ve5YsHqZ=w`jN#Z*ce!4N;(DG2&Z|U% z8CS;ySY^aYHCRWivn}<#0`nma1vw=L>+SSc6S<^1K{^9Q8z63p}P7v)RgDc$^TJrLG^4Qd3_RTn3torZ9 z8;D_~?7BgaH!v8i4yRV{xM%-7JtWL9=XiQLr9?Td#Sr*`d_}3dv6p40RXUsS@bD~5 zcwxo3l{)M{ZLq%ajn;i`U=v*LT~wNm*e)KE%xG7y?gAFvu)l4gy)4AokI^ljeeLyJrULa4k+3Is_mEToy@ot`UXp9hK zZCvfNVp4{7E}Zv(Ajs3!&ep%el?zdI6!Jm&jp~*JG#ygYir^%w`?(ZD_54!pWTlSg6>uHG9!C?Z@xF=P$JSles&ON&Y53bWbX(dZ*8M$RuuQ z!h;I%2#!5cQ(JJVs2A0Ia`D2xS4VUo`PE~AFg$--*wf2Pq$vrtlL*K`3cvdEhyBzX z>Fz94JY#EA1Czo`2mYL~nsQ1ahMH)gqvBR4?dd4}KC5{$IM~DpAa}A$*gp<}8X0}6 z!YbI`2KsOf-d4)kD!VDpxj&4*YqG~G%6J|2*Mro`u|V4txadj@wK|-dL36hnE?W zF}2+b7-~=2z$2?N?aDg5oO@MGh#fP%j3_4TWQP04JPJ3UtJRTLSOd-|HQcoB_inZr z$;uB=jE<)KS)&>3W%<|jM+X`@s&U)H=xSk*nzWti6o7I?*Ck^{qyk z0@L+tfNDTTuhX6YHkojbZET~(hk?@8d(YE%>c6+}Z!bo8T2k<;WFidC|-!bYeu5V)P1cljr( zgF0zZ=f_4$A55mf>;?iq{xtlI-w&QVM@SGwSNw{~;*+fqqs{iNxz8 zdbvgksaS^UY=FdC_S>%B^~(E`Yrke!)#U$!VU%j21;0^me7kM` z%c`57puOr74jUa>wKKUF8BGzO`;Ay8C^*#|9s}fz;|F@JQq+JAIR(XM&;=* zGA-y;TN%H_Utp%Y?nbIbscSKiBz&mH4^4u*?(--VfaZxwT_m|w)3knVo*1ha$ab6u zW(4ZlEmv1pR2+BAzG*e{dU<-H+?A}QJ7-K>J3yeQ`KrE)sbR_-(+=zw@1*E$dll+f z=YEGoi+W{`TVwxPsIiov6{HfPP|VQgN&Vtisq}-_Mbt-s()YuIYGaPKz-Yz_^u82_ zJS%=(xP>VpXl+?opifm8Zl|2h&(6Xrrc3*LB6?kc=yk#;2AnB_7KB8RA%m?1h~9TP zB=u4nFTsKb32{W<4}hUilZ=1d~vG7Q&<-ht-kX2-hvB1 zF@_4XZ;i6VkY#ZA%ig|>QwfNJ%=MF?r(CGU3Z`H233iK7Wr4pWDi@H`1!ZoS58q}3 zmHYGO3FO?%XJge z!1oDuG43$s>9hN2chsL{*zb2r(Z6Ua+^N|i3v;;-#KReSxRo8PIiSarWpU;7TN0d$ z>ZCNMSc_v@wDADeRQFSN`yBs#G#8cN3L`?0gQA}#ElM7(w<=>XMQ4epqMo&(ab%By z%k+k)WQsw1sz8c4Q4i1{$ECJ~FPT*xUutV-KrXi{f-dBv^-O+(!D3h@UONHXZ4$)2 zSpwmByIVaOZW;p`uO@X7X*1LVf={2CviniTh8rL!O-!40a3CG>T&+m0>4@=&q0R&* z$(z^UpmI#!pkr<_>8lwwCjGPzgC9#~9f4_Owqj8!k3}01<5#XJKs(7L*M<)ti7n_i;3gM@$)3SMBCuaVSEoFNL?d6VN4Jpa$%= zrWEbpz*kWe93WUEV=laO04J{H@s*!gO?JE?yMMx z5~XHomQ~L$EWDQtq{qiLHMIu~ml;3=&&|#K@?tVCHvW&1o7?A=@72veUDf4X{E;d2 zx+m*wgh;t>r8y%=LOy+t3S3DbbDHo+rp+j^CDt@>uVZMsH##~w31DOc!w2Z;1DAMJ zd;8LtmsqCY+;%WHa2f`CuA`t|aCfHMbJv?HZ=EEp`-zkU7s9D4|)g_NFLy(tz-{P?#E3C|CF zTc;Nm9N3DB0+bx#tYnmwd=3oFCr5N=nX5H5gQ6J@)h@W^Agn;A{&P4uhd3C?Vrh6?dUw@iO=pEqp1X;mEl~+V%jRmf$h+iiS{(R3K{MPvbZg zl`zmJ-PFSMf@SeFIKz5_x1m`$kif25LvSXCfhgwB&F!!VVDH(;88l2_?~#9{W&Y+o+d5ofNI!l zHuC6I;B~gmt#+eBsUA>yDL|QkdM7{;SGQCu*@Z-v`3>BcRZ2!%n-t|V{Op<8o;hy_&UcyKVE?xP z5WqQyT}q<7=ZV%arWX8CykJ;)q_HQkfePT~K5#+@m;s=7q;xreZDdf7hleK!^x$Ly z9}oFT^!7D80v-N7dJ%s9Fi>h9zi0Wx2+mB__=TlOnw#f?77p&cYG4=of;Z{-A`|h~ z5CGN>sTN!3Ts$)&7_yl68gug5?Z4|Px{@#_YB`mD|2eFI4+@eFa)c9=9W?c0N^;O_ zr4^#9EL0+BtY%=eT%HaN4j(&EXIVF3MeH>2h!YDJqu*jr^l5q*L&TdQWt*b= zNeEC`XEhit$dE7eG=n-#W}5`*r+@4<&HBrL#K5lM+EH7vjgpB5P8!Sg>-ErHPjNV{k%iU;q=GS}3?S1zHsk z>?`qH|C&q9n+&~me26nRc~*!&{~JA8G#l8MfRuW%Msq7zUKO_q(4t|j(tzeX<{ev> zws}nA*nV?A<=<$jB^v$&@{ED!-QC@FnM1v`ad%TE-R+0E)`+XhwCW3kMu0J-)GT+C zjJELozj#(}Rk3n9Oq-`mCB!+RmxM7&eGE+Lz3C0yaF7}ahex86Zs^iWMhR?MxyLFC zJ#(|OJT)gF-KO1Yz;FEo0S+A~_C3q7(9UMd**V)lO3)ip})5 zJ(TzJ@%fAz?{9EU*U@e!e!|k1l9bWsWt)aOGs>&UeWbwwm^I z1Y^ldrC*Wo)h~Fa=j*?UxaZ=(-l1I-7i*-F8j%-xnH*T{uROu0K7z==U=HLeWwN|H z+6beK!-$<|EXk9pg_h{5mo}(zKs9ji*d{9UmazvE+Wu|!Lf2Qxz=Wvu4#@UW@0uPD zcD91P7B3$%$V-B+*paod@STklEf*XBHn6ujd-vQ8`$2+FMGwBH%4jq(S=*Nq4MTyDm+<7(lkRZJtPrk6QutM+tJTA+&jFS@=aJHcW z8Rdlh^ukrHZtDZw)|Rf>aFdN6U_4V;ZjZe1RLUFyCOS7UcIv!nO-|y1X!Z0rwvhx6 zi{T`Wx=jva@&Cisb;ncve}5?@QiMxZvd1OLo@MWKuWV)K8rh{(QeGX8kJE?JonmUh?u~^pmP=6faGAj^BYE*Xhcsv_&#S z#uH5YyC8i6w|3b?1+{^nJJ;9+&hs6(C()P@mnu6j{($CrC1`LZ8|{j%jA0s3xto+i z&Rd~B06LWQz2jSD5YEtjS1oV4dq3$;jPdQaB5)r6+s0k3J+$l&-|%Gt3*RYgC@YIs ztKqlHYD?;G42^$)(xLhiHYphI%t#U3fsfyQFGi)VriM1d+KLW}Q32bn>m6ssz7ix@ zhf`73e=~g}tv7vL3Y^Lw0RibcvH2lz!UK6x_whGe&mw@^gU4CN%nnx>n<0K4(1j>g zSsH|( zh5bwcP0aT9_?T)0J)9ENPDGzmEVu7GZMVT;nrzN8M7Iy;JYaQ<v-uH;ODich+-zQmCD5f@WzL z-D0L@zG?Q`X6FK1Sj2TX3(<#1ow$jKC+ifnbEsOrd?_gmy#C=oOwku@<7j-Z=C8V< zA}S0qKF{{c-Q6iCQ_;aqeRomAC#qRO0y^AKse`=J0ho3gvc>)(B27f3DI++_PM$pZ zRDWjWRD(de3a_KTUc3f)e%Vu8 zsP~S79IyC7Ts`O>Pn}|pxUa5$>?2evcsC%d1xsN$f2p32>Ncf29?N$>A2+fJ<$!7b z&wFnQ(Y!Q#dSn?9D<8a!ukjl4QerA(tETSG;mNNm2(h#5H(@#cTzd;iwyCKDt%KyT zmwWUxA~FOYXtn3n$`x{G`5h-ds0JSfsI1ZLaYZLNiY)IoMYr1WT;|9>3T@LsX$yzo zi%T3NrtSj##eIL_6X~|^1caX;`#kvV@b?NH5NL%{W|~XvuQ9iMNQ2v?n_N4()SwK{t?-saog&mx}(9j%CJ+WdcgxN z_Z(tXYP>H zE_nA=zKmmp^Y6^iyV%yW)NC%$;}?G$d;dNVnjiccC(hGk)3@$P0RRsJ@`BU**u&Vp zJKnXArzU?lC1~9p-k4?|iL(&^TRI@}f8Ns`%D~UeXuDxx-Q=S>aQL8E>eP8UrGq<~ zc zWTqc^%95t+AbY&ZPG*FbJ7x`av*1mV%-}QMy^pb*HpU=fl*qp`+F3S-U6z@;SF?To zPj3%i+pFQuO}$Bl5oJ*ZROqR-B=Z??B>(~*d#D3IPK5dKlqOI{Oup@RlRa$wtkYrd zwe`!^p>vBuK2Iqt~Ei&T1 zTlhwY)o}k+vjE9qbm{nR?!+CFU&T`r*L=$r;Wk+OTj1^GKfT9jTos#fX1aL(La=}a zSpFkM{0Cn;31sk8{=hfpS1)sP0tStoIY_ha?qwu%w@JVTrF44*jDytWN54> z?g6A^ctTBM|Kd1zN5jv>^K~d0B@x4yH=uzgaG={2s7{=)w^w~iITLo-A;VCWe!V!& zRi0+o1o{U4qI&>1%s(dSD$Du!#{FBjsJIT8rjh+=L!hIrw5)pMB^kyf23qf8wBmAR z`d_s#s3sZ{1Wi(Hc?m}!`)zR}K=l5;mC)c{5Tx{mu?S#2jG%cn81c zt^DlH$kiKnCOxEFWr_zh7`(l~BwBNt6GBGt<_h3eGkQJZOt|tKeqLruY*LH5@zhGU zAQ`joYRLbem-L~k4RdK1-3H0EPd2=IQu|><6);o%iExQj6Qw4<2HXDEC&@RS2WBX7 zc)V!wP<70`^>;gd5Ax~s^lJ-B#%g^FTNmSXc!YwKkDMxOYAg27kr`~AoZpI}41lPh zjq!@^)73Z=MuYl9Jv4#rsPUof%$HNYe5|T`{l&$^OfS4^*=m|Cv5S?@r-3SVB!l8( zg3C}EZ!i;D}=?*9n|K!R(a-9}v1CRt9fRt1J0WvtduIp&V;god};B5ku7dF!10ZjGz# zojY=Dh+a}t2b?2mTHi4oJZW~F9BL?Iz`{6igO_GQLXPH&;xj%&rBMyS#sL@Lgys~w z{`=8^N`+_pystar4oB=;fbA_t^3q&*oyNlYR%@fYmwLG$-c{wkUPD`xKECO5Lu#tK zmF|q?T6E_zAaRjc54p{Huv!;Eq|^DDh0}lDtD?Zvql}2)&h_Y5OaWSEmQb54`;M(3 zAw(7`kKsvRw00_dn*Z40+M=RPw$}>!ol#jP4Gh*ODMuOFL2rCUe3WiK6Ht9s5r+x- zNjMnil+YVQY*z`MFsI}zlt=pzd~n#fj^2z%*Na_pYjxJkO44yc3E^75i>`G&1pC>I z`mK;sl8!&YO!sCEpJiA4`eXIw{JVEgM8TZ`>J&pN{i`)Cqq;aZff=b9I31#QuK|S)qEG|Kc zJXopHyX%U_DAJ6YEWNqbNNVymkzpFdi3L1s*j!#zgpIzw{&)=_b^ywW8~Y~y7VK|W z98oRD znp0$R7ZtKj!8&u3y@_FkXQx!#J3DqFx;-v-hiBviq6#bmQ*?QYa_hXO_LlMom#&TR z35V#hnz#iQ84;07AMLOSD>^tKdeZ#ItaW;y(AOCyu|)(VFGcs|{mnbm&Gdp-VzO+s zsgw;nOxf!`rOtYcatR~ED3Qt=bU4h3qRsHRM{`9=;h0sK3T!dHWSr&K%2k=ljy&@vy(#V zyJ#nqk$X#{+?y8!9g|-AT|qq5)775hhD&`S%LEz2xX69YU^`s0(*7=y z*SO+r?DS@p+jAlXQ$az|CHId|N1iCnZEL(m;&GVd-lvS;w_P6vmoSl6Y4Et`FuPYb z8iypxOjbW?(MTGL*UVPLb&TlJr!QZ451z9lcovqT4fWUf?VCCkMFyK>1^e|AgI{dT zu4J$=jT$xEBevL<+y_ldS@#>3DCMHthy?or}qEjzR+_mM+%_{Wwf*l=S2gf;g0lyRJm@B5-4q6u$ zm5sxhV*Bqx%H1p^5=Ajs`OqK%Az2X2f^6qz_Cy|(1`CF2Bi`!R%Bp+m#r6A5^NolL zfku3;0t^ul)g@_lsz&G`ppigQAqp_Jx=WOoKke>|o(_wltj>5J(=OW1GH?E@dihM= zNl++{Sb9?}Q;dUh$5RMAcPCcE&38tMY4YTt#p>+rd_^TbP_x@#bBOrg4VC@Ae|=}S_7^&W2_G*d|JsNW|M{G1wy^aIX@CFV zqXAIp1^3XA4BwWk1~QY=&CKd;T3XtGM8k=r57q9TvC)kYVlCs_x+Uk|cdyGg)J0xe z+L_|X$;Zvfa3u_70r`FA5+bmI@RL>mdt@uXO7eyAo=R}=pv?&T`IV3D(bb#ZCboVCQ*Qky?QL-Cv5iGm8Uvf?_)yD>u!A?w#{9P8GR&Cb`aU$PoO;xZ5?Z|yPr*mG!cB+^Xt zIkJU~E~=Y8o-~)E7%PmVTo(=I*v$EaPjhdAkh7UT!66Xk<&}92$*o$Ttx}u`Qz5OZ ztwkH#fcy^lXew|#4G$07IyvPVHu?c^gMY$w&UE3~HRJc82jI4w;b)5$H1wvhnJu9u zU$#_-OhiE>O9#>9+#ecFjry9@8nH#&>;J51o=PL*VadpBqEAcoUK#643Bl^fql0vU)@QNtxMe#wl z+pVuXl5v!{n>Qr^LL46+6g^HA_)2Ldu>B#^?8$Hy4*!VPG$URg>;2WJ;b0YNi9(A3 z?ZjH12#&YlQzj6~cKa@14+MG$Xe~Cc==y%r$4YYU2|U zJUAphYO>ms6U^bWNN!|3Bv0z(rrQ`c(@|7;QVh;LuRUcy^4RK-q@m1Jt9UgvHRJ)b zEg@g?s@D52bU%k|5poZByh@8I(+*fD5l~osIC#~l_Kq;$=<-tDT=M8Ib2^WC*&G4@ z%<~+#Io_Mmlg_1v2VPaF#lHD$t^hLgn&F(8d}`Tv7eOdGrC20tvdk?kI+K&&kdGZn zE_jejff7)anL6OPRz;0jrc)Vo9V;VaK$`|SW%~25$=wpkKb{C2hmHb`qn{R`L;te? zmQ$(j`$@z<9!H3IXtl@~3sOFoGiUZ(+B!i$u#{`~GmGt%I|=x(f&gb_j8xNAonAvD zr8hL5I$K=v4vlUe+e;rkF@~y#6ouDcLIY*|<0e!trcZM|@PSrr%=*0lyOfK^K=$Vx z%5RJnmz12aX7;rx&A>Z{bnCeXY0_J)t*=)+4=tRU5ZCp7m006>wiKSc{kAYpPj+1l zYEGJ85D?Ml@0ACh&$#mo0*z$}s($>P{Jo^IlB5az%JPxZ_x9Hpf_Nf0X4R52Gb>H6 zsdORwG!X8^Ixixio&$|Zc`2dB-Gd+3aCmv%y=hhiLLu$318R}9ozHJ1j0c^|5OnQ) z%DpfN4J@mjHKL21Q<;j!;N*=PM~gRUo3XV14C42{O5Vq8{kj5=vEkY6FQL~A3nWk3 z{zy*si725qz@4j1yU~#H;&2W=vOD6<+8pB7gUy0*L@nZD>mFjR9F`On9}uq8gsVcE zxck%{O11Rl{VYyzP&B?3(ri<9FA5-}t3T%$+WfXz z>>oTgzdz}yC<@^L6_9iQdY?G`g;vanZ(PEqsC;V2`*oLe^JlQLAszysdEN-ys#C}6 zoWcKU_}VL53iPni?Kfa_d9^-ubJ~rck>SKq-Hk&1!9gi=n+7{h$HA@6kfRvMHJ`cX zz;G>^5wSEp*ce&cFAqTC96uy4qZZW*T_g}$MYa1Ipif4h20k@Qt9`xCevjRCh z`TW9ap$kw+urM=UY;BEySV&~~^cH*S52PWor{>Pbub5CcWW7!*ZX9t+9GmozS{K{) z)Z;u6#aZ`ZVnUljc;#zZp)&d%xZRO1eT8A?c#d8qx!y0(^VISI`6dM>IKdx@XfxZ; zB#?fZUxNGH(!zOR&Yvy%*qg1$8`UUj_xXEp(Zkz_Gj5H%1D2jS2s%Yd*ydRg(2~F< zBeJv74+vguEmVcq;LZV?=F?+j-q$X~-T1?V*?`aO9q&q~c!HMAojbD5m$NT;K6=K; z#8gIwzM{DLs=84B!1hpO#00f14_h>|xUb651ahMWkcEi+>fro7mWZk+)SQugYd8Yb z`A5N*KHNBo`trMw&rz2g@wFbrC?dc~qdFjMp_0fYE)2S#C$^rzTl`w!RV=-Wz@8&l zpRaWn%R@W@MCz2U-xQOP35QyiugTQHA_5p0iAgi1K{C=qENpCTKt}@Q8zOswDKe4k zZW^W|C7>DUs;S~`con@DIQBJMig~N5mM=og#_T;|OLVa5Jj!HmCr>-ce9nV!^$Ck0 zSLKKpRb1zD=UK$S|M;=cYr>$vkVP%sRhR1?Pl*0Sr8K#*p+tVXj6F?>Z7T&RX)jor zoI_EL$qg)hm6rG!-)DuA@JnRE6)TB!Eos**Krh2ztX3QbJ%>>72OXIJCv8#Y>lcPj z{h}cD{2t=)?JX=k=Pq>i z@u7n^NYwv;C*^|V~>9O&9JBjs|=T= zevW#AslDn~UD-oC=gV?}AG)q*hm*2>x%DLiq$^<5o(lzG8(LHZ!YD!Jth4+Tz=&5? zrAHmy%pg>B_BP$+dhBC&Nz%5??FEpYL*I@P%=~dzW~w~c<2ZfU1D=a_{;1bNIvJKp z&-q$OJ_;Qm^dbq7_)B#cJJ-mhgf<7%V>{)(lSv- ze2+y)NC>}adhl_f!5jn@m0x|le2K~xqaC|Z<|f1#;d1~w?ZJr+x$Qhzqj@htDuRH) zV&d33SB&DCpRHzPD0CB(4R`BupBYXud$BTb!(nljJhcaeu zs%ySogWI>{5}7X8#@+xZ8f|F%feo1a*7<7BY5RejUEo*%nR9=oFXT1ndrmnta$8LF z*K|P;siinQy>fBp3ksvXd;HJecZlIbFmKQB{@dY^0$K!KSbX>KDq?#Z=!H2sH;C-^i^s3_3PIY zRaKBr@n6)U=ehUhta3K>a+{XqU?Sb%{+#)9TIOy4@Nu;j`I*5HO;&99o47Bhy<>zV zSC%gN9v^eq4kPgrx7P8yY*Z|)cgUDs+xlS-;E*Qa7dQ##p*8^m)qJkW#FK7X8 zu}`3>&;c)tADEgbADYJW3l)3au96ee<(y(I3)X0m*tT7bf4%4j*9(&6E;OR{JOffa zYR2_}hxNQCq$24l`e;bY@~h97ldVlskqb6&*{6Aai!n%LK+J@=Uq+xSm1`0gI674L zu2)9sIJGfj_m*uur4c=UI%)6ohkw3RJfqZ50L@DWyOn&DqWE_cw5#73R*&*<#eLuG zcubrFr7E0sWa*a63|oY^ryHAUD9-p>diRJY2Ai8IhrsEwL<9DOog1)ygoee(%yZlJ zL+?VrB?k^~*5F8w8fl^NRJ@sO92_E=F=2@)fE9qUJTYqwpe=a1Tj0P$u-o-qxR1DG zS`Lu<#5m1iH8#%o(P?(HT~~a;YTeCY&-toEc!Kr8KxR)jp=N< zG?eIxJI0Q>DXpzZFJn6!Uv#82xkidb9QXMEZL~;QTK?o>sg9m4==BNE~dq=Ja7tK2FnQzTL?27K~6LFT?#f3x1$Tf!)vH94LigRJ$!8%Mzd9fx3mH zEqG))q=fA3#*%HM+JH>_mD(sllVX)O)6ocUVh_;SIT^56@*CU&{TWRx9m5-$~55=ZE5^SW)n%Q1WAzg#5tk zcY2b?AZQFJH%nvEtO^u2+z+2!9OqfFy(EIR0&spxWeFy~YV85h>p%NiXX_Qlv%z$n&V;MqE4lu(CiirELP_%rALH099)ozweo&*nkceuTRCazly7X%&+*LiaawFo zn&MiP;Qj?%#q=Xs>Tl{CI`z2ujD>nxB+*b&J1iTxFd;RIzr3!6* z^26}T{TIYw4DDTXX&X^7${zMoT~fI(Ec&R`0kVaR3`$|SW1HJGVUuzCjp_U49QlB|%LMmDaY{*n z;fA?qmPb$O*k8?;j;Ke082ZBfNfcvlCeA@HygsmP-V;C{k#AY?Lb<6MX_ouLB1RiQVUUgry{Uw zL%n**+G0m0qN~fRQDvy$)6Q)wLtYEfwV>bu2MZ*As90ZwQSA7DkCIA5^uQ1?cJt!S z$4W|jhT$`^AL7HLoC;3;p|=>rZ4;dOhQ$}@{wv%VC>m3U`)ItK<5U%D#QmMfB=4tO z9EAQf^R1jjUFbYON8GJywS7iHjP{MHuk~vBVW+oJ@H&Zgj-;&Ut6I?lGy?kQ(Z`lw z&O=KH;!V$Whlp6FLR%9J1FThIa44F64b8DEK!K@nBZN1(TVh$RHnW!zz}(wRpsSO+ zgI64O?=LSmBbg*e3vgTcd3Jt{eHeH6K_I_gbMf(9b7k-j$BtoBPRgFMbJ{t6^x?uC z?4)k39bqU3l&t)LBmAEIH8Sz`12G{n=TqkzW z$vicX=>B()Vzmr2r`Dr=d2G4U$lki~gx9~hCAYy?l`Z^s?jkP1!fXxBIlI`%R$GJ~ z4|{#6UOQ`B#01jPd?O00VFxA(+yN6A~d8 z^VR6iha3S(%=9h@@HM#%x6Z@04solnG$y(R_DW10zmm+_=PevfE~otW%@`%u4h+S1 zs<}ECrK!#E(5lkQVlld+Zy=xqKre}v=eImZ|#wu!o+zM z4jN9vP3S+JtKjTLK737^A4i*eF&qdI3OrWn3E$aHhaEx08Q>tgH2Xgu&0Nl@2 zH5=5oZA#y%gi0OX2{^iNF##$rIC!71wu<@INhdOqpwAzfLxu<-gadPcCK(sTfJ%~I zG*4j)<94=1uJ%s@WU7!K9s?B4#5-1-#t&jtCU9hx*+YUQ1nRn7A^nu~YdOnxI&O(K z=>FoKENkD=SEMJZxdsm;Vn?(3$)uwh64u<{1PX}SquV#xZFAs-VOI;dU8~)<9DtjNd+dYO!_`3(6(2kkPT;QfHGyqL+txn-4gzNoLZlMi@d6M)- z4Qw@z5DFd?DXo!bpF>@$_)(JFj*$G}2PGEu!7&EYH{9LZz@!ERrkD^G;H}Z==^Lky zyIWzFABD-Bs>pthcYc0H`(3wt_Vco6xL^v`L`3arh;2h155}=-ajbelmDt7_+{DQO zYa__!d+^}Uz}@qGCiJ%lm!$6$l>IFoN^=<#Q(Y~!+{3?geoZ*+w|Lf1Qup{`*V~-c z%1hW6JNpMn8o-YirW&nI!M;RLAcDXE07CQr$3v|azhuEKVe7R}Ne#Ctml&u9!1>f{ z-_z+p*s;K#bCMj~SFH|QFr}{pj*si zsrWJc>+TBIaI+)lrw*&vDmb-z@Lz2GW1?bG%NzB@m0f-pTfnS5BzuO1#fLk6je=lE z#jomtpID>wXZF3Shoal^H*2YQ^=kB65WqdRrhG@tdanlLBk4x%w81-YB@~;M20d{y zv@%?2fD_n`KD+|n#DL%~N zn;+(#ZK+2R2+~UX4CaE@%I8Y!`ub~<%beG`;vpm-#XnwHwOUJWDDh-y z#F1st!09&Th?pEH zbwO(Y#o?Rpt>^oXvUD$9M9v{cT$Ss2mWua;AT^W(hUD}8B}=GjOv4wn+ChKyN{ckmH_$ z|5V_97WV)p%IR+9rR~M(El&&z5#Vxgu!z)$S~m# zHI-L1erq^=0Ky$O^A~r1-7F(7AUj4jCKlz;b@uOt!>je-!a3H0K!cty&=MMb(G_k; zbU*jh(}hTb66B3YbWMpl>@+m!Ub+b$LTDYe(|)`#XSctcd+#c887L@h+&Zu?<)FOW zWqz(bu9~$>kT+H%=1MVa3lM^yF~jjasPbLC5=X)Y;1V)h82orU-m<&_MB;$gFSDX3;i$2GNsI|F= z=^=7&fbPawu&?|kAqfe(Y$7V2Db|i53oKrBraVi^68SRra9Q(gNvmz%1}{q1{D^+# zr?5}SHRkf&AH2Hakpvi+q$L?|cQ-<(^-ARuds!BtuV74nIYyA9a3}ILel)}@SPtW+IeOzTv2E#vtbX%^8!d5s>eU49kE1f6?HLxB5KsTT0Rd6GA znKU+{f=Hbxz^ffrysD-X#t8ch(HAy0!K|~_r6mQ!K^k1PWmh`somFFsQ@dW&);&_~ z1Qp5UQaEjRVj+8SrFJvk!xPXN%vx0a*)iOXXUQ-z<>`?~IC5YaL*f|%S=CbTH!A1l zVo>RT*lN!zj9s`OC#S=PAy3uW$kU<~N|2bw{Y7rts1_ZGoh>J_x@o;cZNsspqY$ZB z%G1&K+RNCc#=FA9q%)W_xCG{osG;KFZvYoz0|~O#`U^__xSz2CS_^NE9X%?-7F|by z!iQMem=%)?-QYB#`$%%%SK42W4Qvx7k!f0z$cb{D&m|cG@hnZYs#2rwAq>xS)xeuP zE${Qj;{k<8t{ae@J_h)_2tdW-yq- zh8iWX1VsUb-q4BUFD?=NzYcj+Y1F2K-6TH3sHGKW*|_X=*Wex=9Rv` zHE0t{a2Xy=$EAREZ@=3E@%c!qLfaT9fnvw>aY;8M`G5OO*D>k^J!2vLnh_KHO6Drf z;}*IQkgOzG`JMUoSzWQ|<=u4`c%VU-%mfC-oMIK^(=vO#DrOe6(c?RBz@S>`s|m#F zoR*v`Xu7C%L9K>FDt1eN?>r!miuHRI%b#^c|NqUAL)ip;49}j z_X&0ggE*7ONMDoV!9z-T`pZo^uM=}Hocyy9a#fJ&G25T)V7QVpx128OwCwJw1pc@i zg8&~UVfg6EDndqI!&hZd@zHgnvd7*HoGm3{tn^#L@YJHN&}oH2_knp5MJ)!r-b*Z~2SXvS>|91o&hQlHhsms!7}M&NFOm61HdneVhXtz|Ry`l#EdC}=o? z(uZE{{0S>ye*2oNw`fSWVgqSFiem+?x9mK<6Os@o`*=z}FONf|2L?Tb!iFT`>0B zgF?S!3M-7t#9!CFZUCw$IU4g&3kSdvvo}2l7l2a9qTxh5U80*&Wp#$k_;Z1{PxxMp z;rc15MLm$XdG|^`{;6IELyboEkpX1N72oc3wrI`Svw~2O$0jL~`W=^}rq$$N*K26D zEA`_iYy-A~gg)gtGx2jltJv!M3L;kr{JVBz0;bk4EOynMjW5Z`V98RD7sW_YuneZ@at9OL*&jm}y~g4u5n?_PEuMl`;CJhq&SlmK1K0 zZD`c-Oda_hUM}34Bk@KObx!*#s}gnZgd5sdcbJN)WVMePWBZ&5TWDM$!D^Fd?`r`c z_9Yqj^|>u6;MUKP%pfypHqO?ZjPjTzkSYnW-{K+p<@r&rOw$qQ*sPxmyp;(-he+<+ zzO6Go0@Gc_jw6?>D`_i_C3Ih04pT|Gx8G1T1X14N+6_ z>Sj{}x8$b3H3}#S=A1vQlg5Un@eRzZ=%D!PbY1`}F(Ce|RuiLKt!^(FhK_k87=~jf zN{qz^KPtIB8YWja7YGjvN`NPQ$Pz9UBJ<2GxT;~aHMBbpW4b3^gA81Eh;Ah|qo$qwfb6%xg zVHxUbE`xcV0ib=hYuO?cmq1)ZfjXy(6@;l|X0i>eB7--jB}E^ZretRFOxcw20g8p% zTJo_1Ga%xlxSii!*_EHi1F07Njn8tKH{v$a8QQz!dH;51Lzfyb@21eyW9Ffgp?Nx8 z%XQNCYkr0OsFH)+2#s1dD5rtMVJbdapm#E743|@D{D{Oe?j!nCP2jV>B~B~3co+3| zxQq(9>rl@dR|(5~qu3b--8K?lwg`=M*P1IYZ|%244Q z%k(2wfL_CM@Z2L8L+5h7Dj*Q zzdYjW>h7)mSzzDh}Sj@U{A%b++68sA2I~mx&N1JfW6eJH;F~Y5qjzJ?{`zJ)BL$w{1*rv=`5$ z)xRIl$j5w;psCBf((mT%+=yhQXp{S%prSG>P68VbFu!(DP?C{f0kIu|&A5mIiD>^V zZXmSvUE|=O(<6tF(>yr#il3|z2NaZg!@dxhVj0G?ww$uFZqNny6H;>G&Yew6^&!1% zDo2>n$k&P1X?@Ckh|3}j8xbqV;A@R|;crHnmVg*tcVq+Pzmf@GZhA%9-_C@e;Dggw zB)M09hV~(O)jy;Si?ab^>lbojcwb;G>ARIk7C8eGS#@2Au@6&&sUepcnUmDL7v>-S zY!$fb{@1)WJxn%}UI=i%r6Sjs|(N4L*l?3Rp9qoQ2PE^k}q^CUfa2@M+bxhU;O zG#^6b#%h?N$+3YqB!mtR-hHfePWxGD@hZ=5#E&y|$*3A_DO-2eKIoH{m7_odWc$yc5Sly5FL!x&o#8o5VPrsmX>qw+pky~I>5AEF$u3KgQ#2)0^3TE#XutQ)b z9sp&p%xJVF26PolFgjUXh9SeU`aORL5oCNYZ3a6Bo##4oG{_)r$0VCea*2zP`q+lGe8{4hQZc_KQW?0@{HV|I&hg103% zA{ggeLMyK4T}q1qhi>9+wBCL`T72$n0kay46MLy5HFhDsm5Y+ej68gmr#K=Y3VtiZ zrM>t={=je9nqyNGx;t{^^qgeTL>mFNzg;rV#WENs)Mr?6T_wEO!&l18sJ|!JoRL2% zky$$?jy#sxv0#|~jLp=uUhSf2PV1z@ZWkjty;ASPnKY%RH=SkmRa0PHo}r57<{QV! zzn4gJHSb8iQ^EW6sT}TF-9pM-k^Q<1O6~xlvO(z7p3Ex1D9sifS9Bu%g&^td$q2Pv z#Pc_>1dWK&u-7t7kO)w)a(%jTp|nsjE|Lr(dpOnxwch%*zgv)+JV^CC{0I6zF&|}_ zmAQ@<_sdZc{)iWTlG3Y6k3nF?G2@*53&te9oeoDxAYk|Q!Q{!IrwPJ-T2Z;NOP9hr zUD15*D!L7mYBgFcD) z>um^#R(GwI*s%&BhKbA&078_vdu%0AHc&rBK_$77uT&jbM#Jm6oWlBdA&G2sIzI3$ zf8U9a*F#O$O?K5XBbY@KdQ;hZr8A^rkeKmB^Nx{5%~6=q%${RLLZp(*@CeV1J^cJ4 z04Qm(_)5uVpAy27JFcXA==84rF}pH_@T2u8X&q_|()7FR%S2=x6b-LX;~H~up9sDV zEvEIiMEUgytM5T%wSh>2B{Px;CUHdLMt-|);r&kMSbeV3_TA)rQefYX_jlOMu=irC z38e+p_TJy!pWLJ@|+;J}=p69ieMumM@ho=Y5pk31f77g5vtFy8k3P zr{-zxKsg4-o7BI}yko#uHT>UyuNK3u!cc{8-^^RcgIPE^Kd}q&VM@gdG&(BvA_J)G z8)JKR1Qx{ck0LO)-!Oef7pItOtN%A*WMM`SHP&(Xs~l;@GVJxmk$a`&akppyvnAY(AC#> z$`I&_Kl|_PE#{hwY$xm}nQ_C64!Fu{jltF8P(md_mvNg))SF<;5Q%=f{#f(2z* zhLn-Z63o|;wodYK+xyQJu_RbkRnDxvJ<8fk`lQ z;|D)IM?y-fWQBcurhsbbHYSu3Q+O z!;TDakqBe@K=T@pZyOxNsGWQT#RY!T`se!YzSZ$buRvzc+JDCe@nrgoi+-NGd+!!R zQMt{JVIH{J+OqVI>E_1+!*{YLwfvOOS*2)PYAvBWPI#X`D+kKRRMI=d1Lst=4RCzo zossE@F#0S=gI-FBBq5hFoY~Xy=-)#QBTpzgWKS6~l@k*!MPJI8!Ej>ELP#i-r0o{e z$bFPY-57Fp9wq!3hkCc@yXG!dKaYrMuPVgMw;e1Dmr+NzyV+e+%8qd>mBR@`BL#P; z&i;T{4|!$c!|-xV`SV$}&u8=>uD-@7Go68JxM17pmVWF3dB% zygl^S{)ntWp?)tCBGY`f0&%H6bnT;V_?hm}*RuKEz6I@&bq6>V{%%2^`eew&Ti2Sz z=(t-?Dd&jF!XBShYRDf1w6-pAGS-j(EyQ3A`qI!)zF|=jC<`SdQ&gNT!EM|e;w0p^ zXAqW`JNNgT%9EFDH9NS1KN4FXxO(RFmk!;PHp6vwI>epQHmxCl<@LX%60q7D#ecOuJXHxl<%5;Z z!7=P}f=;+y?6Ye_k{8|e#S{Nlm=z&K9x*_XU~6pbAv6S10Y(#-Zw_$sC9UNLWVjGB zR|a}6`&}Lr+R$@54Sq%4WmLRNW37(R^+kdA{|abE{EuguPZzVVoXG^KGt5?z)WD;n zEmsEZwWZ~T>QWxMl9fjg`FH&3f?WUpcQpS#iHu>^(?c)#n{gtAEBG!h3GTG;rW%9K zj%hXT4$*jm3}&IBoK`SQC1>RY?c%k|X;lC2)}dnwk;-`|BIewcW(ZmQyJQ-73zAer zQY(!49$a%WgQ!24exg^qIam|lC1V&mf2DAdh|E`mBE_bF(titb-R(&VWCjcB6MooR zxl`h#>x?Mq-!yrOw*HmAh4A0FV8%G4YBh-W6xiUY%h2LJvR(7Ne6^W1m@aS;{i)!u z8<`Ow(D@%RY22F1+zMjcRcBzfbXkUyXyyybE&IOKiAh6&LmfH1ivQmCqPB$oz;;mf zy?fvlz`E-HdO5*nxabk(&WF9+pme^Y)%r_>5XqQ)!vF5FZJwljXK|0jf~3JSe&4!FkrZSS$HVu>bvlFi>O^}CpLjF_U69gy;;huh(^`>)4N7MO%W`(0T9zO z>#z!&;}vVr{eD7p)W3f$Ts^7Zv3Hsy*oR05FVq@zmBNIzU4HR#!D;a~zjj`3ea-qU z2Rmi%VxQbYfYo8##G~J<_YYn^`390>8-a%ba=J@%<9s0&TqEA-5I(;Df-K*Wy@{U- zn$PsgFHoUs6(6yD2m+O!&liD@!T;pnAvHKrrJ>MUYP!K(<=t~-jedS#_?V=D=#=%4 z#!y7+jr;o(-!pgX+db2O3}JP0bbJB_kr|Z1XD}!6Ka|b~?#Z>=l8qNodO?i9@`0r) zHk;w6(Xq8pnChNk*Mb6+`2FwAXTK!dMKwatD)Vj%3vfCtAS-K|-%9^vjqbK2wp?mZU32Zh7myp;@yaZ0y*+#?S>fxXci(K8L-!Z> zU){RMG!- z{!oByh4E&3u)KWzEw%Ij1|2^JY_wfBO=32dQ~iPhTRXg{KgJ!uqg1Whwa&5*I5Q7r zBw=0I*tN27pYvI-nf0@b)N5C^Nv%HHMhx*CStpPi#vO;DwQs>{$ENr-rEg}o`EmI; zNG(EaCXH4C7mYYk_5~(aL>PU9zNO1Nsj8|%hVDg0MdgSsyh^*8N6(lZx$9^g#x(0C zvlx&0^7g^uKf@Y1X`$~pF&{GaMQqKnlzze>f-pfg)afvXB^OO2Q^XuHbl$j>GM1=o zY@Fi=a~UgtCtm<6y;)>AnaY!L4EiyG1DtUH6ce;r5$ z5aQL2lQPZctI(@%t_iX?M(DE%IJ2&Q;Lr(-aC|dqg1e~65=>SU5|yxx(zAu|jg-_U zUG1sK$sL6r-B+Grm7Zu3gFX2Fodn5VIV_gP^&(VeJt||BLk3uLfl)~Xg{aW$1veoE0`#9{*O%<84qU?xiD1b> zE>xI~#viT$n#2Wh+B9! zX67@BijSqotyxF3&-0k1U8jL077s{`w<~1?APMpz*{yD%y(s=w&&_m{l3RSxhvG?n zTD|VZ3(UNVK@na1G|Bai=|FeJXlC8iMF&|fEGN^--q?3XO}I!{%-eeX6+pnW*kI=F z2WwCH{k~yJ8HR05pL@yk?u>U+$w5j1QCNIsO^uAGQ#5#$7#YlIyUp-7ym3XlEXH(QMMf|JBrBpL8j}TvoAyrCve&O! z!CY7Hkt*A7e&h4!5=(~J4St4m`L&(MP_lvPYy&>t2wEpghp362iNi1mPRCl>=QA~n z+%4*F>l4SEGJH{%puofLo;s^=0%)0;ty`A{#JtX?;x9w(CyKW)K%q@ZfFPodXq`!V z^OG9}X3W>Z6thb(eHgrj-_QP@zyB5{ZqLj#KJ@tf{@la?Oksu%aI9nZB#RUYyrguG zWQtA`D9LnQTER%ws4VD9Lo~SNelW&r9Qn33b{J?BlHZ|%YnZ1LWg_1FHJ-^?)4S{l-U8Ih6h7k()q zo{`?%++6%!uDH%8OMUgqu_{;0-X_An2oE;bWO$zMNyBAv@^Wb&yNRG`_6ruAR`t)D zV7URm*}Rk&`%RwWm$>eG0#}?#{1j>aY!6cyp(BeL?!I|*MeE$v6vezy_0D!uYh7Pl zxWDk&A&it-aszWpR!J!-XTHxdydftcfdKSk?F%W7sF)?*F6U>tKgXFU%W1)SF~e{7 z!M6|pc9L1bwZu|=rH;@331)Z!oh3jHr~L^Gx@*t5KAte5dT)Hhmvw$iilbkD-}R6n zddzy-*0gu@Km{o(;D+;HcEadx@hxgqis}bPd3x2|8)4@_^$BCmt^F722`^thhW8`& zDcMd-9tQ3*eqyz+dKy?zB75=T;m0RgIjorAKo10CDpr--G2AwzZeo*TV!ga^{YQ_e zII;~oJuT|+mh*-by7(>Onix&iY_AAUTi9GDn&Vjtmil463UGX>V(d6*u`gwh2=}>L zJ~{WTPRe5@kelz;!H=E9nOR#@vi;xxB3>u!8|Bns84LdvydlrDs+r^7qWIJNce9sl zU{dEc$H0>`*P!4+e%hj#6tyvX#RLmg8{~O3i*R!epB40_UkEc_`oK;)!PLv6SaDg`ONBb}Dfm z;K87^8jPYTH7nB9C9197z;zFQfxh$q&jHVztYoafQgr^C?TtbRW^inys)R1b&dB_E zJVQ^NDQ=y!GYr3M=E#(A4vG%=9N`>kK{pbtkL81Fd81~D4MwxSR1F2&2Qs4_u5@{0 zi-7k+|9%g^J` zR^=)EpzB6{M7L&poggz=TKQ(Rj(tMd17QJ0 zZE-VLah~Pnkx96XAL1YD-)MLx?pN)$SfRn{-r_WF+>KW6T3-Z{&n5Womj82}zv z?5j3$cw3bour8mtIpxbBx3>_7#CbGBjd>WMvb5!e;7{YbsEhOa?tLqN4~z|YQuO_w z^B&*7*pQIGAw`z%)x|%#UiXf`X!!N~@9py?e(UB^Fo@Cy*0%=`{%@g)uZPsDyi6u! zA*yy1=a=`&be~o}O!8&iqzvw&|Dk+Z1qsZuIxSN0Z_h$%0Ufkl>>vZj>eVE9-LiuDp6aY=Hl3?aHH?yt4Rbkwriwn*u6S z$7K)|a6tqDD5D)gr4knuB%myc3K>OZjVvM+rB2HtSP+*2jg4VzMMZ@WMZqXo(73Q9 zD4>WE5KUOq-wXAOJu_$infWW{aQNQ$-uvGD-Fx4?_jfIMh{j`S&YGtMi8R5Mz-<4d za}O6MtFATr+I{_gWM(>{3H^&ODPKMLEiuIf&NTX1S#zWX_`PigyGr=gb$$0k*m?o5 zkon8KFye_RL~%hgrmwD}s74U+PjzNgr8W%r{pM=H2TSeCD{B`UCoJ3F?&0mo5>r@} zQVTR)JHY$4<8c)EcEVtcCr)Loi~Y(px?$!X=rrie3QSKGx|CH*mlY=DX+T7yS7xOo zAjAQ#!MmL$D~?xNkws~z&hu=ya z2cOpNdtbBgM+E$lnRc$Ubh3k-PpeEaFc)hvy-i(j7RN8pb-# zI|9%7)|i45kG#;J*niboHPuCJsxbG-hAp3|8;d|_{ca%Pyqy;*B_0U5AkQDQJoY~O z<(TK|4P!>ZX-j-p1PFU9ZEb^+ihO+;Pe%niK=r(P;Z%L@Ce8NQX=!U$M><-Og%?dk zP&kIGe;vTY)Ay3FKI-9(i*}1$_-U(GhQ1EKj54;nGnpagTdz2*Z4)Rp%)h|sC`WS? zP_!8ae;`QSTw=$O!8a=P9R|3lv{vw^jY|6%V}6EeB^S>ZzS8KaF)v6Bn@!dW+~hug zZEJUb?)v@Mc#67k%t$$4ngBvMHFE#`i$~K#%7?A(6+`a}@!@{raEh)gFn|+w%5P!y zc#HZ9QO&fd>_)z*`qNKZX!b-Mf{Mtbvo{&Mo4LiG10D{Zar(6VLMwlT>M57K5yxg6aHyBe>SG%)76@_<6GIy+$;O>#oNf~c+? zrtx!fqKX^p=h^{lbNHw_NIoBllCOBCVnCF8W|Ozi`WF@d1*9&_jMzH7m;l9uEQ3&ZxJC{0>)GFlrOc~SQP zHwv}nu`ub$u$wwLsdS5*@)-!U5(JW{n97|v`HaW&Kv%}br9|b`jx(N}oR?!ggS>is z?^y^e*gaYvBWGTiq_l5UFqZVgyCen92M^!B@GO>B{$e)l|U2b`7KtDZV83j z6s0g(#(H^I=L%~5B^HPKwYZ+8yoUN}qe)A4{k!rRad+cz!`m|h#o+cof=3D(7``=G zr@SM^eLHp87swImi?B32q8KPp%zens2pXd!+07g@zTO?(9e?@qWp}syuCT76J7;;k z35efi9cm7*6N%KjBSd8`^h;Tp2hO)Ane$>$YjdYZ98WWTet7r|GcnO5LgU>HnKxoD zESzn@9_bVRh-`|&fe*JC?yFZGhp3+8%y|!m$6c*O$E=W_uw!6~&in$aHF;j}x1_Hw zoU8x%Qt)S`*O-&0l7iH^Zdgp^P$z+{Fzn@2G@HB8|{votRx4eahvNaVd2620m3MWP`Kq9Ie zb8juWm%L?8(2>7atNES_f04YjcUf-n%#=5M5NtjXAtIwbxGxd+2u)Oc7Rc)N-07AH zBAefvfNUTR_D_9SG+g`#HZM--J~+YIFj40w{H_&DrYRgtbz~H8?KIn{{f&pg?&n;+ zCBd0lSx2Bo!&(NL)sdwU2SOOW|EX=m_4d>O`^%2( zLnbCREP$}N`Q^ROk5Wz(s)WlrvYfs1o5~KIiU^w3MtFR7oTN`ea3Aq1G33sbo?E;_ z_O9vW4Wxv1q(%h!Cp3jT#N#gXUyEB|BE)Sw_a0 z5`_Q*{(n_|pJ6|Y(C^4LKQ3U>a^$z>tSNxMNi<2roTu}Aao~-Wb_O{ zy(A*3n_t#494v3@W~)2o04BB@=8a{YwS+HL`?j=Y0_qpyhX-W>_+Luz)dfgK=1^5t z1yVdYH8db9KZ>48Y6Mq6XZLy`S z@YS|-<#ct4U6GO0_Py(Z*wPmE6yD8&Ac`XQ5g(WegPX(>E~$0!d{&KNL!S)avRt#W z_)xdET&(V>5&5wz78%>oc{0K%gR2nBvU7$3>4=sR;|rEblbg~8`Q&Z=9}Jv7ePbLU chQW}c|A5c4tMB#!rzvXn%5{I^t?-Ha9hJjO?f?J) diff --git a/_images/2.6_resampling_24_0.png b/_images/2.6_resampling_24_0.png deleted file mode 100644 index 5297586ffadc1fc8457d22595c27a35120968f8b..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 20499 zcmdtKcRbg9-#7l%&?2dn2*uH&kTNn;s8l3dW{B*Oy_!;z6sfE-Qudx96h#r)BP+?? zTinlg=W$-Y^SsXUxUT!Y|N33`@i>k{gU|Of-tX7zxn7?;=j2Y%u4P(Fp-^Z~os>FH zp)3=jP^gktQ{zwMPer!k%aJS6YF893FI{oavoWNc)w^P4W_iWz^2HtYhBmgBEiDdl z3vu)A-(h^^ij}P}50CkOd;_C>?Njn^KuAYCNV!<<&yUl_J z=bc}_i8l;?8v9G->}kb2HE#^UOYX`Z^}2IJYTJ4m_PuXBJQ#cWtrU*xdUo~CItG{O z|F9Let(bSEezLVE_{a$k_GRq&C&0v@f0-Bl>DySmo}QlmHPe6pMMM9>R$V$-Sy`*e zK4nKo$DL zTE;s-DSN>cB3GI;{=n91rl3@qMZ&b7rH#TKb8SB4deJ8TJ6>KVYZ>ivDgW`sv0^ zTx*rD-fgb|?aN*t%2dLSTdLnP4IM2pOLglS52Cyid>k zY{^bFzZ)Z69>{b1qrtI@7unA%Dsq`0dU}RYz)UUR@e$Ly{qIUk>rFzElapmfOpFJ1 z54?N#4v$xNZlYH<$ZLnNFq6BxyOp)IWLv(Q_2Pn4Y(2x4E$p0}Yqhntt!!gjpErkYiLF;@q?@V4-&KtKlNz$%uJVWRi>qmkcf!>_>a#Ftj=o5 z7gsJ@wk)nmz^viweHM|T#>QGI+c&4uc(qOiG+Pzl@hMecWKO1oV429I3-`v*TO z2Z!5o(ZvnP`lDavCDij4@qg))CszlDgjD6&neNxjI`^7u#|}z!re*2NvqAo1?hNTv z-E{g|*)}WXC4L zhtBuj0r`TK-!|uI^O)8rFwpz;*C%>ML`2|WD))|e`AW!QF&kjz1tj441YHye3fOn( zkRrva(JUdzC(@bf`IgE;`VAD^HoP#Nys{TlPOl(8|@wv!5O7?i?OY z6xGSJ2$`9i<4kPMcgw}SmNhdoi|P*(bICYt-lTL3QSrFUW-m@7g05{9vdx z_q3GM&9OPR`Kdc{(T^G$)K1CE2QFW={^Zf4SEWvz@b)@sZ=XTKBCJ$$pM`7pqf-ew z1=@N+A3_SOaW+aNQFi@x)zR{7M{K@(MMgz^#KnA{8SP?c?{>eqpKg7kgDIXFG7ENmR2nnhEs0`ET z72djE?Oewyx?;KFlB9@bbm|T2$ro=a7sT9TiKyCpA;T=WZ+xyl@wA$n+O7VI&z~9M zRbp=jrQn42oDC9SDA#JvFsfv|T=UA$z|io{hmfSMt}c#Sw{A_hdd}CX3PdUy;6dqa6Bs7c%)!E*@BalZ&rKuuJf`{@QtAd@K+)DK{W53#d@r9A& zqmz@$p}zPSPED0MdxwVE9*L!WtgNgygH7pcO}XY%m1?KEe@(aXWFGkV@gw{B#h$GE z8kvUV-olFb3z?mto*p`R^5kAY9xkqRl=iMJ{o0|ft{ZIbGm^bs-@o5P9eCWYI5&6q zQ;5jcLzh0C3+?&wqsaJhoui1?tI+J6WezNtUe{07g`+Ac#V%D!EZzI`>CBmDhu1vX zBd^kg3Pqczt3zo#)XF67G-n{wwt5>g@+WwH0laoKz9dIhe1H7)IXtQNlq4|MGslCrWG zQEuM(FbkTv8jiesCv~O2jy5zjbb9bY$aMG6=)SzI%J%jG!dHHtix3{X^|?sy(xu(n zuA|c1g{&wQ6%_$fTrS;G^x4C;n}_R9#MY|J{=vhZa-50Qs{Xd^@otq%%uM_yEB4uH ze`($G>#@H-h4Rg1SZrdT@oS8Z;WQ0rUgkN&p~>m7p{bN~l^X3wbK;9L`fnzxPpjoz z*;iCl1cY=g^PBVOBh!&FoK5$uli%dFR#jES_{u~m^l`_&)OT=jK@-}-t?5-2aU!ta zA+a)lK3m7!A+}=PW_qS2kCry%b5RAk;E)iX2M;zx#p9B7+$I@R5;X7l`){T=Onqx{ zi~c$=VAd@`d!z7bcsTp_@88u1TR&D*$N<@inXjQ&7&QL&=159PN}TxqVR5SZ($ZB2 zG}7L__uhKYePM?4Kq~4vK?JU@qKjjJ1^z*7n>XLYJ!O}W&{@M>dY|Pusy2FFu1T%V zqq+Ork6a%au{skXtbF;jynJRKme`dxo{$wQSL)4A4XWrnEX-Krlb=g_Z>ep%e;&(t z_3G6}ad5O3)ed1EoqV#q42LUjt=pL|V)uw&E4jmu7)I1wwp`_Y=7ijd!+EgH*tX0|6R83-gYI$FOrMtNpoyfS_c zHIQTXZfeVdUjnGJe*XS9X_*Cd8&eD!xW585*#7ubIMA4yeEI8c{8-n!JDb!B+{Gxm z3p1lu_VzLc27gq9h}^!hijH8ZO}o$RbzqWIR?5uB6}8vAR%|HnkicO_n@ke}MACPn zLmO3wO3TWwb)W4HTwBm7Zr7&-Y)yW+&25^+ez57*%5__GOYUtmu6gx?%?_)Etf_BK zJuIlc9oX@X)2$9v6clhND=Xd-UpC)EMiuR-Esm&~fa)){e+!cE5XZ;g1RM#L@L@A-x~gkGFPWAd86o$@AwQijIFe)Y;$9m7Sd}8@5mJ z<;n8L2fDp^@*m)|P6ACupqTqmkdjD6tn^?LN^5oy${9t+luSTj-mJlx!mmuAD3 z=si3{~IHK5*GpBM%Z=p7v$eI``2u`ftK`G{mz%w&LD>*pXr!_Iei z!t48^fEdT73zoFB-DeGBADO16rW$^EF4;LW#7+6$UU-8cVF~zWBNG#+oSfW6UPgn8 z;3GEubq5UH8!H+8?#i#=Hbr@^&UbUchi?X`yL0#M`5(VVis|^!ysT|)H__42%@(sQ zJ`ZltG6Cq>$jZu%f6&aoSDj!BKtpX!^_&lRzMtKuw|dvMLznLTydrFEXBU7v{6VnI zm4lrjY(P6?T3YIlJ$p`U8$Pf2@{Au4=^9F`Wln8WlaQo3$9bQ1Cu)-O-R3*}POui< zW#FQ;92v^C>NvJA9=0SUC%4{tYTyofmAckJg1BaemliF}8dHF#RxQQxm85cJ|}uZc_QtI(PXtz<2#?@Ln+v`1SPdoG?RaG%;K!Di)9Fy3&Hs-?wh z{Kr`X1A`sByd&2ttapTa_G)`9kC~e_SJf+3VYIKgrgvf`*vzYYO{+!htydZXz=h`& z{R2PxXSVe3epho9$ayt*QhlP%D$2W(5`ypr;$P=$6C= zp0vy=QHB-I_}7h&j;3oEx!tk_6Ac$OILwr6*RO&`x7VCBrGmvto-~u%n7aC&&dz0) zmctr47Ft}KoH0px;X&?o469bHLcuz0(USG8PF=P7>sR`X8?OUZaZ1oJq;I34HcoHi zJn*%(mF4p@{@B!K{e;~su=IV)6VXUFxrJS~*IdMY;A)kzRHj91+}z#OkN2xz2f`_S z|9+)buKoLhrC*k@;x5xe(%>QO;3n?B<~l%1RmRH~qk}_3@B49_C_*a$kR?qOKwfY1 z+10C*{TgYjJr>8qI?%hYqx4#H?50~19zNXoX7)#r@z_D8GqbZVa4KbbkwD~(K%Tc!Qx6GPexso@B|wjWq+ zWMl;7NENG^n2?sy*?EzGj%(Mhk#2-qF*?<3$u$oCkZj#0GtiX24yytG-d@iVGs0Vk z5e_)o*lnLOH#9V0Za7hUDeH z<|c1Ie#o&OjA?oL>p#({T&CB9xsL>--t=b+Uv&_(oQZL)AAk5zB(>j#bKmQ4Km5NP za7F*&(|t>ca(jD~D#dkn%*G)jRM0Y%z-^q+9dXS>d(7^iDE zjlSR7ojaWW2-VKp*VmWwAUJqC{XUP|lfX#ox%TnFVlFCJ_1yug+Vr^4*^b+6{^E;^ zi=Dl_`(jn%AEu=pzH{e}ADY7{8ylObW&zOC%S~you?@?n+dOzq+~4ju{mn&QN@{F; z{C#Dmyo@jF0bu`)Y-~Juek#pO|3Z=WIec5cdi8_B=FD<*j_y)64}Vm^JBf*j)fsN{ z_M;OM{vahd$;=2u0$SRbVIJh=^}W0Mg?G7pqjff5q{{JO2YP7bz5-pggQhK_5qm%mnw z{*GQ>o#)~Jx_eF=d|kY%_sT|QW-i=&oA$RFyfNuY=vgr3q7gAE1np6#5pi&ct?bQw7!!ARU;!v5 zyw+qF2gh-4t(-rAZpX$eB`(}z@qW*a-;}L7{Tc=ImIpfJH({}0(Slh!Q zWOa1=_U+%Xfn}R#$9q;@B`ZZririuEEeBGZTW_H@qO5kIF-h@1_*9f+4yQz7I=wy9;>@qg-M8A77N;AstU07spok84baxxp z_7vS(m*q6R8#0wat+tX<(;MVVKqI>gpzMyWTcw)>HBws&0Dry#I_Eo7;Z}EYH4Zl&nRVep}|c*dFs?P zUtc=P^V5OcRyH=A({n%sdwo3?XN`anFG4_kBI=YvBJ& z%J^oLu~O6Z>({?Tp4tSo!EyNT=4kmanPbPU*Xk9cFt@yM+5`-EH8$2XJtI{K$|F_* zwY+@g{8apJt^($^EbGvEqIM~S@E4-h)83Eeva0W8o6Pz4Yz}B7E;uk5{m^Fow5%+J z0+=R=hZXlDAoQqn58G(pEP*BiZ3S#g^94)Zz^!l5ROH1bm9jToXJKK955?V!dYJ+t za41`jK6&kG!@vuDL%dfqbDK|_Iu7See@Qixk9A+aemz6}BBZ90(>!@MqfQ61@83@Y z4&vA!pXqNa9}^QkxYvzt$Rg1iGI9k9{JWo35#^J%_V)QbW5eC<>8DFAuN7GU4%1&%1%L{y@rIhHf)zCiffmW`aJ_%x{TNkJ9*c%m?gr-cW zP_t#h`xxa|@>|MV0IUbV767wQ1XeQ)S;sgUI$T=e%rP?C{`W7<6d{~7TsL4$^W=oEj>hY z;EOkqq)(nbD-AkG^j-K8$~m8-T->Jzlol60vqeR^_D#>ZrFl&JDpJDnj8-y}6Om{1~bpf+x$ z@LIJW1v%BnlM%B0K_eF`dZ#DUh1f1-9eF54`naQj8zuOqAMP25bw{nLPQ3M5%E+ff zm2Y)V`}gwb4%D%N%(tq^6Q;=q`r1t) za;rk*RC^cdbv#(cdn!*rg~n6#+Iifwoyfnsx;rS(Q9HrkM8tnhC=&e^h3p1 zOl>M(PJw?VRi!9LeY# zaoTxIA;NY=kp2B0Kc;S9%3u2}?Xsfi;!GE#kkt;2ObZ{}*L{g>d27R7hI4(66pJKZrrj+66qNQ&urRKB8wy2qY zRT+2j_96G4$Qpb^z6os<mOv z{DcJSG##(={iS#K>})aUjwy^An%^t&c2W|r>*8!r z*}|PodyYj^sh!2WPtlOk)7y#t)ZX2_QczIv9^=7ffXJ_h&+f!B5i$Il^fkrs^nUF( zjAVnNn0+bm@PM+qv8OUjbq>1oW@ye&r-oWh)9*p=(uZEtkYmSnpH*zF_xtO>`Vm=K zS^0vu;SLTwI9uSn_->QDnwUqIk6;pn1C-rmSToBgU`?_-yA1?_lHGqfyUujnCQF8* z3+~Iy#n;uk@b(RPEc($o8$ZCqGehU#$wZ5T5Bef*Mx zk8dL^CYf{RHk9}3CHp0e9iGOsjA*T7BEXkCwUOpzC8 zOC=I9+U;{N7_U2bB(Zl1?^1232de@lIC=W?a;u&nR{<(MeEgW)7Z?&k%f=QaoESnL zMcC(JId%4nc4H&05C}aX>=7V9Id<$=`_G?VFo~jkKN=Ke+xDP^Y4c2yvv*7F)r)f) z|DgvGh==l_yu28+)f)U|pgEHcH4x05@z5n2EL&^nB2eAw;7vM?ecVGuan56XwEJuk zomJ)CQG%hk(Fi2btYCF6F9>)Vn(A1`P`f zZX6R`^onpueEAEeocdF}$~|j$EM=BjP%LVS__#`S3i!sxsT`(7d=G4S`}uRmx>mFnr4$!EY=VAjisc_wBEJC1RbrrVA%mAatNE47e9s-wd!q1o{+e>xa0U| z!O_fuU$mD}w}C&Gf=qZ>ca>04614NyMpSv_xlCXD@L;F1hS5K)2CWct=Gp^3GK%X? zTd#bu)T}Q^5j4?z8jzZ*Bhg%5xvHggSTsY8A}H8gcU;OoJ|?Wq-nK%{+WKIIMeE&# z1y|gwog5s?)z#G*MIDo>;YDECEi3h9TSW;LcVmLYlhW7K({mdlGnX4DY&EZz7R^{t zQm>kiKlJwO+qVWf&KHyPCwzu$?T1?K0G`6yqN0G4#m&vn%jYOpH?-mCMD#80G$W~Qlbo@;9LVNBlv^J=unp_{>{f9g@nWp3?5{p*~`g!4Br{$ z#z}~z<<$T=?1xA>{Ji0v)oa(Sqi1AX4GRNB!%$m6fqp%k_&pd6l%ue>(Y4~|o}Af@ zS}4~`wh>)sNrvX^8>ewnOc{M-APeaA*ToB6`MCkQ$SNP18>ER;g-aVZXB=qCF!zQV zQCM5c0B*LQf;n{@ z!otFaOiMN}z!j7yVlDz}*RJJ-Y7boe99q7RRXgRc>&O<+l8h!&qEa~Q9YR zt#4GI(l)y774xD{3tzmvUU3t^NADMN@c-2>sLu$b>;PT^CnNCel|saWhYv5-8bOpt zmP17mlsaw>)c9XBDRV8G$qiH#pcNr$3X~RKu&f>2-0L$f+e*L?{KCR4Yb{}|BPvst z<}j=sJNq?Sz7%_gD6`weoHwJp6yK&hVQp>gX7Ri0zaYy9@_AgSWkV9xw{PEs+~y7w ziy=x2x}q+xQWi~W<2{HuUEtR5usovF z_M7abR=}h^3W!_Ga|E>DVsCX6oZh4GQ{cp|ra=6@{^-%BX9DIX>7s0G zY}oS3Sqa#JKPR0H`Ivm{GWEz>RumAsXO{_7(E%(Vrq0?v~I?C|M+nXCuk-xz7Rqkm$Iok7F42F`amnC<<%`imHP$mhTnUZ4-Gl6 zUf6#%D9F5@5P{lC%UmHqf0ToS|J!m1YiT% zsIk{F(07%;<8|_Y$!7by1TAl<#wgM+GH~;7dCL4b6>{hvMa9LYxm)lj;TozDN#lV9 z3q*~0J*Yvh!bHnwy?!esEwqecvXOyVgb=X#tdn7;9={oyvDCzK9KIq{%p2jn6%?zX zmLsuFqR9dH;ek^=MHScqrnv+{hYKr2*b=Je#dMcxuo2EL}GE&_YKb$ z!b}1*XhldK3v!65tsnUox=5MZ$=JH)lbTYxd{3?VYWBUEYBEhf&-nW>zEWtY>Yr4p zWac-yiEh}%wluSfnvPYI>lXf+zSfiJRtT1PjXeuFmR-1vUUUtK7z78?pl<>>AVm?M z(T9s;k73{!mOO$q#;^J56UN4SiLr7fNPu?d&Yi?QbO#IMTog2YgU zkR2<|ejTznETBT{Pk2A?p)Q_4vFJqj9u_bnbON}rdjL>Tl@E8FPBLrcgH*8*q7Qr@#>2)N#>U3{ z#s9JioE7lJbEuIrLBjDP^#Ag74}d>-!=@=G>FE)n*g~O{6Xu91#F?l&d&8YkBGcpm$GW;mS ze!pTB8q~9GcH!1;*s$U1(p=)wu^<8S4UCLl2ynicAIjzDG(cui$YpB(;$)&nK#=Ox z`hIZF+=RBo%9dYAdySuypa9ZwRCU~L zJw9-Oa}ZqyI9(9xzN`xZYblwfy1Ymht%l;G;^KfRLJy+ZF$c<>reW@5vI{%ZGfKn7 zK7V2CG>*EjCyP))1qB6?y4=9TbQg|b#|J+SW$jQeU7R)O->To=OHHlunU03$CK9fi zn!(j7N=i2Y9k?WS|M3TTR4Q)Zmp~S(m!ZC}hu=PtJ~a@hmb?s-m#17bm!N!NeV3)j zJTp$(Q`~J%>9W&b^)5J?WPw7h`;uXPAU-W*1t)gp92Ul>jB8=l8_r>*-B*^FT*-I=j86yaLcT{=L@YkGpr zbO|Y?CVT&9l6&x={JB0Z(b0FCM#jf)AVjez%=IF_$A6F4omJmR*O8_D36l${ zHTBD3a7hub*!LB8GyaEsm^cdprtgRZH1Sgb=>Zxx@$FcZc3R?C2K*Es^XxIbVo#zL zO%FuWn&|N|at0gyp9p-knOE@;2SQrIQf;9!Il8z+06)S)<0GKM2|iZ|Qk1-oBf3$a zD=X=Mic7E{xU?=oXGfvu+vZau+)7O@g(Y{rNUnXnCQIMJYBMlmQfkPyA7tV?bf}}h ze;oyx{A&>r9G#t={(q+6jypPL#h3ko!-`x4q6Ttq^H|Co6NUN!?msdyaWgu45A>RY zh`$1Ibs{qIM9`A;&6_tP-yg{@qd@A)|2h)JypOcRv7kSfyTW zIAYhg8EL<0(XfO1)RZ025#S+9{w1D%a|yn?aZA=gM323%UtfkEMS;Zt4E}0*kf6Hx z2zvTtJNk^rK|$;CwCPeCAw(PX+YA)t$&IK8s#0bP#O#+_6?>*PL<|3V9THyJ?^HzE! z9E-8O5kdQjj10oambKAINgL1$N5;mk2L&<9++)0kiHw>q6+&sn@E|`{R-OQfNVe%N zTie5Pcn|NFlgyiiBWpYpOo6bXr)SA>3(uDf|V4c5}hq|FGEb+0NeVbxhmW#5L|dxi32G z?1ygGV+XrbwI}{fNN4_^*-!uNSu-`~P}oh>4l|t%Inew!x3Q(wI^ywTF81`aKiEyY zvVQA>N}m&o<-ipWGx^jS@G|<({u_>Eu6B?tAZD~G%9q!Qd!U*cVm{~mj{|?PeJec~ z$a)k@o=^IkWv!2dilGVe;#Wmn>@ZkzO;y`zCF~;^7;+?rM@Hz#fQ5A}X*WCr;seMd z7ox0SEjrHiMq6Xxg>qCzh8lYF@0OaV5-TkwwchnovAf8zoiqM|LH%EZzVOYY~|TL}%B z6kQUI#FkyCTw0(5mqmhM&3`3F$Hkw)u^kz6xrTURN1xfDhWnHwAqp|L#cG#)lOs22Rt5=jhrw z?0#N1R3W9Tpc+vrVJp?AR9iVrZHK{1C_Z-ozYv=FGwi4!M4Tm4s5ebE(O(EW8p+i1 zdzb&yQ02di3IC_L%YXTnX6X&^cE5FAe>G)QNv`?zGn1kU3{DZZ0fgq}&719@e;M4w zOBuMzSyTaBPaL5)7~q+K5n6>w9U5i<8W5xmyWiG;K9fSBWL>D3OE`iQYN?les_T$P zM{;;AT$O1zx4%CGn1ovKb#)tjb0u2-p&yNnbo^9wQ!G5uew_F~w2Ldc!^7E$%L7Q6 zqC5{F+Zy?jwK|G_n$+2iX4F2?&|>TdFp(GRIPNqdTlk{9poXly-kr{+{*VsqO7 zfSpT1MB(j_^M+ruy_B9cV555@zq7XzIjs>S_Xx~Oe>{eaI3{@!B~tIdUBY^4dwou! zbv*N*Uudm0rB`6S3k)IGsDPTy9!G6&Z$D?jBZrJncAi+&Z$cigd;wZ)U!-`5T)nQl zG1JETrmgK+b+mu`;^QfhpxkI$(_Y}y4W|m@E{JxhrgXth z(Y;vLYscs%QJaCeNZOi2@-YKwcfokMKPcmxO}l{_j>C9DhA9h@teDO?vO9WUQG`{2 z?R&0gxto@jHn%V9+N+OQ8vC~pHhbVg#!YYUbx8Xd+b!3QY0NS?{A_JBMv7wH?^;ky z_!3C6_Z~fm3=Uq5lf?t(aZNTDyar`K!WNKLgBQ#M~B*UO6xUTjz+OxU{P>2yb5shC6Om~j5( zHXq>c?^US#0O4XT62Sj+2sOTVE%Re!{8m$rSa;s6o|>%JSx1>2${pr(Ju54Fm+}Cp zZl5^}q%E)koe(4Jd-KEd`R*=G_G&cG*;0u`z1ljYf1M_4Rr}-WJR@IrY1E-$L?N+Z zr*QFx(pPI1B&QZeeLdoQH!?>)yKnlpk--#J&N#7_RDF(Z+qRJ*1#Ig80jxVOuhmG5 zw0H(I24cL43C1F7xl)t!WZz0m+4Txx9DCW-S`SM&hRA*v!N=~;`2953QgG2F7~~v9 zy78El)kwQ!!c`=c z+c4jIcE7(>z@i1gG`f4NVmTS*rb&3f=)*`%s=aYMNHzq5+U;O3B%oETh!s%NC?K|1xrI44f$V#XYEOvG!&j*>Zv3ry z8VvUL$EKlQ1vWQF$SAWkry5mu;&F2d4)=t4domn@!Z>}f32A2Rs_BtYVwOLs1 z+@-bU}MXXoaM+S=L@3P#J4Y)M21EHdVi;i|vmr1i+q zBRRyZMa)_Zo2&2XPuqhtN5Ovb`4S@A8-2y+_EN|k`Zdr!N5>gAoy7WnD$3={mxUl8 zXnXvcT*cK=QQMvM4UsEEAdW@I)QQ|=*}mO>DZDlY=YY{5U$hAX4koXeTCDD~(F_R= zCZaAeAf{?+l!Ctfkt1GHUupUpfykYQ4t?!obI8>%eiWhHjabJ6q!d(;*xrlm#MoeF zTUlnCI~Tf`Y#0h&Ibyl~Jy86&V45A1HV-fa?gVi5uD)Isu+BVrjlC(X=8fC8?}s^) z?)q!89!qiSHgVT1<**d}`O#9ga=1jh#Kg43XTNV6ot_TFUaoiOwU6K3g(kHVd9{bg zk(Hrf8A4R*92nRSmYXm3o(l*VwswhDsm(kwj6e<&CuON%4 z0#j+HC z&(6NI&?7-)XEI^#@m^pDKTACf_S5hX-eH&>nNUtrpMEj4Qj{DtEnBj7;zAxHX36ED z!@RBjx&cpJ(=D38&`7xHZHR27-l8N=I4UbW|3Sg2bYy1FQdGPF+MywsH z@RgHmw53em<%VwJKMJe1NZ(h?6Plau$A`OCuU}8Z$|R2^chRMV@fkESle8A(3JR;L zlFJ6|-s|$#H0Si4cXk#g5n*iiw$yk~31#h&h~mW2lliZlfWCi z-=DYm)+#tU54pwQofkcs!9+Y`?6$;$Bxs!f?4K`FD1)ZAiK1JJ{myb)%r* z=jCPAko2O($M&?PfSUagWN89`kM3X`6ZyU}n zo$@8fL^I4N~kgl0OcgA zSR@>F8^|RDk6ao4rZsz&A$yZO=0A{3-D&gV)3#aU(jsoMpjWFGxaT2aUydC_-kL#P z10f)wf?2_CBvHs4FA$Y18!Pkl$MtHVUhM|fAkP4ny&nch6{Ut+#GFtO2$VVa^bFoO z@g3>V?#GY9!g#Pj`J5+=;RijOnQ_G9N}D@+|K7dLA#!`joGDP-EP|BpYipGu&8zm# zxIzvhZ!$mtJrH>6hBAg`nV zP$@%LA`%Og4^x)iZqIOck$JoG(cmGO$!XYqk;VS5w|5lgX2{7Nv1-3cE}V2YkSqqj zF}-LENr>Bo7R6vwNAkZ8PyKhw75pc9=r1_WP@TJFQ1;0 zf^fUbln9O}Bqa0!=r|w)*RYOq#Az(j3vC`|-oua(^GOW~A821}2HZOTb!vEf!VAdX z8hJxQNs4vwmXS4-a?;K*dL5S=m}=1~Ovd4Awd2sbPhutb=PBXA<2@rhfRZY63qaWq z5E@k0z&j|O++&l-FLJ^HTy_)>>1En41b@jUVDnf=_VNO%mRy{xFTh6uS607L;J`~x zHqiS4YgGODK8VHwkAlM{HJGzL&lwkQ*6_M-p6njZ$^%=xvAkvhBc!Fs%<{6gCW$-z zo{a?K>Sd%TEwd%nc^Ky@#z3p_VNP=b#_)ZG{yS^qRR8b`a)ebYp0`fx{gQgCg*Ywz!HG_I{G8NPkZlHSrXJn5#NCXIJm0J zrAseU9LQ7|RAK(6{x6^y7*BbQ*OMssc?>ih1gYx6bf!WRd3#2zIC7JFxw-RuY%rrm zCT+g=^l&vhZ~}+i!#-Z?Vt)8Xv={(S{y+KtDHi4%duS5z8#&ivSpWWM${Qa*k9I2={- z_5o~KDhdFj7a}uQ*Q|J3OCgdIqb;_TuvfxccE-d!`OEhXter;+jhaw(+-X0MJ;D&+ z{-yP8LXzO#J(@pu@9qR{mIR#0?k0!FPpcv>y0#+0M9UWL$@&3-k)F zuf+P1fw_bM=wE;QBVzU5Z*=HcuaL;!o;&R z*MS3b*(Ll`MlNI3&Y>-lc~RK_=r6d8ZYg2}zf|UDCRhg;wFXFj{&LLqsH_92nqEpmgCIxy*;XKtKl_8( za1l6Q1BTB#if?mZSdRTV7#ip88`!(tV^=b$90bX|ycYUb diff --git a/_images/2.6_resampling_25_1.png b/_images/2.6_resampling_25_1.png new file mode 100644 index 0000000000000000000000000000000000000000..06dda32b877019517981c19eac6cfa2a894abc94 GIT binary patch literal 38988 zcmZ_0Wn5KT`vtl|O1eRi6zT2~B&Ct=+Ju61cS^T(NhqBgq`Mnbx}*f8L8PSa+@AM; z@2C60-|?_FYt1#+6Jv~LOe0^byuv~!Lx(^hSn_hx>JSJb9|VF>gN6crq86BJ5B?+M zDx>SF;b7(JVdiWJQ8sgRv~_T`wT4o=TROW~JJ|EE3$k;vQonU|b#xKt;IR9DzrgO` z{Dy-MR$mS-^4L*M&jkX(F@yg>C=oBVhCtGq<)tMwJ+lwny*!`JWE?+~>2Q45l2KP| zCp;YBM`I$!cZNy@BWED({Gdxn7)ux5=T%w}5ifC(Byf?`wwt0}K!T~!f~g~XUlxS@`%6@yG#2sHPHxX8rIeMiG_|ydd<6e}e;$HoW@UvE z+)dqNXyY@Mjn6kJ{vaw%n+U}T`FAf?x#B5Y?C_N1NhUQ74UI<-1_sM-1u`;}|E<8? z^Li_d20!xGep8gtbDQ*0Yw+QJODGr{A{3Sk>iPd&*H~#feDytI3@X`y0;|4t^S#vD z5aVi+WqXf_K^iqFu>N$4>SMz^=m>sOVm#Ru#skKSErj0$lBR;lqf!wy&LI|$^GxNig<~C_e_v{ z@jGIHj_Q&;G85h0+nbD@fuZnNSw*Gi&!0c6@e%NyvqHt^BkKF}hu3z#24S|^1ZUTE z@x)j-C+vKGt~U&eTyFl~8+;6|00nO#jzR?GRov5{sw#G)`Oj00HUkw=xZO8i}cA8nC+4Z zE>a>(zhj7wmX@AeRD?c$l-rWsy2)J45f0F!&v9Pr#LYkJ7 zo4Wub!(~DU74njVH&O2M&@(!;f)8f)Ctxo#{9V##n)34zjyfOwODZeJm%L0o*OBiY z0)8jucAd|e;HZjSf4(PEd}4LG#Swr|J(tyZrX#GF#?E$uYb%kOiB5+f`O?FqalQWN z$R3{;NrEsN+T2Y}PJUk5&_G;PR`#dUB;d|Xx6PC5_D`{RD0tR%0SC&1g*sIGrgap- zvoRj5!RGT>0~)eeGUKIo9|2wgf!;Q+v$a1{s^L@*SA(hMyI|YOt2@Z5I{w_#D=MotY_oy7cjdPhMRefsKt#9t?&jcDJj#FLV6S z??O-Txa|xAF&+N!90eoomw&CueNYg>TYLMky*-=x8nX}yUt*A{L~LMAaZ-RBYUIC}5kyGeesa_mp?(R1T*)9C>D zdhY#h?%Gl7al`HMipMGzWjyM@z`$C#_$|%t8mf4p$Z?xSz{BrRj__BMUPym$Zq~o% zOMyIDy{w|Ct6=ewd{z`ZX#B+5)4K}+M7)H=AcelRk;iz2CwF7QT8Vj6DqH6IvHc{ zHFb3MmpnSoC_J|_-mr?dx*zIGaW#Xd>Yh>+#~O^M3TOD}i6}~m)3)>C_}i*UgYA=S z_eE=X!2GKA5~b`-R~5f=1(6RkqbhzX=1a=nb|NXbm8_9hR3z)6RjAIiG*}~YkBmXw zRa*S9>|tek`g3awIx;f44lW-bA1Hw!e9^vchJ=%ok%8YSO7EpZgJS17hmi1?nXUJP zhIJaTr_oFxcj*@7x-qUcyA+!tpaxd>5FiBZX5a2ZwT$#qj4t$xPNUm?kFcC{ zU3KI1z*DB9gHpYe(9p3P`D8oGVcYK(^lL4xl;3sN!K{2l(sp)i%K;B}jwfppQ}MEN z_(374INL8a1F6v@-{YXi^+Q3Z+SCxIDfpWB`MtQ^3Aisd%lG^9?bZ1M4iX|Rdg$6v z;HoNgg>|pGMyvd31)P8GAqGcld#M?6Z0UFE#>tD!QE< zvk!`4E2kunKtjvf*;R5wIG$oB<ZH0K%Epl!(4V>vO77; zeORuU#1dGB2&}jgfD9t~=)K3}c>o(U1>x>E%GRh$DUzeoo7VB?x##a;2D8-;zZ$zG z{w5HF;Kgi>q&TjJlJx9|KX_dQJRCoCJNTcGU$u7Lh@gc^!av#@Jn?Qn3FYubfER?h z&U?Pw_=i(*)5FF36YwPD5Xgl1gRke$#8+$ZO<3P8&J9z};+LRJd>to0#d~t?3%{M9 z^G~!tmzP;KliAKAOs}=HkRL7_9#A+su4r$sCj^;|N3Np%Z&d9^^%e0~Q zZsEz|yXtOGk?foH%F5R;Os)`b?^Yk$@9&RRTGuP;CW3JSu6k?iSA<_mUtI<~c!Z2v zbq6CmuDH#0gY2``ZM3Ht%N3_OYQHqTyTf2_f`IyX|M>p$;eNHoYMd-RBO?eDeodjG zzkj`(_N!Xg-iY5k$#xoeQsZ@Ibp;BT!#o2adUs>TIos8qPA7WMO9;G!?7|LWI!QIn z@+l0T_leBlThvciWslK_f1$`|OPX&m8RXWK&ex1i;Zjg84w z4kRTdy#~?rO?wk`GI;k|pEYn8|4RxA5{V(`B}F40DKY;_MA1t#0EB3(r)OuGWiaZk zY0%{tnsV(s@7#6Uz4=)6zn~Gb=_BpWR`OhnJqF(lPH#<)z1i&wdbH-=YSte`1aYj@ z-y9cM#SF)x3QJ8THW;M7B#^+BwsLk8$CKtCW4fGrCH5PycXjpd$YcFt$sycR)ZXBK z0I@kawq#w%|5ot!;Ei~QjC7tTWKaAW7qNENKOrDguVy` zvIZNZ3;|8;pL%U%6%alsUD=I(2 zjZ;BGudNiv1rwDz z!2MZ`-;MjPU%vw3;QV=-A!4~swYzHtsEoVoSnxOYzSr#6;bCa!{eEYdCNnaLi7!{% zzR@uvBv6;NDBuX5QE_qDaBOxycfVzFk4&40CVD=tQDZa13@@r+li%9fj`eC0h+34= zfH?m>SnY4w@b!cm@$(eJB?|<8MbU@bv#+bGI3$LS2ymqS>J{oT0H$$qy*lM4Ev`)e z*XbdUE|ShGnX3tpjz>G$F4(pJ75M}7vv+ep7;uX!3SddgOi4=%nF_!H5C|MfICsA6 z!T-k*rSHKe-5#YOpKXta;P|dRa=bgA>y^TJfdogo@Jkt1B`H!mYtwD3*Gd7h0D<@( zx#Whx$;dz~`8quD0c@FXumjB`ThIwn>~~^(*QaCmtD?0Q{H3#?`Cgp zMvncx)?#=j0^yZqZ+{E7PnT0t~Bc;_G=iBV8c)&Md-**AG0^S>T7 zk#uq4fn;OS-fvPppymFZE;jY`eH!;v2(k03pJR+T`tZP+sfx%U@6~C1044;|ZHg=V>eV{@3*E>hFTt(gS9lFDcxz_|pmZUC zV)IN0J_7HMCPiV(kA0h2E20+neB>wS4`GXo`T*~T$wU+Xr!71m-mmV&eics{x;2^x zXKA$}a;lTVtc+rB1@VQL-iqCyw#6isuvQ$2wC)QOy26{q_0A@hct*pEQKHbuW~_hO zMgeEj3dG2$pAwlXJnx@g5KR3~?J!H)-L+2FBqYkp&VCO#h8`sz=mOnRfS}vLdo($} zEj*j0gmd`Y(o~Ag0N|)G>qWummzLoQ|1B4RPYtK?8HeLD~K~KVNb=zmYG@ zholAp#m3dcqgQAr`%~xa%8GJuSc#yo7*&N~^9RG%eHClx-Y&IYIpwCuxQdF4f!-s# zN1p+9Ei;o0@OZYKp^*?*VJvb1d)~GNr%l<~XYA@FG(vkn?!{Ax6mbmHVtxb_07vX9uR}NO-GOqEQ!Xe!_uCHl1DsTt{2bsq zjt_U2Syk1^+tRL~!{0}l2EwT$6uK||#=1m+XhDKxfBeXP@!BfZRX7%=i-`a+hmjVk zGf7Jy?CwfHzBc~&VSL8}AX^ilUA^})n#`f#TXR)L(couwUQAD5JVzH7?lH2TimpwM z>*l6*UAfr1@ov)>=v&|sV$07K`pPYY9U6j1M`j4) z2iZ20f6F(cID;Ivz<}RLZCcQ)Y=>mjQ?v?`-JRCf+3D1x&hrgED>R{ofF(SqIlD4% z1&YD|eqoHC&W292pk(+aPqTn?{j{K4-TZ<$SuFI`t5>ty z*eu_84N`$@7|{%Wq!fCa1AT7Kv=0$inv;V+hH5{hcMbpiF{Gmuo3u#?72}SLoTU4d zX9T|A^RhrzvM@4J5;?{Soq6KR$&Qbq3ac0(iWb5XU0s30E1Jv_tv@qq(F(p(t3AvA zE{z3UuZ^)1AudYTbcz!6H>Lx-H_eN6=ifQ3P7ptcHOM6Ul^q$607)$}p(OEjWC04- zgUozXO1H(Z#!p9gS<IO4?k`!Q24I;g_>D>n=uJ{% z)O|)cE<80$7lU4QQIn~cPFJ+Lb2n#LuyezuwPY6eIR_G4OJ$%m!Py5ObZ}*mf+7?Y zr2pxRK-q1G*ZMC3aijZ9fshCa2?Qcdiw7h`c;x~a1!piNqfDiz;HSTij`-W}fy#uS zUYcxXm?(#YO(}|Yxf&o2hzqfWs3;E)4;)TUU5*`v1C%tH%Esec)Y@v0D+OLaltrqv zw)|`B)J#cTZhCrpM_*sVzdx?71XYxjep(*5Gg;BckEr)HKt1{zoX1buxfp2_u`I3d zkP@+e`hR$BT|mE@!JaI1hFxH~#=@NTK`!Aj2iHKcCe-HFJuMoof!wrQ39nj6`YOXJ zbg(8FeM5AJnfa{$B8ttnkNVVWe5SV)3U>QXH?-$0f6?g_87a07oe~#c?QuEb(fC4@h%~PBwT4rH>`x#?qd`1@3bG|u-FYvp0%u3UITO((rPHC= zgZ3*~zO94`YOISCNh^21x!!CYjbx0Ye*^DaoQT5)j=_*1zJTo{-vBTtpIQH*yoBiz z`8k0~?&nHYly7ed2L}c|=Mu;$&>-gWM8^1DL^*R`7_M+`u~rPLOX0rPVAh|8<2rGG z>(+qaVLW<=Zdoc(u{Ie>Ri~Mdvz=OT91pQY4b0GeqZ|va&npqr!juuZZ`YA%L{@fIma_mZI@Uj zm>T_6e^e%1?(JRYq!e=QJAH$Zc&8~3LuhW|)kKU}4R2sk$B%qp>uA`JAyMY?=2?Me z^x6D;dTDB`lIST#ryfd*5@FqCd3iY(S!`-fmi*^zBdfxfLi*civ?iL_B|=UcNXBk6 zS|D>zfm}ASM`}?zti&&#o$(%l!}h>R1E$Z?ru&mbtaTPcWL1rS_0vIS#!IKxl`wPI zyY%aQLHr>4NL`bDQlRoR}44D=3t9)89A0MJY8w zli3oNuiNyiY5h0eaZTJwn|sS1sfzUvibj-bm@s8}TV7?2*$y>ieS>xr`Ct?$``gx$ z(B>0r8C+&&mFb@$zLA*bZ{>`-DH|qxz|y!f)K?$ zjwQ~`)D!~Brhm3Htr@NyP^%5}_5W;+Z0PoJjZ`RblMoWTwf$(}k~*xPtaz*4+-Lr^ z$8OvZw-JdZL^>9!jPVwm+l;1HN7&mx?24}5i6^_S~r$Sh=!CrD^2fs>)-itkL`msY{Zg_MF39) zqmeHqIr}B9JE+A$-s0^cO}`lM9~-v1S2Ah5v9(poh)j;OCDx#?u*i_kELvY%%d6C- zm}!=gpfye-UH$&!hrRxRmXo-BBRSATch79MyDCR)zi$~SMjY{)PEB4DR zZsqb{Vdiv6@=_v5dSS$M_d`fYgPRhKOO>b?JYivBu8MJ_QoREkbT`9s>1Q{0ah3Mk zKbP>O!JVAP@m!t&EFm|Yp2$Y6G#wKcr@)3^+s|imgi$_5ZA=XWzNP!1MuJXS<5os? zP}SVs-S_4g%L{u4zwz?%$;+q;KAnxvk)y+;1!R5bq`l@0hyq{TbI4fIa+%AO8c2m< zRX?9~>7=R+bm-^>^);g)s}Z1hl7+w09!E`dmCNfXcOSRyRUP)TpYSOw1QslvR>My1(I!;iOhZseyfdzUv@RjS6z z!;4B|&qrPe1yMT({r93Ol zo0}K@2+@BAQQy$OZ)x2k7#+LPqBSGKte?f3e zefBNdi6k~QHY}7gMPZ=|(=g(c#>zonu5ipR)uQT43X4wW`$$HVD`9>qDXAh`HjwyW zBs6WLbKs^trBu2)hRDmwnU_81i@Y>a!JPpu%1(F}$bpPTfRrEnZ~4d6e}8%5t)E@H z&Y_n-?j<(;R-jfQQ;f@nR6vwpSlI7)3xjc4cXyg{zSY0|^o_BhzCM5TSfFjv!2hcG zx2NccK0kEEBE@a2DuO`#88HQ6T>-ac;{uIIhEVc|GA^9xgBT-S_xn?8s=Td_Pa+mS z7}DO}j;zWs{suE>#BBg|=XZ}xOer3+JgD+!0lAamnMGzMCb{xg%`5g&sY%RrN`wM! zy0s#M%orrOmHpArGU^9*FEcpG$@IW5`?W-YEMg>?kdo-ocN@@J0F@_Y#Xa?WiZ{xT z!<$4T!OA&gAkR&-M-ZC8>T&?!N&d7tEivg+GO`aJHB#K!dLu(wOyD8Jm!X?tnM|b5 z3m}^qKvFLY2F3u}sM4#G-AlzK(J}sda+BgLTuQ-$c&vcGLj%-_p5C3ajHubj9@z!} z=M3Au>uKiGBZmMB_~R)$KRa90$v!ZLiHRxLvhC}x)5xNEs6S(YD3_w9&0dfJK&KP{ zoiG_?rXmaaB>7Szz?^+V*oHS2BR50>vDH#0IbdrnWC z{P1?()e?S3)~IM<;N~hEVPyHE3nWh}fN~g%N|vA zC`um9Ht3J@{6{yKynUteD-D^y3GwlTnwy)ee`B&z^lCSjDo3)q7IyuGtF5K=WW(wz zh8t9&PL8^CqMQ4g5Y}IY+9qK}@mk?-K$^t^F%fm>KcZu5l|MkQ{{{^7<&ls@oM;w^ z#G2h}Q}voaSLXe71qAGtc{3;ZNa>!RKhC_{NwLFWot-AuM49R7LrdA)igfxZsB0_; zXIlss_N_rdK_6Tu@sZTX;3(KuEkw7)x}00B*PHtEhOk%JN??A@ejiCBr@~UAyHpcB zY54OGn9q17U)UP7;p8`rtKu;|mE(bXtJC%GE&6g@RaKmZh6b`=%O_)&N%75-jV#kD zG_SZ`7-`Gs5trl~rUMfND}1|=!JWL32P&3TH)u5~7_2&IYsN<0*18aul-Vn#Kd_30 z9rpeexxVvPqQe*D<10iZiNdipwkb$VCubJQ5;3xNXdm>yR}Ii+`{3*FTAbd}+>|k$n#1nwMl{Plp7;>k7#mke>F9OVd~eGwXT{ zXzw!V57j5OgR7ek{)miOlqTlHlQ@9amFzx2{O$*LpHBF8=u-|%Pz4=5J?D8TJ6GdF zLPAiue*J9K;rnJ`Krdj{p}v@d!k+Xlnp%MzJRsxEFg)o%vtc%W!mB*BDXE#8TUqhB zqeCo-DAW#K3e$-edYH3JW@uRn1hiL1a?mqdT7*lx9;1Z7i8-LeTy0{Y=nbAAg-ER2 z_4g?<5`H)L{4o4kB7xhiSBKN;s1i5~dcA;Pr-V3h6wHxDk}>mKBiyZg`=k31zhm?K ztXwelG`s@1*-V>{%BGJE@I}s8Sr&vwlKE3D^puf(vN6e6Gduf9$8O{6yG%`wf{MzO zqhb!K)}Q5@%VPmOmUKt6fE!=2r<9cZ{SfO+`thy}nNY1c$8RnD99Qn|CL@Bs%DYV1 zB7MqH;^#6}z%(S@$HhZZ)BhK{mq`Stud%rxb(VhkY?xrk^2wD3J5=&}K~O=-`n$=R z%PW=Hbw}OB`#`-H+-z+d9s*okK|l@%k@Uya?v(UwXL4?GFq+^0)RNC`-UmRzFxd?7 z+FonOZAY1(a&Oc(8?yJVDjn49*W%aQUJ}I00(6v~`Kk7%OW{D+Y4Ud^eV^0wBzgGq zb<2U1Ky1qJxTg z+Z7xQ-3uH1yz>{w#>AYDD>cJt@jN6TAediWjfc$-djs}28}ta(5en_0#$L8>w9mj} zqhcm`+6mi?aN*+Q3gkeQ=*y6kUMG~X8CZC(Iu<++uRQe_WFtNC( z+Un(ELe%VTb+0A``1utoi3@aXY;BWgnLa!g25V>x!#$2wa?(3kv2M`jZGiG2!}&Gag?=VFr_>O#Zv$6KzcY^6F}V+woSlD;Z%z^e1IVXS2xn zXUfXTVRKim?l2WB90v)4N3Shcjf#@r(L?&Y4v&r|=83Y6LGtC-pW*>FWmUX%rECY8BxWrcj?ud9Fmnz&5QuDY(##VI@MU2oG6r%fkP5( zy&1w3FBWj8sBHB-kKTVBtJjbhJ=e8NMO#2R?5=VpqwbE$^`j_1zxy{?&w7o&iW(_D zKR;AaF?u~6;B_A#pTY$V%#1)HWX$7Qf@+bpe&a7udXd~ISt|5_wJ_h*Byi^uIQAP+ zhTr+zEK$-Rxo@u#jJUp2Pm|j>NwmB^)f3o2d^SdowX&ACX|q^PH$E zdG{3x3W~Tv4SRcNFyk9|+zO~^>;Zw{p`?x$}E=ay;u6T14J&hsUbT_m0|PugmVJyaIBnu z%iW*c(dZ%7s!8%)BZx^0``2v&TEWRA!M9H%x;HC4^JgxZKThr$v!93K1eYMe_liVK zL&fS)5?MjmNcx&J6^vZ0;~D8CuaMPZ7!unDE?GVx_v`EVrT4#zd1Gy7H?zMLq2=E% z>2%QM` zVk8MaDwwEpM@XsBMQ?iib(o0EN)L{H+#>|Uzht0n{DDZfitlAqXo24H_2-9Njt(}2 z2c$`og-wktz3vwcC!;pmL(o^688Wt;<}P3oLRqMbpQRfW9LV-zqxl%rFY9bMPSWZ9 z)uGzBN!SqV z+Z!#k4SgP=4iNo&XMDbtsH72CnV2F#*>U;`fE|`@g*2K*U__1;(y`lbG)cn>$^u!V zsQCH62@_(Xq|74f<*`N^CF*6&>-Ma3V&mW_?qsXVdqiDPM5NXl*f;l|G&apg=aQ_% z_`Y@!e42``_ha!xbbW6Xi@Y1hsA1FwUu0^tdUV>e2z59i$LA{yqG39 z8xXeCY8t{PPPiNK0N6J1qP)j}Z0816;^toU%czgJJCWs8Sd;Pd@$C)*JXvC$X}RlP z9$W9d7QJen8Rm0&G{Z)Cy9~S{tC}=AmJ}bF2P^i5lz;%a+}>VXJV;mNsTh@x&oLkq zS@4?3AUU?aH_~lLVSawskez_N&^RQDTH!G$a$uA~SuqfEfGVD$1T`?o8dmPnDYCP+ z=0YRwIL*sx!jx`)nK+}i9>2~z8m^ZDDyjr804qi>0g$dJFRy!U1IqbFgy&JT@q?eJ zk~|oY5fKW@M-SaMKRj3b(Dt>B0nhN}4e)W{i>RL+<-#S5H_=DWX9f`EEW1Z2;|CMQ z`?nPdSwP-2w0PBRMxS0eaF}azb{<-p`xJJMzX7&{C;8p zeZFN|sl&WZs~ueg26sc4pcK;CSfRp*F$ws~`lB0xc|=uN*$j}vKk{?-%cvZJeWB9C z8c>FP)+sSxWkP?hrB)9I+5B#Ue0LB}#~l7~9%``5KH6a5RQv7%oEpqiU-dG-RH$oL-a+MPN5e`N>2e&Gm^Hdtr%KXzJ22rtty-|;3*pS zZngqu*1_LSKY#&@H4CbfL5FX%wK!nE07xevO-8>5cK}$iF$M-#1pl%Z zJRjOWhteh{4Db!VC&_yBLzuye;gq=I`fO)^5bx1j%i#FNKc{-OV!4yJqjbh~Ws6`Kq7@^Yx1$ z@UVX068oEmpii8+zAaV8_Ffu~$lRVpQ*{RB0=M83nb^V2ZeW9&I9W_(Gx)rq0%7oZ zajM5(aimgo_Fj?(m?u+@3`|Vo0g2S9HnuCXt-wz!aEm){#y>`YQ5P^ySX4(I(HKX7 zuq}-sC`Ty=vjp|%cv4LEn}8X=j9q{8Qw8pI^)kK^=6ZW#H8HTS>ojT_ltX)^fGjhz zaaE{&qHtR8lg?#Q3FGr4oa{Ex^-O!u{6pHcb$A)OEYFxFzc-HI-G>FB;pIxDa926Y z=sm`$o?|(TeqPS=to0tq6=*1L^vsxp1_o-(2eCCq(T$aA%DT(UIn8X}IsVc?t(_^&Eim^>ik*aOq-fHSS7hDxD zsHL)9DCjrjKj888LD`mFub$aCdy+~2+dkZ=)qMeevA}h^YsI3AcCFXqBDkvJKKtnV)c^{oA`e%zn3avK2@#ivjc`&mY?B#FT5DMx_<=r(lX|(my}3<4XJl zf(xCZGOQ-+PP4*vSV?BCrL~nUM7#3)_v<_9ieLw=9$>=W0KVIA$Cp{(C$AeIY;0@| z??>{b!hwNy%=xyKl!%^8S^_Upn!6!wEi{(mow|`xj@do%2V%8%^_ic*1PYK7a4b@1 zo z$UDWb1^aB6u60U(unaw4rVw!_6{ErqKVLHxOD*c`qyjc%6NMd1u$qJ)m4sO$^m zv_R7;N0APH{>Kk?3RP;{m&#K$VE#lF!716UuY7!3jfVv(Oy6uZh!}yZQNf#zPGH2E|_o2h%)T7MI!$ceR@44J@?i6o!UTN1RZ5wZwvL z;9pC)e`)N#VA&w1T2SPQ_eel*m4-`J(v{63B&GcEnneyVy#=pwT?!GM_LUtdSnU48 z7Wm=e;Z6XY#qZ+oH|suru1%_1@pH7oq}Fv8v_C&TzmWo8_a&wi19S6F`B~n~DLr69 z-56|o_U-$3sGvVEBU?Yse=R43Vnqb2tvS^uOj*M<3TTrfB_jj-9Rtk7ylnz-7c#T( zA;a?@E-FU`#k2(p-Tj56O-f@gnAN9$qJw=6dq^aF*P@FYWaYztI=sB)Yz7pH+`otH z7rs_F4jF4%GPEBnjLE?~`1o=Y07vC2M!gVO|5If;{J%Y{#17^=#xpp7-UN3E1Xszi)?=UuMsOyWegh~e9ysgX;hj`3K5#fO}Z4e-DVZlzBMNbfY0m%V_7E>vykUvj9efk6#z5}k0?=c;}Kv@Nw z`$svtV6eMk=3BL=Jp-GkYh_yHwvpXHy;d-H>x=4!1cLGqcEBLQ{$xS&Y5X9MHuprs zv$li#ac$k7w6y3%m+A`rkpElS$fI&^nrnPs=Jf*W%u-n_0@2z@u)--s9)5nS8ePwJ z;}E`{%~R8WfKK~n*fUCirK}N%NtELU&3_@W7rhSeHCw4n18E3QfL`=1q%cqr2y8@&=yI)>It@L+9xjoz!2v4@ z(yznt{|)$G78LzSWJ6oHe_2k9qL)`wA)YwXGl+q#cfKf1OT)G`i8}NfvG1s-nhf

#l=R*>Hy~)Je#p zERVjG0WF2Patl9t*hlhohmwjaP2UV0a)CzCs70m?49F%4mXw!k=zCnbnmei4+1mC2 z{aUIVL3!%)Q5EnUy&>dXXsY7wpNMb~<>wCr^pexc-MDkrVIeJ&?H-z)WP4!WXyD-# zc{aPW#DX=FN<*NbazKXm_U72P?O^8{$cfIq)()+1K!XMX%_(co%n zX(^?2)BR}4HdMYUID$JnLOuLHx`NSZTJyzDZSABARYbhzR-=U!G9oYorhIIm7McR^ z+i`VP!2A@OocN7@zPb2c;5_y&gr-XLW8^DI=67@$H+BuN3N$V|NAEUm&__vRyo=Rh zXs|(JiozG^?gWIV(Qe7gxtWijUtgOj_3IMFfFV)s$Kq+11 z4vk)rtL@Ka;{`A0%U77+v&4w?^S8VRV=iYk~A=jFLsE@lyS}G|NXSFcd5fTyWa2%BYnX6&2O4x!hvLcY$A6xJ;+iD!P&N zDoxd6hXfQ$o0_p2p?Y-E9X5dql(?B5un?e@Dad|cknZdrI?~6#07vZ>K?x(|O8YTPSE-Q}9Bs*B){8zRSBYMPnQFOXHZHMY zm03Pe0fM)n3Ot>>yl;M*D_g(>+0#a;>HA2@t-gV|;CDh>Jtb@cIWT+$=kuo3)ipHC zuSAmeV~xV!vL#xU^+UOyQc(%`4T4k-c7nfdOWwN-z)v0)-FmU_c*AZT9gr8+!lfc)}ulR-Q5x)KCcX~ z9t8#Zi+)oW7#QL1w76@98%sC(`lP=Zz3eB}{J)XjR!9<+N6JD@V+-)~EO+>|t`D|= zYVYOGFiU|~E-a#5Ku?MZ{8HiUc@`KBps7)wj8^3!)7Oc~*mfrqWf2H8K#mvdF;?sa zfJ1u|5QjJO;qjNSx=4hM+kIbDCm@qzu#rHjP`ea=+*i+S^}M7GJUl#X0&aJWakBDv z=1u~j_QbcFaj7c(1o}ggsivJ0<8OO z12GvRH>{1|CE$6?U1gqlpR+l_Qq9|LtfdtSq;Hh&-<1x2qcxM@oIoLQYCM7|IwWyP z-J$d7-22>YSKd}^Fx-F-7$}W>+ce+3E9VW=yS2a4CfV>{Ar>Iqbetzf zL&6-i#1i+C=$)vH8fJ3U=d%>YE5!cSF-PK+?)_%soq%#w`4swspyM9vctC>pAwmRp z6cJ5%tPV>;cwUas`+c+@218D6*6{RD1>}}#O|QW*nrYtmm<3EnjH~B<61S{}k$*O? z24^TeD?#{}MxuvGUU5N0?=J?T$u1WA*-4I;8YkVIq-WYLE-wvGSj#tZJ=LBO+yCsx z3nK6?C*ZSy)T|(Vw4u({EWAZxgM&`Jt=U4k2Xcr!9AE8B?Br&v8uV);k|#)F|jaB z6=>fANQ>Czk?WTFWr5+iR=Bzh-H6!Sv32D;`Xq$GJnZk^ze+AWhO)kSr@(}vO#Bga zx|Q)60I0rnIGX#O?aRW?y%3PMouyG2G`tr1xb88`XY{rQ=0;9I~i}crw7PzJ=We8{Fb*?9= zJj9=V3j_sfjzugLXJ&HdsE}8iXDKLWy!xDA2W0MXuNmps zZfED_-slm8l5hhtmhOS1vzZ@9*iHX@qoxP@*R2ljE>sLuB3U0Jh%kpvKa~tEu zhVhe?H_m#N`25_bJ?|AXGzg9s>IMl3$H+Wv@)PX6uIE2I|D`n+pTw0KRTxIC@SkZT z8P)yn28>crq9fjxChBSa_VRD-ACqQ*)EQgUZj>0B+8P3>)VLb!%v1w6@lhL>-JjE?ZX`q{pfJeV83tfugP|&P&01A8p1m!&JCAMdD>(Ld0;aqp+K`Qa-u0RH;SI0R>jyo~<5W>3DJR3qLD(9iQABI7kG+DZ)wk*$6NT-_>SxfABP7H%KM1 zqNo*-U2dIAm^ISUDy%3t{MqqYiTGe}x_HzB@-)R(z#zUBjo;4RLT?abzDHdfy> zM>V;c)89ECz03v-@&N3y|IxP4FtjGHy_ayF4*YMPd!@z9;yZr~S#M(eP`L&2$0~Uc zj;Bk7z$_jc3k#Sv8tstvIG&7x@~3Lf#&0eXVPS3WS@`O^lGISH;0eB`piKXzw&q<<>n4f4Y=*cR}|DR#-z{CVP#a( z+jDB4TAm35xbAojrW-)+t%dB5yxY!F6<@)g-KTx7Ov5F+PMKJRI zmx3>Te|smJYLvViu0^EFS}qat_E>&u0tZZ>T89rcbadW$D#Qn@`fkF_kediWXoaP$4{<{D^}+7N%8N@kw~<-O=6fH;J{Y$I zQDmef7^A~?jxMdLtIQqJM*8}$CTa(0zfQ?c&$&fKD=>()?4C4m0+l;Scg^Uvl0|HM z{8Edtlhee2)@OX#j0S+v%$O|?5RaUjU4we77Qh@H(9y#&rj$VadK)7DjYB~aV@}RA zA_5iTY8{fM3KLBO19ERs%0J%iP0m{iy)Z2oVjJ5pL>ewjH~|rGi+Y7#2sp7cFv)6c zJCW+#dV0LShgqN4cO!ow-~Zs_xHph79=9|t62(aOzfE@b%1pkC81bgJ^bRIuLnyl| z_*U}qH%nYRQ5w+AQOusjMT&R4b;4ug&tPWo@bDlf-hita$I(68sRs5=tgctw_bL}# zoBn-yOQxLZZuL-LOadIQQ;tpkS>X4&ZO20{Lya0x9!au9p4TPK7eanIW zL3tT=Rd?-edp+OxDe~Fk92~ZNP!C{@8gcopOycDP_1?n?#l%RqrCO+uo*Nzc9c@m` zQ<07KM6J(4Lq=B#>y15w*p*OPtix@y!>X92Z{qw1Nj@Cr^3?f?@0+KLk1{!kxr@L& z*wMyDf$ZTYn74cLLQzb>L1CtZ3?nHpV(RA(h?Bfs8cA9Bf{o__{*?zX4M@gr{=3H0 zUmc;kbr3$I@<_>v1|MUnlo-R`DOpcw*z^=mC2w{(+!J@CG11EMo8n(*l{TnD?i>XD`QmFA-7@36T1e6WgwAm0VXMGnsC3qM znJg*YE(svxJFW~RvTbHCFaS;nZhx8j8XwV*F-Q3?sS{3x7jD7Xc=#)IojA}<1f+b} zd;Q$IuprS$gC0WzjFP|nqG3q@!d4vUT#1(Q2eAIhVx=y)?db3@1${%wWsIz-?0yBD zWZKB&duR26AQB2z{J%<7fa}I~a9g7vNuw2N;)JJ`F@N*-Z!$(MP_o0qP8%@SX6%%zhNT4`->QPaw&9+n{8rze0+XkfhpF{EcjK-b%I^v4{sI#KMMvo zztuI(>-u?h0S+@qLT z1o!o(oDp#I#vidS8k6)HN)tBYq$B>c=-}uQ7&9I^u{t-i?jmVYNC@#aY`AJQYyv0QrIfP)bOjv; z>{=D-R$0}k{IW7DaW9yV4+iys16%Nk{?g6T;o3N}U^y#ohHzH&5}++gyMMW(*Ff`C z>KUwx*xTJ@l8;6MBZL2MW&XNe5_BwagBT<;!T8wW%2g~4ur)K{v}fWi$s+0sBeT(Km=4nGB*{ktb=3S*KTp!mR=2PC87Tz~I@ zNl>gb{3yyjsf_7_cH=0}kl-L76&Wkz|6%RBB9+6r0ifkdPVPhfMvD-CO7^yK<}M#8-VZfNBgHdJ1JUm|{`# z>j6N3iz+Hc92j_|Jx-2~F4nw!SUd{TIM{U}0q0;|10_KvCnst3-?TK5coIa@`Sg| zX;#Z1n=EZ@Ul+d)kihx74e)sMr}-%OYN=YGyTN}k&L#)2qNSNd`uHZ(P?mB{7-!#% z0*pn4?HKF*X~?GkI3B7oKd9Nr(~S;Gf22$k9+4gmC9%*O{~kgL#co8)tIHI0dh3FR z<&&*tB}>2z&B_x`f-LS^jcb8cDIk9oBxNZiyT8u6)O>+t2CLlQ>V|o!v>%NB_OHWu zr|ZmbPzV|LtaP7>$W*o6P=S)*ZxkctULO7gj5Bv0oT95!u#Jek{TO^)?ExFnOi@J} z#*=>Xb?i6nIG9Y7Kc_ruPF0F-8!s~VFZQVz_$mTykxJV!p@CEZil?9lvX2t#3geYo zkcc6a}eHRsU2#Ma+OBa?77A~i=o65hM{ZCw=llNUdZ_syz9KoW~SPl7d zXHYXHItD7La!v3K%P+Wx;V1MYi1GL+k6>>0sy_WKKXP=yeY57BRFIr`o6ZwFCUe+o zcw0O$6vlMBo-E>qWl70qhtTn|Mq_Zv_dZkt^6JjS({44i`|EXi3o9!;%w$zhi28Q7 z*3RZokI~bqYl#G8oiA7kPJ63(JS`W-4?{hGdq_EHo*U9o_Q$97FTXt{d9aH_fybXJr*WCi zH51jh9pApq|C)h;9PoKQcyJ@$x)*B@JxqX@NY(je(Y6m=J?#lr#i}7CO4jArW&K*x z@TavjTA8nN2O zG^+4ObNZls61JIfuIoZ}{o3GSk)8~E+Gb6N>mx2K{A$L57N!Lsy@z|*ofL3<X1S?uXCG(pMQdpMQFtgAFrMsjY&Y^gO`&XZq`nw z(|xB-nk(?=k^(on~6nSFV2X$chOG&w3_^#Fuu=iaR~E zstRM%Qs2LqGgww$z8Ny|h1|tNR8!scXJ}Y4Zv>K2ZDMZZS#zWglfl z=qryK`~dEuJAc}>8lH`Ws5)=z7R6nCJ0$Toa22Qt*)lz1Eb}MHG=|(P8gT}Sb$??J z@eJjdc1GKrAf@WuK*OH;B#IEbu9f)Y6_1S$7r})hnKyY#7biPtC8y@)N5q z@~-(NkdQFwjhI>;srLu)(ZILj?TgFr5NtRYWSX}=k&bJBn#q+U^@JdKT&%MZX@O~D zMhrHhd?JyLMO;rGaX9fTg(Qzh--+91)6LTKt1p{nXW(8=KwR0K)ZyjvqmhHB&_5}k zAZ8!UpUTSSD!z*}QoYxWo z;Q-){urwOhjd8MGGSI1|tq$ExN`j{9%B)MAV!*`CauDLGM8Il#Ka|4(@H?=M&<=a*rUwIZxpU_}aM>jprjeJ5DkX(91s_Cr3XE^A+JB_nS zl8zL|^qhi&s6;9zTB{45M&Qm4_-WtHf{h4|k}Fxben;|r32j_Hx- zGtI8BD%rfR!iAfGdWtz-_T8QBLM4hUAA>|n&LNF@7+?zZ?fL4bA6xE@aH#(ZNB}Y1 z2Rf`Rfr0o&$sC&3D%$7o@F(dX zn%oyd`66_6j?1UW(b5>&$LZr`*L0bp~7Ps^y>RIO(_#xUlMM)*5jMUUZoYh;V9pXe34lfbDrAFVzr0&!AC^b>CT!Pd0p2}wN zI@F5XW}l5C4M*E{)ESwK7XJFm?Y7R>8rxygH>?YrAWCCWNv-JUt$pn}ZuNwn^zDds zw16jBpY)FL&xarY>Mqv4C-YxZ5WC2GkF7I7{|TGfT172NxqW?~?Kku!*9i%VF}&NNwTPTS!l^>y-SEtpkHRPO2v`fbsY9BPB}{ zaZ_CS0!yhjML5+K80vZ_O{@HyH|lfMsD|=@@T2P?L-iGK27s0;29uA+EX8{}mu2(| z`Nq!^b$Z4dQC>-301YX($!CjZ%%lxvx>F)iUX+f7z77sQ78$GL<6lUk3aRnJ6W%~ z!6bG=YYeEMq(pn{e78C^15-f>sDo&eR@1)VwVdqu?NMZw&b!S^%36Mt#)b!94cb$C3VI6PjuC*xT7#z&U z^xe>!l`Wbo}v2{OsyQ{XouhN_` zg9s+CLr09*jU&YT-Q|+LuYb`A56Xq8f?yk*w0F+Z>nq!^csl5^+5vbrzUb}kD}Pc( zU`my(dL7PL07srA0^g&2otplOdkN&A<8lo}`rVrA*In{e`Abmfy|tgSC;|^yxYAp1 zq2eQ)B))Kg&V-4H>6W4mPb$IPRp=2(&W`QgFA={A{d!Rs!|`s(MpqsQ%Ph&3eUDgW%DFt^5e62{Ua z19B1c!}4oXK}T1_60*_}NpwXIm`loGY=bF2c!N;%=O^iy>-b$JP3ln3S}E(ax`b{!6RwNbD-m+3>6P7O zsyG~2{P!TZi9=YAe76Mcj@gHYOJA%83-xW{E%CId%zc)(&llGm6`X9}Bql%=PUiszjems{`gUqN1Sj`5Ube>( ztRq>CT=P45Q65;W?86^;%h>-jCy+7SNUpkgFO+iVIvX=^;lsP|= zTb#;aj~rF}Le(>3=rQ8RZ4}XFe0J8e*7wGMuqt~5)QKCl0T(blf*TtQ`nF=}=`bDs zs*v^R69dds)#m1RN+{fTf&yVa=#zr)-#j`#Zd0h2r(c96qIQkykPsUSjzG%!)Dj|Y zlW%KjIJ>KoQOZAyOp3kiT@q@0(+T64N$(8a2C$s*2HBL>GVMhvi_6m+TiCoyBp-`! z6e@{A8Kf5rYl8s_n?p6Hnx^G8-S9H86^!K2yaOfx=CSaz8W_K|5|k4r(2L$;r*PwSOE@`(UKI#K$qENV0Nw@OB36~% z5sGHqFAM8#P=T3qM+t2uV2O|2Pq6>U)jA~ptTLq>yT$gjDY}uKm@7RNARwjDpw|>) zdSg%RwSWO=5!OA}41Nk-SdW8kt{T}AkKHo{K3<=Ef}rZINK3!Os1q>z?{iu5x6A|ZF!tSxJ-c4LN2Q1$!TQ*aSH4z7 zKyCee^5*6T(9baEA_sw<;~%$VJGni51+X~`DM5wGJ75@Rd^ayWy|r{V*p36bZ}I7O zYOHdo=K%IOaJ_h!TIK@u%2WFm2l%)V6Bo-1x~UdiYKqFrsGuYA>G{qtdF4dyoI$s! zfbho%$ujMnlqe-lkr=(EkBOL1c-r3D$as5>3i%U;$@+%XCX^CT$zp~K0zrsIS$NBP zrXFQNt*;6ad1Suil*1dhc?7laQ4++t6Rl5~!$|x2FQ^{mF>~8XIXJqa8pSC_&;f_C zVz4ccLBY~P^Zq^YOQI|F5F39UAMT{@+ri3hZ*5&XPFl-4DSj67-aV7_;9j6ymtKpFS7 zCsI1EGgnk~FhF*{*4IzB80X9<5pOr5A&O7qE3L5fbiDEqA^(o8w?ltiz{kewe0!W7 z!Z(@C;au0h3<2cz$e9;QXV>0VoGcYTQ+HW8ybg@y-28k|5#R5=L!D7PX>I0q9PF$> zSXY(zJuymro}>Q}rK@0RZUp5Ea5@z->^xs8{J-c?#n*iCQ zw(TrH;W(Sh%6}D_M1CVsx~U!|{%z(Vlr0(bp_|3;xm>9NaL6F|6z-_=0_8x6fk{`~ z0xM{}!ZRrD1(JFkB754v5^@|~~Z$N!-c;s}2xr#b-e5>w2Of@-FWQy;Ts z`5^QOkwwZCA zn32(#<(_3@jqe|g5iqqQ6^7eU;eA+MXB*6oDgCcc-e&mv7?I$?152DCHE zD=L;kgb6ii*o_FYbqlglWiHIzpe~A;FUY!hg>{vs&V0c6Qel#$QmVo{9nxpF7QqSWpTkMw+=L3w7KaB-)T$WQf?HJhI z<5sVS|STr|UW8)XEGpZhMSHJ}2F(H1@q#6)`K?JIe>zD87b;eLF z)xhYBqORRS&HcI0RQxBNPiEcixbi~(bHy(Y&9%Gilq{zayGo(z;hpt~BxF(>lYbygq6r!Ut>K6dDZgMRKGaZG7{_{pM! z{MOmN+R?9&&>_9p9e)dL4QU0Ys0vEIzYBs8*W_3!=;IJwZfBck6L;$kmT=f_>*TX@ zL=QaiqGcgC4b%&a^R}(gx+7G{gDZb{$!X5j-3zVE%AU!l*4(axNnDpNWEt*$5m1|I z-frliP2iysXq7$u&Jio=uG6UxfZFws};txyl_e?Sgm~KIBZ^##>#cEU^?`c#1J~ z@=@;eoLw3$3@MPB+uSQGE7LV?*ky8(*^-3$+C@QBtrEbRSk@wXsJiscR?f9#Jf$}M z^7X6rZf*9y;E6>aLJ-=Oo4?{`OT0kv6?m4oApVlo7WqRgV*d_BB424V|zuQ$93^o!(a>^$qIm~C~i6e%fCi;rJKQ0D+zhyD%AFh4m? z5T`tWnMBl3+03E_Q9QrD*Uqa;e*VxKa+X*7|k&&_#iv*2n@TDW07uSbmr z|0Pu9hrV15y~2MJww;#T6%{Ibplw-vx%y?Wzkl{NHgvryq1H}EB}=Edy0{=f82q_% zAmKKg?f&^I6uh~Ns_7{YW4h+WO>RahmAkH*Xg3rvkZ~G)gOr;10FulfPOQhzK|_#T zg~sWrLDD@JjX=2;+j>>%%N*47x@?aPZXG-+{7nAj-zMPPIU_&$_5032R8}>#BnLmf zT^(r==!fPDY^X?t#`5bPlSQAXIB_$=JYG^=>aHeguI)^rRn7z8NE=ue+UFJ0v!rf@@* zsF$yAUbfNwJT?{xj1euG_o}7qa?L1Lr|9iG^7>jU?LgjjnJDSVfKApQYjWXvlE0Zv zz!N#!80MVHYM|poQ51dgCMwt$8t7cxEolFW&zVB^6}#SWR)a()(SZ=z6{+(3EGb`O zKSMc$E0)MT%nCzfclHjrqjM@~fjQJk#Gz?{q_Y9s&9++PuB zlIf2(DETzHJDYih04m9@LTbM9Zr2?B3^sC?MRi0rupQ4uD@Ub29}dF5^EXm4e8mFfuvO(g^qpG*vv zTTfk`J)%18A;6~Nh}kHFU2p<8AMCDxth%Va+;You;gJC^k$@G*t-~UkiC@y|{bcKj zj^$sdep`iZdCs3;+oHPjUR5zTU&B*|%b~LNbkw04*pAT8eW$e&_V|mu)G*r^g3YKK z92y*fMf2b(Sstzsixxne&R+>OFq&PAb106NGI)_c1OgvoAUyUHWC4iyxQo@yMudq0 zV3U@N`QS-LmX2q|FKSbTC|-Rw{@6`T;hd-Eyz=tiSf7w5NgVde`(%k~+Yv(^oP-Y4 z<~|TQ)a=TP<5A@3Q?99E8cX_QcIOW%GSRB^$**Lh#V_tH{MM4bZxf#`Fbadweh;8P z7r~ssz|{XSBtyzCn`F8&K9`uc=dyuPcRwE!942^{Pic%;!>=Nli^LP50rz_4A`~E= zD>kOrYV}M_?b~l7MyN0Nr;Rulbs?<<*1wG(m0FDSFvW!W&fFKPoh~(h>Bt(r^3DJ7 z6FY?jtXyg&w%XpQHce{(ZT5(Ld2Y*;cF*=a)fL2kdFAaur9+)Ihgt7gntr%&LSHgT zsq`QVe4EV_RPpNDjqrVp#dL{C>L(nUiT#8R0r>iBh2BE06`Heg-9ex-iA%=^ynMc?1LY*w5 zu}SY`dwhBvLS~eelSi48I<4d@+_E3^X?VKAI9=@O_AHSke2y@+t%UFge5O5AC17c? zy0Yr(CL>>dlmu*QYq}q<>K$xi0o!+*Zdd67Z`*u2L1I!cDgQo!9ALt-uKRZ0#av=*ZxuV0KH@4q#Z>N=)4{QBdOQyN6 z6!)ecFcm(W5Qji-)B1^%APYNB9cPd*d#vZyioFW@b!7-NRoMw?SNqA0NCKulaatMN zXRTv|!Ty)IB*h9+3Q+_E@cr@$_37G_br47L)K~m@dY--SUZx-{RtmZ`q!U)LUl>x+ zU6^5i{B0J&7MwM$9kEA%hRM1)+Ng;0y>$&Z5ip$Jg8CbpXkM*->v@+f93|r1`8pI_wbD zOzmy$JrKAA+Mah|>!Yy3Wqbo76HEFf8ua$i9MhybAqax6r9B>ZSZFxgQUSs(rU6)8 z06YV5JmH?8s}B2!_9;gt?K7#EE-J{@Jop1Qtv*}6BAGBO6+!xA0IulMDw=`3>|^&3 z8r7x8cyy@evN<*|B)do`4ho?PYgc7s;8N{>o(Ih^=mkbhe3!$19z!^e`hAPawvEO^V1ub%zChmWMW4F^5zx~%{6VKTa2Sj51P#DoM}y*eFxmqSkGLi=xO;PLCeOo)#M zHX@UVTFFqXmdi2*)_(T-*m3cnKTrh$TMHV2XCF<(LKiSjDBYMp<_ zMSq_2eauxm~S^fM2s2{Bw(l z&F}+W>IiBwiv-Xi(*c}OGw!{+fYzV6#4mnP%4w?@x$9NGK^4(;r@V-kxrp&?(uKLW zRsn)|TbkR)$Mf_VK@80X=?v)p?>F;FZjAjq7GV*=cMJ|+($msj6$zsZ-u+biI6+#o z#I<0)a?jZ;N6EnW1=2uKsN&A)#N+my0f50^REdBz918ZIb|RBcETSZP?NNGz(6Y)Z zybt~FQn#tRib?Lr!+`;igC`fgQA^Lu&hETg?jUYk_)Y)u;itio5e_ODXk-{nxFS@~ z*LcAI6w_ktZ)+n=fONwnpL2=J)pC63*6HcJ8={G7>6!t(M! zZT5lqwowqPr2+Xs+}P8OY}L)=3UX5zB<-w>`$NXpDM~au46V=V3vp`~85vsvlz335 zjlTw6eUIO9=-?!C==JPNgM1v(rmBTTop;U3zx8Yv$hM`GansRzzOcMgdwvQfbyuI= zQeU+Pu%BugzaY;9P<%ciodJtvIcbho#Na@FN0P7I#nCs=GDztY6@}kP&rNR_*DRZ;rrPbAY1ax(Nsvt>@;jUIM>f~#E zv4&JEa#Kz({u_&m+8Y=kPBnrJzzpcQ7Xd&m$2=^PCE)OK$y(uvg~r!h`!HD4Z3Qk- zJ^(Md8{tL2ylhAk4`k##T#KIrsBWC+Q>!~FIm{(En$A0GZS7CZ_4q_JTzpdEu97W% zhxTUM-H?0NF=V0%o9w1n@DLnyUIX2lb|G=q7so+}{f?f>P2P4ZUtQJnvU&zemQulX zf?CmC_(546=fEUHdh$sZ-)@?KM<95&MM|h98k6BoFA)>tYHoHGBl{&q0v2A}joy$J z7q>EW+xxR@CCp95gt~m2ojcY>UYEvirOn7nQP3=-Jj8Y`4-ZxsGuyqD9Hr}MIm}r{ zd=ql#!T$LzcQtA@4sSmk@2)x$Po}uLPv{m?iz)T1#+IFP1oS$eRNWZUcxDM+Gv!J> z{~HmW^wlfG^|)V)s3pF`W(`m85njl%VdIte;u300eT4MPS;Vxnm+OXi0Tmx9|I|D^X!W}iS2@7SMP#83fjb#bU7FW4c z8M~*)Waq1@s1Sl`u1^ESxiq-d0CJbM8ywB*x%B(Di?bPHg0dTzAE-Q_jyIq z=IF)xsnuH$gCP|bQ5&dHf4G0&d=B12v{at<(xt&Z@cnRHo&2P%5~6$WNu7)ecu!ye zH}6uA26u(-O#+|yqaCkINeGP~BA1MCHX41fM(;HdmwN_5%%rtWOmRJ%)AM2M>`ma&`;cByy#}9kaPHR*506veEn5%RR4i~A>;hthl z%yKRFj4DHYu!2EAye%`h1Nwd-MVIEbyd7|3jM`EpBBDC?;M~hIy~(nsC*wfU20$z{ z#$nQO3%aTR2XxP)EPpT_$Us{15wvErc9X^H0K46M*T$bl6f$@%p4aJ*cFPJpdak?y zK$T?|;&REyHP(nJ{h8~>H36^-hKJchl+36p#}e7d@f9wq!~Em@C`jZ z7)5k#063ilC{OiT*u?WXEA(fT!hXoS4Wu^+ z%L64VpxI^u$NH+lzn=Ha*L2?;4Pp&nZALSN;$Q`PR2E+>;C&tvDByCvh#A3hz(BV8?>4-u zohd1@N2;Qip9NPa9xc^#wr7BWrnn8;1%}wV{KvI8Xi!ka2^m#>xpjlwTvX>MeN=F{ zI%pTeH~LDsHgb7;rgPzW-_1mEDjI}Cu_|+rp2)Fe+&p{2a}B+cl5Gl)7s0NY#hyU@odq$vli?Y3>`>9ewCdCnn4&8YCl|tyiEJ6@OUyw z>U;&1nT94DUY}C+yV3*VBOW}-n3bnYPsKwRfxr+ffVLkky-L2fTB4M}YhtSJ3HSfy z%VXhrH#*WbtoWlD1;?!pwpYrvKd$^aKU-jr5!lpu=xHLXrU3LtAWnC(`pi}#$CLs5 zgvMZP9zPcGz-UcEFPbae&)~J2O&A4XBvD2*UB*riWKwcB3VA=MQge^#Cw_abH>RPt zn6jKPc3S&mhclpm`A4W3zv}j7rhWiWT8FM#trl}5{6Z*OkwK22S!cME;V$xpXw{*63X0+zWfJ{L@EX6K$m_0Z~ySts{#5MNpli|I-m2{2>j z8%UimWq3tTPqN%??hUd>bmZQDqk5QW9B>M1 zPV-h1^%^VP3d2#_Tr}I{PhcV!_B|B@#tx_7Q|~Je=4OaBJ+o&w2ERaZNj!!3O&d+_ zrrY&OWEZv1^dn&K13?@FZiVy}^bar82OtM7G(q~}^HP`4>-~WhlAs-CI{llQS%cl# zks(TbZ_+G=vUT@&mYk0h@A9tqa^5Uye{xEw!48-5&6KqDFMm?xx&_ZWQ?Ld=BMXdfGB;+~Uq@%VI%|qxl(NEbtkcEQGl3FY6M<*cO== ztVeU3ydowdvM>(I!`5aEzX2)&nGM}u0;$2Ty(R)V9q0xCyQ8|<>nbi#s+4`V=$db* zVlGCG4iki{1jnQ445Z0jCP9QMm|VAjb&{>=6{%5X+>(ERBP-8?HdptBYj1(8WRk1y z?6o!yLVadMvp6&Yii!Msvsmo{?b&`2#W-WuEHOxzz^UNn*s65ToZ>fU&H!12C^@36 zsy!MJ9E1qY);jHVV~0zZJdTbzYUs)pMU5b98goD?+E79iv`pxjHjDu0Un#YV@KPOZ z&nCDg$V_3Jedenw*r&$rUs-1;dd3r;RLPvPI-G3^qtACCN*cNxeg)sV;!T6*sOjHY zsuWGgqFubAPC4?hp*UM9KK{xwFy^hPsVOOD?4Z6MXZ5y9)&f0haZ%4V(}uNVzt9}u zEeWrvFAsRzBJVp|KbtvMjywP_LjdbVnU0X(LZ3kt@%L0cQ%-g^>GVgNHyO}U<7OR`Zi_eV^+kJ@n~x};ihGkPZm(e} zQ1`Lm1}#W!H+1r@esun{EMChAqlk-nB8L*7Sr5G*A|hJv*u4{)pQ;txX z^PS8$&F4urFKX86li7T`I@92#XSqct=2_I|`qVUokeMQ*xbmWm`RmXxMNba&t6JUN z-T&Cw+u91F?7?s`!t9Wjc9fg1PK)MwP*(VV-i4`TZ;r>wD^TwxSa@~u4`k0>#ekb< zfEGh69c$6pjQF4o%uy#&5ELcc0d!#+-yB z;1wCa0pQ)b%oAJM@Yb&1o~g+}eZsH3{--8Y>zJd9WMJZZz!b65=#}`KxRMF4%mAJz8RQ)hGhEj zu_vgw585;aI0~UabZ3=va{H240B@pFH#(0hRO_V4qFCgidzP z!t$t!zD?XiKM>_D|IcH%O5?ekRB7IV(Z}OWP?QXGCBx`^!+!Hw3O2BHv+>UjjY@yy z_s6zqs0j=z-k;?pr2Y+E+3M*;Y>VKz1sYlEZ{Gk_2)QLt!QRC@=b(=@evO2y;li#{j2Rs6 zZU*SR0LgeT1akQHqaUDHFxJO3qSj^W&RT(B5#0F-pBP+@feZ%2YwML6A5S!+wvdjz zs%RaG*Kd!MEs7f3l#??(JpfapSNTM-amA@(7=Nm=)hI#9I?>?ntp{ytWI)>j!pvSB zygmk~`UR509WYnceWd?w8SkU& z_W=)K8bhJ)SV&naVAW#-5R!89!=rdcqOR4;)Tt371I}6`O1a)$56^ZO3-U&d{Z3`p zqofwoW#SoIn%zStLsEV15Kt;BKcvh?Sb}geQduG%tSm2gOH2myio}8WmXaTo^WDVD z*X0b;jC1}SWbR8q{kHu3x8A#C8ex!Q`^qj~ zYB`4Pd>UP_{1IASoP@Yvx!7ZaRnp#?_gDaGmQ@~{%oZ-VP_uJr%vD{F>g@eM5MNf( zuqjsoCQ4Cvr}?hN^^&ZqABJ#R?{;%Xo$3CQq>qDd#2`Qu%3+T1CkKaVyN-`Y~26+}g#(Tv(D~3$Fjyc{L z21Hsc<|c`jxq;$8UFQd%DrKGyrR2K#EC`vNlgFS3+l7*sFAe0Ugd^z#ql3WcH0!{} zpRZcT)t{E8i4c42I8`M;R+gT_G{eupadfw}tqs(`nxgTh+xUL>)!VVrul_YGf01hE*?b3U z-F6)@|D56RM5G3WR{hZ$Wm&^%@6;g~h2z-W@ zhL8&r%SRKDw#G`uJ3wLCxSqRvKV9{mafyl$PC4{GKS`u>62&FhiO${Dag;y_-Y9ZW zXJ4YUZ@jFc_VX|1gw8vbezZg009**TOkS z4shPxA`@WtN4piZFcLM#m;t`S2oU~F^)ao;Kw2z)%1>vW5XgnruG6(;MDp4s}AIt zC7sCHg={Uv1MS1neru_BjN6?8zqAiAAa*vh-PojhsZcV_4u)F>nn>I=EZnK?tU#pIA{8+oZiQ6ZxOe`02%mbO@zYW+_`gX zOtmWcyq8a}0z53iO$rC0I9~mRjHsnRSGl6n?)<{~1Q3}-F?+^VgkbIQ{?a;_`#LxSW&&H&gz{Q?O4#B% zxR0P8o#pFyRPo`%?D2;WbC~eH@&2tj!LFppVJppBz+ZIA+&OdD^{ z(ocLsrK?VN-%{!(RTMMsax0y#d$bNZINlyLNACt!mj=H#_m>Lh{`@JeOB;BE`F1yT ztX0pN;;Fmb&n>zVE*xle3Y^3Zm!T4w zS4i(pcyjPE--1vl>n=W`l2q`{{Bl1Zq2>p2hQn=eC8n3z{N~g*11#A!FmAVPor?hR z7VdL#^zU`NQdWe+c+rmc2%=c&lDcxisX?a+WBZuwHjCf20#^3}J6@n;?ErOI zC73Q=_dKke+tgHr<}ee4Pt))U9nX{`?6&9x-z;NJ-J%3yb>48_{B~p8PWeG`vnNl; z@8uf@#uz`ruY+Nt0fP^wtxOZ=`2zjB6Mg)Wf04uNV%qX#37wHpTnkia9tERw{FLhP zsA%(AO{GA(g(s5WHtPtlV+u~i9!{9aAt%!^0k#228shjy%u+<*Z7!qh%Fk@k%n7#D zPr8V5I5kV2@7N)`Lnv+!k}B>^Tg-5mG5vUgBB$n3%AqLfZEpohRh7Cex%bmNI$%tt z@aY4})kA=qip?4`NAl(rSgw>+-a21B_)1SS^6k(a%BsUrz&?T5-A*jG@2XdM*cN#( z8i9dglS=L_v*{82yI-P|vfv|Sf0lP<bo7_oi)Qu(V9;>&LnC zxCfIeJ^Pk4|I(rPyVA%mvIS=kaAIk|4x7E=g9caZ_V2FweWJZ z`B?)`a$~EP0a(u%8uMDowpfsWuqHag%?+J3A2vi22R zhKU!W8Wn?pb6a~nFW_}?`}YJP{3;00qyWu*sVM5&p(|COBKWM1uN_P8d;<-~RsdXs zt?~jMxUS>MT@w<*dI<6|;G#_Xs^|N63%TA^#k+x+6^v%IN@9Mgxu7QB_2mGu&IB_eXT0Q1)5XCSqq#_t^j-lh+ebv?JWllLjX zlt{pnAQ%!--)}eJ!nK|#-?DM$w~n;5-oykV;QNK zF#KDdZ(<8UXgZ}oPyaW@J{I1Q=R3KZac0WAF;|)+KvJ9ii0P-n2{1jy-m>wL6{xF= zB~5H4z$u3nwUFZq3eX}q*n3r+3||^A^#y#Gh9dJe)pc%^aTol-Qe-%T^rFo?Hk>>7 zVC~*8kR)*S{PEsj)sZiXu3ihI?=Uvh0lYKU+AxmFtt~%P|p}B^gMDOEi^laPY*Itn3wE~)*{8J zqO9RTS0+Beq{ra>S8l;Wuz{TDC>v!!&wr2et{CQJ$y5=87oKl)J${2mVDK2bM$4*6 z1sA^mbT)Knbi58F;}?+^&A;cJ&VoTO#tDi!pt$u>pS z7QNvaG|{ug9=Z4G^rH^LM^$c|k5Jip(u5gV!0Os|C{ccY8M{+bHHD=F|vdNDH#BcUWk$CP8 zBsWE9$lwE&jOqGj_qDY^4OHrAGv>?Sr7Cic`$Yo`#Nmq)O(WQBo(09b;fI;;*)T5> z$wW2rc_Y;8@G{(;(hhK%j0oaELFL?}+Z^%HDmaio6ZO0G_p6a{((h25X#oH8^T1qw zh3tx!gq{U z0Se~=lME5Yg1ceGr8zCegg|eyq`+gv1}viU?0-7Di}DBmT|m~mgR${3Chqtq?myYO zJb(z)ogmitXaD>6D{zwC;NU!%sD4`BdrJ`WRIoKYBb8Lu?%!t^92!Dy8Kk3kV=w+) z_62?<8RvBwnG0ZTvo^U?M*}*nSQx`qn6@&igTmUl-oNLQP>e?jj8GYHL1;LbI`I@= zDILK0gcFsPmp4INZCu@f5rHTH&m2zxx;pqdFv+zC* z4FAuM|KC393;>&CxDF!g#31HFEGW62+7G%Be?J7~?-&bh*vryzt294{&Ig165^&m% zEonME>2i_y|4d*pmb1=JpZ;uOPf}O7caP?h#1rf{3{tr8-%5;+9RF=Rq`degzwmG} z(7~xLdk&nN3O-EFCa5``=lNV~11KBK;b%K{lCdww=HS;^W^l zgRN=#&#kr=;7a$y|8qIurFH|_v=FkbW*dy#HH^_jPLG7*#m1U<(EbFIL^_1+LUG}# zB|9my>HGJOT$~tAswfUg&aY7&$#)2n7nmJ`_Z*z6Z$Pqp<^>C4#nsU2`zm|nF6nnt^{LG8VGq3-if(3mHrs;lcD%RvK0O^5I652d%Wyg`fSE0Q^m}(=@nEHKzPH$cVW}0_(OmnPzdyGuw;6dc{zLcYOUQJ}g?9Bt zM*>Rrzk%bwV$qFMc8%R5&(YFH6uU>q2$D35_Y&|n;nG&`gcO|q{(9v2rJk%CW`EBC zHx1Ar{vOKzCa(Q2OQv>q7l1be@#&4=MxTH%zffIAlX>pem3)J*vTij9MLz18QQ8(CLCS1{boK>C|9;Z;oVC z@n|zQmtFmli$0Y0CeHQ{Y1THAPijY-JMjYJu^fPp-l*ZVukE(c!7)>J@Z0C%yJxsE z>wy}S&-K}wfe0=o4o2Ufy=I6M!KP&q=h!X+K%kLKBGi=6Z-^s+`-k1SXE09n<(otlCD}(sVje0qPH%zh@Ku%GhcB7N0&~Bm{ zLDEJ}E`l>#y_E0cOGwiMvMJ0_%5tWrrbYfb#h4qi@bS24B?wytNmIg`{7j3P-d&#~ z1+m$J^H^th`%Vt~SVMw1T}jF6{-g;sg3P-KG#4;S6x7D}oG3dd2QGtVs(Z#~!SctU z_2NT#?$KeHMIHYa_g&QQpH7mu&YXdbejSsz$?SD#G%d>PRI!GjTskb@1-NErXA2#M z1f-APHSq({ROE2GqTUxEZ&c4Y+1eguB;kh2>~n&MMB+U(m}l#DV8U8mPz&wN33$ewxJIFPnX`B#TL|jJZY? z7hIM{HK)HsT~J>P6u$%aD4>HQbQd7uWnUte8=WCE-Ngcf+GeOG@Mat;;aN%m2{0FE z)Mw5}N=ePk_%r$C8C5hfxPH_89-hUbX->heRs7Px3KEGB)P=0?4nns;uH#Z7C>uCH zW1tb-xf|!>rEWGG|4yrV-M8pd(kn>_u6{G-Ob4;Y`_t3R#%?pdN|!Eb+A*`D;Qe2~ z@ElVt0f3I?`EBG`*62gYo2l%5;C9>$mYTIYpH_X@RH7T85SoUb114USrRE8%|BabB zIfTM$KC50Q2Wzvz0>4&47@XSCBJCDrFtW$%p>WDD8({6nhfu6D4bVbJ0YX!y4-b~< zet*mZ$XJ1ok!7?C=zX-g~zY5%i7Gh9y)=P{}H zM||&KjVhggYQcmF$ers!JoybB9UTagJd4p!&&9A_IA4Bk3_c9~&)lb9o`>j=>Nx(m zVumXt(Hp=-AOp2F-RJ|s?aq3`Ig;C}ab5g1xuXg^7j^1oK|Pco6CL_c3)lAROMsVz zIysmM#iV0F(z&niCjCo=ysIeMZ~V>rlobAdCA65pA5i=qmKl>~Hlt}wZQVTF-Ra;4 zLv1EZ@%FcaohtR<|Cm}MP}Ni5zS}m?zCvKCWUT+ay`Gza0oWGQ1Rhkezp-7u4!D6R zexkdFz>yr#pnS)sXYKZX6z>2R?oaSgc>qd^{=l3?YI3V0ZLX1*M%L=1cF)}f#3eTE8pMz>{(g`xMc?{tq(r_C{pbK>@hQf zD#b-_eon9dDIT#QflXvz1vo%Nui4c)ECmo=99Hzc|NaN?+@^j`F3FWU0v|! zMVv&=J`NY7I@%UBCC66et2e@c;k7{{eK~LIE%r9y-i#&jXxvbO*WD zMG({;bGi8mc;t?#-y91@;8I;i1_s~D5B~p||DQSj=c(`qz@D$}y9XRiGfGbYuS#-> zECSw8Ujd9xer084P)qmvhkLBzF%0>8zl!Z#$dT0N2#?7-{@_+DaUBt)3LD()B(h2S Z=fCZbG^tA#UDgah;OXk;vd$@?2>|s>%H{w7 literal 0 HcmV?d00001 diff --git a/_images/2.6_resampling_29_0.png b/_images/2.6_resampling_29_0.png deleted file mode 100644 index 959be48289b6645bd94358ce11aa122d95f6f5fb..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 25359 zcmafb2RxPi`~Q*bkx`QEWE5H1GjvE9*?aH3cO@A`LXsJhy;sQ2$d;i@XvNC;^NQ79D2bp?z%3U$H}g~BSs$Ay16 zeNS`){u1?+)AiJFvG(*abGJe%n|ZoAx_CO;nKOA?xqH~TIP-IhaPwYbvi0BQm=pp|JyoyBM&>iSB|wg*30VLV{dsm zq$v!s-wJrVFtvaD{=QnQQ`#)!`IXDWy~O?Q)&~tHrGE1%yD9tw=Q{XJ(mofG$>Nid zlat3dUYs$)Lc^Z|T5KWY?<9+6c?<@_;z2wa27fH0uxOFj_3@dWho3$X#dU0PIV5n%7E|y2IbE|NHAsRITL|x9G5SjSnEi|q z37qDtj0{$5YwLR>k_=q4=4BN8E~-yBn2Jlkrd9}p(bRHt%q^`C_VGC}2lX?f4EI*WKSQudYt1roxK66a5RodNSzuU*(S46xw z5-Xj49&C$vej=-Q`4S6t{rdF_+}s^HCU;olt}7{F3bl*N%-V3Dt*ILt635-Z32te& zl7z*$|IKy>mtm~cx^!d1k(frH%Y1sSCD?7Q8S80W+?XC4CuiaKZv4}y=`}Tz3o>xY zmM$67mz|-ak}cLYaMUOqyTHTK`R=97`XvorUEOuRm4WA{;%=}?CdNO6cb(E*h%MCY zZ?)dTFjp|`z@ahmaFXAqKcvOOIX^gceO@xT;odc`a0<9) z$V$7rSF~3zEm`(Auoqw<_m6vR0VOf|{P}WteFUEq@l@EQ-?w|h@T#XaCGo<-LJ=E! zv|5E$&0=Y69d5jspC@r}m|0j(qArb_jo4SgRZJK+BO)Ypw-F4t42>nF3&hqB58JTd zr8X6yaWJgAnmfXL;X;>L#PSY<@`pe!C?ZSlakYsKt$Pz;MQ+6ZwZ?P?M*d&7`acR3 z(F#TP(@Kg4d2CDT6aJFvL#XZT!PPxdBLcXYmm;xfV~EcYg{*pq=+v}$ME?Zz(CM1G1-cyPw1U-z@d+MX_!X={}`a;^qO zY@rN?rO|>jIYXvN!xC>Qe@JVvq9{#EGUXRX{mIBYemJ`GwK%01;DbD^@{CAEB?{0S zbaaZp=4J?q6%6Y#fJIefr8Ou#{eIV%!Isa=8;08QmwF z=~A?`zTbwg=<6|DqZ7p>iS<=&lb5e!81BQ0WIGh=k6~xsU_*rl1SIZ$9l0=JfA9F{ zo?2$$@sV1|n7OeMF$E~L|)sj4h>B5D){#`gDoHrLQ zv7)7$2D6ks$$G;xQl+$0B9?&Dl(fGfU{wd#ZM~s`k!JfVFX=9lj96AF1CK9?fmB2pjV#5^{^|ioaLrt z&aYp&uAjVX6El^OapI%C(-GxaLP8WHqs~PCi>z4#1$+(xnhX8Uzx{Avo8JCwH*1ZK z6^vCkyswV!%C1*d>3u4qHdZqGDnz>Z`>tSop_raUys?W0Co6f3A+PEAinv^_SAtKr z4ZXaMw6$`yEiRjmz`H}&nl;N?a^5tceLHfZ54XVK;wcmvO37)8iRlXC%ZCpWR|CT& zC=&LVDq=c|BdyymvwocDSn;d$kKa*6ZHfAjcJ;{W>QV;_qIZxD;<%JoHDuVnc%tvV zJ&Vz6%xI0DVe|g}v^R1X`vqUd17sSYVf^$8wwL1zZR`%WV{ z%83$wmp=p?Izjn4`=#lS`#$lxASihY9kec$9Iq|ADK6=jN&6cc8%Iq$*OUA@=)7{N zr^y#^oC;ckdjcDJ-(Ul*RT-&NF55-_e=G3sJpSd)Jms@l$ly@>< zqZ;OnFItzYvb76v2POc z()Pp?pE2wS4wFdj^bC)Wk6(axNiAUexP4zH7?+uovp2`1NWY2@8;=xoxc`}}+N92t z0I~_3|K>D&9)8k&8mvo9L9@edgHnH z%-`Tge7^JJtITt$J6S7t4)^7v86?Xb-(9|BR9D&I@is-2QX@wxChhFmvsVkprrgdn zkW+}NTYUQARneMaG5BP_B>kop0PDI>+ zYVc{Ilo3jU887vQ7!P?&CUvCz=`&~MzpjobC@4JM)cSj~79?e$Ec`T`1jtwH?&QuIf-%!!Laz4nVCWRxdtuKv$UtD z=gFp8OiT>?iwzN5Odu0*>}{pda&F_mOpX zcWZY_{@iNI@cHsVFwLVsMHJ1-DwiVWbz^C1DeTwb>tB>jO-<%sJ~RqV^qTVGqgqXQ zCvPhS1T=*`dUP6vfpbqb-g?!(`}61RX9IEowY0uy#htoYe@$?SL77DuZVs-C7YP7l zw)OJ7CT=v2HgIV?BksNN*!s@eoY2U_Gnor5vr)Ll>D_u7JxYQK3}S-N37QyABL4c zUlewG6ZtqeD7;J0Q!I6?kp&RiT3Y7F>U$%t4EcLl&uB$<MRF!$og_a7i2ATYxvK%bqb7Q!p@xgEmak!CcYD}v5Q_U+ALi!wX!(j52} zi^iSbbt!U?78i#y#^=e^L4XJiSoN40Ot$)%SoNh#mx^Rs^nHCrs-32_7j;EaRXY0! zFiYwav19F~yrW{5Lca0aKcX)4D=V;=Z*6NED$wFoN)&f{CiGuI)D^@0>5^D>?$-25ZruZm=6+gI1Ozb%!QXKJrOWbv%~=`r^fK#oJ^t zZDVJ3B@gC;ZD;BP;n1IxyZc!q!tCez1&BVhrrO=)Hg328D;h#JzFGorj}2ZUc{z@l zyxRmQP~^qEg4u}u%^3$Df6i+;Uo7l7c5qWX=TPo6gFOWJn3J04HcE$3NlAgmr)&kJ zZ%cUkH@4v(>X>M_&(wJ-sHjxy8|N|ezoYlM5<4Q9ocDsdOf>MlGp^x6n|SRSQKE#2 zm5$Y`28l}=9P@<}iibUdG)e+Vk7>#0%PPJ0aI_~VeMJ`n*k0WdP`m0%{4AmNgQpJ5 z%{Y_hU2}8QlCcvg_0<@q=Fy|cW2)x43oy-$~?Z|yz1{c+doMs{u0 zIF>z85$xxQxgzd{=j3|k&C9Hb-v;Vyf52Nev}U`#_e0-h>qhf?<>Vy486GVi)3~Qk zPsZJ_g4Oyk5LWcPuKvUlb)4dDRNi)nZqnvMzh4rgRXlT37tEaPu3ED_emqxUAEPw3 zt!JlNt3P^LSF3SFGfHo|!SCgmu3)it#G^-#XgZB|0^}_tv7RNU=4&ckzn;&Bqhus3 zzeC3T;{+RznSfpd|Lb01!$Mz0_*PE$?(0KVS7eoCfUOtt*Ezu*G z{Nr`t;$rDKO_%tmul{}fNo6ON2js^F9<5FdgtJjvukKY3JW9ucTUNRxtkAZrGMrrdZw?bFwp#+>flf zj9gUV4!@`}@4(Vmr{)^wRic9_(E{9%91fxvJ4A`7UOv;NvAUHzi;H{_L|l}9bWvs= zsHkWrlnSFwhY}u!r0te~A2xEBhp{&9`j5^OP;I#t0RZ+{q!vP7a~o18#9&4b0O`0t zb>J5*yh)g68RS=eK_oUdENtUVU}Trf?=MqA0h|ZBUc>iPA{EaO>jLuu&a4iYvXA3%LZ@WSRg3IwiJ&h_%B#SkRfx(cI(5fFJ|y&C+oa8Gcq&z;E2$X6gfaUu$>UaGF|RV z0tsL^Gd+DytmF|~hCFA6gyb79RCOiJ%IZ25o~Ead{Pf9o)z8uK5){F$AM2%y{o-F7 z2Su@%n3zylSXd7h1M-=8(dGg@r|N|M$HKlW8v%MA)*~$>ScnsF8!9 z7(PC}u*k^vTVEO9;ru(UxWQQA;o%4c zwz|Q3d(Yp_q*gxIkB!p(JQ~EA*7V4(tAAc7pGgkYzHFiIT;ZJ?jSQS9r5bHe3uA1| zK|x%aZxx`qq>=o9MTar5=%ne1J}wuniUzV6oB1qkH2P*j5`jr$(>QG%1+P!6wRK&E zHf9N-bYT)kaeNM>7q4L|+JOFdjl7#0>*iKNN4Nj}uDvtUF!Nr1{0v*7O$1u%LtGUa zjrZq#p8k?-$$j(sd+EhH-!ZWSV&35tewPrrl7aie1^ila^2BuQHqGMck*p!pApJ-v zk04^y=HJJ7Hr5p3k;gpH_+9qz4cQ9t%&4)B+;h1tVa+#!71N1GqJriH=La&>^N+tB zDkzjqo~5E%{y|6{^Ls5gmEewK;eof`MW{g!sw5GpDiy7o*D#o!R=o_2Wn_L7NOn-| z$n`7=;40~vC0r1tvpMUJl_LhC>KRMx zQC`uwQO@XkIjpv4Z*TCBt)~V_H`PDR+x24YnGt@X&Ds0qoXX>gYaoys1I3Q=a`HBF zddmB%l9_+RUeNo=so$qN3#ZeC(+U25p%n7M_IE(DFr-jr>DH$P4Sc_)f(Ao<;+!?caNa56~8TFe7wOgz{xFdszS=o z2<7md!k=oG%Lx_iMt0Dj3ijTJUN4_#w*_M@#e`;G{JndLOBt>4P3sE{r| z6SM3h1B^YP8!%B~gd7cMBq>rYj}E_eHh%jM0g`TnJC}ZCpmFIdUje(}H)j%-_WpUq z1X}?9Lz&l36&cp5PmSkmus@>aI{}>S)#~pG@#M*qt=h0@5|RGL4Om}>mPjP5hh^;SE|M}xgq`EJ)^%hQ zuq6W((NXL{w`C9jEco>QBBF9~ICWm@_jQc@aArVW-jiTuWxa6m;%|aC?Zz5O%+J_m zd}on(#Vv)IJZ9QYDFKS3jhdPoR+YX}xlyrpW?9)_jz`0G2W<_A+wxI#7oFB8%g>J& z=>-p5`9()7kyvm7hR$;o-%8n@dh_}y#E#{i<{gaEXJDL%Jjt}ke5`!kcwbT}1Wf1xt8qZz8@({M8=dTD4 z>#E%#o$OB)e{c^QZ(;eFONZpQ_t-~OJX4(vw}>@zRlIz0IR6X()Q_GnGsEt9bS@Yu z8TH-6>DjeA^vowgPkv$M5OkGy_a5Gy$W=7@-OF3UEzk{!OiWB*yJf-=hxfCxSR@WN zUivOZ3e)Mg6yzu+1p#Du^X3hckPy|E#%~ND=kf*o^hE(+o4xyso-yEn8Rb#7-*rCP zwEGF`r;*&~QLzc=4|ZE$K_VE+y~&7?lY3E9L#>#=EeEo;c9HIU<+`nsea~%GQS2dM zDTbFK*h5FZS9BjfZ`1J)hmH5Olt7cIrZY1#wx(TPix!y+UcYgpwbo;03tGsMog+guv-Pq4FKC^OuexhtjiGc)^YzouYq8TFLwnL$S$%J(>-lYSf0}#lk z4~^p9pQl2N8~sK1^l4&yy3e7C;y3e-MbW}FLj9_Gim&nrmd901qWD?R?zHt2h)&!J zeKs&J?*dfdc|-2!tbT%R~ z#T`Z1c+{q`*M9fB8H>ryhFz8XUUJ@nDS;#<-_KPOgR}8C>fs97fA-XdvzfU6*9#OB z6bLB1{cXmFTF8+);KwR^%9Xnez+yX;g=dzE>UyYt`Jcbpsf4%m7D4BO>7$zP@pNn5 zS>fiy2cHXpa;+f*k>1v--kTgw30LjsRQ^0E!k@KNt4_vy7ZH|8xu;uN5V#}QCPlI>sxgJn4X;|5JRoSv$w9~weu zPNSrxN=oR---RJol=n?BR3H@8#n_utGO!|mo4EF!X6nY6&zyG`PBo4O2%!yP^Vri0 zyNvD-J%33JA;5bY?;49bJ0fX^pz6>``kw|+epOHJ94IvpK|hRgP>azq>tTZ)NmO5t zxQY+i(|k`*vMD`&@*2A9TsV7LpnPTv+!?7_I`7Oq>c5%iV50{*5q?sSU2Xj~c|P}f zfGj8iLBYW>@$vV$jq2tAh}Eo@)Tg_I@GtxFGr2U+J#C09{`Lu$61=n8GV9UF@87?- zbawC!dPkc%%+ys?RveNDzYjcrEh-&uJE-vJ62n^aFRNh+xNC}Sg3)$0T@eJ#pcjNi zoaL#j=NQGWa(qYe;>8O=HrBkJ%|I?GDTe&~{7=K#L{N6a5ePYZ=Nml$S3uH%xH^ep z?{n>GO4gqGOKPJMU5mlh+!2av(N|EwKY@+Cezd^iev7pvTk&c?(6Wp5$^> zQU@!n6!SDWBJlj83;6Nk#_C#;HBAu>cJ}idzRa^!i@-!<+7G4$)ur|{+(4DXEiL*I z`M|%1|F(8_uUcBNKp(r`o4_;edE3yC?yG;J(d-Op(hBjJRgH}|D|e^q%al_@$f1?A zgJ|ixH77$SbsPL#zz-@+3&*r$IjiRjc*tDM=PDL9mWZhqJEZ6A;J%qjv42 z_c8r-d^B7R*8>)6IH=_>8M@qKMa6S%lmHrX!URn37@&lb_k7;m(PIpulZa(y|tSAeB4j6 zy6hJ5H1;V86w3GO(6wwQ!q5}4_$p#sLMft?dAh_7dDWia2qdm^VwSM}!+mCgHw_C2 zx;LoX&A?c*-AfLFbK&U2>a57^1-rM*`?G$f%Pa$+lvZHjZaYiYBUtMS>fApP8s9zg zDl&LQ3il$kMqXqG?yXN)06~O^05zxs<^Fs2sO9XYcy6PI2wHn4?9ve_{2>g~_QJU; zDTj%Y_NNy$%6z^UTiVzlJNnb~E1u1!L+8SZj~_om>fj_)*#{)FLg|&2r{Ug-)h85o z`S1u3qDA||GYCopa9QTLst#*1rIibMLc>lEXINB}JlyYTclPxjo#V#^$-3-<@SPu? z4aYy$p=o1464+jd;4ufFiu6hlNXi^0xFtYKx1Fx$g574LLtjuKZra=1>#!9O^I*PD z2Av@Wos}8vZ^C|P%ZOABp@~JPKF9(6{p%Eg)W33JlsZ1JAg1O;CGePZ^u%$NTfe0t zK6m*fYU}v$%XvY;GZ2hu^%#)USri4;e+$HfxtwRtCr}bcUq^hue@wta!H&EJ4NeU_ z8;B&VCIZt3=rkWCz8NU{LK>FfbIC0r1bnyl9Z}Mnnx~O+>hk)ix+Aa{;1$r|s}D%y z*4_c$xBCTpedsmDJEx;1_o-2Hv%ijoo4zm8+6~<`&~i$A2w$epm? z_;aUMU6RM7=@DoHlt{5Rx3I{zc>U}6Rs%4Q5|T-pod~8=?McBH%-*nl6_t#^Y||Yq zX~J>PV@8a@aya5i7Iul+*>Q)SWOlGMuUqYS4rHXzii*qm+<~G)zNN;Et{ao(`U7XF zsW0Hj1d1A|k2yCdBiG4i_Kq;fGzgx0arJ@uV7iRA(KYz2Txk<~b;Sm+IuiLTczw4_ z-{1K*LoMRUgm8guZ!y?u9np*~Zc3oi01((H&;SAja6K3d7l2E~`aVKet}v#G`^5LO zzj>qZOA3$`5HR~Qw&15_fClE>7~my@;|Ng+QE>iFAUz2}E?)8ULXMMOT4769!E;XQ z4mrb%XQLHd4F%d}b#LSH`3!mG!ZCAzFjQE>unSXYim;@i*dUn*NJ6|Ys`rM%jE%B; zueV2l6W5ktui7UHylKiJY0bDqz2PP)FsY3ys=*xBV$`@OX> zB&nmWu3iSb5Ybb>T9O0D%+X&mTiwpfD9)%mur}KfmI%y1GN~V*&R053Q$hcymhk08 zKui=Ax}>jPdc^L+uBw^8PkX5c>gA;7tEtJ;Ws$%HVK+mS%!kZZXPMtwyJe=nmokOi zpUpsY-JTM2Oc7PUL>fWr2@*nF)vWC7;*FujdM~X%4Za8-+XoG?d3Kf&puZ$kD&Rbi z=|o(c?aLY^e;yq<{7iEh%D@4F`S|J65ZDr56qJN8WIzK{`C;@gQG`6E{bX=gmqG-e zqZT{5MjdMP)>7=vh1!+0t56KwfbW5xrk80AAHZlI+lYeiimvI zqUc&UOB>W(X25ykb(#`Ds2OjP5^^+EL&Haqn-OsNKnI4k^Ol$Jg@g-&3~=?9=#&nZ z>A}~ME7LxgqV+uNaZJqo&aGuwJJZWa;E)l6t_Im8gk=@$SJ`igc0#2Ekr!Cr9MlB` zMa8ST%WunF=VgIcp8#VOF;5W<;zFEvDV=p}bF=i%pSuIP_1;{-PVpk;g8{SB+?3cp ziDClV5Kv7kkcMc0dJFgP7@7fKhr>O1V+H9@Najpp2N=fQUORA4&Z-iuWvUvWX>*}x zjhm6G1i}SUt%XPq{XfR(06!0c4TO|i+jkYL{$D@cJ8SGaUsqzlytbZ#i!^{|H%07* zv(^h9vvd4Sv_U_q{W096Y&j+TpkSTh&fc2V(#Ma?f6@fyhwtNF_X4mijIZp8fA#n= z*)jKwBUq`EO?SkBE6*66;j9k8b+R`zXz(p>-@WqdC#6n_VN9|(570?i0sy2UlBTx~ zKfl_ZawwGnP8x6E+=3L|12OB1)|Qs0Jx?zlK$jjYF%nmLE;VDn-vvE&3&8IDXud|x zYR)rWmk$!}q4udXlA`S!3Uclgs^m{t-~d%E4_2v8g z%ttL>v&!4&erPD4?)e90`HGbV&z$QBo(KHMAM;1!onm+cO~xmeyJ))J$K~s%A#6^a zlBd;P0JP4_Kg#1H=|FY_;DGn$Zyvt}aIuz7cC^Vtj^uznsfG8AF zFn3qYT%H)9-Af9Bf5eUH=l_d7@X|zX=Fe4Cx>Ob0+aY#V;(laUNx1{P&>w1c^UBd_ z=j%vPXZy)o8=3S)qz4Y}lQYY0vR7~~2@zFc~(8F3TV(m`Z zBqfy;#bIt7=71v3Wh-DO0NOY|oK3H+FjP5T6Ah<Pmo zse^o7S)~AT;15PSyUmh|wbDl4KD|Evp$OuG=1*{oob!@yWoKs-pcYy~iMa2~K>dsW zn@4<45EbS$U0r)bS6#NpZ~INm5o&#F9H$NtHPX9x?+Q3gjhg?0(n^0u(Vw`aO`e7S z%o*5{FN(4aMo)T7WV*;;%`GmjO~pj`t&2G#d=di6SSSdV4BA&Aw4Kjq(@+4w#)m~k zMMbycpMH5`YhvtET6f?6MR!R`UbUD8lC|1(&tvTplEL}wO177Qp@3-82IQ1Zr<_Ja zKu}A|rEzb3Z!{vTYgHug`TLBF){I-U+uJI?f|1ZIv=MnwST6JPZ%@I+6hq2q+8KM zQkQB+NZtAINA@UKI>Eh4F;gKIR>s@Q{jH35*PA^*-(edPTa<8YS$t*yiyUk!DHo=y zoj4&3i~-2o4uO!Yim`f(PN^}MCPy3?@8tC2-lu_KQwHOmqPqKY`vIA381NJ#6jd~2 zX#vlpL6c+xx+o_t9cVk-)abi6rsGuN^E%+@&6{w_c3=hU(1%$^?W+R3Hh#q8r+; zYtMbTEBwGt>*%=N?=biIiEp!Co)o|?(d=2`2L|Q%t^x;0n;h_va$uswP*xFf1+bHY z#4+$4-=n>Wa^OZ6;%*>xDpAOZX1vrS8u;WqkY6Ms4iP;p6awa<%Wr>Qd2Rt9qXxu% zHC0v9Z$GmBS4Ox=(_3m-O99z1;L}9BV2(i5+xXB}-#_6CXdRB=VhXSsV)13`bkL$@ z0E&}?9S$(OWn$v&uj6m85n|Ey;8fe}>}<)p6WOivEg->!fu2haRHV-53pb#6Hc+nQ zJUuHx9I*^OuXM8m0uSi#?)F3mezjh``eP4dnM1T4xK~Wa3<@Cl!U?GGJiM8%&~fZzq)MmdnDep>Lvr&x~v)1pJv@PNLELf?P%M&6>81 zzR#~_xglf!U4LK*&;lRaRr=pD?^9L3`ru#KvZ7mM9|z2~x~AjF6AHw91reiPf542$ z;7YK!jTk~05EOa(^yxV$ZPGx3pxc97dk@qKQGrCT#GX|3DM{xR-g!+XEpu;V{O949 zyT2m9=E#IsAkK2C&xdf>I|wkjz{zn+Vf|i$7H7)15jc25_Ss+biP@Y{Tr1k*|u2uC^K^1?e%E1gvDY*_ga8AwY@M}GeX*L5jb$`Hil z+A_h$q}btfK&iy^Vx9;U=L$;u!-Qtd$q#_x0trH;ih0>@ts{mER51HnAeta72-*hY zGa;u|fPN{}eLAYDWDum{Nh`dt^89WG&+DH-H>JLx zL<*{rjT3-i#Q#CCH9`Qc{M^EZcfVZeA@OzaDn2P`2eieQq@?hM1_?_`%Q=`jxK~ob z?S@xTujsitoJ}q1FMx;#woMHUbV&1m!m3DTECUPqZf6@S{u18+uGWQ1HV?IN-CPH?KrOgOSC*2W;5_ znX|dIe+f~uY(^o96qYvx+LQqZD@cy`8iOBZO6c~1D-y*(bj&}aMR=f9kF4*7MMS)u zVmN!2oon>k4rE$ku7O;e>p2=y6c$o)Xf!I%$4wV)Q@;1o#;1Aw#Z^4V4-Myd8n%Mk z_o2Zsb8z&07>S|$&q0J@3e^M$fkd0jNO1n*#fva_k*8K*n6?J>pTt<^`6qv5#|3&- zKUf2~f4M(30_;R22?}A~P}vvFa4$rIVnqd7ptG)1_eBsS>pp%oYfs|WKKwT;0d4;X zJXAzVz35_PYRaS|#gsrMI|nDZz`-F465hPV0LvLb%XkdFC{S_Q7uqArAxn+VJP6ls zWBS!8SUeZk_U>&Y(@|gTYPPr9d;`VS{C;OS>*+-dCJj-KQESTXDoeyLvhq|a*voFK zwf5_k3L_C=NqW%lkKOI;mM?z7V2r!QZ+U`~4Vs;yF2DT-RQfe1y+TVLqG{N80FZ)P zg7FL-XF;r0Vxt5R$^6U3Zav4;ldauo3di+?pRxpe87Q=f`AO)kR|Cv0iILb0DH31V7cN`Fv`Z^<@ZTw z??Wbe5i0y}HPm7Awb6XA789>>UYlV5zw;&#wIZsw3D@TC@P~1&kkC*pl&2Uy1Qp7? z*0n1g-wmJJdn)*@p8|)Uo{YTvJA<-iAuiWCbBMIPJqMCGLv8}-?lrsp;;Cv^qM5!u z!-5GG`@W@sXtoNR3CQY+&JwRF-V}^k%@6D9{e1*Z@LkUjw0_kDM=&iKGL9Dh98f_9 zY<4fHrK+s-`9FU7*M!R1;*)(dSqMQm6LS@i!ER%IMr+DLr+=Rw@zIG1>tc3vHmipm zKBBIGf-C+~YROjV=12FGrFojY$bpp3?Ig^SoFnO^@tr*_r9@t==~phDNaRY$X-ed! z@zMo&u{tr@@WCQ~cphJQt>V}G+_YBED_!SXael|4Kom*U%TOuSFXDX=H$9_;gWN|ft48zo0L@i`f4_y4SK;KbZ%lsDY~Yn{^z#-fGH6t2U;oQ zy@XM7kPy2DiYy|80XitOfK~V%d4pSx81YHKZFO$gmbbeF_cp-W)LZ1v=(XJ|{451r|22+od2v}HZiu8@ck!2?@=bZ9~3eM-Xrb$dELIw(%3^eXk zEgmAsIfA>dUWSW;8H0N_vSqckwIi_%lwoEDk{?<>iol;(%#4-_(l73K%zTyi*8YYV zb|L_(r%#_M3`9gke6D9YtN!niDl4)EBvR!@)?mRG=1Lzmz>*>VW;u`xNC`lIHee## z5PJ}LsiF-U067H1t0Y-iPJ+BDl)4CD7XT72Xrxxa+|@+){5r-?T7`;E8{h1=_u|{%x|I6$t6l@>u!w@n-=hBj*B4W@Hn4lgZqb(74K*@+b zzO!EZ3ZcnBvJd7TFxu0{3WI(CBBY$ZF-&U0kfn>HV|&tlhDS0Xz5mSfeydtLH1fK= ze5o<*ZX#Js=Sxx3!ov3a7vPYs`rBB7NV*7MKt!W$^av5i?5pbf7khhpc-@y2Kx&(Z zeN-qMZ3s+wZe`^GVD3?xGQ_-NVoLAdH9WHu)D!w|&; z>~9!!M2e;E>j25k+7$-SL>4~{WhRPwaU=^lJ%r={B9Y|Ooq=hUY;|x;N2h~qV!wKV zUj3stJKHVi1u>GvYY_R#puB|35c~5Ej8P&;9hZdWBnk<2fPdqxwtTR?sJ05- zIbCcZ9085T4jj3_*RQWYz{~*VD^5bi2+}TWpFQ3e?n{%LUN(JuQDkH=)9nc!rREL79iGwY4&Rpyw z6x4!;SkH*B^OKCh6r9(sWC0q8V2h4C2B<;4oyg}HNszz^Nsf#H>ayML&pI?S=tWh!$clTk=vr2F3;! zxNeRnj3FlM$NddKF}*+G$|4BkSJ zTqjCKc?_Ojew4nd@8jwu%+6}+yxrU9`O|@ty!$kOwR6L(dx^G}A2^H!SNE(?Dzkk` z8D(7?Pw##^)1oO3`PWnxJWWm1>T2^Ji4sUYNJ5(>=$HxfgbOjm|CnGjb?#QzCQwnL zA%Ud8RjSjcmr@98_-)-ie0awm#ma=ekARdb@xLY%JMFcSvR9D_#eUN61s!dZX zF0R{biNV??>|S^pZ$-|9bTz^{c0aw5{bTm5NmaHu%q6BAE;th>Lm&YrQFYxudlfVV zjBU>8`8V#);yrP_j309g8I09)TcH-q7uPMmpFfrG8s;2NR!!By2jW-3Wp?L;5Pr-V zpQslexBl_w9%31sZ}q%l$?1cq?EINDC)o{-WNb5eS^Y@MWn4)%FyFs*OTc9To(H!>M}v932Wbf%&``C5DUux{&9V$ zAcdee!w9QCw0gh}ior3lfBL#uGz1}uk!WG&&F4~7R*-<_bz8tdwa5hh9RXOiw0+aA z_Y;iXCo9G_#OM0FEY#%K%{s-%xXbAM>u2uw+~`xVw$w%BqA{J7Wsx+3gkq_r0IpGi zNM;RYy}$$HS(D)YBZbAM9UdMUY&?g##ioM=BFFbNK zm^K$^6(T-2(qU0skS3QY99uyAN(ccsNR(t{orEao@GgYD?;9tt^Ug%ynMAKreQ5Yf zT>mcolfN$}!4?b!5XVk~F$xk~x_bWOxHzp9B#Z&pW6N9N*+*`R9WV0o6sCM2BZ4@_ zU}z3kLoRO~l6}Ry4d81e)LH+I`+xQ_Om%=2OofxU$8o9t_YohMm+onrE)&|YX3tok zC&w}{Gh>GN{G#dyAtC9Y&W|r5tpLFQ(3IL}T^jBo;jfbV%_sVu(7r)xi-wUqJ-S@& z!gYx+eM$VlnX<0Is1tT+pI72$r^mi+fy8NEi1M2Y9O}$&K({d58BW z@#BFcQ~a_IQh`_~7~!ygPL|Q}ISx#fth=)irUwl~25CN!9$J7vKA(lhD<@; zBB?>|P&vkUV!OE9TX@5Wt|MjOyI%~!AH?zn99d>Fz<_Kv#6|(Lhs!z)rXk4zt6`&% z&;bM;uEHKcrW%3ZFM@w62hrKh`Y%$bWuA{X4N7y)oK=Hw; zgzIAg=cby`1(EuGX(zP zQ*B1wf)LT~-!Eqmr$G8RjD{XYoSp>tDIKisRUJRjJhALN+^3{74$s@L41$hAr+Mz> z@?(f>E@>erxmRqIx-&FVo#zzmNhpiJ0%oZl0w z2@}na)6z(bwK+d?{`2V^HIEDa8jkxPQxfEAnH_=3IscJ~QjjsQD)WZ0TRz?EH;uta z@B4C@xy9V%Pl5`Asc7L=OM+@~)!$zX;8k`y7bmA8;W&I5la|)c;|@qkUi!aH5YYK= zu5sC;vP_HZg)fqmkM$*evqkHe5k2d(tI~%YRloT(NYKy($jJrK#FLgK>FFpa{Z!LH zA3-0V%b`JNe<7b~Y33zUxTrD&ay{ESzB%SJak*bE58$R?{ z=XvXJ261mm_uttdSxvZnT-A8E zxcYI$ir23bKnu@Wfh7}SG|<`$b(<(QcmUF*of2)m9NZQ7TaT%#!7YUN;zeETKroY} zv(^8M;{zMRMG_qlAaSU20l1H7rChJx2Y~_z0A$>+1XfSc=p{#7fsD+VvmLO!XaheC z(cfAX%sdns)lMNkS!um=>I53J%Gzc*rs)B$IU66^d1ChIf(2rf}2> zni7$c%DcL{Hhu*87+O&o%r}2s8zVv?DM3(n5WD!+PrxQfG#;7N*o!~<2mh1T_=Q6T zm%ldfnv&S3(R@lMi--h{v><3=E%51h0U$-3%K*9f4J3>%MR9>A1?FoIOjGo&H6W=K z7yayRB*owaU6B|h_fgO?>V1!vZBE}8&+fkLnd7MV-IB9yUr-lU(J-B6V zlY=4#Z!7FNUZ5Y_3bZ0#m}o>b!*h_zZhv==xQsk4qVBsBU^Q9%pS#b0Rf^^Quk?-< z@;3eT)M)$D|5@AD_J*6>BXM_?*pP>mu(F0OYK7;iC@FtLDczFA2oC*jN5N+%I_9)L z5AzxwivAfr5OE$0|NXcfKI9oTX>3ZFEtj)Jl?tVfF$5li)k^sxJe_?MYLXJ>0NrD* z_4I|58k?*~Y7->ZU+3pXs`iewBMj<2fQKh73*rjWc<^RSVAGJ0F`h~_p7kB4F1l>} zmiZ$n)5ugCY5To>t;s(Va0PhK(%dgV)(D9*OCJ{eL*Y$_x30B@f5Zde_`8mS1&X)ei8)FQ z)uhiZ{eC$z)L7T?`&a9cuM1i=kbkdt8^%I<1v~)F;UsJ!Pcfs&Ly&7>>qa;rP-7oT z_D7Cby>IIir+`6H9m0I;V5!L!0MM5KF`%FD;W`@k+X`gl<>BYvd@e658+5wzuZM0R z->a#`yzMT6O4zjr4<@Mn-ySGMr=$$Jw#EPQ{F>1``w0E)9#hCs)|Fec_(0=_@l3O^ z_*&#y0fx`paRGsD-~tR!g&VBQ@(?H4YyO~cjj1)pxFm{!!ijlU*73oo%4lnj}E zs0y`&$DJ55RPsG$$><0HRtb$W5Gr?s6LeBXvrMsbk@7H$*aqV{Mf(?F{2#?TuP>^D zd(EAcB|I$Up2Z~1y?<}6)oU-Wg>!`33Fzhs%(4~CUgCJpqrvgE*pORO@NrSH6k!dO zLfY@3eu~mnjBzlC)bM1n|9JkCp!;7_U1~7ZwXSWQ!|A{}E&U{{OAlE(*rX65(^ck$ zK!y4s6$M4B<+$cc`(m95qkc6@8U+e+Q6h+F))sUZ74poy7_*1I-_r6xA@hWY%?R!AnE%xEhq=F9pOk|Av_XC%dsy2jLB)S;4w;@Gy z8~eJjnLH)>3j#y!|7~;raSUqfSQSg|Wj*7~B#8Nj?B6QbAOD144#k&$XKw(4wSKf< zvZ7U}Bj8Ua^Sc5MyvWekqQ_n}aJr|D+(PanC#uw$2>xT|8dxMNX^6(;T~;VGWO;T@ zIjkYLGb;xyJ%*;AJBmxo%P{Q2c$UYw=o>ZjNyI(^TyhFg(_x^o+`OF-5!uy~K(a;L zJsAIM2G=}vW_L+zu{=F(?RYu)SSa1+VZ=I8(EZAXOazQ1*h0Af zcsu&;TsQmk%I}GQ<>!Hmz5&Wme)m@ZBF_Q?siyAagA9Pu}76 zI7Czm(@2yA7_sk4s!s@+tYL$%8uHLIaA0p(1^hbld7;SxD*eN^|4jZ=o8XhjV1Ha$ ziGb89mNX=Z9>V7_kQf*k@bNh_^XGATBdyk@;KH7!qCzs$!_^Q8`3kqSo}L~m5W*-K zMMZrXN-%}w3gYh#D|>)be?1N;rvCT!-JJ?7E-NELrE3>*RTqxg+nE4shU^kd^cU*) zj#?i7{0`e`I5^lZyelU$c_I zi&w+CQaNmPAqJ^?gr%1>#KOv&troR@euv80XnYa6c1Q3jDP5bSt*tHGRB@oMfwgCp zHLQ;EAd#6r#`QNotCsq*0P;653o)4P52EK)tBAYGHODkDD;^HbRCIKY=H^UuQ^X{^z(&m;kMb5I-+vY4q&s$rMGekvm=99|J5-te`#f z38hlWw4|qko8F1%vyTEa>&>4FV|T*BYtnu)K>Pl9Qg$RWU}5yd%)>C_B@x}O_lvka z7*M1vyWUl#S^m8i@1Td8a&7)@rhRr^=N7A{20yRy0HIB2$~=A3+`^(at*|152Gz}I zOpI;NI1t#8*3CC&7oE=#wjw|G4!!dQcoz2GU+7+)pX}3{A*s9HBB|-kkM~U1Soi(h zl!)*LDsi_hIEzD^RUmC4Z!mTEb?KNpU2aXfsx&Sg)!mwqygB9jGfdP2M|EAsD3KR&71^u3PGf=%e>z z_2o=P{aYx`m`4PoPhm_HPxaqE&OgqNHpou9damVW;M4NY$5e_hUv|tr|4$g-*xQ+b zjaqtoVL-bwt^8*3RxKHqgR_M(njA)$)cEI3yZp?mL&delia~GBUvYUbS@t&|b7_D) z<@QKf?z0yS6y}$U8w#Kq2TgJ5%9RtzoBtfxsajs`QXA+2^p{|}pJ#>vNpjB>=E1y= z=f%a1*!2M!o2Wv~1{Vs=0y}kG>FDh08X4Sve`o-~imPmW&{+a7BA=p*ti78fz?;~? z;}67py|?^^2?dkfr!H)CWX4AbNY=&SBSuV2Dt6dOlbarw`UDr<>%8T*fHKe`nv8Kp zVgagF!#5?Eio3gCU~)@P!us~7zN*3{FqNw1wFBS68X^`qd}7~65-4>;S;^r~;$_tjS;6ydO$>2Vv% z)j~?}*&p_-d%eQ2w@tv#5viiqUy^`W-EJ5&CNS2UgfK~mfHW^VrpcRw|oEc!lH3w`q-CE|~Y}7l@1NsW7 z%tl~5d!`FohohNIVf$mU1q5- z7Bk?7lV=ml-}pVr&DKAtoK5-)^ZJ?^l?>n$5@U`S)~}d>`R)@ObC-U+xnj=C`yP^@ zhF4a5@Zj1n{IJ-H6e`wL?v0``V9%$Y_A+-*zh;_bYMh##MjQj9gc96Z0M=a;q~4CC zMHaDiOBVX=*Ku*V!`@##T~o(K?i>78#+n?AiCx3@pj?O|3{Ztzu;VbE?Intrq8)>6yJ zZ)YEk#03%!7>WVP4wPCPKl;s^&i)ea0ae$U~fWB~Cjn^qcrW%PrP?`9tiSV9YzN-Of>( zM{d(9p5h^6&uDXB7tP<+o&UYEvbp=u<&6LQ+tBp11L};#`q^k|YF@-J@-X$8miB1g zp>X#j%=UeKeFG{&HOx~7_3BD^o_N4kAG_UrJ12O&L2$coSd1TTNeq%(ClyY$dr*Md znt>fsQ(UYJcusiaEGV^Q1eLP-C;g6R#W`j3tQ;nG`(pR*J9CgdQoHr)wSFCfi~bmn z@GSxkw;@U`hNqL%>&L+Ei%{&v+QUn*!bWC2JR)Hzf-J^jmjq2-7A%V$4h8NYHd&75 z!mtXZsp&bC4`CTu7c01yxoGY2&wumZ0@nS(%<7)Kd7!W_(pjO&b3ZQ}TMbg(zekrB z$Riapl&75%4*@EYLz|gW`Sym|d0fvpq%=s_??DQWJeLR$7I7i;SxAXj5l^e)rR@M4 z61e$9z{|G*{c1_}Bc|Gi`>mCXJ9ZJW5VJl{)^u@r->&9E35`4MT}(klbVm z#PY2x8;cUmG+#Xg{O|Zvjv*faD<3jEA4`-eL%%$PCW}5pZOsYnRB|!i635stWu$oO zF`f7-rjr&a7-E#ur95h}JnM*8a{(*Voc0=z4jo#DzHG^LhXyr8b6@*$x;hiPEwa?l z=UgUxdLAOViFQE6j>)(6iMMwD{=*G|nw*3L^=*3O^bS1)vp)+2&&0;GiFQV7cm&HN zZh%8BidR7bA5X4jK-fhQy>FlE{TDO|AK2O3_uN%rw94(2=eDKgnHj8AS^x?<(88Wb zo<%P(;t0bmkho!9hk7b!jI^gjejxp9!$5j8My~(FgS10tL0bMB^=YaMfpoPByG6j zWMHGu?@29MEK7V+=C7qISkl%UtRh;3ES;nITcf54*SvOqM7Xt@@er+yYqDde^}0_G zMQ(0rr-s;$c8#`{dLh2tYTjYU777$SWy+MOHezkWV5m|Mr_fWxXciW9XAR+EaQ5u} zRe&~r1Y+y#grqz2oz~VxKww3wv}YBp7N@E{PaxKgn6o}JZJPVR+3yg{`OIgp7->&8 zz@W92dEHS#;_#j666o$f-yaFeN@|lOhWS0yN3eWrDb~UxS7IN}6$f?A%8MkBi?fnO zz=Rac9qfUbB8s6v5ppzUV-H%CJ@5Mt+w!7y$!0`;Tovz;WTPHGD?$=B*!<`5bHb>W zG^hP!LJ1Q`g(-2ZDa{P@`*etvE~#dNg})g*c3o$@FQKyngVLfndNO=ENio~f`cN;k zsmMY1U1zhTR$-tpib}99F!<{+X~&~y6UVU(3_%*zD$&KJPpfH8CW$8ggg|Nq#&NJ zIO>D`TNt*iWvvxoi1?@L((m_as=eL#U3r+8@fb+k&zhwp34koZ_rMxYo4kv7&buz? zHIGn!-A`xnN`%vj+{15?2jaIAbN4;ifP8tR_;m>GA0H&X+|e*`Nn8(E>&8l0IDh^s i5%iY^pcx$+p`X>2G}(W%pI=U)m^#_fE^*?*zyAxwGgb-! diff --git a/_images/2.6_resampling_32_0.png b/_images/2.6_resampling_32_0.png new file mode 100644 index 0000000000000000000000000000000000000000..09a0e7f38ddc78773e808a59c0816828e273a079 GIT binary patch literal 18589 zcmdsf2{@MR+U_gOLX?CM8j&dyGW2Drh!jG`B%;hiW+hXmBuNpGgv^y8vqD56L*{v& zOJ?@@^nH8%YyEru|K9u9YajnU_IIpxD6gLPdGF`Guj`yHzULL?D7P|hC6P#!XHH9B zAd%LIkw|1|n>XS+N@rfQpEft97wfn^1=2aowfdS{(ayrlji z5+(A(^-K5Xq``>rS|1;GA0MC7aW}ZNNi;Mx!6N))+wmpwf8k3*x(!)lkse=HU7Wmy zt*xhQY`Tqzw6wI!2KGBl!e&KHP4vf((XkflH3c$c(m6=L>|%FK||x-)~1Djet5E% z4i|fP@sgRD*)}ohxbH0`yBJCKYd5oVaKFK}Ii33t1Ne7W=imRUr2Zw}^lcuJp6Q*-_+xb)^($Uj%os8GXcYMU-?Zd); z@Zdp`l%gUP{++4wSwH$iJAzfYa%AO_8Z@(M*)#4wa9g6b%4aF1qG{NA!dB*|vB1Yd z7cXWk&jq2s`{HO^6D3I12JUiybRzj*gyyfsVT$Y}2Ch|_i%8JV=KEZ(E5d`@X^-+E?c&7E@K zv6fd-l3V&UPP22T%CNfaqOGOnZ9hN1Go!DoZ(a5FF=3_IE4kL)DV?Ylla-ZaRX=R= z)mX4{<#Lu;aeF(nuJiPUT-(u&a&mIcs|$nu&m7g?7}KmEy@j10wbQPH0C za+Xr;L$2hH*pMr8opSXr&vkcoxt9en^|sr0sy>Q;@gmx3ZoW_TK*{PAFRCZoo zB@G>`tA-P8Ia9NNVY4ZczE~ z@YK|ldsde46$1kqxfOF~4J<3r)gVoo9U~x$HZKWk@%}-9iTP7M7N(vN~P4 z&YU?@IbIPYSt-6jJnyoOPJm8HcJ}ewVVlYofB$V{d&$ViGW1I~ir7y?EdOdX7qA{s z*s^5{zvEbmC&kCkPTicsD<8K`PfsheWZ}oAr>5@D&(Cj-a>EK=$THLR4GId&H2PB6 zk?&;KUm42I{vaxfx1gXv!1(K4ymc`4^OkMf9u5r|_fOZ>))F6-L)QO(Z+VdX*|TRo z#oJN~9+a;v|M-G4sG_p(=(W%Hu^yjttOxske37Kb=f%#arwK-FtGLg0>V;C2#Dmb# z{Tdn?7u40&uZh$1>g>c18I%Wxe*32K{mu1|Z>hSv*J>gXexkCn;o;IUF>&FbJ!(k0 z&94Th6Hs5kYJ68qI*swN6=E0*!2fV46A9zyG-}CV)*1P}iX6xB79__xV?oz9+ zBC_jEDUm3!hk`l_T;6Br3s(e$}RpJ<~ZfGEf~i& z$92Uq$AF!kbQK4paguZ1(yyC`xw#+8`0et2`t)fAvsqiVa`))9vl}*Su$t*RbNJAqLz%A= zCp&jhiYY5A)6&x)EDvH0L%nhsNr-=8*<1F&{tMN9QPGwmUI#U`M_M^nAC1Kg%KU@9 zD48l#wBPp))yC2?FdSxMW3w8piR5f3PCKQt#fv%9GZOE~P@QzPdHTnXkhi8yjMd@d zPVeq|dWJ5w<>ch_bah4FeOjmXTAj^yv{9&K(yTpK^~Q}G`^3a9OHWLA=jY|UNK2b4 zARcTTTigla!4!LJ;+l(%jWsNCCzG{4n>v`B)$su5+pk#f`~bH`hP0NJ){E?Hb?FJO zNFMFn-N^?91yx=uMr!IG!A_dNt_*vB19y4F)RZecJiM~mcgMl??t4USPD@MY+KqEs z4}9i#Y%_{-IUpe+QMrOcwA-`lUfBet*xF)K;fIEXx1X2ved~TNwpy~L>dP=}6`I3K zbMyNAGR^5jLSkr8!nv&U^qZ8Fl=g^NtyelReOF+jtLuDs&e?pOASH=~^-(Ur7#x3% zZ6VELvvv;-dQTQCQDN-|Ox=CBOS*=9VkKAA`xnMr-X5*q@pS%jgqY3H`Q(K#UfnY6 zEIyNOhx}Q@H5m%62dQjCwR3{boI59@ug~WAb4a;+=KlTd$Hm0B46r%9iuI&4H5v2r z@<^oQ%UL{gqLEHcugnY*IOGEN9zOhO=#9RmB|jdi=Tl+x#`&kkAt52P?`~ecb?a7}y_xO1s{B-?Pv*+~ zeSKZ1{YlD^jU|aZ=Nm_7N$0Qij(6lUJ$v@d!rop^T6%ql%bfNtN5^%fz&#>&u)eYO zlO2`Ly1Ke=Od7WO`ug^JMV6HOv2)ih&N*vq>*`u6ns7f^@>2;E&Rn)%m~wJuc~CzzRZ2|ElQ^qW=(R>B zpYhjdfgdObT-t7i6PH@^6En3ZTwEr`pTEm|lE%UQ__!r|uFde3pUNc#E=xT*gU>t) z3nc{v1g2`lCW-!b+^TQ$o;`c+M@CXQIXQhxzT9N&qNAe&+`u!JGf)%hr;&Lr{4Fbc z%!tX?XtIpV%zzH=$$U~%RTTv#)3FaIc6`qBQ@|644sBLcR6Kq9bP-o--i2!p78ZPJ zsX776%g+0=$6B+fj~zQ^-1u7K?MUhw7rd{`ty{;-0-2NiM<3_ho zQI+AG`|G?%mC4S{jnOalY8Z*Vo0PrCTk;~+z6XdF%(nhO4=gUTNY57Zcsjj zzRD0l%`B?2V4b9v{Pp>%P4i1j2BVG1{RjGKLsvR0u@Ctyd!+ka&CF72^-r_2%MUds zGx6va_&fX<=>BdL_3_tu>-2b5XGwMSx$qrKOnzwKrPbAx07b+Jp<wcEie4$lVhJriM~Lh|m+=V*_}E_+Mzdpw2Mvep zq4>1K*xXs6n=Ly{8($X(GK+2Bz1!!D#L_l2sLk89sSK=Nzg`cm_O!hGDZrFU@%_i_ z#?-kr-)!dR=ie=Cwx_PHjt_lNA>ugAv13AOU6wa)aF_WrkfU1s9B-u;Hft-w#@LRx z11^a<_w?9q3FqUxj%eNmCea&fP6sGHuQ*x#n4f%Qan>U$iuIY(gh+F9b60b^!Ra$+ ziX~U4gBY8HZZz|K4nHcl@Gv4Mh}v~^!DxPQ5r_MAn*=sw<&N#!-EqG6?c29^-@f&l z$?qDMrBYR$f1WsSU?Waz8MWlHyKDfXs%TSr`6l#`4%L$T(etJ# zQ#T}=e}2rrThMsB7Zvk8tbI>qD3`3914$1*W89G^B5E__zLAnq58c(Uu|7@z)Q#46 zl(>^WPM_Y4HTD2y(MM|)8i|#*u@NK|HBLS(#<1$qP*ZBu%<9D% zBg*{KQQU)C`TD{_h5hthikUUxu5Dcdr<@$!+}yZz3-*8zrA~_`I1QNIdJRhz_yC&pxb z(RO(m#Fbo90T=!Eh|s=!_m0@BK*1I(i?#rPdj$k&ajV`*Nl5~3 z-6fu{F2+-NZDY7|=gvCf`2#c3vD9#|v&YDJ<8muC(IO%u`Z#8D+Cj0g91^SZ2F}aV z&M9}O$<#=T-m+wwg#Ht3B-78ShT^ouOfK&af|5M$2hea85#br{<-fovn|;0=lc;6 zua{j8ng0_4w~$sM0+t!ffNrbbo@)!ZcD{^gt82@HlE!V>>7Sy$eEPHn-SU8LY7QM8 zU8tBVxSF?`M{@F!y!?FS_`rr`S-Sw#^;nd_&0Du#Se1AvJTN{^xoML(XL3Dw3+TYn z%hdxP(oRWVl?CiLg^HYR*(+;!1AmzM@#9qMyPE+6_cmh#dmlLWqzLZ^v^PIf#Tzg{ zoU!UBLLMO@J3vw_u~TCE0hEXir_dU~$-GYW0R2_R_X zkAdpxZf{o3Dgy(9bjMi}=atzeYzF)fC(=GAKK<9&cMr+6g)bHs7Vapc9nL?_wdGjL zX>=rC7WQYAWV!fK;kLK;CM+@y6Vv5k(@mr(*Tut{?`|Z#wg+je%=r9SVcTv#5)TiL zg|&4lILFk|WFeFIDmdmzJfm*h9F|iLZTPG<7N$8(pB#UV-6PIzzU`0`<7m%EzgwWp z-QC?}Mn*<9Ltn`@QM0J%WYxu|bGGvAPaOo8qhVm!lC0(j*f-W$$Xe8XF^#uyS>UH* zeg<>mOiP3Gcu=bJ&k7ncv-ZTrwWR*RPB%qW$JUKsI&N|)W#~X9fVQ zS9l_rP&ZgpRaHtyuM~Iy>-Bh?r z2XMR|oF(0=N$h5eAOXrCElGnh-46}*ycn-YMl$Qj^ObN}jK*J1pFR5r6d4_demZ|9 zVJZ}bN>N%`+OB~CFO+5mm)O;B2^aa@R-He5{8)_E#C0j<1Das^t?4UoZno}{Tw6XW z8^l71l>{XYOQ_c4BSfrue6sU}t}goy9O!Adr0aH*fOx>`W=LEeIS zc8SFy4x8~7y5ZsBTeA(9$Vf+xYNRh*pw)34-VYAh4Q1ml4&S|d_bUBE=j`{hv#%qN zAkJ#{_;^69Tu_M~-@{fp)vT&k^TGhP)gMu)0VTwrf#tf#zGrTxrY?_>@#8Zn+Xmi9 zmhJSjg8Qy?Y7+&ic69a;k0%R1>GkT%4g07ybC~$0N#mznT+v<@z@_#dK71x;WxhAq zX~f}HR$ku7%}%g$20lG^fGG{Y*nJ!vryzjw1_lONEzB4auVC%{d`|1=JOctdd*w<@ zttgPj{!%Z>9W=q$>tCM1q5Yu8cc>~}F_M$i*Yehsot@yMqLC?expzD~`g?;U)h3pp zNC2U~Y7^eQt!H@nFw_{Xx#>SShfY)945%!0?pZuGyMo|$<7 zwqU3zE9*tNPcYQvFCa0EDcYuj$FM)QP*5CoY=a=9rT^t`j8pzyb^gDRO{V+~`A6I| z^z`(Hd3biw1pD}G9jOu|Jg* z<%vtS?}4Ec6?hX864)=iElmCQB>qGOO87Oj{ql=S;-1hcPDxLFyQuWsb!Ac3TJhNl zUx0v65k@e+7ZDR@!5gv6(K&-tgaQ)xB{C{12>e1H%b9I6ObcDj10DG4wQG#kru8oa zW{d)4$<58p`}+DGzOMoC1?7s73u2+;q299PHrk^=BXIQYZ5y$Tia|(7UxE0VTU)~% zoPoj~O6me(gC+b%*p5Gq4VR&Nd>yu-`<4Hn^3hq`$I+RY8H?#2nf{9A{8VNVAcM+$ z3&9<6C_@YETwPt!rY@FYgLF?!1mf22dU^F!1aqKf2#DTPhj5G!-ih{)fla?^sAp92vo@{(%op!rNe0x)Ks$~OK2M`52^a$wl?PmFurMZ;fq@gb~IW| z3AC8Y19$Yq#KdBk7z19G)YJDzuFDDY*}dUz-RKcZ^WC{k`Mvvv{>Dm;OieFO^cK$d zP~=UQF+G-alPD=Efzp1DT4G)*=hutG%F)=XOl@MTd^+!)$|*OJU#ouNiSis8J~%X_ zKD@|fUDz_A8aZw?IcjZAO}&GVsYMwnyZTgSBMmo9CQz$JNw_?8r=g=${ml#s#t9h{ z)!nLzX3rk20WoE&J;%=v|CnfhPY)#X;pmqWdkKih#zvN!H*+?} zHbp0&5$NQs#rG_8RtPv>L4-}j!_fK}kKORG9;`XsbfWzWWIY<-VGun|1Jp8EYw#{8 z`dY(|cxveo1Y@IvA3xrF=~9!x?Kg?o`!rxF(EOxjWgjg?K&;8O=)PlRGYDGob#&Gk ze8c^HxA>7GlpsmT%9M0iYD!2lo=KNdJLZNI&%Kj(NX%eXxE)o-&hEJR#?70-PoCWS z_U)Th&}ksuD>HqcZuJHTr=jsfg6jp!E_<+Fp7<-N2%O~pvuAZwc=M)8$k%k=0)Rqbx_9{EOFiJA(@IL^Q0k{X9gHH8h|UVx8zrxI ze!6!aV1pobfAL5TDE?TRkKU}VKK1cR9Q*fg0OeLs(>v)Y&MM)&Tg+~(Xt+Lp8a#>6 zQ;Zd*q(~q=UT@wA0_(E&yMAy%i@>6+yK?1<#mKkA1b%reVtwF%V#H>qr%wu9${=^I zE-%av#Rgdnd}i1q?zofHZJD1GZS>`tF;)w=7l{7Q1EzgzI4%sn(esFor{H4%As)@m z>Ji5+*P+m;7rKhSREpB+eL~U$M1iqVR&<*@-MmvGLd>2Da`t%%aaA4GhVMN6TQ+Z& z($Qf-SDq?ob?d@;qyBbEhVV03XoZD^(XLdpodK%|(np9H;9z?>Ik$E?|Dc3cPevl( zAmoOrYT-_TMOKCJmP6L&bg2R6h(R?cS`}1+fLE^$g+w$u4My4%ECjHd9D+j;K1b-N z${Woic4N)Au?^V4*1*lVA&lMr=tti)ltW+#LWIC!H*U`r0!i2oeW9qAV-LtLx-qI(AgN_70ID|eT_az-d}%y&IAk%6wC`vnhm!IA+#7|h~>Bnp0WWn zVD(%Z0s{J?;&ualkXF~^iXmb69ej3cow(C4>5v2G(xB<~Pebr)&M>4vaq;~6^}Nl< zw=ERAxZMj2*T@?T&CP?L-<8zY?@*Fh*avDAFxTOfT2k-X(2hmMB47deAPNc^e4ed`+l_6kUsx#)9s(0n=7B` zud34edYO4nXX>o<+bYO|_k)9P7Znu=H0@KJU3n^pXXbOdfp~QP>`O(W@9BU7g&?1A z#XHwl83+SSJI5;SbJhxNZES4cd;7C)7j12)m>&98B=!#u8sH{(AG@);t-am!O(05f z_`5^w0%CtN;s`ISa5A2gaNr^g<_M&n1&dvb%Sd=pqSyydp;Erum(BBV=gw#nX`Oni_z@GHmvyk`Sq_} zmcFoP-&enSH&jB0cwqty^8e2-kn&Mk2n7XYw0n4%@D5SQs*MAE_M+-Q2`BhZmRY++ z&xb9sBA%X}KEA#uAt-gjfLdKy>ILzj&ZNWf$hd%OIsFkkX#Zmi#8TS@P_CZsPXO~{ot z!*v^A*sdd8H8LV6L5=qxaCC4uTm|t~9|s+hliKlkNSiNlyIffyK#y|?A31~8mRnoO z7Y0l>;KclJd{iYjm&+?%=?SO#!VD4EmEfhX9MbV#DyHfmgCie5-hHDZk3n*Iikwl% zzLS?uiWWUZlASS-(58dAX%6VK&#WE`Ds(k;hjr}4G4 zp+QyTPHg>fS6|)bjSE(R9^tZ@q%lLt8T0r=Gr z&tlP;9^D8+&3Wzqmu^IY=5drU$j`47aE^=w&J9XR2C3Q)efc>MdUKBTL2UET1%f(4 zoa4J%v3=*xozVcMK0!g=$;soTCZ5C zz_*}&NJ}UF|Ncd-yl%tx@OwnqV~e!(RZqgf{~z-f|Cqk`Fa29}jQ$|N#0T_!N_alT zf{f0f!Ln6yfqS+D$Qsy;eoF|cjR2*CoEnWz05UDRwz^_D-Sg4Ac>{K-#!)}7NEEBP zckk-qn{+imRn*wV520$c`ae>7%t!Y0*v%50L&AX|luuN`Qhbb4A4I?IB3);ft#qXB95smRP)5;9MvQ>$kF7>D=XmZWd%b=UEkh?x`0r?{624;TEwgDiedo9uD;Ol7sLAh;1a{qX)#quxq`yt2Wkw z7=voYsTJhmLEhHZ=5L1c^Fr}0=NRDA1`s_$G$TbrbWF?4EQM42Py}B4ao6SJC8ecD zR1eT-gxBfnD>Io%UlrXY9uOK9<_-IwbM7drZbZa3YHDf}VWMAoY@+tUr642(Wpy}G z5bT!VBP4J~BIN-I?Jgvi;?h#`kb_FH09&C-Mp(VtSYqqIdiU}7SD6UYlH0+|900YS z4M>}CZ*ZON-d>N2iqnw!S>W(h8tmfH@)5Ni(L+7}I;&I=i#YHh_2tX0-W}A$PGSx4 zIc>}O4bH&6{rjIIEF|08l&UND-frAtqD>@(Zl14iU;uppmHfwIq^7_3YW1n#=xgtq z8%GVvOfxM;?i8h6wRBKKVu4%J(38j?gI~gyC_kcU%|lr-$vBJ3&z||J@%n4vPA<0& z5J?-+NUOr^?A^#xY~H+?Ps5TZSJa7``bLnBNE6R^d;$ZHXw(t||8hJv#_52!xL46*N(_ z&@qR}>1FZa)vZEX#jtTpum$Z21rjdsas@B37|D#Dk+8-%pqnFy!DlN@T ztgYX)DfVXTyO)W6xRHu|COhq{tgNOG5imggfEDiTBbD03K{zFi$)`Y86toW#OC0cR zs9qiJVnucJN1R>@h>bX&ln8Oi!6PaQVl^LOB$&O)Yb?<_^UgpbZ2-D-o={65WYFqF zE8uR_;_&jejpQgHmHw^YzZdKAov={G3(_wy#HQ6l5nmoRcPoWs_AtHEb&1kEZ+at$ zm43#*Ju#q0pcP73pj}FCi#uTa-YY7S0>U5%?MzQF-G?PeOlQ>2>_z4Q#PbTk^U1gJ{MNJVlP<$9F^1Be~KI)7+Cd;z7nd zd8O8@fj}7{?FtKL2~@!q({UOX;#N;9`nQ7+NicSo#h(cl4wD`EmJnt)@gSn(Q=yVb zXNSDjoRy@NP7D}Cw)4UaIlT<=csLujib30vCc;HkLCj(sSy`k0?q5A~o;gD>Przu- z%-7M;zjfI{*A)e|J$Nj&9(AanwlkB3Yk>e$#f^=-;H8`b4|-l}d>={#jM8WvYM>NP zC?z7M$8!Eg-K=;EUbdVh0PA|yKLKmSTBpxZ_ousF57nLz&^}trk%Yib!{Re$US3{8 zxQ1HD_43@)m&*pn=~vj+Mfm9GcG-60j5W{1DQHdtjg2%W zn+7go4SZNYNh>I9L#d;N%>Q$;lNF&ZXCG}M5-XHx-2Caw7de>0yLff9CT5Ts&@aBTK|Svl z|APk)h|Y$6)(wTHGJ?RZaAwuB%$QLL5BBx4wU(6ug{Q~Bwsdl|vn`7E zy`{za&8D}c^};nI83ukOAdH+7;V!DE+yxF-Jsy98ASBk-M{|j~EUIy{8Ckvm4JOet zqCWHK2SnaqV;cRgva%Z=goMENx{b$SP;z$*;TggW2C%;?Vm%<0)X?KeuR|gM<`9M+ zG!-Hg+J&EoZxf48NmP@#7OVw3*Ol5dYgkl}5jp3O@7PR2yOecCl3F30@Rte01$F2Y z+~joYK}Es@4?<&L1N-!V?H-MTE$;YJ3jY8SBCDe$aW-58+1VfQl+;;STR*QKj&2%t zSW!G;S4h#6aP1ArD%z7U;(NArz1+a%C}`27VB@Chvi7dUl+aRq6mI{Q9;bhotNvHs zOLAZw#a{N93~Zw~`B%qi2!hey6Z}79qW_r{|97!z*Dq9|Nyl8v(cqOG{%hGubz-R^ z@;Su0sBUe&tii*MIFKjMdPGFTSD3&MNK5X}5xC@S`bZi%>B!}G(uhb}$)7o+{0R7s z8j4;Kx?=FdhwH(=e~vUzAmEdx_mS8{=SI|X-Ioy24Xmw=pk==UE2gcnHU^x{$THXM{{sC`R$YDf>d$ydeNg(LZwWg{ zkX&|)%SywQ9O&vIZQ8V{p8hw`DF00=pfnL_8Azm+wkP6(dI(cVq=lg1K`EMac0@gU z@?MijWa)+eUc}dnf{kzl2%k9?;G^QxCn5qx4H(WYD$0l) z#*PCDMW8N3<$!O2x7(zdybId>oj7^0J9aMp2K_-iB0`;9o$sY46jdVO1H}vpA8Ha2 z5W|0bNO2LU3YozVaILyWMohXZiKn1xEG^BgeK!vC4}ao*2u{^?{py}e+I{DOsE)Yr zG48&zycTerJo|d_y$a3g@w+VV2<)HuXE{jp`&S;p|BI*lf8o+Z0XQ!PPCiUapo;5+ z8Tl_zRHFRQ_(EOfUBq2UQnOPL&w#_*Z}FO?|e5rk2C6@Y||!*FTo7hP#mf zzwCT`+u>#t!Tw(p?WV&I@JTDSzG5FEI3%&x2xC3UZIuC$1Q`U;g2ThF4+9GNRFnwD z+~JB8wHxyR9@IxlyHXwg2cJck)aOXCxq_fC)zzMg@g6#<-iT?RF-;1fFQjRg|3~%+ z{Cx8>olxT9s`jX4fGV0V0R`Ze2r^E#zZa(6v7^dG0YOKcp3o(TrA6)Z0Y3g)+}nU~ z*Mhdws7B^==*l-b74oT$mev53-$o>cIO73M4i0Q$V(;6^aWnMbdz?onARjzp^fk#` zM=Cf(iq5n-EUh9xY%|dA21FlQH~4B+KVEvcUWWZb_u&_)4f;JFd@Ef%irrDWVt}Nm z$KPB80RhIa=q}k15+#~xHx`+nIVZQt$!Kz5Ok0{zi4jXw6HRUOj$E7_Ep2Rk_gNXG zH9|nn>Fn|2$BRGZ>sdD7Q%IULi#fS{Q@=c!IRET7 z0loKa@y`RzS^Cd)M1uoB8Kpin9MM1w^}~EuK5W)1bj`0THx_(iWzOn6bz9&df@WaS z#HdL`WMplMwwUumf7rE&myVws#7IQEr~SRXcV^~M*eJDVKTtUzr#~IxH<~PJH>Uu{ z<^6Mqa==iJiGOyOAMGLRDN!7^4&nO>om^P z2KO5+Z$2q#fAbe{RKj2gjPFnIc>0lLd2s*!Ug*ODx2C$hYcGU`o4yZXI4TPp`VjiZ z18~l>SFgT+5Lf|w?Q{Eu(1sUt(46jhdwVZ;uB}AjZdB^(>md>ynStlPW&JHTHRoY%7KT^92l!2kek3dWQWzgV)pn685 z>cA5zGEL3*f?3}U5hCP_iQD;skrm|jNbaz-2}2h$E}__cjg_MYFenrJD7n|#Y)-i2 z7C8vVZbX#Mm@QUCiA@!Rnr5`x-}4PL}cW!Bjv*5%UrZo9WRX*q$IYsYb}X-MVbIcCQrqbJZSAM z^(Je}pHCB{Ic%SIf`||Pl^KYghDzNFTV;OY{iFpEu|st1i}>803l}c1uS`kftMqBXzJALUY3N`L>=}?Q>neIqaZLw>5Ft>{lPSCYILacXGk$QWBrt3GIg; z1?`Ejs!ZcIr*lo0FXGAdb}(K~UFUnCY)PA@qB9Y0lZI4!1`v ziH;tp(vl})ct}b)$5~?-z+$YKe|dFj((sWsaz5BAb1u&y(+~*?M0A`+kv8@*~Z6+ZtlH9wx^kS!R!w;SI7arEgor8eFg189uFJVSj z#E~(ja}Q;()4pBEaJWOBP?w=bIe0)7xSfbDri5rqzmM|i57UL~Kv9V%!LU6HC zuh0t_)O6r(f*|rfTr$t;QwjL}iL{fKaua`=HM+Eu>&~7se5jRYi*0W>hMa?HfgZo8 zsAdab?zLs0T#`}rDrAeq<`8v3XeP}-zb2HC)a_*y6ewbEt9b&+{s zNL%_U0@ytR0|$OrUjSwSmqi;(8yn)spCpHk;O^s!D}1egv1q!%6Pe7?n_eZ5(xdrni@r7>dUAmA{aBT>LAvJ zQ04ymbo9!T1u2~QVb>B}m`el0;U&o6Oz=RT?-?24EcK=igW$kWO|}Abf5H(XeMg{-(qgaGn!Lrx$x{K=FK+~`XL;BK;EE6h7ZV1E_$B>h_1%xETsNBb zF3ljY!)?BM6WRHRBODy1&ebX*Iq#fKp1h6it%xH20hb3nIfx#3Z6xLzD(}H4XLb}A zI%Inw$_J+wELIxlJejkd8`YN1Cw7vKBlFAVrt7O&0zjzjsy*?<+{S;LruffZtGN1C zQ%}+eifhkv*g?1ix9J{m4+5B%n|ccG#Ja14MY4 z7!z?_ypDMf_1rg{XuBVgqSU!|g6sFVu*>|0@Md6zbo)sih>7g@F4C55=`UXF%foE4 zs^%a%jpgFc>miLfPIG4aZ_y+uGt1LUNjKOd?QJvB#(>!TV_|camN(ZuP+YMgm~SDA zWC;m{F?kL`75ty1ne3cfPEL|<1_k1O{K@EvN!;!&A%19$b zBokYU$;<7e48(1RI|~c(yuvS z;|D_kU5U#JntVHrOxMGkklpmZT?U6DCO|QVlYx2f*qg`UAx{7Nxf6`~`uB`DXUrK_ zj=roP_8)mwX{Uh{&Nf8%u$lxYC+-1pTUlAz@bT@;%-X}FvMQ~JH#P_W>(T_sa-at! z*gX5^qpC9-xvYf8Fij}0qVkY{My?C}^!vxqrz?pQfU0bT4e{04W&AaqVWjO z{0u@o!~=j|*arZDDO}7MRlYbA@&c9VuPIzB09AoeNVN2@c^L$a@4tBQ;`ASX+#zxa z`D{3Aejr8w?Xnm&>_=~+!LTlu+Ur+Sv&6`2b4yDlUhIPy@E{_B8zx6eMxNW+Y8?j5 z7tqc2i->5%#KaJba@HLz>~VH>b_E8L`vJ-_kY&5x`Ysu>DHpyg0wq35OXK@gS@{46 z;Gx)oD|_tj`T4~G=hbBx%74$Xjwgn8g*%-&psDW&&d`rfY>h*dJi~5W6Y8Wt0kg4l zh+R)Au0VM{EyQOq{yZ>}$g1#T=tKfGO{FQpe2N)Q9tcM(-sjCnIUgX#kCK zJIQM3D;rG?lO5n627=3n(n(jLg320zRUX-qCb2Yj6cIK|s^;s*zk!Z@2D>M8X}{c~ zv+wQ2u_pJ?1sIt>w&dC-L3TbQmk<*hOH5!RNgMl_I5}700n;_o?%H(#1(nzSJNDrQ zcZ>xpF)X1p5EZWg;ZqtK2L3B|i6S5y)cW2&71uhAy6EFWSV2d(hS3GIGua_*#|B`E z*=IGgn{lOz2%2L_Lzf&J9AavX`@o0kXo6W?=TDM$Gt=$6utO*FluDJ)X7~3|>WK;< z8X$;WgM;z@8#Zk!MZyb#!_AbG8%P-a3v;SIjpUvG1S{rfVSC@2Yqt+g2V=z;JB6@$ z$6d9gBbk91cc2B4E&-tkhJ_3qSX5n|JW{=y8uTB`!a}CIi`5n=$8_7_!-wfogz*a$ z@YGYLL=YzM08-~P0K6p38bX8Wni#c&D!shaxu!PYvl$*4azXgL1%4*84(8ez$@&9) zIZ?0>n*dFr(hAN4RAl@HiFjEd+J<9DnY~qj--3dTjmvM*RkU@`_jJzfS3l?T*?M&1 z{vp0Qiump|0(KB`9=~ZLx3r85pgS@6gA}lZ0RQp#|=mv9L)_e|dh|a6kxC-X*r3O18WbDI<0X6QieI93XDQA6Xlmf;8BE*rf#u zhhS5Pf=(jz>kmqdUj}eeB-a{a;YbiNGTRzAr7&Y+@hd!9&gxF2dqIb%5&Y*e!02#N z?H)vokmtIT`wXb<^n;DekCMxXtS2Lr^k+~qDL>Tr`Lg9#6*bJ~Xd67%j2IZR{C%>~LdJ+SMc>K#q zRueH%BGmfg<;$MfAc;Rf>;IEntMb53RaL^QgYSP5imqbB@!K$63C#xY#%u2ivj<9z zF9;AD2A5b}e$oI_T@^ft-`Bvvz;Ieov5XK)5W*H1Wxzn@9%g15gb83s_9DJ31kOtDv9|V7d;!;brrQ=?^=IX*?n>ieI+iyfmKGT;SrA z^CRiKc4aS=N~Eo@ue%VY`|W14_`IeprBXh!6Z5Iq+U&56373SJt4+GZ3nZY2qKR;7 z*7m04%k;z?4*0n*F^vTJF63APK6c}K#s=`DKVZ26son+oF6!(oY+Jw${~nDdl4&Tc za#yaf6ApN+2#|>^a^>3@7<@5?*+oFh@Y(-lqLXz$Vce~)&J{N2IUFUBv(01&Gcn@y zsQlx{=V%)k%w)x)?`4M+^VCZ86}D4zrV%wFWgh62F(5s+kOA)M?foHTOICy}K@6H< ztc4BEF?xE!)GK-0EO`eahK{+0ZU|*}p{k>8&lQPp*VqxDVq^7$KxP~Mr9Q*>8ku&! XTBm8eWGH@B5b2DJqIAk1dUyUCu}Ek@ literal 0 HcmV?d00001 diff --git a/_images/2.6_resampling_37_0.png b/_images/2.6_resampling_37_0.png new file mode 100644 index 0000000000000000000000000000000000000000..0764ca14d2fbc8f4366d8ba2170b98576026440f GIT binary patch literal 24849 zcmcG$bzGF&+CMyigaS$^ASDa}N{5sp>Nd(Q8D|9SW49K~Vgo;%iB*SD?}dP_x~^aSk*6beOpT>+ztLg5;t zP&maz1n|lUh2sYBmzcAxmh&Aub7warM>CYNk+Z$EowN0QV9_6pigDAXw<4&V0I6s(Stmwn3m}P`y*{;@wXMa#jgL`IoE)cAmvqDo5l` z)D|R+F0i@@K0WdHbdhwSM+b3>66q7RckXk-X;bG|DBs!B#qZXpMzx7MfB2m&m?lUc zWhW80C65jwV?x7!4`VLZ;9}sv$wvV+&fjozpMF0vpGt!r zIeJU1;^$>c_&sZxPQ==py@h6Ajx7AnUzdl_(3|Fs-PB}988dq0q?wu7tz5M%3%=+p z#!TjTLKD&7$0{tCC@9Mv$AI4z1J))Ia(v=9tIMg8eI}VP7Q^kU=Ff(Wz~^EM;q?``c5Ngt`umd z@4YU&JYGe~elzuwO_I2WK>hB@mHE$~aZswNs<$*WLU`-9o7C9E#LhBYc5cX0PD)gd zd;MDA!s!!VoiCdYvZE_r_I-Okw6vsGdOM?6iYM+``Yq9PbJDreIPrkHWms)aUfxsh zLP!P2guS=z>BSt6#m2@)JR5oI=NI^eo0nH!TRUMS4BM{v&H3_qc6JtiesasQQR_6F z0y$%2^plvF^uBM&YS+*`pL+we931#%u3hUc4-N@=@#@tHYF>ToH%bl;4uN0v-rOTU zeIocr=*g2O_6K_&PoF-ODjK>{m4!)d z%fRDraO59OOdTE_TjJ~+M!$CY@*!9yTd;2NfZ#f2UZv^XyXcgZ2zXR?_{#kbeeaM_ zojn`6yu9pL!yTIA;+>+0<8^|Vxb)r#$Hj{QMMb=qT^9TAB~%xfmUWm4w3`ZyX~x4y zR^vGHy0lceQPbO792Nh7uY8Yk)&G46m(pMh?z|(o{55zvOBWl!w0JU z-7V^agM$}dTPwx`uhgl&>~Fn2qG%llH#Kf&A+?-7Y#xtIcX_2Uqn__|3`qj{~8V`9!etxy|KYr@PnP z#b7?T#h8^=rh0sS0au6nxf<^A;~(#p?Pii(O{pN9LxIZ2NnpV^n0#}SnaZ^wZ( za_0;cdcO%@!3y69#WY|U?K^`DFFBsU$8As-!PX)REg_L6M~SNC-WQFnb9&vov8uTx zV^3-sH7A%h7-5N{XBMHZ*RcsaoPOzFQX?QT6kUd<))2g(%|;Uz6(vI46u*|xE(q(n zW62OzmPU-=*R))ZFs*^XElh zYs@!QE)qn$88XSuqi74L?vS?f<=gUU{P2C%h$5|FJC1xd2{}BfN;mQWmPqM1X>hvA zR)%zL^V5&FPGd0ka4~DUujpI|7ls%cdf>9e@dTH~P^DMyIPsNAXa^>2Cbc4?h`?BQ zn&%Xr#BgYPOl4m3+ix`cTD@nh4USBc@( zM))y@)%mhsU=MzT+`FeDn1XrNfMKuIx`$XS(XnI43>*A$+Pk}LikF*1DVd`cxb!Qg zd~0&Ms$G^Axt-=(N#%7T-`RJZM!%-|af)Ij?JmCY-E!;3@Uwz^c9Y`sU%s#~Gvlzx zg-hMOeY@^+9IwI20u3wA+yP7H|CRJ-6AT9YU7n-D18xN%pPS0$b8 zMM(b}j!jOkX2smo^*ROj4PsS8a|!THpwYU&sMD)WZirY9`}g;&l^UJ=km%BlJi3be zMre`tbx5jd6ek`~v67=w)$$Wcsdryzu zPw~&6KVRVF6!an|ACNB^$}liu{=}>6|3-t10Hs<$^^Kb6xq(r7XF10JV?9zSn%mlH zFl2J`7suJiYTVb+uk!N9X=yFXuU@)zx}~K>nXzcVa=nGxV7h}n?b6s}o+fYp-HMY} z+*X>QP9hb4d)qx(%qgqUiCgCl(TU)upR~q(Hfit1fAWN0 zgWKxTQ@_XD#+ZUH!raDm~R0p@fy(W6irk6d+_Z$Rs3m1{U~;XR(TzmAfl7 zbT;HM9j5oD>g%9fCoZf^ICFneARBz)c(Qdb5cBJ^a6tUqw~_=TH2z&(N~PZu5)!as zVOBqfVc|}`>O~d9rfj+46hwC6!Ug|N!8OORjMhaI9`%UA8u7nF598FNxaA;~s&iU;*gw1Ib=|{kDOShYGxXtbT z{sD(>czHbrN~7UrcJh&r-L};sjN+;d!x2LYzETx2kNr6^DMAQb=?s^j$;v!nu^Qm& zl2kDDvlWu#Vr9h#l-872RDYsCBdp$M*LbK1o2LY+G1D{B6N685S|es&S`Q z!I7jSx4yC1eoeC|UE!?5y(JGmt4p*Jd-Tl{PEu9L%hrbNkFz?>%&L|fT&&g^U!PkbXSq48 z!EHSGVxdt_Rn?fEGuM3DT0w#6-1x~`UiKb($Pha@U^&0h#3YEN9b~3mNCF-&5c~t{6{C16Ivbqm7Px4f-L}-NN5|}*Ho#4MyR`cx= zW53XGn!pmk)eUWJ!=JXkX0%HBc#|}Ak$V4*z8h!FhtJrg0_3lrGC@zBe(%3j`Ez}1+t!tf+_+rZN zsvJ&U07l_M(yV(r?u-NJX-72rHM{v>1rCC49mV0#n+;U_)Mmn^`6u1dv|G#QpooXlV56@Im90!J>AFP$ zh9JV@cf3$I0cGOn6$0b=Tgn9!_xv5c%NejKu%gkt4L{G!Yw6ZRL-hxOAVxK0dmfDz z0O}Cga&$N)IGhQ*9e@WV^6{g$esv>hZcndtWg#c;U5&4QK>x@}go2!WKN60RJhGvD z{kr+?xX*7k_>dKpM9X7CEpSvXV{SA*xO6)j>x|{t~+05xI{~OOOMpl0xwDU>|uUkh+Ia1O16{hnb3B*VWH~< zbAOJ_zBca=hcOKepec)FC*%|vYI!RBan{1$K?r3~7p zbSGOSA$F|Vg>&cUH@pO;5FkznoB35w5;fD&sMuW{|09w*C zEsMOU%0ug(m^M9%X#5IVmU6RBDp*hPR_nGHXXobD8wt-DHe<;}9cGVJyM7;?cF4Y& zCI^RAUWMh{ddEv&pAq=b+Nf30O!`B{reEL3_-)5Uy?=Cz&|JFrSg)v!(tQU#sY@M0 z|KZPfgp$dK)=+c{-TTOdk(W0Ch@53p=e5-u&u>zEuNNJ*0oOw#U`oVeP#^yM`E$>n zgeOlPz{>3n1trS{SR#}$JYkzrwN-wkYVq=l)bVn11}bJg0CqyWjm73`=tXeEzWR0@ zZ7DQ8H}`e4>ggX|CgIglP^CO%Dl3a0$$0ezD;7#>6L2hD1e0$=*=Eemzt+Ov8i#s$!JHPWw*@F0TB6FXz#(Syd>Q zHyCaEgubn=M&aNQFd;O{%iNr8c6K(=Cl$!^1uLPgw$@giWT&3gs~RaWFy3-l$FpQf zQ0Co`%Bt-k>5TsYVE_7)#t!}D))bl!Lth-6QLPqfJ|Uo6P)vFMh`3V-3jwzFA%L}u7cW*i zf1}X%*;Kz*rt|ar7>Dj{xxB6^X+= zC-Lp+z$^hEzr(d2g8II{&1yH^b5?E+-YtQly>KL`)Hvmd8y7yRvWAr}sz-n0n604P zk+RYU%LS|&|A*i*ZaH{S+-j$px6Ga&iQLh)Q$CkZGai-%KOS=U+t!(RA8>0d6j_&!phYY&Ck| zLP)HLLxVE8pGML9W}eL&+hg3;mG|Si@`I1yH&#I6k_Kog2S*+0 ze**b4y-Hv_nO~(Bsr+>AxgQ$+;+YZCLN^7)txPqUQK_w$IR4VPL3T1S8QC*`emz6O z&zse2$vSQA#j<%E8&V7fKJdX9=lGENpVN! z+HEp&oGRVP?NHILX)sJ=hlRei{K3f}eMDU3uq1uGrL53UyKwTg-OBUBg1ZrZjws3K zq1k3ew9_BiWn52N`z(A0mekP-yVd1IQGHioK2wF#FwKjx@$Yf=F#6fKp;rebsA~^K zZZHOL8~1xElk8BV&X-L(!Li(sW8I)SVoi1P_=P~KTw!_z^wBNZd%>^aZue*=Lj&E z$TkGNyDCE!`?sw3Uj($jhiC-eEqdhBt%4$4a9Fs=V>tCMz z%io+rHCJs=j|5Rlb;z+P0JUq}R$DihhHy~7Y_u3nXY3mi76Vo9GJ{i0t0(mtS4HkB(O8nj~iC zDj%@u%Tm@VHpG$GT^0-q3W_g3#VAe#lBIAREbsEj9WK-jJ;SNd@5Pg#M3A5~*u=?% zzWJi>+vDWqaNpoyt&6d+S_pm5Q{`B%ZuAF1z|_>#KH3ZY+R!CzxGO<$W@#zx#S8Q? z0)oWy?3XW@SXka=#pZE~iqc3(NKh3Ru(GmJ6_~mp!vh#f6MLHXgY;_;g>^JIVrN%s zR&C$NhGTO=U^#?U@1;Q{>V5$e3F@T|H}FO&cnKa4`@mzYZo)vo@L$pzK=~w_)sa$m z-<@ylN$UALetv!=G<+x^MCN0Hf`a7K)I-w_Ny0Ww!06Z4+s@6M^4q=^lg1JxB`uBf zRM9MNNePq6tD6gic>T7{R)EeA-%Pbf_7b2JFlx9d>(_Y>XOuoE##K*b~ImJo#=0z!hy&`RxY!8w~Km@%((m*5cY( z@4eBfwdG@CX!T1gJDeCiW^sp!E?e5D00!~$`81j8I&|7+lJ8ZG%TF)f7(o9n4o3w_@D{G${4A9v*SJSh2ay7!7QFm;gS>1m;kL_VX z4}Dyg;^O24taW%Wb@*=MbEla4u!<<$-ZC*`8B+G|WFDvT2$zcVYMx2QGdN81Mu#~y z2hpmGGH=jooEjwbfA{dz+|=QL$fHM(Zr#3ZRBks`ZX=u_OKQn_>^EY<=^K-nuk{+GU<-j`HcIW-{G#o_U^99?~TuhA`fM$&9o3R|C>Jg zdfLcNXl=-VUd)#dDeul5tP!I8mDt{ah6O?&pVNZUxZ9M^rujHKdgF9t{H=G_uav9n z=|#MMuLxFFE$Hm$yuG~>^(Ggk^1)ilaye;N^_hxZ(wE+C+<_4EHHYt`LRL5BG4mQq zl$M6cRa#!kT7e+0i8y(enaf15NW7yXV!oxT8~*8&s)c57tvRK7_&G^N$^D;{i^5sg z&r_&rYTorygrlH~OkEgDfDo|2y4x0Yt_=!XNM{^xlK$KMUrARNK?cBdKTb&@4aLl^ zCA^?yS7`>`N57Mh+O$YjB53hp8ax_Vxbo%O=g_aoQ&b4+^rO};m##d1j3Tv|Ag_8E zO37}#zq5%#85kJksBwtzt-aH#v}YbIw;7vX2hjh~vP@%tELGG24G+2m9{)29Iyixf zudEphC6~$QF5M%83+$8%AAeMV&k8F7!YDPhu%PEV1bj_;^;EIeSMZd&oLq>!o=9{- zeCpZF^IZe?F1h-cg9~T!eY7kmKObXj%aiK8ab360^9%^PmK$17%YuS~M>6#z*89I; z$#4e-2G%xhdLQqYmsDFhF81fTuT*_02ECI0s^{spNCuEvs}d8R&u_-lsO73PJZ5g# zUWY$(RCCunl}P?__w>}0z^y~h?k6#I*OLHTf3-Z>onT^k<(}dPCCuAA4|5RZWePNs zzTY{L<=-p`USo@4=Hdb*bz-h9s?8+os<~wW2QP0MP$V)6iUV1$Q8-Tl|1-6)$awJrw?|@^ z>!~6uE-voJIxjaaoi{m+mxsP5Dna3a?^tUh=6w#gorswD-2;4L+PanHWox96*o>9S z!WSW$0zBh{U%dLYG{Bl4cYcn)be{s`%s}7$odll+z=d5O#LT;Bl#)eze;#B+NysQE zk<2@a!3^Z{-E+V5p=fk!YGtB^9Be_5ImX9ziI|I>zo}y6(kGLN!p{6gL`Wi&kI?nl|)tyj~Xgq#D60I7(I8AMW_(5refeyD+tMP|h0c zkdXYD;`mUw^8Y+JW{1m`-hOqK&133IxW~G@kU>WxO&BdjmqPBePQv0=OX|SPj;jUd>Fu1#*ug`prGiZhRRctxH z@pE~E5}199!NCT#^UCo)eh!*mVjoVE;-N#l zOV`DBzGiHu4khmPz_JGeri^EU#qkZmN`6(B>qgdRui5fEemY-lIdbQBl;n#P(oS*@ zx>&_vm`ZnuwGgYENkHIJzl=HW;r^;$Z=v25HFfp$*RLrMLFIicr^Cv)n3{%0;vy~$ zbv&b}JrfMDk?G&Kcz6y=1r>>toUw|fE0sGi!^jbQ2lp1C4bd#}#>2%%8hULhZj<+a z)tB^qA1+~GQ%T0oyn8qoK*-qeG5s2%?)6bfLn@*fyoc_{(1-|G4UK2&F7JDK+F-&X zI2j6B_fz6B0D?X{Klx+BLPPoY_u=7II?RR0-p~h5w*z-(;LA|9cEIq5lq>wk%|zS3 ze;dJ=k9fu)WT}?NDQkKs;+PRP#}|Ujn=3Ybj+jY>zdZkdo)A*HW!fMdST3(2LlQoj z4i6g!03NEZvaq^CrlmVwnlx9eUas5zMJtGmh{I;!y^deMw{at!PUIw1)G|w5HJ`M* zBFDXLtcD6(VBvZk9UZ`Zw|p7~yBw%tAe@co_rxe>QVps1WfG$_i}YKHjo$Hrujc); zSN`jGl^{STK8S9psj0;?XnKWMDyINIcN%x>4{V7xiLF)}Zac!rD&Z8v2T zzw!K1Hs&1GV9s33lW_;)tBxw)=(JpB7{``sq)#OM)mGl)ynLKxxZzm6v zUL0K8+A7*QTmgxd1zZ^r$hP~^4uaSH?$9=i|0+%0-=%jAXtRfF&&`s_3x}3Zr&TrzaH4=|M)Rk-xQrEKM_mZ(1%)~+JI$9C7??P?srIwY$6sb< z&Wx5>K^agD>luTZLVv}T1Y~A}$=%l04mIn1X7ppBThwLowD0x|;ok1lp`4Z$&4ULI ztlgx`PE%1CuZ&lw6R^D6?fl`c|)P!I~+x=xGJo zT;jX$nS90VBv2uRn>R&1ds~t2vbHigl7pQEil4$m{;#k0$K;jmg$E3QNR&?|ORp#l z*3~G(45oz8169z#8~*`D!DmmO27v+iP*RYJSDys#DhveR%%H3qZmmp!#C2J)HJi|T&S!e~asdZaQ+OG_iayun-7zi1VQ&AR*u zCts`NMJ}2RBn&I{;Bk0_{~_<)Vo+ukNm&f-P|nM{?a|4-R%M?)X>Nz-|Eid8+v<{k zR8)qQyeZ|s5$hj?tKrp;L2*GO!BNd@rSl%nKzu1-CWMMh%b($jD>wxWBkCoF-TOoN zR3P*|OQ<^p3XCBAJCtVk?_Y$qkDP*HHa38!N;p^s$%Me|-X848Url=K@4*+-x;qv4y3yBa4`bV0wbdH?=ax@s;s{&NmJB#x;tn;~YF_0|vWlsi!UV$V%Pp~pd~ zq)9})d2{IwC0eL^?Af>je8c+gmNvU=FgpSIFJBMWFjLL)ncmc`yfe2Tk5lvn!_&2# zaQh*UFq65<&xtu=0H#lj_GxoNp@JXvATUMFz`zacf9&3G7!=4q zOa&4^93}$*`uf5TKs=8Cz!AgJ(F<}xiOraB-lD0E%n)!Ge)ly)ez8ma@d|G=9&{^a zsw$l%Jp*DA73d2Z1A#f^@Sb#yyogZC($_)T+a_~q>goV0e;lAIEP8?pF$G55`xcuy zS3vK37MCIC;v&S;Um6t7{eRI8dAYcn15Zg{0d+vuVlFdI9|4DmA#x|7wpJX3K*UCe zs>`5y=MGX+=*8VX+730kpgJapXB9E?jEO>8Z_6bQ)}s)cdvPF-->?A%AQTD8-M@by za*4`p-ZqHc4e5$eYy2I!coQ(LHhJWBX2W=mVYr*0eF$YLe6@b}B$zpf|a->KUK4@us`qw1Rv3{*7^^&f;wnwlAa^wjcf?3v0yFE7&R4(K-( zDoRe4((lj@+zi#}{8PCh4KV%eu5BZ%spMp2C_tldKGL~rv+qtxT03MWse<_dC0U27 z1gRU#Q*Yl+nrv)raJ@fuPJ&)OlAgb8QAjN--3hnhg>0D893cetHbeJqd8+z8#_{5Z zA9^e-=(y>li(6u`?I~KZ@=8PjP_1SFKer$X7UTeAhyvik=gP-yOEnpAP!RmXz~ec} z0zQN+U}a_Hq{*YOuqAE-b#-KUm&sKV);jvef2AT4sY=X$G_kt1J0Q`E+JvQS+hX3} zk`@;jugTJiD(_ZI(6~Be*iC?bQ+|h6J%25Sf}}T^r%(FYHKJhW{m_K%cQG>o?WMuE z*(X;_Z|YaJSJm8qwY%-&dXCbAG_RU1Q}rV9DX7vTc@m^2{)b5wQCwW?*}1#3^8zf) zh-de|CJWC5-&lE!SJE=@xnwsUYYDQFH9%_jgWq2q_O>0o`m?2Bou=V4L;(@+F1Ii@ zNAvI$PMSc`<9-hkBOyOOf0p_T9Y^0sF&pWO0prE)f$=2*ld`z+-Ze=@%j4yh)wNmG zQ8*@B4x)Z?rkOCKU~H8NQ86I68Umo54GQQ@Me<>{b`l-Sg$oLxRuJc^aRBqd zJUq$JrT^=V#}D(FFJIUpc)<-K2(x)tJigl=Z4Qp_g0EqOIu$m)O z1#@X>dt<{feZVrf(Xe*BpIz56wH)%n zaX$^-oqdojhlMHL$S5kFK;&yp1D`WszWMC_YAMvKK|(~RR(gvvr$@4&#DUZoFXqJd zsjsg$^9D7P09;^!Lb0J?Veb~Ylh!vndFNs^^&1N+CLaOJG6eYST65A)*YP2JTXa~m zQ-cSwSk-R4qzI>)=3Q_3Un-nW0g?i3dI7Mus;bI;1N6GhMfK8tWzzMnEqN`ic)caf zbMoW7%6gh+W|_Gaodv^JxqjjfmSf3BVls4eM_!MeP_ZWe@iHxG;%;-f?HRQA_?`s? zqwTmY`(~NS)!*|mXf7@#BIf1@I+12T0kW`W1S_$D_Pjm|1vu;VQOGmb#S%!rO!_S# zBqY5MW$G=rxyui@Z@rWEEfI4Npo;oj{K5rD@3Ow{>}+{@@eT$~?s13d3-CN=BSa?e zxzoA^we(NL5kc)V5Dkh3TECp_f)hW@U8?Oe?3=L0{J`Y!`wsjxBqRi$}{w|2&U_9~u znDF#XKYrhb|XmzK-vz~=>=6*y!!Em>^ozsC!Ck&E-P(szz zruI@7eeDMPU1v-jPs7k!J#O(Y>KU2A~TMVH6?DmZ;lGvijyd(!3fr zCr3wn&?ZaSKEjPhhKacdA-RX>0;d&!w#x8KPr-eagUAq)vk%nsG#Yz)PJv9oPbxJu zxhHNF^LU7%fhSr)siT{Yf`K6dgi<7MvJJ}?f=);nE}u^G-ML>{lu_R!M6=lQd<2q= z=4ln>po^4m(-QCgw!Q>d4=5+BSHngNFIhF>niAZ+utjuboRs|qB}o-ovgc3zq82s zFa?Q3T6{>BhS(c0Oru|p^VG4$&z>T1&Gh3aHrkGgG&Ltgip;yEz98N**!}hy?%$ShvQN6bUr0d%#&n z!um7=YfvR5L^(J)ORPr(tS4*FW~-z$os!)12mOBvR60abWAqgK6l6(TzGU^y|B?6AZ&wh`w1K0FFeAEdY~r{2t$08rFATw)TPnE2@H z*Lz4J6HZ+Y>bs8j2e=|6fdg7LaKTmxKYj$M1qrSIzChU5I(Uaj9`dnb!AZJA8|Vgb zhcUbcw)_lCwYK(X76-VLniLj3J~B|vWZ|vrNaELRb<%w{l-+)R#|7!Op^EG0qUcqV zcfk9QEM`JWKb(E@+|RGQ@3PJ~u_HY=7fwT?z{&j?aF1X-Vv0JUYr6M#&DFyD+(w+ZG3L%9G;}F-a`HPYwHH60g zcLbJVc1srytZvH;A&#g!B)62ieJUng=~Dd;JitONpLfR0XPrLLvU+I5&YJMu>ifoZ zQ^~z5?R0Yi{OA-d2JAkFP;Hz=wGSZ6Lj~27OvVuG#(3zN;nAazqEl z^tS^m#k>t{H2Du`))LcqN~;4;0K5Zd!|wJZkPn3NSo1>$xQ&6+KZuGt6>{pFZMhF{ ze?A%#sBS@J*$`QLO?U3xxx53D^N#1i%R zAcU6n>OdYfB5%ehBB2KlygWR9pt?W4^xU=ip13 z^ac>0q7xEA5xNEbQX^=Hp%B*}V%$XRr46kv7IVBV7Q~D4{`G{txY`O_B`nrD@UOP8 zOIOJH?p^woPlz0H=)Nn{V1=Cl2-c0MF3ia1Il50aPrA>MDkTWu!@AM}634PO`;p}Y zR_JnqMQS6|%!dGJj|LQ|ir=+)A;^`YVnP4tf6r-R#Y5CRn&A+LSw07HZwssg2zlP# zNlcps)4c3HerUS`;0*9%djDH%2{@kYgHN&Tf?8LtHbB{G0+7^OVj>^Tcy)Bvj2Ai! zgNdOkfGkP@J z4oT0y|95Qce>AAbK)Y6M2nLhd@`|biX<9&BCO+q{w-B=vmaKBkIxfViqm3YdP6d=d z63+%gvfbl%aL4X9LM7oUTacMsvrvY^=7|bxh$!k)ix6um2;lk4E1dST5{XT(kt)uxmz|1_kbjbowo5CPUGPyBFV| z=v;tiE4ZUXCr${A)dL1QMo4%xNB~bHExT$X>CP~YQCU+X%R9A;7r60i4-hpF`wVXcnxID{=!U z5HDo)>_}P&SEDX1?PEYie()#Z5#HgvTc9?Cf0k1v(FaX(;>hM2}rpkcw43o~v=! z&Z+9JnBRj8E0}Q6$+Xz3yUV4@A8suJ9st}F0_hB`CjHgL=cK_MC%R7gMIyoJx<{uV5X zK~MB}=YzrIgTOlzoe5pB zxgmB73Q){!LQ)Q0X_9Y8q~o)v{p!^+%!T<-VW-b5M?z+o8yb6@%vKKWYTxM` zRr>r|7&HH1e1GJ|vC7+FG$S{^o7pTru`E*{Ymr%HK(aSLTz#QW~RG_f^E> zc~a--C1=5-{ETfOixt$4`E{tcanR>`ly+@4vw_tZY0^!2R>uEVUfTB`*+TE zt~$3&wFG+PkU=SpIR;JwO*nbSWAW@o|q=l3DTG1TOV&Oox2J#k4^gACenr(2)#&oAh_v|E>3e$VPi4>wl0 ziRu{j;P~gN%5Z9w>t_lv3TOg zq~rV{k@sFF1+SZL~YQzg|SIeM>2GuAqQn}|m_{T2lN@I31#MGJEWO;1b(9qXDiJ>eu$4_eA5FcjxqOiWT7MY~n5iK(j6@5aX#xvJ8@0X{ zj(g~EzrFH81BQz!vG6_V>8=}&XR-=)Y1)JbQ~ix$d~7b%wHNBX7=+dfQ#^K+wAPLH ziup2~cgf;wLUr+xGkh38bDI-9WW<>y&&-4*TyL+T1TWCWmOj;sAM(^9%9;4wD61%t zn@?b&Oi}hkzo^as1={-6E16preZ8 z({yJBAgui33ATNyST;PT%zEHS%eXQIqmO*G)yON>u+BATjc0(TU0{~+j0?JZEb?BV zF4dCsl&Y)ihCIZ!2UaRGx&GcT18kgVz5#!}c=P5>uL)3EB3QzI(L&MDPJqe zF011S77s6=diqQ;(>-6APMrN1CdKdu4T-x7k@#R1=}Xm$-xfEZS=c^I8)W4FsM4r| z-#vb4Sj3T54>gw3UT8Hy;!hLVecuqv1Bnp;^2J9XMkomJM0c z90n;C0T0e+9tF4C<5hzTN)U2h6Nc=`&tvkauO{a|GjOiFm5vi#p{r@A-|v8&FoXN4t4jjnob%U@jmwoEKYoJT0!B z&Gth*^c!8h@9)r+zG@^0DzPg zVkZ~u$}b=hT|fc=)SAJ+KkB|ff?W_ayK66t;m-cgRbV6zn)Z0Al`!+n^gtQIEqW&d07`m3u_Detv^RHrxE zrM%F{g($fxKwEHHgb3M?KzNK0wI+>$Mc~Zk}rt01pTubikYnm-XiKyqV~IufjO&~Yw5}-G_Mznp0iQI#Pa2t^QxvaO7>IX&nsY|9^$FGzx=dcv!U4)~+q5Wdb1Qwd#8cu>z;yrB zs?{i?f{Qd?!mBvuVhPMh~^{Kf|cOJ_I6aF%K{NA6sCY4JWT+LcVSk z8Wu^vZF)kIX&Q8OfLJoFuEMan#J_j9xFZ(Xhj!#f?nIeGcs!}733R4E=M)g20L5C$ z((=_eA7y($%ek;8fH)2wKb`&HyXUsVG$;Zi%)Ag>4*N6>zetv9E~G#RN^RgnhGek8 z$vhkEcEJCSBnK7VHb9zoA?WnHOm%%XsGmoqhJje%%Y>^_JECyJx73Gu2KQ6b!y8Qp|0JUS4Qzg)(O7Nsim#l_fO( zZRAEjSvl6@EYE3M0|;gBpCCpyU3gh`a19>?VP^3P(-HMh1QCG`w3H%^#v5;{5sygdI}<(5o6jpsbi2iJ zxc+3R^jqD;xK{vNrMz)ie4Kr&%#5;26^-Gt4wcvxCl~)G6yWX^{oc;12E`D&^Nl@gXy0TyE`3tYT4tWO2(}Vv|W@` zjEuIs4m$cDKYxO+(GxoCRRM_UFlWU!{Bv^f2>VYmxCHV~3Sv@wxT_%mCmsrJ7_z2A z!w)WM??>7p25JeCgUHFr@r)uSCKmKM9I;3t7fi}SYaML&y+BLwaIL=(yoGEJa~ z4!`yDEB)Xw(}eF0zA&VRp0v~h4MT%ejI;tmo_=B;H3nNPBvdP$If3tFFVu{D+n6GF zk!$LC{HyKcJ&CM~1=j9%LnL(Z|A`!sK}~HRCY4`VIeh73Z8?OVPE%8hEYU-}=AkZ6 z8)ER6@0YYOzJnS9f#wKJeGh!_`^qldLG~Ls>J9SxJniVF-~0K~__OHURYGrX+V8l( z%9E{Dx(2t(?+-)JgNy%H!rZS_qzVsJ%fCz3l(-a)>Ow4i}YTOCBUXJ7FSX|@=lC8xRsP3Nj{>$B0q zeD<(~NZF2XufS}q*wA>q=J*(9o(ynGs?V%Q?~ukPlI9!_%W7Q+H#*SzK_@@ws=1-S&AebB8A}boQD$8N zalY{p=#>Fak(^t?26R>wonxIJK!jj6CTttFhLKOX+5m_l(@_L)Ah- zfk&#Z9c8phWlMesq$OAYLc@&A>ZiDQb@TMU(TLWYd*qCsUzz*LA&ZNo%vwQav2mD$ zR$U_ye30#>5Ksc4_35fFsn;OPNq+8}-61hcg+=KzauNN7)``16fXsGqi*-6~uNc}nih97WXthAg}B&)>HGBrw|w&#p=+ z3fn$%UWRC9S+TMPPVvuHQ;2~uGQjNiG=-Gp>?h}{e6Bbva;K&0n7e;=ntEBpwBf#z z?9?4`baGJkqlxX8lC36-AK;QlrvT%1#K{_oOHb$PKdwch$eI-tQf;fx;bz;-f_4K%|Ci3jBMIaGhYyPYfq^bPATqu80AbPVvY;(_kT0`U%I;%^Q2}XYuu08# z0X4vWPJmpy48z-H5mCX>1d0^&#EJSHh{JYSN{#XV%7G&h@xO}ZBFHY-_K4tz4_TmW zBW2&v8iq+06Bob?=xayhGT7=Uhw;C3zLG^#znZ|+$Y3M7ldGnZpRm6+awF9rwj;qX z{&UN#=@My>*~@Y;kMJK`}0kL$dIN%*zxTFNVZHDFCK@$PTl`PMhB*s zL6z6c)W`$h%d(sscDFJ{K^H7l#qnm?i)szr#Ium5bS{n3u6Dk70L@BA`Z(l(A*6t` zmo`{`Tm-GS81f>Brw7g3q%eFRfSm~4@S}`z(il^xvKrRE@}H&rCV+l)6UYl}}VUT!X>94t_7hv@dXTp8>*Q4AUe_01~yO5SWKn$&5y)DR>_s z?7kZX8pJ4>?7p(SCM;G*3ic&|pgN8eD9w+++J@i_2+8JS1D0hmR+e6uQzCox9lf9? zn-_qq3#+&Zgq*W%1QJN#aYGT2L`{F~%>WVd5@#Ry^3ZBNq?RQCO{))N()sE{2?DXn zvOIAt=g&7AA8otUokeo|cmS+;j>@4q67?Sn{p;YMc&NWaSF>OO2*e^86;MFA-uKfR zq*Xb6F@}v>vbMm@gB#I)@n7N?x2hU+vCPlU|FuCJsQLXg+2vSntzr~K=*!+AxT89o zXDLFPm+Q!yjPL3x$438avzd17(o_NQ z=qrW~Lw6>!l?!UFs}u67i1&%&gCrh=u9*b|DPdVWYG6eC1|a5TH|hX!Vl6AXX-eQp zAh~2n@5w+S4ZsKrb=C8y6xdxT6w+A>iMO?n*G@@8$_iWu_qhm>k05R%{RMWl>jW^O z`JveZ)w-~EJ%()tS#QBN{s=NI5-LIZxI#`cEau;UJw(vFGr|GGQwP69@(tcj{;bc6 zg;ptIz|1Ir2moKp?n`)I3+)+|zWbL`Jr>UD)_b1?(9#4Ewl4Ei|DDd6@F3{9mTD;R z4Njrk-@et_usEWxVhUle5yYvA`MVqYuQh8{xRgy#yW9IAtk3L2L4czB#ht{ygpZ#E zMgbBas$mlp&t%wV&*?0?<6R{KBRt3sAaeG+qesk=7VcYKib9P%vCpF++jXOaZ#8$P zw?;i>h+u(1Od{2b@}rNv0EUt(WPT!`9=9Q(CaE~(TlA}ObwFafuKeWPruK<-O(KLT zu>X6NO@7gKa0 zraVq^pEZ&@tH&kfTI9Ipkl8Wi$OttPW!5F;$gS+0*w?4E&ptCd{@Um9JRV)o?{~hx z&-L|wdu4pds-U89+1T67pY<|^KFX}?XJyhuEaQCd44%UP<9Cb?{_8Ypo`P~2jqXx7 zV?-fdjmqApGVA~h+lK5$bf?XA8F6*XN;hz}@XO;lZ^s|@O+3-D&vIdTFj&kz30eOz z*W$!(oJ=}%3n56b@@l_&<3`9l0Bf^($2kv5f}M-)y=O>WeN7H%9z&R z=A8tzU+Bg1S<9d3F)66}$Q$nyBF{&R8LX|XJy0fewXyj==oAuy&LdkK_?XD#*N3LQ z1Kup=M?Hh*R;wR1&uoBnP&ZR`j_5fhQk7^iy3woX{`N2=Wc`$XgRFT!L@6Ly z515@k2gIB61QBUD0cz5W8PO%BrC)uWUgU+cqcZ~&nTxRNcu~;D>bSxzqW|7w$CL`o zHy&YEk5ty!*x9v()UY?UIJJ+0h5&}v9_(cyl# zDt{S;t zWlC3mlfNM{G7@&WNmQF~A4g+GWM52CYL1p2t{j;|i}yGEKq<(zW^#!)J zw$tKLkUf6!;OaMTF1>LO@0*Naiwo_oj$4{V?6;&sWf6B`(=e5)U3hpnb30#35EEtj zX0ptzZ`L{|zw{5(*BZRux}`h(p@He16hbCNC5TSS*&ou7hkr70F(3-;L-0Rn; z8>tgKYl@>P?O95msjRFle4b>-JJR^o)~$wh&CY8A6CO-48Sn&PIU8e{gYmb0M63jZ zHsHzAr%MnSughMx%o>(x(8(~K4!XJs{!tGav~@mLwFK;ylv#1ibUiev+t1pk6QBZJ zm=x-I&a3S$rTet}7tMRC8_%O@bYV;}fB~-Pku)n-*p$>J=2R~%+UOl;EA<4>Z5w<` zw%Gx+RgWB|E9$SPiXKt}xn|&NXQfpBQC+dAuRN5(^csyu9od{b6YqCzVG$F+E{vY- zJ~Teg{9vK+m~a>h2Rvr^0tb~j4lfR(PgA&sa`f{DDs&9#0}LI_GKCRkMB4?9vlb?z z?fM$}8On&APWEXJJy|ExLfNev@gn#9v)4E48sT1b%$aqw&IA(z9g9@rvDT& zE;Y4O05RShJDM|DIN&1{)}RIH$;rh6Gs-79d3MMH6606=km*&|xYqekg5muK zVAg>aI?5Q@p zY(v;eu37Q2rDYbvUxpik*#*>44lEM{5I>QPU1FjpbXd&VSH12L!Yqo1N7VKz1F!I6 zCn3+70)!*NZ9&}iSf&z0c+s{RTU)yiFVt##4A4Gq$Fz_|hkP|m?#35)d0K9rSxm~D zWpjyO7fGIc2)5TJ`ySiGCM7|vcQ;3n`~=dhuRottk08aC>0#T)m^($_ zH7USogcw`Qo!59Rz%8iw(lh%-^h9>p7ajyPSdL|L9(d>G`-f>lbW+j@P?Ert*`y!a zE1MT69!?basV74b@=ajY{_g&1{f^AsPol76pN+OLi{+hxaX;_JiMbx5g%c{cguunU@UT`J3~fDzlXT+j+%8tf9mArE zFIc6Nit8i@A%NNC*@Iy^(=tDO*TMpGvrOV{YV+3NDb{c`ATIf_;CIMjEf@)-e;4%} zRt;4PfsX~SVbM2uSfIcE^7{rMb=eq!Oa{~pO@63hY}cpA0PsJ!^(4^|&K4g5&)76F zY18ecy`-rr!#hXpywGWTrB;vx-T=Ak8nG5&O5!Cz);xLWCJ>?zzb?89FDtf8>=2$%VA*a_f_B=Y)80wJM1A)Py)}1OZE&`J2O9!~Fn(u|+%?ff zIFhUwi!(j#!;b3uy&)aV7yv0}y|3RshARmQ4y2paF?2{4rqVyx!$ep{Pe`crmfK4a zyL&*3WSXry4seCX0*bD`7+#4%o+xq`SAnh(f)l=VFWCk)Dk;yqENarA zjtf7>mEhLhyGz?jwGf&J$pT*M=k)gWwj-R0gzz#GN#QnkeEcn@9^iiJnjJfL3IfVT zQ+~2~z!D$*-k}WoyU8*1AopNp)Yepq&|8aNnrK|QZ)&Xu;FinaEStg`ig5$-`vz`_ ziDLNEOM}SHxkHm&MYJig0me_X;STJ}!O5f^mY>4_VlmSy2Y2_5l(^@JFWm}ac!)is zuQ&~VZG77DU|&%@dK%fbPmXT1?@WVshI;M*x$tWnkRB(NbKVy_xAlfaF!B*JoX63q`+e&heQ2eX~c(lTXAVVw|7f*=?gU z<5_FU-BW*h<;oRH8=ED$xk^#7vqJv}=1jbGXa(vy?_;PQn{-_!-a?O#wd;a?Sl!?G v%xQ;Ldtd2rcb{jO_Wz~G-^s7WjBoBGnY#_%|2h9Xfx_?O3BH9sv%dTnS$94+ literal 0 HcmV?d00001 diff --git a/_images/2.6_resampling_37_1.png b/_images/2.6_resampling_37_1.png deleted file mode 100644 index 989cae2dc00e5c01f0adb42a6758aba3727f6a9b..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 89557 zcma&O1yt10*ETwWfB_<+bO{2|-Ko;4G*Z&dNH>TmAtl|QQj$Y=Hw-D=-ObQ>&**#K zd%y4dzjs~MV$A|(hTl2AefEC#v!7=I-zrFAJs^4jfk3dNrNopV5Y%D_1f~2QI{1yf z$qzN~z~>;Y;h+pPad6hRGlt0PJAAZ)I#`(-P&gUe*_%UcIGA~vSs5wJ92`E{^Ruv6 z|MwG^p?0P$Tt#KM;7#s-l+v_^K(O_Z-*>>D`ZDm!ZLiLET=(s(*4ejrRh~XG|2+OqMNB-L=6AraBi(fWS<9EtAInIgm?s*| ziBLY2b(5NCMDWpe)Y-4~^~~75@e;5%#iWVs`V#Q>ONvcjc^K<4&fl*tEVN?Ezh6pu zFTX$g`@3)hai6?@&wa}9z(`yS`IWBmj)LLeGuytQX#RUOo!ZmRZ~xx3=$EM4-zSQF zd-nf+OD2PUkz2uM^eT-L6Y)wJGPZM`r?&g^O^mR3PV*;a79-6qEvVSo*a_U$-M_?x zit}1Nu(Ikm-?e|Qp+SJ|`@AJ}&g+s%{q*BX_cL@%f=>+%A_@u$D!FPQUmxPH=3xH2 z;v^*st$UND<}Jh7${d2~4PKsJ7aO#XNO&6~sAXB>c#HAx=A!$O|fh&ec1(-d-UTxuLUiqN1O~-QK=M?hu|xnnXzR$Vha7PR;7sY(zxF z`gjqQzP|p|&E*~mzeB)Y!);1qV!?d@6X?8R6Eddb90xP4Sr^+Kl^OA(tT%tDNMxf{Lq-&YW!1O zoe-p{sj14F>fgPvlcFkCTb?YlygC|E{PN|?c;iudo76CD*Ia(#rWtE-!*TbH1a%x`;jW~)}9Ej?H7sag5)xnwAbe&eS*FKB5I zv+jE<3p4+My(>Y&=wV}}?b1hkdyd;Yt%^{5U6;ht+J*jaZ0DyNE*BauhTZcckV;2Y6tWB%UyxZF<3uUm|(NOUTsUdbfn#7dEno( zvmDT5#2){x8pk;S9?N16ZY9DNti*Nwr@za76GpGOkB<+pfIwCaHyvHz6KWZ-M6XEGcQ}ruKHfA3rFXo0}O6l7&6_6-BN& z7Zw(x=vBLuZoq1aJujV1`jX-c>cOF0*w~QX8qF`Ns4zW0Tv@db!ejcSRblgjhQ>so znDJj^YbCtbhRDP)N_Rz2_jdI4^+hr3Bz$|uu)6LR*(GLRU{J7Gd!FEReKGj+4Mq?G zL{O$)gO}j>a^yxqGQ05uA@`Hgdj@wlM{+xo`0QWmRCAJ%kr9qg)wGwa*y8YeUGb88?BDtM^Jfyj0O@e zoNwmBdODyD*W6$YRE&(l;9u?c3G5ZR9a~(S>^%HbQNhDyFUhKBd=-76fI;iP(CgczJC zF}?rb0sW@Qf7Jx7EXCAJxp;QX)prz$Vbe1+KBYXuC7$XT^MoN1G0ZwLSqjO86%{O- ztDQ{4BBQdNhBM$n{`&6&@}~zi-XLD?J$S(0p{j{|j{-&7ll}d-6k1<`C8(I0nO$65 z*71KmQ@Yh)ISz4DzSZD44nsa5e`3hF>FP2}c)upKYD_Jsnfml~_{ERdY@oG)PIR<>y>q(xSlj zX0wEUx2j-+aH2-k>D6{G*|`nwsaIJ_W$RP>gf1h>&G%1m)kzlQRJ31lzWcYZ4o*r2 zLN}91Zp48@-}*t%h# zy8ZH#C&AfQ7aqzewMo3>k)nka3|TB42aP<$kbA^)$ykys#aE&)picRp(~_Aa`#PSe z{P~)3+0U^bOIli>{Xkt(%PBR`WMY1lS73bgI^=J54j1^0GEvhQ8#bJAa|!1VxPYy<*$_~sJfgq3{G)DOMgbyP|X$aDST#o_Gvbf$K-wcWDCB_RfC)N z)v1`D>nKV62e0dmKW}QM(%cFr>Hgj$=M;fO!ioL;k7VxKY_)ZDwzjrELFxG7=ajPinoUM=d^Hjd&iK!w{F_?n|e485IU<(<&8!hP@4<3wt?pPBX!!2pVg&PE za{E{d4z0V^YTaFFVb;IgYPhc#-C=)-u%=gRzCa-w|3OKD`+n?QZFFUgjT3di%&aB=R~$ z{6|5<>F6j%gv7OB-7wGpom)VPLH?9qcuC81Odv-SnGKmzng@9qf~<^nZpQ}j7$!_2 z&Va5+TEy8>SQh+tP?DU@>&m4sMaZ%qZ~k(xf%e6Vy8wBe?9RXo^;>>x6j6fLz)N?- zsU+DghJQP3l$i83x3y7|?=pMG%YEowT>hBAVlI;!#GvPskT-G(>7p8R>^RKOg1^*oAK-Dx$Jp#`_IpGl#<*r#C?M2D`=Z{U&@Wt-i=+lYA@l=I=uW`04A6 z2pb#Q+1c6h%kNAej<2t;vvp_eWMeEwa@d@AryX3!^0hjCzVVOaFjXjD8O>G4c6WCV zCE<%Or`TFw4@fh-c;>USv$OXbdojqGVX#(-&duwX1tN=4LHQ${_&T9#5T&h1L)AItI+kbes0JcItS7()NuxU}EJJaia%@?iBNf6BazTxU zE%Gf%X}h`c))Y0X`{EahSjLtbPa%fHpOTYF(TTOTtq@T8k~Nd~A;4$t0oJ%d@7_M3FWsC^7DqhyLDjLD7nM{&0$5UhCN{{=W;u94I z(>_ef+TSgY(_QP(72~6OOy?HH8<) z+^g?a>lWA;&!7!66*a2xk4Kt+VL`FlHmc?)G9kBtG|4bVgy8A4J@T6{<>7+|2B4=x z8|3UVeMPNvk3PPf^5|wT*ZK2_5r-BuTyR|HT6xKpd>UwS47yZUJM^KGWgzzk9oH;Rvm(7V9 zISXGDv-LcSKryC~qIRu>i;5r<{du~;*bcn(-Qx1Fitd(5Thh(KqOaV0PfUm&w&Vp5 zLx-$2{S(4OQ49JrSN;qJS>#TnSJIsX33bi%wsfT=I)8V|mj8+ZE0K>@^0?ISl$cZZ z#eYAi>nTzo624JYo|?B>M3*?>x%y4~0;CAzGa^=uA_(%Nn;krNO0IvMR>Xj;os3(! z$U{NL{IpZ1XzXPx@h7`kX5NXZMZLzfP~}uBu~;H6NbN`&{Sw*l__bn*+mcjQfxgF% zOkI>hN6W^Dt#HI?e1B@COUOacqlA7!WjT+MiuwgFa!jJ@ey={Uww0>7 zzfn0VsvMLt&akoBSa8a}u>JicZ#^%Im|cI@Lf7***N(83-u$t1-Y&fIE5^M8TVq8R zhXNS6plR&+aTA-)$I_C8pVGv==2MC~KX>Dd<8^Nb7vG3=5XaZ9y7;Xr>Xc(@QyJpY zDK}G({X6YNctqjR0-v*j>Rii~*{PGv@jp=h{_;?Nsm3&J4o-c`?ZCXU+j+7;dTuXj zp9FpHvXSO*u~MCv(}Hh*wOFRD7pwU=F&v{|qVWtI=EE$e_|V0_RFMWpNN2ask}rlO z`*xTR$Y0}ZwNwb_|q70L`WU+ZH{2fmUqSp>=Dbb>i1Ca89O2X00-s=<9)Au*4o`%r!^W;av z1mPw5zK4q;eX8u*bmwYwFu2D-mba5+;YY>0b4U5uqINR$PUQ)$f9WD|MepctQkdL* z{OaL-xD#}w+E})5CHaJecr4^w#>}04C;J{-u#2$E;iXoLnQ_iMq1l2*5Z=j&`Bk%y zC3#Af+pDksWK*lGGZV$F};UbETlWR+z8xJ|k5d-NVt;EVMdoWKBB#3;g zzXhNcG%-q20Q8@yt6PKgd-sRpQt7*)m}n0q>_)nZ=dt==Jh=Bh2gB zK>xRa_xyaH`7bhCPLVJY|MopBG0pW(hA51G$u%v}C>jw8A2`eTlUkkDHIA z&F#)>VX+Cg^DDtH|42SXRS|6T()@rS?ihx0hX1$qn)eoQAsi|C=aVslULBua+C_*ZXg9a_s@X$G|1hkP@-TkpavutIBWKc zzBYGVRy=*Ow>Qsn6lXB|>qd);U0*S>;QL#_iC8V&3r>F~mz}?8@bg0q>1%<1qE}GB zWXA9)$rPZMIha6G$xylNq0*#Ry$DpWOO~So(Ktr@t@11KKiMS%YCt1?TTQ)QN5}#V z1iy$x-<%{|CS%S&b~a5)T=g>%Y)NK4 z*T=K|7ZSzx9ZJF5!fPirfi-a%^qB}R|T@p!Q@;^2(7&w?r zk3=r-)2+x%(PvDMlJ$a?kFoEzc!d*t7|ZDRr_`@ScHN!Ir8P^R(ni;dp%8?f00h+O zP`z4-fC>ig^U_0yk%b^c1_?5jyYv#?Gg1;37qQK+Er`_>>ki*Lnr~cZ7935ts`gO4 zDSbvUWZn+iep8~>St|gYMziM_vdm{A~| z8)kcM@r3*ardDkqbRrg4f%i>TWUhQrlrnOI-e02oqRAfaxFCe#3^3BgT*vX4|yLC6~O#p zStgkRhQj3CS3b0XG7)!|iluKlCD*RIuI$r>BF``545iglFXi$$JrOQPVhHrAKCv=A zN;~$tpMj}|sswcR?Vxbn-D7G1z-cmWH1>B~?ds#31=xDcudwPr9qdD7${Mb0>7D_rMlazjQwfKx0^1= z^B98(i-?Q_m}*6@jaS;7D`g@hb2-(3yi-D4d=PN0+dDg&rDiynr+aHdiXv@rIGj=s zkelFHthbEXl>>`cKVJDF`S=pkeiP7`XxF(#0}S~+BBI80O>7r$#`1ja<=oUv&Yk(K zh0eM%6vn<|8-mvEu}LH+20-kzQzHFk^_&wSgjyTQXl9(K=>7*;_@!>>{sVa-8{0oP zh$AA>fC&!>4K?YGqLWJ%P6o6#gw?Pe6VMzQ^&WhHOJ@FF9`w{S^|+unD4$`#aPh)n z&8dDYoIfr0&fCl{C2cu%@t!b^LuP~`m2K3CbHv(EmA$Fk@n%~BmnD)}&4|@q zoG?u->#P85vP>*HFCjRfTTnb*{{8o{(KvlJMSFn#xJyv-7}p z*7E6GSd!8odgML^wWF&mCP>y*V9I2Q=2IE0Vo@du2g-v{?Qsrs4bRE%VEI!Vp%~iT z+1({;d)JK*VEmZ=81j{T=IHFrSdp}WAN`?a{~PVPebXf`gdW*tMBiBcl$Vy47UG9V z_!_2LH(qS~5KtEefWQ*GIa`AC#B*Tq@bG;0_2si&yxZcBP0Pm@KQQo?gp@R%%Mwpf z_&i#91r`rR>g3`+H6{KzbbKI};jRhi*PC%k3#O&d+CP;h?ygE) zSE7mj)3@Jcqott7@%GQ4nAMXgC%>O%C0@bvRwU`^pOdkI=N!|n+-9>Y$6sAGs>txa z*R{775Vnfyi5A<3FTwnF@UgBuUU-VmlseF#MzOw|82Vz^w`h$Fm)xiL_>!r@o*-)5 zTUw~#wQa)R9Y1~qhX>tiys#;W`{TT5xy?*>dk7&+jR*(l)yI#l;7F}DVUYK5e%}F1 z3YZ7ZPeB`c3zLE+jC?8>| z@!&AKt^#0A?Oq%bLAX!^<4z4C9nMp%@Oq|na*Z_F`xS??G|~1P9L2_CX1?qyhmLUDWX%wEy;GC5Zo#2n z+M)2;Xkmf>K(5iypp%oQlAsm0d07;Jfh-u^RY>K6NgbdHdk+)l=RW|}2IW&~D!H_@ zw3xW~yI-v#rc0DmROX|3nwcxS{QQgS>v7C8v$MM7VhlgLUTRl)=5lPMI;qN*9DaDw z&@fISqDX5ItkFEuY9#DZ7$bgjfIVuox~eQVR{gr#PIyN(u_e5yG-ok!;Q`#(bDMCm zL}Hi7Lw2fWj5*S}p6zs|WxwIi-a7%$A-YT`zwyELe!d(H?qy&5+n-Uy3MYIIi$%2U z;v|VNmR1%&gp(0Qik?NgY{oE!cSXk>P5d9s)rd${cG@`X{WM6RAU7F>JDu(8g8=8K zTm6$Enb zC4#Wk?G_ig5LE#2Zm`)3U3*Wz7ISzVx|PRcqFG%kv81*S82B^OQ_X}hy{=mt>km5% z5BVC9!HUD6ye(;j@jp^G5M-7I4Cmp%8|;O>Jw-6BMvl{jg@pz88&M%HZf?kFFk;dY zwy?7!4+em)*T-YonkAX8&kS+sNVvJtwMlHQEZ7M!U8+ptsVI zI$5y&odm<$i41yx=b<%%U=iWL8sZd*adB}APiK7J>O z{4GCUO%W%&*1b;ISXk4ISA9$y+W>ZXFqec;Jmy)q`BL^Ixu3m1y7EP>Hp!XSjxDo} z>|)rC={={?pIQZ$vi8C>J^%>ff5OFw6}i046^wa-1Yu>A_l;s1HJe!)u9~YIw|E^l zpJr!gS5{WOh3N|MJ8rf{Dhf-Bii(E9w+7QNgxrog_mfIWIAmiOyUH;^hNV$RLh`=$ z+OPmACtWigpDxQ#+{8G!F(NOwwma(Ms+@`-qC8dKEH>xt_H_G@e5!@8W*-uHIg(}a zgVxh~TyDMVWsqH{US&H^ZrGi|ExE~?Mn?%P;g(Bt*rcF}$mQ3Pzs-c&Z=Y>2>_1zM zR9v5}6X53FXgJ=Rso{YDZ03O+;DZ1e({;~hO?*kI^y5k}dEcR&mS6akILJAFAuK<{ zXBO+TM)4j=ER2xvF^;{~j%GDb9W04BC9Q;!nhs^$R&g-pm)1~)7ny5?9bY(6wYaM& z;JVHYg4kbM*sy#5W@TFKoX}+PAvVyaUQ8?$%9#!8veqYb@7}F*AJG4 zfQ`XWy%r?6nM1&wxVe!uW(;{g%DhjtPkhYAX52Ll;ash{G@-TvVos1pD9ZR&o}mC| zy=iv;^Ftbpa+p}y`x}P~!6lrf4zKa%O#Pk0lClDb7Pwb=>fzTT`(TRy2c{>Yki_eg zm`I$Gl7c5fN$Jc^&Lau%3==~%Xf#(&49no@*N?VGeqaLTlK0>hPiWXyjP;Mx9m8XG zIc&f}6dugDmaDo_SVL#kr_|X~Z?C_aY@9^(=2ldz$;Wc18yW+2YWiKEw=FkN#lsYb zgD3UwyqpRN&Ct%CIr64C7f=$1C$kx%gYCeWsa|pHc#RV-Ftojv@Wg3@NcH;9XA$3~ zPtP%Gh8?mO`cuM_fAiUym%Cctbt^X4a2HJ8u`O1dV!7NYP>n0Oq3AF`lvDTB%;X-( z!4Cz;iUlLb$T~&_W4NQCa{gXL@@O>I72j+nX5%Yj!PvCugW_EX7*rgbw>YxK&*!R2 zuB*(1O}^4~wa`)nQ_aRnEGW7Pr^_Gi}x<5NT$wiFRE^)~UV$Cprs{g7>059k!>x>MW?c9$m_>+FR#F z8GxCN=IFIpi5+BooWP|>{;R{<+_qBmw~T3*oeG`!7+Ww$&?r46!Rk(?+?I`_vZ>ynU+Q5jPnT`qO!H_TR0@J+zT=)-bKoR!vhl3w66RWrOlDu>ILN>w${2pwut72aS z+kL)DTv@H#R%Qcd*5qUGu^ zT_j=wk{yfDJZUgxWAp+HvYEVl4jbIR^p~_N6r9=fn*($g{wY+}i_DSeJ66_q+^;PR z4L@AHDO;c7jmz;OJNmtnYJ4NKFxX0+p^<)FBJjC=N$umN(r!vdT})h(bqd{3{Fv>tO!dASUjLFw=14~_W2paa88(Ihar>41CyD3O=Ldm)tM=hV_bd4(H#Faa z#lKcFx;+HCmW74ziZ(eA9tB!n6i+?@Q1euS6xug~+Su(Ij?^S1=UlR%_#|)=)u3S0 z3LxQA0oT=Ut#UD+vRB|`HZO}!jX;`K_IpGsqoJYkjtl%Yul4v@nCCQ!tz%&?tD>~J z|7)vvqcOW8il;1NcOFN6?{T&aLjdfg;k|57T`Qodw{TdN-fZ(LAfS^pzf;1994H2W z5bpQepC~|_0_KTYNev$7cF0^Q_FyW&Jr^Mde+)|3f_Ef$;ZFLBMbq4IuA(_M?e6Wx zoJTg)C2Z4**DZVryAYn1sO83mVC5-q}PB>h#gBErFGN|{@ zN`ng*PUL-=D$`o;9Wb0D39OZ=NYG^YMhy~p1@bmEf4MKNS{4wXLFn5g8vleDA_pc% zX*aX|989k@ypJfK$<_>RkTrPZTK0D;fHoHa$k4@zhzYO52O;p-7qfA%^TTDKHCM5w z)`}IMM#>}Kk<@&QJ`^rkZNo|{pdOsRUV(UAHM|ED`(t-4;>;WO&w$6?Uy8)qI6Hq2 zF%cSy^J_|}nBfL@Pe42zt@!%#lqDxeT&(q5G~Gh;X&4Vgsv>R}nfh)%qiz(qR=#>{ zU!L4o+LKa-8rQ&JjjhSkL412u#XCOuD+2p_xwnm1r`5C7lhgwJ9?#POm^mM0GgQ+= z__TemMib;65#hn_;of@~^XKM2R}o+Y_P5B|MN;aSuz?cR*(n9|OiX_)M{-ofn1F`C z@))Gtqdd~aiS@fQ`NG}vq0!kYlcZY2sBdai762H!xG9`iOaO9{h5hr~RZ;G&sX9-< z^LNqFtXc{6-UJZ*S_*++TImI{sFQRlUxE-0+Z#*%urpA;(U&hs&^5bnhB#o~4bcxbDgMOaK8_XTy99lZESyo`dh@x%>+^QAib(Ar1n zSYXhYhWi;x80UlLLFT2e)!?WcYJr;uy73p$4C+YYv zlCp)Z`eQro_W4KAOgB0J;PXyop_x%27u?LUzVlCBWTcx^#_ojOrhJ%g_C*dZS3{1{8Y`CmjELO`IR*MO zY(pq$W;+>n7*;Gv!7j#w7(W5v_v)a7TqRGV=yw7b&KfMh?(}LpzKp=1G!hCq4VN&^ zemfa5ewPZ=FK&!FJz*vPUA+QRZ!tNa(mex%_d=GB^dN=zk~*fHvBNm&Ef4bcYDvx4 z6m`GBPs@+ay*T{)IugPvzL;0s0clnc)Y5Y3TnZS)(;=nMx$guzgFx}+>z*pq?s70k z_w~`!Gm{Cykv*(3o*=#%6ZQhqANW|r@7=v7fDb;-XMW;uiZdWn?Zf5)L&Ghbi8nmL zbZ8*&Sy^)~$$%}_16vOCJE-8Sm;wYn{QDi%jBqi~EB4rG0$5smzM9DRzBJ(M%mop( z0yMdXoJ6i*w2lPqwFO-T|nX z3$iK>cfG*ifkbAWK;Q1ZS^d`7Col~c*0c)%(hkPLYFJpUjj(O}cm0Pnb@i|b_cvIg`HZv@=2=L(qkx?_&{?>i|$Jhh3Y66>p8DBOfQyqgCo`@ z1=a)Tt`C4H1lRp?rfQn;8-GXyoG^j*2?BEHc)h0ppoFr3@EVj^ zHnRZ=x0CIza_cF^Znu*OQ$iuP()00&^OKwB_&DJ;u~{WTZ}?T&$OXnH_Q8Z6&nK@Y z4d~>$AW=*k&DrpC5wtUtF?E|zS(%@c?m-;A_}umGDc#=N{=I@Dzes3s!Q2njOa99s zWW4|AM49kG#Xy2gKWy?)7z~;MKL$_TOG>c8@Z6j^kALK-0cHl8diZZlyo)BV0;I;x1i1q5Qe`mHG2h;c|4n;AK&$Vl4coH4^AhB z{IA?0GgupP2Z_r^Vk(VLGm_*~j#zE=KGOF&?Qgb!zJ0_$(AGLI$wPJ!@6_t26N~vG z@sLdH6c+VbD3$U&5=ceA1y)w_UL0+_ad1FNlr>kGK($2*_TyN6c4umof%?TENC=CB zmsN5F$UneUqXOyu2iu*|e65K}+ca@qzy||f6xr_Qs>AvYd+%dmWdL3fNDY->y6x`R zCY+SSPoK871>u)?E@jLU0M#s$mIP3s4_$jxi!1(9v8@cR@Z#+VDW*!i0@XYI($wCL zwWQn+-w|QA1DXq$V$F~5c+wiz5&xU47Km-S-ce|!=i=2=RTTkgwL>l%&^MA`6a!_o z3QTu~5@?1kdXfdkD0|H~ky>idaW!>EGn9B50&%uKAh3|Aob$V*gG1}!Ae&BgU0t1U zfSTy_2c(P_=yyr!&)g1+VW!nb?}YaBw|&d_h?5(C+Ou&osz-p~vx%l!+aDW}klOAa zkD@CZ6ez5PHFZSu`=%?!{ap%|oW6(de-8}MA0BYx5vbGz&k|tk_67wON_7LKZ z!8A!EK@I#Mq^Rha5DGwB-(K%|BYh&^XaVm>bCvxXuk$VmU^O8irv-x-lvq!31C6}~ zNYJ2H_yu?pPUvjyOQ<5aG%dh`fcCqiYZedG^b|9)=G6)TkS*{ybJu-A<)5**Nc0^K zKUM3P8u1AX8*OW$^R6G7-B+uzLV)diAS#oS68#J(d`kH@RWZ`Ef^UR?Pk?CB(5|r3Ib`V81tcKLLWh%>(FL!rw|ni^!r@`A$vs zzTcaZmd8sFzgrEY2nKS}ZG(O202^E6-1mK+AFSv$lG%@)c<0`MQ`=BmN|x3aR%6eL zjzA=^b*|Pbu+?XeXPgA^IwJlxmQj{`VmmnO=NDVBjj0Nj!NI}t$w|OkOKEG9KpeM5 zSE|-h(!6hP2$|E7R392}Ee*h=Cy8*CQ_SwAqs6Yw=>~M&Rpe&z&kwnyl}KC?ZDnP1 zH>H>UqR>`DKuLanBcl9+B;Q`JsXld9f`;w9Aac?>JL;EuBh>U|MKbP0g~|fM_1OUF zw}8&%Ujz8=z&(Q(NvpUDMh3>GyE9+De#Idt4+EwJ$IaoUj*hItMC66UgYn`v=|ueU z(?~wv-fs=2eVGq$kDvr1*Tm?J1I(&tX10^fA->)-U0`CjTn6OpcCjx39fXCB3fu;n zpe&1z+y%r!*B$ka+S{t{k*X0e0A&K(hXu#L-Z+ODG*}dYX`Tk`a`WygeS;b&9+=Ah z6St$aPc+4llR>{PU3Fy>g@ef5{)?l+QAU1NLqqXDRy(Ho02p%OCz(YX;|Et3=2 z;N)k2VW(}AKu<~8CKmqBw%{CwO`g+5HD|pT?G)`&Eq)IIfZUJUFfGPI&|CCi1U=eE z__2~$SqDfzO+{yA+N{iwjkuP+o50+XmgmC3iEM0rCK*?E%n8w78ahc23kWq` z%~Tc~eL*0inDx0@6#%}w0PqPP4=W?tK;YZaO4kD}B`}fw3gp>E|I`@g`GEEk@N+I5 zr!5CFUx%uWu(r#-_#vm{K$Ed}GsqL0_h%cuRqj17|LY?Efc3jMmo-BfehuP6zN_0t zHw7hl<}0)B8xi^4B@5%!CtoB>R`=0vyfVZC%G@s{SnK^CKtGag~Qsp)g`Z|BZwB56?KMyPTtWSfU@nIX-TWtEVX4>2D#NHNV%7f9qepi!FmN9~emmX^uxvPG)L`k- z;txP;*zmIt9JO$*&VzjTKmlA582F;kgJuL|uJZAl7Ua6mb9F}kCJ%rK-m;#TY#e3i=$7I=A zqPr#FyU}A}bueShml*pWI5|={xO8A5GSU+Q0(q32d)VzKLl;Qt7B=6$1d=|wzHe3| zi#)R~zTlohfP}RLiM&Shi9ugs+WGyt_y{ACPo$*QCLO;}z@QOQnqaka3$?&?|+?4;Z%cPpQaTh1~H+d3w%hqKF@jh@d2u{>$hi*RHFVzk?15&$jfgJmS zDXjggqqnoy_Sn(0nyq>QE#{Y97R}6U#&OPwKzQk`16FJSjoslNF8d2W{gz%Dap6Av z@QwjEV19RI;tBBbKE{tdk@W!nx4%>DC`Qdcf=Wn2*e+M5es`OE2JI7Q^)!Gw=C3@r zqp1&FV2XHd?9z?*00@pDf^#`2S=%Zgf+F;ND#$)Hn_MXzX{8w%7h{iRt+`+3H+ zU?0${mHdvK$y0mY^SrUf8nKf#5z4z=CU^7X+%oF1yCy2a}*t!;cs&B7IsbXc5A!_UTD zZbK$sz>idq9MLwy2|w|_(gi|<;>wf!0##SmGRv8%5!4DMWX zD|4gZbZN6=>v#HF;aitc_$;tctx}wx4sc*zd*U0C|L#f)>0Y(GrlcIr0i77E{^DD# zu3O-o_ieItBn=J$!M#Rc0A2@e&%a3c_R~uq9v6;O`iaXlZpW)>6H7@8*M}07xy}@)L%Y-MF+t zIRGO9!Ynh_^!79Y6=PQR?DJ5)C&KmJ#2iq_8TmhipUmoAGNMcXnIFmaA(?ifT&C4r ze`UH+gtEK~@5EXa84~>zx24$Nk&`RR$pyCo|6hQVEdq!&9tH0>oF9+rRRK3)HG+p@QwYNCLsMsJ*-$8fz~*#?EESGBz4XI2J543Ar(7~55CD4l>PI= z7D1rr1R!x0EfaDQvKgGa6e2<%sjMW;nu*pf0_E+hroyjmu%US4J%`mu+^}Z?M0{qN z*~8W|kpZ3g->k%(fRQ*)yD9=&e~vCGDT(v~ON0=Ki;6;!a8VV>p!^5X6;HfeFz69K zeS#z0z+h`EUm8lf zR9jLR4xO~l5IMy=ukI|^X-Aw-13JDKzykZn?m7*0S^)u}{pB-YZ1~QIs@VJXng^^Z z4VaGw0YoXanuq{q+b1L>Jpk7OND2+@4*d4*7wDHtt*2tdgYb|ei%?Plzu4GVzJ5t^ z&sNh^&vsyk&(^MD2QGDCQURysfuC;x&Ov1bw9C!SB@~#jLx49HR(C=KkTwNSGHGcs znX-Tgs4`?Fa4Aql150df=wQ~DQ^<&b5jV}6_m4Z}ZlrFM?agQ_2JxtA31 zSO9`Qk}qGo%5HTGV3Yf}G)TMeKCsE6>?8U`mbSLwz`pAOjA?=YADXf?Yg7kt&T)W& z|_3&iZ^(La@KTIcv6rgyjE` z$w5QnizET(P~b_7huJzfq=PO4D2aSPLP`PZsbGmT@e~ll01Gt%Q!zW15$=ESI(mBP z-DaEyoJ95rCn@3To7r6KyvTpXBcu)Knb_?(@%+NYouiyB#V{DpTOf?nQgSJMMFF%3 z!CDTTNfmPUP5Z>2HEh&~fL=&_Dw<{A?dZHncawNaZTvbi(G8Pkh)KW-KLQ8>NVK%H z&>xX>f^GykR0k;o>9Pj`xdSl1UHwh+KkLGfYXQz5Trx5R(Z-NxcT?SW`4mzFftW-# z?*E@GjG51q0U!jiVux#3S)y}uRUD*&tYV?bF8hqX<%hgDw{W;=$_b4G&j3m)WdzOt zZnE3vnVoO)?S%m~2pn|%6Xn*#K!WuHv^;#wv|L=#z*xs>GtCRx9L`K15eD@zKMtY^&hnU3N!Jx{JFaJ``QkbYeQ2O}K_Lc@r+~ZT0iUO8tH-9$| z>3tI)5eb_+y2#>4oN%Ne`b1^Oe}HI@tZmr;E`C$h&$IfoE0Kc<=6o&cg(ct6sr)J% zSLs`U&eoIID1#y*JFlU&|1yxBD%zCmmnFbY;{Zk$d~g8cA*bai<4`pzDJh6AxmX)06o&ol z*;^5$z4};b?yt+5q5J0ir}rDL8K(r@WB3Osv>&$@zO=Y5I`m*xyFNyW52{`}LjneP z=z?61T7Jg0x1vmwD#t4s@l%LlzcsCB)5FOn%nc1fMN@Z)p1D~4dQleBW>_oed&Jur z1$&OkS;CaB&f!l_YFtw6Kc^U4B{(ZG0H(FqJXO|y0G zC76Fd!X!_e&RG(u^rg(hN;?X+t*qCFDjA;(7Xa^KV1?FX?A}h!#S=guS8v5)n}_%& zV*z>w7qI9Jf>U3-baYyls9Y@j$WIbrX6@|;(Fz1}giGxqNVSsHMDf?X`pZ!8{YWZNNf6|4Kw3#= z$VC5E$$kQ!)B-*+0Jusa^BWsoK-$}D39Iu1*_~Q8W*LZeBTalQ)RPM=%4GXjX1Z z*KEuI_6Q|6TRd6~)jnuB#;2YoT9NI!nXfv{HZ-7zaoz9RuLao37pEvs_-R)QmTym! zy9tn~Z`WDPkGzA^Eg1B->+e*#aE0GBd;n&Yrmpz`8du&_0t$EBpF{|1&`0zeCbtoVERSrl++0y82F_$ZE(ohc5-O_iPJf2ADhr@Q%m z05c)S@oCw$Fz1|R-{bD@NeMDQ5Z|*A0(UpHRZS>59sBV)i~)O?0X02@%yex=~9pecz_up5Xd*RN^aRfcS_rYl$GQ?02Znz3-zcy zdu*CEbdwqMjYG-t%)nlV3S2;{K=XMuRH!>@z#y5j?dymjmAio3(fX?}G9h*$C@TR0 zpWO>8$c$nIq{VjyN`D5*7l2+Z*!#q+*?IHZpCR!}T z06ae9vX9Mcu*qtR;P})F;oaa}`zjRBUgEF;R88Ne@4NUW3f?~d1lwI(a~}X>HSILR zQkLBa)K-zw>8j1@Jq7KT3%xc*NITu{rP+#YQ>-2=tX#X2f4)CHz*I3_)L!+1Cwo ze_(}Xj8i4_m8=td+REJGSy2a>Z0y?VwccMFVV`oQ*hSmVZ|@hq8HmUQ@!?JOMLpvV z-)Iw}(}slVwF5c+{7hg0(;1+RU%D*oaLp0F*ECyjJ_)4DVlp}R1+>rxC^hMhL{GrT zhklzL`KGPi4mrCWaBBu7mhqqlXYqL>D14u61Wb1=C=K&X{bq-;^yOwAn+O-^v_}G~ ze^pFWbIu!l4S`bYYRdu^lLQMCt;A`0WiNe+m%w&Ztgj&;Q^jYIQ1X9~_SR8dwcFe8 z7ZFfFF+n611?d!|Q9)1<1f;vWyHO;RlJ0nvlLpZAPlO3t#cxV+~hD>1nPbb(Kg zJT3T)>>!`CwImrfBU`>lq@=&k#J-IK3k1#!#@#sIny&HC4+%H%a0~-xx}*SI5$Lpl zrps!LA;wDMS%ZSREfd74gR{&J@k)Yzr`@1{IrU4oX=<+wF=`CW8xctawo}sUL@abY z*Fw@2TV|l~@+saUf!z33Tc?7YGudY0@KLSL58BQ+zfY9)lsY~BMRBF-W{z9JrnmTP zpblsoZyYhoCO+$z(6WaNsJaxs!{*Q{x|(4vbfr5Rnroi{Si= z*5d#NX#FHd83?Q{s$@Q{&E~VtdqlfLraUW}1Wp_Hlf&6gz5gTWC6)A9k^V;XLL?(( zg8icX=fK{kdNyG>*5D@3Je}oKK3;Ok&$`g3qzbd{Y!sV6XmcFZOFh%Fc-V5hrrheJ z-g;2XoNn+)Szj^$s>vHKs4R~i=}w|Bx8SfoFeil@NjpR5Beco9M9+QmIdShTNUO1w z(n{uBY;i1HW<*sPac9ov6^W+@0 z-2xq60=D|rvnr}6ImT?Q$}k%BmB0KgDf9fixroqENf(RUPbS)E2F63fw`~iY9)PC# zi4>pBb>GzdLtClL)}IG`RplEKwbBPh6GP!=r-bd(6$>Et!cZi-bSmbk@sgS!t_ z*yZ#AK7WB=Egx!B<01JuKSO6yq_etf%B$#j)fJ?Q9K-aBGY>p3rTe1BsuXb(R@{%Q zi}W$%@%fuN`%QT%0*KeF-ZIh%KK=7Sgs+6`noc*c-FmpN^8RbZWjJspRx>aTGQbAAm0iZuJ)= z>G;B6=Q~^WYnF_N?btQ6OXl&j)+3K5<#~%uiKT#fnoHiKrKr-f56qR4>tO;162^cr z2}<78q~Pe&bT$%U(h87FnEd;$C6~Xhm3h8fp%MQ+769-VKlCB^M^}-V93)1cfr2sE z+J+et;uVCLiF0LCpEJPknAsyk`~9OIOQZ@VMY8#Ft(0=f&qy8l52`u_&zgQErjjZ$ zGZg9GJxH2-M8$E-6+7qSelf@FB7t_malF$Xyqd8ad}1)tq1f102#@BzTK#nN&k`I* z|7x;qHIi4zS4kp@qpJ|0Y9bR&oa@}b4YnZ0wFd3uZGmUr+rwYO2IXnr4B`~?E4`2m0Ds*e;i(mza>&3P3SvpdneM@7K@g#5vX ze@Z38yDAlRSd;wNi6a(B3De7}tq|9EeR>6HEDoVLL)$cBsQ&yYe5nWdS);U2?N#q~ zTitFC#iG>t=EQkAkIbcQ5CD!D3WrD*c;pb76 zN)|pK$ZWTY64?CL?BI<&Gq(W4vxS%|C91RFo2uD(%Q#!p6Iy<-1fwa39<yCa)>F}{sG zL!f8KHPL{C%|?q|<*gF$zk6hhP{DWGTl+67{fcttUV|w2@Hm^m^|0na+fRIrAlcHj z@&j8C($J2$#CGiM=W0&ag^pU%vsgUqTpu1CTZBg7Mhe2x@QL zkcj$Z`*?)OaFryKwArrYw;L209f>x;@cft~;lo?wlIeY&V|ss6KWV}FkliQl^fFC( zV>9t`y)s`2HdH z-IV0x>H2JQHu?%25GW*&t==l52=+z z2nY_VC7uA?*#b|1L)(I}D5Tyd;Zfk>*1_%|7re2Y*C{_61x6&b2@m803TF-t-ripb z!8<;Xu)x85mUKXUP|7kr?l8D1dNh)m2iIj$#~;2{&qmJus0if?GKu_kT;ukLZd2yr zTx8lNpOW?9bTJgGQuaIUfr%whi$4kszo0oiK)=R>xcr;w6(9VP4-~AN?IqMwd?nH% zHB!$xdQH-MWqFzQxtfW!!6B3b1mU7erBYcgSnBQlD(Sby)Jv9yFscoGP$9(HX1d1y z-Ej^N_ZWu^mO|yKf`8h_mi%L_*~NT{>pXlGmrV~1vE4?u=aEpn`uCF9!CELl(SKjZJ6nczwM9C{)^;fDMBJC4|p&4ehWO zXl4JM#`sNBp{!sFDL>F~c$|5q5cb1Z-zNIJ)x`%CI~mVHToVB-_3J*0rI7-r7n>}NZvRN)#@DzJe#4$k z#^}uAh=3%O6jjaAQ-s`D@o)|OqQ25CXmk(T@OV`WRoocZI(6!^(~q1ZdB#JLxlpkx zb#cQiQBZJAv0zSAW-u;hv{wTpwMpj;U%gWRqa|Rb-exLB04!+>Dm@nKlTYA^;#pKQ zcjiUvv<+H#|ApnDyvLw5=m9;x0~GMrx3)Au8-^qsAmazb#9Z1X61XA&iSlI_FWlf2 z6%{uZFp@0b`Wg6FiT($h!o-lD+B(yHcc^^E>>Oq+>+~sSlKE!5MWE8{ zbhv$&lk*NPF7QL}j`(+_5oF|3_e(g$oWYO?k&RB1FQA6RB64Gq3%v$dA}|7i(=`#w z`w{c4x&mwuA9?}bPW!0wRSoElXcY>5AV;ZgVxrR99-xro^84cd2b6>Ga-Jnlh4uvd z`~3U>{>F`NEfL-+_p0O@eaE8_`MUyzTEqlBA6@*Fraz|sb1>Z4c=tj0k21UmN<@e? z|H!2$>r94$QDupW{?bt%WXIh6{l)yw4RNXKZ?wZD1pG=AplrzzRsl+%=M`f0j%bdd zP;s#0fG3v2d{#L0UHaFrNa=Wm4b_>y+K+3j zVk@8@^Tbo_?(RBP9t*Q2@~3@I1pJ-ON!NCdr^&$l4RO{J#ud5oJMT!AFN--?{^)FV z&wZej^5#3;#1ie5OG|k{QJkw@Qr;$^;o;37P+Q+C8a2>|(oJucN*u5|brc#QAH{gb z_viONsI>Cb>4lD9$~&8I%S)X%;TX1d!fs2NGvU4?%hlX^%vs%Y5vwf!hZgw1SV^k_ zN&9v9%pJHgA#4F-dk7S2?^aRfQQVfa-RtCGJyOL0#dFT%y|G~p+Ck!gtevqJpH94% zm$Irlph5@9CasS?KC>r#6OXlJE~yk-kTLk{*91!JRP z*+L#4zwBB*;rz9B!aY&SeHz<=g2zEB9yn{_#3MxML@~k9-y>2UPX|f}i-@X?`QP#ooUDeGwhvUyV*4HHCr_SOu8qfBBY&=HV4x6Qgq*(j%m)mh z`te>Vpgz5eoYp=(tqo8$nGPo~otGYz%dqk;VvP*1qP! z`j)Bs*^sXDxNTq!F-=dNH43@S=(Jwh0@q54OyPOo#*F6tWsuOfP^J1DJH!EOLiqI~ zvrTiNPSKG@>IruiMHo z6?H)R397DEF($%2*23!8E&P4EL9_*9xynPKCpBN(=C2Je?F!Ye59QV&8ZRj2OOPGK zajg>kVFH(IfqUe3f5A7w;r!$~;=?D6(`gW@-R z7|S^HHi?D)a*A(aD;bQ+`s^$u-%$e}#u!i#Hmx1zD+hhL_QryytgaNY*T#agQZ8D7 zJ)bTwR!@=fGCgXik#^>(;c)Ma@`Q1G3l`0w3mZjL+A25VYDMAzuTf%dC1b4mBD zu0S$O2e`j?>m2?KJc z;NO~8v^)n1N{-47&_ICaVJOteNi7wXl`r*?<{;^{I9pP}d`<&~#!<^dY0^?vUcXPT zqKq9MF%dvOfa9@E^Dxf;h3fXikz6+Adti}h)K?JrE92w;B|0Yzh98J%NW7laEsHt^ z@RnOy5J-Gm+@*D-)s6L5I)7G&peo;Z3blW4itG23%`wRb#wj1H_~Qz6=Uul8SgqaktkW2DLDoBGK~Tt}&L! zX=N1H6Uw_1FOkx6H$zUwr?`j{kzQ!;=s;rx;K0xC*#%7D$=e>j zYsO}o;=(WPxCe{a_y$#6zSua*mwfbVIVK{u%#JW_TKMmj6(#{n=v|}XEq14+1qb4# z2}2>by|4v?h?dkON4l)+pMTfWHJW)y0e+EDkRbn27rk3Ia~W7W#6o4|?v@jLv1e#D zYXACBULk4oYc+gX`S+PPFt`W_x8BQmj<0>+>M6?6oH#ISwf$yyAxcbfdJjKxYFSm` z$7}jG|AKpex+qk(jixIqW9Gaz{_9{Y`rg;nhTr?%y@v3N*Sl&;YnWP>{(0d3uLUQ} zwEJ`^-$|b|oiJRFMCWLlCuCpxe|}qz!#VCDu5T=HyP54^kYjGsFmcdvcea22hY+3+ zZebyUy)qiJJanKelvz(OWIoOOY+)5MUR|%~i=lF*C)rp&=~_jt#-l z-+M4fN`TRgCnnZOyLDTHJfwL6w%%B895Rl^RLdO66yJ+-> zoA|f>2FH|_ukQmgG8AD{dffXyFGJqkoSc7vzbiO~bKvjk>FIn|p6P%6kjrt)&(*Vf z)W!aMmj6P$kD39Jfq+TFfb62-h2G`wvLVtREHWtqfNJo zxZT54oFkaEzE3VMivWZkihY3xj{ixVSBm-g@gtPavA`VN5yRE~v&?#B8tO9-9zJYV z?8H}b3|KnigZmBSy3fPK2Ta{R5?|pXw8|xOBr+G6?MUV?yoy*fz(AlKp#y#`7<;0S zy*8H4Y`~x=iN(QD?y%UKdV`qLl8l>sG+GDY;wzVj6R>ETf=mohi)}Pn<+X4Z#Ndaj zH+-4@9Y1qA~0QjE%hs7e3H= zEo4=lszXr?YSTRc=?12K=*-`TU5)4OzqCAD;N8i45MoJE`_P?kqk2hb*7a6|>xfSAdwB2l>JOGY8?WPfwiQ#`Y1>*v* zjE;4M6)P2@b~VTwAjEtqeFLxjR^`DwA@CNzgR?$xX%BSZ@MqN!?xM1AYe8Z@6{nqB z&d$z5^J1c+6b~L?Kwa9~66QdEmWm0lan~0NxR6nDa}z-#9ZK1VRtg|99oeH$X}4Y- zMe1ip0nVq#cCk*oaxhYUa0T~UrQ+m_gmQJH|K9S@Gbps$0iAuQ!hzjlzD*5^j^)Rj zt^C9JTGi9BhDJtarl#4&l)vZmH6UBh{sm_iL;cP?cw%fU1`;96V4H_Y@apBuODx)L zsvzu!_Xyu|f>r>a)CX$%cVL9_L-iBU$mzmI^q3QkV0H&!YFD}(3xb0Npiu0jJH9f) z9pTWQfN??eJa!;`XxBrA5pHmZuj1{uw;!PZxG@)|!fZ6m3T*lmxVb^60OXdLlJXG5 z?YH@yx#6Ai{^OaE0;6YCRMdgaSgBR{dM)y3TU00d%Ye{pprpbD-7* zhYCi&glRhD&BvRt?a>0!BF$ zSQMZPI{%x*%qoAr`Sb3mp1!_*sX5@>pF)0&?!BxqVV~34$zFStPG@W)(m*7F#S^AM zRL|bZh!E_7ixX8YrDS;VaKm4QFFSUkQ{U5bLs$W&59ul(KvRqu{C>{a)i3;o7nD@! z_NC#)9^AiQ?>JiN7x&vclOwP*ytPJ0tL0gyEVZ2{gulLr#}#k(++-e8g8=!85D z0h{4%*n#IZ=UQQtWwBnCMJk})xd>X}96I_I5##CZh>2pc={v-%Wic;eVGmp&kPD%D zzeyp8ZA8fQBUkGcL?j3wXv&k6Z2=ONs-Vz~=5rwd$p?wcu^HIcVw2fG*9i{gnAe^E z(}P7~S%xn5f7MpSHD5;%`4Zr1|Cp9W0|yo&a*gJ3=>Osa2{>iDxm%8oj;2;ti7@P- z9!+{^EcAOA1#-m!iv=4IVmbtyUL*WPRMcQfB!v|Vuzo-2NxZUdt3?B=DVC4=#o6f8(1i{E*?Q;>U1PEVT?+90kC z#IW|!+j}NLC$KIFiro7ff|4e&hDVX*UBlLh-6ozMgdpiN55+pc-o!~kiUL&;e zKueKK_G_>LgvuAlE1?|W&>b8aLfXfGUqf%Ak_Yr*4gLLvpV$7(Ac0({M+{L(CTZGd zLew;?8KwAd$j?@up7cUi%oL)CY+a$gW%Vbh5!g%z41b^nXwENI$FA!(^1cbWPJd-^ zShMP0_@7nuNSw?8Up{w@8z4nk@z3M2EL03VzQ!bp|E>lJZY%F}WbK^FxR8B&IS zb@7-DKPRWw^z$LAQqC#(A!Do&MMO z^f60@m|S!4DFrQ`qAb9EkUuR<7`Zm@_D)BeCdxXr;in~t%wDwo?53pUt1Tzifm$NH z*pBkYSKqsuR{`i{9a{-puWh40O?gT}@El69X~%8oN4R^~W7`;=Ko*LE#YL8efMx`JeNAEI!nS#bl+xeD)8&g_j@Q` z;cg8Ew+l2<`~dy>_VF(j5MQ9F4mUD-my^=->N2(4wNzTpcg2+ic}Yqp*!1MTD|e51Cs7hCmdclEwKFij*P=o$TtT zyxud=7(-`f<5fiHz@BG2K@#8A7F#0&XLw!c@3(7?d5(1V$jv%33NvHfq(;)eatfka zw!Dx-^Q1I^LHC66EvEUV@X9Jn7XagCOX*s1qZh!bYXm*hXVS6bbnyQ!s5XFa49VE1IwYiyg#L)K-d5fQSr*Y0LcO&x<^%+B$G8fXt8fM z%1+{yey^(ZsOOpwWco=fE>s6e7UjZ>4AVC5WSsa?F=TQO6z6eV>fLdpe_ro- z+fI9$W#JN4RP3=zJkEEICbJlw%I0M=vye0cKuASL#H6Eoe5g{n5638;pE%8wi~}hq z|3LH6&V))V>Ff4_Cl=PZwi6sAk@-wVZNF!j4I@nPj|iUGSeNTg*j@+o#LVkfErouN ztke1F7;@Tiy+)50F9`&pIJ8zlYjfz=o&|2(mDoJMKu?woS|0S1R8|8lV*lp^V`lvW zL>>q2g#^ zd?d3INXKPCCq`lDS3?_=^V%D;&a2L3TL)WOk+IT#SN|skYO$ibg^I6Auch=8RM0AM zNR2CrB>$@Psm#K3juk!VUR@^WP9y>%E#z<2O>A*YtTMhMx|^uaZ3p4!K_)3Hyz=|f zPo;QCvtc<%xu8AkGJAuF3b%x(jLsVEk5VHe09FiT|Jq?oh!g>P&Fk3K;Tt4wO)go0 zmIAJVL{2cFbs;+inNMU@+)DBnFP{R(ajTO6Z_AWbZze4A$X9!D3&8rqRxyfL9o>}_ zzb#C7k>P@ZsG|1P#w*9t^*_ml+2TBOh3D?`%rQ3w_}p*YomkoN73u`EOd8y9Ojwf!QA7p`P`dqS6ZR& z3uBV5{qOB@Gy)n4xkJ%W$GJk&lxAxwN=Pk8@{)~;^oW9X`|#~iC`382+eAV?Z(cC#K$+Po<&5k$0n<-m>ZcgIc5!z6f(C4&Lg6ez zON~3rb-wRWx=^nF%vSN3p%RhzZI0b3J}l-+YVCn?HTY%ooNR?Gh84!XNfc@xc8%;k zU6HjWTc}xF*>@O_vyT3BP8Adn<%~0pp#o+vs0=TbJ3pIffLK$;Cyd($uBrci+}Z>k%{2+o{6wml zI3=UYOb0%6=&>BPhc$KDUKngGrqH}t$@vaMj0C3xm6lps6!lFZg;Fo)9%lLaYLOvu zH`sNhN?Cz_f@Q;jmUO*oEB-~` zu`!tlJr;X}3p=SEz7cojjVvEzNuob#@Z{NJYFDxI61y@LT57COT2$^k~fz+0P z>wmmggE5usD62G1lgy{`@pYo3WLXMFV-h{z5U-i1ZoEiGGlKmx2)Zk6vH#$rQL zE~^iq-$Oyd%`4CAH=#X~7kiQs-%WdFYL#JNvw(3r4lwScg-1)6%yS<-B398A`WTF~ zW=RT;hxke@JnW2Pb*+1NR zS;2I%W!}kRfT)sxv4wCe-$bby@F}3wyrU~1eQ7j5nJ`DUlY=A$-zx?v{Jd|2*caqQ z>ng1J)Lna{=5cUWBp&o^Do9f|WL}F|H_fHVpUfg#zU)60p*N!YHZ!5&oVfc6(hnhv zW%$d(B5Bf3nk|)EP);a4AozWh2aNo4O^(VmaV%zWBAtlj%y;lK%lRsZd5r@of%46V zOR0a}{!LLjzVQ&Z$$Ez3)bkiukX(f5-HMA4c zj9Spuq+L5HU>~7#3S_b6l}A3r{UR9J0D{5Fz=NHPG&~g@4UJ~0t5IWL#0y$&b6qTT zke*L7Go^F(ANsmFJoHaVq#p?uT7Q;#7wWQqER{(?0Xonc6E;SpnHS2D1o{D$r_F-i zGcn0%5cilnDzd}cy{oeH>#$*% zwzKJe0!AtHq{tC=G5oIWJ#*$%7SM%#C6~F@LoZ5nu7n5FX6qnL9fHza=U>V?h^jvI z*1n@dApcN_oqc6z^}f8gs<28hvM36D&Pfq%QFd%#T2Y%k4XJ{fyw#cK9ym{VL`ZrA zYh;;^8JctGnmIZNlt_W3G2etVEzXEz$POfs;A_aqD`3K!B|XW)1F`jZo4Q$gIUxl(<{~La0X{t1zv3!0DHk{pq|^jOSiT2f#hUCtiU}doEPaj%jo4Wb|yO3b``ykcY1K z_GT1GjklYvL(si%x=}-f)dV7)YTp1=WCJcK(>)?Cnd!Z>tvc?PH?P4(h^|cU$NjcS z#Nz%(V+XM|{~+BFMSpjnzvl{(Ic!Yz8RqhWHv^XDlF;_2k_WKonX~RsmfXf$`S>un6dC9HHaDBU6E}7Ad-Stou&4YoE^ zs@@3(aXBKi0y>s$g~hF;Z4*_qO5>sHcxfD-$9vHX)oCjaB^PWwFswPp^Mm?M3 z^V_=sJ>H4A0=~h*%wL&E~Da$5H=< z=Nk0N@kudw5nXySY~k?tPU3R&h~K(9;RR%%upw{3&CLyo5-RYgGspdZuuf7fD+D;s z+V-3c?Q+P*UsRp`YL$9zF@QdvmbNjN5N&9O&dT`CasHtEqCHvUjXL8?B2|w0^u*te zat%!lo{uWT;E#;Tj_n`T%9O}OZ~(rAMLbl}3xO(xX&ZH#5eSiIMXHc;lD48x7^>F9 zUMO`cx#Bw8n~vW1Pt{t7nG*Xe#-#P{3|xaZNL~Zh?*>6sb1lz8@zp5dx}4Vb1I+fJ z7H?>N0j#24;yfQ|(ky1NtPZ660z=0It-3Dnp?ReC6flbPeuBafk`0G^q6YlUHyH3c zS}p4&N_Pgih$AEs9U)B!sj6GhCk|S(2^%i^-jc++e5W1~#7JLVz(6kmTm{-jxk1n2 zFQs%PuQPYoTh8=1t>WxC#IwhFKL|eK4P=9hRW~xa+C)WOy+J zoZ~xguhs`#=g&f%zOF~9jLb1U#yn=09x{iocYrdd^ag1ZEL{E%;I!@^t_gjV; zj3nmipX!}SMI#F5$JzOc^mLf+MU}0^H}bv31{VGJrNvU}%2mr0={sUNSkwpO7v!sK zi|My);u4KQB=Yx7r80j}U-;OPDu=lS_uAxcF7N%_9D9V^>OLp{_e&3OJULa0Vc(yK zD8gsZ!73ft)M<`Zy03M8pL2fF+kdcL^Gck5Vy?*{zsp_(&3Ri6owC8->C0KA955|~ z{-4r|RKPcwgaQS$n{J7QRB-^58}roaFk@X#?SSeD3OGDFAh-RiNdWVIGzs|IACXnt zI^t&b(wftgy(e}il$9>&#vWE7rn!kKGt4E%o^F>DlI{l`PH4JLUT4RPdHJFwXEES% z>VdUO&|&Y30a1Jh+XQERzru^uI5IOg%(7dY!}p+v$IzCtgS=z$r+OT`f1qg$SIjr7 zT6*u)p|mTS<)5}QVxtOuK^^jikt#` zk||^s1wLN?xd~QR`c`|s{Yi94_=eCs{p?PJ8tP~V-3wmXLPI%m_PZ)LnP?Nhkl_c$t)CR$tubU69#Cp&DoUa)=J&RDW z9wAZ(XkuQctZQVE{%el4e5oigp@y2qw!KCr2l^$w0hP7RA(oyJv-!w(ECaMhb^Sw^ z)w9rkKwj1{HMx5|f5D!;V(5+ud#f(nqrUo5Kscg}EG#JLQ81Ks&o*@mapg*$K28benLx zWh2H(bh&`CciwKqSvHwKS~%CHxAWb8?wik0=cAGgHt=;lFDb&i83mX8J*N|s(tK#s zhJ>78rHih)#Ss)8_}!c3X+-|v?W~hRY}fD)%P%IMc`-V^|- z0n#!BWn#CJbFJ`SXjK$iZdhKot2^g^x861tD zMWu4f*_hehIrAAZk*dVimqW`>pvE>uOPRoZ-=r7;yeg!(Q6PR1E>pds**z&Y- ze4vS5Sp#TDkB7$sg7lHFBUkGFyJcwhxeujSq-{3Tz@VOs)Z)N@{R%0rL;G`P$6Z!( z$t01M&GH&m)!F6%068%CaEpqHibOvSfI7tdJe$C(yquAWMIP2K%)&!p*Pt3NKoB8nSx;^mR(hNc#mUh`tzxb5O}^|mnje~v%6#l?U|o( zN;d-RkM5znB-MjK2eyS*=?ncu{(W_gs_`0DDo?@3?Qal8ow#mpHW_2wce`wzKS`?~ zO+GRNiySTGkH^V;EEaMs=5Rv={}-ds!Ay|E;(^qm;1_fKnGM3P;};vFoio?yV2yjS$k8}uPCgn*jivr#1oAG)D-78sc8Vl5(YNd*ELq|XERXM1TB z&T%QAlb;TUJt2$Qu+>;#rYN;CP#?$NvF3)(kYGvbwjI5MI(06=fM6d^a^8<_z)*Lu@icnZ0fdCySHRmg3q zWZT40MPcz9gluTq(Bt`i_kzB2;L%#XJs!|JSdSxwp3Kwdb-2bL7Ph(&agw(m;xv|9 z;U8UEDd_j$MyD7qM!d7>MMxo-1HsoXHm1ET6KA|fr7)Tq>-zx}ENAGY1zn{=h~^*y zzl~G0VdRQDjbOR{26)|NE9@UZwJjk@UexIb%qyP&b`^*(#>#*+^L^dw&@&&@hf2_9 z`MP6W8-ZE#z|<_C1*`XgBJsni$c-?Sabxy#{c&;n0w6yHGt$%!ZDEBSG`;{`wJi{I zC>a_edQ6nekQQqD7EN;V#$tp64iKgndfT3@d3cAc4K`15&ev`gp;tyiQX1Fi=Et_vvr34+(~v<1nRSQ*D+!Z zN#29c9wF91YnL{{A2=>z3nE!aU(FU#fJK3)eP+yN0!qNtKr)bbe3oUhB>0IGVAM#9 z#(Q*msSPDvsih2%NEQn_ZMArP+Bxpj#4cWChB~|dntiOy5>2ZpJ$LV+7J0mDF&Y-N z7a4WRg)cZ-A19xFzRPz$q+%o&TkF=#R{F2`?pI1}q9_hd0<=|j={t{hrUflZMxBCQ zt*##UEkL@hz3h8t>>!C=$=u?|C?PE#wwwG>3-_6FRnq=R{(V=&5v6POdQ?Ec?kyTqiWLIw!mEXm1)P(?n}bXU`8;pI)$w4X698l&5|9^mt1QDM`;$pSxS%-0Pl0 z{C=!qOx4AO=jCXF^zb1&=hxiAD<&s)1YzCSXcx-v8{DWrcNHt~yCZMHt<9GP*$cxr zP_CC1a-Dwm*FDK_YMA@XmXJ}kzgA@Lp|*8kS>8=|euP0gWpr&dO^lVg>Tdq2y!Gfx zOIarhRTbmxn){0rRgEw6xY@?#gVe^}wZ(Z?3kxjjxAdF6`J-2qEHGPCn!HF=oD^xd zjz5;!g;$latYI_ z!r{*!(xx`KbzatJx>F19S>mo#N1tWRbd#&aKl~IIz5Lj=#31{zYx)d2(Q+YQn+5jI=9%P(%$e@g#U zg^RM4m+&nqlgL?a5GJY!aASLyd11%=`J=F8bBBfy#rr(;*ZKUa=tjPrrl&vWPW;jM zK}h%4jE`q0b+)bHdF2&6eXk;c3wJ+!#_TYZnt<4`7ItmJ%&{9!eRL09O$RLo_YHMv zLY5xoE~xfT;^|INiu|}aJ@>(7eCe+9c+U&wc`L)F#_6gGrCv(C?l8yhl#fbJ84ES8 zetF8%TiM_5;hXuITdhg0HNRK>Ym5wYm*%)y`B_!kV$tzUl-l$|E9K*z^0t|8@^dw7 zbvm_~BfsRcF5ZQYD$v${k4vY62Rq0D=fe@3L}^EKIG*e^2i#}Fhg3>J z^<5o}pBw5L*|{`+h0|=ZBisMEHKgAv9aR!*H)I@GRJBg z4e&{MgBy{P5UHAnGGVDa%i0}h94-_b^Y7WBVbnJ|*JyL4ap3FlZ6g=ty>gVb)4=Ju zEdV3_d&=I*Rm-Ej=hYXYbHZK3V5#e~two-_bP}ttGBaIW^EI(|oPy83|QZ%q;t;XWoe=&-uv1i*-cWi$zZd9Y5W2!bzmO$(CgxtYTgv{YM$XPzD zt}K8!)YrTB&?@PNmKpah1>Y?`lD$^DTLuR6-eakQpVu!irFAY=(7`}`kj2ciqB{k- z8z@!LA@06QODl4Bs0UPd?QfZ%USPVyCxhj#Mf{B0bnz=M$`wzA_(?{utb~{jmrq(} z|FWt9`D#a7PQdI<-T9siSV?;xsB>+n3!JM9A!)SF!WeOnkM$|{S#v$1%WH$!<+t)m zSnv4bWk}o&B67!y;%>^k>%=D;^mqC-kE`gB*(K6s_-^?<26kJ40eqL#Q#z-vxVzYSCI`e(%qJ`m6&bI=!c!GVpk zPjQF9^HI*pim|O$ogk|EIKb#f^Z4_xWSm*)m@!q}VRHQoo3;2>+bt`$~Ebbssd z%E;{m2EuoYCOQ!%j&l`#EFx*<8|Tjwf))Lha zf1xOK_QC+x&KEK~)RiR7nIM-;@?T}PmI~%Xa3@T&92wS*X7dQL*;=2Aef#zm#v(ji z^Hw!{R_JHWs9t{o^nrEl?U#Yk4WdEUvNA46UA9Tl!sjN$^L}vUN)=I;{KAUk^`7fR zc$WnYO5%5#J`(?^s^rRLRl&zvKFY>N#aAR7E~QywuO>f}|IS@xYN?PwN0MY#vVU%h zyMoE+0bP4C-%8fT(%e`JRUI~8TwTf0!JVq4CG{7rt1=EIWLfF*YB6I2v0i7VJH6=n z2Zs--^?%*$&&y#tJ6;H4S86DBc=FN|d#?761#>xK}M9_g~5x5d%SG1U-#xpGI~Pd{Fw ztA172Ny(GnUO#SG6S~D)m;c0fjQEjr1#^~hvDZME=k%6Z#*gM$^mqKOgkmoPlq3?f zjbq*th)y_oWP1CjjX7)4;j-A=*Qkq%(F(PIjNw54M!PV?X6v$oW=95>gi>TO8CrJ5}rCJ41qJ1KN6h zij`02wRlxr&jNGbG~vUL-|4~n;PzDzn-kf6TVVG!9?V9AbZ8x%Um$Awhtc1#%=&Gf z$c4LyhjV?Rw(IFcbSH{9xfLxHk&`2CMYo%V3pZ_QVxpN*t~{Q;k%t^+3ztpY3*Q;P zEaFHtU|gLGRS?*`Z}qL1Tl3~y^?flNar#?|9S3`*ZT42&yvm1k*Irk|E_^q~LK?y2!GQ*}EXy8- z8a(9Dso>Fh9d>bWNw}+LTY?%|Wobi;pGP!(#qs%Y^$UXnA)EXGjW%_E-)yX!*QFhP z8kdG@Tk|Z&4NK1M%NgA>h7q*Hl4fWl1Yc5kbtzORGFf|;vu-94j7hUL@xk)GPCP4LrCcNUd0uCk;Fo0Vsk7qKbT zZipRvleX$uo~nycBLn;N4i1boqye5l#scv&Naj+)>3ZFe4IAP$g1EdH;nIvvjOxri zhxq(&qBBfYUG)IOut4tJj-RZNpT{>IOP>&)=pbi;gS}wGr|}U2N*v#0aFV z8~0uA;;hEd>0ymCZo1yvyD_EPG^({fFWF$%v#03re&|fNlscJ#@b1=e;`Y7r-Gy6? zD^eDArrEbvUoi=>!gzI?hSM$8fq2>MW)48>R1i831#p1RcYvK zueDe2rP2NDpJ-LNQrl0Zv|)O&=R9j@T9T-BiVuH0XMOM$bu_hmRC?dv%c7bYvcyYP z3URqVh_8*0(kL@MTjN7&P ztZai-&#AL5RL zQa9nO2PQiv3P`~LwHCq4AK|}}m6Q1Blcr=J*HfNcbK%0@GjCn*452L;;n*5NrTbKP z`d;+c4E0~V>J@Thc&3#n^|9SvM4Lrb1&MohiRZQhI_mJ4?8TLWBe&Swl($4)V((gN zDw3oLGV<((Z6OgPub=U|1e`v(_yMA-WE--hhgIhcrq`z2(57^2J`-?d<=Y@5HOtoTH5OyVD7KH&&b!BanV&uToeS2}sx^cuQa=MHu;C2^1|6J(|=Od3GVk`^K zg4&UasL8BUrH0PS`YYc2HbRzq_Xs+JIwc>VbT@llHpyY@UmZHXfUpe zI}NMNE;Q$BOol*cvhha4Mp5^-l3My!G4C|S`2`E%R=OU2J`|(Yme%rX=T93|514tY zcI%yB<;~$FtuRXmWo*_+5&<(N8=f@`TBCn{U)a=>)E)zmLf2lQs@ii`cb_l~v=`K-g z3MsGCTEt-p%ALwFA!ML;Dvl=N;kP$L3OJ~e#6D(!zHzh5Co<8sa4ltou?*i@vodqV z<~PD-g6aF^a*(o_3xGNE_4_UXn3KnNqB3LM@x_aaS4eq%kdEA-Xnsgb%c`}395Z(r zbR0G&BpukFxJHq46Apb0(+j-$O$D12<(e0$XO2>xkDs5eYJ%fxcM|W?5~Q!GX!A7T zc%^YNo;r=%U#_|-GGN1m8Hm}Kj!qE<<;V>#po{q2#-tpF zy{ChB7{}1da}ozXO~M6Ot)DHYSFWe6>9=XZg%VbI%}%;Hj^T=TjnVPduEASX(T=V( z{_aY8HcmfoRD{O-m>FA43aP?goz>-QlnO!L$tZv=y6fl28nHe8* z^{H^3`eu3qLU(BnAQyl0#uYGc3CYP{zkRy|$!x^V0yWVKY$MF2+AyLyj)iQ7j%@iM zZOm*6-Nb{SR-~^Nk+YejgLrq#R+Wa&u4EcIt>0N~(zx}>C}8`$ltM@9%cIy!Fi z*t6#5rYPKmVNZL+U{g)$ra;Er+@5lDV9Ng(HJSKO?R|<#lfZ2w6{nL3w^x3?^8+1X zw@U@Q>&Lz~#D^sJigK~4Hc*Ki&b)6tdh5}IKUvg+`*~Y-=j{_1W-sovEKwe(Lss77 z^=DuLK?68QN?O`85fL0}YU=tWu)1J_!KDE_7N$qLM#w+G7FG@Lhx#Q)XoNKgbvEck z^A5gva9EfI!i>*fX=OsJoB1#Z5x8 zf>tkOq~br_iK~5Xf6N#Jr`lUyT$G%k6z7UVe}`s7Q(2a_+E4(O?S{-;&vh8NyCUg; zP_W;AIBvg02aI7nP}4U->h^O$z`KNm`x~6#k3{&XuML1`Q9Uu6~s!w$0rWX$B z_&y%lc@QtWx^OpPiuvHSoCXaQ6&my`eo0Y;w0lKPYtY=2F*06-ChfJriOhyF5sDvT z*kVO`b@lt~MDN}qN%m?ek}zpDUu|^i>+OwCN_u`=od5Q50V=E&Bdk@+@iG%{myTFd zHFMWSj-sU@PG=Y93J3^@bT>+abOTzBO>6r~LcyVRM8r-IG=J!nT*+dTNmw|A2cpxo;#i_Z(gP!gMujFi&(GkO&Y z0a=B%P;uJxk{>q{2OmtIoITafRUZEQ8J8(I`0$jS-QjlZEv1=oIXsrqH;-!Hlik*j z-aE}TwQ*q}zC+e#xH6a6;Ytb;S^R6v&IhJ@8xv$VZhU2tfQV#*Nyo)I;05_mH{;%6 zs0ZA|(uCUZI{m|k7s9-Me=o8y3L7B29+3!kQWzYg<}cgf{(_=$M$K z&n4PIe* z%{}d>&AW1_`7>VRJ~c$c!uXn>lR=N?a^*Kichl2q$~MuarguHLxuz*R0->Ryq}gLX zP)5LScn{2-V7y^%b30jnh}=`Bhnr$=-#&tH7Z0%fA;9VcBia?q_&*3y^(njrr_L_& zIc?AN_Pz#-);*YIo|Tn#Qcayez!dHelb>Mb7D-W2lmR_W%Co;O$&$s!&S|;&%TglR zOpYf}@+XGG;kZzV#XT6aHkBLbQuv#0}+~jcfI&I`0S&Ft2G$=07hia1C0g-ORHN@82$?J7@ z&v0NepO*VqW2QW&?x0cH`8q9_8fZ!7Z0%B*p|NPO1!Fwp+c-uNW6f-kp^z-x6S2ft(+3AMS zJ;|p9#l& zlS#e*-cYkxbGwq|U1pN5UDqkU<+cqUUyPZoGWFQLgiS?4l!GLroMsp?5Bj~z98$qM zGHlJxeV%!rWW{eckmNGSo*gB|&_+aRd8)h~31h>gyYXk{8eqHDhr3@iUwu$2_xv@n zs20sM(?9Wswar!F{91#8`kBiLwZNTG)z!n?8FkXvc@kf~D)_PUFCFSF|FgQoI^>(g zqTfS<8^dk=fWu-k0GZhUg}8eh?kzzOXp zoy4Ll`mFGL=CQ3v?sG&D&g4|sr+lO1BTFH+%r@ORLu5%oG9iHIN$-4n?j)yX&4&XE zpvF_o^XJ0O)`%M|APG||0kqMczGP|`B?)pqIjlU}Pp|Z1(J`l)T!Y>^_oDsTEu{gv ztGNiohuOOZS#OB+OlI}qN~Qs*9f257KW7t%TeT;41Z4z73e$0J7dPy^dk28g^noK^ z4@Rn6T3Ou)HnO$0_JDjONK)znQi=Knf59GufH-Hpsgr4 zTlp!_&;XFkZ1PVkz=PDY*O?(9UpQ-~FeO&C4XI$461SXwvedtYcvfTjo2cJGK#*Cy)!RYsA4kZVAvVYED_{t+% z+NUs(>IObO)kU%OqVzTouiYBbZ@mR+=15Z)NKtMBRUQCi1AK>6fOl&Qxa|So@egnY zTfTc&3u#TDeVtqjf*UPXi|@nAg7Eu~%3rD&UABb18*>(iwbzq^NGO)^f`TH0RZmKP zcMV+GJRGVDRn~gbw?i1lPy6fj?Ru2oG2|^Ff?Au^EhU|i&Rv$fM!rYe=X@;%Pg6Hp z3U;8?W8uj!Y<2~MtTNC#pejnWF4h$qE>yk)j!@Il0`Yks7-yqgZpR2Lb-J|*)UEi> zdZ%x`d6hVdp(}qXR1oWS%hrVgLG^y*+NTcwq@LAvuG*9Bs*d+tt7#ab^rrKAu@XV(7$wddRBq`&jk^(o@G ztWdzB{}i-xgy;twla*s3BKP2dyr|@XeS-zPlBpPrPCf4GsdVR6jGI+ zk8*@I-$`KPrr_tRa?I^!JSS_1aUZ`GtA5U5<=DLzE8#X4)M%La{%)WChH$fWr)f(p zCCD+-Zg;u({iin2okpA2HrcE7m+D8`+c7}L^I3MtIB=>xI9l5MGZ!c_C#=kq~ zp`fHu_{#mE?N{m1`W|Zil;YHh)HUiZUcgsi;|iOZW!CPjtQaGW!Pqo+;XAyBFpcRY z{1P~kGdHn;p!yaftMIXLLyEs}RHn;t@@Rek(I*G)51C@KVv>cICvqVQ)&^k;{r$cK z3J2Pa5*>*>`hvD;Rw)x0O)x zY_Hxq!lsRCvbk12`6o4scpRnjc#%fE<58pY`)FO=aBXaLN78#^XxbC>F`tzbQ4tQ? zL(c)TrvCO*LVu#=6yY9kcD}uvhVgT5n(0w5PFDf=g;ISMX6bBge+ejuQ_mwi`?0C%UfeXaaM!549vVC78^;5_T3Emiwsj(vt&;-HI73q3@g<^c zIF@+1^J*NY<{uVLYO2`YanW!;QY)Rty6R)Jnr(mE7Ktd=-9xpcsl*>*^-!INgiS)M|jS5;%V>qVrxMW#7cB?=V)UY5wIprUjLoRxAD`|DM?S?g#Rc zi(3Hh`R21Xb*%U=xH3r$RmUj>33l<omj7;Q zpxBVMLm$IK;y99d4`J8^gdB8{mm`~WAByj5Hk<7GyXi4ohIl$?c5IYyGPN$7$YQ=! znO>dToWh>t#i$c)Qxqh^a-gLHu%t)XQR%J8ww_B=d&sjDl+$om-r#j&wyjYwe=b{2 zJX^l1!PAOwa()(glftr|_jOXwjuzaq^>w#a*p`a^lnjmmMk5u;XtEu_q6bPgP3!eo zdW@P~YieE(llU;v|;kS#zcKc*b z#q_1ar|hH@qOY-V40NVkFIJFi5>qvgl->kLuAjwmNcRiCpf0ED#mJz~goK3YH3l`d zQwYh4Ow&j1+%Ja!;5k&gu~in&y?v8t&&-eqC*aw;9RVa!8n;NHbEq({XL&_D;g`0| zMA^V-j>@cgL9fk3Y&;A5E4)i_N8$x7>B*)7*N&~(>{_Opp#?mz@^6gDZ8TFA$Xu#K zuw536MYmP$|23Q^C{;e4K6zd0D#9p}LRg%WM+5+5{gu_>pg^k`oh#@?J9U!PG_xv^ zI~lFX1AcM-toGKe_<&Oamh{1ck>=?Br=`Zfbk@pa66Euuj#|QB3+jtI5UZX~4ap){ z=-^`-YIwSBw-nuDwr$wO9H1FaMd5w2sHU-11J)4Q%rF%to_N{CSN7_T>KW%`pIP1X zO=3_+n$SYumQRx)v=zqr$B*rPjt<$VkUzeN?jrt?=jum=aCkpQlO#Y}L&h(xfS!x! zHrL4*eZPH-GTuf{@UZOHuX&x$&tb+|Z?GFe3#WIkZdv7Wwq0DOK4DX%qL+FVci;U% z-`^dPC0zO4%DLxN!NtkXTI)N{#&2x2jSJKAzwbUhkB*lq;Vk3aM?svOOWUhUKYk7u zM$TN0mHCDc;E{=PKD<%wyx54G#T=`7|0_QJ{&mX|=cxCJ{7$JUiJc3dCO7{qyso+) z{usaWI{nv^=On)^q+Buv>>^w$H@#}@zOwo6PiFDKNe7=6ixJ|4HRN|GYH{~ z@wl^Tr=)DZ`-e%H>lcm_=V4=R@aZgI(ahGbtoN`FiMl*iOuL?5hE?UvU9*TZ9cFm$ z>Ezy^tMhsY|H-ypBPdZUtqVK}ydA&)Dtf-V%gTK^f(R`B7N(Rn;ChVmVKDLsd+wqt zksdRHyH2@2>hG1KCwp2}m~opDH#kGaLGpuheHov|h$%gdAUoSA89`mY6OoAti9ZSv zf^GuHC?ZH+c}j(kl$j%AQFeBBSs-@7nlKQ#fN<)|-$(g*ymmZSJ3-m!S5rGF|B+n1 z!>tTd4e|94LI@&%G$ti3Q5%O(g1A$kZLlc1dodW#HMYl=F-XnWn(J;{F%Oc6<6Ma7 z1-i@fk;pM$by-y5F3;S~FV)yuRthbSh)(*<#*0-M76CdEb7{X_?6%Wo2U5gz9KFih zwT(}aJsm80RR&I`Bv^@vkQag09HP_G*I00%!hmd@28gop0}bP|iZuu=5`u~`7xdkj z`pAkafz#k=MtrlqR-nZxr=4ZtZ*()(>kdUL?rGA+qopv~!`J3k_8(qAQ z-)Jv?;r;n@Ugu(xtRzbI{YQSPbQ&kBT*S9vTcys?=?4?Lym!b0jk03Tw8q3F=l zp~J9a6#oWDD@F;T6zn9Kh86`{f`sHatc``R_&02it%*gv^7(hohJIaNXE~*u;p$!C z(eYn{zTfJPD2KojB`zR;RTKk_`twf;EpUHYJk40xsaeD-*r0QzseF~VKNwSihv0JM z#d~(|tZ>wunuedL*O~02SD#uGekkacP9d&!cDBKP>)@afru^hOADTNjJI_JML&9s9 zQR;^zWAN#VZH<+X!n#4}mA4xSkJ#Okn3?&{joboOZ(R*Pp(=(m3PF{SOD1rqSHfs3 zJ(FHbL~ky7G?1n6iHBm0XdI=qwux>T*S*~4xa+~p_DX)WCcwYSroRu77jNuR930eH z{xar-5q?QyK)sx6c!j;=d0MqU9@duL8GnCdscj5NoXW#a08VNF)NNO}ihN8@m|e4Q z>6+qIKc-biYlAvswkcJR%pJ;2U|C6_5}W#Z?Q0faJ-%$>3#Xo=;>NTPxx#MeL56}c&nfUQzTUV%=Lu2H#`u5 zuu8WyR=mFPCj{A2C+`lR2ti%meylV+$~213lI6Sl7=a&)@xT^`#oDN!J}W~66apVM zTJu8*44+*RW&i5O2Gg_mI#ll$Ztqt`Biy@4RCV`zTxBzA^NgAB z=z}I2pmgVA&BqhXByhF+uo1MRFy+^IpTGKbc3z00^~}l-*HLPt#)!Bf(qv-!i1KTs z%Q=srkK9vuQt@c4K=I{dVMK>vU1Ou@ydbXkEXZ!)Z5x344imA|(=TbrB#-xymmC;| zxx|n7g5{Jcut(fd_wfZUb>;Di0*w8A8qFPY^ttAWrdCr=ZwZx8hPS_%G3}}WVNfn~ zKSw6UN-@Po*C&s5Z*tt{6LxjPDPssCeynvH_ytW>$0!>@O+tG-&_fEr@oZ<8*1lth zrN?4n|I1H_z`!&kBko|`be&B>aPuVv3j`30En6>k#WexaM%c)YJYPQH`ySM6l$;qn z;fq=CK3Po^dQVRtjaIN{->|d2e&t2uENiaLi|_rz6E}9f3Pq7BU7J>#}NAJ(uQSNzCXgG8eU zP74ZLaxQlzt@ngeuBVx4{(twGu7ZpDrwROIwOIMUA^orLl}P+5At~8;g7`hDIINPb zRKn@x>3lCS=O#$B(#Azkwe8ir7#fSxCVuPY=F9|k`c#H`6ra9OwYx`F9YviRcf5k9m1Mv`gGqT25M<-%>@{1dV)Q7F$EnInOp_BFjG28ziavg zUsQRaC5|TKmfur7;{3?p#Jb2m$Wd2VN=t?-6vAdgISDMAE=0Nw=NVvuVdo=YoM1+X z$ba#-{!$b%YKNWx0+{m{*elo)s*u#8v9z`w(*`5TS1+IXrtQK zDuy&s#+ve5h{zp!e?3`9VI6G0*&G%Uq75-{NYsbNX2~6*D(Rk<*qN*Q)uzYc$>U7e`wwm%j})RsDB_hS^Aa!8Wb8yj1a z3D!@%ZqH)a^u+zJWt-bX`9`4_Gg__o+y&IQ9-#Fc|3$et3e;foYB(^jLH!QOwq=am zOuNGkHAE^Rp(RH@@l!VzbfDF)@6vEk_5l{2Iaw)Uka2INzrV|x!E8{lWy>b7F4jZ_ zDKPeL=`=Od(@zsobcXKL4TgHUKzJ2E&P~A0b_@?h{M{RGWrltmfH<=xOf~?35&bZX z67JbnB@e>JzN+qA7TwX4c*%%V=~FcjYJv`nWX>8X0zna1L5L4{8Mz=F_dNVRjSPGksyI^lXAvUwLrQMnx1Dgz(4l zTsAB)N?Yk0C$reQR>!NBy`;{ea8kTilUCk!E6nXAPA3)ddQn_9bktU{eiF6GE70iN zMo{|h2#vzgMz>jVSDgOQ%l3{|QhnNyOx%|g%~g=4hrYQ0vd~ZXI~6NE?O178-Xt0G zQUqQl^X4-{*ACx#wge4UjLR-NsWax4x^gG5s~(pd7i<6%j}&7ggwl`2*qu6nP`r(* zBG(3eha=zO)M~&gBkwy5ke>Av`aT3S`BrQ;$VfnewbN#@^;#bPduTvm=1vF&{h!eYVdz=_@ z($2y|lJ`n)yJh*N~JRNnRMK|Og|{NXRE8p?(xd3##ng!T~2Om+Cz2n>Bc%rw`$#>rlcGLyC5Ut zR>+X{m}k>0s6iA-$jfQ57uc}q;r3)OytKX}SEN4Z)iVhdj_(++19;WnA37IpJ zqKK&tWPXnk9yg%yPr10!k+?e0Oz}p5j4Hp=1UTh~sV~Q0kBm+cW_7u{O|JX#mJ))p zB+-OGJb@0W^j*gHsoeKXCO0)h61YF-c4t=aE`ME}G4B4OE~Y8gO9mPLy{ z#MmBJRPJLUG5iecT_ajA(W}sVe`V+a$Y>jY64K2@>7e^$){HX4jAz3g>U-&34vgxl z*izM80R(Y-b$DW%RJB44`8h82JzM z4QMx0p8ox^_vZAQWTSbL^?Wc~qxx@rEAyJ}4fn7->AMoa{gc~HYBg<-9k+->nWc*V zKxWg^u})RTMP6^F=;Oq;XfSidL~2^C$#cf~Y+K@>Xfx1u{(RMt(T-dqy}U2`ir=zK zPCB7|yC`uN?BvtO*1aN*p?kcYJbHEgnHyhQ$(hxA`pkk4^fGfx9qJh`*k6uC*>Ktb z`NiJUhhMpZO+={}`?K|X(laGLy}~#9AJ%{&-G&g!*;-F5=&+w@Xx!1&)qN!^ORc#G zS`(zVPqon46N2hyPWD%k9VR*XeRfl1ax9Vx1U`rgOuh5-^T-*64tx#Ad4HdQ&vJk{ zrBCwQ-I>){1bpS~q~j>mnk$R#X2gGj4o}$o-eOyoWMgf(@XE(WvwQuq08bgM8BfruX! zfkdMEGj8UG$P$iZHQZ`3Zd)lQqU5KGHZTX><<|bb2(bAl2kTgfBS@iT0pbwuE7uzWQ&{~wh?D0&_{JNwVHv>Sp< zjD$hgr{9&re*xLljSo-OmPwQ!@Cf`Rf)nTTMu6Sq(4&aU_AY*263k|*%<##HdsbTl z_d?tW1p#mqdYtINwRib?F6+a%SC04|sHI+)WvU?+S(F1UNG;MN=2XN zT*Y~-p9^9Qs36@F67GKIr(cVU`}WNPMj6Asyc{fwcJ~hMT(xd9Cz-+Li9!w zkDzs8eM*afWXc~fAN~jikla2j2DHEhL?@VS#THYz4zvQ)9uY&} z@d`PWEPvG}`=cmMbT(Xx`|{bR;*{JkA=yq>rw=t&EYE1ka%D1Hlc*5dQh4hNztG(E zR2axR3vN`q8YUzKZX`e8J3D+)9Hi&wU%C8Xe%*q|V~Q>4_ei``jU*!C^N`s)-3a2|Y)`M)R%#z9d-BvmOQMZ8R zBM;;@rV9cBC@)A~1i6ljIjSU)zE+f4^I34sI=Wc8v(5Sj!+G1pqtf)o+B^zk%UnPB zY=;!vblxAS-qq6EvbX)6ltm3hsm!L?$gt&SC0PtDVrP);$f|ZUoKxM?Tde_%)FMztKS*1PX2rbQwl;uU(CR z_-nh($v_CEMy^oSuCbAkc*$@kOu3!$a(le^_;`dnq%IGSj=~oyedc0k$6-ER63_Y> z>1P9`L$0^wJt(X(}?1ra}>XF>dUmQ&uoOHQ^x;o&W?5~x5hs@GET!ZLslcMmX4 zuG3>gdw{w5=k-E$d~eM*Y3}N?Ie_HZdYD0#YcVANi3?Pq20~0PETD^t%>-XU?s)^uA@3=+ z(Ap*$fn4foNJ9Q!NPXH)U68oLNAVGOf}`jqdNj9bUzV6$os(P$mpW2l;L1g38X-&6 zd{WAzt^QD_tG?g!*>6MCOU;&AFi$LLIdDtcHD135cmLcvW4J-y(cm`Pk;5C-MjO+B zOyA{_@0yML@WDa<~}`C(3p; zpksbRw;^l6^>m#Rc?tLg1k^)le2&Qw6KJEx>Ea0MQ`c%HImw@7Pd#cEEzj!OijsvLuY3M3u4c@CA zO?wlM8L63is9rkVLi&nYwD1(mq|es*zL$JU%{eo&B1B>}7+Hc1@%^SAAuxjOHh|Yw zXVMhlvT$&@;)neN?Pl=f-`{5G=IP(wZYEOfPv{QlV^bkbxA-zpK>s_0R*u=A^;U8h zFBg|KfY;FRWybr7{`2sMp-AtpFTWxB9R2OND&9l!S8aoNW0rCjZ}{4?e}`!5EKT(i z>+x`iu6(LXT@Kb`TuRpF zMwcqXW6)hG_ecGmpGTU(`^Ag;#s!@wV|q%ExAYXI_tQx&z5uKCt=+~IRF%IETsQ;L z85n^;dzm_fUdF3Ce{^7J+b=NF8H?vk&0meOzS=Z8YBh|sAjtp3fJc{m>{6yUR$lnl zr+w~2=9xZ)%nE4$=zeAg%)bs!1N+*n#=&&c+CJ5|(Bex-#!dPDo&N0R=|eWWD+peu zH?!$CG8@`No-%-7-|-HXSm9G|eEVT*o7H&7HA5!EbZ|bN0m=yXrDoHzb5{lxS*NFHF75%6{N3KdeUi90hFY{@By!y+|0qD2|fD(G~wp?`r zIT9zvPse-wh8Jlpdgrnh@L@)omE(2ddgZvn;j*D!y7)zs@1J(vWQ`DuH{rUoCs+}w z&wgkm-~D|t-~ax5)!|E><859?2j@0}r1`KG2I74IepgD1LU7f0>1(&_HBld7@d>fAEPcpgh#S*)vzU)PHW5?XI#tzqH|#s(6X`0r)n5 z>7e3+5t@P7>dVrvo~MrU(39WVehnRG@__Okd%R6k!XU}XuSX<&7rWv6kWc*2>bRDe zJa>QM6T3Jo;h&kG`vQ|D1|uKV{Hq@%B%}Zs8A+P>jeW=7OeJu zu_@mpe1w|!A)juZvu9sV+k91>N%Gl$ zesNct(Rox&T?^6Xftla+7!Une=TsR2gwWZV>yh2dtD50a-xM{gi3A+VW#lp&n{$|$42?A0Zf4Qxg)2p-gQgs`pd};FC|X(tB4XFOJ=q*w8^C#ekvYnKZXt;zEW=qbqoy8 zzXMvWNREefK*ri}nD+0;2REI+ePx~e!4#;_dbdm0g?LCllzf$X_w)L#6>7GQZmiXt zTbl*3IdjVPi|VUP{C|5{>ZF>b(RzY)j|mnqQh}DCrhigO+oTSt2n;Zs5Dvn;b2d){ zw~C%ft1*q9Wa^ae&(TnH zjWagH=TgA(oYqxv7ayeUC`>Zj?@f3GvuF~8!v4Zr_`2I`W;F3_z#VT7_zXIv$$j=y zY9>w9pUBdQy=G}GR8GYSegl3CRMq1ZC1o~}QjRN#S87d7aA|D6%Zl3QAM|T%{>#GP z3o~e1r+t!3e`wczvcI`+<_A>Xt*}jpV%{T^D_o7S7%zMqH-cC{qzYVc?c)36O^FUY zh@CZ%!6`74e8z}0Tp@23|HWBtf1pF|+3EyHXDe~A;YWAqV(WrH%kRdQ6Pby`&M(2I zB&KRWb}af=snII?l^2?| z`Sy*6ZMIE47?ZbNhb(ABg!;Z+Yb_ZMi&x*7HQXO?zT5%PlFpV{)Xo1s{`CE+0t(DF z9&b8B3fx`0Fh`g3RT3BS3E}x7XcZqE8h?aff@K9!p@?RQ*y?l-hm(5>aH$PsC1$1w zbgn4nY5&i=QY@#k{|@LP{MlA)NwtX3(eT)K;Vb)-P0<6clU#il`tquM+XDI3Uk`x6 zuIMYKMOs6Fjq+(i8yn5(F7!=(`R<{uxeMFXz_m<4?4+!Qe^$k3bTI)RH1{CVBKKc; zAiN43^fz5gIjnllWy%qC{6u)R;wkcYi(Is;8q-KL3kb#pvv4Kpb9}5<{{No8f4Eu7 z-c!L!tnjsCr4Tl^I*Z=dR@Dn^iAEeBliwflK*3(PNqcWaH8HtiqtENpg zKL)F?$6lY8Wy+P^1$x}to3=|=U1KN*MP)_xpYrz_HF}B^{fg2()q6DQS7Cp$+7T)a zy)UuAqP*`SfRD&oyJk%^#{zB`tR(KL5Rud%odBBmJriOkO1Z4Yl@qcj3_D zu!I?S_Ey+I|9yoQr~~*O%8;=C??q0n==Fd4+4FzT5Z2M(Bz8;8ca~1!(P#D_d3me|AsE3FDfyol zA56>0z&1DkmCCAn{mFHEU(q8Mfmng}n2^eqqkJOu@uiKDs;b}gw6?yXVeP=c!2k0r zQQ`l9Uk8|scD_RJ$7CWERNefMYnYg<_AD>>m6Vits8yN&FEGr%e`K5AmL0lDFWeIQ zw}6NLDHHzp+x+{pxQCvFMKBr`(Qj~6jf+rY|1Tf-YcL*-^S`$*zOKSgk$>+JVIPI~ z|J*D8|IhziXa66c!%Rdu0_S>MR}+kTnwgzNA@VoanElUh9sn@l5k37gZEdPy(*d)r zTg{~1@b7Mrlbden{`ViXwzofj_3Cr0Ei6weSagV5yh&JQ?a7X=R;B9ojg5D~i-Me< z#f1CiALq$mm(Ra&&p+N50RhkmU&F;EYEt<1ipoSNVWS@0E4P}XZiKgaLMsd6{N+z? zKm0H2MZHPvn@-d}-dW`B^#5X+==PNG2~hCSbK0}`p#67I>Gq_UmwtRoFQa$4pSr+= znT!A5dzE1n1ndYzbQeFXwYX3651}v;DNPl2>B$zbpD^3Y{=4RJuA$}Czdd;@=m`c= zy{Y|&@LT>~m_~@7j-Py9QAq}*fKdv;<+vF6-z{wP0$L8yCgN8Uf2p-=J(LrQH*a9- z`}Xu)_x|TO>%M?@l1R|~7X9zG*F`Xdl}ZXRz^z!nbmU?k?*8|mJ-OQ77yS1{f>i%% zkA!{VkxqIGi&BQz+1#KeF$qPM6^DMO9X=Kls&W7wA><&^?c(BswW}CRqhJ*T`;-t^ z+n6*f9_0r{MUf&$o5OAe*Jk5VPvV!*(BzzK&mn+O4uO|w zFp3VTR!IyNK#H!dCXcMWj64568y{-WT#LH|fB*>8$0!ISrx&1UkL!;+$!amiL#csp7S7w6@l|r0!XALit!B(JgLu^q^T zI+d$jxMBDk-K1h$7-NGQc+zIU^w11D2=*94d%iW)VKuWj$6;Hyq^yke#7ywbqpvid zNV+P=Su3^|X%Ipuc{dE1a9~9xCSIaaTOPx6S9EkkuDI9b%-QZ&+x->I081gElh+9Pa3-pRre)Lmysai#E6k~7vT;%#- zEW4;ll!~x;COKduNy2uR0R0{wBNizj;xAYhqO;>Bp|r8HS-KnyIlmcjf7!A zDQ2nrx}KlRfX)g`J z%n6928L$LCm~vKE|2}Ga6-8psoGFT&QkP=T&NPcK2QiFrKT@}zW+6)xVQ3GUuBlm5 zDDpBeYg%-K6A++ZS@YBP983awb2h31gL^;OjxR#*M5iA!thu$LQ&s5D(=pw+jEQid z;O0aue{Li{{N9BM2rYa-cFm!T@Ix5r<$DA{I(!7-6Wfr2e8t`2 zy}_6ctHmUr755b#e^Xe%u<3sCvbqC&jzCyYQesn5804M5gQe8apaW@1IfaD^Ws_Oy zGC6!4IAofepL`l^Dqf28%{_bBWgIMJjLR_vs{@--fE>YWUA1*4w={xoafr*N)Pmh= z9NcC7@o%w{I2l`=h0?WiGYb)g5u7*f)6c786arsfX>O{C(;UtoTO z00Fs{2*lgIl)xiLXJ_XpW}~-m-@c7NfaA#1v{^(%1UM&5#=>5}?sXsrHfMZr@Sv1m zT+>P3r)}BOp<0WrMVM%eAB|UzxMTxCOL~1_g6~bqEB)HHK;yN|9bJE~F?t0 zhK5W={Tv$Vxjol}if_jl!DCA&aQue=CfC)##6_4n`cz*(iOWA1=J|ow!wbqqDwuN% ztON4!MEDdFz#K~sv(ago2igSl2xXO(ec;unW9%p6nQD2QLbRwaqG#(Dm3rsyS`&ZZ z!?;Svnwahsq#SlHt+w?KpiqWP*Lybr!aN^7r2R+cx)HDI$^H9RG4Lql%LNno zd8Y6a;(Cpl)=YzVCB=6U4@Q4^7wJ~$!9xgUGyPxtaMUqkPq8rNU>5JDrXMcmE zrD?=|X!z(QsvIc5KsnfBb;Ekp8T9RxbDKI^I|Pl3*I5ccDJf?0=SM-*g0V}i zO55>yhu~vm662XIb=|l~t}^JzbDOCYZ!ez)K5S4RDP(%Oa2%Rz&*Io;P;sdAHO)VT z0DQ&XU9F4)sR2mziNw8-BT0fI;1CbOu^g7 z>9<9WSOjn&)gn4a{*PnP8cg0A3;UE7{g}+A+@>gpX^`W|fsuG&slRrv12$n#*qTn2 zslDFujz#tTi~=xiS>&-U>rHORBaK+moypPVj}*O8RCHYiZC&rHsygooAhe;DG-PVo zP5V(XI4(jZ3h0*DS_gTEysBpUqMNu1!o6)dq&-j>k3P0XoZicLfIfXe^*L5N6X65X zG~xmARIZ{|yxICF2-kq>Hw#~tDUpStZ2I`FKW^p45}S)aW>B@a{iQ_hs+*>Kb)K(E zZ3iQZpou?LW@bg%@H>G!{9&=b>)y<(RtC{_$o;8RuBcxBwdRC!g^7=W*@{ztJ@~uL z)|g=pi;MkM*p)UtzLZu(teR?|F->Jf1`e{oeDv9DSU$#%kqzT6b(qDWf=>Dy2}R#X z$pjzQfqGJYyuPc9!)^rJfOh9xrYL61*+tv!83wh_$w4_azfat4GICwR|Lx6Q#ysHd zOkX(YH})!r0ZtBPATIQ50ke$+lB@7KkCJ5kZ2ET35_quB#oa#j-%P30*q_j5i~*XR z@(smod*vI1e*QaEQoZ*$%d2J@8H`LWnq@?&jbyt{Cs|u(@+LDAwwe2{qGvg6GpgR* z&Ch8);$^$?w~p>;+4T>q)ahAld3j>(sLJ4M<+_!DV!uLQsFGKYfu`(o#DUbmBHFSF ze#8@jv zPKx4vtjDnmiDa7RvYY7ZdteiUOgMuu1GT3`z29Gp-_AC?#h=QUM|76rixL)E=&Yh@ zl$}I8d$g`@O^oWkV$zoQhLA3nruEh!Mql0F_kkn!#thSuh^=ei2DN@Co=I%8n!Naw zjEnq2mInVE=PpK>a!QvyW@kv*Ug(me_eeQV{}v-RL@Ge-929u8X;uBbcxfCZOpR4I zL{F`|lr=x+=Hv4)pER|sX$hxzmA2QKa;bR(-Q(5vZQRCDwApFT?0n~K$Id|`2;oM* zv(mqw7F=o+T$F~=LU;0}g;T#i$8fzOsCATQTaRbw+s?#_yX1#yw`?!}7y22$8qiJ_u{$qT;0aP7`XMEpHIbotjIR_UEo{4NK_i zi_7tj?c1tq24*1d>efrsWo3Y!JRHqU=b)jTw0jUBNm8`Ha8dYGUo@&DM#C=_$mFHqH+!Sf&yGe_ z-etUPF}OFFn)KDAn<;2jI*Izij>7Qly_8{TX2fS%%bF?<|DmGh+9+7fw<4k-ZE=4%=C~u{E zQ0m%iB?`1|`44fBnpgd)#bla$XI;G3F%jbj&bQ~idLu;2diIVKl^f&_vZ~!VIW%88 zm`l#;?UQ{zsaXtDb*;K$fV7=OcctFje)>VSNULdX&X#a$4&3^P`?r(*=}n~UrW|Le zcb(0zRhmGbYOLX+?7krxbZ;YUCFyGGS0d$6y!qYB*IT_7zL;&LINIIi$)(}x6G>|+ zte~Zg*iuXANqNK^CUaSCzHyf%G~RqMB<9_(Qoevo#v6cyPOoPwVHa@LeSVx@S{<2f zTH*tOdTptSr1_=BZ#T!g=<`dgd2%%^%xI_#~de>%zt_J%XO6zjP}HAxK_XccjtGnAzwanp$5&N3gtWXl202 z!{GM}<`1&2lB7%P^->a(gufxWUDP{Fj{Jy~c{6w4Nu+NFMUe?+ef{yfcf%3#Lk-l; z4OjvjUfE7Erp?ZJp#{|(J*LHigyAm?;S+;5#V=iFEfyoQsTBXX5fiH2HeNk?dnlE0 zWM!9otV(o1BUn>LV8rEgkBr@x58_dn&D6fO^DJcOi?`4bU7nXz*;as<^xn_|DyM9<}D|$58nS|(MAg_wQScw=pH{g@1ajmE)LsB4*Ra& z5EZB%?G72Q?HbskVWW8=v05L*&F>QgcOFLfn*V zP!t(4dJfL3d^=3%TDaP8gBD=0P+4NRukffQ z|D6kXMi7?E{!eG;LDMcjurvMkP2EwM(O8yo1)gmB1O#cMtMqYUPe`O$(C9c-nTI~^ zbyf%)OUOvUH5gC_UdOm%g2vn89uW1_l|*PoVWD>u+()B&ZpV-WX}vIjpTA&!&=ZeL0Q75Z+f4VyaKX5kRW>tSnX~;DTOSXD6l2 zVP?@9b52`zHI%&REiT`6)t+AxuMCENA{SK)OP?C(G|Djcaj z7M0%b@!$l$iU9Y^hbVS~u2sd0UFJw{(#fCcC!(eThu88i#W^IqPz^vm*$K*FTS{lni&~8 z3pcB{El}%P%-^Mb=6GPDMm9giqJe5H`Sb$=i*IJs{aeflz}&PSAM%7z%EiWa-IO-p zxsYtFN2-qY#5x}K7oijHDo5;F(4CxVbB~+`EX%s0RgHi9B|FVTxzsE-aA!0^YX+mM zb$ct)%0fRNdiVK{*)K-OG&jN0sH0jx)eOJN)EuVphqOB2RMPDqy_y&v9GOGD(EN=6 z-Zp`ojQnWw_EZvs%U1RM(5F>4xg9Y=lCdN_cMO6?lR{|8U?T zmsQhV9X0mET@zCdbUNa`CjzGmS6_|}+jJJN@vc>T{}43QsAD_M?-7^oXxxbkH^Yp! z-`b*L%d3%}fgZFnxiT#|90rhLp0i%77ufX1S|KC#*Fy=FLf6fXaX2y1^;$H1*h{Y$ z)a%QH2{aAmMstHPF2j!hcsa0FqQm}~PLN`oZ}r1jH)6JWU#XCpU9_Lt%{S?#6uPeH zRTe|_>!BFi2oVm9tmVZ_QxB}`pR}eJJd(3+zp_gs{jH!mY7zwV)3b@f?PD>&Y+^tf zezf>5MRY7biR&Pk4ev(oG|6km43nu4#wc6L_42d(vA5DG36vEx)pYN?f6?UG8|p3E znWj(pI$y$u$2+7tnX=M`lG6J_n>xvb! znsikLk6WUyQMD_Y`k5xT;>zm0Cw}IBe5#b7L-bnG_=^VAbr3h&9x5Rms-@}SFOky1 zO!&;6lKoIj69(9tLkfEEACxwKL%}hFvgi7VgET)X<$HOhBAwoTU_pJO^EjeBU~2!3 zLHm$a$_!=WeSXtf@5GhG6N5Y`6p$qz+B`d*hdtK%&mSyMXVyfleuRuod^dWf6g!6z zTimcamEJgS*f(+6Ocrg&I~e82z7vKFk?{XyfO5--T`7gbvF+FcQ_1 zrAMMwMn0~UeE+MSvCg_Z2C?(~S&4ZfgD)!YCVl(za}~FA_uYdct@huimwkMZK0Za9 zlI7U~$lz7|^y?Q__BDLlOjZIW>FY=>NTkPG>Y59$E8oc;K3CCX5BCnq(DjI;Oy)cs zpcptN0$~7S-$(lM$ToZ0jI=rG^5?rR6TKixf|2dP`a<7pJ|=vDjnciV$l^iHK9iTX zbdSsRJssYTL^}9Oy;{vD383TGJc1GUWmqu@}JQQ?_UHY09mPR-v&&`DWUO^22 z23H;{%ARy-|L}&%_L|n=a@MJsa_-vFM&dgqo|JPmhrAF^`+rdOmH|le5jl?dFSNwNdd6k#>^^YWOw;8vuAyV~P zmMKI!KG|@5U2i^G%Y_z2+iWaADu4(Q2u!U3-Yy*F3U<6>&^-sVxI4c5=N6IPlvaj_ zenKYS1*{x0-wS>(a@78dA;X&Y-O<3V2);+0$GKt=rsGcdDE|~|;B61$L3tDRQi-CY_u33^?Zl1PS2k^9@8-Ew>Xwz&9m za8w84TXu5n@b}vibxkPU>9L*!oIGRTQm4F*tt9P{%?8OG1A~I@vh6dYc(8vB;-5*v z3EE7Y$=bsY8oM9(@RBgIsBdO64)>);{?zWh4xcBh@*idee$i?9{GT67e|4KZNnp!Q zon4EI5A^z*ZJDz_ef0G8#nu`wBsSKYuUEH(37|6MXUeERFldfZym*XpRX~ee{~;M! z^cA&qva*qyBA)Div^mYG-*GDz_Q6Q^Z6r;sTG!SZ*m&{L159j&b46OjC1?A1+5K6( zdQSO|Aem8gUE=NI$bqk*@Ceot5d}rD$+;Q>SBik6e&}0nbbPFAJc*2bs>mNBdLQ=< z6v06K`0c6V%^JbD(|oFz`RX8PAIj5Na8E}hK!`@Z#AIM8Gr$dWMGd}1W}=S^V~ z724#-eq+vL6-^+6pF*Z4GkvGk8!BS;+3(P4eMly8Z2Q2-UDG$a9qeLWwbSIBI3A1; zmF$})^x_BGDMI4CQ4=_pxSp*#e17pydw}(ZuMsu~ZO~tl;e(X_4DkcZBY3SGzF|AZ zI0Ma8;$Nj@!eHS`hOhkB`LfOO8=mW4s)iH+8x8Cxkqr6Q>!=FDThb2~VM*;LFW2p) z5OZSP&iNJPZSrQ6z+Kfo- zmwV)>9)M*{a_D}=zXHSYTh!Il7mjmULkpRDlm0@n$Aw_)hDX}+<5()nXvbvWwLti3 zJOki^+>LKsyZ5qB+IxsI>L*iiCkcE?FP79wd9-CXkv8xoal-$W6!?q7egt$M?1dUT zs@Dok<5v|u-&0?qDc$*}G}FHT*#zNKAvOO)t*=v!Fo0^&aN&f=AeQ+I$UQ@7bU_4& zX6sFCiQS*iSOE(hkgqA!Ez3`GBqb28`pNO1A%M>1y|iR5gAh8n^4YW1+a{kraf$L9g<3GYvKsqT-Q`QXE#lyUVr}HmjjWD z&kz9D^qHAgw^lD$GGzm_DhRKunKp5p5tt@mVJ~SAOrHm6C>r z%7Czk3@ND2!mSU>2McIe5hf>Uk|j;%#=Xz9hF(Mi>aQ-@xkriw!0HB;bAJ%PVC42j z#%T^PzxT9qW~L$rbgD|u8(NSAF__>d)}D8M0dnLeGj+Pew;9FCb-Vi?_8h824>Z1* zv^2r*SFFmUTfba7Eo?|^Y$hYcmK?Zoz}A5R5V4*gExG?B!+%dV*+qG$=#o8Sinf}6 z@dXFD8U_txeO-ciNaHbB8z25 ziQJJP3t#)6w)EZJZ-07ty&bR81<)pissE8l{a7jnyn>ulE3gw3AGcq3Hz8-4;Qw}U zbqj7i*NwBeI?>HNTh&O2`54Md?Bpdy58h{Ox)t~@*v2_M`;Tv4_y35u$a%MKt=ZP& zcX*Vhcv$p9fpl-;%vbHlv$dhZ6y&GC-}oq#!%O9Z`bEYHfv&vG%6m>= zPn)-+mh(gJ18%GIr>A8tBkV60lXchJMx`ldVNtLDs|f8Ii|8W|?2K|_rEy~I>7`le zq-w>GDo#!;9NA%nu8*1iyxnj+lc$_{p$2Z?eQOIuQ4?{;{Wg)ON;}6p#0({cEjM0v z!8rE8fJFCvCUYHxd9Bj_N=}@G)R&AbD8#>T0-tn!-~RTL+xoct?ctRDcaKPPtqn&B z=>Rz^zW0o&QZK*yv8>UZY-NCRKwi)Mtn9|XU=YOhIcXbb`-+Az5G~182cmVT? zmUhUiE5~I2U^)n_aAxw2g;vDhYK6@_Kxv=n`pQOYxNb<$PG@?2WRq3O7>sCjrob%v zPH@ok`LW?_KQQciuW?hJ__E{S#8tZ{1X-vAS>ypa*!tR51g!KL6$Nip%i>GTiynf*!+m zJfL zeYir(r6LCy+A~bj_E5o1FId-w$iNB107v+>^KY&qlCOe?V5XXU(;0rGFIhi0)KZLA zhroP{FX4!zq&H%H@ya;=(Wi7v+d27%3hS%){g#u+C^UK14U!nGSP@S1iT6kqcAvZ* z$%SU~b(iI6jyGf@E8~xQa3<=f`RSF?Z&Xt3=RXXUI~w^2fXzs9Gs(Wxty`9D+6SCx zpD-$u+os7Mpy;$3-Rhp#Z{W}7tA?TsE6vRznV+g)9}Np+z38ohV`zFFz2B5=lXuT= zgc^zX3YKwAYtP@Zbs7~|l^`LID6>#SesXy=6b=>6x5y9AEwjxnk5eJyb61T#OW}cd z>X|=&){cEm;B4}DM5k^1FD7n)b_N2VhZEUIEzPQUsMPUUb7z)crv19T$h+~(G|abZ z(-yU*kAi$kDN()EE*Y80t7^_YW>OVSJ;-MX>G3C@Va93YATMO!iFpRDd`5A%?zc;r zl9~INcxr2#>3k84*ioo53umw`ZJ2v#05FXiYWJ$M{{#~?n>K+!0D)0a9g5YVL(7-q6AaDLc~Nust)V(blceJ(QOgR=QQ!t- z2*`gZsb1oyJfwTXm~J!%*m+>Bi>oPe4dSbdv7x>Mhzi040669^O_K*1nz%(}zAvoN ze4)QW3WH3zXv8|GqHi*dJvk?~&`|8*YZwa!Rq$+Thw@v?@`z~^F0_r!z1+?uR6Llg9MZ-Iu zrYtYZ_#(jO#DY&(X`(ASMdiB)a&kr3S-;gj8plaB-5I|NT3xT~N)N4a7TdAjz)^X4 zYZ$<87;*`Nkp4x}y(JsE8dzNPdzeFtK6CK5fAQ9Pr{|YC6#Z4sQ`Q`MY*t&=G8!kO zFOfU-BbF+=J`H}PNsFN9ub8hH?I0f@?FW?4bNJp2jlsNQyQu(`#r{l>E zOhPaIJFD{q!#Q)xL>7g$PK$2{a_=zT?N#M19B0Q_J10ur0_X?D&8n|jw^1;>dn$p8 z4;mG4A)1z))Tx~!wJDl)BrwOJJ?$~H5YMdvYC`<6TKeBxW1RNZX$jMtb_or2fwtD3 z69r8Rc6@6*skIsvk<2FNk)3_FwHS+T+6Qr%N+R&uA7ZbPi!GUOFD%7(5DZyH=SMI(DErUHsjA~_0$5~Qy@m-=%ETA1y` zm#UOh`pi(gpHj%~GR_T7rnGkbt*(*?ucr4)C= z9WQUrx5YvVxJ%edOa3C6c}Xw`9Zj|85Ya6Qr)~X$s#8`@Wq% zJO<(--D{1ckK15e1V}Lm;yu`ip`5w<1spN1tFU9gJa9@Zmlkrm_H#|NWGPN{V8)I- z=R^dg@HQYd;5ojxEL|Bv`FVZoTup%zmXP z$`T*pzZy9p#tGTnSY-P`nCef%sD6%XDXrNt-gX9?OLLIlLtV3>m&5 z@@**P#_K08@d8)nntr>hP4L$19cA zhU{?X-#+V+o7DaTK!#fL`ri8tP9N;shZjJ)RFz!>+9euJl`J!`G z>!{xptZ?4KIL@yT^EoAp3D&n2H3#?E^s6XWVtaqY!y%Ihos!WpRyfKnn!daBNSscI+70t&Oi#FHmB0B%bS%d|xok;Z@ZRPF}Xh1dj zZSkc9Mlhb-aMkjLO^S!5#HMOzfpE$JTqicqb%2%b9VSZUdFXK$S;0emfY}!NuJw0| zZCkU%e(jowBIN-KLo_JfmzbG)VZZ8B}vM^F?GV;%kMf)!Owo8*y0CWiX)Im(0I3J z7nj1(M3x$*@hD%hF&5IlY%Oj>JS9?fW`-v8+U=}$>)~M8WZi6_osuew@8Q1lkhF_aX6d;W+N*x@-1l?$40zHR z6iUF-TxjAGs4uAMhOqbN;hSeP7N}b47Z!7e*2MrsAoInhR#R2l)p`G)O#F9flePlv zw(D#rN=1JcoEewi-NnicDwa|>)j0>66u|ysJSGN!SLct(MBVu3&D|jqfbZA(9U7sTEhS8wB zZ#$Z|0n3pr7wzkJ&bQ1^u$i#<+wf@7Phb?bsbV!6D?)x(VfKMGGvWvG6b-M^4rr~v ztl+V!RUI91%P&q#I0BKE0VLAfm!>KD{diX9v_JaoN_Y2$D&R3jsoOFVz^!=f9EPPB;Gp#P>^shQl)bA{8Wv`m?QYpG}k1I?h>nX{@ z0n%l4g+7_cOtSu4S9y#g`_fkzi>lb(G#QP%=cc7!-xl*R{*qrnr1dR*YR$R3px^%m z)8LqLJKja#2+uV%9AS|)E2MZnEOIyJJJUTEiT*yrpwvX+f$O}Kq8o1=^ccl<2$MP zW_jn3sy9TW4?qa{0sMV@?@y88bZY=s`M}Lh2xROchK3Y)4C>!tFdn#Q0VJeFG*b); z3E$nu2$Wgzl&ffz1kpYxHNjCSvC?4qiggZ1LgFG;->D}fJP^?`dGsE8^nnfL`l9_U zgCeU77J|bUIvWDsW^>`Q1KK4`g9{e#Aq{j`@<6%%pf*Es0U_%Yx5xzJR-k@q>flKf zp{@5M`g6Ap6Uz{sh#55w{Hg*cij*+w&%+pExaTAnI@w;;pJKp?o5P{$n*tlDpMBGJ zwRuD!Rb`SUSl>I21I{vK!XHE~xpiPt4Ya{L#^QRJjswLGkeb=myYc!dolJFDPLF$h z+!<~R*g%6DHjw_j1tS&1;r5w`db^s@jW7D8p~6raPsPqUd7_qz)+v2#IcivHV@T~{DP*roCVAfD zs%+NjwC+Gvg#o1n3i=hR2-@7D>|gs!`W|eTdwx{X`gsGjA_WBpZ`tPcKXbW`l1xbN zSuG#GP4kui)a(3qk z&B?*kd4JN(^P8(N-)`DZu5NKfZzt(B@_rOeX6=lF-W1z%;+)f9X4d$)c`QxGyoEE> z9SGXSzpR31OHVtH$ybjWR;JB&K+X^;to!H9&dCYWxi`oruO1$vf!y*}F|mzxkvT?x zKt%zlA0)h^Q#MjTt4xg#s6fm0w z;f2_i-6)Ht(6NqkNlCqbWlS}Ig!x+}%wr(J;HIkCQ^mUmVKZLUsPm*pB7x>a!U6Yn zUK_Dh1Xp}q5w7a5cDsX>@gRq$;__~(p5iE-U>7zoFK-Z9k4aC5JSL{lB^TC$#JGBc zEh%ul#ekkbWhFBRz^~4+^|eI(Ur|7*jUxhg@B-B90S`Vh(QpF4(9qYEl$82F(l=XY zg%8iFZnRk7#0n^^^fOL*W{3$B*NbwA3`L!W>Wtd)DXc6VHTyTj=;?ONLaufrtkc@e z=I2eNs8(LwX^LX)Pc9mVwb3K`8BUvGN!i7Hnv!`D3lN#+tS8JIX;AZe)?jhD=I%dn zIyS!C`S*bXiip0#K&c(tw>>bKNGsq54Kh!q$hEGZT&JDk z-N~ZZK|vb_E|TlJyRfI5YjI0$U5_nXaP{Q^KZN;0Jw&xk^9S(CQUe|mcd4tIb&D>x#eI~14xZ9gV4aTw@{7=YIV{{KKNqRMeg z5(uBjKSJ1#oe>K3`zNmo>^U3IGU+T7RN3(^JUHQoy0s)zotWi0&leyK!|W>qr^-xoR3>mT$vFpy|SkEeTtq@wvT=RZJ&ynxiMfbEc7-Vs z!IEFt^znlSANd72v3{OtmP(MlGV&@G!ypqj^QP`ckGcpd`}s{pC9E_%$WEiVueGz% z!V%vIzbmWuc!mXlDL}-1Ek9BB%S^e><>OBfGk?#_j0qCfyVGUF2@D$FK|GnRR1M_I zFArwm##TW0K}MjYqVfZX8)|CN7F|&4prD|zf4uiVBVQ|Gw^&V`wczO7&V z(bN+k1tz}E>yO(WQ(%Y}EQcIK54C|LqVm=o7YCh0Eq01MPw7}zWqp}H z{T+v&(2DE#LmD<*sm(gD>AQjJxPbuKBhg2Z>Z$F<_j1W>`+DI4=yBkTiR!ivQ&n?% znxk}NZweh|Hu%QbY4o5+GnqEEVs-nwc`~tplCu44qy(>{F=ZbOcJT9nNu~X!ZJwER zd-0|UFu8A&wySHD!NdY-r>0JSZ#gxGgROEJ6!^o|}vcRiGrX3T5I%bw4H2Q9pbu{%|gSkI&~ zTBgNmy#&LBXx0kZ+A_jp=og1`IGlFN0f~wD2&=0d{_Zzhi3%DTA%Lm^UfvEs^FfG? zjeX9`%j@p${?~eDWCVkoyE8=qAfl<+WV~!u7x6!xQPV z784)UdB@?_$d7g$KhIoj7qjS7@fpz)I%gVV6*&#mDMtQHiAq6 zNuyIx>-wTww>HqSTVcd?6Bkhg@%YaTk&ZsxSEteI4ln%F>r;NFEZ=YcTCZSeXHO{# z84<5kM)RHWjakwo*Yj|BolzQ%7C?rwEF~HXLPNWP*avFK@$t<96lse~CtJ+Y zr`<3jh&cnp!oupAj6PY}hrK8_=(aD~QP(}d!8NJ8v1nTC&|YzJg5E{TNA z#|u8#v#C6U@(>AlbD2`J`u^K$JNnNN-yrOW{8bc~Y|vpu5{8TZBN>#AODiqMUsxMi zd)^%-Rnqu-E4GKWF{56PdH6+%Sd^{0o0O|(OqOda^WBQFH%A_~XP`&U?)O78R=9>s z-jk$s2weXTd%tZcw+=XZd}b>R%unk!y{10aLIST)x~p^Dp7C+W(^B1XTz%P(Rm>Xp z)bvhexA}ghd1pBOvTLNT?L7Ox28Y^F)TfroA=_$ z68q<@+SB8?KFm`3AeFCw}=foJWstXFY68g5b3- zl@ZI1El0R-3PAk2rd6BC;$Wku>V?y0KjZ1u*3U--dpCLm+fP9oQ52L!2Kj11V-W>3 ze*l-X3OtnTxk%v4ON7;vlc@Q5&9}IHAk*OCv5q$lSXQfm6BrkBA%zBP-oi7Stl$*Z&uqBcFUqe}r+rPGhZB#=@Lo+@bh>1}_ z?+O%y_AWCR{E7-2qGkUB3Z}CJCyx+}*Wn5z6g!TdSRm(YA{$DHU@H)xE~o6t09pX% z_I+KSvKjFa6BwD{ly3v5^k>P?LX0si#l*2B zOsAO4>@2m$#Lx9wO1-^*7&~6hCAcc$8b&l?r$!=%yi5$0AE83?Ry`)V&i{Ghx$ zmRhD0NUtl6`>?NXZua62Er50pzP1Kn_~^vMpp&+{H=wW#*F*xPs$X{)z7hBh!QV&d z^XF$iH(U6|pi6XreTsm<$;m05&V!rjefA2dJy-YkLO@sP9V;t*?S$|xIvO(>%3(Q) zf&g#vA-#CjtkwgtfI!d%Zw*y>-#EU-!!rcm+kGe9jiETKvRsIFcQOlA4B?&$sq(v|7Ji=Wl$b_ zV0+El?3e?~0@^9o6*NL!S5>{J7be(>A%LkzEF z1J3%Majk{@;O8YbB>|(VzYx^4P!aqbv@Qz|6COJdY(IR<%z!7gbzeQ={|o}PKPxxZ zb;kP!#*@DshsLKe-&h`$3ewlm$`e?5vTI9F>zR2)&I>WY>d2RmbGdMkaGVC;j17vp z63mwFZa0DqdMxahtP&>C+BpBzMs6ks8XR8(pp6tjUJ3K${&3@L7>v^kV$zajhzt_^i2f zwtRhcxc+<*uxaNoJr-A0S5-Gi+xzL`BXY+*G-NQbSq?wjGPnWc9@^+SeQ;2xj+0s7 zBZ4T@e*SVy=44wyoww)%$c%Qw)OZX}>S*X@+-hTO?&mIj7H3%#J{D5J^u@53E6dcXd5KK0bbZ-h>Ue-b75( zmvQ*Gj!i%Nc{*G|Q{Nkt3`OAcWp^!x-LrPno^=d#i~T^ek}y~DFo5(tIO-nEfO3I+ znL$**-t$ht_a~#9NuI7qo;G2w-C-F^q?Pb(>BxxOrbkf-@p(B<%d9wpO2NW6u6OSS zfLcFxl3{pu8RIX41o!=o$gfNm3#u9axRP+>XwhembuD&6DNpnsZ5C!fwy&hlYBW=- zK00=^3%zR@S>(wtQC(oc^$ql@DOlc4Zt9AzJ=XL-%QG1!ml&jRRn?Q$^z}P6+yZ1> z4k_sNrYmX$Z=nIuIis99e*wXjX9xljB>GH}1CQR_RdncvyA)E+T{AgSPXO~$w-HG+ zmnw)_@m`EpTY_^5RC2%Eov3G-Vdvh}>25YpY1_l~6CH+t*Kckvgx=9lv;f zruxoL8l&+sHS9Mw_5gt+$sMrIpx2iLe(}6-qM~Gq`3F$rk5biXH)bn`SfP-R{+)M` zfPNSDJgCP^6UF4!DZ|`)6;?0+*eTID%BqJV6ist@1==>k(&Ut>o~4XZ{WV@X&{G^! zQKuZ$sUc%14yrZ3djD`{NfWM}`p$;|3Y|3F4d-TMbVEB8>WvN@3sWtOJchSjo%gWc zknsgS++7Xae;A=r5&VkUOs*8IVw|*Tg7lwLUGKXOLlXb4c$daHM_y#`NXvm{LP>nS zIr%2zqZeR8!3Fo%SFIVq$M93bt|eh9BRJ>C&aJDUFM%Bz=ZtT-=ZPpq-2BuPc4Y5! zECl**2%`eCq(E2YC;D&D<#ahBU?-RnZ+3q4Pe1I;#cDky>Lq(`J`*x6UtzI}l2*(t)uwF$v!&toke_R{iO%j8n7;{o@{@!6CGGKNAlw7YoDZqahkk& z2`nW&TKrvT^_dM`oE^aTMPTiPu)6>5PRF^n28)J^g%e<|5WdA`Uf?sulKNX~&`@)v z<~x)GRXyAmGt*z{DK+;iD?))4hT8cJb`<9f^(bpRr&mBqGYZ`ckH2IaGO^A2K)m{2 z(NmjbY=t!&yGwjZWc^RZ`Zx9S4GWbT-(u5G1D(M#V54#JM34MI>o)kw)$rG9jIA{n zUk!$C;sD~{A56i_4x0;dsggc^qST?z!w$%3d%gqRc)SLGj0c^fjQ|gaRKs10+Z{)D zPXmnLg2y_d_R$0g97uu4K@2Pxuf5v_1g5jh-cWLCc!#5Mi0SBLC3Z4f=0Cb%?7Yy>xdsOLQhVw1B z(SJEM%4hdhc?2cc7roTpS_&{ka;l*6GT=Eo%#*Wj;FX*YYWw z6DMy+MbjTj=a+JNvvTs z2+f(u&TOSIo!0U`VcPl9}5A zuSck$xDnTL4{tpojk8k2M+xKkY2Ao?Y1UH}=9CbX%`k*-Q7<`W%z1%#kQI`VAfAbU zf>|H8SNAHxUiP5da+oF1@nS=O3+NAOjei}cPqHHc3U1OQ``3-~(!jCW(1!Qpx5uq=cYhV~oi zbuHV@J;&9816h|<@HJPsTQ0_>xLo$*utL9-#_W1u-;AmvFtjgBM%O+@j8}zV1L^FQ;YDfv_rLbM&)h~>P$#(Lf5~p zqVlSr#CmQvTg=`BWxVbZ2*)b#^Ibh{Ms$XTTB{j-%IVDEBgoc*5hH1bFCDiiIH!rcIw1 zq1-6xd5FCa6J8s4_#aHZE4Ya0eky>>S|_-do+3ZgW$H%l^ZckK8wBDxo^WzOGP98k z5o2RYYa0_eN^^&F}wAyt0+8Z%iy{)RVDr#NePQc;Tws_s6;D59=qhiczr4ICX)Hr!69CiVt#k)-N=R;S0s4Pcb<$?#V5f9ZpQqDqNl zl?Fp=Pe_~HGbdjuw(e1K4+gyd7Oc{lZ5CA08?xoVKYu(rqd&Pk&W2ml>J~0sV#*Fr zom_tZVXTh8O#i|Mbi-6mkK{miM|0pSINmDqb&H29w?P`u*agY-WYLbW);4CT4ay5p zNr5`et_E<-a;sZ#Elc~MXe>4t=%JpH+|@RNlh zZ(7;}d446hp;u%I77apUU@W)hfM*s92NIOHo5_q-MN9K|tJHXkVN>D9RpcUCOh(3}W zJH%omh$*N+l#MF6aO%bH@y&r!x~%_PtNgW~-Dy6ps8j8px4*Z!?&gG&mtW2!@!r-~ z1I zv4&CFV4RHcxOQ9TJE7ARV25#Vl=VH`a3CcvIpR0oBP~Z$Y0Jh6HFB+^4-zmk*07Ja zY*MSE;(eoKO7sEBKt$?C_`C~?Q;Idvw=1zh?zPL zaNpO1UgF|GG~q<4yu!i_u-sVp#UK~>1eO}F%vt5|ab#fL-W6tv!a~pnVQS%pTMM1L zQcFa8Cx^hXUGGi+Ks%#6zj1+wi{o$GvyD3JVxGZ+mECZ+TMm^wozbn5 zoMJ;sPtRA-Wp<^edKs0>cTy80^O#G#ygwQTloOy7DjGMgnFXv8J3K$!^#|S#lwgjF zN(tg?KWUx@j*&oAd#E$VCIg4QBxzqM-K;e+WJr6FG|MBL?7c`#@U%_%i8rX8Q?)-)jx8K<1yWR=UYr5JS z1ZT?x7KcxZwQmc!w|ad{u#jJC0EarxRyp4Dj4}i3+s0vXhMN6o9?_4Cv{GLS_uVKn z@7bh}A5}jo=NJVadLl4a>tuCS2Yxva0wXg#FgHZfiuyy6w>G*dc2rzYFx_^a(cCj*;3z*$(h(l3m&yw^ zmwYkioy_EH9-dc`GgkNbg||9Aub{cAd7t=;u>2)k-10`IorT**QE5xPBEFXnY_BLa z^z#&#u`pl-5!R^uGgYUSOXcxrG`OX?HQ%2=0U*$hwW!;yc*mT!9xx43Cde0-O^+3Tc-iFz z3eJtyx9U~f-sYuK-IW4KEwg0o7yZaWf-=@Y%Rb)DDvGD)K%{HDO=Vitr#a{>U<{nz zHRJ&E?iwuCx$~SsAUPNKu;HS#yz-x?nd7}uo=xILO-%*K-{rmD5QAqVT==t%uC(H4 z^EVQEd~1%csboID4lscY!8c_Apld+VH>|u_ba`cL!(A+h0<^Zyug;D6n6$3dWSBI4 zfAW!G2;Tqq9Bw=zWHW`I&9FWNUnWx|cDtEt`QCHNREdU$6bQbNX`qq0{oaX>QfaNt zo0iHee{f_jtP;^umavhvS%i99#@`Tj&qZ*fI+ii?Rx5kbrD>{=`rm(IP)yzuCQl2N z47o{9({S5Go9A`yeH*itEIB#|_i?rA9>6Qv$NiuZiN!{#vZT{IV-`5++VbxA{Q_K4 zWgz)XMdviBjlQ14I^4t@9plO-AcL+A--*4kX*{4h{BH^h_=p9yB;E&KWiS~4N!iz3 z1lzfjqU$Yw!Q)wVT+Ml!9&_RLy2`5Lxd$h@u@-ZYgNM2QZmIaU$K?V2p*)hLJA+Ac zaVyY+m%jDY(}T;A*6x;D>mFp=Aplf{k~mxH#`|#!%2OcsM15slJ=X=^_jbi+RiWdM zNciND{g-T5hM^u>BHHQh@}$z@cY3DLp=Tx3=7Qa6Riy+gx~6Dt=Ea2HZXQRb1ApvJ z`@B97mmBNB7VK5L&@5J(j;qDR+XgcG{Unq z!um294o9opOHwgQOFF>*L*YmThita1z}&d*3ugGDA1PQ0^yS37`6cVU#1pAAfT`g3 z?ms{K+PV&`qSB}{PTZ8o+SFU~1W*KMhNe;!v{8Eixgju&{g@Xpf!+RBw@i-kYoDb; zrlIDtLX4Kd=<|7sm&{;@g~7jaiKFk7OD&s%8L!e!aIpUR`uJ}jTtRkA!tiK8@-_hM$y#;&4wT<2F*Gfkc zPAZO&$2BSgOxo8ybWJXj4cQ0UD?@RM7(C(XKVS#Hm- zkp9u%e|qF#FKQP-&yio@p;hSI4SvjiY5d7ibEq2hY*WH04&aEd=b#RcpPzv#!ZW}w zmZST*?9N#&25QWrMy<|Nbi$6NRiaB1dF*aeM~Gc9u$UWrA-2ljov_%egMr)|S6~|4 z7-`@!>ffecHvy)%T$OM1%l80@wAwI}V^81wRxqT1wRolNf0_1E$3|c^mQ;OHz5Rog zwIJ-A7i`0$YN8N6`uGSi4&onFkrEq$j$C+!!P(k3)9ahOTUug-HSgFUfm>fMH?o;O z$xqMjamo>}5CgOrpLIO{D$>6eLb3Y8woKCoQkzj{sa5w-*6dQJ6=kbc*ZfcM!0_mY zt5w4^OjoN8mSd|hQ=(ZnO^lJJFY?U9$5;OgqJ;RD$XDLW6^RuIea72;-fYPp+a4Jw z6VF-kX)ZjhXui#JYv}cd+t@o?y1I#4h;$X%NoNoG5NAiP&2BkH%y=(Cd?(K4u8j}5 zop4T$CVkQ}q@p^9l{iQF`;qBgpK_ddBkF_*ZnKKoT0SjtrtMQ=zw+$8UTc3T>w<`2 zF;-`UJ=7PoyBd*Nm{Ff;w-ZAJB!}((9Izwgv zruP(A{M4|xM5uJTdpu@*tTaBlthC=u`V+I1$m>3;ugLw-|4YE$-a5&QX5>f@&4<4O z=r-OaFP}u`=uNFHpIy}H{?hxK`@sL7vSq+$=v8~l&%nfL!>V03nGx~QsDmzB(#ygj z^SBT}fqjfkHeMu4XOmLj*wc|6*nthCNKlrU6N1Q}10ACpL>0#V9z%*BO!#2LT6Fs> zs=hi-zspz{0h@rh76rNvg*UOSn%)-OWN+hZCsE`F!odR?<6__P5;IlyxF%M<5}J!~ z8g@y))|$Iy=Ly3QRk^L58JCxGCo_2POCXlkK%KSNKuyx*MWL_Px!g(tgO*_{a$W(Y z*FMp<$*4aTH}sI)meQz-(faz6T>yMx5oE zze9Jw)r&|lGB6|Kvm+-1dFn3~T|J2fcDc-QgJpLYb8Y{@+WtJ(`Xu5OT4xuCs$Tig z=d|+OKX)i7YKvINJn(ys=Ri|Gnbq>M z{BmXXI5P$*im@zofY!y!^trW&eJ!$mxs&a{Qz*rJsY^fEOFEJ-R-&20@HsozD}oAV zfyA{a>8af~&8ZaogQuYOaRJAxM#Lu)W#yn|t0e`9fPzRRyL%hRtMv z`=!j<$zJg}veH9v6A_oL{KE#Pt6mYGYJ&OS(S(;z5o`10i^i@f=Fx+~#Ftgh=Rw^Y zU5k{hMka%MeiT=#^`$DIKa2OHpr9Z~LA{4S(7Cy};jy;w{{CzG`=KE0m&WCQ2pG$N4*N{A!8QVy zUR52oXpE$0CUy~dDtu-B;?b!9sjE3~b-+JSdOo2}c0c^zBTuidKq6TLXG7ZfosUvj zkk)tM4rAC+>bkrg{rUrL(lghd-n_f*aNnyPTVb@GoCeH8bS&iXx?x z{;lo9;Lu{^h-0yux~|IVCLZ2ZT^Dpuf*3T(nMJ!~(&wk@hA4b_vg-Gh&BjKhQ0S+B zrYc$@0^mBNmrkEhz_97fdDKqaPa`2EqBP!LU_|ipT~RYLWH2&MeIuI8U23pNr14|GRSTZb^$&Z@t1tD3EJ65)X4VN_Dl5PWqIgm0oYGGVhu?#e%RRedNc1 z(Yuz+HL1k3RZDYg?UP-&JQI|>vql(sl zM6#Iz5xT9O|8qhPnADw}o$wgU?5sN9<)qT}%}ypqiFtauz57OJ``>cX*B1U_ zHeKRrh0CuB3nW1aitR39iGS?vypvKV^8$En_@tXzrS=>CzMj`Bd1(IEPP)&}9;xK@ zx@`H(a<`D>a<8$zitn;H@Hlm8B+n+b`1bRXSD{TG`a1GgeSd^Vgm zx~GgeHQA)am0VD;aTj@p`r9_Yp>F!1lsUZZ0Py~h$5k&H?pYC(d z-TUr)pXZ+E9v}Z8hMC`2E8cId_g(HZTy3Kgi)ZrVP;PN(ln!{zSIO?wpENC^Wlbp* zB;!3Bbbj%ZDa~@tiSMgrDH@^z?UtHmY<-i)y*gWTTUa^c63VSHEnIC@NQs|KRd~j| z2~Itt^Sj#AIDHQL0XnukV~_6E1BU3PBF}Y{RpaFeS9iG!lx+cBszsWtX$d|)83Wv( zR*(0^?>{`K6Z!JO_pk~ppQtS8AI}nKbqqSj=q5AHzQd>#d5X;MqTd!w zo#@lceb?twbIwk1r#QB;QPQM8CG6;6-Rsij%gs>Hw2^wWPmuL6`6iU09d1N;u?Pwd zMH#>ZK^rCZ#WE(i+x{9C?xzI zvz!$E=5l-!M(-(I3Z3Dw`_r1J;si=TkGnG5(yWm)t&>mbH96XE){pRBSAG#+GV$ta zf6DdVu27--nC0{4v1-+|f>CVLCLjC{#;cy@og@hk7KRgzn&>`uxQmolc96IpTo1(M z)#;0nDEkoMNG`c&k@Kw_-NI)YiS*QWF<8&Rh--`v<1f6yRenr(s%R~NAsX5%7qW<= zMo(U4VXG(~-=#DxGy;?^v#BzcN+HvC_Nb&!khVZLSWVeout4;gN^7yDJZ;#h-q~TM zHQsQo&d-c)Ld4(-Ulp9&)$)&35whCBQjc8m;L&uM`rLG6@FVFlai7bj=o_<j*`WmSUR z?bNI{_Hs51l)lBvEyUByX)gKi@GPfMSO6c@acXGj#BG0NlL z(odCWE4=fc*V{T#kJcesdU_#JZf0G{t@KQ$P3LGp(bXTMt$j?2BDOB_&k5MKgMCxu zh}MN_&NKY&$Ocp`I<9U#rK(ZAx}3q}Pl128&`l z#@Y?Ytl!!z6+OZn?Jq2vWamE*U7UXSJ+;{}ZxUAsC*uADRY?F6&2 zUQ9z8PnRFm%digoc6+e%DK9`K3&oCmxOD(Df3{7qcZ0-)&;+R`4wqv)G(L# zQn9D$JXh;FL75L;Q`R1zsfWS=`q#6T6VB#KR_7OYye@uCS*L$_MoOG*#~a(8?iGOg z8M-03%RV)k@h}|X9hKOzPp?(FvpIUMWc-S_c*P+xM1W@;j4JmHlDBCMuO@D-PiEKn z?pDp$zN$ZO7xx%jxN5=`QE2A&`bJTC`L*je63Sm>UZ4LdYNYxxoD{!5-T1WK1BbLe zX8ejyyffN@^~N1e%(?;<43wZNwdB02py{D~_xwoIF=xYdIUc(oBaF0P$#&xVGeNFC ze&FjBzsbI{1czf}cNRuSL^ZDEvrTk^aG9G-bY;=$S|1<02uBj>AtE!P4)Tx?;; z8`o!Vex)o1=PV7#Q7=6@m7JKM*ulCoKi%?lk%41{$Ik5K$VkG|BY$O+?rlZf$lUTu zpd`uCr^gca-U&B=I)a9GUuKx1!a`<};P}vprZwOB<|a-hwC3knvR(QQI$|Z-geFFq z@`~E(Ylc$p5xO!H zE@v6`M0A*LGS~7xTBQX7PlsZaMuCtY(FO-GSE=OXU&Omj-FANLPHtk{9=sjobu*h5 z^Wa|lH1?M&PwBSv)UM@0%;d1!VNoWX@Kn%Pw%0U7WL^C8It4vu*)W8PCm{-4w$pFS z)2AsjB~;_`O4-yTlQXu&!N>~j9{hH6CF?ttn^M?r9VREGeWXTj_ns3gDtz&rwOHI6 zp>$^t!^ImGeTD5(t5r9@jyc9X*WFqEabc#tf6R%lx`@Qg|sfxs&_!YKPEZuLfK3!?e|-K z?PD=EE8^ONEFYZEPysZL`&NTqtUYSBTT-IoOwL?+`MN{hb@9U!6@mSOoAo&NguHrh zlU&KuminTdJFNk1hS`c|dj_Pv8^1ZUKH1}&Av^Keq7K7>VLmZ`qIk))*nB)l@`+jU z33c5!S$Q4S&sHn;-*2@Eg&FtUv)^M;uuL4#o-eoJ+iqDvw>u98%1;|!TfxY08*y)8 zpWOdRSz1PJ?d0psAe<%i>S3F{fos>7;1%c?v0Wa%jD#I+ZB1D0&fUeJW#X#>-FLDh z7*2T!+Znt*CY@a$$;sOo&`au2!27`Ln48$;)1AEWY3jsh8)plJ7u4!izj~sDR0SsQ z3f~;PdI4jCbMrg4Aw4FM?&Py1e>#$U*)Mg0%(U#jsY-nebqG4%^LA#Zu@5$yZp|k@ z{Mgttozg+0k42dk#Yf9L`-ZEp-aH7bWN@w6x`lO|(9Tw2qo$`Gueq0>va+q!Flj9j z_gt5_(&9qvkQ1pdmr=s-=PH7Wm=uf*gM}lHaLQ@~Sx{<$8?n-SXkk}eeEfX%x0G9u zJur!7Ke&g~YbvG7&Q3XD{dAsw=GZej+lU*a*JrE=y=?NZWp?h%^V~iEO8&(wZc=WO zMHKw31Fi+BukAhtZ@#@G)ztW8Th{isc%Nm%gB>eJ+hpVKvA9{O6G^47whsn<}cu67M2@o)vbs=7LQh`p7o1jWyn#pYR%Evu*H zYyRryf;X;`t54_V>dNd@jRSkihtycv2w8tS`>Sc+yeq6L00GHbAZrTZ`bxJ`Ifd%Q zx?c9TyVtul29Z?N@5G%eRX8-+x2Q3*pBY1?dJw#PoT^I~xPKxjdO#fu3J2(;!-KIZ zTQ<*wE%lh#SOY|`9l~&=!u5Vkq|D>)F1&NEhp;Q-8@)mY5tY3s@5?&M<`z&gk1ZZY zchv{WFAqPyM}KRLPfRD7KgTJb4^?(B~=*m$s~>yobmY4sae`rwp7;qP%6S6>pqg`&M7n3t~ER+*{MFj|sd9(<1bD zz8Sx@7WLw0ycizPx&84I4aQ3xdj{LLQb6y2YtGo7XYR9gV|yHr_NVkax;J0t=W`rFCOqeY0%TZURGuv92};{jvCG7L?_l^;@=4;;nNotX&MGFW@BO#p3nnI}5;6#x zFWeqmI39guPdPp9Ne>~@-E~)yQ3u$F3*7UoXR=)RMhc}?I(wJR1b0M#KaxQSo zZjnAc!}MbNq2y1W#1OU{eV=o+8lEb1dgkSK{Lq!0?+cg;I1twnD2{ia93S)fso|A@ zOOTLBPKXxQYz4o1$MQMBl^b|04g*fEqgMHe!a?fKv+|}xi~4v<@=_nR)QWyI4b@B@ z7Cm+Hs6H?vgTzFGvA}+-nDw)}P-XGl>?uv3bH@PhyCx*b zKzfrz*y@J$_ljXVu7ujT%W+TZZ417>lw0N`Ib>3{bZy9z4H1qk51h|uvAa^kx_7v@ zKHvLF5NX>02_6*Emhtl5yDHmxd}vB6)cOTYS_@p4g&^;|7R~fg(lo--A&+K>W2k0- zTtdmYf=pYE;rmvYKT0%jNbM=XM#DH6XsthMZy z&D^XJfxImkxop7EjY+>{cz z&&04-|C&-WeAneX#_UY@wS`xEzFjgfY5Qs}SWG+1mD&Yi;ZHg@0$dH|%TlUraHMY! z#Ob|GjFC(J`$g;+v>Lo2T|77E_tP=# z$?ntcUI(B087JFoHfuEaL8etfcq@hvW#VQZF9ste3Ya2&>moHyt zpjj+;)C<}sLK#Fz5$=J+M25F--|{=H=|CHRndLXwB6L@b2#v0sb@%WP@Ywx{k9+x> zi2NlJE~3q5FTq}Gv^{~=EZ5rpnbnoLr?W|Mp<28mw0A<~Px+-1lnyVW3u(qVqFOgb zJ8PS|2WCEthRkmbh@~u1978RB2)M~!`t7`BMsjoCW2nX+`K<-5gE#CK|MdT{$%gXh zqM$qQiB#>B1Bzg+7-uxYVsi<<2U`p z0!=3d{VC!A8%V>m;7K<@ZG7min2ZeSyU{bcIk>*!{WOHReV#RPepN__ou`Ku3AG!p zNKmmVU(xpZ2m}{(KYF-2Xq&q4rc&vqV1+35#t6Nn=@8z8=;X&Wr+zb{0T8KJe;VI6J^M@FN zwvJl9#<6Oha9`hv?yivFU`1WsFc{~EE4(@|B%~EIybyIdhg4%@-fPxx}sfVxwK}$>3D?UE{1S&T#Pf1tTs!hqX8ZWJ5rSo33`2Dt- z!-JZ(N6VkR6jjn4s>Pizv@j5OUcTM=m@F@5DrzGw)4;MVY=c4sJ)iC=u5@&?U?MZh z@-uAX#oO57OssB-qo~jF zUe^0UqjFx{6y?VG&BuR7erw)tLqy7jr>qj^FFya9O%D^=XO_2`^ZUJ;J0~aSX}!^z z;FZv`f@QpXu+yL(;5jIi8A78T{yH5B|1{m3-J_iy=ZwruR*r27V*1JdUC|brPRc{tB)lFE6jy>a+0Abu9D8j|<7(O*l)UX;CFS z6x}tOH|D=HOIn)>a3pb`Ln75C<1fzNdeAx+$S}|Lw4>wO&n@hC%s@SAWwXY>+W9b$ z7R~k)6CP0#kazxcVHeX4dpX=QFtbKao}hbTE`w7OaqgS|y9V9x^FNn{=s!T$J95-x zVyMcjKGOiXLklbx1sz>rZZ0QiWSN)sK&23)nVA{==Z0rrPYn(YMZSIw?el7;bu@Hz zV=N5M04;<)%1}0(8-4HH%XqJ~cCX+rZ|wBQP4UQ+LqC#>Vb|6&NUe zqL7Ru^nODh|2iRo5M;$HKUa{j-N95`)~$D?h8MRoSl6Yw_J92l5B<>LVD-Oz`_|el zEy&{m1q2BDNuGKU>!obRwQ^AFyU7{LDj+a0$s7&(fm+wV9*p|8kJr%2$T)tmL>oO2 zu)uI5UGdP~ga|b*^ruFEj^mewg*nh{)Oi2+80hzrQ&AyRaCN_?-JmBS$~>4E41n!? z2O^~iw)OkQMsvPqDLFH9QIDbf*B)w^Z~}NgL_^VLzJp}sFm^mjP*89n?G`~OqbLnn zWp%ER8>k8kPjCITDV2IMdU zMf#E;5T+%>yb3apwhO&yldjw0Ln{~k9+_soY>f?);&vv0p&(sh!Se(`Y>)KEd&aaXnyxvDY#5N9x6Vyva# z|KYz2Djso_X-SL zImK0i{I!gXk-A3YMP%|=S!-K@x&OS7Vw_sd2+@v&k1c%9djIb$9sQ^^|Guz<>%ZkK zqaNJ7P{Dib&m)X8s2O!<;x%I~A~X!FtZuFUwP&*o9$No1C6UE2&cwN&qJKxt{Z9iF zZZB;ApFi);94k-wGx*T<|Mf%v`RC(QwKNC=1jU~>{yQ(o1peEf8x94p{Fh=YdK}mp zLy$au`Qa=4rxSJLM$*wR2VR}3=b!*8#U9-}I!X)5zIRkrW7{P}|E}Mwjs>0)B=P~$ zBh{mDCh=TX9#HaKuiGSrZ-T|$wqaI}gS~~&-QPT!R?qnu5*D61b?W_-ey08H&(?He z&iqVb&Tq7yKo){nc46!3P>{!)hmLi4iu~m*kfeJIU7kn)1Vv&#-rmREfu8|lrc4LY z<9{FHY;X6%Nt_f@`*Ocp!Hh2nyM# zCQ!?aga%(kqk3p)$otOoKWi8mYOoo+vNV(h(#NNB9tD5-V#KXeMGh1MB$&M1+!ip` zEb$*AU%o`4E^%_+1b&q(f`Y2JlLQ28yu73k+uVkT>J%~Y`S=g2u^K43yLVsc@ODDP zLIDgZEiE_U4mO9g7=@@Jf+9E-HT8LMab1gXE-o&hs>s=`t*bkSLgJm}<>gGq1e&** znSbMy4yhzM<_*KY4!PqF*nH%hzKIP16G`EME_MzMbl+p*^%EKEQy?i|O_Vz6D z&ybV9*{A{8UmYEtM>x~ce~m0;&jrP0|4U?1+U3|S_U|54Ya=H+o8MVCQO$_pe~$<# zOnMWJq2v@4I)SOic5~qY0wExl_3&V?T0*T?!F7uh3j8y3yD~E~--3QS0qHr#f>N&|Pr#ha^6gf}1a#_MRm(qu7djt%FESy) z6w@#F*CIba57CSx9#c5fNIawMmHWiGd=;=gk|In3$NE`d`zn z;N|!Y+Xzw5VHd;c=eJvshmdt=XXh~{Uo$WwLfu#Zv`WPxhY$dui(9_|#9wXaWDsVw z;^Jb|bBNm!kzq)G+7qoCf)I`%_`?K#gX6V?f9xSeQ0N1$l6YR-7U1|mmL4*q^A|6k z+}mEg1uCy=Q?&umpFamlZ420wG{s9VV`6;4;ikh|=2~&<)=)is_>k`UvkPm}^&#LY z4Yrm?K(6{x!RAs{s^RX>rQDScsCYoy>K_$}LSBZTRWX-UKGnN90SBG|*efK6$amuZ zd;Ysv;5gAxQ7yXnjf_y^MvJWN8Gt1MiMave%Cuu-W@bhVk89-_8XA8%S;94vSBmaT z?2OeA{`Cn@WMWr>w8C}ywwixQPBnF9C~DLC{dx11(_AG+XJ${G?a1u0)II&j3zXb? z+oL7_cY%iK{>jb!{o((?k75i3De;b>6!r9;&PSD5LN8}_cD9s@%XQfAR=VeM12+C6 zHvGHgkw7t@k=a=Mo@UWt0JWxIjmMraisfpIUHV^l|7s5GC^!w*(MUr7M^4==Kt)ys zVXByz7$o_Yx=A#7V4OglwaR&eRZLv`|MDTy||J93$S9=dWVTkJgnKnmpEDZ`AG zJ^nXmNT4&IJLMk>S@{0{A$;j(NBS^8IveTB#$uUU{YhGLRI;vODDaK}e;uOl4KdrN zECuFslAb!~WH_SoiNYj6IP1@Hg-(yvD;_3m=cze{tCPn61z$Cp(jZo&6sl_~=BQo|`B$I|1Yp zz@lNWHd&pWn>(m2ks^r^^@9CFe-4L*&vN}R8r9Ei(e6LWG?c(5QTcSLrOa#yNV$le zoSc09{0!h6017ZPMp`7^QL5(dyebeT)XzMigET!g(Ebz_^Xa*TJ}KDwK7ppUNRc$G-iFxrttYjQ7l!XVu?&3G1czB zOJ-(fSS+XOG;y9l1%U@5)U*9who#d$AQL(TaFo?tmbrv{P(%$xVy5-uqPBCsD5r``11A{b_)HRnM8JH5f+V!|5<&A-bFp+6;*c$0hj46_@xzDD4|88TjH24lb-tSuk zyG62S-F8A|&V~|HbS2Ns&9MU23$b^TMMSj*r^EydN$h^d9qv&kM;>-1MMq7@ua2RT zM4dcDh*M|=lW%8m< zYraqd1M=a2c$gYJr-mb*{DP63{~HKJCMD%-#YIIOuhuEF6J3~avNO!tS)7P}Cb|24 zKL@?Ev;URP>&4A9DZp8aA2%PbpIUc5G%dkYw^~G)!QLn-x#H~ViX>a8BJl;}Z?ytO zndUWaNElXaFCKP~YX-3pBCLss{59Y}C@EW80Tc@hixhea;E^OrFTL{ckPu=(Nf`3e z-Mu^zO?U{?fb?`L&aCPAF**T5yq4Bh+qKE-09O-u>}}sxQliLE&bga9r1y%R`4$x| zZ7UYr*!&C@Em`2|XhS0L{f?{#1m=K*Ory@ZczVnEaJbmsJ;m$L#eQ{ydU|^Ln#~Lf zDGLJPy;(p-hHE7HQ*U6zoZ#@KRL`jZATz4xMgjyh$~^PsSxc~lyU4HJ&9lW>kb$GH zQ^|VR9?5nGV(b+BqPrI;!x~RYo4(JN(8cN0*b`}2ST@%<;OKdV;6y$;0urqN$av3- ziJilG?(r~r{2Y+QVv`a?CBm#)KdmO9v3)Pz&8OQ#?u;N9ZGjYYlAd+b4laKlThD#t z_Q;Xb@-PuRxbsSJ=Ocw4huPogdOMhD#H0XoEZtR8as(``w)?g`<=?QHP_n-8ad1Ov zuDtVVTzG^=q4Oj>H5!YRD+L$&}1N2mCJo= zL>&pC5EGbLYVRI{*ue6+^p9$zOprUW1M~`XB#>;oy8oJTLNwz$Z~#zC!{Y<%VWyTE z2zx_UB~n0%difVL33Djas}BaVnS)Wn>O(britBQYtb(i+5GUGf%-zO2dGaib#V8!c zA|yl&XeDfk=jP)O)GDc|WgaW3)oXm_H@bRf*lF?8 zdDJJDeC^%e=+!Yew&(2Hv%n2QE(XwGvp)#~LSk0Th}g4&9Tc4Tme(6O{U)PK(L*v6 zLd~W95?ozhpBcc(qR*-2;^cgUt2^AqdF$}f0;tc27(f6&$}me#;GKPe)sPtSG^*Y0 z)jWZN@IeR&PNG_Z&Ty2)aR>{mX*7D)vk-bCz8!&OS|F?OgUw9@OHB@m7UBph6R7qU zg8Lzl^aG1V1SlRAiV*8{RBr@rI zYeM8r0}sFjd;Bh1e;Kg^YVL>+;MOdW0X6lP-+>&A7zlHy!5sMkQD4{(#ESG`g{5c8 zJ2e&p6WmwJL=X;LM)zyieW)MCN?7T7nv;%$D_vO5zIXI`zOYh=m=I4EY zzH1+1gVC{3fJ6n%hcCf3*R3?g$BUoRcHqwKXI#;nH&W@fYrs+XM)4BdK;#rp1N5;m ztfG)}cnI8ch{=GYR7O@dw-0;rhKz?<3XmY2c#}g#@GVp4#6=Y z%mvrQ1m3lcEkf-0D|viAK0f>PX~u8;sp|E792^8k5ZKtlb&5~8B!GDGe^9pZCMT>% z035uTz4gYHwZ#PdR{N{gUaiIG&hG^A7lPe)$C#8Ag zMKmNJApn?Fddmq89e5C4G3W16<=kMd7RO7ome=7TlK9Fi`JMgEek3A=p%Ou2dh@}9 zFmoh`Z|>`R00RiY{5S^yKZ*s8w>0`UVm43H@k?#}f^3loS+t5Nz|0M1Tm0zP5ynYB zh=7w*Jz!?MZ>A|8B&VkGp~y*@CE!j*S(z0@?zlFYV}iTrSjaBt#-p)Zng(DS?}V-jnEIaE|qItHOXAb}@fQ^OhM zfJ8AI=3*X4|;%G<&ZbA_YU|la@30N;(l1q1oLk4*z z|B4hPg;Ge{AJ|hEg4+CzN~n3P$p>C)l%k4?58M!(lW^CV$0|r3_zIvqOs4_>i+Mi5 z+p!E6VBWsIc!1vHgKuer9(RDx4b`oe=~fo=;y^Ru&)PL7{C2fD3^S z*%hc89bh z%+nwIF#=Xy;^uDqz4@)!0jIYAb4bAy+fZ+wjBwZkA0hA&0KJcNV`5?I1b~VZF%gg+4>|L2aS;KG{zEQElfHY0cKuy>$b55x<~tg%d9d!MnEk3fzr zobgtp=fQWdMPLv<*Ia`;3`0xglES87eI*XIfF^`?{3oyv2@@d}B$54{Q9E zU$&6zmp}K>dtF!K@_6Rof8%%<4%DAHUiWdg0|&&qBMb~jIvE){gmJlNRKaLKA*atF zmmbQuKYO~{uk*mJP4lsyzvUC8Xo&uBX`-P_imoK+3d5v>?{oPj&IUQp7*@aLgrXm_0O~ep}{fvEl3tnf=ISavV54GbXk&NT%797!vdy)tmNr*S^nSTvU}bG$ zX~EBPg6HVrUyN;Ru2~E7@|yqq8+a_OjCchzvXb#3KVLg{(VB^g`7-(aLxM!S2@{j( z8OqsHsy9OhTkN%b4HlP1rZ%oO`}OwE)P&A}i&1`lvO#NZpX52&aKa$a*VohJNl=iw z-q^Z>b8(f%4YcZwRa%B}!P(dE%GEt-uA<$@k$ZCN$L24q=)=s#A)?P#m43aK-qX?E z(Vq9Ar)ap}DYv@4s_@pE?fO44G5r=OEGYH^6Vt6Vr~bfS>U&FYiQF6Y@QUv$EWk^d zyW8kDCV4uHRR(eN4@1)!f%49===T#=G`w#!cDgf?~ePEmjprWX_#S zV3=q%uQm0|v+iM~7!Eb(9S{?1ahe|~Gi21p9@w+z)!n;y13rE{?;RA>mr-fg=4@13 zSI3fAB!gNkV%tvJk+uXmKjDTa%)XjadRGwR9&EShsmdhpIF{DekgQ?lH> zd-o0q2+(YLKfa2IjSUYzN zhrC4zj6|)>7iK5UM6S-f`dN9fG0R$_XkoHxqGYpTf_2Xa))UtviWX>5lty{NDKR3+aDkG(GT*a}TwTco8F>MP&cJ7{@sSJkJxcg+PY}Eu^ zS9ho}$f0dvrrNbZUZ|yWp%W@B7n?2Nb8@3w1>%(v}NGO3G;wMc$9+Er1Xq{clnGs8$q zPOH^jn$_^?d8pt!*pySP?}TErIV-c#Sug|h& zOU$iXOxP02aPd;n+)PQy*(ssmk&d#8_G<|g?*j&D{09$8>z6%Jv$4r^a&ofi^3~wl zv*%Qq7yDF#<4l*oZN-tC1eb-`)oa(P%E@`e$p;_sujo?BF>g9PG1#Or(NFhJPfy1M z)W<8b?-srJv8A}9%*zayH`IEgzd`=w$&;g#lMUGQULCrZ#A1T5ZQr5&`_INJhTrg# znEa%l|J9xQ%HptPbzEHB_nUlke;v8Ww)t)$R&l3Xm-!KCuRPx@%RDU}&z(XF8#iuT zy=v9@o)4i}D8?}tc`Y9QK6-lko-_BiI1crMyZT{!q`cU)+gYk1RgM(%3RtH*FR~I9%Crstx)+3$xrl(Jj+77pB_tVqu=poL+CfJGmkTe#`TKIu%SnNdCGBM$6Gv~tg5Q8ezXSZDLuz&}y9*hSc?^AA#9fR1FHLWd-c z^su4gB^Mw-rT*^qZfEvMKcY3~S=Ya?x1O1sOV%#9G27{_c*UcJ9G~7^HmvMT^Va;IYz#i_ZMdT zC0+sR_;DGt=oc54caQgI=3a}$6;%w(#Jca}^MBm7IGHm#I$B%C?y6;4g&L<}gKZhL zlCDd0ZMLY4eiSL)orT*cJUo5HI#%Pi?kxEe4VMJ3emW{P{pAj|bNzA273+5;hz!3_ z@e&<NRa71$0os;y*Zqm?|^OwKRhO14^jE=7E9fIl`i zHm}&;d2TR=RrKc5xjRz?GRLYV(s_%fPm_h>px`8F;Jbl>6QdQp+$fP9J9fS9jV7i|N==<{Hj0i^a^0 zeP3YrhY#yMgo+4W`|@(k<(o*TLW^~^n8QT9#`g<5apKcLbCl#mn?4$6i|f(?%g|Jw z%XIrnf*pXY*}Cw>7}CoMr&{YiW#~_!&6!RPe5S_K#VaP;4Yz6*+(_NDX%j74nmJV5 zSu@;e^uhXFC%z1|f40bNUr`k*qCt*Rn9Hom1fx!xS}r`4|i!Slyh+@(s3G* zB-OQ3$byzd*WqSV8cCfx^*it;PRf&&fhwfUPV`S;ZT&yfeYrKtyQ~r&r-nGhC9Z!x zOO7umCud`hWq9eM-N^+*`LeC8t)?ycSzC{2#+Wx{n|v*KuzK}suE{f1j>CoVc!g2z zy7+w8dbd(9_H=RQSz|Pm#^**}hE+ka0|Qq**~Bz++FT0IsE0)!xB1P?Ll8lm2Qz(9AVzactPJq+CD8^x2?0gJHJdJT-;nU z`>F|AuQB?aCtv9RzTn(36t!MpKYwXJqDs8q&8ky1^lvyfhpy+{zWrl|RbJ)%%$TRY zzyDlNa8{0*K3P4r(uY&UgRj(S zX<h%PqE>EJ6m92Q><+eMrSudY zHz<3wo8to`F4*E2_S9A)?Obtn;Q_B z7F5}&6fI>>>+0?f`s0sP{Kg-D!KF$pPDekvLiP5p z2$7{MPM1lr;x?vSv}1amv0M^fBY?Ag??uta*gBT2SbH=wGLlW7DtGqm-IF&40vrdh z1jngzphKeBfgvGR_Xh&uZ>B`c2Onokmq5+@w0wCWYP&gl2n0m1rNGWkB5hzQgs;?Q zu(AH!F_5^+4=TEQda&u2QL4IM$NYsA4r=RFF71BJi%&7{?C6MgV|TeQ)?HPH{?B79 z!g7-C)M86dwC!(T)4#KlSzSTlQMN^k!>K0TbdVU%R zs}<3NZHpg)Y73e-s^Tm}fl#NR>{vu5)Pl~qt!KD%ryZJjN6WL@pKV-on%XS=nA^u!f9``&@5pl3Frp z=AOGw)@o~f9?si~omBH;6O$S6tz+1*Z}kuFO<4XP<)Od-q1sGNPru)Qt;R@Pjp*dNgU#);a83w|0-@_S#gx z_dY1wBBieG=fTI)s9?YAq}5rG8v~E)7~|91wrtt2?=crdUAA(4f~-H!EUtCJzj$8K zjGk5xgdRs@bF35t(;$r&MJWJG*0yW0b@%X~b-wq07+S_lshOG2%oK1Qs}dqGEmCsz z)6-Kpy((yCY59FzlG4($RDcZ&JA1l8g`Y`t?)6!aBXB$^=h62E*{nsH@|+L%wdBn` z$;q+HNY^l7yZPmZ*!cK2_Ro4sNwwf`#TAV@69M<6B#zihi)pbu1=@*oH=twjBRdu z+UKMTbfU~97eI58ZgG*Y-OzxNh$-z5@S+b&$Y+05kf7|koyTeBIW663i33wwPsW^e zW@l!6XLeX~b_8L|2&)HFVmnhS^Le!M$y$=5(OnfRXx%Nxv48&|&;z?xd!xK;wI^+| zPo6wc>bp=Q6dA=_^5TW4SN^l2>ps#KE(EM+7uUKv|1t6mHO670Zy{+y*2twi35+h* zG9EWHIyJ?6!)0Nhhl2t9X+Wi9UHyCv`kca{6S8CT=IFN%w^eM91{59Q;E=2qn+lm< zSP;DY`tGrw4!{XG0{4+4^0*gO;FzACo=v@)21VFfsRs+zJEAg;H%y?cx$wg%ds{Dm z8$QD))>Elb&inW6JENgvAL}>|k=eE04K?5oE}rV+vqfxae$1i6Q%K;qmrV7km+0Cm ztuFpCFXle8XlO-ZNfMtveOi87t|r@$N4qaW!Y2mYE{Nag(SAm9dQmNDRD?E4Na&^) z&6)-_CG%8p?ZHT51YnIAnQ1vb#Dw9THV0k3;0> z(en^?^k)VYqTOm2E+i~pvo+!JoBR2*eaYM}TEVCLpdaxc0gYK^8UwmY)$ZcIR2QB5 zv^|=x>sm;&71^~u%c4b-->~vym%r}N$hyRoMer?^OW9XzE?E|Ki5qO$zCB_6Zeio@ z%0OY8-p6H$G1Tq@?>pA#k8!Tczf>)Z`zQtuS7kpK%y2obo|k z4frV7&uLRXeY!9RX!;~HiOvX3n9F+$WFiNYJJ!d?$EvE}oMfwap~D0Smx-muP{9)+pA#>z^$RP6$FkXT<32|r$4odJcY z=Y?1^aChI?aYi&DgS14Ip>SdMq8W70M3l)aI6^G$MtNGd50WbsCc|Tw0t9I&L0x`t)g@UcpdeC4ptDObxY= z&z_l{HpZ4U=2^#shuWMfRuY7?wk(|Rv&ie(DmGHG8Fk|e(6a?WOV!F#)-Ux?nwuPC z*|zN)STaD++7aCQE1&P`}1N$w@TQW<_lLC>b zzx(s%D;`SZzMQADrvwGM;4Q2n3ITSPUmZiWI!r7Jo3t>zw3uGjBGohYav8JndnyO( zNvjwT#omqCT(!egQQTCJgliGmDv)3WH0lNdd!L^h^?SL_M~jrS;;w>3?9xa>cZQ54 zoe@irb@|PTEaRFe+P+9!jW0AjSzo+z+F$!dAp8YcQQPJi%4V^tW@}=3U|pke4AjWp z5v`3r0sqak+=sIxP$ zMwhoZ+wTdxq-^&ulKpe-ZtNclj_AA0cow1&2-3CfLPthM_~e5G_`s-mv*$sX48C@B z$X~nmG!HIGWr9+4B^Fb6U??WsW%hmZ^|IaFXuU$~-QMU2bG4@>L6%mI_tUFk32sLL z)!}CK?CiI+sEt7F)ak$IwTPk)tv*Qya6EU5$*5@e{bWM~AK|URtp9YIPoY zyRAE|VCWcjQE+i_@xcE5CCxT<@&`CL-s%T81gJW??bd9|(ub_X24&nJuu>f?wTP84L%Z!$w#h$G-~9 z!5FGgv`-;S)FjM#@?u@eMSgTZeX?;_pGqjs3aurG;z~ifmVSsry!5b)L)#AP?nhw& zf?!B>vduW7R|!w{_VY9J;Ol<(WM4N7Uw*olwdc=k*9wsOHNiO#QWV_Qf;AsTGBo$EO{IRR?r!Eh(#uVcP5Vf@{d zEff@qcH-EMV^{uo@ZbTb^#}iBZhSp?+RK@4t^RIf&W}|SU&g<<*i~M!%(;q2Ov>)z zOD6QRP@H!H%bw4YHQ@4fbfxov;^yLO8{b}+U&|CxOI%G)q1N1lB^jG1sh4t+ z2(w?arVjK^@VA$@g2JdV{Ke};I5=XpiidlZ-!k?Si(cU%4E+CO-DgdjM!tT18YOw| z)TvY3#vkI+ex2YiJtQQQqva}{(r`ZjoP%Yq0N-BWpZY-{a&NK2 zi)^brEzLZuSe%|N8(}jC;jFFBX>8+p4j+5^&ZN6O@%D~RNH{b#HS&zsxIx8cHRp*F z0UM(EEg#>y#k73oO5IV*$4O_ylUIKKq1li9U(2mIS8bd8@xNT`f15M>*I0sUm!A0I zv_9NYMKmUO2oA7}#KMG15ApFS;T148jU0=XOfx!Qh@=OH0<^CBjWJL+_sWOy}k-L?P7i+5Yron3c0YGgzKu zYn%(2m?HcVXvKPkcEdUbSFRiq7jG5o?(a{AXK%VNJ3*Y`?5m&m5-)o5jva}pP4Y7Q z6@Q>G%cf0V*B_)mvgqV|d<&^CBKd9sJHnwfcOJ2Nvg9s0OM5V)TNUq2%#s*C^FF;)17 zdi`*7iVC{5z!K`gHr+kb(Z+xH;RhC1zARN!Q&V}xcIvNxFC;StOvJ9VRN4lWlJ;vi zMUR(m*(pNL6XdA(&kBnVbC7{RyCL!6{d*;>7K#_HzSa{4U53YB7W4(w!n=-{#W$V^BD00u;BI~BNu~{Qr_04OX4?x zjA(qt6-P0lwX zzBTN4oQI2W7rgiG-MeMmw)o~|Ej#(sr*A{pq(Ot5;k%G21RFBg?;AnOEdo$3Hp zpinEi@GEJ+-y}4O?c>8F$?#-pC0FPE0IT};*H0xh*c}!gx{pWHo~eYvNZJIE9}wTf z1|hi#vF@qRr+-541s?R2xv610I>>qg-kufM)bchSz0 z{5#l|g*USJ&CIW4cRDZ6pV;y#Jej%B4^F4jP$TYL*6(o5?d5ASueF~h7FA=Ba{if59XH1#LwuRatz^YH|$kT)yJ9VU?rltm5;M<8Sen{;=6>^u!VB7#4 zNz4?cQVI&gj}?OyFJohCy-FY@6j9kPNZ1WyO#$z$gRe6I<#$flnw1k`mO`NrjYU8@ zCT9QgpMEmN8KK62M#4UlBYGAN$LTX?h#Y=fQj$BY4i4p?jeX!Z`at8a7LDGxPwEgq zzY0hY>FI=p+g0UW@30x|qVjkz4laoMMR+4OLdKurdU zV)OSSNCi!nk&`=|RSE+aUpYR_VUKAM$>}D_|2Qb}FZBF7dj97Tn*ViWlzs08VAwzh zLfs2OYRiTV5oBNix${tuCm%LL^~#kPKrl=|A!Ml)`n&Dz?MbEv@)nPHePXyx7b!!E zI|HS%M$O@m_vPiaa99t=*CmojwXx7KheY|>E;C(2L14EgfJqdfAHF39$qjrEP9Y(> zw)f-55nUDjW+PwUYGN7!S!oo%K|+>cuiw1M0$Qwt=?W4AW2cg8V!|Un1Z_Bzk#5T2u;u>C2 zi?a=UT}f~5U3N_qAD`XE!Z?KnCFVHU>#Lzt0|XO@~9xt-$lEK+lEtO4XQC3kgb6D;F z6BzR%E$wM#j|9Sg(;&)VDPe_Kz?%nFbajV6I1e9IEx0iV7jZu&AHGKxv`yh?Id?vS zqZV6YS)A0D%gC_yRU4zJD4HOV_>#rC{)Yo143$!&nXh z6WmDEuQ#0k3G(Y=N6IpVw|Kr*e*o=N83_{y<)1=WVwb@)^rlj&0tg(*7Nr+X2I)8s z3Q~*|_K`#YycfxW%5%diEM*Mz={h#i3)C%}HbucrHmMBYgUVKcZAXIdfPn2&Eiz0@ zUuxCSZQyd!U~5ibdB0N~Fdqb&w#fYo%#b6;!_y=+2{E7y(=m(e@$%()W`>mkdn_$2 z*RcwmLnxcXdx~)m$8}?BUgsZg`Im7APCr029Up>^A76 zwINF-ROzQj#i2iaAG`ZsG2@?vn18+fZ=Ok#Xo(ySDf%2#{ScqN2mEf99XmJ?QbXIz zw*SkkJ8ELuAcGIM){$AgTC?=RIQ3Lbdk@9nc*RwJ*O?Y9a1{IcfLSY%`ty)(#!m5OUIb9F>{?Q<@rskmL{- zmyC&t$@c-KK?rtE*nA5oFr-EW^~A5FJ_F6@gq7n_rr#NtZkuqNmTm6Qzd^uWv1{A) z%NMug{z^C%js>bY62vhPb|kqF&|(_WQS+93H4?KFEMly#4*5zN3=EibYLIvJWS|gt zm~V!*kxF6{n96Un{R09ne4T!MZwSH!?A)K7%Vp_zrGE{o1u_fmv!+`wh`< z8uM+FiPJWa=i#xIq6~N~yZI-^4yS=ukE}W>DJWSH-v3v6IX!l~UHOYuo=;FvQf}^v zlc67i!W2@!lj!j9&sx&<_Z}(t-#D;U!t~*&{-0PcX{1~p4L*%I&Ug~HfD>aPOE(b^ z+q2S(FYeQ)yz-=xi3#8IbjytE@pbm^hc_5Sv)A82-*|D_ZFIHFQu7zH^C!R4b)M}BVa=vaZw9YUst3@qZG1zs;h9M5uqqAqBGw2qFA`TF{*nXZG9 z%|y3;fE6?fcaB5&Rj>rmSHOkkAm&a>PRo~pBOxO%Z_DfbC;Lo*Z9$z4B;-Zd0{vYXUrGH z(02@z0sy->!w(@Bv%Jyy)xTQ)#n1fzwg~?v=l^X;`yY1;F#9-#&?IPEB^bRVf?u(A zdjx5|(f?4tn_~12gS>|@sHyn-@4u5Ua6LNb=ep%gOnzu$XsE1Wn8PD;mE^bq^|-~w zb>O1f(J`>|Poto(7(u~3!{s{d7>X2StHwkE{9dA&Z7@UoZhLfR=M`i-6bw;dSRhzP zvAw;W3|$i1hmo_YKz?b<7bEvE`@%`leEQq(QBhGoetvPVAJir@e_*<0z$I1^LL@$Q z3o9!ZrLn*+9bwECc6NZu#Dp5clq{D82f|Vj5kINu8clfM;h~E2gO_JFosrYg3B!^! z6D_-+0$#=ApDd#jEbs2{D{m5U$0ZjgQuWK#+}6AyL~eqYtM(4ML+N%h3kO}Oj!)vC zV0Muj^X=O;uSWba*jC)8O(q6_mRplKH5dP4gBH(b(YC_56coEB`y;-?)l}m`_ZYj= zw^M>uF*m*=n5HneX`WfKK#2!zND>y~)7-^+uALBN+o|vF8Je6D^pBlUryriDYh(Hs zjFcp%@pTvL>Jqb{g%9kJJGd=M)&%;DCOq4~kFp>E{_J#z zSN+q=XQpoc2l35TU0G?v9{K=|ImQy7J$okls1ykw$$>d6sxdl>F_X8Yp$a`5#b-i1 zT~wJtghyBJF6TZZR`N|SVb}LYq%q)piD7qehrWPS=Q(hCIZV1KgMXEc{d4pX^+`%( zaU$K76K16II$2o%&`w>~PWV9HKypLF%MpGEr}W1ke-ya+?Kiu@rEGYzAMB#_2Q z8=Bq0Z}<)^0MpC07!qRHxicB#9MB_blRhZRdnn88Dw9XNY6BlSZ2l7(O+CZI!vTwl z@WRx;4j{oXf7PY{Irq;ztMQLv;9q!p_Ad{;@XT)D$4CH1s4C!cU}&Kp0k4?@5dwR! zDY*q;;OP*&8sZwF*V1BTw@nPSTw00QY(^q>ko5-ML(IxgPcJ)sd$qD2!9T~rgWMou z=`TiQ}yNdcs|cml-H!_Cc& zd*8n33k(15`{59&9hYX>mgB%%KfabpD*?tTf*zlX);0G7_Ja5*UL+PCb^PCzCC&oo zRl*S$sOv4n9sr%h4CL%k!7xUywf+VhNI5`?;83p7_drqx9&O*+`0#iMguEgw%D0d5 zNzyMOypIA17@e4y*j|9Sfn+Op_0{Xw7j?G%QvbWS27v=WP$bO<)j|0dv=(^NF;ngDG;b z``WZU-OR4jcOJ2cC6S>DH)eK%#uFI*PQbYp6cg-+jbMt|;kOETkyhZvr@lu{umWD6 zkh34UjFXr9PAikdyi7j#{`M@?U(Z*TDzXm}EW*Acxf#;NSxin=6wV{lBajmkqGe#6 za)hhV%)cTQV`bb24oIQ5k}*HbgC-No-4=7?=wE8FB1QMPp=V>ZIk$v_gf_f)GW(fq z5_co{T)6*{OL3sO+SlK*U>ViP3WP7s$FmxlrMnMROD-bwF9-UVH)bX_{;cV~K}D7b zU=mHD&1NF0G;b@?K68I9C;b^78_33F$N9A4OTW8M%_3?eOgzlKdk5kBSg|^o-LVir z8XYOT7BGU9;KgI6olJ-)Vgv)pW)3F9&g(58iJE9?TU6K1x2eIAA@hu4nDKSMAb65} z_l-p3a0~|P!)an*0Qw_ZJgv~tj-2obozZ2f z%lv@nn68ky8Ltf3=B080MGDU;0-esN%>L94~8(!1uq$7`+)DNmBl-lB~v) zS?xOghP@IKZRQ6Q!>&TwXy4<{+$ODON(O+j+X>M0Lm3#NAW!Fzb8VZ49G(=WqWDY< zCOY!_0+J?pGU+{#JAQB4zj*n{U__Ge8^S^O*x1>1O%?0v>K@il_0`KFWb;E1@GP%! z;Pk9h8a@hxl3W4;nOt!fxV4PK@%&CQdCY@6pw`E!IT*G0d|B>M&HsB>T$w6?HF!`-LgV3>5idqVvXlFeUA zNB~J(Fd36%Fm(Kvk_#~)r+9R!)xMuR8U^?#29{8ZjrV?&KT}@yc!f|IEkgjwTX7Fe z`NZNWtzJwIFHLyo$f-?g&T_nTT9}}d$6=l)!POJX)7=|us z1;a)CeA%$6h^j>DBGY4*yoT}Irh8Q-o??oSe7H3cyI#+ymaLXp{p!^#@*Iq4DYhjQ zWA7%I+jW2RC~frQrPvj`TvFekRU!`{$T>LVQ*as)AIDj?6|o6|nhOCdxNUbghpLLR z3}#hy9Yee;gg`@p%r60bZ!A?*R3ty}zgBbc#mx*n)d;S0(h!+4c^;EIE{U_WL*FCt z=;hmFRHwiNLl6gk`Q;_C`^ekK+e;ZXL9w#_4K&%OrzPiJz+mne95mN)nKAHMn8agj zX^H;7-E*Iu(ZW>-pO!m9hP|!ftpp(U69&;P5VhTyz7QfaZJ6fh zhGCr8y`w2{uk#Q{#Dlp(3~DC3e)UW2U35BrT8^=+biS?L5`AQA`_O&}o`3X|?O!{~ fKg?PfOUu4-tfppeF=WN(F;OHH&ZeFI?e_lzOrsVf diff --git a/_images/2.6_resampling_46_1.png b/_images/2.6_resampling_46_1.png new file mode 100644 index 0000000000000000000000000000000000000000..679cb4c557706cf37704c7e8a08379103e55c0ec GIT binary patch literal 21998 zcmbTe1yoeg!!LRW0Tm<+IvfyGy1Qfq3_y_X6p-$2fuTX9Q$iY~yIV?HknZlzyT||c z?)u(+_pZ0rWevJ!nAzv-{?(p<57H7i_ekzR5QOta5-tZps3H)Al7xi;Ubz_RRR#a? z+P+q{{b=#Y)uO15y8F$5{7y@89$J0@;VJE?ygy}{fY_=yw5l8uG% zp7Vo!X6jxr4~+eEV>q4U8WnhE z&4=v?o^`FWK;YT`_94q8PdwmoEKX{)CYQ*MWk$y|HmpuYC;MX>RmLmcKz2#rNmY07tG&I!q zxnZzye1y2}Mv9A0_#r<21nMAK>Tbj3gTs}+)*$8vgxlqb&f4$qMBL_N{fUF**pHq( zSvdJ?(fRwkSh2;dP~Be3{aAhnrm;eey#C0zxPTWQe^9-6arg3cS3*vXV5k06Q{T`q zXqw#Ty;Dp1?t9{X%?4UcJ!FlT1E>z#zQx889qrCiQo5gg=PNKANRH(&CXoC1vHU>z zbjn7#(wsb$j5kf%Whp}9r^l_k{-;l<(2w_VsF`vBIHX+JhcvXbX?B}qXW*6+Oe5uT zzPzXPdG*~hB}MC9P1gL@vI$X*Y2F(HX+~m;ii-dQf-H{L!y||fRbE3QM9}4g>giKa zYQd*ZQHY6&`FcRflas37qN7QA(|40|a&p4E^*5A^jErn*^*jaffVvCWo8{T9WEhmK-l%FvXSf~&g_m;`xt zD(${LS_nBCzqQ^o>nDC*I2z_Hc-`s_XHX7fwb*U)Nm-38rvzg!RC=WK0~#vo+{Q*O zC)-DL^?Xk6VJaRTWkYvvZtgO(zhl}IZl~YgW`@7b?A!JmR98R3w7Za(AD@qo;TBa< z2_oK~KNDDd1f?E*=4?s1)kw1F93(u+czL$W_#wsvGAsuN2V}bsk8y6{P2*h=S>OD! z3z_o=Bj!Eb1{NOFn<7m4=FJ--9!si)g@wKSPRhmJICe)cK%f!fWIm4@frhJtchE6? zgJQn2*ZJWpH7_r5TwI)T`RAyPjY7I)N7Pn7oYtYtcUG%O4hu0_?#UV)tuj+l`UCkmY>Koe)7U zP_>`nC4uv$NXOgjQ+xsf@6#CAiT@VB+K zA*RU_j`u?&V}*azmM4h9;rfK|S2(M^pS`@wcwzp}Y2 z=k<+!v+edg6+oHrM0B%G_at`s5nlx*BYyn@a04zKP*;m9!%r2RmAe!n$O>SgQPHo> z?Pl&f*~&~C#-ez})aK2Y)M`F5^qu&Mb56A1p?KV!ha7o+DB+KeT*rbPe^2!A_Plyi5RwL zernWeNT;?;XrXWeEH&zpTqUV+DDLiV*ri^J$tRi1}LfeT0Z{(L9D^jsJg;y248xQdS0QJPWt1|!dtwCa!H^vC*COGQ4D0W4mQ?xd0RWnUd9i>3TC)fU(J|sBUhXAkV#xuv}Kf*|~oHkiRN77_3Rypy8YxjSTA? zw1lf_rX0UB{XsXH!e=PcY%v)EWn3hm)c4F{K9Be=;_>^9} zScHUkYswCr0|=&9gQx4+9uAV14M?%tdmm2Ivk!t{oUn@9*?joxNqH220FykZOClJr z%UB)jGrfAchwd#s(lj3w1S^Iq3K|vWLCdz_>!QU5nUW8d5jGy+0}ZT@HC03MPAq4B z>Duv?`<(ZMTZh&4!z_iDC}AF@gchc~g!NLOCO@>HC2bPgmukPh!>+?dPZD3W?qV{{ zT^Af1Mv@B@HJMqMv7aN5&2FOy-noH(h%OQ#T60QW6PK_V;)XyMZMvwt&*O4V0;QIS z9}txM(?9ULHp9k zkm%{vN18)b6^_$Sk1tCCKPN4ZuXf8iM`iUt#E&ol)n~zN^I!C;l0I{|Pb)@WG|rJX zwbB}I<3f_cz^tUW!FW2kD-o|iiM)UnH5_wseJ3zxC)ke)i|9`dryTc^2|7&ok5m35 zv6?$`X$KvWp(S$c2$I_wE$1G>m`&VJ(D-dl_*9tBA|%6q(-Up3KH#i2-4;GXxF@iq z?-WW=R`9tgaP>!N3`=fCmb_Uk{hsqiDR1LQiv|WGK=#_|P;iQ+g4Ff7_8_^wva=Fp z`Y&vin$e@cn+Ojt2@|~kRKt?#>kkP_^OYU@^j>l|vEB)?q}JMb#@F(q1S92T* zG)=G(mhne=V_>I{Ntxs6+avNHbRMxf(a)|x2X}x44_xZ`%><7H5g2izE8Xv^o{dn} zTf}GC%%-wrNbeNbg~f@%EbD6?P;T?QP~|^Os`l=aV1hk;iS_kUuquFEabN}TiIk){ z+nk8V&QDq{Wjm`II!J2ZJ8YiV{@eBrlu9E9LX;_0Te^kscE2xyhu7w+%*Oo z+@d5$3z|h<_O~rmt5Gi3CIE64$w2Gg5KlB#1PT{x|09WB;fYO z3ERZF--tZ_EgU{VkcbAS-9NSO+}qjykS8|}cIkMg->*ncx5B4`fcy<^y94P;Li9&c1s((=2XOmw(+vC*WltTk=8&oHKE#!GMKHP zM!jJ1dw1OsCGYTF(C!1#4#n@m>`PAf46uOFV927SmXxs3JbNZe8wnmy0iabXRA*Hd z$3xG^$e;o=M^jUih*cN;0XbhrgZue`0e~Qw5fKr4Cnw^{%0w&uN%wudNmo?f*K`N6VsvF;uF?MdIcIqhI#c8ulaWymuv4fg2q#&f4j|r?J8ExN!&>z|Rz@+$N0Q^N-j4~`c`#FPVo$~HA;7Owoiw)R_Ux|r@tiM$GkeZU!vFh({KNh#U z)}9Aoo%YsWewO3K_m83#LE}cNk9Ii})F>wU5rBcmavnFhHBriHw;}K2)Y95&HP?iq zUYA{O@$Su=fH5o?pSihN?C-2geFlhn3*MXbz!RIpMA^9II3!EH_ZmT z@7!ncxN$u;%#`b<>IyCB=kxInI*weBXsE`qn3~26a_7y6pxY28-QV1Lx;8CKtIAI^ zhX>a0dNy9@9u}5}i028-NJ4viI~XWbbaa?L7&xd9AdO<+sgRJSVH^U1g^r1-2N>zv zco8L(T2n*vx6+~$Ao$U9WRrxF-_MZ`1T3(5c=+S$HHl=V9C+x}N^%v}C}!@T$5Gnt z;<1nrK8@)C4_PH8 zIz@-Bdq~jqrF_4`kllP#Qmgv<%fv>Ppv#@vZ9cS!Ct{!jLI~_8Mm9$CSRHoMk8=wH z9@6Qy2Rry-(z!`O`;>Elcr=rm++({9B6H_ zJg=kv-u?Ud6ckLlVO?LvCGP0hemhwl+T>)!wN)}q>4>=h)-}lv1NyDGl6g3%2(bKn zz+cTK%bI~mV8$}g=i&5@h5)&!J$v@r@CKh+e6PrkExx1#!##QOuvPOtfA&7FomfLR z3Z8>MEv!Uqsy&1({=hjz_B>Sm_Y}!@E6b07&Gxf-kkb#wHLQn|6`3vP4k)jNBQejd%qrM6WJwZkB(hFd`M?S9yxgZU?#scX(u7&9OguJ=^oe{MoP5zS& z9`p-hZkg;%3KB9Md7)6CDNQf|0KvUem+3QO!o<`^x<3InmO&?B>D<}iVjF(S^n;$d za+&XdO8spD?JzSXtC65l0T9ra3Rd&T_Ai>v&<15C@nVAM_Vo7vL>Cv3>uQhp!m+lr z5{f*9Mgs}PC6+-E^`*_ekZ*?r6R zxvGN`dP0hRoy}|yzV6if$t6UwcY5-{V~23X;^^9BL;jD$5A1TgL~c;RU1SMU+|S=% zH&{q`_&7-%V~xa7{Qf0o$OqZte)i3DIQA>bT6usUlH%;-RHfT1kE4h?A0e(D_ZRl_Rw7?BKhoW$k)#3>?&%6yTVpc7>B26*{8&9C< zsZj|FVi@c*ZzvS;aUD=~PSla&@{^Y=aWVW9q=O0;d&5oBqwRA)f{JrIw2fCZxB=~JvuD(RY!Vne2 zV=bB!CA6C0Mmx@k<=t%nct0^vvPm=L?h>8uXsNEp(J{x_rrcgx<5e=whMJ5@S@cT6 zml%L9Kasu3X@^mCTXsrjPeIQaE0IaCXRuP-!bd zN*VTPR0^(Nglr8@7mP1R`sLsjYivCc=8)Ld$-m)~b?jsv*`rmMtqU9sX@Ah$rk?(J z_c3fg`+%9)dM32Zs9w91lo#+{?M`)0hp|qv6jVVL@)Sluj_isLc{Rlh)2&fj?_jXv zeJxd3grHDK(8V=imMm-~Ns7roxn?#_Da@m_L=$y?pk@nmi43KRWGSg}q*fReVKsIRT#16{s2aCx z5M9JzCY1d2i%9J_bSE)cr5{y0i7SqPJVOiW;}smjw6&7fA1jpi)lh=V5^zE<0g3>U zygnN-czpf()pGgQV;=)_Q4xSRU%h%Yx4i5Nw*NUG>^mQZl5#&F2tXIUy(&HD7oqVU z6htdFKheGtazM-oAa^mti$&^M-CGZWpNG}5w4=Pw>u@s6nUoKAm6OK(8;eIXF2UZx z4|tUE@Qyk1u66WSi;L6z1Dix;0(ac(*kLeY)#|t&E9z5s($m)ZpW?|H6 zlEaJ_yhUoNt3i^6;AnjfSBpIIJE;H%&#T>Xzr%L-gmhug&kS`1+zlQy5AGC&`ZQKz z{^;~GUVZ@>GVkn;*kIJA_;e(qYvv8QXlL*{cAo#vYKR~afcAiL9G;RA*3~6hz~)Vb zBy>o>!)8Db6UxrbeFZfAXeNz7mC{c+hdZ;4ln-g&Hx+8s{%&w{0XR@+DC3QIxzv9r zH_J)S2)ZTy%B1R(+X$MNA*gZElNBdV!LBTgS_azdKPkb%JSLw~4*TB|v zurhW=x1B$G9x^aQdqVuy(FN1efCYB{jxr5tJVI>@qlwN(wf}|g_q&Z{h1O&)1ACNV*2N9MRMt%Ec6tc%* zI)oP&@Q@8QkDGHk=|mnB4-b!!5+LLg`aK{IH2Yg&JgxLH>eb89#8%fCLY}KB9u&C3S3kw8XX;%Rw<~8m$Q`D1K06?`l4Jbo#U<8n(shk0e>CR# zk-e0AWmO3ii%3tuV1gMt=VYb$ELEP z)JTL;NWOcA_ThHTWTwu^@%nf?B0Ad72NPGfBbXS-8y#iF!_Y_=!D|T#lRAisfdSxx zi-2E?cbMqN1MC(qbfVnRyp6-v-ir{^coMz?%Be zq|VVrCb7{P$4%@SXXSQzzq#u0x)EpPd{a56dDCwsptJ`AUp6S90yms-QAh;N{YCiJ zCDKVV=~2jfaT3Q+V4=DM(5`W!gSMwIOm4`>(@uahjhuAJcf{dRswGdg77vGow=CFz zqL3dMV^yB}yAi98iRJcnxhQfQYf*WXP+_8G^`GfhVB> zXG5>W!vS=F=cm5A7n{m2fB@W3s`UF=YE*aLF9f0&>A4dZJbRe7TG-tV_U_+rH~i3o z9tQJu_#h-1T+zkhPX;Z^I!1F*eN5Tg~$zPmj~XxX)+T;m3mp~ zIxI_8o!VBnYt0H~eB>_z{PIU&<3oj9Ej>KmhvBq-?XEArm?w(-b>Up2HyW%~eBP}i z9>c4m>SeWilNsd>4CsFKnjbd|Sg3N`WX-A%qh}uCbNc2rA+R7zm)(=9dWTEk@%NQ4 zdwiTeIQRsKbR4ErDJd>&<`174?>a$E8fbhKXE$&-1g^_Qt@P$Frb0=6w54ZS;rcvb zi(R?+xQaLaH9W%?Y~Yevv#Sqe8+Qp;!lcdW6BrhUygg*i-OTR0UmNOjKp4VsnwMZq zXM8NeBNp=5Q+&TOj-n;Nf%P|qctW2z=1DN5kyqI2;z4F&?*xN=+`}irU+09e;ZegZ z@^>y4zKa4(c9+>fi9yprlHOwx$_@#`ym9@^1FVfeu#vFmHUO<2qlmIrIn-RVLA)Xv zAt?+aS68aSo;7y!S$lqVqva?fwYv<-V?J@|#n&%3A@U zNh<>O#y`_rT=)^!^E5^e@Xv-~hFa zv+J>BsCn|ajpwjIO*PlA9SuJVr|&4JWwn4kkgJvvuHT3pekvgW_dc_Q`4ig*CpWw# z9VEZn8x>!cyW3s^ zpQi3Xl1WpwuTM7)TAYtB<7-x!qm-=T1S5vEk#Axzk)R5#=X!98bB}$~EsQW`@mKi< z?cuZlRCYV{*tKMlX68>UP$Kanwvmle^3s9*J)&V^ZJ8f}ET)GEQw$SZ8W;HHLmQs% z*^aBn(N?b$$Ci{lDJl>~g{llip0}X6_Res@N^k&ufcYPTHji-7^fGi8@T3SDN|<^x zSuQIgFKagG7YNtaLbjDuEN5Nmn%%eQBjv3X3GHDegS^>1`7~~SL_Pxa?!=eXhc4Qk z?9}_s*Vp*Jf1%CNbZXD0v3@F8T=C4xRrL6#_v1^M)6<-uKTdV>7Be4XUjF7DncV_S`WKiquo7NfKv90~?}ebrP+qylG}nRr zOM3&mL0Xv)A|DyVnFv{X;Li9`OUYp|LdnTsI5Kh7qp|VzF@D505^mc+EwoV!4#qYe z6a*Fjppn-C*0$hZTFR<}X&3)dKwt?ce-oen1Nnl>Prg)~m=D&=jghwiZ&tg%^0Ie? z4_2ZCI7HWv*AC(HeJ&R;<&}V14BNJ&KP$T=ZW}|K`TatA9b*8?{<~u9=xc8!y5o+@ z?qV#XXJ%u9OwV8TO}&JbNFWQ@X|pp9vMa?@t0ji(cOu(Y?^6m)cgP+*^z0q|Udp3TlQspYS810!W}Ju*c^^ zBshKc><&=f_YMwP5ct%VYrmfsxPmwX5$ESeuCA_g!0$$)_KV|9*zp&{RumjISgU_C z?12N{@gN949a6^LnN&1PUe7CGb?jDTO^}2uQhkOvfPRVe83YB%0W$CE>w7IH_qCa= zCz`SKV7aGQxBcGMWchu7LWtNuVgKss8FgY~XOD=DMF3rWX=w?G*<%G=xYX5oQeVR- zFKmxG_s2VQRD)NThC*oPk$c(p{{`e34Q$xMGzyy1L+B;!*|+@+=VSg)2DKt zEiz6@!-hWf&(5ad#DToee~@;nkYz--epgr5Z!OW&cXRqo1lmG)OR= zEqKnt!U9mdx&<+Wb?@GgB<{U?a$5XO2Q(0}m%F>WksRsv=GyA7S>^nnVm-cHH3fw` z{|p7#>e1eBEK_G|B5OjrwZ6rTG=2y`7RqTt^QPv*d&Th*@F%*~(6_H&Q3K$*d*v<; z*Iz#dgf^z3i~f$A`O`N}8Y7#taeEQZY4U`^bx-tYa~#*A@tO-pO}*cEdo8p2-`#|2 zDWQncuaY!t6ia#BT__MC`K>tPyMfMM+jJYV77Ta=Za|%*-9_VYIWc{o#5by)ytijb z#$yQ)GHZ_1D9XvDake0%L_{Ljk{>Qlwnx|h!D^g!(Dx(;E+<<7?1ueob-VvB?*M@~ zvL4;fn#cSrojp6Ab4C>0HS>Rgm^T51D=h3d+5TG$j49~2SwT_~G&aXAD!=p5^NtYG zEIXN0cZvx4Uj_RCT|717o+NqM3k@Rh6X`Nu5s(Rk1Bc^lWMl*|!SeGNXz1wlTE5&R zp>J|NTJr*~2Xrhpj3kSjMUA20DVcyH9{ZfA5sZF`VV{A2j=QeXIjIAZxD-} zVR|6;1IBkJFbLZ>9^msv_=zbV;~T6q;H!Mgme9%9tS7Nq?N=z;i083_0TTB;A}ci& zy4N0Z*LOhZlA%zmF|?Dy1>3;D01*(-3@$OZ>7rNOQRj5{K}98iF2$7~hFME|w!y8~ z>F|^7`q1m%9lVH0M}1{N*Rt!3nay%LfGYKO;eRo^qOB+a<^mHDM8S$qoljF0{~Rq@ z-mgF)AbyZ8LUd_zmdi!Cpx{pkBQv3V0>Xvs_vq&K!tST;JA@?mzgGbMyZ(`P-Fn69@!lcC1jo?VAi3&`jluZQ%wnhD>RyW0 zgIDeN)UX8V4K_!RA$q*9>s$8?-O;7$dq&;cMb*wRP34mLjzJ#^j2<`SXgaHBq!||?6DVrC+C4Q{s#cdR zaKG)02ttyC{WETtb~6@yVkG{SeK@6|!9p!m*X@cERuf97_4-zcD{t82kIe(j{ug_f zUiV4P5naw;)4(Tw>ZH6%dl-DXD~;vtSyU>$*=LhmhI*|v9n8(OVv>=e+6Cv38=nth>K|S?)j#p$`a`+D!UZ*5s>!5^XojZIM>*QU3471& zDWSQMult|OxbfFJz|H}qK9|%;=>3={N9?A&5l!9B<0_i-z#U5cS(X-8Kn?o{)F4Ec zq>vo?$D0@?Xo8^_1zJOKB* z2>&Xx|A-*_m%1f&m`iM#l=`p!4_?~cF5GvTKTB5peD^<00@T5|X7MJL2DQxR= zM9oQZb=p4f>WIPdrJLa|h9L}?L^FVl*>`9N?$!w$?M_~u`&0(X?Vi(*vu;P49p*`Dt7w zKk%u;_$}@ZItjv>FfR$|VlxXdg=c;DRz1d@%+6QRAA!;N z6D&67X_9bmWQUaK0B@vh%jp!9wX8Vk8@nNHOWP9JFoVeK^s8efMrjK^yjf}S|h{=Mlj_gSG} z>=>lJKPanuT?%)1glDQ1A1dcuOoEMS&c}>y&x2AQfoKbtiVFvZ zIPMx!b&X&x-V@zP(c?>?7vSGq?UIQ0dMZ_FFD3j9x5;%!YX{hD-)_tpYLa!T=9~4a zyH8Z_>faG?1V8x#ma7PIKrs^)Cp~E4^Pxh=m_UQpn3Q+$hz%$PY2JyRaa&ETGaI+x zBaXf|>3OH9&`BawYuvk<9{dS5WQ*Bri)3*jcIL8fu9n4o_I`(BRb8=P3}>Z#l+2U z3%0Sves>nEBh|8WY#~kqjj^p|3*RSwz-_YaUW5m7p%gCTnueNU21}HN8 z>sRmaa6CsRC!IC~K9B8MxHts}g@AW}AVF(qC+79#X(!mApX|Y zAjr{pQ(@^&opnV}gJ}LMAWrM*>Ov3@<`6+aV(#uj0HKxt0^1L$P;UY^?ttJa8I%fA z=|GKDuCaabsW1KxWHg%lSm%g=WNhYNcE`rJHyS%sUV2^2E?y8ILfN0VX!pXSZhAPi1Ju6C^I8N1QtQ$x;;}*3fY>EJj3$t zKk6`VaJPvAQR}q)d~CG}(`FE%VFl5YDWL0j_4EuoHQu@Z1SvOafpZ3&<$uB4*lxUK z2=h2hZXlXugoG#x9r?c3KDQek31BPr?#h2JbWiVOYa*7nBtjo45 z$jE@3e902Ew7k~B`ELoCyq-iJD^z;L{HA6f%)vY*W=I4evwaY?n7=-q?fex*U%o>h z_4aAh+mKBv{0Ov~bPKGGlY4&t3HLz&O*TpBy9}0iU9}Xo1>6(&-aC5inIb(C=HMOT zF9Yn-#u|CK1wQ|h89OURd=byzQ=lO8Ghq~h*bM@Lg7}1ln7*&P5);YnCbqUrpFg?> z6#C6N2RIzv+s6k95A9U#>^LhdW(%2YwpFilTA7&Qr5x<+eBWlWmGcABthH6@GUdvW zJg<#Qfb~&pE$NKd+91A0I9oBH_q9NI;k8}y*Oiy48sn~P1*udSd}SoJ!v9bH`XCd-UBu7G)g zWOm_^kv>2Yo-3%FX<6w@U^O11DXtNNFFlH$p2h@p`V1-6olNr7pVLkcp+G-De0`&g zO1LlLM90F^_icNpj(!4s8q?@_V{~o0mKzM$@bGX?A-9XUyrPDou8$u+K)wqdciWJF z8kFyk1k`Al58A-tfMVle+OvxbRA_2?8X4>_GZ}y2FlB{#akTEk+;~Nx<+^{zyz$ze zwHDmZ-VV8=UId~x@1zJZDCqO^WYFh2pDpt2%_20F*_z ztvyb=CG1|soeA6#Ex?Z6oho#Hl&zM!3t`CBRN+MHZlba7Fg^1 z=DT-O-E|N9ysre10W^%BTOq^e$RzpxS$;9Fx5v)v><4(KE+(HOHe}QfZJnInphEeR zDhNtoh&vgC$huLn{R0tn+(2+&YW#{=C2(1*OC}-@cGtN<=B4{LH7N?$NY;Y(-6l8d zX8wexKXcshzkdFrsAZ44VjkWdGWZ?Usakv{%i~Yj%!`Ddmm>xboyGLYB2NKAhIKBk z7kc!EfRw@z1?kk1AXxT~H1l#kelPj)Kx?YZ;x~v?cVdD?Qpfnt%pc{{(k+nqcB&wX zLmIR&g6Y`hzg9pC!rmHD-JAr$g7_)Nh^{H59D{&6Y@|rxJESlT*L2MJ=X-&@^M5(s z7SWe*xGl7l^pPVeqDvCF@pr9U*EC`|f0&PJkbm^!C|Yy>Qrk z5@RR4sHe5>j)WGuq5O=l!86VCYpk!j{5l`tq!DW3D;=#LKpf^rb(JIw8{2P~ox*r- zaR22iRSNfMtuFv{KPrB$kNfXto&%VuR@RVC*t35Gq+9T7C99IdKF}?mz;t7mj}D~S z=+6`rL=?W@5JuYmp)FV=#+IzDlK#RDm!72`dNgh_Bx|^cT%Ws6*tuTrDi^rYy)#D_ zd6Q>7w>Tdt#!MGKB~;>p6e?kZ0<1MIrN7*GZNlH2lVS=(mheK3T=mzS5}t|w#sz_t zqnbtfAx7EP+}U@~mg6V=(oMT4NpS0}JEeVv{#%5|d|iamk<^z5W{bYyh=NH5P=UWt zK@G{~AdxGotY&e9bKH4Ts`S24Y3Mm5mxKODok8N1N-N1J<$ND-AQ9Jn9Da?2 z&G0lUt3ir@YGGRJ^mOmNIm23(=V>9%lqvJmXc0u@`4OivotSzi?yM9*w|sM4!{yw- zdil3rIfafp_BQk}KWnZ8l~Cdgr5v|XvlWCZ;2%ou4FlZM!AD4PHW4eDLl=Dh>U z_U|zrEq_}d=a3$N@B&MPQh5IXwF|oLVx5kq9f~;ftd4vV(`_)6na@9>zc)NLaHV?% z{FWb6B%jnfy9$x04<_pdn)j;gQ~(5T{Xj5j!4!q#_*UfZ z?GEL_uDVpkzkxjw@+F%pV}LZ!A45X9_J#iHf5t61k-3JyqYmOc1Cd`US?;?@h2 z#8wB!7~Fmx;5w_EG?J8Sw_lS|vU&MAty>l+D3CbFl{Gr_(78wQAoWeSeK!bS2kox; zf{eD5VMTa6U)04lXEOVz;eR)$VPnI2GsO(8QLcn7pPoFC zNSep;(x84f+mOj7L>INtgm_e}A49*ZHR#j-%8j=PcH1LYM_4Uggye7ewFtK2m^Y_n z$7A+T)5A);)=0e?QiUIic6wNn?aEz0_JIw7&->+vxNX@1Y25C#aHx*h%$@WDu0W4e zU3C5bR7H&Ck@=eHizk1p8KEYn4UC+Gc`g62!Wq!DnNk(s_o;t^Go78z)M#`i0z#rNboQ|E8<|9CiIZ_jMNTR3L~-Q-k9?&1^D~ zw)t;joT?Z1BQ)^G#z-|#}vN_fk29ZQI>|hV%!i;2_7=( z7a;~X6ekEQd@sds?(KU&QM$Tsae@lTfe22^(7oV*dmZ8C$JAmq_L+r?>Qo6xF9t#8 z4KQt9q%(JE{=SpOGlG#D_VLxA-r+OYAqU{dMcf{XQ9Ank|N4KJ-5zBE%=@_wnCP}t zI$svE!kS=Yuo~I~EmAyzWf_`=Td!Vvq~|KSzzxqx|L!?;yht*jP^%}**$gwvOsRLp zp|4C40o&9Isb}m+2?(E8uz5|x>wOkDVH;+j_+`Nv2bpn8a=&!(_+D4?gf6gXA;hJP zHzD|F@jq{W*ZWZuq_tj}m?z?CX{y|Zx&)lwT>W|zl#K%PG-ND>DzY0q0Im2!uT)6H za5yX@th4o}7z+!_6AlwKH!oC726z{l_eViN+1uZ5ZVPy5wKK(Q#Rrz(2Lq$8Bq~pp zzlEZ$7N(}|#kj+V<9s}^RqoT zP`7l3YQe{xuVW)toklRbEo2fx8-V~&_wAcEUT_%e*<`&7H?$_;@){34X`Rtvt>OL? z2G3XDKQ#6yFW+{-;Tgu_u2rKOPpZ_?+T#RJ|Bn*2cWNrt$2^7m4<3jER1BCThqzZ@ zP!K*PWl?Fc{7YZ?TsHz1aQ+ER#z83BZ%rkno%#pd;1fvn&pECi0bn$FazB-w+*q(Dpl`T7)O94}6P z_CualgUuxCAXZjWlF(NsQ?mcg9AD8?Ff_~kkA>WXuP|j>Fwlu6C~*-Ze4v|X)<7&A z#>$EhYy_mg0*E9~u~~Im&_f<;3pyW(sH(e1es4C#MdC9ZXk=-md zEAIu4M?Rh{h6(=!=epmg2$9#joGKQ9`~&QB=ou5rpL$CU;B;wGPXpY7kml8_vRQxY(c%5x8^b z4oJFe41kP}Sfl$ji@WRfQfbb|tTe4gcjap9Oum7?7L6fqB5CJmTz1<*EM9^K~Lc9_vM-Z?b6ZFXxK}Bk&825-9~=p>bkGA3Cyd%i}RI6sX-vS*PzgSxkiSb;Wc!8I0s+f>Nf!vGJK5a}7 z;<~*ukXivzzV=B8DXpBTv(%AUT=m~I?sZjDOD=MPgZ9X8La^p|Q=DW8PEg6wp1f*q zw+6;*+gu@va*Wy+021dnV9nDQCwpVr4HJ zyhXnVY_y1=Mv5G2vEfZS@{R z<*> zurLXSP84~j66h!ByVK(`N6r`Zavs`_{W(2Vr(+)mH%le{?Vi@!?aNVP=H62Oxi^D( zv-;Pyr=VUeFFe3>9>Uc`?lqE(B{;}n4qV?rErkN5x`Y5=$)#k*)>^etom*aCg~k3Uz!9}6Z@Pw_c0n}01rQEUG!9e#hmG_N0Myzx&@@_H^pX|y&VO<>GLnP* z5Tp%)S-_!uZcoP8oM>^Xk|_w}AJ8C6a|g?BL1?ZWP@ag7jw*)9Kn1T@AvDQwi*uSJ z=qtVV4_TB@voEwFQSQxgBUyS6O~YZ##dSTUf$ruoHS!n(0-_}2$?^UQ%)}5%gMttcg)U#8ctmF1~x6z?QRknuLc7OltDy*72 zez@%Q=e@-Mp6PORKK+MxOIY(Lh_cz;x|e47hST}G+Dt>m{?nLxFdw(kT}tx7*Vpdq zyC-~yVL=a`)Jui>*&rv0X)rh*yB`3KH3L$)gFG`CC4V_?pAyQ3jcwtRLP;6?X7|>t z`_m-nzp=s90ZwR>Q3CxNI5%@UxtHJj#C)hBsGjkN$P}QnM=xGl?bV?IJ({qPyH5gn zsQW(`=?T%6keTvf+IF=}%Rp_dsl231LFZ+j!HCLr7i*oE-Fj>w)-Iv6tI$X}TPp}o z&&1U~c=w+vp+^!1y`ia*Q0D3<^#cqZM0S<3?p!$M&fc=QU?IQmpiUe$JG=1l@y&nw zOJ9!!Q?P+=1{KB_P0BZWH7P>I{rskBfx4dsCphAVw09A)~|9Z#zgC1P-JNRY**5nHvVPvQY zcrPTFxi@9IK*Op;Ccj`Xy3@W^R_9avjiLUm?t?oA)(khx;nfMx{#hdM2d1j;W1BY% znF!h(aGGi+d^m@)u(4m0QsQ2nNxDYbWuv2jgYe^N_NpZRO2a(aNE$pl%$Ywk>&GkG z-*4LU;F31|Z5f^maAF}i2?`kTu5|sKce^`28qA^MCX`{cn?F0-_x>@Br6zTCnzgCI z$B_0w%OKz~B&0MmgR31VdE2g;JQo{0$E$vNOth!Fo+&3ADZ{1uVhz;^jC@G+iq9M1 zhx4RTP!JWRKwuA?FX?5`t#)%Doe9dW{x<=a^g%M^r^`H1`r!Zqx3Wi;LhRq`a15uK zTGiUSpFr9j{KSuFu1wg{^8cF|i1?#cYO9S?%4ax6Y`1EsM~_Q+8IeJI;5uc1l(iLz zi;Rrr%zbKmaTL*9A!rqkwBO+RWqxz3DUT2Mr0O{z)xWx87)e|C&)4eE+Hm5bFjnV< zId|6={F^9nTJ}fK1ls@U!0Ad>ihBzP0^sA}K>(IbO{s@$0>8H-k=F)~nE0-Rg~b+j;hHsESZl$90y*pANT-Ly9P0j>gsCAw{O{$f25_Mf;4Bx*Jtl+ zHJM+&d?hQ3KjV5R1qAE)!vSFlXJ1Xm+q1FJOuqa{EfGou%0cSV z0RbqG>p?diQlJ(UMF9e}U9<^SxO5U<=ApB#EeG<;U~Z-|-x1cGOq#?Bx$%AeADvuz zIF$Pyf3t;(K@CPloF{I!EQMl3#VJbmEoA9TGPFohCXz`jd0b6IQ)Ig}$s*o( zsV3U=|6W{qqVoG*vCR@Zc}r9M-k4!2{na0_4-$JHKBpvm1mKd?o16cPTCAd>(b#tU zIckgqWf{%mxuu5(4*HDKgUMe^RkWWbp)ZVKFo3-Yz6hwEq=U6yB}w=}bTlF&B4U`L ztD_?YvteRlqF{IogQx%r1-^o3N_I)H3|QcRqY~OR?|Bh6@#~omoye`IKq=?{UE_$Z5NRV$YwEk6rT{y30ZnZ{J3cyWg=IcKOTIf=ZKDy;9jJDkQv{9zN*@%EKe9 z`(}+TEn>)-kDbo_-efXaTv}Q_Qxn}uFSFI-e1j|`#uQs$cOKBY4&;UE&Rfq6K{S(M zo9&GUZQC9?3y|QC@AqwhD3Cb+<*5IE+Cf1${Ie@d-OE?7Rm6p&1&&8SvfhX{T9v`^gy@s?cP%R84d%H_14( zC0TsUntE`=;tdTEJ`TFY7ENp*oRE`gGh)4kBtPJkj z4$6-7eCYmv2L22nH%rQBlzfu?8g33hnLfVqFB5c|XvRXmn7oOnv$4Z!Os9QyHlkI@oLx5by)& zcV)2HD`lZWaBMu*&BRtR@9^_!k#X7_!prMi|4UDf!(q6FKqYO46WJkP$E^d|wJtmt`=uXxmW0%Jo$JZ6r)WneXt(=#&P#a~vSN-f#`T0%l)x%V3&8-6q$3`qk_)#Hg5u7m+0yD+E>Lm8!^O94+ZLnJF*fV=WSQ@` zitB5EDPge%8>eLM-U?K}5#MI70fNmpX^rVul+)VEN(^d{`)0X$d9NGgfRhL_A9nv9 z&9g)byuU!IWR(=$Ne@()b>X7Di{B^TNreDyA=k^=(u3GU}*`4f!kJJpdh0t2yV)JzMYbZa=vCjy2C zDHEMb>P10b%OX0ON8^)OHk64b&HN*P?D7pg7dPJEaPM(y&M9E3(AQvq6mBXauo^B2 zuS6ZVXhGl1&y3zuh9HT+dRD9ayu7fv%kXH^TA)x2A6vcN7?ZvutY*CGbNs6$btCs) zOz3P$-UWpV%Aswvgbq^3At$HUy1G3m?i)VGi(51Je26-kWQWhY$jz}+E)MCzo#T>9 z1o`_&>v@FHAG!XJN+#y8Cr*(KY4O1a%|~2YMvH<@$%)%_Mp{)-O7l-fuM!eN)Pt5O*4M|{w!>k zjp#E&!nW1va{Jz`Hhr6RutRD{B5}Y1q)p-T`Fs%2L#=B>noX7EUc9o zq{%}niOsZ5;8$#1zg|nr>xEOgi?ef9sO+yW6FDu8PELD~n{@m20fBe&cIHbzK&2`H`~zys z(TNQ^&#t8tIjW;Q<*q=8{(FP|oEQNAGKe^oF>KC#(D(76f|eDrzyOIEjfMNs*a?ma zWY`;$Ks~mEOqI$=YdgHeILV7aJ6}9lC~$+FXGbx>+{h{T)j&_r9@}z zXp6Bu@Li=<4ea2@Bz)9zMeFk*SKqc=`x;0ohWt102p5(W2>}7(P*TaG?2k0l2!}Z! zI>Z8n!?&;Q+WCbbVh_D@NDQ475R}>4-fS&DcY-%J*^iqITpYjiebi+yqPs*N+2KPa z&7|x|fR}{T_0|I3$ts6DCxz|AySFKnoKw`1cloPeD`5dxR|Db;vlhz3C;K*!qi!a=<%MziND@gD z@;v(YJHd??CTN-got6P3?88Wr+2@i>^?zk<1br;k)42brRUo1NH7nAu2deL?obRuk bk20A&9ogNu{~ma+BK!6p-1F4(NX)+gb5*Z( literal 0 HcmV?d00001 diff --git a/_images/2.6_resampling_47_1.png b/_images/2.6_resampling_47_1.png deleted file mode 100644 index 938276da82f0edd47d7a5664b3dc887b54034471..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 25127 zcmeIb2{@MR+BSS?6bUIx$<&i5p(x3mC?#b|cOj{8%T$z^GBqKUib7?ko0KVJESeCZ zl8jNvRHlsIergT9&%4(DuJwIu`~PkGw!iJEmfY_9y3Xr7k7GafeLs$Me$Q?VHWpqM zilW$dY**8vs2OyMVtU3r2mhjKSMvdXZFbmZ=%8zR%;B`@iKCR3se|2dTZiM8hXqa@ zJ#o^~)@H*x*>#d@1uPsK>`ux_NLc^v1?y~2m`li{rYGS|=GkrEf0CluP04Sjc%?W? ziZZ>nLrq1`>2~)gXG1;5DaAflH3QCT+qkzXyX!d})Ui9Gb8W`8^)HPs3Y;wbW3d<) zk6PsA0V}_@A&XVCSi_sKdnK=1?Ow;cE=&KOp6Z3L_|@}^zYP1cfB7QoByb?(T8fA`CX_@__R zRxi51;yLu~gRaO&qX&nWGORxuh;+qv?%1(I<@oXA?(E+2Di#MDX9@@vr`ddxbNKp3 z#XK)A&OH3MZQ|I(~ z&ELLV;xTq&@|^rBLMh+f(^MY5#W3IFiNl3-+s3>Qo1FM~<{w`w{QdpszJC4skd@U% zkBQOdrb2I>vL~*?9DICir%#{0dGqF-qpz;tl(t+r`SS}u!}0Os$IZ`pOrGM+D$}j@ z-Mn?HxVU)cmeW16?4}$Z;Jw16Ezhn{aB2El8AVHBXJ_}1iTUHx0VK#>S`;@=HlYY z%E>Wn$aP*VDjG~*XPnFIt9s_yMIN&kSN^a&eVV+zo10tTD~WuI!G~@?PjtA8jy-nj zKOECLH~4M~r;Jb{4{v~a7mtG76i;SwaIo~mSZ}^rb^KnPud*KFvMntwc0=Fxi|(m^ zd~z-m6BFLD6ieLP)Z~?$EB~$G$+AqFPcx`^J+YCou_%*#kDD9J7f=N+UnUl%hFrUL zsKATqeZHqstk$hLo}Ql9u3c-oVd9~(d-no2cXvUb0$kQ5e$R2v%F4>GpK>=5cevFlSt(WTE0@vOr z{yZjboF6`XkleKChH;8P66f;em++%zC6|`UI`s)Ocuu(=%yyW!<^#ESMRjcM$*QK4&j48sJ1YP8jIQ%Kw zkv3-Y^LyLZH+N?)T)2>;PPV^Rv9ptW_~?j;SFc|$qI|Aiy_$9MOQ5vp#|-NkUL!*vZDX8GO-=E$*$xS{8F;L-DEp>@GrR#W zUccUjrP&d7dbr2P)XYq{B#2+4Y?+cr?t`?n>O?NpbJ$I+l+cW1mtir;=OO`Eb9eiivuO3zS^T!t^%KBr*Hayt=2G?HGnnZnB_t62fpl&R=e`x4Z z^`I3-re%0YvzjIoa_6$~$t}XUE(}tdjF*|}h>KKzbzMBh5(kM=Zp?GXE#BQQRTZ;S z?xWja&A#+ljR4-+)cYr{rvpl>6ZO|v*1di`zq>B|ZQT$#p(!RxvRk%9MMtZRE|ok) zQHOdPp3u77ntgfF0xz8EsefGLaqerSQ|HxloxcA58Zn!=K7amv=X7s_MPr`A^>s!p zn>KB_85-K$*IZ0OKu^OHR_Z}UMoGgHS56)t|IiKQEhPcV>`t60dY@`0dH8r&+ z#K^DjQusA@?zI2Cn@2oXpJ3%6s;3U~?-hTC}Js)I1`%=fStS^fjtmw^})R zhTgo{RLrjQwEJUbCAMitas|`OIZYqTBWHWbEqy!w^T%C1vF5I>i=w)*cihK@vQGD| zK#)Io?b@RIv~(72g+aaa+7Ai3B2+<9}`KNb1<@C8oBv5{p=TDFFm&M`H~&)zv;6 z_Y`LcadPTwIXTJZO^#aC=eg(P`KzjFFG<-eEF>g!MRbk~{t^mpNznfFH!>yp`tY9r z`t6yvNAIVlExI9LqK+^a6PL!t$r+qGPtXoKNW;V2PG2(q#rw8bH=0{obQ+5VgoN(# zjDJTK7xl?J;>2zeU z;?3yn6`vlZrb;1SMLaho5b*h-d4iX3-0%lxile32J2*T=7B=Om$dXR;IFmS7e}Df5 zSvk4dpNghrnY{J6t7vH!OsuRI#U`r6#l@dtlbc#v{(R5A!J2tK!{pBQ2w#rXYu7#v zS+kF#cJJQpD926Kef@So5*Evhj0}AbBTGxs3l}e%V*7CvKKpe|2vbzk%aAoda@)cq z=Ez)9*sZ2EaQUHC)!MadJDpcnbA(JhN$5-uka>1TT}^FH*`DN_dv$}+lMRx;twAu; z$&)9ys;a7nbPa#|Fw<9cFJsHmg!XBu%X>M`ee7^unq_)Mp0GyXq53R){p8`n!EH7+ z>+UlcR@U#q0XZv$&mAxtcG)Fz4b2xjG;4EogHr`Dh z11Zj~u48n@$EQzc1qKGn@bT(%1(8dsdBYxeqW@b_q~wV*iJRG*xrE=1pEc*1^x@y# zR{LV8sJJ-wbg%JRqipQo8TgM!!uZ;5jo8@OqK_Y!;V*)%Jfwiy6a-n%l)<8#TK!+jdsL2wT0|EWNLb5sQaVvAAfA4P4*>J;J8X#)y_{yNa*Y9 z^8!j79qtXPub;|iM^KkM`f?HZE}no>?~`E;Zf-xow#P-r5=PlRXJ*d5=lrAHqAGgc z{R30|I&HRj$ZCinS7Y@KO_p!qXj{ugEuz}H zWdkVfQknuA-P)QB;2hENn(L_jiH9AcK=6f6j}6nkWABKd+Q&2cf5@&e*2aS z0Mr|gxI98(?71)nORMrlA7 zHMN>+o^e^4j{9u%m$!GSUR|Y?7Tf4PY_w8D1Q27v*l@4Lv16+MM}1maUY6P(KYm|^ zv1j!j8jZ$q5%ej~ovV;LZi*V9(3h2m>`SaPIXIDS-{*Oane1KgpouzR2dyOCus8fYW^A;zaU(wl5101IQ@& z^ob7<4X-YmoES^`vAK!pVXu*O7vTh>}q_v|e1%!oLgHs&s?N!v&W@XrXx{%rEvCOLWJ`?58Rm--2 z|9(5fIe@@)kC#Ps$DymYWp3UvIC${V-L3wIi+tuSu4NXKbQ!Ri&##zU-^R1VyDtjsxWi<5Y${dMTg^+#E*T)i5@8=~op-6||C zy{I&ZU&F#;H93}em^)-puU>d+2);>GAk(nHGm(rv$roqHnTGK=iuD?M2a4*{QBbX*5cy5QO8|+ zlq=+%BkJ&xGf_D?xwsTHG~`vyr1;$jIKwvCE-*1MnZI0?Lq$aeG{FHzP{&>ZG%qdR zyf7tyQVx~>Axq2ickT$>4Apmgx;LuwP*wB}T&nWaP<)8JFGn0q|zcjq)b}HDnFXiMbCmeecLuX3J~F-1aC|l% zZk}ed)-G*h@ogS?j;|eiL^SM4{f@iXZ)Kchz=#&!!EW;iCs3|JYt5Do`Ua=*$Qd2} z?}U8{Vs_qmlV+)V?fUh5+L4Mh8M08uo)eCY?!1Ajoo_6pt8!8Nn|4&ikXm^l+jDBH zafzIRh40wc!qK@QHJR83CY}@N*iaz}D^6HS6qbrKI%q1cOvdUmP7SjAOBW^m+LQM7QmAJyqUN}Z`q*keN^3^IU1M(=IJ?J% zpH(yhmsdXilogBXl?2H4@%1%D>5%2v#eMkjVaX%UIaY^gb{urxb~;vGHa|Da|BHT1 zy9#)oa~CdLiDhMBX=-UXTTq~ExPQNX)LXx;41=u+dP1nQz9b8}AN_S}dtCES?o5uf zvLneDxUlq?sxsGSJF=oY37ORLOb*S>AO3EC?VYXT{sRZhkTlPoKYxZ}21+zFpy+HM zr&m!7KK+iLC{#cUX+$czJ4{Yi9~-&~vA(d8FF9H~o z`+;I*S+$afj488%;_F`+{O;iWN{c&tR=}{^gFbcUX8h-?wkyBHjRT>9|H+^qceX2KU-xpL*rBXjM9VJaWhKsg1@I&PoSjUb$+O0qv1_MTADOIZFGW+;!y@73`&fd`W4? zo?jLOSG_$(26*)8)AL;Xn^&P=y!ZXTM%9&CRtyr%20rAt5^F;W!tRxf&=VST`N z5Njd1e*G1js-y%EjjDI|$Pc;9pGRu7;4`nl?RhcHq&tQq@;d!&yOG}h7**h=_b);L zuJXoua=?Il&2gA6^lI2NG)hGt@(Bw^iDZbo7YY*`#r70Y%p~pj2c0h$i%eWP{=ji% zqW)XukWgvjF-fRl4mDU*kA=B1mSLpiL09yV50cP(1xaP$@TZAEupDJiL&n@_IFIR0S< z<@6=|wB+&kk^{Ys{9yW@mz9O&J^7;IIWfpXpb_|+v6A~F3JjSdON|4TxhOWkb`t*s=JI6mfoL%h4M(P2OG<)^*^g0sC z39fziY&PPsx9VMG{{?(@KffQ%1rLO<9GqwV2<6<(EvMH}O(s*LJlDk!_z?;pgq&R0 z+SRKIKt}e1$|KwpBrtY%OXq_JmxGNIG7o5D9o@3ft5-`dglfr8J_B1W4Nq zWU!z&raB>12dvX4a|^II-hbbz7S1BGdQ%mGZ0W!&5mf zj^Vc7YxbEuJKgB+U!gd*tIL9yO0)jR4a~F+rDPz#QsCYwb$yqC4$~<009E|%YrkdN zf|Ry>$Bx2>M_)N)*bjW&8yy?lf;t*vS77L&%)jN12*04|dJj4DUHHC}wWI1VZJCzw|v(o8ue!ddW znO#r)W)w=ARv$F@-F;Bk6u*1NLueDw(0JqqZH@=9p^>$qv`A;4>b?Ng>Z|+$9HJTC zbJ&U?W>g|69?UtV)%BH^y2Q7I8{z#%vf0?rFOiNJH4l&OM22m`%MeIdk>kh;(S2h( zA3k_cfaEIW)OUz%CTxge!dG~VJ5huIhn_MoM(2Fbr<^D}F~f&P<{dOLig6rooSNVV zvpy5NFdlAtiCF?0%ifTym3k6jXbwSCyS2%-2!djszph9%T}DSohhzEj`zP7X=B@v0 zna~IxAL1Xx$&}jk9SGp7SFiR83DJMj$T_ld2`yi_#wGb%ueSB%OoUe_3zJx!j?*?D&lksHKmX{(3V1ip+iNJ_PBRK#|SQ&DKjj0K6> zRH=Z#{_baR+Iq4pj`V@9O&q`Y?)h`(KmPbb5@OG}ro(vW@0}kccW(qe%_*Ziy?xZy zPqU+HD|P?B`jTx`{Ih4z3b8x6xw$QB?}wIuM~P&HG6E&>8L+(a^70QHI&{Lb32_6Y z1%zku;o%>EY3zbN24#Ttp#5j#7GWIVMcG%iUmHS^yn=!$oz9}It?l-sY?GYK8iV^@ zIXPPp#G2aLd?&_+-?`1@0In*ul$@?i0Un}*R zwH-3EXU_(K=LI|&xP0?jZN;CnfYM5?{IN4S?Ay2Fv*yl?f-3m@`SXI;p&O*Yo+9z= zltBRug_IB?B(A)9vuFOYjq{Nguh0QJC9UhEUx&#MSVE-lIrEoz-M)QW?)?_Pwdf$; zcf(X79gv6e0x&so1New$g~MCBCqa+!A*-|_=2IkL<2d;PnSz_T2f{B5*Bu(zbrCBg<19XEqIXmj4)J!%jKOO6!mj2UVJw` zetX!u)vGBAp)|gxvs0!~`PyJi%0x)%bWQb3-RQMKZ%hw<0*vnHa%Zh&_>ioC^rdDm+wjFP=i?Fj*z<}Jpe_zbaXltxN67)Sz z4h{-AYjj09m+5rn`|Cr8vlMQGb0)FjGx4}DaSE&J(SG!CKG4{VxQ#MM3bohk2!#Vy zp;1v$<(v!z8ERxoqgE`@5{$rcYwI-((F6XdC5hpHAsPg(zt-}@`jV0om#Jn+pB4Pa ze)}-oq18#H8mm2z9zF674>w{kB-X59ot&IxW@X)a@Zjz86DZnV-`>oH6AJ~E3H9YY zymS$>yPMksv(g2OcL=+MA3q+b>qn)!M=XT)E`j_D4mWk^@ZlNYPeBL}G@uiplYrWA zJ7aJsw)!ZeP(Fgxq$o(Azjy)GQw4dL(0yY=*3|G;TE52w2M322b~J=%L0DgqJVI)v z=+&#S=Y{0um&4*yM5uH^a-Vjap$rlf<%17?fMn1}_o1b=$wn7XH#lq1DxebwU%&1L zI+$pkhFNxk&`NwQ-^T8c*}He|2&n#kNUzN}#OE$ug3Pc0=`G?lNsagBq!iZg;^5-) z9_)Iz^DQ9AY>L=lP@+Bqxb{ujmvR^x4@WXe4}Odb2oEzTNJV(OQqUKiTwS9ent=SM z%3k*x>@Vs|e8f}Yr2+j0lxOH7J(n689X$-3jhw#`^|m)eYXMQwc?zyW*XVxi{DC+| zrht)vl-rQLgRfkfv2WkI?7D3vWSE1v-nnbn{l2C2f{A5Z*roiBBOnD3StF!&3fpk9#TfGzEa0}y?e~*bfFFZ+ z+!$f-ZCx~e;OQY-Ybm`o1g%(s>GzS3O+^YIGeJ^ zxe?2cy(_wI9XG@d5~l_gu8EZVIb}3926Sy%T^mDCWl2eUu*`}TE2`2oV^j|vx?`XP zoQi0{3JMp#1!OQab@k5bl`B_*pdOIGT5dS@`c2}z`SYJb^jWif=ia@XV6me+pvzNU zNN_Ypa$1mI;(ZDC?i6{y+6`khp1=MK`gqd1XU!8fIxxY3jN^r=yz9)%EnQNgM6i zLqViPS|@)f*SH!xf>qSlPS9;szK}X zi8(0@F|~;pHHmA+rd~F@4OxqJ`pk@BZ3P!s*PUA$N=xU0N$rwL2YHXMJcB}A3j8=5 zB@EQKZHaruLYU{xbN)t1nCFtxH?68qoH$`OG3p45m@-7U4I8+qH=y=F9>6=tIx#x9 z6?q?&X>`5G|-%{Mc16UyQTE`xMj1|mYsj&JM8 z;hRaYHW)5kMwP=fhnsV{R~@OLAJuR(>@*~C)owj*WMpIy@r_bGd{_wNGg0EP;Sx#! zzCqJ5Q81grLNFV;j$xkL=G)=n{r#oAf?LHHp|bWut9IWWdEN~m${7+@==RIpa(CKr@^{X?11!G5Cu`q#V^NQdqf(sLL z_8{UcBShkZ2a?kCYUbX&v2{d=g?>t?aoouJbSoaB3ZFa2eDH}&dUB~2ZajLJcVCPJ zT+W8MPEv$#m!?PG>IMZchZ^Zh$tSfB45Cah37qN$6UHTp8>b!k8hy^tj^3FlX7QkV&R}g(@R^C7|LhFyzETHSg?S6*G zK5c=Nl?8KK{VWR~aBjYFx_2GSv}YIxGKFMiv(}Z6C!{u|+ig`1I8%ulBzp-fS$%~& zbt>X`SctpDpK?xj9hN6A98juJ9Ng^ibq{tdDONWad%<<$M!IU0D$k>`ng z)mYcyh=@Q?odKkrh85;6eQr9|Z2^w86MW8pf4@BSGGtE!0|Q4XZgQ_K%D6;-evfmA zBCV)r93_{Ne-_j2){RVgGQ^90OCA|g@YniXIFW<2Wy{HP5==U^XXp0q@!qE7^D2wU zRTLF<9$r3u-Iww4>-Qxe6dm6A0eS@IeHrs zJTw)UXD(J%=`i^Hq{%hc>2}{iV30xbDk?0z`}dE(v(e&>08nerx)N1#)9mp>GIVe* zTT!(wST5@YxY$v@3+|t5e_b-&bN>0pO`IV8*BFPYo`I|*KXm779`YT`fvuzleE2Xi zeb88ZwQ8S+Qgi30Dh-}@Qo6!twkb&8^mxy_jknmz>EYeM*B*nB(|=YZTY6Y@S%_*u z+9g7btgPV|FFpP0_TFAzg}&>&$>pgDtF!j~GRs{F_`)@$$|Nx6&C}_+S}xH&fLG?= zd`nz;8y8h??zXS7_{|@Q0*Z>p;MU^AVp`x*;>5$duVd|)J2g30R9dP53qC8f?C>@e z7>6O+v?RnuEQI&s9?E_pLBYF4gA+I^MO9S~>m9p4Jko$?LJO4z3*c2M*xc|i=)*L4 zIho<+L6#K6u};)|1SfrSd;2Q%5p2W3dJ4B#V$F}g;SlAiG#|3MIbkeiD;B|*sh*XWsXHF#x^oc^&qeH; z^N2IN6XlGu#zuX)d#6SREQ#5GYt=5Y5rR;0Xucv2T=-~+j-Qv8M^Y@qSX)09EY$zZ zYIIa5*3gMn0H(j%{nsJ>LMb604Nww9@`&9PdKTC-K^+A)1Tv(TXT*&UAB}0TUo*r} z9W5Q5g>W$X5m+fKJQMFz0-fqIh$%w}YHG-M?3jZuj)BXszcviKe%3sQE&84>Q+O_udPXO8USn#=oUPTZ)4Cq07b*v(S z_%NCte~BmtbW6VuUgST@jkIsM=a<~L*Gg-RSiG=Mv0jZQ*NE-hVU?{0m9BBro0f7m z$}4-|JX@S*qFVs%OL_RTvV%-q3=q_ZBy0+WVY`;rGx(nZK;Rz+)$6#hir)E)XQ>Pu zeygq2oRpGRgp%=g`?2cg4*C$+5vb5y_O7i-Lnz5R^F5SC(?)*}Qb{buZs|D~S3J>Il zDT(>H5JnNLL5i8^Ik{{Eq4MPb4~%|$bac*w?nVitZ+P{_jk(nGiVD~p64GMjkw#%D zn3nmedL{h>+zYKblkA_o87>}U7mMKjzHU-NYxtU-`<`33W>Oc*%GlcZm9}<;PIUhI zGt#R4x|6k<{H}mmdEtHc2exF!=DYF_pC0l?T&3$m!f?=hBm@J(nas@7>9w~|*r1jI zPez>DVM>4upubtrMvyQt$l^OxxVJxFqfFuNE`jpoV4=VVGl>b&c9A%-Dy&rYB+7EgDxTbkDpjQ9Xenac{KN$(=j33}; z`-X>00o{nV7 zZRvDckBkQ>Cz;WUIuXKB6GsQjW*xntx!7gwY1f4%w2E*0rk0XFJ>|#o4f^O9P zOy!V>s8w^J$1OxGIt&^V@mUA9Gf*b;?YnBl1${U``z%Cd+k&IB7+P#q1xQMv!iY;~33_hW6-Sgo5vjZN70$f}^_66gU^*-U zYXMluk4*n4TwiK19zI1EOj7+xYeoNU$t#BU%diFimefqVT?6a9(W(-FxYO}EADuVl z!t3d}yLQbd`U)&+EzrwJ&>~;rbkCsjMmyI42rfoDgAbZ@2Hqlg(ydE>F+=YknX^ZD zj9QL=QJN|&<@a2x5H^#7#Us`E$1!5Sg85P%0R4CS0tmGNC{q2Pu*?AKp;nzqO0w$y z#sNT3qjYInqzz86IY&P8;{3_sDy|}NpYgii$waGk>zQo>ikLq-nC{q^sJG_ zhp(@PfBYcv2{tVs(A>zoU#kg$1P8=6undsPy&?T|RPTb?1#7Yz%3(0N{LWl63Bd9u zkxoVB%pwn)PuYZ}w+sclhaNtd!uN`Juf&zDSJPiWC&p4VzCbh1Io0iOea)f^8j5sp zf{qfCU#eI`PT^23z&3sH;ss56d=spZNl9x^dUPF`Hdgq>zf>theNr$XA#RKQp%`|X zKL`pc-Pe6<9=SyFyu*x9u8<`qkztcfeSA$JE|GKTL!drVi@UV+ytpa?dCnI(@L-mm zN>{=tZdYx<30D1Cs3Q9Y24+!U_07;UWr!|DoCiO&kJ0!A@HWAB6Nflu01!G}sh>tg zhUiOq1q5g@JTezge>-W2Gu=GWof{|FsXf%(Zluq2=sNW>`^@5(hU;iQJ*y76jE; z?Z`l&(0N2ENk|Y?oEXpr$-s^d9=M&i8eIw|NK`<7tojS?`vID}2D(4;5Sba4*Gd$* zX!IcLrxSXvx(?qaZ#yThPNN!r>;=G4)NqPMj>m+Y*H}>Zdze7F1E-O#7m#f_gd6Of zSrizq!=R<89)3$$SNB^7lE%~Lckq%Y5V1)sBKpqcXxRqh5V%n$*f7{HlUMA~ALC6Y zzRd~%{bI?rV`5|P5k0~<%kHj2sR%_{7y&lZx5#0S3C%QUyR*tC-XRQ^ za*n<)y?2!C>U$zlFIBXr{V-o&lZxwJ_TIJ}MPCkP^m}4?sV1l`_yJ|a6-v2lbh@>~ z#SKRRF^l#VHB8v=RJ>ZZ*Si> zIOyx^I~#_<*hk|d{jJ2dj?{F>#%2M08)#P0i`&gidQhWK6%pt2#fxavG`yq#2#!2> z0}9cD2Vh2A?GCk9Z{MB|r4A^r2;Kk~QUZ3DU0A%Psi$WFA_iV<3ahG2BNMjN5j#-a zYu2qR0rZqIE%G^W1GWnE&8;wT>z|DtT1l(gwQ3p~W;j4JM^fLy{d)nI(F%eK>3A*- zNrK`P<>l(=*K`@~2|z9(f(D#6Dkn}n)Qi$dkaQcd^YQa*!A%jgi;ZrFMy`Za;Nao) zE`}g@IXL(X9-bK*4xm;fv?-A4cr?-8o&8QCklOzP2Bo~v(r~ElWr(a}=OR!ACOs|& z44N-~gUVr|nwp!>5ZDKs#1eTYNlF0!h+mNA=1}COaL`DI2im5n-z>!2Q+5C|!aWS8 z#^eVd9N=nmqQItvWjX&?1usB!2i%Z%pc}q_d{P809_)g%B0MLZ*V59qC+a5XG0&f0 zP1F8|q~|r?oR*fu(J-zM_m<3=GiQJY4*9l7 zUl>INBqcdOPXv9-5!AtgfEa{SoSKSF@#VbaZ>*$ieZ;Hsb2WZ|U=XxR&T$HhG3-yC zOsbWG5t$9_B=K6nURXDCTb3sqFGadeAvD?jnG~h=m}-6Cl-{ys3-F9S zO?L(Sb~s6$uQzSnSUbk=cZUv#F7hkwef1Xensb@XpN4OlyVmcSlbwJz1Ch%Rfhfw5}V7bpr>y zAFGQ)=X;l8q5)wIMl*A| zee8c_bc3zZ3iI*uqB>R|fYL{7WKjCZ!hu=GQw!;7pVgz(5``5d@*cGB2kv91i2n}+ z%4Is98X7@Z0Ak7g0EFWd`AZ}z z7*g-*_4f1xqEiz*%wf=lcBf92{0YoKzFkH-$l;y6eC?V~go3N43@ihsFwsk*&*yV{ zJ5luk=7Iz3NhVj&L4z+@_kJ-@iM^ z;s0a^#Q$ACn~3O|l_d*F0F>PfVAr?%JxFH?c$9VP*1={@CPtt)JW=-soDXebbr-ch=Ahe**NeFFAXe?MFZE;!e>VK5&nd|CLj`&_!7?kzF zg0WMVZ{9TQ`3`@dl@|ChUZQ$s+B^gPWTFs6yw#%$$w&qDfFAQ|DD!iX0+C0cAx*cs zp;4bmZWQc4c0hBaa`v9fK8M0TqQa-pL_m4LQb9x`w9mXxv*e-sK?2rs?h&9l`bMb>d>z)-UGa5&mx~pzS|U0Vfw&P%lTT-c7zV`^{tlN5{MN zysD3PVxj85U+gyg>2#GmoZzGz2_q#)4xz3${c=-~K=1WF`2eBsIwSi5#UX_x|3Ben;@t$xZ0 zdN8I_UIUHm|7UejjIl}fZ|Y#xUM=@u!sI`&^nf%8C>!XkVTFfIPUA`P!N+IG0EOCGZc6OF=$5m`%+2S*{jO>C(hN2* zq{Q%_|C^qd??pwb$gGxSYi_L*7yo+>l(Dq5>>C=oekwO8i2a&oOsylG{LA3rYzi7) z!E_VG!j#SAo zA;27BKgCoDyQTuBgjHfJ3ti18(0Y5{Ud=1=1_RW`q<2SVU&wNE>nA zho?RO{6Gt#9&3{J5u3vC`mDW)CmkK10bDatcv>SE$B+tlJ76U@xICv<9t+%Lz3KLW4*f zs5yloIwmJ4J3hXJK(jqa`sSVMh%n6?s?plF>S;-d;t2&91e`uQ+CyvmXQH7LNumE) z(eSTx0{$h1@&BS1Bc6(*0~eaZg9i_kVS{zJZjy6~4J-xexgq0~(B1_`CF;%{<)j|O z{k|VRyy55spLiZaU$!#e{YQB)345Z)$DM<#xEW!8~=>MIEdP%x5UdZ+uM5Ir8 zx?>0(ET&k5OQ)!%%d-oMi|XoVXpX_G3x0kHa9Gi0G^35cIOeOklVI6}I&Fzm{eh48`@ zqxLQegCU+$hD}DAR|}Sq^FcwSXk2h;kAv;7sHml~Y||mM+T{87J)LHlfAP#yHECY} z+-S?TKADsL{{8zC-Y>ji>79WwVqz&jK&BOe-LZ#*o=^jz>kLy5`=%YdyT_vD;?$?@ zeNE$Gwf~2nm>?Udn;7f>Tqbq0eHUrWCu}SF z0;6@WAbS6Y+74+!ti(r_xa+rE_X+dbr~+J6CCC}5#%93w#03g;2h1S}<(#oag7I%S zItggKPX7yS|1Vd1gtj;8A-#iD!Z7Xpv1*l&lvHX_8|clXfl8jEWZD6^0DW5PmoNS( z4)tjp&}<6=CAuo?JeSB}*gAujb786WI`h8%WffS;`Qw+-0XI&^TzHRs##Nb4a?y+JL&L}5`es|AQd&j=;L z+4S^5Gsadyx^U0laLk>02DDI#Hf{99j;`1pP8vEuBTn}MV^+?vT?F&*#71fNe&#cH z*FxZn0A7U#{bTa?R++&qP=q0Q`i;d-LNHvJM8T9r?>xvy~if_$BT>X8z zVZ1Tg@D5|(6rv)d_pZFu?>}{-GxXQ8zF0Ip!-ez3f9dS}{mZ=}aF<7+d)1;YO%$rf z87NFkq5Zy1D2@VN~(bq-f%xrLB#R(?B$vSW0SJxI6S16At_9@h*U2Vg*Z2mw{miay`w)$T3s= zT?Dk9bHvu))6+vf6`X_Q>7Ik|8tjwH^BZ50^Z0ScC3ld0A%Q6wjjbXzDF+pc(`$af z@7#}h3wN>UNUlel1sM;6jH7F%aAIV+Qi8`|$A*J7!bS9)TL{gma*CSYmWU0r*w{3X5br zbO^!W;KQMc`7GzrG{=ZUVZw}pX)l_dn@14Hr*ot+M3;1z-eH9Ag%Eeqt6)rVK;?P! z!2l_gc%`2~^e4Zk|Mx|SJj0HW#D~_8he*rW#lAkf;IJ?;(hi#nvWQ3|{g{~dmu1P$ zz5v8x6)=G&)ITi^0M0XvBYcX18*4nqx;OP>w9^GL4eKy6A?@Rp;x8jR29vZSn-lZ$ z2Y)U-wkL}B@rkwzl)zBWr!^Qtm6oQ5uz!K9O5)?wy%F%na$~I)sxlM#jTzoXqWC4W zLkd`k&Ad=)yl?B{kHp~$XB7t~wxu}8qpAbK|16c0Xs9*n{s!^u)kF;OiZCgU1D03G zhiLvmodc_QearPuo1ECr#4q0o{R=1GKHA$ojb?&9Q^HdyFZ7+)YPTqO==753t}5?Q zaTKJj5L}NwGzPco^Wl>R_f1^a;8!d@`m!riQK?vdaEFY}DZ}?AC37e;IRM$1OoNa? zCIZ+aE(<0KLmyDr(`2yGF;^l=@5ci&@CGCVln~F)H;D@xw?f=gq~Jr2(|J4OP#xWv zh&C52hB~^5W1KN+1<}FLw=02Rt)yu*c(5|#Wrl93-^hv^`$6%c(SfL*WaeDeTeZL6 zf^zqu8^93;4BWME9W%Kh{;tB_Xz;+^fIK(9HJzDxipAqPrxG^`&H^Xc_w7*yVcIA% z)sph^_VzYlU@ik`Lnf}wJ5b9o$0Eh^Jyc=NMT=(f@Z8WWmBzF+GS&fg$@B8^5=hBS z@U#vL43v62bkG`OT)=x_4ymfS$3<>&v3im8^zN6{M=RLJu;=<;h(waPZ}-!Z@8*?K zWP%A9)&lONlnnks+Y$6uGP|j*_T8ZC_{v6;&2D~Y>bid70!Au4C%xgs+4zsdG$X6Y?IMC%Vq79%|li1z6s+7bM0!lO~wXy+^yZP#nk#;ezN|i#A4Jp8f2X_bWAb*R;e+jfi(eb_m58ex=TDFJ z@p5D9wB|;HX!!r6kbyd;-mKBt*V}*9#k1}E(mC`vGOR2Y_EspTPl2h{7-<~sN_dfx zl$1Os4tlov<@6P6yX&Oq4%QwZBPxksQGT#mx5`aJLxXzrGrtrqE!(Fwn!kQM2Q7j$ zKNf|}1s}1145q?B$wYp-o`=Yh@1T^_H#zBSJhn^63E-or1+aoe(`_u)(+9Uf@oSPQn?q~`=KKGm*S z)zTR7@$n`u2)#RGFd%N-@UgRaZF5i0%W_V@6BkF6G)IB`1 zWB5R0Wb;F*YV`_;nu~C176R9|K*Esg3VuZ*(Hb8QcfX{n-r|VQ<~LOW5|3c|4=G5X zk7;xbeFoW)(C*Ey$WdEcdl-6S3w9D22iT?<(Mn8n5Jnc_Gr3Uk(}KRNeuSA^Ov-4H z&#v!Jvu!j+m$p8$Afbz%ezeUOM|;6))K3MYCabR*02l{1;K781pi$N}nhYr+Oze;UfKRB^8nGu2BG&Mw% zZLp0zMGT5fkC;34>9+tqfWsTqE zOj(TF#l3Ok^pHd{QdmetM8n(_WZ5D>YmFX(dp-wOk`AxSRh6p7~@r_q|Car0J6%f{VXgA6PEKSzT$ITmz+qNOM zs;%6R8|np|^Y2e{etriG3mJWtoY@WfX)cuhq|EMp=mdU6AK=5B(VUTj1432HSbXnQ zwILr7kdC$pjC&pPQ6HR|K)f4ymp|!?$ruG?W!>j(^X2euly`n9d7~_7!^RM3|L2Ef zl6#prIBTvW&v#VdNn&h3A*?ge&S;zgKjsq?bJTr4J5lC>g0!FbO9!aW#H?fW05Qdc z!*u!u^ldj^)h43{6E%>V)Le=yEBB73W@Pvw2!;-0<{k2UE^;C%DBxeiY_AQ(Pj(IZ%!}7?IK`g(hj_K|HD}b zQBJVvRpvUM1VzCN{EtUn0IrRRBCs62He?bMFdUi1LfA$CqrHIOJsUAT=nT|y(z_S7 z3C3*;XI2X5p+=LvBMtq54cy-WlVe=elaNN<>S}{7m$j#zs24H^{J05v^2)FqiqnyV>-YHR6=x1wS2n@ zwlHju#ekYT@Vx72L8k`N<$)Z~7APVtyp`fWHA?#-f?1^Kw-wM5S-J8YP~FZh1gT7H zi!-%WWT@42n`kfEbU2Y`ss?Z!vnWhM6D>mo3`5Mqacp)0d;=;VwOJLfP~sNMj5;^J z0n1{`=t?KM3*&e#>(GRax4={g7D@oR0hym#IcYz2;Fxw%GPAo*2ovG2SDwHTJe@|UaPYWxv6-+T1Eeem5*b{gnHWG;d zBw8h=PcV*>iGO7D0Y+D_0!PbZo2O-9M#pAi#;+d)kG2Shegw0$W1`ODF(;gmz~_cc@+l(@y=!Jvz?!Xg2o6w{enU3kMY5P+JAHygVQbJUF*iv`yk zlBYf3L;Bb;cX8Zo{uptRkbEUO&U)l)IbH)E@1GQt@Znb39LudaN30OO1 diff --git a/_images/2.6_resampling_49_2.png b/_images/2.6_resampling_49_2.png deleted file mode 100644 index 1de5e1ca8fd3c8ef535f6d86aadf29403a6d5be7..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 26040 zcmeIbc|4cv+CF@1A}WLo$=G1Z5K0n4lvU6}>^@yz%-|>UTTx=bW zN{h>hON#Lwc6D`fk(ZEg_}d4>9go>a$mZl_;2?{gcI256w-bG+T-~xMru? zHhqt4-#(l$)jv3`^!+7W#o90dp&O4AQ<*NWP1io7d&4Sd?NK((qs)`Z`!5$H`aWMH zEhBr+L#={!sr$}HYEQ2%VHacDx1>^6*Hn4CrT_GJFk^SO-278_xeqB0G=&*mn>OuM z9CteuX&Pt1AIQWffIshS_1osp{jU$kH<|J02`hsv`Nd_c1a&nvwbgoJ^&$9k;7kw~ zetT|rjjm`f`WoVLPOK@US_6#nF{wB?F}+7_T2eq=^FO)jGa?F z)VYLx_YN(Ucm3l3(0!nzhS#sM=)~~ZOP5aHvw4|l`zCdCtHQ0*VeArCV_)Anxw&mm z+Y=|#6~QUJ$Y**iGsgLO+!pqI_m5Wj{hYSQwSBWFKRDf5Wbn|3qx|YCYVTtD1 znQ@EsZ~Y%0#>&_(mv`%3uyWjb`m?voO|1mK*(VLOo{_!IX0|SG? z%*dO!dG;}eU-7Ni>3Zv8uUsjA{(LEJwQ+MQo`rzCJlD~qM&KzJLFIws93NFC+fQ9Btt+dw9I+b&>{e;Z}MEhQU^^ zfk!y*p+kr6KYPWdUn>3F-%{Z0 zbo}_~(9p%#u3ckVzWkKm&lz^S{<3>76&Wax;pdxD^qQrlq$t<;6{4b|6^Yx!UL~l~ z;wBPL40mxzSuL2Iopy{Uz{`I0^eID6PtTXvNwi{OV(tC?kqa4C+_-)Fc6rg=d-oEw zh3+`EDIPdDzHECM?h!2cKTTou7R8a7*eRS5GG<3PkwUmg;2~W}XTTrrrI= zA369SeN%>EhSZ6n19Eb5W##4baNP>Nvy(QN1)@e-*c|h&U%!4QH&<=A>-oolfhbM{8_X0R{2)KIQu+M%_G^FyIq zKtx1Du9-#z*P7=NN@my3p7pE35bd9_8x68vidnYWA*a-){f%wR+b1Z+2!_4Sq;WK z{#f8_czbMDH##hT^5jXPQMP&c+qcHowz%&(gLM=yxnaX{+-1?*y9dMG7M-}~G4{@8 zdtYN_)yz+si_y`ciat|x*4EZi*40bSoj)(ILc&~(YtvCNyj?LYUeT(;f`SmN@5K@l z5;>L?i_TrUCRXUyxAvlDO6+ErRFD1#-IbTt@2hOg+*ie-rND2Jdzc?fNc6)V$KugT zckbL_+I2~c+1A$9swvCN>d~o%9dERhqOHaT+9Y=G-mMnJvsKN?D)H?-n<(sk7OL`! ztbKApZmtZCa&k(Ff!DjzpR@bqG3(0 z1nrRVHb0BxW-^%|q2tVX`P)?MZ|JDJ9$5)wemcxLB?wV{qBlj__G9@i|w3KF6*W2Y4oET0eugl5F zi3yj*YL{17esGtjW}r#t3UbkLTihFCX_a#izgA&oW!>TM;K74Log{Uu*&ma-h`JvF zFI>1#;L;sgZ>X)!cf`R#cJ}SXpO$-b51*^{T+YI>kjn8KwM&0qRkfYm3VHo@Pai*K zq5_kWk_vpL^Xp3--fyH){`xj2sqWjS&!5*UTEd}iyE}NA8F3rndI}aJZPT(j-5NtHB)qm z+|J*c^MbQ76tW*b-Vrf2+SkNDaRoI8)Rs0$6n#I%A?I|X-uH7Y8;vs7W?w>|gs?Dk zRaI3YcCLxF$E%L2u!WR!XLSUllRW3iXJP_(A;-n|KqZ6$}BbA|IA+m=~dKi{=ulVfXm_jRvjmo8nB+_>?y zZn~PODL3{?-qhC*4>uu(CikpZZ*l`6SI%!%fodQ7_8!lqCL_CqURqjO_(g3ky+rAc zyXqFx;{&u*<{N1&HFaFt;0O0M+g$hF`o-(_$hgM zHs9&>sk<+qnoql|{YBgsuHm0QhPAG3^)f7+y_KA-Hno_ZzC2}D%=h<>r9EFC%0Km; z{&xS%hllrN`fH*uU0S52y7^1k8GBN{xMhQobtb2?S;TWm+fh(b6NT)kQ? zsn}bAF{`butyFW<{fphB?W0brrkxDHA33swg@xtEU=1(hx1=BXqi6Y5@7TUs`(yZ}5?gi2ShGD>T9%oq zX?tIv=;vMf`v~5-=hoNAzjf;>Jd&Dyj>SPZ{1RS8Q^7+>vm6@^(3#{P2@MQffFP8d zmS$alQ>VadJj*ct`4!nWcG9x4(PyspHDxE=zP)7GvSlXDjQM88o@~|C)pdEYpIPY_ za&vP#jrJNujL{AV$w*11=bAN54BS8RZiDytN3;ZJc#iik-M4Qa+25XlJ16tJ2a3me zu%fHA)YKMGd=e5`Hf;@i$7-WRWj&>pCy%?hy4GLm{`4t1&y08MvSRJjDsJxFtgH5| zMVrGTBJvuu?XR(oG931cBL8;G`0jzlt-jL^u6>P5ckbLd(UTT`_WJe65}#?q&Dls> z&tj$K&tJ5p3~$u=(_?1bVJAM~dzcs7zcSz9y|%9IDP}?S8$dwchlc73XLXDeKRYlU zU6**J`k`WI@8#g&VAuKE23m`COia#TZ7px}9*%I$73Alq0b1Fydw2ar#Z>$DHiL#- zTRp(aPhDMh&%N$s?!9+NNLct0g0;*US^fpbTwGF;mgl8lpTutU+IZ;Y^#~vgBl*Iy zp{Ej^2%>lH-J4ITX=rpd7+EyD)0iIn=9X_{vlr<*GwcVi#);R*dg|6>&ijttR`=F! z*S$l}op3*N{4yna$hqn}cZN1jWlSw87%IZ4WFv21x_I$0o9yDni@!8vuq#e~m5vy@ zy2;USa}-{6IEU0cpo0W;FLQIAD>Al2uRaF^1R$P<19*un>?= z<4ne3i`NFqEDfu9bOg^|-X69h0Z5gkP*;t3l?4CL(9mk$r!6g}aqd2b+b7Lp_T?XW zEtlvv-1W!TmIr!*V?pfZl+yrX$ISWj=bfg<9Bh5f4!=%ZSYBQ(={@1}W9+@7keHYn z?wRDXYYHcpx3;#*`}Hd=^)Brdd!KEgMDnQz7h8dQAcJyrG`i(vw*T5KYMn2 z^xIT9gG4*BIM&-$^=YK|k;|2 z`59S?#|K)?dTe)_0b+gZ?hZx@p6B1VDsJV*BmPV(R}>LsmSL}avq>=M-lDSLdkELL zuQCqJtgm0cj#W6Zp=5T-zG$#|=t+N zsj+Wi{{GbND>92yQc{cyocMuL!hwQzI@8e5e0h_`s5sF+A33M}LHG3vEVENsKM5|~ zFX)yo%}lR%>utdPOHDCU!Ix`2f~^Y0BoE8tDnRb4L=1 zd^zxnDn1j*s}zYc#ptb{K}?*q&9ai2v3(<7-?0GcSLtbO4MNi14_Fp*=8Ot*(5uux zRw8d%&rFR1V*970tN|8oCp)nfan>3Tc>-(W^-UeYk-jFzckkZCN?9)gB4Os_+`DDv zh@W~m$4NF(!~K8^k6*l~CMQr0UiJ~uOHEsw$=rLeN~5=_qGG;d(cmI0YwHAkk-?5I z34$|>i#()mXJ*P;S>PU@p~S)RJ{2F&ix|7<*=1>3>@=?JanaFirlzKMe5Q{VeJ^Jq zNIotuZbU8?^_=UMS2Tb(l{wZm-(PF+8uZAF;(LQYEuC0<%D~Z1oz+Xl%nDgGQ~aCL&HlHpW@V) zB>Ma3m{fLO-mu-n%PS0}0ll7{-pBraaREWW?dIm!)mxriSXYH4KtMl9w}{c@ZEY5} zP4YC)ymo7{F^FMP31MIt4*`r>OiN2kP6-f$xF0fsr;`%9bmhj7Wvk@rQgqXu-Q%;q znV6V}tPnR9y6(}jn0y$I*rPLIQ?iEV#W!wEsZ8TM0UtX$bbH1!j!b44WuN)}-3jYl z2*EfgEG#S}GP2R*(-|feQ)9Mx`HoRTuqi$nF^Ie>gyo0BUJxC*nEs zg+G#K>#f%o2K`gF#n=VRSXElw#bUq;tOjgVMu5*bF?=X<%Yo3|dD%LDB@guCe~}1+ z|3D_pF%i5TqSglw9xU(}6aYfG^^WTjWiT={NBcq!kazjJ zcMnQ}x8Za)%QXgi`u4A1O+R{_&Iky)5*{7jpPQfG*r)OwHDP08dbx7`J(O~#4)u-$?O2X^n5Jt?K^6lk=jx z#R8R`ou#r&ADp^n++pZoYc;s%pA^$B)TjT~i0C@b!Dt)I6VS)6<=gDx7*Tc=ZoF_`i}x=XQ_uHZZWP z+jD!s@@)7W!W-H7FXNV@f>cf-KGu(G-(2xKo0M!6$Rs2tp573@r7Fe5K_$d4Vi@6( zPyk}<*JCe)L@CW0Tl=c0%quD`wmf)nA+}u+kXeEEl10EUSz20B z{=g#bsLVAkto`E^in^kax?OSzIh~Hix7fWS@w|JYxAf|IylC0i-M3XbjZtj(ty!DV znejFa6BDldqaWyThTU=UY&DUqRKXWfEney^$Um=3e7sCcygAREJBRvI_1Liu2-fE= zUJTq8u;}CcHs64}JlSW@pVPF6Qb~!4-|O|XKH^4@*4Hjt#vKwKzC^J)nP!e()33o> z3Mwd&yS?xJG9)a@KhM4?5tvE$*-f3Kb&IRF?F zla|BHkas$mEW94JAQhcVy|WDlhK8q?vj`f;awrX@R|cECJPstXV9_E0Nl7N)q&xTT zYv4#EiFR~!XvX+}82R}1Yq&(o#5`PBv^zTHF5Q4thSQa)3zBx@pBl_Ayi z@d@5qzcf`_R9w8e{ZYUm5SS5%U|<>Erlji^?YQBeQ+*N(XlX0j+ITrRIp02Xmlzrv z`VKlzQ)=(ty>#^SDqugHIw}{FbvIBlEe>Rt%n_{_l%N_cAS1)NPV2hb;lo0wmvEjE z)QH?61&A0c=PW?TEo`+L8c{q1u^c;g%x=Fu6SI!$AzRx}aCn_q)HUvHKEXgJ{2-6y zRhkOj>|B~!>zb; z)l5Ug5vzt<28TZs$^x#?P^j(XJV%5G%Vc(gbLC2c=z!SgQ;A7Q&Um+#)zwxNrjU#q8{CR8fSTNZaXTkZjGcjvwDh=xiWAJ~6Q+U`fi~=2+`!Ym=}>QJ!O8Ls5KL z_td4-9V5&&z>2o9G4Mtx0J|UvK7=RTXY1m!qvD_e z6LL($R;(w*VNsC+C_F=s3s^? zbv?UGw|Mb3JG)yWmI@OI7kOQaO3jR(1vnUlK8R0G7e;W&YmU}TY5f`CNVi$>@vCEp zN~W?EkBP5eAEc6?oTMJn`_(e*b6R9p zu~lE>-3B%&;M_T#6e)tF81=G)uEfQy`ug>2?-3s;CMN7ZqP1d-UMeaozJ1`5roLNK zlOD-4h5j903m`UE)6JCR7i;h9S$X$kGY*>)6LJH zKD9UJ**|{rWE(g%*Cb^uQ%hUh#nc2C66e0g^{CG~upV{8e-SFLfVjPfo~(#1~QI@`uOpqaf$cl#Kc5N6bUF9E32w@y1UF9KT7}Q-Mw`H$sz6S`;WAh ztO9JUK-^1?#ij&7S^ob0O56#FLkMt8JUr%`R)zy;auqGoyZQXuW)?u2=+vhS8K8;@ z_MjvWJ>!VjBJ$Mw?%liXy}k5)xF)c$#<_=?!FDZxdV;V;3bneYM?SQ)oV|7}98BG9 z;~bKhjPs9Nu73E&+s7xzxl?_2yy7b9L(i1KsGp6E4MAAkDTN}esv*Nj%H{>PX`$<4 zb93_@d-j|T3)_|HKyYrI1QJ15R8;l|ryb?gUUo8gO!~;%JHh7c-KdB=Yod&}SRja; zJ$qKu8XpJgIQU8m51hHjisQZ`;UHy|e^=jhwlb*@J%to#SYF7~o>0L;S=Kd|fcV6J?18dY; zfy`i(c@RQ_)X|m#u9d2)_4|*mh4SHfGspU*UYea78$ER?B}H4|yXhXvKZgB#6}v%i zH=q!(=*8=g7E_SRWMyg#^-xEqjNeABqZ#$)mWY?vw8pASvrMb^AxzBkfBf=g_CP}Y z6@-!;@U=SlaGPqn^yy2|!wr6;mxocIR9=?0slj5>6!)^#zg_jSN=L4dxo ziav$a?up(@#vKE&I0sP+ld8|s-d+^1PUey`4ifJ@6e_b+8Ra;;71T=v9MfEf_l8)= zX4YS!y08OhumPhGHAX;D(VSvx%C^XMn%;U7c)}Dl8N#I@N7CqrhgyHk&U8T$6iAfM zckR(7m3pR09$`tr!DX@C10#}a*P!Xi(~Tdwj;#qKVyP1pFOdFB*wz5K+_=|U%mBNa zQ2{Omg<6gk;Dlrlr7h@llO0RGj>DLG!*U05W!aFm~E)vxoVbQ5{#nz7bSn;XAo-+qP{)>;(NS zODQ9bsi>%svn1I>xiGYxZgGlM(GyT22L@eQ#l48EFPAkjlEBK$Pq0dh(4;%;wB-eK)MJdjsavj@vP$$$~ zwpM*KSJN&v23dsSAVpwl!FX>as&+o;3wADUZqa9CC~Tg}&rf4`ZR0@8nK*y|U3%Sb z_5``$y1L~g+8_+2%#i!#8fed|jU}YVOlyI&HJ;ASr-a_qwKT~>)MI?E@xnt5Qv678 zj8SH`3MGUTgo2QD^p0=lARSGRiv4PnZ<;B()+LA>d-uK*%)AH2l30vhIxz67rOZ58MJmNQUW1~}A?J|08(Kt!{IPmi zBkaa2F9H;!#1)Mg92rpq)E74`;9F&|1vSag@GzpiPDY>jcxRMSIrN)O&pX52FO`N0 zc@4mfA>!VCeH@TZo>$|K4zl6}E+2Dqs{(@(1x<_g#EBE~)*!gH6MhcxM4k|D@qV+M zg6iS^@$vC5^e#5+9S6Gq4jtlSZ$k#?&fAippYxHZ$elQ21BmU*Ujl&S^T|!=*8Nsb z2Ah}Ht7v(>{oDM0u0l9Je{|0)xB49Z{lxIFTF<5H*)}ZMX0Xm5rK>>1<7lS|0>;-o zu(d%FMFRTOnB33KmME{NkOI+4wt1nlMGPW?n!36b1o|)a=`0{P#Xc-GiD_wR`Tl%U z+kVIbU*6^j63)0s2>8J^E-G!UkeaH}iHsUVrTx~{0Y83t8}HlKH11>A(1iDED?PZim0 zH1;9mNoiY=Ix%XDR6`CJ{Ce*t!SfS%%OsFl;(AB7-qxs|^Ky(-^ZNZb`4c*H1!~b( zs1gXd3SRd2j{sE;z1k!ovwG>k0cj+vb0_DX-rq3*|H3YElZTF9@@R`3d<{@Q`2+>$ z7kiGD12^}19hO}S1RN*tc0RQN9QOV)f6bWmbcY)f@6W#^+|eysud%P&yuB3&kKpd^ z{`TEFOFUMt?2lyC;1HvU?UX-)Vq$8W>529-nvwnwD-mT01CTsMd;g&7oMGiA4=I7+ zQTaYP8cj;zK4-POm(|s&FB(&Dsx-w=RM2$%P7f!Jf1ACT_x_ekG8Wd7pOY{B&R)1M zKS+hf$jFGglGaBOFqShx+u$7NgA&VU2{Pg4Ub1V~F1$(W$7lKH=)lR(X?&%KU4;0r zu3m&{rULx2+gMC|Jfn+?3u;Y`Bp=+#;g$j^LflXj?E#G6D_OLNAECd$pD@Dpc5W#r z+WdO|2`gfM8R`R=%nAfjfOd~>c}-4}LkH)AFVTr8A_ihDLm0@-Uqd0;tildbev|qK zc#@O8GgBYIt(@(usi{dqNF-J1b?>2_$T9TbtSj(5MV_UJgQO>niHaM)SoglhNl(Y^ zZ7S9mstwMV6}k#zzXSja2|^D;BsYoMNIt2{OT} zvTohFANUE!mg8dhiR6i)Pa+P%h#$PDC*Bsii9$z{1TNynh&890EMv-#2Zy+WZ@HpjkO#l3GrjlP$2d~qN0M4gDF0g{%t6A7zGczgMy49=Kt~E^8e(2V>0;J2GqaWl^JyBF+ zmRT4wmTe_m1e#M|msVlTsiM>;2;LZ|Elm!EPnL5;^Gq#6E&_p$d_$4%j3;uhH2^=U z>nP<+Lu*v;PA)F0+qTiPp6FhMCpw<+pnfeuoXJLF7grRp`D8RsNr;N7K6*aSc;DV6 zour?B3(p1BB{nwhy$qcc$J@1?i}LXFOvHMF)^w3x7F#NP$9xKvbq{Nz_zdi8D0Gl~ zPvU{EUbE&=Z7m3__nX?h15nTY0IgSmo72?P-0$FEmf{@$kDOLS0T>ZJ#1jxL1;@W} zq3(w`{h_a?XK#wz!9$1O(cpk9=Rz~8sneuhC#m_~ojU~MC%YjF>la4!&YMenqS)HC zX?(of!K-RUryM>~XPl&+A)!JS*Oa~W?QHw1vnc9BcDTaGv~9-@Iyj@qG6C49L5&cU zGgw^r5#nh19m@(yudyR|PqZ61ZhTwdob;manF!Z-MN5g#%9AHg(k)q{272@Bw{Pbz zTnK;(=LX0a&A#*_W(M!nWqo4o+!}svA{CG82ApWFV1_k`q&koo$@$VYFZh&{ctNK` z<;^x(_^t99?er~2f4f5;Jg6*mRT| z1dFVvhP5AKt09@PS)ge$@=x{r94Lt7yX=_CJ4=`w_Z3fD9DyO1%4M< zh(h0?M0Wr!lt-@GlAFcp;_Q49enNtOVYcXrte-|=TlVPDBN8)!^a26@IwCf;Dq}C8 z>it2tFSUP;u0Ef>*`#6y9qmDvB}oAM4l=OUD+MDfUSZ*OnDK;>h{?tbMxlfg9V zGZZbNudPi1{es9cn(TOXT0PTHaPwwP!1B9od+pBr&Ym1Nc<@hGpWEFRV0|H#mNhq< ztZ2H~u<@7T5bZN=H#BhH@`y9gS>mFQ|G)^!rO?W*;g*?I;zE|e%}0el4>qg0rT^Gs z^xj>5m`ztrt$sf?V*>Vk-J9O^Vq&f(d(ziNM@J_V6mY;@B^y#>z+qCN{CP72Ke()r zr!f*FA0c4gYRDn4ByrJmSU{-WubG}>NjyE}PY;26AJ4!i4*YeA&1fr%Bc>-YC3h7tQ z^$Qd9{zVj=7?l84ImbS0DvYY`zb076$c5(sBxKs z!thESi*^%c=K9u^6jF7z%PeScnN*}5xbp6xh)vhtSL(YJj>0fV&BV6~hbJN5FNy6v z1S74 zKem_gOgd00R)8n4cYP05<(#jbWKeSw$cW&~%uJa~-SqbEZd%B{>6xg2a6omye_-|- zy6H?D95-L%hdxZ~?6lx*Q*;-Di3dfL89UUGg*6LUP;pUMPsR#NrSru1kMuSBej}pG zidFBpIm?wQUhGcEp6szYyjj{}#%AvC@q*1wpYrS8tNekdk8u39*z11%B~YQrf)NGS z<~xRQ31_cf70vs=tM{+z(r58X7V^hDN-thyg=C_j(6dNPRyMCBSiAcd=l$z%9@*|I z-ln^YSJ)vz$unG-PDx9vc>n&P$;@>{A1*|~SZGu8=FOAo+UhZ`J~_Xy-_fr=miGOv z zG6{uAboIq?OB)+nLBS+VYgZ{**#^1w`}U;k_s+bq{2R~ua*k~s&~eFn@=gD5w5Q$e zQXH75E1+|T13b5D8WbPsM;zIWKN@I(=b}jkTD=?tond*(j*Q{BH`n&G*_~0Pn zdaK>+Kw+aYSV%!1xq+RG+idVSpaHe}R6u~em<4uEo#WCj=8DamHzU9hoebqK==PJ) z_F4+v7|MzTG7-+`=;)LYJK!5S2iGD(!ww&!S4zstZZ|gO*b^rogr(g99qMBL!~%Z^ z{)DB6vI0C*Nqp$wML&X_yD)WG(sG`zuI?SDk1B+!f$g9YMl4C^4mIJmA|mvlT-MA^ zxBV25mS(|K01v$ORx3SNgRPC*(l5O(bQ;P z4gj9;i>j)HaGp>kZ6v3rcEq{2o&-d=veDrTc49;y*sOoTkB%H(M&U_Sq0%No7%_z* zS8juOcVvky#Ubx1lx1Fg23fSdE@c;pB^8vkVEyduSxC`%-BvQl1lcR-rS|;(53x)v zEW@vSuY2|id;gpnkFK7WocuU3*cn|N7#IlmPjX#sNC+KRZUxufgzPSqiT&jtIDPs* zNJ+nX6L7Zwd1J%>=f9jzg7no*j35Oe5GkWp&h3haS*#+MF&HWgC{X0Qlc)miD!I|W zfp`JtN)7H$(r$3uqSQPi8+On{>=cMF0kGPm#7JSgaPi^-;209t-@IV~0n>11?}KA& zu#S)*PK%orwg>b2dW3$e1iAR7qmaBkf_=SY%wt9|~ffpxrU(s~`!yTHM=dJWb z*g%P%dG$)0_}~%}5{N}Jl6$j26-p&5$ZzBvd#=fyf~3a>D5sl}16~bIb&3xpSw_)rRdDBGz~O6=_WQhq+^Xl|+n-U+8BwmZ zt$Nfyzrnm+G*|Fc`_(yd)1TPllArWQ#>khzYI8k+HmTxL6)&UvIGKMRb}ND zvEBVK*RL;gbR4i7^_m*7MHOvLbU8Y@SDY@O4uEq$hDnr^5i7QoR)Y57-3&2Ci+ zZw;ekr?+cp2#SbkUio)D5i)?;$74$`gI+^CN6x#UFVg2F=T`pL$1ScTXvor=r@d0i zR{@y9&^A0H!#;0H0i5QKnHgekgCJyP^9uy8SRaD*TY z^c=nfh==kN)|NWL$t-4ByZ_aVZMxyGA-KNT=HVfCNx~u$pClPxB$^(w2$Fw*%q4vA z1_)GQ&_oW+fz=R-2qSjQc`N9EOk7;_j*gB*j2rE3z|O;wJj{-WlSDfoBHC5J6HphT ze?ZURq)1a2+JP+L%p+cdMu;ebO#2}59I&yOPeHEGLFq6#+-*&|3&P=cBxE5)_zGkn z`1^9Ks_5l5Z?=4Q_aFf9S=NERzA)67R&b~gnvLN3%1SjDpZ_?+`7bk=^)P{wJb;qO zU?=rvvzmH;4zn%<;qI4PKFbKBh@10a5gMBq^)&Q+>5X&|5^?+Q2}O+zwZg5`g= z%kG~gqbP%$Y;0@|^>SbaLcY*6h}4hue+VOvRW!1}mkCY(&fUAj_X$ERm=u+ba=4(7 zC3~Xj^GH357C54NbIIBT66TC>cW_rQ1N5TtfxIX%kaUcUH85SDijC6m!6jn#I&piH z>|EbrVX(W;a&lMt(UCVlXwjWS^U5Mn8^qNG#zv;g@!j2&>P6(a9e8}p?B*Y_k~Hu~ zl2wU=FbJ`pY35)jXLyuxJmC_0s?dnQCnR)pV>OB0YCrY9+1DRAas=&S<}0oFNeMfx z|4=(DH1rWjS7!*)%^ZyQI`fQHo|ext9t93ql$A-R7xZFyH>G|8g2--^!xsfq4Zo?N zXk9{3|4PTAM^_h<2X3d6$B+kF-Wpfr0m8%H8uke_wGpL;67}bx6`?8SNfGCwK%o{s z38Iw)gae9<oVEIV*2oS=5M!MRbAa!E=fNAWm|)I zy?P|~-j$u?0VdMoc0}F5_QpvZ96(=$HRBobF`fkNEyurd;Dezc+~8;LLiq`WvGHv? z`Sp^$xE7FUXwMp4fXp#bwvQalL?5?^auG{l8|asRzZc)gW(J8Oe_VNEwJ|xs7sUp} z#4+%fRyZ*OR07GT&HUD8+#JD-D6-Hkl=$y&QRN#9{M(@{JA?<3^Y@b%OU$&y+mADN^rolf z9$o8!_73|aPUH=o{(7!|DmOQ`5{^yvLZHyga4*7|>V zXrKSGX7$4X*Hv>iQl6Z=g==?H+^hP$R;~D#D33*-4!EwL%X-)M7BGPfGk%y~qLHYFO^L?Fb|_k4c&k*cqqsK{x6H^u z+s_$fyQ~WeT_6vFVSoqnyxTTQTYZ9oA|vJG4g~PnV%p97aV-F6yXr@E5bH_ znjj~F6Edrs*2L5_9IvecMH+I5$!~D53|lIgk+&Lcd?3{WQD53u-fFNz=M6W3eIF}= zWxGI}6Br2GvmJD*?~g$eJ<3{Jc>)$KokziOvSgJ!D>VNq7}ay!`V5zFZdia^qymo> zMg8fhGt4p#B^^_Eew$Gwt#f$l>D;%1+CO|@$|9MjOjlJt904ZkQ_wm85SlvBME%KXchFYE3@n%#3<0aV1oxe^Q7p-k(G zSN9z)i1!uYi=s%^4jRUm5Uo)dKyj{B2MkEYMSF1e2#05(JK5X!iL4*ireCPZrhGrA zOe*b4k8b2{P5<#_N(zyP5O2EHo&37CjPd8f!kGZCCdYjy^9tOR*Zm?AO|w=eBk|bt!!UH%OlbVb*K<|!*q^81}=$%}0NfEFaW?c2B4x#D*Gy(~EL zOlH0ZW+)GiHc9$^ljSxu6a0XfF1us6f6HmTss4vT(y|L@$L|}?l=)?3q|P3iALS%X zNMRyTf%Pt|UZk@U6~ab`=D-i*ADEA$^9sn4pPxUWoE}=MQC}v*dXrq@6BcCM3Iw_WXssuC&xtMcvZRHY@E_id#oH zSy+)M#BJ*K1k|tcvl4Y_>}EVe+~s=93&?>oCpebsNTt+!9u2yPUu`M2vhjEtJ> zMo+*GGBG`EjTJd(j48s3#b#SY+D-hug7l!0pl^ZnY=(2m5<${LqgdRcWC>b|W$YW5 zP$J>NN~aF}h2c5j6R(?I|1_@C_dmkK4PWvcNbrJ_gCsVDLfhv?>H2UxM5o?&Y>Omb zPLzj--`!n9mHi(RJSXpi;33Kp@Ub?!)WGggfBN1+!7?QgiU*2~zWzm58MLGB@Vpp; zt~T{}kd)hD{%c1cYFJh4JYP(KcUFe;EC-wpscB$zd3)cH z7u@vfD)4Rm(EAW0VbOjBR|8a#q)~;9Btf6ipEhH{!OKyw=QX3oj6efQ!{ZySmw}N< zZ~=ez5eCpNEf1v0zoPqg9tBAu9Q4zEh`GeD<$K*{?44a^4Z8VZ&6IO$r{Ek5eBjb; z1xQ>cT~851AT0W%@A?%)o64FRXdF78r@5R4n0az?a$xFPM!rJWYa9U%s`SfCRS;u6 zvzvpO!8HL_t;!rD^jdAe(WmgYs?sHlz5(q-jUV0pN>=IN`SHD{gMxazd9MC~%8@Yd zqImC7pkDz?92waFb``_p!nmvDz}m^H$E$?s7$U@)!>_;9jp;``#z3;dmoGr7Ro;}(;=cH z@FJkl<5vdLAz0?H?;;peO< z2fIjzE*k0fb>@TIebjJ~ z7s332;5lr+YCz@JMJHS!B$J67TuS5?^`!}Dhi*dRKHMj08k%eO#5*P!1WVOurS;r- zcQh!DViE2ky%59^01kRaV@G{>F!k z+FPx+lt2``vT7Ci2n`B?F1U4&jwpXTUj+9B?XBnXp%T@9dP^|m5|ckcFkJNuh>WnS z>DG32^$t9>>_M8j1$4{KB54IDr|?YcLw83)zLL!ikn|na!lp03p!7TIts3xmQ7yQc zrpiCjv4P?!Co5|p*cw~U)}j-DE2m|AkXE31H~#s(z0nML;F1z=-rRA;yuc~JwPxKM zAVLdC#=FY*xn2tLO-AqY~Cc7%!p+LH4& zFC$0yq#TL&^PdiR!GZp-5~;GWDj1e=0-Q3i??SZDCdv}ojziH~4mLW=qequvHVLeV z`l5U2PQrZA8M^MeKR6Zqa`0m?F9=GQOW;R2iCH8qXr4iDex@&&!uFn?#eiUV_*Uo` zG$A@&;MJ=u(LP7oOGxuuR0$2)O6@YSDw&8qAT+Ddk)G-Do9uQCVhOYwG&9P8=E!2+ zWLdtz8{I4+E%2r0;#?>lDSi-#910Tx(b_k|Q#m39bYq^ zriqKaygbq5!6q5dTccY8<$vjHf2wUaH?yx;(fF2QBwt%EUH@&aEeraS*XO~bYC+~5 zko<^elmPMzuoRyEN1!xlsDEQNE&gNZw|v#A2n61_-V+%10SN;0@M+rwe<;+fG;&bhz09)0oIrqWL3PgO38?}G%)Q%L#^z2kTWpy;Ym88I_4@#Ud$ zBmsaIE4KpmIt>*P7B<(ygax`YO%*8vavIrvN7o1UdM0oCdgLD8kACqGj&@?|MtSUz z;9-D$BGb#9#!~%a3FeeECd9>=MU1+GwIyH?6;JFY$LozhNL2;@*Pq(?{JA7WLm|Xd z6u3;%*lzs*dM4~_yV&kVMKPioK{iWo7ieQRE~&E0$_3cqQ0hb=R|{1^tP+ruE2thK zS$U>$f0oWu_+gM5;M5DKtJ8()n4+5V9T?!qBO4e2mx!2P9g~yx!m2h`h89h9gn4vb zwvn`}7ecpDB6{WqiiVeg9!^d=@-O=pcm`kJv(XYWEntEq^0vfh3rs}8F#PP4f`|t< zG8vKtdFu{vFsM~N1%;x>d=5lVS=avpr%C*7yPWY<(DIG0M)ZvUPF4EN4)c;mbMTew zrM@%YVd300NaiK%*`t2oz-q(W#x$@g!121+ zd9or}2xv4bD6*vA6yy!OxMHgw5E8~S7J?8!o6*D)+4k0m#So1dztuc>va|DJUg3YP z%57pHsDP7et^wgMBf|b~XOG|8N&h;W?Ej5t=GvWrz@&he2p8f!pxD<}{Dwa5Buodw zjO3iJRSGyZ^u37pX9{hyZ|qH!#w`F}Vb+sAK6&{)BWT#0^KQrWUa z-v5pHAYM%LQyTfrm!UqN=&|=L{JR7r`yli0Qr-i&o?v(&@P?S25Fm-a2!o)`JbC^c zd3e3dlpQ9Bz{YbnCWcl+qlVrZ{skHePJC3^nKJ4zP*!$nEE|Y9e|{bVL)fi#ZB$BX zDu&qgUYqlk{c4VHOX?z{1+1-aHmR&%yH?%C@>uD}h$~{cQAQhTXF@J0z+WVM_rUuKClpMQw{*YO2)&-7 zFtvyn0r99fFi(p00#v^C_I9qvq%d5vE#QIr`gQAQ$=H&=xm0MV!|(Igqo>{(dzcvH z0lUCYoR2&N3tSXq=2nFqN;sifv1mxbl2bal) zjzUqeUQw~6+~y_?2n_VepE#@pS>Nl6n=>4&h%z22QXmU~9MfgiqM$;$VO%xmaS>nI z^?U)Tga3b*%Ku?O`OjP`78scY@e-3)SV*TorV2n0NV;)DS+F1ZCRN>P7i4cKp+4+%Sb&VUK?un0x8DA~ zYi*d?L-;#nMnbkQ^YTXFg7_5_OwR}l3BepkVJHWgoQ3HEtdL%-QCB6${_hrud3W5% zDwPObgr0R-^p~V+=0JgEL(ky(RG7SkLHJifp-jm~>}CKy#H^3CflO9IpPnQFu5!&3 zjW+H}gju|9giO3aT_#J!a6uR!*8bs+*%N`m!SOAoxN#XyEpvzGyn?uf?sJw-$U)&>)9pD$y7+VE!X9x>x%$LK0>gx>w|R# z73jIRxTRp)fe4W5>_!^?t7^b6+okEh*)D(NW}0N4Hp$FtU38eQcDSzThpW`@#ZL>0 zpM5=M2^-;qAuYym6g+}j6As=@_e#v42F!{7mI3p3TT4~N1;;WJEPY;dZZCefl<2sK zqctr@3S|0{ z)7kU}J5mb41+1BJwVT7GWwnf#9(nP1lZR~(r{yGx11 z0>bWV+H)5XHrbu)nXKKvrtCj`I`9K+3Z%CNo$H~1AN#Qb$gt96fvQpLDJ}97XyPs1rn( zL+3i$5xj$j5g5#Rk|b)kj@Ii<%uWxW&vSUV0)bXE0^?oK@3JFB3JDLl;Ix1@W1TPl#O-w;S%6qK;6Kf>l(UV^>(tDlZ1&FREqB2wu*F?UtN;F z{*JopGTHWRsI)VR%yRmGiBTBo^40XEAUq(6y@e-+*CHzNWH1KZ3_TWQM;d#?&5P(T zf*6hx%!bMo`ZaB4X)&rZ>rU&fK&W@;yS9t16p7=VbFTN12m^ZVxgbW!@>2w98?#OwKI z)3^Vwz%?Lxq{8&qdocc}z|A6s_G{8F%q68lhwjy~Cr=imb%MYwbT(u%>mhvp{L!t1 zVTr0_swYew?GSe^b@9&4>sIO3^7Ql!>Vz}z%^7fkUd7!Qe`7~xEC6`}q7!zzv5<5Q zVa2~iLpORHQPjzI-g;Cw>B;Dv#Y4}3})O6cZeO4Vy3ZW=-of7``Y3VBb;j z;DG_x8*L?P{{9)kpXiX$KOyEe$l27;EgIuv98&Z0K?{1VG2Sc`{I3e#WPeRwbhh}^ z9mbe9(d1SXMt4Rf|G0C9jKU&qEud(@w_da&=nq3R;5M31p=Mr`XOhX>`RUUF45$|F z+J?uZjES6}QF!E2F^856(emgBT}S4R;K5Alym>PuG--$_dZ!R(NlB3BhA~qx{IZQ9 zm;1&x*FH#ei_T8luyjyb{5~XGB4eXXxf~q^B3u8^XODL_^C>y@F8Jh?r<-APz^(v2 zx`?lBrXYVPQ%K!n?BkiC%xs^6j?6v!H2e!tzJ5m|O$GX0C^UI6P;(C2BPeH_W`CRz zt_H`62;Xo<*kX1YxNtJZ5}QbLl^!?{N%RDvEs)$jMg)**2sb?THk&$8@123s7wnKf zo9rB+q6EE9PHi;1-27~k3|^^#&*2R6T0vdG=_$_nq+lacac@AWo4~7P28#_?O7sl* zPWx%;tfw!HmQ71)yKE*Po0w(57p%#9;;fYQ+?zKUTW|YhW4Gcnm55soP##DptJ9ZP z{FyLWsaTuPB{YoPIAcX-w`0ICI|MV&FR|bpMP~Xxe_jZ$C+=WB`m>0>%UkGu&`!QB zcvPps*Ust#Tl%+aPtA%vn6bgC(AI-Co>)!ml|we%b21$CXkv3gwN>{s!6-Rjv9oZ> z`}1AK`LY*WUxO9@DB#wc7$x$h^Bghh$i3~x|Cz`Kui6*N;{Unr{kesj!2n0H9;H8}0t=Ea50Pd8nBX&f`O zVg|&O>_{mEn^J1mY&e#*#)@vse zpCbU?ifr`)8H$$%t4-aoABPcPBfsEodR66!9s!zm%f5e_Q zOS6RW)>EI@ATEO^hj*Qr7SwH{Qr{L_-#g z4`T~lsqp^ z9V$lTh5{D|c3%R43H4bR7|6pd=UZWxBJHT~V+4W+)Y>|FvC&~>ynA1R+f&(YL{tqj z(gCVPSSeSMT`n0cYT9QHb)^bYT55%Bg6&bpZ^glOK z2FeD8dkOo_j2cDwqBC9)RHg*PvmgXJG7uLdHX<9R@UX;z@I+T>O%@_AZ{NTF2BZvj ztespm$&&bNQ|cBsfRxD7{1P3yRd5}MqZ2(4?UrOXOJ1a|LT%yaE5k5(h?p8}-@NJ5 z%L!Oi5|J=bLaLJiqR=zKa8yi=aX?O5@*LhUa5WX<8eY(Jfem0o_|loLzx3U z#)G9Vh*Z7fkjF2B^MCOF7xH(A1pxl9^CSNeE{^`B${BbT`o!K>!2gR1wR8I(wJeqW Gr~V(`pROkW diff --git a/_images/2.6_resampling_50_1.png b/_images/2.6_resampling_50_1.png new file mode 100644 index 0000000000000000000000000000000000000000..679cb4c557706cf37704c7e8a08379103e55c0ec GIT binary patch literal 21998 zcmbTe1yoeg!!LRW0Tm<+IvfyGy1Qfq3_y_X6p-$2fuTX9Q$iY~yIV?HknZlzyT||c z?)u(+_pZ0rWevJ!nAzv-{?(p<57H7i_ekzR5QOta5-tZps3H)Al7xi;Ubz_RRR#a? z+P+q{{b=#Y)uO15y8F$5{7y@89$J0@;VJE?ygy}{fY_=yw5l8uG% zp7Vo!X6jxr4~+eEV>q4U8WnhE z&4=v?o^`FWK;YT`_94q8PdwmoEKX{)CYQ*MWk$y|HmpuYC;MX>RmLmcKz2#rNmY07tG&I!q zxnZzye1y2}Mv9A0_#r<21nMAK>Tbj3gTs}+)*$8vgxlqb&f4$qMBL_N{fUF**pHq( zSvdJ?(fRwkSh2;dP~Be3{aAhnrm;eey#C0zxPTWQe^9-6arg3cS3*vXV5k06Q{T`q zXqw#Ty;Dp1?t9{X%?4UcJ!FlT1E>z#zQx889qrCiQo5gg=PNKANRH(&CXoC1vHU>z zbjn7#(wsb$j5kf%Whp}9r^l_k{-;l<(2w_VsF`vBIHX+JhcvXbX?B}qXW*6+Oe5uT zzPzXPdG*~hB}MC9P1gL@vI$X*Y2F(HX+~m;ii-dQf-H{L!y||fRbE3QM9}4g>giKa zYQd*ZQHY6&`FcRflas37qN7QA(|40|a&p4E^*5A^jErn*^*jaffVvCWo8{T9WEhmK-l%FvXSf~&g_m;`xt zD(${LS_nBCzqQ^o>nDC*I2z_Hc-`s_XHX7fwb*U)Nm-38rvzg!RC=WK0~#vo+{Q*O zC)-DL^?Xk6VJaRTWkYvvZtgO(zhl}IZl~YgW`@7b?A!JmR98R3w7Za(AD@qo;TBa< z2_oK~KNDDd1f?E*=4?s1)kw1F93(u+czL$W_#wsvGAsuN2V}bsk8y6{P2*h=S>OD! z3z_o=Bj!Eb1{NOFn<7m4=FJ--9!si)g@wKSPRhmJICe)cK%f!fWIm4@frhJtchE6? zgJQn2*ZJWpH7_r5TwI)T`RAyPjY7I)N7Pn7oYtYtcUG%O4hu0_?#UV)tuj+l`UCkmY>Koe)7U zP_>`nC4uv$NXOgjQ+xsf@6#CAiT@VB+K zA*RU_j`u?&V}*azmM4h9;rfK|S2(M^pS`@wcwzp}Y2 z=k<+!v+edg6+oHrM0B%G_at`s5nlx*BYyn@a04zKP*;m9!%r2RmAe!n$O>SgQPHo> z?Pl&f*~&~C#-ez})aK2Y)M`F5^qu&Mb56A1p?KV!ha7o+DB+KeT*rbPe^2!A_Plyi5RwL zernWeNT;?;XrXWeEH&zpTqUV+DDLiV*ri^J$tRi1}LfeT0Z{(L9D^jsJg;y248xQdS0QJPWt1|!dtwCa!H^vC*COGQ4D0W4mQ?xd0RWnUd9i>3TC)fU(J|sBUhXAkV#xuv}Kf*|~oHkiRN77_3Rypy8YxjSTA? zw1lf_rX0UB{XsXH!e=PcY%v)EWn3hm)c4F{K9Be=;_>^9} zScHUkYswCr0|=&9gQx4+9uAV14M?%tdmm2Ivk!t{oUn@9*?joxNqH220FykZOClJr z%UB)jGrfAchwd#s(lj3w1S^Iq3K|vWLCdz_>!QU5nUW8d5jGy+0}ZT@HC03MPAq4B z>Duv?`<(ZMTZh&4!z_iDC}AF@gchc~g!NLOCO@>HC2bPgmukPh!>+?dPZD3W?qV{{ zT^Af1Mv@B@HJMqMv7aN5&2FOy-noH(h%OQ#T60QW6PK_V;)XyMZMvwt&*O4V0;QIS z9}txM(?9ULHp9k zkm%{vN18)b6^_$Sk1tCCKPN4ZuXf8iM`iUt#E&ol)n~zN^I!C;l0I{|Pb)@WG|rJX zwbB}I<3f_cz^tUW!FW2kD-o|iiM)UnH5_wseJ3zxC)ke)i|9`dryTc^2|7&ok5m35 zv6?$`X$KvWp(S$c2$I_wE$1G>m`&VJ(D-dl_*9tBA|%6q(-Up3KH#i2-4;GXxF@iq z?-WW=R`9tgaP>!N3`=fCmb_Uk{hsqiDR1LQiv|WGK=#_|P;iQ+g4Ff7_8_^wva=Fp z`Y&vin$e@cn+Ojt2@|~kRKt?#>kkP_^OYU@^j>l|vEB)?q}JMb#@F(q1S92T* zG)=G(mhne=V_>I{Ntxs6+avNHbRMxf(a)|x2X}x44_xZ`%><7H5g2izE8Xv^o{dn} zTf}GC%%-wrNbeNbg~f@%EbD6?P;T?QP~|^Os`l=aV1hk;iS_kUuquFEabN}TiIk){ z+nk8V&QDq{Wjm`II!J2ZJ8YiV{@eBrlu9E9LX;_0Te^kscE2xyhu7w+%*Oo z+@d5$3z|h<_O~rmt5Gi3CIE64$w2Gg5KlB#1PT{x|09WB;fYO z3ERZF--tZ_EgU{VkcbAS-9NSO+}qjykS8|}cIkMg->*ncx5B4`fcy<^y94P;Li9&c1s((=2XOmw(+vC*WltTk=8&oHKE#!GMKHP zM!jJ1dw1OsCGYTF(C!1#4#n@m>`PAf46uOFV927SmXxs3JbNZe8wnmy0iabXRA*Hd z$3xG^$e;o=M^jUih*cN;0XbhrgZue`0e~Qw5fKr4Cnw^{%0w&uN%wudNmo?f*K`N6VsvF;uF?MdIcIqhI#c8ulaWymuv4fg2q#&f4j|r?J8ExN!&>z|Rz@+$N0Q^N-j4~`c`#FPVo$~HA;7Owoiw)R_Ux|r@tiM$GkeZU!vFh({KNh#U z)}9Aoo%YsWewO3K_m83#LE}cNk9Ii})F>wU5rBcmavnFhHBriHw;}K2)Y95&HP?iq zUYA{O@$Su=fH5o?pSihN?C-2geFlhn3*MXbz!RIpMA^9II3!EH_ZmT z@7!ncxN$u;%#`b<>IyCB=kxInI*weBXsE`qn3~26a_7y6pxY28-QV1Lx;8CKtIAI^ zhX>a0dNy9@9u}5}i028-NJ4viI~XWbbaa?L7&xd9AdO<+sgRJSVH^U1g^r1-2N>zv zco8L(T2n*vx6+~$Ao$U9WRrxF-_MZ`1T3(5c=+S$HHl=V9C+x}N^%v}C}!@T$5Gnt z;<1nrK8@)C4_PH8 zIz@-Bdq~jqrF_4`kllP#Qmgv<%fv>Ppv#@vZ9cS!Ct{!jLI~_8Mm9$CSRHoMk8=wH z9@6Qy2Rry-(z!`O`;>Elcr=rm++({9B6H_ zJg=kv-u?Ud6ckLlVO?LvCGP0hemhwl+T>)!wN)}q>4>=h)-}lv1NyDGl6g3%2(bKn zz+cTK%bI~mV8$}g=i&5@h5)&!J$v@r@CKh+e6PrkExx1#!##QOuvPOtfA&7FomfLR z3Z8>MEv!Uqsy&1({=hjz_B>Sm_Y}!@E6b07&Gxf-kkb#wHLQn|6`3vP4k)jNBQejd%qrM6WJwZkB(hFd`M?S9yxgZU?#scX(u7&9OguJ=^oe{MoP5zS& z9`p-hZkg;%3KB9Md7)6CDNQf|0KvUem+3QO!o<`^x<3InmO&?B>D<}iVjF(S^n;$d za+&XdO8spD?JzSXtC65l0T9ra3Rd&T_Ai>v&<15C@nVAM_Vo7vL>Cv3>uQhp!m+lr z5{f*9Mgs}PC6+-E^`*_ekZ*?r6R zxvGN`dP0hRoy}|yzV6if$t6UwcY5-{V~23X;^^9BL;jD$5A1TgL~c;RU1SMU+|S=% zH&{q`_&7-%V~xa7{Qf0o$OqZte)i3DIQA>bT6usUlH%;-RHfT1kE4h?A0e(D_ZRl_Rw7?BKhoW$k)#3>?&%6yTVpc7>B26*{8&9C< zsZj|FVi@c*ZzvS;aUD=~PSla&@{^Y=aWVW9q=O0;d&5oBqwRA)f{JrIw2fCZxB=~JvuD(RY!Vne2 zV=bB!CA6C0Mmx@k<=t%nct0^vvPm=L?h>8uXsNEp(J{x_rrcgx<5e=whMJ5@S@cT6 zml%L9Kasu3X@^mCTXsrjPeIQaE0IaCXRuP-!bd zN*VTPR0^(Nglr8@7mP1R`sLsjYivCc=8)Ld$-m)~b?jsv*`rmMtqU9sX@Ah$rk?(J z_c3fg`+%9)dM32Zs9w91lo#+{?M`)0hp|qv6jVVL@)Sluj_isLc{Rlh)2&fj?_jXv zeJxd3grHDK(8V=imMm-~Ns7roxn?#_Da@m_L=$y?pk@nmi43KRWGSg}q*fReVKsIRT#16{s2aCx z5M9JzCY1d2i%9J_bSE)cr5{y0i7SqPJVOiW;}smjw6&7fA1jpi)lh=V5^zE<0g3>U zygnN-czpf()pGgQV;=)_Q4xSRU%h%Yx4i5Nw*NUG>^mQZl5#&F2tXIUy(&HD7oqVU z6htdFKheGtazM-oAa^mti$&^M-CGZWpNG}5w4=Pw>u@s6nUoKAm6OK(8;eIXF2UZx z4|tUE@Qyk1u66WSi;L6z1Dix;0(ac(*kLeY)#|t&E9z5s($m)ZpW?|H6 zlEaJ_yhUoNt3i^6;AnjfSBpIIJE;H%&#T>Xzr%L-gmhug&kS`1+zlQy5AGC&`ZQKz z{^;~GUVZ@>GVkn;*kIJA_;e(qYvv8QXlL*{cAo#vYKR~afcAiL9G;RA*3~6hz~)Vb zBy>o>!)8Db6UxrbeFZfAXeNz7mC{c+hdZ;4ln-g&Hx+8s{%&w{0XR@+DC3QIxzv9r zH_J)S2)ZTy%B1R(+X$MNA*gZElNBdV!LBTgS_azdKPkb%JSLw~4*TB|v zurhW=x1B$G9x^aQdqVuy(FN1efCYB{jxr5tJVI>@qlwN(wf}|g_q&Z{h1O&)1ACNV*2N9MRMt%Ec6tc%* zI)oP&@Q@8QkDGHk=|mnB4-b!!5+LLg`aK{IH2Yg&JgxLH>eb89#8%fCLY}KB9u&C3S3kw8XX;%Rw<~8m$Q`D1K06?`l4Jbo#U<8n(shk0e>CR# zk-e0AWmO3ii%3tuV1gMt=VYb$ELEP z)JTL;NWOcA_ThHTWTwu^@%nf?B0Ad72NPGfBbXS-8y#iF!_Y_=!D|T#lRAisfdSxx zi-2E?cbMqN1MC(qbfVnRyp6-v-ir{^coMz?%Be zq|VVrCb7{P$4%@SXXSQzzq#u0x)EpPd{a56dDCwsptJ`AUp6S90yms-QAh;N{YCiJ zCDKVV=~2jfaT3Q+V4=DM(5`W!gSMwIOm4`>(@uahjhuAJcf{dRswGdg77vGow=CFz zqL3dMV^yB}yAi98iRJcnxhQfQYf*WXP+_8G^`GfhVB> zXG5>W!vS=F=cm5A7n{m2fB@W3s`UF=YE*aLF9f0&>A4dZJbRe7TG-tV_U_+rH~i3o z9tQJu_#h-1T+zkhPX;Z^I!1F*eN5Tg~$zPmj~XxX)+T;m3mp~ zIxI_8o!VBnYt0H~eB>_z{PIU&<3oj9Ej>KmhvBq-?XEArm?w(-b>Up2HyW%~eBP}i z9>c4m>SeWilNsd>4CsFKnjbd|Sg3N`WX-A%qh}uCbNc2rA+R7zm)(=9dWTEk@%NQ4 zdwiTeIQRsKbR4ErDJd>&<`174?>a$E8fbhKXE$&-1g^_Qt@P$Frb0=6w54ZS;rcvb zi(R?+xQaLaH9W%?Y~Yevv#Sqe8+Qp;!lcdW6BrhUygg*i-OTR0UmNOjKp4VsnwMZq zXM8NeBNp=5Q+&TOj-n;Nf%P|qctW2z=1DN5kyqI2;z4F&?*xN=+`}irU+09e;ZegZ z@^>y4zKa4(c9+>fi9yprlHOwx$_@#`ym9@^1FVfeu#vFmHUO<2qlmIrIn-RVLA)Xv zAt?+aS68aSo;7y!S$lqVqva?fwYv<-V?J@|#n&%3A@U zNh<>O#y`_rT=)^!^E5^e@Xv-~hFa zv+J>BsCn|ajpwjIO*PlA9SuJVr|&4JWwn4kkgJvvuHT3pekvgW_dc_Q`4ig*CpWw# z9VEZn8x>!cyW3s^ zpQi3Xl1WpwuTM7)TAYtB<7-x!qm-=T1S5vEk#Axzk)R5#=X!98bB}$~EsQW`@mKi< z?cuZlRCYV{*tKMlX68>UP$Kanwvmle^3s9*J)&V^ZJ8f}ET)GEQw$SZ8W;HHLmQs% z*^aBn(N?b$$Ci{lDJl>~g{llip0}X6_Res@N^k&ufcYPTHji-7^fGi8@T3SDN|<^x zSuQIgFKagG7YNtaLbjDuEN5Nmn%%eQBjv3X3GHDegS^>1`7~~SL_Pxa?!=eXhc4Qk z?9}_s*Vp*Jf1%CNbZXD0v3@F8T=C4xRrL6#_v1^M)6<-uKTdV>7Be4XUjF7DncV_S`WKiquo7NfKv90~?}ebrP+qylG}nRr zOM3&mL0Xv)A|DyVnFv{X;Li9`OUYp|LdnTsI5Kh7qp|VzF@D505^mc+EwoV!4#qYe z6a*Fjppn-C*0$hZTFR<}X&3)dKwt?ce-oen1Nnl>Prg)~m=D&=jghwiZ&tg%^0Ie? z4_2ZCI7HWv*AC(HeJ&R;<&}V14BNJ&KP$T=ZW}|K`TatA9b*8?{<~u9=xc8!y5o+@ z?qV#XXJ%u9OwV8TO}&JbNFWQ@X|pp9vMa?@t0ji(cOu(Y?^6m)cgP+*^z0q|Udp3TlQspYS810!W}Ju*c^^ zBshKc><&=f_YMwP5ct%VYrmfsxPmwX5$ESeuCA_g!0$$)_KV|9*zp&{RumjISgU_C z?12N{@gN949a6^LnN&1PUe7CGb?jDTO^}2uQhkOvfPRVe83YB%0W$CE>w7IH_qCa= zCz`SKV7aGQxBcGMWchu7LWtNuVgKss8FgY~XOD=DMF3rWX=w?G*<%G=xYX5oQeVR- zFKmxG_s2VQRD)NThC*oPk$c(p{{`e34Q$xMGzyy1L+B;!*|+@+=VSg)2DKt zEiz6@!-hWf&(5ad#DToee~@;nkYz--epgr5Z!OW&cXRqo1lmG)OR= zEqKnt!U9mdx&<+Wb?@GgB<{U?a$5XO2Q(0}m%F>WksRsv=GyA7S>^nnVm-cHH3fw` z{|p7#>e1eBEK_G|B5OjrwZ6rTG=2y`7RqTt^QPv*d&Th*@F%*~(6_H&Q3K$*d*v<; z*Iz#dgf^z3i~f$A`O`N}8Y7#taeEQZY4U`^bx-tYa~#*A@tO-pO}*cEdo8p2-`#|2 zDWQncuaY!t6ia#BT__MC`K>tPyMfMM+jJYV77Ta=Za|%*-9_VYIWc{o#5by)ytijb z#$yQ)GHZ_1D9XvDake0%L_{Ljk{>Qlwnx|h!D^g!(Dx(;E+<<7?1ueob-VvB?*M@~ zvL4;fn#cSrojp6Ab4C>0HS>Rgm^T51D=h3d+5TG$j49~2SwT_~G&aXAD!=p5^NtYG zEIXN0cZvx4Uj_RCT|717o+NqM3k@Rh6X`Nu5s(Rk1Bc^lWMl*|!SeGNXz1wlTE5&R zp>J|NTJr*~2Xrhpj3kSjMUA20DVcyH9{ZfA5sZF`VV{A2j=QeXIjIAZxD-} zVR|6;1IBkJFbLZ>9^msv_=zbV;~T6q;H!Mgme9%9tS7Nq?N=z;i083_0TTB;A}ci& zy4N0Z*LOhZlA%zmF|?Dy1>3;D01*(-3@$OZ>7rNOQRj5{K}98iF2$7~hFME|w!y8~ z>F|^7`q1m%9lVH0M}1{N*Rt!3nay%LfGYKO;eRo^qOB+a<^mHDM8S$qoljF0{~Rq@ z-mgF)AbyZ8LUd_zmdi!Cpx{pkBQv3V0>Xvs_vq&K!tST;JA@?mzgGbMyZ(`P-Fn69@!lcC1jo?VAi3&`jluZQ%wnhD>RyW0 zgIDeN)UX8V4K_!RA$q*9>s$8?-O;7$dq&;cMb*wRP34mLjzJ#^j2<`SXgaHBq!||?6DVrC+C4Q{s#cdR zaKG)02ttyC{WETtb~6@yVkG{SeK@6|!9p!m*X@cERuf97_4-zcD{t82kIe(j{ug_f zUiV4P5naw;)4(Tw>ZH6%dl-DXD~;vtSyU>$*=LhmhI*|v9n8(OVv>=e+6Cv38=nth>K|S?)j#p$`a`+D!UZ*5s>!5^XojZIM>*QU3471& zDWSQMult|OxbfFJz|H}qK9|%;=>3={N9?A&5l!9B<0_i-z#U5cS(X-8Kn?o{)F4Ec zq>vo?$D0@?Xo8^_1zJOKB* z2>&Xx|A-*_m%1f&m`iM#l=`p!4_?~cF5GvTKTB5peD^<00@T5|X7MJL2DQxR= zM9oQZb=p4f>WIPdrJLa|h9L}?L^FVl*>`9N?$!w$?M_~u`&0(X?Vi(*vu;P49p*`Dt7w zKk%u;_$}@ZItjv>FfR$|VlxXdg=c;DRz1d@%+6QRAA!;N z6D&67X_9bmWQUaK0B@vh%jp!9wX8Vk8@nNHOWP9JFoVeK^s8efMrjK^yjf}S|h{=Mlj_gSG} z>=>lJKPanuT?%)1glDQ1A1dcuOoEMS&c}>y&x2AQfoKbtiVFvZ zIPMx!b&X&x-V@zP(c?>?7vSGq?UIQ0dMZ_FFD3j9x5;%!YX{hD-)_tpYLa!T=9~4a zyH8Z_>faG?1V8x#ma7PIKrs^)Cp~E4^Pxh=m_UQpn3Q+$hz%$PY2JyRaa&ETGaI+x zBaXf|>3OH9&`BawYuvk<9{dS5WQ*Bri)3*jcIL8fu9n4o_I`(BRb8=P3}>Z#l+2U z3%0Sves>nEBh|8WY#~kqjj^p|3*RSwz-_YaUW5m7p%gCTnueNU21}HN8 z>sRmaa6CsRC!IC~K9B8MxHts}g@AW}AVF(qC+79#X(!mApX|Y zAjr{pQ(@^&opnV}gJ}LMAWrM*>Ov3@<`6+aV(#uj0HKxt0^1L$P;UY^?ttJa8I%fA z=|GKDuCaabsW1KxWHg%lSm%g=WNhYNcE`rJHyS%sUV2^2E?y8ILfN0VX!pXSZhAPi1Ju6C^I8N1QtQ$x;;}*3fY>EJj3$t zKk6`VaJPvAQR}q)d~CG}(`FE%VFl5YDWL0j_4EuoHQu@Z1SvOafpZ3&<$uB4*lxUK z2=h2hZXlXugoG#x9r?c3KDQek31BPr?#h2JbWiVOYa*7nBtjo45 z$jE@3e902Ew7k~B`ELoCyq-iJD^z;L{HA6f%)vY*W=I4evwaY?n7=-q?fex*U%o>h z_4aAh+mKBv{0Ov~bPKGGlY4&t3HLz&O*TpBy9}0iU9}Xo1>6(&-aC5inIb(C=HMOT zF9Yn-#u|CK1wQ|h89OURd=byzQ=lO8Ghq~h*bM@Lg7}1ln7*&P5);YnCbqUrpFg?> z6#C6N2RIzv+s6k95A9U#>^LhdW(%2YwpFilTA7&Qr5x<+eBWlWmGcABthH6@GUdvW zJg<#Qfb~&pE$NKd+91A0I9oBH_q9NI;k8}y*Oiy48sn~P1*udSd}SoJ!v9bH`XCd-UBu7G)g zWOm_^kv>2Yo-3%FX<6w@U^O11DXtNNFFlH$p2h@p`V1-6olNr7pVLkcp+G-De0`&g zO1LlLM90F^_icNpj(!4s8q?@_V{~o0mKzM$@bGX?A-9XUyrPDou8$u+K)wqdciWJF z8kFyk1k`Al58A-tfMVle+OvxbRA_2?8X4>_GZ}y2FlB{#akTEk+;~Nx<+^{zyz$ze zwHDmZ-VV8=UId~x@1zJZDCqO^WYFh2pDpt2%_20F*_z ztvyb=CG1|soeA6#Ex?Z6oho#Hl&zM!3t`CBRN+MHZlba7Fg^1 z=DT-O-E|N9ysre10W^%BTOq^e$RzpxS$;9Fx5v)v><4(KE+(HOHe}QfZJnInphEeR zDhNtoh&vgC$huLn{R0tn+(2+&YW#{=C2(1*OC}-@cGtN<=B4{LH7N?$NY;Y(-6l8d zX8wexKXcshzkdFrsAZ44VjkWdGWZ?Usakv{%i~Yj%!`Ddmm>xboyGLYB2NKAhIKBk z7kc!EfRw@z1?kk1AXxT~H1l#kelPj)Kx?YZ;x~v?cVdD?Qpfnt%pc{{(k+nqcB&wX zLmIR&g6Y`hzg9pC!rmHD-JAr$g7_)Nh^{H59D{&6Y@|rxJESlT*L2MJ=X-&@^M5(s z7SWe*xGl7l^pPVeqDvCF@pr9U*EC`|f0&PJkbm^!C|Yy>Qrk z5@RR4sHe5>j)WGuq5O=l!86VCYpk!j{5l`tq!DW3D;=#LKpf^rb(JIw8{2P~ox*r- zaR22iRSNfMtuFv{KPrB$kNfXto&%VuR@RVC*t35Gq+9T7C99IdKF}?mz;t7mj}D~S z=+6`rL=?W@5JuYmp)FV=#+IzDlK#RDm!72`dNgh_Bx|^cT%Ws6*tuTrDi^rYy)#D_ zd6Q>7w>Tdt#!MGKB~;>p6e?kZ0<1MIrN7*GZNlH2lVS=(mheK3T=mzS5}t|w#sz_t zqnbtfAx7EP+}U@~mg6V=(oMT4NpS0}JEeVv{#%5|d|iamk<^z5W{bYyh=NH5P=UWt zK@G{~AdxGotY&e9bKH4Ts`S24Y3Mm5mxKODok8N1N-N1J<$ND-AQ9Jn9Da?2 z&G0lUt3ir@YGGRJ^mOmNIm23(=V>9%lqvJmXc0u@`4OivotSzi?yM9*w|sM4!{yw- zdil3rIfafp_BQk}KWnZ8l~Cdgr5v|XvlWCZ;2%ou4FlZM!AD4PHW4eDLl=Dh>U z_U|zrEq_}d=a3$N@B&MPQh5IXwF|oLVx5kq9f~;ftd4vV(`_)6na@9>zc)NLaHV?% z{FWb6B%jnfy9$x04<_pdn)j;gQ~(5T{Xj5j!4!q#_*UfZ z?GEL_uDVpkzkxjw@+F%pV}LZ!A45X9_J#iHf5t61k-3JyqYmOc1Cd`US?;?@h2 z#8wB!7~Fmx;5w_EG?J8Sw_lS|vU&MAty>l+D3CbFl{Gr_(78wQAoWeSeK!bS2kox; zf{eD5VMTa6U)04lXEOVz;eR)$VPnI2GsO(8QLcn7pPoFC zNSep;(x84f+mOj7L>INtgm_e}A49*ZHR#j-%8j=PcH1LYM_4Uggye7ewFtK2m^Y_n z$7A+T)5A);)=0e?QiUIic6wNn?aEz0_JIw7&->+vxNX@1Y25C#aHx*h%$@WDu0W4e zU3C5bR7H&Ck@=eHizk1p8KEYn4UC+Gc`g62!Wq!DnNk(s_o;t^Go78z)M#`i0z#rNboQ|E8<|9CiIZ_jMNTR3L~-Q-k9?&1^D~ zw)t;joT?Z1BQ)^G#z-|#}vN_fk29ZQI>|hV%!i;2_7=( z7a;~X6ekEQd@sds?(KU&QM$Tsae@lTfe22^(7oV*dmZ8C$JAmq_L+r?>Qo6xF9t#8 z4KQt9q%(JE{=SpOGlG#D_VLxA-r+OYAqU{dMcf{XQ9Ank|N4KJ-5zBE%=@_wnCP}t zI$svE!kS=Yuo~I~EmAyzWf_`=Td!Vvq~|KSzzxqx|L!?;yht*jP^%}**$gwvOsRLp zp|4C40o&9Isb}m+2?(E8uz5|x>wOkDVH;+j_+`Nv2bpn8a=&!(_+D4?gf6gXA;hJP zHzD|F@jq{W*ZWZuq_tj}m?z?CX{y|Zx&)lwT>W|zl#K%PG-ND>DzY0q0Im2!uT)6H za5yX@th4o}7z+!_6AlwKH!oC726z{l_eViN+1uZ5ZVPy5wKK(Q#Rrz(2Lq$8Bq~pp zzlEZ$7N(}|#kj+V<9s}^RqoT zP`7l3YQe{xuVW)toklRbEo2fx8-V~&_wAcEUT_%e*<`&7H?$_;@){34X`Rtvt>OL? z2G3XDKQ#6yFW+{-;Tgu_u2rKOPpZ_?+T#RJ|Bn*2cWNrt$2^7m4<3jER1BCThqzZ@ zP!K*PWl?Fc{7YZ?TsHz1aQ+ER#z83BZ%rkno%#pd;1fvn&pECi0bn$FazB-w+*q(Dpl`T7)O94}6P z_CualgUuxCAXZjWlF(NsQ?mcg9AD8?Ff_~kkA>WXuP|j>Fwlu6C~*-Ze4v|X)<7&A z#>$EhYy_mg0*E9~u~~Im&_f<;3pyW(sH(e1es4C#MdC9ZXk=-md zEAIu4M?Rh{h6(=!=epmg2$9#joGKQ9`~&QB=ou5rpL$CU;B;wGPXpY7kml8_vRQxY(c%5x8^b z4oJFe41kP}Sfl$ji@WRfQfbb|tTe4gcjap9Oum7?7L6fqB5CJmTz1<*EM9^K~Lc9_vM-Z?b6ZFXxK}Bk&825-9~=p>bkGA3Cyd%i}RI6sX-vS*PzgSxkiSb;Wc!8I0s+f>Nf!vGJK5a}7 z;<~*ukXivzzV=B8DXpBTv(%AUT=m~I?sZjDOD=MPgZ9X8La^p|Q=DW8PEg6wp1f*q zw+6;*+gu@va*Wy+021dnV9nDQCwpVr4HJ zyhXnVY_y1=Mv5G2vEfZS@{R z<*> zurLXSP84~j66h!ByVK(`N6r`Zavs`_{W(2Vr(+)mH%le{?Vi@!?aNVP=H62Oxi^D( zv-;Pyr=VUeFFe3>9>Uc`?lqE(B{;}n4qV?rErkN5x`Y5=$)#k*)>^etom*aCg~k3Uz!9}6Z@Pw_c0n}01rQEUG!9e#hmG_N0Myzx&@@_H^pX|y&VO<>GLnP* z5Tp%)S-_!uZcoP8oM>^Xk|_w}AJ8C6a|g?BL1?ZWP@ag7jw*)9Kn1T@AvDQwi*uSJ z=qtVV4_TB@voEwFQSQxgBUyS6O~YZ##dSTUf$ruoHS!n(0-_}2$?^UQ%)}5%gMttcg)U#8ctmF1~x6z?QRknuLc7OltDy*72 zez@%Q=e@-Mp6PORKK+MxOIY(Lh_cz;x|e47hST}G+Dt>m{?nLxFdw(kT}tx7*Vpdq zyC-~yVL=a`)Jui>*&rv0X)rh*yB`3KH3L$)gFG`CC4V_?pAyQ3jcwtRLP;6?X7|>t z`_m-nzp=s90ZwR>Q3CxNI5%@UxtHJj#C)hBsGjkN$P}QnM=xGl?bV?IJ({qPyH5gn zsQW(`=?T%6keTvf+IF=}%Rp_dsl231LFZ+j!HCLr7i*oE-Fj>w)-Iv6tI$X}TPp}o z&&1U~c=w+vp+^!1y`ia*Q0D3<^#cqZM0S<3?p!$M&fc=QU?IQmpiUe$JG=1l@y&nw zOJ9!!Q?P+=1{KB_P0BZWH7P>I{rskBfx4dsCphAVw09A)~|9Z#zgC1P-JNRY**5nHvVPvQY zcrPTFxi@9IK*Op;Ccj`Xy3@W^R_9avjiLUm?t?oA)(khx;nfMx{#hdM2d1j;W1BY% znF!h(aGGi+d^m@)u(4m0QsQ2nNxDYbWuv2jgYe^N_NpZRO2a(aNE$pl%$Ywk>&GkG z-*4LU;F31|Z5f^maAF}i2?`kTu5|sKce^`28qA^MCX`{cn?F0-_x>@Br6zTCnzgCI z$B_0w%OKz~B&0MmgR31VdE2g;JQo{0$E$vNOth!Fo+&3ADZ{1uVhz;^jC@G+iq9M1 zhx4RTP!JWRKwuA?FX?5`t#)%Doe9dW{x<=a^g%M^r^`H1`r!Zqx3Wi;LhRq`a15uK zTGiUSpFr9j{KSuFu1wg{^8cF|i1?#cYO9S?%4ax6Y`1EsM~_Q+8IeJI;5uc1l(iLz zi;Rrr%zbKmaTL*9A!rqkwBO+RWqxz3DUT2Mr0O{z)xWx87)e|C&)4eE+Hm5bFjnV< zId|6={F^9nTJ}fK1ls@U!0Ad>ihBzP0^sA}K>(IbO{s@$0>8H-k=F)~nE0-Rg~b+j;hHsESZl$90y*pANT-Ly9P0j>gsCAw{O{$f25_Mf;4Bx*Jtl+ zHJM+&d?hQ3KjV5R1qAE)!vSFlXJ1Xm+q1FJOuqa{EfGou%0cSV z0RbqG>p?diQlJ(UMF9e}U9<^SxO5U<=ApB#EeG<;U~Z-|-x1cGOq#?Bx$%AeADvuz zIF$Pyf3t;(K@CPloF{I!EQMl3#VJbmEoA9TGPFohCXz`jd0b6IQ)Ig}$s*o( zsV3U=|6W{qqVoG*vCR@Zc}r9M-k4!2{na0_4-$JHKBpvm1mKd?o16cPTCAd>(b#tU zIckgqWf{%mxuu5(4*HDKgUMe^RkWWbp)ZVKFo3-Yz6hwEq=U6yB}w=}bTlF&B4U`L ztD_?YvteRlqF{IogQx%r1-^o3N_I)H3|QcRqY~OR?|Bh6@#~omoye`IKq=?{UE_$Z5NRV$YwEk6rT{y30ZnZ{J3cyWg=IcKOTIf=ZKDy;9jJDkQv{9zN*@%EKe9 z`(}+TEn>)-kDbo_-efXaTv}Q_Qxn}uFSFI-e1j|`#uQs$cOKBY4&;UE&Rfq6K{S(M zo9&GUZQC9?3y|QC@AqwhD3Cb+<*5IE+Cf1${Ie@d-OE?7Rm6p&1&&8SvfhX{T9v`^gy@s?cP%R84d%H_14( zC0TsUntE`=;tdTEJ`TFY7ENp*oRE`gGh)4kBtPJkj z4$6-7eCYmv2L22nH%rQBlzfu?8g33hnLfVqFB5c|XvRXmn7oOnv$4Z!Os9QyHlkI@oLx5by)& zcV)2HD`lZWaBMu*&BRtR@9^_!k#X7_!prMi|4UDf!(q6FKqYO46WJkP$E^d|wJtmt`=uXxmW0%Jo$JZ6r)WneXt(=#&P#a~vSN-f#`T0%l)x%V3&8-6q$3`qk_)#Hg5u7m+0yD+E>Lm8!^O94+ZLnJF*fV=WSQ@` zitB5EDPge%8>eLM-U?K}5#MI70fNmpX^rVul+)VEN(^d{`)0X$d9NGgfRhL_A9nv9 z&9g)byuU!IWR(=$Ne@()b>X7Di{B^TNreDyA=k^=(u3GU}*`4f!kJJpdh0t2yV)JzMYbZa=vCjy2C zDHEMb>P10b%OX0ON8^)OHk64b&HN*P?D7pg7dPJEaPM(y&M9E3(AQvq6mBXauo^B2 zuS6ZVXhGl1&y3zuh9HT+dRD9ayu7fv%kXH^TA)x2A6vcN7?ZvutY*CGbNs6$btCs) zOz3P$-UWpV%Aswvgbq^3At$HUy1G3m?i)VGi(51Je26-kWQWhY$jz}+E)MCzo#T>9 z1o`_&>v@FHAG!XJN+#y8Cr*(KY4O1a%|~2YMvH<@$%)%_Mp{)-O7l-fuM!eN)Pt5O*4M|{w!>k zjp#E&!nW1va{Jz`Hhr6RutRD{B5}Y1q)p-T`Fs%2L#=B>noX7EUc9o zq{%}niOsZ5;8$#1zg|nr>xEOgi?ef9sO+yW6FDu8PELD~n{@m20fBe&cIHbzK&2`H`~zys z(TNQ^&#t8tIjW;Q<*q=8{(FP|oEQNAGKe^oF>KC#(D(76f|eDrzyOIEjfMNs*a?ma zWY`;$Ks~mEOqI$=YdgHeILV7aJ6}9lC~$+FXGbx>+{h{T)j&_r9@}z zXp6Bu@Li=<4ea2@Bz)9zMeFk*SKqc=`x;0ohWt102p5(W2>}7(P*TaG?2k0l2!}Z! zI>Z8n!?&;Q+WCbbVh_D@NDQ475R}>4-fS&DcY-%J*^iqITpYjiebi+yqPs*N+2KPa z&7|x|fR}{T_0|I3$ts6DCxz|AySFKnoKw`1cloPeD`5dxR|Db;vlhz3C;K*!qi!a=<%MziND@gD z@;v(YJHd??CTN-got6P3?88Wr+2@i>^?zk<1br;k)42brRUo1NH7nAu2deL?obRuk bk20A&9ogNu{~ma+BK!6p-1F4(NX)+gb5*Z( literal 0 HcmV?d00001 diff --git a/_images/2.6_resampling_51_2.png b/_images/2.6_resampling_51_2.png deleted file mode 100644 index f5f57da9ac40c31a2ef55b9870c50d29c023108e..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 28623 zcmeFa2{_hmw?6!nic%p-A(B#Nib|%UQc~u~kSWQOAxSb7B4Zw8NF-zmm6VwXMWqap z1|%X0iOjz9((~?j+z&OV&sf@> z-X^kBL`-P?DJLiUGrL4ZZU5~BB6f}zqLTOWGVvix><=6}Ls5(-0G$Z@6B-6tg%*Eg-t%T3CVg(gI&)e%+E!0TD&~vHGj8 z+~$uxblUDxfw_uEesYJ#LenMuy0>nLm5)qSMva^~v0Lq$NzYV)h=^=`LH(Kdspp&p zvY9IMJiGVekCjqtDc$_vGVZDIZrHFvLsO{9AAg!wF-YRu4U$y~!T9#T;s5;C8JCPa zXIKYIr$pYre{X!^#6nF?&ElU8hji~6)13ZLxT&h3u<%pxj*n?IVR9TXDwlhEd-V*J zPMz9fU}$KaHP_pF>gkF5di`Z`Z(`!&g7EG1)L>b6&)M(q*WQpmmz{T3r{{UhwxM6Y z{Cs^Eo!Gk8)Xc2kZCOlA%++Tn{6j-?#_n5MTKb2C>_2((WN>IEU;1Pace@UUvWS+u z>!>WX;q0&OC?nJN`3|Sv-rpoQ*~{zV>Z*{a*3p!%saxVI`Pos*`CF@cd!>!oZPkR3 zB`kbRzr@%hK7T&(JXVq+F){J(g9lo%j~u&eC)cj>V&>i7@v-DWYw`JQ>^n{yWG-^C zJ#gqy<(*@>uL{n5S-iu!z#!!I;p@tc%ca;dI2j~wDL?IY3|c3>`r^fltp#T`FI&Dm z?YeeDkhQ)F9vMb&^t&QYe>X zLxMu0mkOVEJeQ}W>_NX3>%Lx~*HUu%8lJZDOwaR+Dtwi(lGYIc54J8|yx3*r#g4kX zxuHr%m%fxJV;h^Gqgi^L{W)bvW4XDx8Sx07JlPwxMts4;hY!WX#rK$)@F*WTbkF$l zf(KU3OD|u(d^b0@a;UR%_)CJP!079OGZrrA&v$-)7T()>k5@%SrQ`eekn(%Zg!SXFqozqTsn z_U#Q@w$StO@!ieKs~R8fx_55y_|p?xIpy4R12oTm&3*7-Rf6ZNRNF&a1~W4=T|K>9 zihe6v^Q@y*gox65bw6?Cv(tlKqb8;B`ShBh2W-Yhp^u;~iiyuFGwuD^4 zqenHk;E-I4dV#7<8#k7>w6F!UOI}J(=f_!G-e&Pq%W|Ez;TVqJ`=MyZovbW8f`yEX zj4E+Enae91Gq~M7M>KSth2Ym)MNlm@kZdOP9#GKWOLRAddULDL7q4yL6i$Bll%I ztR3xc-Uq|^67ipygv67I|l}qTUdM%5Iy((y_8C<#FFsM zs+UVjWJ@Q%3I=gXt$cBPhf?a18xf{TL2E7^FLCX}J$YPm;n&TaoX~q_HKs3OCFvO% zYdGwRFFt>+qLLuD4)>$FuQAoc%#2q!Aw1kWQPIz|A^Bjm)EPeP%8O}fTXsrGnT!v0 zQeHT%iu!uSef#!}e-2mez-rhIA`|x4) z<>eeq?Cb$$bF&;+9^%w`X=#qx+1XP~Y0P*ci=?HcZQ33z>Fn&(ZaayM-g?)Bc7F)x zmFVa-_|x&TuTi<>-SpTyyWY3CoB58!`R@;A?`%jp6fN&5cO-7-MQ=LBqoZA6Kfk?Y z*|cdB33u3om*2lP*tmJKpdsCMi~lOsAg+V6)IcyJ_R@&-Q(E9)X7BcnUVOW1eq+Jz9HS@3e| z*I<%$OLo4;%r0_-)xvtlI09CtaX~B2^MTFVm1Jc`MzY?|&An&UEKofCqYm-VJ2-f` z>*!ZssWUyswGsTf_e>WZckSCm&3QiAAuGGCw6t`Mq}3`RA)%`=F;}Vr*}C#tj#o~M zd`Zm7$#IOM?jjWJRZ=o*dtlkyl+Lnh=^_!s!sH+9m2&Qr#^qi#^b8D&R#pNeTt9dq z!71-i+;CRr>%jsw+Rgq4QsUw`X?8DTmq@Fv%g@iJ=jG*f82zf9J}^5oRZ&~3Og4qa zyS6;*MU=SPxP3~u=<(t$l)pn)HGdwryoUkBqR~0^MS@+@vE4A0g#>Q71hfu)z6wl30DGy*5GOt*%!W6fJH9L1# zovVurwilzr-0aNKn)~*h3N*VD6S`^uQ^kPfikVTCaml*@}-`Q+G}ch z3m4J)?p@&Yv|GCH=FLjT&i=?`M|Z|6Md5Z7Yv^m2Z9~3UN$thXj?d@f@zKq*ilo+; z&dpv(8AE=;Cl0jbv5M#$7zlm;SR%+SX|?g1h@n89-G{=w_rEkF?+?DifwepFU+Qm}AFM%Cz$Ga*cOg3HO+~e>G?HC@g1Gbzj+h_o3~(TgP%w zHarLmW7d0cD$%JeMWwyeJ@Pi=x?Kx9I+<@PmHem`JoTYa(qnp9DaDzNj;WL%hX%4S^)cmuH8w`|$sWgtRFaY{KZJbwImcgT-r zTr&9;rFGN4%H|ePLEQ4C4f*o3P51pKYcP?#x2KLRaMmxij&8^k38~4E<2;{c!A@hzP`RSQjQxD zqcb8E_pRWPA#o+qsLVroz`Q-Zrc9BBhDL1Lw(#2n0|O=&7O6j`^qNO?x}`OHhTU&& zz@xYn6LYNK(DKX6)@q21eg9B2Uhg^U-SgtQqN*w*LZO(XWEEm=#Dr)h5--@JL#-39Z_1)0v zTPySa{rks%Hmbh9wT}T?rvsbQWoqD&_UU)EKnBy}U7`M0t~|c9h(XMD-`fCQb*30bH(n`EmvBOt;+N zS2v@~!r2Tri`uk+tTZF-_RZSu*Lf5#chqouK0(AE{!u4d`TjlU)|h3;E_XDJr=+CN zFI`$O+TSAXKIv3ERKY;f2k_Esq^iwh%&e@wczh;U!30cVk-SdV-26O2o?A{%E;7Uj zj|8_Z@_SUWp>7(p_HG>=HY~wivs3MJpX%l3?z}d-ZO%1kt~YjQo3wP%`^jvhvTP@J zJ?&%q`n>po!4wWmbF)D%v+zz{UY=H*jB>N@$I#roynP1`E&)6cm`-sY>eypY=0Q^F zwUAphYUf|5Y8T|^uNM(nQC`Wbum8|ykCT%`KtRA<*HJ6}M@UCUcKxBDt!;=CTTRt| z*z!XN_=ki#dY*_C{x*0;D6*8|i4z+)@bV4=;(RKN;v0CPnXos~KOo=|(*gkB{p#xK1rtks7ZjZv z%)U2zwy$9kb=RbFampBu{Rx}SWoEP`^TQW{^^gkUsX`^A}#61}4> zMl~Ob&fPonzL9FX?mNw|rQ#jB59o%4&E3AkTE`{kiVUoKl5@ z2d`-8?|YZWS7vwZ+O^)69Pa8+?ob>w^1}K7py$Zjk8Ivv`t<3OmHd(z5_2JPv9bk)#Vix3n(#%PkY_)B#_MLOifLV?d(GB%4Swai5M`A>0PG0pGc0m;&#*nJtv&Nns|EGa zy%Wz?lCTdTR(+;k*3W%vj6_#u2ViT0V^)h8&~tEbP= zF+O>6F`!C*K|vyxG`;~PCZ?wPm6z}C%dRIS2!eUqo3ZpQY+Nyo)TpZ7Nw1@JmkC&#f)-lOH{Tf>CSs_{Z>`WhM=dg>EI zk%f7Fj*j{U2M4=+xpD4Eo^?y@=*09$eU$#}aFKv7(##VW)jZIZMm2NONB%1(B#gE?HLqP6iV&7BVt2wI7zRVP)ME7Z>Lf5)#tz z!9C+U{qwpy784Vbir25zd;9v9;1(h+Y~qq}xw(pt^_=a};h_thD_3gtZNFnPK~m56 z$@hqXEG?Qn*t4s!OjvKrT@GGpweeA6T>Lk_H)>d+VU*9>lP2BPGfv}hu z{;CLf3k?m8y}{4bk99t~R3)Cw4SQPvVMH#Og;J|8Fe0{sE!tvu= zSR`LB?A&X`yK5JF?#UMwDDkXk3invGf_w0{+Kau1TR|8BL}=6cc-ir*t5Oz-aQP6{8-*@?{ofq`TXn+$)da-)%Ee!Zp4}-e z-SSHev{f&^0Ty*kJIf1&!@-dyTs=S(Vmo%^e0klp!dKxU7R$m#i}n~9m6iHwZhjza z(UUpx`)j=97XV>=PNv%n{j>MfG|kLYrC+>wAz7%lORVPJl~kf|#E&%k`!ns@u89tPjvE~v zP0Y;H-)v@*xPR~7<*`f)fT6|_D*J8R0r2yk2V#%PbZNZ%u_)tOZc54~PEJlM_v?4T z+}&E7b>~2CZm##0D+jaYJ_!j6S0M(PSXoUzXWV8>|3KL2=8rgECV<^?tP_gDn$6p_ zn%v|jnFIYBj-@d(t9z#kw;TzZOv@Yu>Gf9v@xWmx(0DAHkK7qF zxyn9&bxqVdIkz=iWA41URvDZr6ov#uVkt69= zvamRe51AlB9~cP?2pD>{Ie`En!uD<5x;5GKIZ`cZ9$Lzv)NSqCw{LX|o%p@{7J(_< zcqCrt3YZCI6x_Xysf<9C)|(hJ3}r?S?%k`GnXF~}=DP$v>&QZCt=F-lMyB3AwWQQN z*u8=I`8)3zm2rWIqP!3$6D=EWYdrU7=1nduDk?Gq{o&Fbsgu09NB`I{8j5gpmX`cg z$PYS}h7Jx6c%q7Wdh7t`Rzh?c95T1C==A#cR%baXHE?aBPPBV?v8;V$+^8sgi>SE2b7xA(j9v&W`E7f;BnMwmoTmJ4H2beyTlUcRVh<{0-2@wvx zv$BLI#|8p}f|jL3^D2dqm!Z6{KXCCqIcMF z?Q;I+4?5}Kj+GJOVq(W<-o?;FXy^K+pHl)9cmF1Faiy8denLz9vW=EC!o4fovtONmaOZ~ zjzkL({67M&vvLXtsl9Ht*h+=0X5?;G562cFxx($|Yo+nw8g7TqibXz`FDr{uc5m*i zMJ5=U_>zEAoGs5bEF$ZC%V_7PPYXaO6DAH7X#Ry?BA~^WVJm?VUku_+n$))_AKBMQ zH)oOO2u>Y=-KEo)O(5vlLz}e#yNu_~or@e%O^^!)OmLg*OC{*%kZ6eyqx>|}mzOuf zk7pF3bdj)rv+Ulzd!*hc+!&a6W8hN_dHjqXNJdL*m0q5eFBrq(*~xzY;NVEp)uP9P z03=MC($vYjARKgl`xXRv)%<)h&xTtTw=;PwpMQ*})UtI2ugAZAmwPlm^&w~zr>{** z>`Ev23Y`Z6T8>{>{_*2SiqhBDe^OIp1`cQF=g%joA0j*$X?BP69To!*rxGu-c5G}6 zFx4+4WW{#7k3kU;tH7G`09_+_-x*Df2Xv>xZmIY8vcu>8e?7_mjTGx%#vV~3aXc{XkE6=7)i?C&m1}s^+Q~~v$Z6W!W8k(lHUO$YB$?3_gk7HfB$cJf*u(12r8r6m8+svx2 zI{Uvp!z?v1=P4ZP?aO@omsRk3)e9-5b=jhV`h$&I#l;^3pxizEVOP2>*jUO7)YLN0 zop;}_y>-7a&b%L#v;ZKtzzb1f;e9~)_MH{J%2Amiv9*tQ(v@GLW@b{@ov4OtSI6@B z;qMH3+G!AhHi(NeW24qw7%cI_lOCU(GzFcbp>pKNif;o0k=Jq`JyHT$junqMu4_Vm zPOaaugAL?rWOdrsbKec1$YdH^Fg4u(6(Zw?o#G!65nAnvX=mE5Z5wHJ8x6~ikLN;e zwEy+}gGHh4$DEiYW0y;O8e4vZUC5!|9=vSmk6bCIvnLunW4X^^VWl27QcSj;SP=Qe zKugO9WM>x&m@OhAM`Lx=)YQz((pnURckR+MH~EoQhFC@6mB(p-zMaQqrxpK=@u5%*|c zSzoNeJQ5he2@rMX$cb~+#zM<_2JKMCMEG2`WwBgJ>nagrPFAsU%I>5@y+Yk5TrCG zN^+jf+&s=8iJAvswCU~S(xpplZzzde7nxFXb9cXY;n(SuXkfAN@$my3AED6T4l1{# zZ{p)4Jb!tm{_T>IlCX#fAJD!B#PLh|6)UnQo)DnLD;aIwgtTK1Rpx}bd17+%LW}zN zMMFc!Bmku;uXfM5b=Y0|u!O$1mx)%9h>yAv)OQ662^6}#HzwmiMIej4$~KgycI)b{ zxh859g6boPOP1ZSfD>u5^?_x$#5JUvo0_Rd2g7Ev=xSAn3X{*$b<&RI5>b_g^@bw*hqn#J{XJTeGvXm2)hb z_RkB=Umqj5dyS8~Ak8Ti_SsC04JeBm<VoUR|8bdBR|% z-xHVEyS(S*0^rNTf5gYHP*PIrTN_6io11Hg^1ALK09H)Q#WXHGJ^km-tc?44dG2i{ zmdm&Z2+uGB=j$>z^D8Vea#4&5Uy1LR*P03BM8QqtB4}b%j`sCmCl8R5a~X6K>{2tN z(Q$~;DHG&hm2Na+qfbpbSwj3L8oM7t^)EDe13$W9Tw9`N8eJjT^y;UDpENmby#FZnqVX4F%DtZ*HVOUp)FoKmTn1>JUz;OUcO_lT%X( zicod{=p)#bFg_%$gQ@_^iLaHLnVx3i;9vm0n+DUB@6@-F?{MtK7e@K^JV26H|M=q) z77r~2QkIFEI}~i3kYV8}Baewq*MyE~^f~Wz>SY2S=+OI$=Z^lPY~|2T;2>5nUbe=I z*avW=C)gkk*w57NlPCFzH1+7CD+6|Q70DOrnyE+I5(>@8x?4y+I!!Y(NptwR-1LZN z*|fDci~%?-q80-*fXLMGJ9qAoZ+@fy^2d+&m>bcp;4B9e3m|(9`TSISscb2pDA@nK z=@iPQeb^GXj92%}l$LR9zf)md4ZLG)VuE$C7#|9WMDWJLZw)C7a??YK62OEggy|>( z@BmBg!9oGMii4iEd3!&lVc=E1gPD*~DQA{mUIkG*p@qs0?|S&^l^R5bHF#@HoYWcn z!H=?WI~^8KgqS5-8j!+Xh%*S^>jAsS^>#^;a+nf3x$N$l&1xDyhE%EX??scG>X8P; zF3gDK_Rh}N+GJ#9O)M?11hR>K0!m#xG$e5g_J~zosD?nJ$u#c*?5NFi|MlS}U^zc$>a7Bq4UHc(CQY)AvBhG!c zn$%)@si8Vi#z2XV&V;gQjk2!v4Lm-z{ViN}Ens9~MZ=$|>FG^s_1iS1g*E&Hj=uy= zJ`o0n)?5ol!c5{h-aMl3 zwE;Ct5xO_PWPp?y-UimgernA20RYm`7Q-GenwJ9u8GuBV!q_15>;0L0sE(RBQ$=KwW|R$}L%Z5(pp6yU z(POd@Cx2R!XH)6N=vP)&R;wA&eC!u0>tVp(4Wgoqixw?ntp?8H1nWY~AXwS=Y~F7D z)_Siiy=CUX#|wk9q(mS)-@dz+6{})jp;Y4iqLa;Q=j&tY?tNF6!)*zka?_g2<1JUS zuy}+2K^WH>R}lxGMqs)Hb%xM}K%q;4kT-7JDAQO-HsR{ke1`dDz+6ksyuG~V z)0}QEoq58rl|ulm2zaPOY`5-g=~r5R0;(7SF|LM%(d^i%uKoda# zMxEK=kjwFdh~W3IfKxOpRW%~x1gE|?e;%~^NJ`kf>}K7ykuDS6Q6{#w!Ekk~B`X{k z>CV`n{@Yj-Jp9hCtg}&7z6yShSKz9Ms{o|`sO+88>Uj&2L^U#Y{P=#K%gLQLZ1@oS z8&>`oyh^uR*ZY)5i<==yAnacTH+$>MmzU8y9ZcOBv#OyoCm}mEIDy>z=-Qv99F?AK zdz1g&ANBJ&gHC>Wh!%;G)c5&CMU_y)5bSkamq#IU!x50iyoin>VNPEitI)>%T ztB`3zK}jQrBF`*PlQV3A^~RvYl@*T|f(HJ_Iu;cf>D$p^3?{PzDisLca)f^27oyUO zCSL4lFK=#UCDsv%Q%v9A7bM*;!`W8CD}&4M)Vc)^2@8uZ(Ba*tWJ$wIv4M|oF_;wA)yw|t zX-rs1=vAhUsLlI)_4FAmzR0Bt6nFzg#D9dByH0%?ZdkC*uI`PH?tMTin1G%*prZ1m zv(hi@k3Vj$(nPJGDmSqZ1w>8V@0; z0@d>Rs5%~>-QY(fm)2dnv_MGj0X-_oN^l_#18tISaDr*SOx-?27K3HPr3D?HXZH%f zrZGO2J^J17rg~DwC`m=gXMh(KB%cLA7l7E9!h4Wa%D#j0m>Jc9)L#y&i5kK}=s=-f z0}lw1GifRCO3W~R;q6p8)UzSPFjJ&=fhlMqTP`zlhv1B;-5wrt&~yY@_fv$w?HdGM zBQ7=k83Gp|@4!J84q&lvnTPBGT3Q+k7oZ4;5&3C<&>EhZ4?s3ZUX_A5#h1VZS2Q(g z?W(ebe(e<8mgF%tu;Uw$i~QVlu2aT&NHj=X)wp}F%b=%wDI}JIoayZ8xeWFd$~#wr z+mB}~XVMSPQ&UY|hQE`YM%ZEsqzw#tPoTi3Y)AY~KR`;QL6bgY+A`x; zH}^yXC!ri)3=zWSWAU->vnN@Drw&3F@Ix^PBAbZMFw^ZjdX&5jKBHR#S*iEWYMXO3 z|1`{Ko{vEi0V+pFHLt2BJy^Ac|9t+68+vl0<~Z~pfBd0r2K)e2>pPH5*AzCbh#-Va!m$p?AB7fu*G<_-PLc=)Wn{aGUT*rqz zk@cXs(o*2EeBgr<#l3X%PKMb5%_57=%y;*3Y>Hv3u zAj_!xk4S+CWOyvL_oeQ{7C0&!rw3osUAuNUsGgbw=dQ)x`mKHZCM!Tp!r$Q?7N!mz z;g)riMC8M61})()wWSv%C#LkJAMQl{Qm1|L9~g?QhFpv|oAU}MUlLSsYjNf`k;ePK z)K@mcJ7i$n-uHY53llVk6kvJ)kUsYyltcnXsaoNPZ0ZQd(1TA^bqV}~+CfNtL&Fbx z>lg^+vU&w(h`Ramc)YMrIcO*o8ykcEeTlnXJ#@R6(QN~Q-2Io8rZ<1n$@=(Uq`*&j z+$bl@L1Jb~%z@A+TrZStV(>$L-XJ8jjD=4{EkN3HRtC?=;nR~P5H34QetoP&(H1G^ zk1But)~zd1jM_UoR={5pboZ`UiU(Xxmr*G3!UqQn0kN^*u_mp`b?jCqDjCw63s5;T z2S*?d_U7AVo(&C-2o?}-K-+sOB&Lmy@~>J-a4T52h5$cyYyHyl@H1~(T5?8tEzQ|g z5|84J!0c9uCyQ|1-IJP}Tn?)T$95a9+}v${golfte7**WL^&rMF-pnUc>RI}3+#V< zK4<`U5>hx(%~9Gdq`=#flqK%^^OOy!BLwel#BTs56hb8%g`6gC-?1B^dNWZkh+h-- z)edMPq`LYy^0_ura2TQ>bl%e4pka8@fx*H1aJ>kT6a|#I)A2JsUUbj0 zk&h}zj3eZC5WA$Z-bv{8y0BNk^{Aip?lL$J39>ZetHH3Cn451pT-WW0=vIk>&I)Oe z10M)0;}XDRoFf7z|7ar|gHNie_J9S2n*oFpHbJ*(Z9oxhppc4;;U!cS-?L}Wfg?w< z?TdYVeYXe+Mcf`48KIGpS*XwEH`1?o?09T!g1~Pm{`+fv?3u%-1%ri~U|N3&R|uA= zvMr=S)Sub`piiTEph@t+#b$e&Bfr1O+P;*W$d3l4cq=JMdo^F^uJb=O!UB`gYzOlt zxG-@Lp9>c+7I<-C`g`zwx;L_Ivk$~WA8Bvu!L3#I4+@&Up1&bI^9>Ylt8KXoMz6fQ z+_h}Q&FoWudpzrx<`z$^6iQZG!IFzmsForg%1v|O4^RnCF#f;}MCh)F9w~Ubq;F|E zOP_oDIw!#N=g*(Uwzh_rD#y6DZ{Pl^xj9Q>KP#A(l*aq!NJ^3(UtV42z3YFS=LBY)TBdu8I{sIlgr}XKqzw^r;Yz9k zd2!F7Yd^uy0cRW>_JFLRhzST+x<=kZ1`C9cA2=fcLpEfO%P1>}3PO13@NgDDCqCI& zT55WF`tJFWlY~D(F8A~EqXW)Nwn(EPLKx8iN#3-usDz6Nb&Gdk;2~REA}cqDEx)Z6 zh^~*JwN~Yo94uIx39a=EqQzcV9!J@`1_wh4y~f^{V{2jyje}DZKKgK`Ymh``qW-q3sm={ctx~Su^H}?H9G;n~c zVLuclq8$LLSqwpgNc6<-imDqfGP8nG(2on?U<1AI7!?GpM2EilS=#Z zCkOFdJUD{53>g0kg#=u1N4uw?yuk`YJjF0wR{?Pnk0#vjhs42;5CBOsFyS1D>`H7~ z&>{HwczJ2TLGA^ZBT6aR``m6rGqTWHw15FkA~Q{lz|~opelr8$B~5#7izIL=31x@e=izTZY2En zspgDGjpraaH$#+Jf0%KN*lwr6kB0oWvD-`m{~Layq}qU;9$^ZBa}%Fxyg|x62A(HK zMR2HNcL<0!zFNh~dIg+O020w8m-3C@(%)~f=E9pe>mR=!9d~C7$m;_KaQFUwS5p;a ztrSZ%E1`r)iT;;@BMZphj?UL*xSx|F{PYlFzP6y#s z*#TdmyzPe*i*wyN!5|!nhWgyoa|^k$VU0HFK0sj+X|1ZF;sdKo)iWzE{AQ9%;l}Ta z{PR-V;uw}LwX#_@s+YD;NhwoEh3hPE4Fo2w%ytx{3+d>fBdkS;)mnQ7oDNvlPpDa* zfUn4rP~{8fKg_^Wo0l1IzBo%jJQS-+;lzpLd1ckY!UAdi@%#7172WJx!IptBNA81D z@n3m}?r$@dOgzqz2e3^V5gOL$=(Jdk#$3C08P$+6_>k!Bwz0Luo^TT?73usy6`n0o z|M+p@d-WV}w!8oI4Od63+XExcMIfaV@r*U>?C>qzH7G*TsUGBPyV}+Dcjl$-Ut-@M z!KJ@#ZH00BcJ<_;!-t7H%d~RkrMI~jnL%U^est+tPLcs`1pkh9u(o|7Y8{>FN?>;^ zE2kzWH;}}&E05@M6B9HPSn!U40r(F$0@W%798^|Tu(u!D_Jz=UZHbQ!lCGh0#7gA> zM+>2L=Y=sL>L!X0xX||@sRCJ|2=_t4={t2TJ6i<4MH(5Q2GSftgf+YNQjH)epiYf@ z{&y8Pw(EfewCyH%{(1C8$Rr0F(WO93aqe=WC#nyUo5M)YVUouBcpi#~h&+A%d?CS` zNjGm&Unl;{Em^XJPz9^D0UX02 z&-0tCA}AGa==k(WgX6j%IXN|)9LPmbGe(`$pi@Cc%4>3)qo4)*+^1|tG!Re&+U(m- zzu$@8v+q~>=UX*X9{*`Kdq*5#|D)c``FGcArGYhk)3g&O<=-pbEYLKD9tJ>L&>IB2 zqSzwFnzAx^QW_ztw!GO%^uPy4BA4b7q8iKz{gNdY;d~(Nm4N8$prtDr7;utH=_scG zb;^r!3AOW`0SA(XEoDkF7QTqtMu(On1vrmyCTW&FP1@Y@VT&c4Mc*E#(`MC}*LSy4HmZOV= z?^|=}W0F>2RAC>=3BE@him!Py3`uM;dvoVlzUQ2WZ4h~u{^4iZaKUrS=*}>alw1% zGzYAk;%?l4HT5`$+5EXEX%(qWeao#UY#i^lZMmy2&%e? z{p2O=$mZ4#a%K;X^5J$0|yS+26>a;a%m1IWIYF$t5q6Nf^)Bz z*+OoIYk-3ArcH}@czE(%hBx>yDUX1-fDPBm#-5yA+nqMwHX?nZBMf~8A&kYF@TQD? zxWTZz-F2UGhC){S*Gu`5Rsv7XPB=JhgM8-?t3JSMW#m4}s-U0%A!8A&GLaWT+R!d| z>~9_xN>zt%t>UC1M|ejl;Q$~u$5|yzPQ&>`@-Pr$61q_P{Pq#IsQQa^=frEkj_53c zUe{9XLJrmIi3e6PGxiPwq}pE(Z`}klGwCnnly+VwT0EpsaD9m!994gLSQp^dIehrA z!{?{WL?g6}SK%{Dd;<@k2i=Ej>#_#XzrF12qSeIEcH{=+MMBz z-c$pj2LA&r5lhQu1LoqxoYNYZ^AJWmy&2`e(LZA`3+0v%0rl|nt9I_(yBN?0#DI^| zf%qEWpwDTTM$|I-SbQGVgf+xN10foOgG#j69&=BS7}D^-(t!?fbYF*#C$QE)N4`Mh zarsk<3)$xFo=EL?b}zQh0(3Yc348h zsEl`}9lwZrgnsbIWzGlsLNLm>1u5innKN|P`u37V9M$YWmDt=*ZS;W^Xjw2yi z3%;5$uyL&U^y$vAyEY9gUHAEpid`y9>6_5w=el{;lE%JsK}RS0vH4S#ef3~dBu;(M z8C{^YeSSONX(;f9r0p7Je9{eqWnhM;4@tRKD6UCQEb=3<*YA+W8U`&!8auI)5$7inufZoKqQs%Re0&y?=3&w~fwqnS(bDk+5I3$qG&k&@n3yvPcb+>Z{rS5` z`pX)%F!51YFV~yDNi=<_xkVk#kEJhOE3&p+uG&{^Z|vsIcx#2FeW}P7_ppM)E1bSA zoF3J2XH4acVY)T#si`#%{rw)=8EifjvLe1+MqY(|U0qEL-qx1vbwD`YC}e>a-n4mj zb#;k@n{rfothE;9naJ^Ce_XUc-rN`YxyNWy8Ac5l)!#2aH^B(9(-#`DvMs#q*sGi% z87N~|0zeY!xJoOc?tKl!PFiNESEcS3=6n3n3b?AV@T@g46GTg&J00l=XUd<-;&N!r z0>YYMN~#w=7Jc?AF0oBWFN;mi85wG0vHg=m)R*E|&6aqooGC)?m*R_aM;4aLHgohz zdoFfz@|u&)H%e49hW!Q1xJ5y#zSh3Ov$NShUMwUcEgBpy!n)DbV&u6GH7IO8j4&Dz z859+Ly~Ncvq7;LXd7L zF?2TNZ%CT%kd9_n!?kKZ%Kj);&*YS_O5vL8l`Yo4vyeOCRr7u6&kr^e54qL0FM)xR z<);E~9Y5l5bgzj`ko)!RiC;P%qc|Zjv0p;IJ%M|+vqP<{GHrL>;AF(J6E4G5Y@`R` zO|^?v5SADUyFQTnVV;k?tEii zx{vjKcI$TskKWwLFBV^uwy*h0pCX@kaUPr-+4jh6Il;W$CN?PGWn+^PO{&=Tqm!DA zmitQg?=MeOET8je5#XB2EsP&MH4gGCLU;I@tP@vrafQHJpv~U( z^{ZZ%Tw_DStCT}*gpY@kq8WP*O>snULWWu}bk|-$SlAcZ5OTIRe4}uL{5{U5)J#;~ zGD~3nfEGQ&jDVo+&`hGV9@NU`C8&mHPH5~BKhR5BF|pcsNW>2n5x}O`G@)Q?Erw)1&R3 z@`7OkoId<=$v>Zlkn)6%PG_eFh_J{Vrm&Z`w7zsWKgMA-dh*g%-;}Lc1@Wmte=dYC zcTU^!r9Jb!&auF@j?HB<&e~DB**ftk(aDHI2&O3XD_ladSwO|^uv-BYEg26U7z&_+ z@O&XB`#>j$uCzqQuSNnS&r869aML6|L152DyhH|cKv(Q;8-zZFZq=<8M0_C>x9&rmn4ileDYU9p!s>j_c|Z?rnb0;57$0 zvpJ|PkHa`ZNf6-VF} z$7|n=Q}dOGc3x=O+BItqh;qnc6mr5GS+2RtIR4=wzf3l}HgFLGjQi ziU=M6y;;LFXhLDO%(UWG*DrOG0;4?i;as~3G0xOIpF^+iEzDGql-oW3VcPgG*w`y^ z_}Vp1MtSzIhB@OKH z0Z&GH`f@Bx`>##>C>lGe*o^MHeoP*qWv+#52>Z|wO+Ic}=9RycP;OrlOycw1ryfdx zb+aK8e;S<7Z3ZRU+Ud^{qt>?#uuolAcgx}W1bHJuccXpGVd6)3?7DUM=&;q9j){Ce zX-=^O=35;_KHZ4ZzE!B+t#Ftx9Ja_vYf|^!YE$nnlJjK(eeRo>$U}jfq$3j~(E3R2 z?wg$NR&sUL7HL8)5^=lz{FfV!;_&i#j*;_cX7;jLWd-Fq>xIL7`Df;`jZ~gtvH!q? z{$u0X|B+v35M9io{&GSBHyrTLH;VT9>FldUcF;5a+bwTMIks~zdZ={7x@Z9udv!pWk21_MSK8|^6E%7$HF-vtE( z6d;d@JAc!S9MRO!Ft)Z1T+Xq5y`&^7BI-V*PB^KvSM4yVSV%+$-3OoQRkF{MXCML}T!nZW`n z?-SGy@^06ky%&)g*gtN?T1-y=`Sk*&joMy_+U@36Tsr}JS1s20+&KU{GC+lyi)#f% zs#)~vKt&O`3D!bj>KK~#Nr6E?-)?ZC4p_m&oCBP=h(dSm2K1Xk%%Z$VrHHx-%_gvg zvrxw9U?fumRofw3b7^BnAT920x|+ zXdSMC+dFyZpA4)AF>au#Ys;#oNY#oWQCPUQ3{;Le=pfYp69N0^Ul6dKv=Ws0c}pvg zjDOJ7Bnz@69;$`cb+_I(XCMZjycrM(FiHxL)Q1Wn35fwKnslC{S%;o_`s~?781FTV z{$sQWN>*^4l$+L{-58H(*rWePjBG?3q_219BtI~IV7lC&~9PFMjzDg97TaO zTtE$tj#dG_L|!`t5 zCF*zu`U_zI4@55zv1rZrt^9lV?xJ7l_*=mD;z|y)X(J0f| z@h(QxWJyp%iAq8UU+{UwU?w$G_U~T|*7*v`AClb2kQ8u{v|!{82ZYsiW8l_$k_!pJ zht#+RM0p6eyhs%+;l{wSm>wlSGAZ7D3s!qL3o?AO2)c|tkW)&hrv2|aY1U!UQ(oZw zND3h1;hdbf-lTDRjPpRK1&SqO+i**g07lU`u!tgBF7dNsD#$BBiS0(Y11Bi-)kPFW zwp74UM*;*8H4XJQy_XGJar0|3v@^v}i^RSY! z`mO;;yW24G;J@X}nTA&xB#l5`3@weYMUthZNiy9s}x5r@(oLk?&t!$POW80tvo^B7}p7EE4*Nx{5P zx-}dev=pjB;^xFYG{&PO?nF3alam;gTjf9wYAZhK@WT16ZXnB+y; z%AB3IgWDmWke{F5)N>NIal`TkAM;E`-V}ucn^{wrUj(u{MXDo1%Ig>-&*SXD$rmoP08|C zyCb?&(kIe?YchX&B=5i@`LH2h!4?T;e0FLOQ~%t_{4A)pkrJY??LgvI9!8DWAOou4 z^XJb8Y(uM8v9a-@V;^Q^)@uBSq98=7!&{1Ga>T1D427u8+YIaElP8~_J=xE8$l2Y~896`x0^#T+aXy#*orG9hb)_B<@BA0B*rJN2B)2 zbe6w&*p77V*eVzJw~h2%@(ac`qRYeH-hOxH(JYuvgR%Ne5gh0k0l{88tMg z^hO}ybz`G9X6j(Xr8`u2h>efnUxGXrd8F>zYjjDD-%#Xmbc_4jnzWJFq|*P|DX%wY zu2fN*J@o?xA5shG-i0ugQjDsCyQHKJF2Z?>VkTHtlPan{_$`x{4`S3782^<1CO{5? zhABALy|5+W_kESB%FWOBdp2-hxDWxYaf{Cc>!Di&E5{e9FCrp>OdFxRKx`0@E{Lbn=mK!G1_S_lPRyz92@wb{VTTrF3i=I zLa@s326PnjoOJ^R?jrgIh#q^W`}}+`$-{Z!4Q-dm94B9}!#~F_E8+uIFKsIbr|bXH zi&|Y>J&x`sT+hXd3I)(#U7*8{7LGLhSG=h679R2chK1+)b;3JK9Qa!ckC&I1GPk>W z4;d2&8=xS@(ETS3^^uE5=DXQ9*jD}r-4Xw#Y3#_w|2E5A%lkZk(e{-J6ougv{pUC4 zDJ81iguMxr2?Woa!Oo^7{|EqoIlmnows?%OSsx0{&`}s2YJgEssC&N_0(4?xZ+tpq zOxhL4P^*3Dn838k73eC%{Psz%BUz;330nElf5-3&cNBfw1$nH zT~DMGIBhh35d0#B!&_jWfa32~ec?yho){!V7Cm}!aZ`zxCDNhU@KIq;97evOjv^C@ zu)@hC90WY{xM=l_v;VO82C?(>H^{HqPHvJjYg@ESzusqT(Rzu@P(j*9p&lc)E+p~< z9k-ho+CK$HlU7VQ7@xT1B8Gft574g@|t4xR>}@Eeik|UF*+1`(u+Snp4St3%thB!d;t{33a8S zuI>;>u=aWb|fNW?y}N_7CkS_x#(Aa-OrrWR`3dRwWs;F5-bv!DIy86?pLk zvJR~q>ng0(2_Ngs@F*QEV9dpUEyu3vuRL z1|*sV?4L%YB`;tCO=@HwAo@7DwX##w(hgt@IR=SGE7!1K+9Jx01o6xO*~6uw@c3S> zHL}7#S%9l2Go`i{7>H2*sISsF51mEpxRs!VHksA}kS-8xnTDarjB{Z|_fH&*tkGag za4>WykDOunn^Y9Wd$DoU}y9u#+zrvf2zGThHw2_Up^iObzfu>j4 z)<(vER3X0z${yDGw+o<^j2a=mG^bCmkS+1csXN*-lmGBX)|UO6W1Rs%vU1#`Ma@&K zSQJPH)qICraWVb@4k;;$x^Uq_iY~qwl(=dKVBpqnoL5~{gzy}Sk)2rB%fb9ahNOcC zAtSah_XPdx7van#yvu=u2haCxJ|u5jsvQ;{PKyD%jsxgEW<4Dqt9Q;E_Klj9)YL9A zaUI;@QA-2GnV@;4n*2Koq^p5U1b`ZVzNm6!!<4P159PZGr`?)OxEEWAe8JEaA{4s} zmi$WIe)fH+^|tmJ%LX|E^*>jZ6$579lNl7Clp?Qh4u2ML+n1@kjY~)UIaJasP!7$| zKx2%Aw#*@g4x$zU09oUO12enbcDW)Y*9*q6T!x@+Yn#Oj{gXC?h*E9N395n~Q< zzq3nbG_+oxUJDz`0Z%&^-61mufg?CLrmq-AlfCarJj()eZ_lRupV0l@XcNwH8~ogDM0}FqznjVnwS~*iiI@mf9&5D~lUM2XO-d z`LWN9ZTEN2*?$}$;U(|;Joi5Le!rjFKG;^Yxofw{2JNPil_QEu+}d#)U(Lu+@^z!R zr!qT!|DTWvfH4rBf5X)q=iQE>OI8TN1Y=_JMzmm7SFXLEplqtYQ(ii&-NZr?w|bIg zm_%b*Uu>-15|Q?g#M|gxF_Gs#?DfaqwLRYSo5R|_{V5&M+9yo|$Ljud^3p1gz85}B z)tx4MoP4!g1PGie#^A=$4j=mbwZ!WKd#n{(PxuZ5o0i}IW@C~yJfRw0AZ6-g#s_RC zwLkPh_syGL!Z1CC*41=sFSwl0ViN6>P5Z~=A}rj$|N4|}A5%nnx`l``m6LX^$@a2O zyJkseYC%WiuBfy#L-(Re0>Ug^C#y{som-ebWOOK2pc77!zQ>u?*684M@g!#ciXI!o z%0;#NMt0a$?SnUpE;d9@SxgOijkr=-eScuXE3s>moSVpgvZaP zug1~D`=_44hd1TwLPOt}y5N-?LGmrm1Ob=JLgs?*JbceFgF4$ZEIpH}R+PDM;*Z%9 zq}j`6Jx=lQ_g`kqky#J&ifxl`5xiuog3sc`t2tBYS+e8VxvUkDyQ@w&*H_+azI@pY z|AH&D7K7sT*32bRPb}XQwS`A(DNK-Ui2;x4>Jo*1ZA-Vm{&c&^vL-2OgiTM)&L|S| z&*T~S*ix)Z|4Uh>PInYdd(EP(+dE))hp5BC3Meu>3Q{e#aA0Nj*InS$@OSm{Xc)^hqhCK)G|c|p>b#*}-VeSMw$n5=zo`r#g*K3oB0*m~@aWr$L0@f$ zT;kW8#p#3&UjY5UZS?4f9=}wh0I2JoG&AUVgzWLE(xcfNEc8@zDB$>E3|mTFR1K=S z={0T=(vaYqGFEUPD$y6vli?m0Ak9S&L(V=4Lec`xNSbDA`(sE44LP}Lxg}JD1=(_e zAboN8O1*PGSpG=N=!1-9w#484J-T%T%8jX2{|mwQ%-vg`?>lo@(#MGAo`>n*516*| zU49o){Vltqw|0cxZ5?E0zA`18&KroWF9*%)=9v?vb|>SASA{(B#8^tu8m<@8xBaEK z(QZPalTj=_7!GpTr$@SwnQQ}VAzeWcBBM;LI3_(+wR+(!kU@jFl!Bz{$U8-)k(;3K zFEkoAY@O(WhK}Bp`M!^tIx^Krm1uVGaxU0Xp9O6JCiVI5^CkcF1-!4yDh z*b^cB$^yQ{TL?x|ewo(7t=3g*FHj9P*u;5#r>$-Zr2jv+^!?)CzDAPwk8e;o$OJ+w z!XLyr;iQgYwUEn|;wbh8G3x<)P@YApjV~ev6FR1~TPR7zEWuJE&8yIP2tWiAxZpO7 zX8HQBvr@3xc`l>`y$s{QW1b&2#)1FF_z;iVZ)5@;zrw?Zn3d z5~YcjffO!p$kC{^&xHa@Wy8UL;!U%U^^s#YAHRubP96h1s(3%{#V((r(F~xPE!V(a=i0v9%#q8uf$I=Zday!DVo=&3COh5e~k*#G@W@Zf*;~weCP)~Z9+_}Y{bb&5jk;b5ec^SG0u`E1;wvGRh9X$zuoaV-xC4W-jEWLB zwSwPOLA3hzAm*zuRGrf9htnloq{Sdv7@J1h-6scbLR#ou!2zw`Jie(pn zJ-;N4ZO;i|lzuqRfHnkH!dX^VoJE*4pPrBXaMwmuZE{nD3rj?35J8o@yA#nUb(eR) z%o-WmEYobL)}7-ywqin))+T8_Y0+8ea*9GG+12>fS0~z%Y9yF5C5D199yfuPG1+CV zHjslxf!Ta__cPwEt&hst%2fGY@)jH~<3-w3SGT!jkE5qYh=Xt>dTt4cv%DCe^H06yC{Sw6DNd>=eu6X_xA zei8MQ_TRFbv2O_48kfFkL&VPq{6uki!g0t$*P znP4txizO5f@V5nj>*BJj>$fv~OrgRkGX0gq7>|;KnjSuSne#I}@Wru+mDhH<)*?nv zA%3>Z{$f5(*?(R?J{JJ10O4jglYcxe1U9NVGE+zXe@dc)-B6z8j@96G7ZaDz{b2En zP2Dgvt~hiHXo_!^BdP>#pza4qDwYviGXV zNu(d4h`(uUVB%)p%_qqw+Q@v1@a4wAlmu(Bux&qfV=bZi&EA_%Zy}#IKC^)giCm=k z82AVO+S4pqB{Uj6?LrX>fAfutpt!lY--Uid{e7E?fD8U4llixAYO-tj)YCaQIA|Lg zJuWO1X|WO0@`-@&Ilm*rJ<#b6YO=6w6eA?shjE`Z9!ez7~q$adxM9(6YJKvdWz~k z&;QpJ{*TT7FK<3;2{|Tr8l0XtL+*8+BJ}LN8H&~2srsL9>+8en_09b%Rbi;!7sO=A zj>rD^;n_S?8Y!&2Y7zo{YN1&{UFT99^Q<%y9HreKC)n9WhJr#A<^G9ZKQt>vEXZZe zYRyIa>LcSSxC**N1m4k75Di)WajMJ<85RKx)U;I;W0Gb;&V&py?yg@@E#X4u#2qP; zK|(T2<$gUiN2lTSp5c?InuFykOl+)bjsMoqJY(s@-KkiHjg{dFx{*q+%gBo#Zu1M6 z*ADY_GMWd5H8h}Ge!HLL;o;`xRsFC$w7BopIy)9JCVzz7r}Zp#Xn&q@#C%WIR3oE# z1McX+?f7WNdUgDZjK|EA?}z8konsQSAziLJ4qhCq;}ou5#n048dL&%CtCEzJmWE1K zjlJsce~F4sCUkStQ*M7Qo$tbhXZ!8~MYFW}I<%`puFt%}ksdxhasTrf-Dl69{VZ|R zuihCA82r4wG&J>vgcI%UU8;kdO%36wsHl+fUQCd3?tXt==H57pj10CU+~JW?UQ^jv zaBlna*RLNpMYB#7cPbPQ@|GA;hO6Mcyb->-de2ssY~bdsR}w7Z_~I8FIMp=~F}@S!73bcNi^pN}6t+&9XT^1VLM zFL?dKIT#$q=Mt#>jZQ_kgKcN@l`G8eRj*u8&bjqkApO<_jhQ;H1qR&VhE|kcTVG;w zGBo9FP-9cmCI9OT72K%GV0PaX`EOr(Po2u#Aj7}6$)|0)6o^cJScBk$v^!#nUu>0W zo^*fwU6Aaem0WDw`RGPQcWuY(qz}K}KO{V8eHb38JAM0tXqw;J6^kGAX#qZKhv~8S z6B9}f7Yg0aX`2aU#&S{<65+95LS24TzRUuh#t(ZR5OxKP=8};anCnnCG)(MbXN#Vj zvwOa`(3|rBCeEnMI$yKGgsQ@1dG5}DKug%Y^*^`M>~-DZ8ti*Q%SKQ3wEjRH`MPY} zUEBJTtCW7VK8&E!V=QP^y&w{q^(e*494d9*ozF^rU&~f-Tj#Wb<{6m1g|nOl68@WZ)oV?x39>#y zmwc9=a0c(v@z(>kY^ z)%aU34VD;`IGkFpJ#hJGR>K0_zI^lMv)=frk~Zfr%FwB%v*si%tk+AZXe?x0nv=!E z!^+0C)ra7n<#F)^RNMhRw<@s(9W5=<1)S53>}*n*kWqQ(qm__ldx#S)oYxdcFFoCw zo2V@fKI#i{rlqCbyEKaD{>gbLv}zgOd$~7bX#g+q@YAkP1_4O}(J7dS7BQ;(-fLWT zjwersKIhGFKC_B@hep$r%8(95ERFC7u_j5YjS)jA6ShW8-=$=|G1j!b)LjOxoo;19 z`6)#)JW5r4B9baC(R)~7H1xKj?W3X6P-$hfK3x2el7NePpsaIsL*E>aQ3!Q(z&dMM z*(;+#)4)F6zIgOFoSc2dSR>j1*L&Wgk*s+E0@M0kicmSFkl}v*0?bNWoKlT{b1Ku7fNF(f3}hS}TUCkWROUX7uT zji4fuay}Wmb$mfmQVIQVIqn7SqGK3DjaQuM^Hu(R_b&JGXoRZ8JMpWb(Pt$)@HYt5 zUZG;;i78k!)mmF<#san_+F0ochyAkV{cDf<-DOo{2S>ABvwZ7}7bXbWM;Vt6n2{i3 zGtSOMJ%T4TJ0O~Nn_o#tTAfo2&A8ZGD@)JjRMDYthKJh{?wNHNBUU(|C|^++AHFz_ zJJ6UVuRe~ap^Yn>VCPcoudQ)gCBP6oQ+-0C|GM9{l_%R{hACLVhe{?uPcHa4h)bRw z6H7AF;q|c-7DVkMyr;2tqb6?zr7S|%Duzvl7JikGW1>%GO{U77a2oj_n-yY`gk$GY zM&S<3$5$YJY2LfD=9#1RuQSE3-Q6(Op&?T(i7;u+l!8n}c^X zme?#%XI}x9>#qlRPg6fhF%9-@uSkaoDVkHfn(1UzTp8lk+$i&jqJsPB!#cDzIfe3C zv@@=KN;C3_3los=@&zWx94r?4 zjP7?V6a{F|2$93f7*v_&f+q6>$V271D)=WtUo85}crog?&WK{@|n3jOc3&{-N z#H3v?E2dTWoWXX+iRCf}LtQeyKi7(oUcm^=-e=n-$L8hAa)>v11&Pi!QEEo;a&zxM zhi4ZlL!UhhJ+JGTdRZkjLoLJHvQl5THTFB40w$3#9X-^cRP6XJqlBeSq8#rjP+AHn z=ouaxJIp01u($kpRupelRZ&q*2X|W5Y3^a?vj1)~`J+wR1+_F7X-`1HGGpKM)tAP@ zxs>9OcmHMTNZ8bq+>t9aye_pjpaTxo1oWuMNzX5_wT$M3ucf6;3Yy=*yn6cNynGo+ zF0j3_lClk;a#aLHW^s&@zPJ5xBF$EfnBv~?hxUW*iZXe?mJ}4BEkZGE7d)Ekjwu6I z!`7NUKzlkYP-t)aZo+FCr&fq7E^AUfjl(-!FkiNhg#(CyfU77ii((>I1J_*=L#yW z$LRAvbYUVm<#J$sf*LV{k<=yUyN`<^thl8RFmSK@_~ zJSBeC*36&E63nR)B;iuv*pMo74X7l6sk-ruSjpbro=-^Vs+k$b`ue)IiOCbdYEgF> z1dSe^Q+s6r$Lv5&fb_fcbkTd`O1Ey^LZNP`sp$Z2Z;WD``uX;wO~f&-T(T!!-0{;e~;F?#0e|=5=P-#%1~U zHfA)E_A_th5Tfqi$S7KKxOT(p+S`Dfz9#$ESf8=P{HZw|Qx1JrskXx9)0YX~>hdZV zt{uBThq)2tw@9U}tc*ubMg)lSv%P%4_CuAoO2NUk-^BpYYF~JH?fUhu%W3AIZ1}YwjVa~yvbzq?Ro3=xFBH^gYD`j; z9UWvi!s-3~oFVG{tqZiw%=Rxhn3+#x;0kW%iJ@ptox1as1AdjZWvIoAxQ@!Hzme&3 zGXL=5Lz-SLrP;Ln-FEyNYGLta_$(4MJ+A~rlYN$qdgk|I-*fmilpOVhoW)j_EF186 zILkth6ue243=IvRez##T57=JBL$#zuQissCe{wK2S9V<4EE4hj4R&Z=>20&Z_Gm%kI-@ZH`ahv!`lcqu2+49@zckTZQ1Hq zt`ObS)$J;@ygWTU&2{!{gHy=e&Xj1tcXo=oeGbIR3Ql|OaEPt#=2ta@bsisPS*ARq z43iHCbs2fTK(c}Yq$5;CkOq4SJy7^d7tr9X3#Yu72E#ez{ZXjLj~}Pq%=wwCFZ}$@ zhYR02XY?@3qa$m~cS<3)pr@r1@^YCI1(;#`-Fs`dhqe|vut&H9fa~=EE0L+z)_67FBc$Timrv5tURUEG z4cqA~H_CgY^7f}@D(}kd+{i0_eN^~Y|Dc^=0(!=zeCq*`sVePI-<`S90QLn&IMh2| z){PC5KRJB;GFksK6`RQ6$76}DHs+o?aH1sR`t<9cFb^v{z_cWZqPXiyU6S35mXv!- z*yTti?D4C&S+ot$3;EmqP!q;eJa$UZGo_T<3Z!=&FYX zrMBMP3UwovG(7@wTl}|gUv2y$QPPsbo70jyoT5J1hXZFBSPA^5&3UDJB0t}S|AvJ; zU}o!Au?uPAq?1@sm~>?fro{&sjMVYRM>V5?J?ncR$3wVFi~=+}!Uy97QyvJ9QO!ue zwSJ<1d9eIztFWxz^4@INuj1$)W>|=R!q6VN`)_tb{_KnybMAipWdHnVtL`9w-jf(u zlF=wUn!SgENg1!L9khn=2;k&(;#c&{{=JctQ`$#xk426)PTCrUR+uOVa?g8xsn2s? zm9rv~b1c{~z^ol*5Bp02PMQJzySEg2w9NAIghutR{ER$ z;>|#6s#3w@gB96+02j|V;1h=8cQLx{vmIXfDGlfazkIVkc5I%b!dQk{#}*{>!w+CE zUYz3hY^J4!6mc8d_2K2w9TgSN=JczPJ~0ka7?HrmzT&K$v=dlaH+sBIUg&dh)W_$0X_YEb^1UnxLwbRR)((Pc{dr-;lpkk}YuV<8nVH0iF;U{CAxHc5zlxi_#MLU|P|MXlhkKN) zPkO|}LSOQ?$3qe{yGBJr^x~CZ^a?7G>>iwiciY7{5A7a4G%)l0!-Ux~QHx+VY5 zhk2S~qgF}@6+>l+=f;(%Hbt!$U6ZCD5d{W~d;MmaE5XjN^_$wDs-P{KyZB2(QT&>8 zv~d_bnz;DN;F0w`Ek&YI=i)b6nZ&-c?Bfk5ES8M0ThW*ntQ!SQ9N{A>qT0Qtic2wU zq9OUt#^b%`*9N+$1dq}pV!vQ8p1vfQYxt~EsDfIDgBQL5_V+m*sW|)Dj}MD?&5V9n zz&?cg5dP_-)AvyD=_o$>NnNj3z<|A4xuI#XY%<<280!^Tg=M0qn)+*2rHj(ui%j?S#C}$lZ64(;&FQ$khFDYP@q0xY z4p6_aO0O`png-?8ScN~Mr5OV>uP`k`$hhGvhXm2ddZL!gzZD0a<|ZRVZeQP?RB2r? z>;c>#89lskcKa)N<&>y(=;_N(HakN_ke`@kvh+}c=O=-eR8g6kVV%okJRIiW;WUqtuF;_ zJGp&ncy{t&u=+UIEu?5^NF&vCWUzK0g9%IqfNo^O@;E9gE}B&kr8e@VwHF$ ziox>xvvY86GkdR$BK#T!n+!m{Q&;`Qe5WW|${(}tF(p#WjgD+u*hK^X8=_h4Ixt#O zT7u1_T>VC^bSI-+zG?bKYo+H0UH<1a!Ril(zzJLEz;d z$i5bLKHj3Ez5WGG{b%j?{Cs?&0GNU3lFGB~Ows0}Z|Uq*RZ+RGllbh}Nxqji-oJlu z*8`Aie{=r9;b9=aTUyk;qkS*A?E!0KVBR^#GDyDt@PX|1?c0N$4kd$$YG>S&W>bm- z6IJV+3&{4!WN*P|LpO-*7J{A=4CjZWeEbw(uPW@Jmtwe(H+ z1$QjIgW~$o&-XJso9}^`mg13w|JI-IxHGDQz442SPD?Up!&SmSXD}9i&@$VXYrFfa zKdZ?RYt&h67grveh#Pnpa@4wA3n%^K5j<@@Jq8=G#71n2d;qF`dY4U^=3~rIPLNrh zx{C`$DqH}<8cOZ>Z7=?U)L;;6Nae|;_|DLL?rnsVu*V`(p=;_^pue=HhCj~FjWrf` zMA>uu!ua&{p@YjHsCX;lw*r!8YL_z;pPZb$w>qwDQhx8t+%V)*(aWoLb{w|nU*3># z>{m}R)6>fo+&J19n}STlt~WbQ`Ijn(AK}heh@$u6faR?M6QPJVtO9YV`*UXyjt36A z?eLRBCB=f~?nTaFH=RFyQo0geUKJEUwH?pP{p>Y#4vi*+%=Y7qnx-a@%3t$MtA3`d zQlpe~bZ7xz!?4{cQV$H2gM9Ck*Mgqsd^ZtF+tf5VS=PsD;%hi6)Uf#OL?myD2p={_ zmsh~FlKxu+b=i(PCeX|-Tc%|6MHoSHZoqMHTD6JvMw{O2>q$w{;wWzJm9xK?(ty)H zBPn@`nVA{E)RvZ~fxH!Q8W4Ga_Y;WJ%bJ>0sI@LE^i?zj7YJ#?`0B(rCTSNomCKjo zUcDk#s#fd$WUcyu5%t-w3x92G?WQSJoK{OGR`4?^=HThY)*qDSQ7&WNwL#q6=dV>V z4!o9h6mcGuSo)Yxd*&*V$rAf%zL9~jm2o8Z@3C~D$oZ-p(~QraH)1Cnfu14Q8FjpP zoNrohE^XI7Sk$h$&bIpRn8s`ITqf7%fFc-e`CSmOhXf7^j)G(7DeNZlT_-uL93rMW-~w zi^D3#C0DP6`|?I&TAo9ICMws>3cZ~>JTz14yzCr{$(91BikI)@XfZ6aQ&tsRvs-%? zi8srxsTh1#(DTH)YpR0wZeOq%5IOi!eJFNsm1{LN1QoPDpby7}A+(qjwYoQ3KmEP_ z$IE)3v0wU9a%{W%j^iz~L#=P*P7Hg*y6yjNtuLtiqdg#LXV zvG1==y_1wUetfu2eh+IJQ<9Z)xo0_1yq+@zldJ7`Kehe<`xvuXvA$#6T~m+YDt4P;c` zcO-|o))960gjLJARaQ$XYaT|qFR_UD~k2>23*EbsH*CA!Ov=WMkoXc}v z`Hmr-9N4}q=&)#zA}^l3$UIQPI@hNbpQ)&}u!Z$%9xAKKY&R}5(WR!Pg;92AK0@&c zsQV0;6*&G$75Q>_YqvGNvDr(%U{HT{X=u_k@A#;54@Voff@GsY>2(4TCN920QhI@% z-|=dXN7sORCFn>N*W|o-l1Y{!LE?MuJ}}U}OOh75_nLt`s*NB&?S2}~9si@9=ua=+ zBMQ+};0DuzgJuVRRi4@%8uLt*BO8^bF|dHY!zTJfzXFm^cF~yDE(0P%szdssQfc0 z-&W_>v*z#M@MeL8c8@9skDEJ|S&T3{pIAjDlsDDWv4*G-=Q}wbBi6^|q z1X9DSt&@>6V8p*E9J67b(CbIxHngy%IN$6n=9Mr1tn@1Vef*nocJK`M zN+Z(t!BL1vZuMEI5EeW7B)u-I4m#E+hziZK(C&$Vs((LAcEZJ>gauI1g_mR#6B8+r z@%@_Hb{56>t;jbo*p0Hu_;hR^hV2NSjoWem2S3Jjl2Q?m1~CrQnhyW@O1n*{h@P%P z_Cx3Vkp6HP#4#OYMtK{X9w)u(A3ZwCD+_%>(YYCk2_!)V%`lpk!0QiY%JapI@qI71 zCo~b;v~iLqCthO?@8c4C0qn*cYC=B6n~G^R z522*sT>gcliQ559g?rtxfBVp(yJ0=yEl6M=E?~DKF>+ensO;)$Ho$v;Md0U}mR9pi zetm&gw1jv-jbS1qm5=tfy2@P5*)F;_@R;q{Cv=G4GsCJKD#Q^0+blUDDIf0^Fv zdUwU3$mYZ=LE}dtT%NgfiG_fK3Pj;>DJ{4a&|q=Tp4~UC^0wSr9%*T7Lu=Ex+R?^+ zS{{LDLdVOJxv+An&M9%ZeEUo>Ipg~UR$9MDHpZ50vfdOx+aX6KP(7%$!a|zw-@nTQ zAIh9OdGg5*()*za2~6s#3hbSV$8xANfKxg;ItJzUPV?Zl3iLZuLZa=VM#0^=5t%0fiaK!3pTAIZ5evaW+1uOW zX?^kHg;LHf?sMm^B=N+zc4cXCIwuwtiP4`r1&8-ZFchfVxmSrkb1RD3 z#_V!%xG)`}l$v9#jP4cgt@rhHL(VmBSS67z+l_2BB-4x3iD`Z+}G2fkW?b@|^Rn8!rqFMwe zDmndw69a^kFozG-i9P2m_Jm?{JcO%J0w#PMohgDEW0;npMKcmUadA59rYD~gc!h+h zNT@j)i0ICc2%A;gc}A!r3n0{&HyfbR;3f=~GqZ-jmDM}tUx=rnEm53jAz3~^>TX-Y z+oO+qxy*#LafX@rX^T!HYk9`Y3*@xdzb&KqxViB`J=5Db$IE*;v{j^$eya}1fWp#B5fIF7j+tc5lGs*cD ze)s?FesS8pq8)n;9o9bhusc_Oq=%aOS&WT!=wO*^Y;W%^8yg#BodN6F($Z32X!(ue zZfJ=kmg?fgi>L-w^PViN=EJ>>xaZFw0PM3KE_WlPq`YEe^jfOZqflJAy;XP$*!%<$%lo(DFQf6^U#DxGy?EwH%g*)6Q@~LDM`V_WvtmX4KarVp3SvY7 zhllU}e3skZ`ki68C(?PNG8e($ziD(r6E4yjd~P}1OOhVJGIBqAWV3+s6VE3=qhFEU z|J`iCehDM~9n(@1Xa#|U+x*U*cNcbu&#V(b5W}edRQHn(hje}gh&r^*{R~wLHsC4_ zAl%U=rg5T*Fc9)`V33OJ^gHbR_HeF~ z7rSCUc`(YN?}9}qhsBZqw?OptMWjnktBb|`8=gxSMv44a<7UkMa=^%ONw*eO9< zfdLB%@bb@rs9(Se&Q^G}ZsT>DhX~fjGN-E@{ALur#?5Vy99Km;224QQUevOA@8N7x zMLb-N*PA%$*fMgxTSLD3(}X*ar07e zP)z@>$jY0x;Zii;+3Ob^(cIEfq!cimObMp(BSSv3elkgld1c|;%lr7>Iu&u*vO)r$ zTAY|eBBT|(EjF)qNDsD+?FZ#Oi08)O8cme;gQwT^0|}c{Ezr~N*WJ^u)Ah^}Di4n> z~HANnHbQ8^>rrY(SyV-L0PLI;2PO%*1j|yXOlvsx9$Mt$EFb zQNIuQ-Wo}091u^maZw))t#Kw`!^u!dyIS|DZyWzfsNwuP<$1%szS?-vNga7K4X#1{CYCxoN;x3RS1=gj7jSY9)x%U zHO4y^`AD;MNiea}Y~Rvv;!QRE8pE|EKJuE=O5){aN7!$n-jB?yTUba6X0kGyoBqT+ z*uJ;xyJ}kdVWBZtPzIV+NIpL$#iRIQF?rrGk)Hg*d zJs^HW@S0VMP%~LfvE>)-?c3l4nOu9xU+JcT4vXm-zeow&DuMsO=}_I@-^<*9QwK8x z9WuLqpPuu|j}UMlHy{fns>GRm*e5kBK>455;8&3%FPIuKO*^zu8N|B#hkyLguXPW! z@8IJRk-Valz7s@g*)7}KnCer1S5o}TJ2;b}Qb;OFv0Fe$-sln)g(P}yFN(3Trj?ii zgzZr0A=YCVm8sW50R;%-rcjE`Yb()YI;H&yQLprs=qP{ zgl)ZRU7~^_P^tNf=Z;rG7{@j?8lB}Zfs_bXU&pKQ#{-AJ!FFV-v@7w=o1U{(K0ejU zH35x28rs$|6_SxgWi$IK(*ejh?O`C@=@&@5OtRMXBG(@Ov@UohC|OO$c;d2<#40Yf ze2QxP8+917xcXRh*BEJEpZ`v2Aa3%?{2~?;SNCZ z;dQ!CpXzN>{qm234nia8!tUdDZiThzAwlS{rDo?(3<>qNI;a2Ex_T9Q8&K2*P_Muj z2m&npfXMCk`^TxMJA}$gz`R&lS!ve=2W>75F{%PB+X8mFI8eWVN0YGoi2@MSNF38~ zhFc|9uRdF+{<#)@u6{tJGriE_mcv~ zr4&^@D_1=|C5WlmFl067)Oz67lMN@PXJ#fr$oAcxh!6!&7+4w2f3%+FUiTMcMp#(f z!DRWHQfK)Q0NZEj2<`P;!H39nl8#QtzyS09{aKU}Fd5IDKX*Iabpr*S=_Q~};2IMY zf-a?m;QUZZw{M?%_wHTcy$O}SOxRD*L=lf8@t0dYnHrz$y13O7M7}tTfk+6$0VK@V zZ{JMaD$r=N+{~uhzIUc!3;1#LK*|gLVo$q&AD@q&%z2dn^>1YBF5?k3q4;#IR0ZNY z%i!+$Xk11WFKm8QLxZwE-!$sOhYK*QSeqK4-L!N2h=sY|DbY4`rJ%2#Jum_i4OC8+ z4ArYwRlvq5NPq$~Nj#7Ix`UWN!OZv8z9$ouQv^Y|ySqaY;`n^)uC1+O^Xc>SWDSVB z(GZT#aQUhpy8ptXp~UF;y-xf~l`d(m-t1Nb4YRq_c?j`Ywk3!Xq+gBx`u1{!dcSnQ zwi8g4OACv?inqn5f7z4!as1 z+LP62zlR>ZRwSylG*qVQ;BW!4M#2*P`c(yBoy9<*C9!z@V2NYIn>TEz$@Bt1Q`We{ zJs^g^Oni$Fbs3g<_~;S0prA%loko%rGRuhC4g)r|g*9)6=B|xDpuXXC5sk*1NRJKm z-wFkuy=vN5F~b+KGbG@jT9h zgol!24Fc`ij~dWDf2km05-LpW_}#X`8j83xNHirX$C}ZN*|v)*FwzmUr8rj{)&^NU z-8jaj&ToVqBu&g}DbTKvCM!6)9`=o1Be2w->4Y1h@xdw{Fz zXdiE9j9S3RrZ%S7HjF_~J+gU;3C<8J2rW&djwI=@Nu@5{Pb4LhkJQVPxE5prR0B0(3~kT0O=?;-t-!v-vh zTCA99?c6^Ep%{X`zatiZq>8{iWNAL-X&pjWp%ttfNL>nVMj6k$*(j-PWrwh;dq*_IL-REU1yhTur*8U7xABP3fJCH)0n;J zchjfZE4N&pgowu_9Bi%6?0ZSe-5YW4FwjF~Ln+6wdQZ@KriL7|@8SZc0(mv(VsvkY z0;qjVc5t9t`&Tc&Cgw3CqX%B+gY^XxMby3VQ0L$IW+ese>zv5Bc1_HAa3Dqc!VMpR z=XhCKvZF5d3YYx!3%sk@*G)kXg}aJM(_B*E;5#p>&MJyeL#Xr?1$>-Q3BLa(%6qA( zZiK7mxVj(*4ZQ9iClDbV$XT-R;tf%EOa)p$T1mI zoHVF5h}XMyHh<4r_()bMT{Ws_W5Hlo3kPIE&enDt-BA`|v zefa3{gIHDx)ZGq3mobJO4dB>hJg-qWoTPJh)TQ&)NFsI`urN+^t;NG_a89kEr&Iq9 z?)y?#a9k7mu3zWkR*4^lorW89>|dB0&BPV>odV|n0f6Y@no<0b8HxE7`xB2w5GvR2#yOn#uGBqPBtCQ*CNf}@5z!z7i zDUcO6Ep8*`*3`cWB-M$%OMhSS0M_$Q|I5tfoiUP9r?^a)bq-_}T4q~p>g#alG)7>U z9uQwN3qJCQWg_TAAafZQM+`&(CSSjsO1M{(%XS|IzM!CL(W$ zzICwqN$~jbDJB0)U^`hjxT!m}f9X2Q-*#m+HsZ~862RuWIQH2d;l%Y`mX?lBfG44q zqs(t5P0C7-iZ$qJXl(Ldj$P z0u&esjm==vt68T<{?3khA^p#U*XR4o3V?AD>fkG$281Z>RdQ8vZf{d}$mbpJ4wB8H zgOwFg-A*svW}cLbSLY~AgK<^goM?N6M9Sr}*)g@^TnsMpe3$;49AmMvzO@>d{m_}E&oq% zo_-JY8S|?Cn0NnymvVd2oypej-7~~Wqmi-oND0!fOJ|&RT+(79jY+b!lE&hn^i0&y zA(4p8x0Lw2yg!CDrN2KjdVUSe0yO?J>QkG~PFi$vE9I5eq)uP@yC?BFMX=bg zZ@=EHbnc1QP{s$x&2*Y6!_SeWWP;2xPL4Snnqy4cd7jL-5L2}X!S!NM{F@=FgN;RkG^ z^b7uU%Ul~2KT8?f-QA7&EnGCInd8{U2rwMG3Z8M30CINI6dM_Cr zZuV%E`)^%93~56qK5w9K3NnAoj>;XgZ<0~FV=F1A0i~t{a{TxF;YWd9D88vX4FuA` z&Wh@6M{>zLuu49|ZX^mvo4QXpbI?BaHvVUj-qeecq}Ez!$Zt2>n&mI3Wsm6L&=vY*vSlZJie7A zXNkV!bNy#&H|q}=`-E7eU7Y?gO^*IYK{sLu6sF_ekBJjdFk@a&J(-Am`Wavtm}I%0 ze;23)iIxEMG||9F7hwTAif*j{sC;`f=W_uR)l^o4P`K`_o8_PHtbp&KScS#=Z#|A^ zpeSqF9j>UVrdL+7{Qmu$*eC4Ak01XS5dVRU-<-h=bDV3=$t1_LyKVe!Q+DM=?Gn3e zXl+nfygBi5CHZdMadFLJG^^E~LQsPv*U&%^3BvP%_F23O$^{1`5zw|mN34+ZuXpdb z0VoxRJr=C=T6pyIDUH)eO|u^s2cz=WdUkYmco$nb^YEj%!L@0~R&b&3SK)hHR0?um80x%i;F`zB%;b;RahQBlDMB^WVxq7vl%#Be)x$Cg`v`s}*jpGXPXHZ-a9 zJQ1+7e5H^w>f${HCZNi6^@!1ErWG1aT0E0V8)NpkI4k*>qS<)Ekj;oX#Ty%uh8Czo za5#GY={<4&{CRNNei`u@iw4QQm#Z_9jyJ8FJkP_!13|_}8&D#5+n5j$8XOJS8N*7? z^BjSz%19;I+(?x)=)!A&O^4_YAy68gWVUBJMAd(?F2#ykKk^9Lonf8*@!ad#DBijr z_>RCfU+6{EnP;qId3v>hZqm#=#-IpolGKu-uy-I_**OebpL^YQV+QYxDoYj#2|-N& z!NHDfEf)KPxd|_t3#lR*4wBY?>J5bg@KKV!UV~B9k7n|2-tjk2$cSmFhKOy=bxo#M zlsJZ6jz9_7&;Em-sQ&b83=g%w&gL7ROcge@&1=D0}SMaPwXK{unr;fl;oY;Epz!&P#;=H+l2SOfTd zvMX~jvflJ#zuf`cu9astZBmFu6H`(sN;?pmR9Gp5K%w1t-kDCU(9p-kauIGUt|SIA z1Y%4YZbEem-m}_EdM=lzfBzbbXpCACrbFC4UelRpp-h~qjLpUd( zkTw@{WHr?ZQ$jd?4vGG_cKhX#^Wu@T>SwuD*~+fIB&Vf^ERREeqkPLiH{t1V~h(_mP*37f$Yhad*%tE|%aaWr$6JdtzCr}jb$yEbr01bRkN{T4gaZ7m zpY0~J%W9}N!w>?G){j{&wjKz+n`dMOf{t=VYX5R8v~ir|lqG?++bP!l%cD<4{{m~X znS}z4tO67JOEr%A^ZSzpe@EUgQ8U@Ix%lpU%rVZVXOGhlJ%~e&L1?rY&snsOoE?p} zsi2VhKz5wl=<-O|XieBV?lP}V;lCR&F20L8^!|g!&VBp+OfAN-DzE3&#;8!?S{g>@ z;VMRhnn8~TpOXK=@0QkHs!(-%EEPEMq}df@n83PU9%Ni?E#WUw7*Muwka^6s+@%^e z@y&GXk?h|B;B~QmJnbcBbCw7yJZu5Me({&|bg$+r@9R~qa$Nc6rgLS8kvVLgBN3W; zRh6ULe0b3(Cuhy+0IAymU>80b%<8*#g-f)nM_#nE_Z@~`4|t5ntX2NvNKVAPu9BFT zvK;1>xs1|y!&lpxNKk!{A8=qzjhxHe>$>Ja=bVpHL#P7RBbPOQ0&wXtt-0Vl)G=vh zkrEsVR^YRzb4XMO>Sx*~jnI^=ESXi8zK)w&Ah#A93$hJnf9t*UF<#M=G~rTTNzgNv zzZ+RGlli%|CU}SI>egN>)A7Lauh&vEbWP7BHYoYArr`gV`r=mH20LCP-Q)=1io}zJOQ3h6G+}1sX+ZXNMX}b2jyFhR7|01^7tI7lhWzKdMuBZZ;D|GpEbO zJjQn!{u$K&QROJ)n3u|1YIbkd6l?B-NSoa6P;XBJ2JaDJo)AK!>Aa{JLDjw8N+(19 zq!<7YM&QFoLY2!)!p(oLK3)6=yW>f1f~dw2{Q9aZvI5495b%jU9m&n=@}HJW3(cfK?Kjf!Zg9zsQB25t;*3aZl6O)G@$@9MxT zW*VMpdGV5eq?ja8{O`()8*%cZm}v*V@}spCxHT#$um!yg%0)~n+#9VDqgkb`ex@ly z3qsX-Kqme4We>u(^`G7xP}!91?D&j6+l2ukpqz2@y3c7CA)EScb}n-+d(?|puO5Mz z3h3vwurM`nc%a~x8O#7#frNPm0RxNmKzsZ1puT?cU9)1l>828nAigyQ#ZNZ^+*NW;57b#B<`&+$SQO`MTDBHGz8*)_=D` zsZvu{x+)%uSM!Y$tTFFlZKUNlZ{AxPlnew47nn^b;ens>po3CGdPJk|_T~^s*l}@C zv(5dg9k|i`Yu~Z|;}`@&Op&m=%`k?{&OdGF4rb6WD5qy{=+AMo8j-)(W$pY z0w5aiZ`SvpnH3=T{(rpr$G4Io1s|NVk712G3WM`a&dTa!iVf^6bkrQ|8icW zg$0ivlL2R(_2=n{eA4tlFpN^dMxte4AWl@DnP0x9lBah@N{RuToL78(%d@Jc7{a{U z!@O&h#!bZwu*XD$lCl9c_qo#Ey~77uo0QDmg# zR5hbiWyZCdpNL&J#$S4!Tw!Lra%gvtM&duSNqgrjOkys2%qR)P2UPOA(Aim>m@F2zTz(k^dwaA5!RKlIm! z67<@j18zAvHnBts{d^Nqhur_mYa*T4Ia*q?^*ZEWNgAkpD4keCjK&~KM?)vmDk}%A zjsy2x*%%pZdw0MTV7Qnnd>nl=9}oy4wtDiVQzuTGKy>sd20_HG2(bTwfAvJbV*bL` ztCd380_N569Rsdd774qjg${ieCcqV`0xMqxV!&JY(pR8JOZ*^6ashvO!aQ&-{NCKp z)0UfaT`I+Q+X+jI^4i7iyU$K^$ga?rx{O>{94gbA!xp68>y+OiEpr(;349I2u7?}5 zovhUGX>fb&Ve2^ys%(5k{l&?TIhZofD-++0dPw|^! zjyl@-UFQb8a5&5X%Vy2HcVGVw)S}kd)a3}O6HwD%_%tbr|IH<@8@r%qJOs6XELLtE zqij67D({Wm@^AGSNX80~rW|mHqt?al+_{5~vV>&zJ{PIVf3!uWIN#s^2KJKzOU2@I@ml&jsB zW*}VS?0_1-!C}Ub1J;Aq9Rq9dA*sNlIKq>pUCHi`*Nj=`DEw2~fxrE8y!a(_ju#ZjNCu@pEWxZ*NQu z!9}`FH5o4TzVjf#|5c`RvSP|LGRlHuGb+tI{N#?<`!@-m zF29yvlc#EF*RFZVMT$I?0a2ek7YArj&;h)^N|ImtyLUh=)j4kT<{2{rRFL|Se%^d2 zf-@MS{DAnhlvKY}Dls+36EI}Gz0>-N@BH~Mt-^Ir;F%-V5PdZZrswCj20@wn-}a&I z#bcg)hoO__3o1$xjbf>6tZAX3&P6n}02hrno|BcL0>^n*xtsOkUVo)n+Ia=)pLdQF)cGkM)n`W-gqpR%1@9XYr1;sL>{Nmc$)Y;^GX%vq( zpLbn^@UUt~Lzw<~u9*iC5 z9~E5pIGjKlXJ zM%V!J;JwD>qWw1&X2xh$)hR?on@37Jjbn2MrBweo_Jg>3r7rmB>6 znlkO~*23oeG3^(!$4Y?Pkk8M~Rs!LPMal^SBGbc%51D$WG+>Pv=zlY={T6zVZ%}kId6WIuBTt+TArvMl6{6U(dgTuq! zUEkbdvbH^V<_b}Ti4YC38on5l{33J(={ z_(!;?b(5VfYOob)ap2Jw7V3<_LN7feZGOz^_-7+x<bw_k98*h`!WdO_Hi=o8ciAPV3X(kwAjD??s4Kp$2y9fE87E9?u(%;3z-OfsLb zpfY#@3Ku;DqvT6oVy_i)LuyJ(m-4WONN95&{7eh?7k(q_(~&0Vfn9_Z2Q?W;jS6y+ zaPyF(+XiJW$xu^%<_VMN*Tt>D!O}9b;zx>sv3(9DPhY$^3tY{08LvMtl;!u2UHrc7 z447gU1jj6W%!+yIkWrxs{f_-`JNL66JoD)xoOnp__I(o}Mh@R`JY-0Sx1eg3EHN=r zWDj>2g1Z2swMwF;4NHm?gd1wx2+8GHz*&z?owb-fE0ff)RJ ztMb5q7D{qTQee-Xh*iXu(=agbAg3Mj|6L(Evfa?+4QNAK>7C`*L3^&%J}YLY&!4{z z0)z@cPFRVAmT<$X$1mr#LaZr6b~zlE-4p#^zIb7`@qhQIsO|zhN$P)1iAw^ssF#{e fHfT%m=l_oP*7d=j6J&vheld8u`njxgN@xNAM|kL) literal 0 HcmV?d00001 diff --git a/_images/2.6_resampling_59_1.png b/_images/2.6_resampling_59_1.png new file mode 100644 index 0000000000000000000000000000000000000000..5b1ad3cbbbcf5989b8d06a4d577af40a73e4370e GIT binary patch literal 16754 zcmdUX2UL_+vb3xB}k@3LXk^F zKysTvVkuRCWEG((5D<$X`F+RfnLF>^>3KJ;ci&rUT+`BJ`Tytav-g)yU)9y#KW~o6 z93dg0c^U`y>In&brywLW?conI@sseT{pI*SMYnxN-1J>+-8_!D+6ZYKb35he;^t_7 z{8x7ySE{{>vz*j+sV$p+J?Z9limD_n?ew<~NV&M$Nh>_eOu?7TK6Su^DkQYv82L3V zQH^OYB($?tWA845Gm$;bo<0UO6I1=eCn7doxOMT?-rZLg{XFmfxpNzL|2SLE=qV*e zFUB-;j>4LKGlHKQ8Jv8&c&}5+_b)bHd-t8up%Zt$D>L1B;o8|>Q@&g8xPG-_k=l62 zV( zQg_KsL2*&rYC4cB<~LtH8iaX zJ7H(nJ;GxQkA#-D(@WZtY6lIobyP?8IyGh)9ytEx_oTad8K1r+$42+m=Z17q|hhFZ5cE2&-v#>TeDCk74N1tVUd!)v2Z?l%39-Uos zSK7+iy{Ex2tvf|~-MV$;TOPZ#wtVd92yZVBiP&>_e$CK>{0kQ^hVAIf$8#JO*U-?& zl&uZ7>HT*VUNKDje;S zRG@GV(78`eTPrv>Jy9p$>E~9p$Dl?-*1>JZ(qIFf27>X?c=MT3&y{cYv-{nICB?o(&be}39nq4cI(zp z3i!yx=pd)Rtt8XBWWIvqTV1-mZN*Zat}#FTb9H-~NrrlMi&x5;wQFlqO)^~T3@KHS zin$-INiJHkBK5j-;Sv9_#@2jMX_d!W`17oxeb*P4w!11`ex~Hno9Zd(;77O=_A4zi zE~|Ubys>;+vPWObwSWMFQ>PxJ=YP@Eir8Ao^J+QMHt&Xrg68bmvy-ig3Ul4~_cxnm z1r@#5dFaO1i;s^NS5`KUiHYfY9do{;GJ>bv+kYl~!mn*2z@U2d!?_~u7fr8K1 zQ|mTtkleWOz!D3$+p=FfGKa=Bn@?@g(llL=yCr5a8k$3LjUxNpvy!-t(8_}`%msc(N<(K=% zo?kNb^d5UeJra%tk)wQ;O0#ubbz~? z%{m4Y2S0P}@4N0+sZe)-K68QSr;3C8?)?1W=87;mS~IOq9P2RHRilq1R=(m|eU?*% zAL>M6_3B;D*=E=ZJyX+g_H%P)Ly><`M@5*vZQk9&z(*MwgRj;GZd6sZB!8A2t&-_K z<+oDNb?U>83j!nqoUuROp-&{5g&*#6GwVD|>=fbeZD>FE}EcljOzorm}B-P`%w zEYVX9$zv*YIaIs&xVV$0^mU{hcJJ9Uh_+Mg>4SwUtE#HKy>`DuQ%9om5ckLjp4wE- z_{2o!iBh`j*r&G-_cZ5u7?<2!IoOrLO5SyTWPX{jJEkS;@xMwydpxqm-03t7tM;)aUaqd;#U_ z=l6!mr^|xGb9vF;1A}!|4mc=wpNeeC7t=al?|S&~;b>#)WI|`>$;wcfJ?Cf6tDc+~ zQ#k(O2iD};{WrPz11$eZ0i%q~u3HI6J~zWor=Y)hdG5qeBW<|ZBL%IPbev1`S0+!JKJ!(Ndq`eITS;JwK2v*i zsL@5i_2U7H(=UZbKU|j{_;^Q$f|@O>tfcvc`c4eiiEKG~R)| zm9HV)4QD8x$&^%7G$98`M1d0LJ2qth{@KNo@{o@-vSlIzDSs#D`svKaKBh=`O3=iE{U$2tp-sNTXcXYBDw zY)$xe4$KYSPTM`Hu3LWfc`%t!>S5cQ)uyUS1P!$e}Vb=IPJ|Ym6N*w?vfB zJP`FCKTYdvv7k#d?T~Z-bVOzHYg-j{&fK{Qe&c7*a}G27Cv&9oKFMmR`Pwd8vc#e3 z$!SV;+||OVNpCc^Lu%un_grio#4{QlK73nGU*A_%6?+q(kRTx`d2omOr`Mm~Kd&kB z_n-0o_lek4FTBxX_a4(5D-`wKzkhGzR~oj%BfU1=BE^p3Ya|tNkaR*!#B_`{{l+XO z&d1U_!66|`w2vgKB0tk?=cu}-d_mQY+|K*gx#<==a?GXXtyD4y3kw^?QQ+o#Qkkt- z;9v%$??QN&A3L}q&x6(bq;39ga64o^8X%3zD5M3N0rVOPQY(3%fXXiIS6Wlswq5mjE$Ai+7)5VDNCm=$CS7eB||>1)iBjlcU}0)yvpUCPjV)Y#9sh zo=jk~tyL4rj(r?U55|ZTa2J_=^&B7|vp0{^M<{gl~=v zv>Ur=SMvMvqIP(MpFJxi=hmsq^4ouNh0N*Gr#rG5o$+XbiQ(4e8XdrTtW%o`$9p}B zuIK%>VI(g_i*>67?#q8BObLNTX=cls@MlIayZPqI&)Z|z-_bFNj@VQBMZl6#c z`M8k5-n?m(yi`cJGHOV5)&82(UrX0?Ou3JQ@X91v2D-YpdUJT9SOG1R@Q##0gZ3kX z?IBj_C?N05c}utK#0)kC@G(g%dbD`ck$aCH%dcC%-Yau~i2Q+)z*TkVMFkDsgI(>k zscVwyx5Rw0JMHOhZy#EZe#&6Gb*E(~TNZd}=M@zd&78j?(WPi2tNQW-Z3T~Ba}1PD zJOdY9Aj%9gv0#3whT2M_u9}pP`?0a@eSNIof8RMVT32Lr`t-xevDPU~y5CR+LtIu? zj~qQqFaA2GhQ~>oZ5js;a;`4i5cymzCnrZ!N5?os$|C5_owmmsdibYE9-#S7R21Wv zg$sp$`sp6N6U1L^oEFvDxLnYH>Z2M&({Y5GKQu)HlJFHth(!1#z&9dtJ@41S-g}N8HA&f zjJ8JR|0EWwi=(4fQx+^a_-wB9nHwr=*6hB%M7kD(HVJ5=3rE&?_wIA*fua^2%0gC} z>{+iWD{D}d1Tb&l`V7_EDR~Vfx>BjM{+CP0oTMA*>D>mbT+3J|s z3Q%gNoa*u6#q1fgW`&HMF)#?Ko49xH-ke7N@%|Eu_axB#qUFm|mODRrn$q_=W)F>! z1hgc298N*X>9*po=DchUGq;r*Up3&lY{d%m_jW%fU!qbr$+)yA3olucLgiHn4|TtN z7^~#|De=RH;{ev0ch+m^+1e%$lt55Zu&J@(q*QUC?^v0WVu) ze+C07@E*Qv-vseTTnk;Q+_wn4h0tO<{Cs=+cW9E(9s6`ggU_2Qb6CaFWAS zyt6W9?WMEtsF-C^;z2g`iOiGRB5-XpFaSZKWCa`4reg|8hoQ?(Nn%ao5>(S!LTsEi27(~YF10K^4DmL_W4hxfK43~4cve6;zcihe29ekeyu(m6|=s4 z!A*=F{f-q+7!#lDx@yxREYG~3f#I*!S2R^v9I&jdhPA$hS{aaI48C&s-|gx!H8# z25ket-h98EhL3&o!0~EQjJu;eT29ZG!D1u&+KvkBp6VXBSPR)wL;%L`#ANc@wm$w85p#za%S4?DS@SzdTj3_@llh@Y?Fh=z;~Pj94A9B&0#r!RxU+t=zhqTZtEQ&^QtXSQxVT1N z!EiMA|049}(9lphOF#2yoP5wNQZxPi{oyj!mt0+42b!pCMgQ|3!yVEOUthdg9>_RK z*;DWK?c3pUb~o=zS(w^-5}y01K4TF3pNy#r#ws~{-V4wy9N-b4a}Z}hLPA25kQlIP zCXT%Lnl&F%DN4<9Y~|R20XG0rf|BRVnNtnA@%VI`I-whOgG;RBIW7jTF8^4FYnQ4_`lty$GUto%Bfq}+=7l56s`OH-F3YJkneE9I_yYmYosi!1jZOZTFw%yz@FfL$AZrP%1 zk?Z!R_{Q=<(8Ky}N`l--rHfx|n4BHu)veW(rY8@Lzb2Or4YkKy7Olo9s44LFP#NUv zqw=fsJq7Zh3ljiP)ZL^NE6}J)t8D4r2SB|*lz_#|{0!l3>7uUjQT zNg>;CZpPflpjdLfncYn}838f`*#zCbeK@SrUz-4Y%IkZ(a*S=jlDZ$2OL3lEoEuf% zr(@XMms7S;WszA+=;_52-uMXvL%#6t`0RW4eqFeHxdYI^iQ=0p9p5h?Jx|Nc?J(IF8L4(YjF68IMd>087tTJZWF#k6IDsj2&) zF;psm*__XvJ9h{#S$Sdh!ZPKlqNxd1>8n>;2-Kgqe5*XfI0dkMN$MacX3ymc;CG6M z{K=!xa_W@Y+mh4pnNS?7@GDn-Sh#4>3Gf$-4hed7%GMUYF(=kgbxN?01EIulDZU8)}qh8g^OK z>(!^mY&L)R>8w?u7~~PaNz^y{mV~K|zhBS+v=LI5)tK*@!EY@pvad}IgDxe52HVl# zz*4}VvFtVnqsqao)PjU_`vgH#%0_y6P(Y3ch-G*WJ2NLRf3pFYA^yoKI5s>kjbkz+ zK7T&7aM?0@vY(+qAa}!3u34JRm@%URYR^{a1M9bMe@isWO;&~Zn*R0KPoBILTfbgJ z!xm+tI!3^NX&)w@^~@ia9tAAb0;I8jbN}KpHNSjuDXF0@GVBF78R0n15oB*yu5==J zE5ot=(VUPeoYhbeWiCjwm(vcbz8%(nxyLsGsdHIYtxuYr??6^{E*LbrgAERlu|+Z3 zqMAC;6BUjfJC*?K+yPv@1#Mh@gHE(^TNd6cDQ9YOte~OXdsVPUdjd-_w z7j3K7dE1&!71y0FX_KK>K=|=dwTuEK@XHldm@s}@ucl@N?!`;QBf&A^M-2|LsMEpqPk?2e=4x#jF~fQYd=#~ z&>Ai(^|;1x#VxjH>e&sJvf0MRkKY$i^K)xTb@jbo5e3F(Hz~}nI+n}C+(4zCT~Y2i zx?Mq1k)}x*qZmkQBRAq{{(T<9zr4~vwInW{Z4ku^rt@P36z?Alv)bx=GgZEScdjJ* z?+uH8=a>D}-}n!GeD_X6B{h(G0#k@~1#O!sO>C9nNDPkm1Iy%3-U7Yu7|aITT)4dddPr-A~Cq z?}Z-d1`lyJS>_*Ep#1r)QR1g~XQZP?v6)2Dj)QC8op8)62Lp_eBC_LcXzOYYcVc7E1^p*iAo46vAwA5Rd6 z!lt&p{|x+xP}!dP`uaKZ=BY%ypDuKk`U#3L5h%ZW`C>qP535O&zNBRsj{?<;xOcj;Ly-S94gig zJ-jLQj|iMwwtRLxxTEhd(}I#)wTL}VvFfNlHMVTxq0`mqBkjy{zl>=wYUv!Ymlj<7 zk{kS&(-b6XpCoQ4Od*o%aI3%7!MmFj+k_7Ss1djTGPX{GDE-Hd#gJ8b_38k#^|$G> zh#JW#Kb6-ES=6Rs`t<3(&R@SYIPHmYPfAi^XG`9gqiN1-4o!Z}r+UQX|FO)`Hg$0l z786j`=V?>*$W`N)HvrKP2IK2?CMfc#P~OG*yXA)&`YR%rkDal7wOZ*vOD`R;N! zh(c9yn%)%Boo(Ry6%4oN15#mPZqT@P<%;fs16OW}sz|`jL;Dbi7EVM+G)rM9`ex2K zFZtfkY5AB_Mrelj@82hY6PURyhZwf^l9LxvEPeX-Y3RXNDri8x5p}(^wbg3*R>#-C zP=n7Gs1e&BDJdx&Me*$U^QcKe2X^i}>zvoKl^57&V`GEQPx-Tc5E3%Kh3~6!i!s1c zb+FY08du?N5N@zuE8HNs2L5Q!^}cV7_y1s!{)ZaKcmGlQ_5b&8kI{_j2(ycRqfloa z3uprKDOrc1N|3DaD(e8)$G`mY3xTgyQ9HUpAwPHN>+0SEUXxhAULAmdh+~Ct9;OP= z;!izI)=MNV1u3w!BM)~gDk>^@euDX&pKk*E)@cLf<@`2_{+t zGZ4)emHgPTUbYzyo@s$s=Cy0r@<+wQ#5S&5w-0DSu#5ss4&m}$6PwKr5kp^1N=$rZ zFFi4pxrR*@4@N!8fgzH zPc3ijKUonfW7Ck4kpb53we|TdAtBydn7Rr_e;2|^5L8f8IG)j>FL&bAPed@mQg0T( z_y3aX5+KfT&%HLPJoMI@C>-BLz}2f)%U-?u+^`Xvcv)%bVK1-T@1{>r(bJCFjV{Gk z(pMIw_=ed%@39*w$y(=iJeV;@Q({s%@%mOTzlL(3zjZCu`2D7oGLwtpD4Z^+&~@~6 z2Z<5RRDpd)2ijFd*V@rDYyJw|SoIr`s!#%ypxwc4E*N#|eEpO++T@(w$= zUYPIRsEY=jTy^e)Kyv4zpeI#%GKQBqyx!fO&6-QJ)3_!o<>?xRxuc~^V^{CFbP{p` zQ8egx?i7gXXls*k3i=$G_3YX1&6fFZXK#XNa2P<^m;ot@0_xs=33YK+E~z>?e3s~$ zotQ#i;N(QuM3HIG*Q{BCGqDC3w4&nBjg>o$DkHWTgUcwu27;we`TguP?bf{B+=C#p z4*=3p6Y=k#UrsShF{-N3MH@CWjMo)_?`qOvkbkOC1%bqjK0ud;6BxDq^lnU%A~Gw0 zQuxFmLYLyAurfh$7vXvs372y^R;)w-$h6MAMIT~={8Om>Y@|mHDr@JaiiEmGX6|Q%DuOS zJ>|2`&Yj`?XHl5{>Gv_5uYl2i7-A4I1izv>K#J?S`^gk+clB&;$ad+gVcxs96U^7} z(4hb*=-d=zY2UG)>?!@#XmZbt+I6XDltd?k?YqyR~tESJ{w4bf+IgJNK$NSX+)&#qna=+Bb=cwRGu`c{P!Y z#EhZ1Gabfbvdw<#{*Gq%HyDj1-Fq?Y{rk+Ux|}xxj%A0S|8KAQ4IC=Ce&rkdXYnA< za@Xm~i7iqaPuFyQVK2$5^&E8=@bPM{eLOcF$eTbyk*OUDutDJJ<}F&aN?L=$Nw|Sd z9SqZHpdK#nRw%X3Bu%#cjznLQB8-YG=jN`aR!ll5A53rsbokP?{zNPmgtoeyD|g7l zi+=gyMdw{J=i6c=dy$^kTMY!4itGYDY!6A0Qj;7^Rak_^VrZzyO@;6eXje5+O|>8j zX~EYI*Bc%jI}e{S9UN#Ed3`Od8e~s|MMZm+?f$Htu`baOa=VyV7Lx#PA-VHh(ujcV zv&IIF6`)@n8k!+(5Y?{Q->ma*(s2LNEnr$E`s{;Uoc%nF|D7_nAC9WOX_r?w^wU|& z^Z#pn_`eKi6I~NYG7m<75?}}t0|f|DSOzY)#(;s0d5;im1f#5c`Y#$Y2$hCEC?g|- z6ofv@vS6SmyLD3MB1Y+4v*10IF!{K-GzY-HdR`l*EC<4%yyuq_Y34b4u&Lpc*1>9v zRQ*$~>@yThzRPr{A>%c28t_FbdDg{CRp3R#YYIY2M^Xd9j&Nc;p&t;$R#sllf$eg? z&eB^8lJ9LXlDi?e1_mR^J#B*ixfAkR)x`L?j|S;rz;}^D)l-ZH+qGS(Du8Yi8Dy9n)Ge*Dluo@AHW{!D_%L(g4VObnQ zZb^?j7<`ERf**ez$a!DxkUftU?LFhA!tkEtdoK)Q%hjxOc_Z;kEoMB9_v7`4?FKjH ztvBpm*NmN}8`uVxg91kuY{Tym$KwJWmG^+t=^Em%0Zs$(XM&M4(;hs~g$-+TdHzZ< zjem{Ov{#`Tl9Ru@XJQgkx@*&_CVCpP9h!4#*h4*-kU?Q#NhrEx=;oA`{2a*JDX(Aa zlEFY<^z+X#{~V#U>t;}DB;bB14Ik8bR{&i-I5;@|=e6pc5Dasnc+$RpJ_g3Ey~=<5 zAtAH8Ly_AL!&u7g$!c_i3QHo3uoNdJCu?+n0nPXcP0|gAMc86S?>`1<7HA%4b$o{Z zwUGEvRk#0?Q1)ML3_m3HOndjNX5fvduxjtnHW81spbufJbI0oxMTCX!r61S%OFH>~ zq91?HB~j{3CS=H}(Hv+0*wb~I;?W}#8{G}t5+#T#$#b+wG<&Q6k2BWEDqI{!v^tg< zc!J=Gj51FDKwHN zJGrmcHKRlxtPzv!Nh6g?uFqTw~PS5<(o9PqE1b;=eSbf>%lDMYpd z^3E+#**y0id2kd9pZ=G`azf@g0r84X#EV^{IV7-p^7T$QHj*A;*2N%%(EweqU%&2J zp(-SlxSGUk&Q6;igiIOYnZ{#ZQdGF(-Bwf8V3@Shbs;B-bH!my#(@nHt>86Kq8m(M z2gI{A4;(lZO@$8I30?Hf_=vz)ic=RIjs`_?w3f@`6B7?WEg)f;qeqX@?$RtD##b#0 z>>H74ACeojZu~{%VVTa1b-dmM-cb%*`;fWu+DSu{=1#s>RqeWZL74Y?-u)_ca3B`$ zk;J5-=Q`*D)X7$aW-L6KX%zT3(0vm?>krb+rTUf>$s`M`AV9n#X+1-X-9W+n*0#i83$%CyeAuLDPu{2qY;u10`^=v}Nl2l}g+J(804WlP5lNNZJosPLjpO_q=9I z4s2-W@w#EK29>vyI0b26Fm+PU%|v#%ry}$UUVpYrloZxk1MkEUq&rDokgO=>?SmNb z4VJK^(MA}`|Abhcp)CM+FyD!?&qq!Tr}?kFDcQRQq~yC|4>bVCKfi$R-+sgihB65J zi|~$#kn(2-^&eb@_-}lc?v%0jRb^YgnJ=7 zM$~VTgvq)D|Do%FsUkB0!-;Lgl$e@EVGk z6{w(&REWn1h2kLlJ8>nV-iMG~ruK#e1$E-FkUbgd`UCY~9S*{0X65`=C)@RS?q51& z?kP%qRhM<7Y2ya85y zRw=!9z8cWjA$XhyfQBS=&qw?x4>8sx0BP1=*M6=-cB^0Bd{N~@X0(?kY$HREY*j>3 z;bBA#$~HS^e+!=J20P&i{?h)w35ebELu3?a7Q$#ZInT4*Fwp+&oIX>Wt#En4s#?6F zFrW{t(RncXzh#iwGR3cuWJl~DanLR#3JSk|n9EWHC>FtskVHSC2rz#6xDl~AgIwnz zNgy%~Az}b?cT>sE8W7pcHK#0qy);&BYJ{Epk$&(acsr^L5X@_kgp~y~^APJoCd48t znToitYmT{%Gf{Opc5m+QQym-VswvMkjn7qMG8=MfDF9XF;|jfBItB!6wd`c=q+T`; zGbJcIJQ)C3eEaqzq<%?qhb29fc}!JOpJ_16qvETG1NEV;jbtbQ{`E+>rH<+p$}Z!I zYY;dYvDGP3(Vrx*QXl3&b7+Fj;;5&mSMkWEocub3)#pQkzR31OuJ2o_l^5kvfn-+& z7>zT&Sy;yyOwik99BNZ#Kz|cJN;(j;)Mg;}6$Y<|$b8|Db3-u|Be2Vj zJSFU}6OO2@SQzwPZf)ZpT#^qC!}W+TfXZ-yUtT|cvkX=ovG4&4Dse6;VqvH> zZkSTGODod9O-<$*xC6yAg8V#S^5j$uatQ99PD&LF=m|)y0YQj+Rh9NOl+0t=2eBIA zSx$}NP>8~?|Ev;C-T+S9=?(#L_hGbSiI;Z>x>-eAabGFf1o4LYht`)pfkqA?i|Gk@ zBvN&2g`G{;<727}zfpSuLeLTZQ)8{Rz}_7!|A`cGSBfOnI3<@xQV&I;M)cH?f45uvE+Bh#;dm-v0!k@xRmFS zcSU55U&ujTr~=uo^6>}kvNBnE{%$Xe2o#Y$$0xcA$sk!o8_rW(6Gl=Kwas_}a?@lP zZU#_WYe$p|sz4RKMJ-a;Fxnh2js1&hjO5}4Y9!`~BninzacT>Fy~(YI`bRdZj11o~ zcXT2hn8?}@e{mind8w8Krg$$)UpO&Aboz$@6xI#+0-I48gkzFmRJL<-*{5@jxHv*ywvM|*ee+GR;2+1I;b6luBeXUjq`x}D{`rIU+97Pm=06@tBl4Ds}SvAx} z8baYpz5ru!pFe+=wN|99;CV+ui2No`IMig zXMuwB4PN^(?iVR3FoTn7E-9*<`Fsy5YFuh+s%sG~8`u`X9xt?z{0@0#<@~BY&d@=U zO@OOOxG71`qW711R(v}-TPy97u+R4GWx?dG3CEV>V`RWXg4XBeFbQ!_j`c}qn)CgC zP!J6);gud_wjk5Aj?ZlE(yC z``{RRKk5bgEx;LfSp+QJ&+=%cE z&_W0T{DuOPFs1V4EY^^qpsKo2+OK~udYr_%buYt5l$)Vu%j1^nMBA#V*TCR@#rPi9 zE0fFNaD+N>sVepJT{`_fx=arOUKN5O%wyT4RANes1#83rf}e_B2o(Yz(MnaHCrzr* zFX?gRQh61gO+D`2=<2obMAuDBS=55i!I;s-Z8;KPR)-i-3wPd)L~3z~Bqa;YMUy^> zYbtoOeTXFDc9*o=Vhv4gZPmW+ARjg#Cqh7>`wC4+CCfZt6ULm;%Y$DQ1bs{K}D_Nq*< z9%vpnmdPdPsqN{m_KBwSe|XtdpTS&zDD>S531wPEVexX@LV&Expp6>D%blv)&Anr76;Z#h#Z-~m+~SK{1ra9Kpfa)Tl)#bw!zJv2IrHe9`NLqWP|{1G}d z$|f8;xjh@)sOEqyOj5bA;l6FfOXd70eb$ybHs{uuRAB(3@#9{cb;XpLeGga3C8zza zk|9%?cxD>f+C!8bzS?7h-FAr2QM$))# z7vg4xTXE#7G5M7MtIkGh$_ZyX3|S)T6mH-spl93Sz}o_KCLjo|D!m_fx*nERR)RyP z%4}XBZmyo374_LQAmQf)`6ZA_E(YGQSx;ph|0uE zV;Je*6X-4{;4=ja1axQX07bOGks6kt4L}?LP~@KtJEm)VyYNjd!p+qHQI!T#cz6eclfs) zfB;Umixnhi6;9&ewQ@N2tl20;*r=_0)zw8birZbo5Sz-^?;rgK0REkv_u|y7)eo+XpTFM(kx@uU NW1sfk^xa3#{V!9P+}HpB literal 0 HcmV?d00001 diff --git a/_images/2.6_resampling_61_1.png b/_images/2.6_resampling_61_1.png new file mode 100644 index 0000000000000000000000000000000000000000..89812fb13e76dee74ea6ec46fe0c1d3b8fbb8993 GIT binary patch literal 45931 zcmb5WbyQVh*Dneph@gT>Ns0&(0s>OfskFofrBUhb4g*nIx>LGAIz{R31_5a{-FfHs zeZPC|J>%Rzu46c4xMQvL#GJo+`1(@*`Ar;B95ghvn^G^tmC(?xD5IgFH(_JJ{|raC zF~L8)b`r1blr0VH9QADU(d6{(tjsL!%#7dMchI-7HMX?iVBukT^7y`yot>5KGgemf z|N9LrmNtg0oJFNM@Fmx+Uc9zNL&MWU{YB3d$}mPlD;|{+7g2GFTc2{)RN22c+8&A4 z(;=7eM&}UGysq4Nv*W4U!$=E<>M3?PORWygsulB8i>#^sy$KhsY}3~(Y}&K>3^__3pkbzTX*=Uhs98Q-RYtvnPb~6* z;os-|?*9x!z4BWkSXUbL%G`q&@HJLzwTIJUieb{1ZiiEj`#W{Ei=DH6taX`@u72aM zOAKz77<5%l22qQDT(YjD62|T;tUcYRwp;0MT5wWPQK_w&iQ~1cm=ENuK$cCcE?lH6 z4(Go9l_KHyFzHSTDeAVe2`DJ!3bbok4&P$K*U%2QiGJ}bGwOR_QL`=i;p4~c!@~@X za*NJHp~RgX8?9=sY6mu(zb{a)930R+e(ZmnMsll#$`dV#9>?3;`>{ruY^*%_Q=^yR zn_BAX?Y2Dv&qwmLwzs#F^*bUa?FQr?($X56OG`_?c=6)?g9lewSy{(_82<`mQ08$x z$lcJMot^b3=M5>SJMoQ*B5`wfUl}iD(sAD>)Qvq^haWF4F7{Rid=foQq#VybUB8Qs zjr}K5$3w3*nEL4SbfC)KG+jPkT2b*^zPWiK0~_171OeB%wKbVY7OhuRc3B-G515$z zu2H!K=j2!6z{MXtcn~Gv%0);>s2=;v2QQT#hqZR^PC?BM&h6W`uU@^1PevvqE$y4n z>PN)fU&neN&HY>Le09TEkj06O$r7E2JUef_!E(=PuIp0 zYdgKixOU6va+#Qjh}~}aC0y&(52M@E)YR|v^^1%L=yrB@(O<~R8*Kggi5eRI-A)d) zr>4WX{f0T2nSUZQEc7}enE7{FX>L&RNBR2VC@Co&ogdDu%+w2IXWLAemv1A>XF`I5 z8@$jlMoSFwI1IZV^72Oi{rj$_wzkxD18(Ber>hAbC&sdLcS{U=77r#YA5l}kx2!*p z;I&7I}bsz%|>*IUFME8i+))yh6q0Se_ zOT2DJPd4jL^EXV(VO>?(tu&ez)M7Po^zi@Mn*G(*+S>4reY=yR=jE$ct?l7VQu6Y{ z`M5W4<}F(K-t=i@gB_ z#w3sJCSpWgL4AGwGmo<)Qi1uMg${(UR`ENjH1j)m?;?cbg*@vvjvghtrCeF{ygb!G zzN&UWs=$-)2MJyD2BxK_XM2&7l4cVT5t+2qAI;$szN|mnkwK0gZO^Jut zaal9HPJZDDY4&m)A01`F==22=5)` zdzM*DWt*0mj<8tN?yIVonSJdu`aLiZ>bhA=?AO%z^W!!2<=$irX7wL`zCKF$)5SgW zZl=zi_}py9ZTF_2px~tAjC*+5ScNr>Zfu#&US$0lrl+T8-T8sW)HbDnOK-Xy8PXnh zC_2egBYY1J50;i7a^AU}gu_YOppE?~wzp`bKa2-3g$9Pybn_@I$X6X+tmYI{ ztfa?c6~2Vk zd+&)ZT0EcQ;{J%vBYu8zDk`cn^ND6C0Q4*@Sg;g|;9InvW-$|7RvBz;Y_M@?#t?XjWm`RgWxW@%}OG{v==`+Z%tKwE2NWE;u~VtPO@ zZ`nzKTD%KYeJkj7+_o{Hs=2``{$V;I&zBGrv)W$<)8}@!-IAHz4#mZ3v-Z$wqjG6$ ze}AFvQDW}CYq`Z#43)KHBai)R7>ko4B0M+uvCH9x*4km7w1fnv zVRu{~Ce!QJug6OUM>tANhJ0abL_p#Ai99YWEL5LS##ZD&4PXVmZwlJ-opc03zb%9o zp*>LR>Zt9$kBH&6?Cy@|E4A&WVL?F$obI~Of81?s_2dP#u02sNj<$} zhdLH_SeR8KaC6jNW$Z-hp8(2`RdKOw@^bqeg1rhgyh9icl?y##FXPq7yN(6cd5`9GBWe& zu@;RcrN#DZs#Olib}h%LCiwI{E;ABTm2!4=*7Q8zA8)UOzR(;%rk0@tH^Zv!ajcJn zgR?wUU0xQm2_?y#^htD`MFR11u?tZPH4 zX(4i49oB|#dO7bdTEhy~eM(vh>$a3Zp87X$BG(9-<9G(O3=~Q)@b(xjavFFgrWi&W7SwW!OV$ z-kaIaU)L`39$hpkR0$4zpc-UU-z*hKp_Lw9L~|IL6v)WP4AozrZqjr>~d{dhn^@(?i4m2Z;HHh2F&|{0G*ww*H@h&cFA3H!`FsRL>(9@`!6_ z5Y8k0fkH&2TnI#4PfvkEP|xa%Cx~l-R6_DlHd#@41z^$@asihg!+ckHLUgllUB$w> zQf4U$ponF6U@!=p*>Il5b4^XnwCa8xsTg(7i+=P{yoRPrx#Dv zEmdb=V#={Th5O*==ZBs7^G(sABrPI> z4u6Od!9_(z@S*I}+-yb(35hs<=R01#y}d53xBdapr$zvG2nY#p6A^t*Ow)ieMbrt0^2Z}03>bt*g{rEx{mhCh~@ z)F{~cMKU?-FZ$OidxneYe>e9Z@N4q0oiVqjWPv;3d`5eEY==yrkW;7c0o?mGE*{=e z>4-Lr4FH2%5{iKR%xVQf3%_06lhoaaaeq7(@*W}Jx$ez*8qIV6!>3ur$jzSsomEU= zS??|PrK+O8M3h<11lHGk2231o&LqN6$kHjt*Lb>TtrZL`-2bV9ak$eWWtVtNB1Eb1 zR_&GHowYXu)2vKusFnAjTrTb+w({`GDcReE0UJJ}c+lLKQ^Qo1#Cn ziswQtc^c*UL$$RvHPBgzPmEHC-o+H4Yt)|dXc-DhP9_tG;&$UZ(tB5a#kDh!Fl!5D z5TgE+DLFSSYY|octvd4iR#1>~rK=PUcjv^5x#><9=lbh+=}>JFYJok0goq-+Eh@oW zx!OFf>Im&xmsupTD}q_$g@VG8g6GLy0E&P>d#fESxy(kBsxx+UjahO#S`+Ym~I9dbMzz{lMDd|M~~C1)l;NmK!Z^#e^XJD#Hun984?kJYH(Q_VtuWTh z2LxPIzNrEam+t<`)k z9r>BcKf%wrkzT8)hR?+n@%8SbkmzVB0|PqL&g&MsIGXQ_=Zl0oZHp`&QF{5Z0WLmP zsD}a2?9FJQo$9jz|MMEvLq5Lh{sUO!HGBOsHJ2Bs zZU8aP0F?5dET@hi!!vKgyS6r}H+SZPghC=CTZnbs6c;#TquIUt`<3c0FI+t?jtv*P zVxJ2OqoGAdN8cdl2?k)aHJ~8$Eh?%N?zUpLo6mI5-sCZA@{3;~3<{=wvUsRoDxzZ+ zrpab41^$}+jrp5gf#&p-FGhLOaMP>LAA&cW{tA%u7?}rYfFiq35Xok?S)7kcKg*q=^4YuPuC~i z52w&-wiv9n9hf%r<_EiAxj=i~#ls`l|}7 zWQ(x2co@BSq08eQJ5;NK*)?67cACHGaB6@GWFY9eszAkz->S-dXz59)KJ!20P1!o zUY;2uD;?HHf2PaD{`kiDd}U?D4u+!rf|H27YXq&f^jHmTf?%d{CS$#x)j6quchqBQ zFR{;rcC(r}a$eCJ>L{PqE7eqoN4rdT6{{b2vuj!?UHy9mPyJE!4Q3@cCPo?%9X(Ud z$uU%H`vO9VEcPwy5p4t_@@-&T58vtO%w;z)s^$vo`J>~d#Fe2OVqBt8kCk%uJk;79 z98{S~1d3!0U`f?^rdj+$7FK$0W4q%u^RLeJW!M9s(Q zrmf+L?^n87zXys!*pHopF`}nG-wWDbOhefnSLGQRE7r%oODC%f#Sk^EC1Y-FcZ=lc zP&LDBqD+p@py<_Tsi|7&2!QJdsZhFYxU=0J&x=r6nFzGr5<>-#;|1czU%ys*lRs_* z2_)rqjbtT54}EVfOSkE6R)0`Ax21@#PPk;-T+bVg&is0$i0b{;O!M;1d7k`j z(J#&Eh7$%+vBxi8bA?^`6l11;XI0(Fi3i~E0&L+pLHDZm+o`uGo^8RkLt|pvH>RqA z9m|Fz*E)bxMDaPYT*BC)kRR3M(KTLPUW7#(klmm{2c$YXJNsy*?ISX7i|?i*`CiPt z0(^Y20Iy$n2Gkx^ok|pM!HveqXf+c%pc3!@cH`Ab{kR5WK`}(K?m~7?YwCmS^0NVTaz4U&4o}E`d zZjEnxqt_nBfU4X_M^31^4iAG4G3m8 zl>kQcbKvQ--=0(IZO=8K0CLU#u*RfK2lM(wc~DM4-FTY2q$Cz78-_rla$gmFpz=KX z))x8*rIcI%m&XW>i|f?6JW;zi-}K~g*)vkjQ*VlQoNmJtIuiya$!br`K%bRqt)U>Z zU~X72-SUTpdYva^APHyiI`!`~A}aI6fFgnDT9?Fp{tsh+e|0J<{(kN=+;Ivt?JEco zQ$<@_R^_}eK-V#wtWb0`gU75I=^pUd*s%TEdK=mo)+nPNUs?1My(_SudrRvsGN&-zp)dsMOg6)?6+BK>9%;L*&@xB4K;0pEW=9Vi2HL}i5C8RJS0tw( zv<#VnBHPER;rplZMg<)=D4jHz@S@spN|v`EbCmO4Jt&T8mzI*dx@sz`dxk!h??nEQ z#_szL56u3weew@u68BS-R04Dd)kUDc5V2^!fZ>1J>|Z$rcVwu=O`o zVKuO&sp(r-*x!Q~7^u0qIlGq6H_4j$HfzM3op}=y5*|K!#NmEo7s-V{-d0gpmo_%e zIsio!uW)FSo|UyguG|i4w6dyV;9(_+v2A4CjrP$MhwL70#@YHDoxeK2(u3F5s@8wx z)`(UU3(MiM@-%z^p~_YN9X{J#5TM`KC7Bug6O(~n5gd-+ z)S$Q}cvyT!Fm}yDANjt$0O;O1W{tx9(EmKb=bm4`FiOT`L6|8`yE2KQ5k46v6)frX zbfI4h>MzC@D%^XMlC!gW^!4?jC+&hfp{$skh-6@7%>J7_Zv6CTSbX&fF(QvWGgtfb z{Py@X2gqko#Ec4dcXo^>%9yRKt;aR@y+;8?x_6YB7RWVWc1~^))m|KVFVbRG5xRFX z5?~mf$$2$e*giLyIZNs=8e+=PF|ayu;8$T%P3l~h*cqDIVqi_)q^dV!!esIapg1Wu z?DllBdqvzpR9m1^pO7r(Q#Hs?d55#~LUdrQWUqW1#qy!U13FZR#zx8_5TGPpzi}gX z$M7T^h2c$xmqJ4BfO=ZF-Atx+aWRMp9yR)q1$$fXDXEsEzkCA!3VZQ8L$27Vvcs*d zB+zCN|3)5)qLZs@HTmJ*UQH&I()qKi^P5OHhi^#kg4a5%z1eYm77X(n1%8iu(=+ig zvH9$86r_mKO|#uqwiaY{KgYqil`&_|Fru|4$Hu*RDuSCrzB$A(ZHN)l{XYoBXV(mT3t)W#WkFE4pnz~C@1m&GdEXG|1eiU@?)bpo8Gu-3*%B? zs!|}wSzzMC1c?{ftxYVm)5DumGl4=zuIyyV~jRx92SOhiD|E_8zG%T6*zWFU@8ixb~{NpX2hf zNk>bcbHlob*?vCUAh0@dkJ@@tX z<-RWY?0_6c4~~w`VmctaefuZW(IHYWyWK*yTi|)_XPDsp z8RQH|$uFh?<#PlUuJ@3hJ;$Fdq4vT8E@cfH(EcX|kNW1)YbI6U0 zgC6e-6kkhZWXznHcy>)`{BwJDIB*X2i2=+s6!C9Fq{b|oGS21qsm;g78p(*`G4p&Z zPrKntd(-i*B~F>8iT(R9E&c0A)$S!Z^dC4@auvj)*oyT4dF<`+2qpfxC_m0O>n{WQ zj2?1w?x##20%)Q4wdp%FW<=rN6Y;CJO?G~&#P!S}Y)KsGU(1Md>oOVZDuywBOp9Uh z&C89?rXPPwBkUl8G_8hv%G3b*fNH(=E@M~)gl^xtBMSTo^gsguG>GXD=NL;6VSfMq{bzn&3_v=# z4?+30O>bslpF9Fv2PAbAidieD&yP>!G$jHbV;%%|D&G_^9cJ7Q<0p*kfUXW?C{Te_ zasB2^ly*9ZAfN&j8j!~mkmGrvYDaY$fC_`q_pCeJ;Dc@W5lAY0Z0TgJV5#*R&G_+9 zj+!l$g;}_Z(*q1lzPY#{~@aa&C9$#K5JXx?xBIrubP0#+K1krZgK5X zGD;PC(~@@%4Tjq|aH++`_CZqjhUX{&KL`0rUj7yUmW2e@4fLd>B(K?DJ|%j;uwaii z73%#W;WP=eK)4`qaB=VP+B^gi+@K|pg8y{A1m*lxajE8ngDd5$Aaow)etNLIUedEO zsI0KPl9702YdJN@W+~qB4i%LG?0r~h7Hf|w`5gS=3IiYzIBZULky+OK1n}@{w@0YJ zwA^fr{p|dFtjeBgcd2Koaw#Fl4mTA%B#UY!7uGHER*@VMO@p2Uxy|WXU3xx2Km@GUmB0~R7sa1>2}Et3F%lhg~v9l>P^0ik7} z&fWF%EsAy!Q7xxkIu14!0VttQcziG@dF|@X`{Kz^Fec{D_HcU7Gm){D#E_-nU++d3 zPM0yK)a{Sv-6ow)UZT6a8*hI|-rAYtklp$>w%>rU)kJKy z9)+C8z#Ckfn1UAJb}(ib7BMc};Rc%jr2U8%NlzCK0TI#8(R|QdLPCk%#V$~I{y=@^ zq>LV~_Y|6{c5LbCQQ#Yf$0B$x<82nrXQrORLsI#l(1>cfL=!Vqs#k=`~(87vDhXJsi7dtmAwR>wjPY(%ior6zybhUEf%wEAX2k>{N-*REX|ZD#yAp?oVC{*C()iU#cHL z@D~4IrqLk#R$TDHuDiaylUYwg^88$t{u4fnl2XH)B6o|TQSFgb#Z*bXQuSk~4!kaV z^crPmdh4S_jDBp@7?F2D+>hFE08VY8Frj#*lCtvg#LR{2{GpW_>r%ic>Lxu-k*H;G1|tLV$XDRU@_hCB9YiSM9;Fm% z+!}&HV(NC8nMptGdFk%!=eNDTkNF4Ofc{dH)Bx(-2w}Cng2G5CXuyqc@Yr*l3P2^1 zB~}54?KU_%v0UaRXPq0+67cWd6%!S`QdCsrb~Nj=w>A<4wI(DYLel3J1!L_nn0Vuc z^#t$UWq)HMCD;fE=+&O#HK2TrF7k@NJJ;*}+=fnP*uK#q!BVc z*Z6dYPrp)z>~tBg0pQ9PzOWBICTXHTIt<-bgp5w6y;2Ae%m*TCsFHC z%BC{%iqmV&%cW-;nj-xL8QV`td7^bht&;Fm5w!Kc%gi_zonmD0mtG+RXlY_AO%J|3 z;a~kwPXsXP?b6Om)-*7m?-CG*!-E6C?TdHaA5yCXJ%1VE33=+JpmrqO2b$V^cncd_ z7pyc3%v3UJL#I>4|2Tdfe<9$;iKBO`k7sTV-|y{Zcu zvK!nQN*;w63l;PQRE>u@aYRyH9(rE30Nghk$)^BYFKeh(TT5v$Mz+eAabaOWk3G7z zt1As=Bl54nquR^6U+d#C6*XFF&mFw&>8L$o^6zI%!EjeB=!Q&aX0z+))EzI=P|g^9 zAGE3S4)S>)f|K*h)H?)+5a`j`bTmvuAXm6ke?6x4A?t8$`IX1@1$bi;`d6==^geok zotm6Jrn#R{QxnH&I{XAA-bivUCWP|;Fg|J;nvY+;d{JL$f0d`Y1N3t^cMLNq;VB); zPAU;p+ds_6zc`P8g<+yuzeRdY`5;DR$eL2h#&F(~O4sq_C!%0pETupZvdkZX#4pB> zY>rmf=Tvkj`_0GKUWVdvJeR2KYCLY}FhK23H#os=O}WVUIddT2%9?p(&U z`8!MB0PR;ekv5X)m7@N`Sm4wstUOJ&T)Owz19G4~8t?g=}Az4i8^c?Y3b zKKzinDRbd8G-_|du__~e#%0OW^~18H3NxA1XKqi!33M5|9b>UA9ocnOUtXu~4&7Ip z6V>#s=e{GWg$}A9Xx&wBf2HiBN4SS;b`CK|)v8k&dB?bsIOj#vYTV+ROkOQ|jJZ`5 zriYpPCxlAh?ruIWma1TcjS^9Sq4K)|X*FW3YpQi7EpHG~QbJ-omKo?8m#3wcWA|0B z;83qdxSxg>7qjQ_q~UYw&$y%usuf8;vG=wi)_s5aEq8YTn;^ohC_qyp@kK%3U=lh# zn@jQ=-2AxbDU7LTbrI}ycyxVhLGDkPm_;!?us6F?X$*qb$XbVIx+|O|C+ON0JT5p4 z{kli$)GJohVosfR=8#kGXp`{ONbvCR&d$ytyFdVH6sPuqR7!vaRBzGyR)2u(wEh%yA$*u%Q(j_x;nfupQhyWAms@#h-YRju!$uDd+9qp z4k$(M-o3Me^a80)Ms{}Dkne7tjao|juukUd#8__2z%jG@ktK-IEl;`yL_3Du3dI+? zSvZt{!(x?)ZGji%#;iXXSEog6H?-*awxtZqDmLySNI@rMsPYfXMwt1vown3O8;#(- zzRPl-pIV|@J4U4S(bxM3oSdBjfVQZc_iAWscOTAp_5^TGk1pecYkxsqyRHYuY5&;+ z{YO8;dW#;p^AVkB7Vq$4QC^OjyS5nDRvihvz*OO`*8;a_;La2>?Oq(W5*L;1gT*8C zxlIl68D6p|CS?y%O~o5nVtI^7WC4r?c)e+~_w(nn zOa7K#9osQi6#~=lsARm|p!e!qt-?6UFYH#K$3nWK4mA#Y&)bnPFnLwpkA>dY%D@;o zmk4{5|a&dg{&00zc z2%(ykYUp`MnZ5*<1keF4A>8;Z16NuruuD!;c&)Ldv@Q}SZX5TZLpwX@L7{J0scxtU zq@u;EjZRDNn9|t@eRpLA? zXch#+NNQn|txo^?h6CPMdJk3ovg%eTV|R{SOt1C00y-AC{7`po*=*9o6kN~+piEpR z2AW>OR`$ps)V!S)%Gtfti|Y-CvjU}kv`caUwYdvVnHU;Aq~K=OJl5}&)3k!i7_RIr zFPZtTYptA4l&2bNhh@YLE60tiG+FbJ5k{TNvTz~!sN0s|{#WC!DmUgGEx+_|dh>)z zZoP%cb0weRa-@(U4ja4QT-^-M?1ooRsc8AnqVo!O?|3b!lR0wY+$kw>vBNpJ=K9JW zsuFtJ*}Uo-D&B|%%MQRC!ck?D$-*RIl z_-Nrxk<{UClPj{2TQ%g#sB2A9TRa27C}}6QQIl`oMA-veCY|^h&ry zlr5MLU)=lGV8VGS;RIdl+Ova!vWz0r*I^mBt&>^#*;P1U_XLjWwD5}0G~lhD5WG~& z&Y7wfyiva|A}tKt+Q+I0Jwnyi!%%iRzCC1?6q%Q7u7f@G3S6rHg2e4Z<~e^)TP>@1 ziUfD~_A@sBIXZ)t&lHy!K56J=tlwbXZ!@0HQw zb}U7p%d>p3=?o~oCf+R)Q7vv~DO1_O=7@BAtpA%r7RxO5Vg2@$xt zuP^`BsN^@%$LRI^vz_jEu>AOPPb;OKlM_Av@fhWaymMlh#Qb(?7QyP-?)mmzxxB8nwT`dLw{cW&;&+!F}*EEc5Qhhuqbx+`HC% z0u{6mK2xtuJW1;DEPfP0CLEhyqC*B*hzXbG{OmW0US-raL|}wh5BIP_a>eUml3zz_ znP~4&DouLmXqFHx(_^4G7H+!NXY5vknzBBJy+znN#?tc@5ZIkfqD}5i+{(*b@~l^= zKe{#K)s!6)=kfV6jgp4<+<&m@j_4OAFMrvu9qGUUlIf_l^21?-P&t$VkAps@QAinjg&@p|_WSE{~sg3L>O1i_8$)jKcaag362TO%GBT0LzcT6ZGb zKjhI+>Hbd0=WJ`%qaO6&buJ?aAvt!+2AHt65+D8qRgPxJNHQJ5qa@rGnHm{rDQo)(W0P`z(ncIpeCz(|438z6P2?z~Rva$~$r4AthRHku(6D8J# zt7+@aHhP=Q)KQd-bwWI(t*88a-udjv8p3bgGOV?~A(Y(-Qq=P|Zyo>$xlCIQv3gSH z$%B=)n#C{i-k@7d@)lV4)&7EcYomB7ITMU4l86P6Hf#3wb2vS^b8D2qIUK1FsIVYF zwpy!~AS3q8DD7fpkFUen4bZ0_A8gJjz?U;HFzg{Gh`k^*fC|C`(~IY;4%CJ*M47D+ zk?DdA_^pOw{SIu%gM)DQ7nR9*_ACY^4OG*yvxlIRFhER7ii+=jo~It|Xx^^jzadMG z|5IbeP~}6M_}V2u07x2u_Qo7y_>1w(c#V;+i&%F!)oVD=BpJV*llDOnDZ6KE*x#MlZP|3<-g3`%(=Fn>-q0A~6ftnob?-8AX^SiSm3vKA z;gRYzcPjC;rX0dYQ#EU@5`El6iDh4NMEI%HnxU@c=GVQ$_L0Gp zN$^F9XO^l?)ETnXe}(i#_Cfv!m0#v@+Dh7R%8-vg0@+JaRP;j!r<9ZwDosER5_4hU z6XX#F9)AN$tf+R#>)?dgax#P({K>cjA+A){zZ4CG9?lmy@LoXDY;I{uEjAx@;$@B< zjMO)sQEcPF?cPw(NIPlhz=2Dm4=;tKs>{J}QN*pwQEC&hrdZpTd#4C2{Sq6NI+ub62=n zoY5?0yf-Rv&aCVm6UZ;{5_GDA-{0e7)15F$r@tS(8F?0&d^qJ}XwAm>(q!-Z$S*3R zk4ri$#cj-lA)8Uw4iCqzk=@U--RTW6p<}*%w z^6`NIqJ&J-tj)$?mNK~D6}8=FTo_=3OBgL5Plkp*QmE1lO-xj9bK{2;XRdl__PFJj z@^Wrim@F+2Jt{b=Z@5_$lpx&r#nj2DNgfR{b>G$Q&-mEWT?fhifC zT4eP1D?}Np9ic(^)8mPr9#yf8?6{za67eA{Jz;DpD=Y8b%fKyNOE`D94o)Ts8kG!h zokS%HfA!MNbZEZ^oq^}6@72A0t!gk;dVYVs>%5j%j;66O0D8WC+mcq5o!-V|B`Rtu zp@_0?qc}j+<#RyU0HEbvgZyQ)|2>RR$?s4-=wX>R`4awJSTGjzfY4~OQLfv)IwPn5 z;u;M}u1C8vJn=g1_4U(uqc|S&HNUvr*D9Fh0B!IyFAz8#|IyM+&%0`OE1$qD?cVxN zwS3F_ua9X#_EpAB!OFP&6q$Adqjy}7W>JlM+4dYoFeF=l&Br%^`Rj&H)-r-YHY6l72+5c(u^2cooKg0r( zioLacXi14z?REX^mIZ*@a0`DkPjeN-9QlWbr@msYdGx0O$iv!=QIGPT%&M;SE37j2 z{_7lPW=`&Qt0FaDBypEq+69Ek0Pw)d?7ONArXQq~Qrfw?aqkjJptAZ9aqTcag-%_m zNs~{0P2aU4D5l2u(#1%cwW~2 z2&3%xel0c9-W+tk^u`r=9Nj{7D=uzpbV1dn;U(upvUnS_&5G@kg-yIc7d|p5b^AGe z{<7DtlVQdylf_I^4C4!!hifW?)i9^Jd1Vy~&zqC0$OVK<1|fmi9zaRLyf9v?(qQsr z^?5|&GutVudX;+(_k_837Wiq$kU7ESYZI4GMhqzWH|{#pW7_K761??3thQDJ;k>e@_C+X4-00^$l=_qVz1O@s zY;|i}ILBe!+L27CNBi7w?I!9-A{TIkm`^lg65~s3EdzG-5-MdMdMH{nGf^8YRkHi= z<@*S4!^-U~7G&)Wuku(1!KFWp2ZsV?T0DWO5{A6UkvL|gOYg$o?Yv3RjVw`!d{=!) zhMQ)gx}Gi`+RL(h#wCQBt#RXhE&cal)y6^#lPQ=8MLYDcxn6B_|4fqj?EGrn$v7cM z-{EUUeY|p&cu^NY@FwH&$kfvL-(QnL!im+O=gsW|>zGS~K4Ia~JmshMAdMYAZ1nYT z>AL7+nqCZ(eofkFh<=d{!czN?g9Zpw7J|*C^cLu{zzyerjDsd01E3y9rbs zDq*q7$bMkxd+6j$vbFo;+`ec3=I?pUz|iUj;8!a)lY%Kf{^O+gaXku6N|}^qlw3h@ zt|G?vyIVAf<7qcuwjYOkDD{hh+<7B<@vdAmg87WcsTi#gLG4KVcT{zQLA}3x{>zZm zB@r6<$Q=?(NzB?eV3IvzY3?>|;V@EbYIRG*>=#-4^)jHpc`* zoH5epUL~+^@=RhWur^_^#2Qc0WH0xC^tAOAkO#ED1puipLWzl21&+}D8iD7dC zGwXX7*C`~#IlQpdJABZUazbbR)S-u8=U(k#O32PcG^ytQ zh(s~|e}t)!wk_>*f#`wm&yeE6_-G}T9)+r#ibFU8y$X*c6JLy&Acp?diAXrB8(;PM zYj^lF?EgiX{B;4^3WN^1rL>`f{*}>qubpYtH~Q>b4lsIiE6^kqNAFC31WhgD;eD^; zSFQUuy=+ej6A#QKb8K^t8qQa1Lob-05H8H-RShTEyi=g7?>2tdZXMHGc|Y@ZIEtEn zb>zqO8cJTKAN`Q&O@_C<5#+a`$&_H2?8&PaN|zD)BM>#fT@yP4d&^6UtW@ z;p*2=%YwEhJaMD+KaBAUZ-RrzX0@%WPAT?&*2Gfu(jJ=Ufw4HM3nk z7y+__u`Jn|>nplD=a!cz!KQ0P>TYvm+omT#kQNwVG9h11Jd4}TZX#Hn%|@A05fQL% zVnX5=`o8ll%At?9zJzMz?rqIIxxk$zteaIQ`xACY)tf|c{`TCCXkdN+_?DhD$B!aY zlC2IuR-{2zJW@A9SNhuL2XU5dEvFj?R_!=v_|sahiDHj-3jbyC)lzG6N+cE@Pac`x zRL6lQyonm$ev~peaO}kh9#+|G(OYk8M_`i<@7g=ES))-t*gMRtdWr;a(F)tn8rxJY z-wBh&?jAifn{Le4L6avuU*k_g@AZcKmOpp4`+Wl$V}Gi!9TepF?X};P1i!jd#GQU{ zS_47Bj3G!B(Ob-(MVKq<^i<_}8b+X-tA) z2Y=d&Itj4h)E8V4j`@r_$hKTXzUpEeCfqs!6?ZXcCY*G<$|-GMgKjPSH(MJ~LIB!@ zfSSEt&%o{xeHkvB8fG!qHd(^Gdre_MhhR^%3@FJ*_uaMZIKFC)_HjsbCuMsbXU!j= zQ>@3td+-AHlL^q6`=+*Q*NHAs-DF0WI_(2^1Aq|+os4)*wLye-xz4ROt?8Ust z<>=(M_GTBq-2WVp`?$Ts99?;m(}3<)>m!3^apo5`+Iohpk-aA`aa8eoq%&^DtKol+ zaT~oDm3usG_l27)qgqP~M4FpHw)Yed4sWn@&Xy1c^&5^~t11JGGhEB@dV;%GGq|fA zk1}I(@X#LV+mR=GX~&Hwa-q$CnPK!w%EnLBmTf$WFzN9#SKnn;#D+8T@~Il-D)mEAU@ zmlbtlOhAMib2U;+=K+fpGHztdt~24uH61_J=Je5%7a<0wWnZFHN-JtOkv{09*LFvKF+3^VOyBYa9P@Xd<39NO;~GJV!uQm@H9zMu zc5Iyfe6lMye32%x@|~>IJiQs?{AnKFnAvo3`vFIejn;8g<#mr&tUz*NMa;x$t3>cOV?*={d|Vz?vU_$Y}6lZ_Q?OB#|7d?&|sQB9*u$*E-SiS?Jm5vV1C@ZDbD z_=g*%3u;jF-u3&&zgq}jW^A6RVEx*EO2>ZMQHzSxL0$erCj-CQfiy{;dP!{siL0$=kL-|Ph}3trA7bk4egM|o4Z^l=u!Bh zPiet9=tJY&6%fKmgiN1Os#@OWtOeE2_VH4B7AxKaIG^JxWMEa6smZ5`NIU49yhE2a z+O|e^tBpP!!mQt5^sriucrNP=fKS9ea7FMv)6bX_bj&VRWb)o+x`?Z-k*`uN_J`qNHxWEL%yMg#JXsfXR&nY z1dDw;(C~fsZc6qW9puu6Q<<9|)vZ2Ph%r>XI~dD3 zYzs@opYsKK4gY3vq|f`W7!Nc9)rf9XnyL-NF);NOS9nbooD+I+3%VxIG9}VD_c?(o z{xOS3$JDf-%)|D?L5sb5KH}NIIX1$~Sp`ZKld~a2SJ_*iCIVS%w9+_FhvR|0f%>Oh zsSA|>;Y_Jlz!ZCUu-tR>s@=W?N$%%4u6msH3Zdag<}vf}xiuTe`P>-ebe#wN*a$gV zN~0lp$Mts}Ur(FifxSW1rzS0g_4|l1yQJ#3fi1Pn`eqlK;#dajxm>}@UaGe=hL2oG0r#jJW5R7= zqIMOQ1+Y@WC9IDieOvd}dlRkmUTi1h>Bw@#n}?LKhQd*8bNzSh@sny`Sjdl2KP@{rh$Ik^9q(Q zbc7nEUU!T;vGa2fOh>^!N_oF__qKRu+jHEAN%Iw@*Y`eY&NMKVf3q%cEJ#0k-|SVJbTGp6wR8|6#|-t0 z79Xh{k?}ejgx&*nU6W-~WOuS^1wG0#eWw94&Z8DvfUuh#y`?|$>)78^^A(8N+*^>u zvp6xoCOB-PA$2vC7|_D*@|Sz#rGeLHb#Wb}{S*9a4mm$xoZqZl8BBbWsuu2g$!n>D zp{s&WM=0&KXXL&*<)4>jyBlFa%X=;xkdv&D%hh=F03bxAl z0i1}0^Q3i0bADBuUiiceg3rRJ5=c5ZXsRGr5SU?XpLnBT%=UeRIc;KB#1;wj%i>45 zhq1+R?#UEC8gggC^y7B8SEdWHw?ZqPDJKCygTN_PJdz`W1S zWT*qJmq$FM%_DFEXrUj@6|lW+Mjev_!T9UfuaM_qx0tM8EQl8J6h!?Z706A!gK#dy zEg=Uf?cq@;GXasxn-bq>CsXt|ND1gPsgf67R(3$jb)V3^4kq6C@7wT32q=t;5mCT7s$Db16KFF9jBYg-U@HCio_Pz9LIHsA#&WY1xi}h`ev1 z7Mqgr&qP-;*|MvY$CSQFStW2D$7|^oSHT^+rZd@^Lw2ju+!Aj*LAx}v*f*Q05Eo*b z!}K4r{>jpJA?`aAxc|R|X;V1<*4p0wfQ3b#ZxId!LrT+r1Ws&QLm;XILaLnxw&(Vu zU!J||N#5ZsAKuA8<^ObSO{YmFLbE>d=~{qjSzvaxL$QBo%C3MZCng`w_ezm+L{ZU4 zj}FpPXG>GeuQC}GQ;)}-G5!KwK*bCHFUrmWD692t_b(_&si+_&C@NCYA|0ZlNFy)Z zARW>j3L=7l64EW*NH-!`X%?&rF%>vv~W zZYIg@oDYr36?(2DT2n@$=LO-W_g={e>xAvmJ!DkJvfy`a_j z@tPD#NEbtG)Z#!Ez5MGOHNQPe zWE5B;&onHyK0M(1-cY^DxM5@MpbyfOdzk{EoJ_jw6O-ug_=v; z;(|$XT82~qr)H3%{QAEbDE8~a{fvY>AU9JcF>kx{`{TiCO&mCWyQa&bfsj*k>;$bE zDMQ0FI~VY=T@!E$`S$HmHK1gU_n=(}G#5-vOq2}K8%X+ELQbG}zf9Tt#qG!m9#Y@bRD*4j zdsd2a?o0}y%VhngLN3@cbCj1Jt*+fLYp*mT>mMpHA&u->N=XyIV|?6o-SO zQ&M)zv%6$6K_y*=0IUnk>@7CE{a0L$M(Rl^-MGHcR;s=N@gc%4YLP`ik#l!C@JsRT zz0VY=wzWDsy37geCRlEMtowk#$EZH`;hek zM)efY@7LtXpNZNhbRgH|JWxDYK593qDxWsI2!BY@xzRN0m&HG5WA79n!Ow4`9=&*< zy6WJgtIKX2E}X|Cpnl4>dH6lza@K6l8huk^J^i#g7Q_44N>b;G$yfUba=ITAlN=qD zU9N5{`j4+a?wXUC`#kBX@ajMjBfzvIqPZbBNCZ5naBj<+5aR!AJ-hj?5YenbjQ21r zUqKR~V1$G&f-j^t*ujwvHy0^~K7kfRm2W`6uOp1o{e?_$#+PnU5>K$dRHMYnV=E{r z=4AzGEhBMGoSF`Acgv(POEtH1m^Q76^8@DKoIKb_p%D!3(nQAAu~O#TuVecaF_=&q z?d|S!4GC6kR=|Xxs-zlY55hWPtyhmKEW8K(fucSn-qFy|070RM z=;&+vJIk#QId~L|(Lrdv6@;@?>U3cbe z4RSwMtJH8*R6vjss{J-dxzaem+zanUvN{*kJT|yZh$T^-d3S4*U2Tmhj!>j0S@eno z78X`MsPqhj+_PPbzF(mW3_er^|Iu0YnMr(0<>4VtFHW+KukFEEhj`0>0`9B7gYP*l zadg@3{F!zvw)IYJ6;@mDZq~hlpmKPY&Y(BqD?$Z75wbm2BR*LrlMmh6OFBJ7H~yG3 z^po*z$*TPGQ!tjwQZgCYE0a5*vkF^#+Yi~kIb#VP^Q_8hU7?Wg4zY*F!-a6#AwA#65}3#z8UkRk$pgjYMyA*!_Bku{2Y^Rd{bj zpr%Xen}3jT9c5)EKE>(m@ynz32hZc;U5bOK`{LSj*~y6}5=}F81B-EJR*oB7x|@#@ z37>qje)Dh^tasqRbIG1YgFUqSy{NqUN^fDH-8y<9AAddre!X|190-HR=6|#^a4u{m zNPpY2!VAE3Y0LFSBxkaqYDvZw<^HRj*uB1*j=1Vl`f42(HdGm*b@M_WD-A2n-e|4g zyL@0bv0b4vB$xy*O^Xmo%*oEtmjCNf-c=hf&?fN$;kBasQ)D=-(C5Kd_%B zBI3%W6mn8+!GWaLp4Mfy#*2jQH**AD230tfOwZ6+C)XiYniJ$$5w#FFWc=2>dQtpM z>t4%OGOVMEH+tuzCoLO|1P@Fab!T3ig31)1_v0&{5Y;~wPSVmie8<}ev`>u)OcGbl z{az?2%Opk*?<+OT>%N#}bT$*ZYOPi?EdRIsNXJiusPNPl$05shcyVU|=plDc-@FhC zet9Kyan^h7r~CKKto0hx1)l^YNrp}<^m;q3)PRh?YFLP28Y$TadSB*%5@XfYVpn?DF)S zw<-*Yn+^QlD3?N+yWG@GKPvqC8J-OVtzu)E3fx^uDC%>;YlZS_b3XInMiT~~O_(dj zvb@&Lf-7Q(`C3jm@mfv3P2MQ|U~~&UWN>GEo|Xgw97pF;b~6~J=G%6Phm{7|iWT~} z1N6u|Fy20oh${7fbDa4umQ6^6>P;Sbu+%7IY8eBuL?WE^6=V|m1q9YNH*c}BegM<_ z24L1+9+t}AyqcKq7kJ@~{pgE_r#50R-{r|v&{sej5R7_BJ#)&F9xcN*+VC0q<_Ug!#W!-Kd(d>XI;`hMofpuDA`HfVQ;QB{^DU|^DKwAIj zDeiYbTIY^rAExf7p0q1N^s&eUas z7$hOlIhc+kf~4}9%%q#eA!uISBDc|Z_zv*CY1(Z)NRNF!IgFG|=Pb6T$)PQzxG-NX z{boZDFbL%hA#;?w$^l?!qv>aiKm3USc z9io!E^QGh>bBlG^FO7CO42q^^UE+wx* zlE6RD>VE8k``L?-^gP~kY+KYA)Y!Nra_F_ zHas0A~@QL zi(1dnXoVcLW(ZAiJ8s-o$UHvR1?~b3gNw9YhC^_UBe7Wh4z{1+SbN3tT5}-!Aj;e= zNg7cW{_JU$=CiXNEj%4oGo(so-f|zJ-DX~=?%!1?5~X;EPo2YGbo_2T(EZR8a5f)5 zetZC7#yi1cyH9YauOUXHncuNqkuGX&(;!NK)#RI$a*E_?Kg~DkTZ}j6Ty)BHv~=}Y zK)JQW^^$)Z81M>>PI%w@v!C6srRd9L<(g@d(#Z>@3k-veOBtGwSiVTxZtC$RX8d!w*-j?t;^4|3NH~G_S491C-zwNL~>#BnN7f$+zS&R$H$Ghk9 zj?0NXdoeX#v@5ixpOx(XleP_>XE`Z-{^uD9RvGQ7D|*UOQVqkYi*aL-UjNTVk6T>JYumF1%U>F3-VaVt_; zpKTgjvs|+nWFwya0;vRI-(`t6I%BHOxlMLTuhNWs`Y5TtvZoW*)(4W?-QM0ehM2|z z?57dUK*4>Vu`w;k|E_Os^~8*pb-N~}15xU`WlxI^+VS8mL4lPx!}$-&(lM#(=b|?K?(&c-#=1m((7Y!OrXI-IXD^B1z>e*xYbuRgiYQTzIDApqaQ4Q>=)cz(Fjnq8 zbg(xEQ_CCqw%%ToXISqueD~DyW%8y4q3-A&I5e2dEjKZKE`N{Xl;Jc5%?O(K%M*BV zi_z&&c6UJqweN5hR#yOEY}8-zEKir4ulhx9%bw^+{eH``N>cXjx=_EKXHtXpcZ(iCI}pnp8K z@_ZQQQ(#fF>V-RO+^!U5g0GegyU~nEGO7%QV)N*2Nt{lH9^PvzK9|F{MNmU<9|-`D)bNwD`~ffOrF5a z{io(UK8EXt6Z+tId~JXyu%!)3y{~BNvg0|bWh$ZKs!!=jSJXuFU!PHD{EAOao(dOu zvN13>a26VC_*bFpG8zy&?f` z0~$%y+*@#)4wQqdfhnAK;AY5g`qts%C};CllHSI_7Jp$wopZM6LJIOs08X_ZBBvP{n*ND&cvtuVqbt5Mi4=;&Lz+heTT>e&+u=KRXuS2+jR9R_|WNR;+re30## zPW{k3&w1AzDS6M!!8r$jV5Y52cNj~;f1ZAS32?LdK^(H$>$cM)Ew9JGBm zxl)>$p<%qGvl3sk4(d4j*h_}^c!h#8e@wNL11hk(sN8f?vL5wY$RteEPP1j*2FZ)V z?a*OoWmw$CrcgX4UDcwhsEtYrzJr%;zVw%7MG}d!;ML`~7P97{X3=ME6LT+8)Rx<) zKtsm5za@n|;N4tjLP3-lq2g<}=fDbh2*Gd{K#eiaLN5TG&aHPiH+!ZYDwvBUziM0Q zkYaW|=+zr&x4bA+k@1X?E;v2_zk#;lYimPA&LIU@BX(qIId*&W*ppl6+)Pp z0O3#l0N;$1(20$f>hqFl#U4GCj=gYQR|fha`fs5Lzv_Cx42aMyfN8b8&JQVq*?*QZ z5y=(Lu(>Pq<+V?-?myZYkCHl~zwgxR#G&gPKkX6|x{14{@(>Ct#YLlPxDjF?HF$}P zOc~j32)DnovAG^q-#sqbq|>6196e1Z`I=`4D+m+9Iwb`~9n|MYver!c`QT-|&?-Uo zF}H>U!bHn-Th`w6=d_nEUxr-k^|@c!QR0}V9AKnGA+&9d4X2{$4}v}*(weRG$2Kc$ z(%@i#m|*b)Gw9@h4z9An6IpUiBBNI;$a*X}URv0K_y+W$)Nq*%IW?gsf#{MxC^qHR zzKIA((U53qu+-FfUtj;QMnGc66+8kvR(J=R<&>J@KX-aEO_Qb&n@;Yi^uGThUtz{{ zFf0?1_zVMJoKVDrw)FaMjmoucmb?8{r7gumUiJoX&Lb$z<(qCA4vAk_)Aab}nyU0= zmb*Upd_~?{5|Mj2MN-1x)?n-eREzd{cbjh?Vy}2iyGq)ZVBm=V+d*Y&~{;>Qq?&`pQ#&q|H`XP7~$n(juo`cXf3Ea3D zz@JV4Zgm{2lLKXdF@VHvJutEm+0lO3mgHw-uPb^Kv;=TbzXd{;9y^=)5H|p5Ri{Df zWjFbC7m&e#=zRhF$it0R7UpGuQ3xxh|3y3&Djhw_J(ofn?k@>KKX0|07-y$oar=asT^U;5vNg^|2^^$NU>SFT*ChX69dy*hW{nii;Yw#V_1qosxz zGH8W>s}_@#d@)pNiPqqN!d=60niyzOO@QwM5(t=JLk#iw zUBV|Obin-iIFL%fus7pa;q%gHO&ojy(5B`FOIT2#x>JKv2g(lsL6)riGcph~H2=|7 zHK;c=TYgIJUHY!W(tQVaKm3 zddemJY@-}rXnyWlBw*+L*`glx?YhL*Zn?T|e6hU){hnW-S;%&;B`f zc#!T+1;!$*CFV4=w7TpOkQI;DtZ@sMxDylq{{yU5cg=?KLj3|TqtBi@S8?s)g$s88GTUW>3Ny11 z5fS0Gn!-WV9PLn`z`H(?9Hx=@B#;V;lp}kO{p!fGCuuWnF|9ziP!GseEx8~hR1;~R zbx8%#S<`M_;u!#siqwcR860h1aKa?NGlcnlE)t4kgTqO!7_N6Z|2f{kgP%e>+X-8`|GE`3rRnlCL;l z93g#h(xmX--JTDgDDS0%OW@I&KTBN7X2z(hLD4F$sGc-fjUE5k!=lRd;(vTp_;D3A zQ(MdRvY|-;BOQ`kgaBjs?fds2V2(ifU1$Od_A}@Y0Gq+ydDX`U=ZF3m^SN9A%mE_D zqz@eDSFT#+}PDy4=26s{p6#%;h>#9 zB)ipbU==@mE_$PsE)1&Y^?|TW+gZ;u+q=Xf_e_hZBFZ7*?*Jftz>W1#vfRC^2jd%n zy;9gl)s_QCk8h2Q2;u`F$e^ek#xO(!uBD3$u68BkBTzS>Rnqx>y%os+6;zSA-}$$| zP^||t^`E^xHps)&-pBg$TQ`u+dPbt$epL#V6s2NQGGuw2ZV9y=xk&vj^cJ)=6J+(_ zglf%R;{~=r@FE#yu1S&new_}Akhz}=!-ebTu1VRt%i(m=L5UB@d@`2mKZ)Y3Xf?GT zupTecgkvJi7zfzIi+UYPMw}R-L)lX#CN6%9i%Ze@2mmQ?IQ=oz9NgU8oM16p4V@mT z-K9YO4IE%yNW=-oEG?PB=WE;FUIg$vD4`5 zn#}_v8YZYuW&J(VD=Ycs(J%!7U~TK`JVFF!`AWc*@E;_$x22(@^C4zbkna~oZwq}O z`q%iJ*|HexvLU7(15-jul_JWD&u)ADF&eUBP4BXU1VhiPS>cBL&t_QS)HpAs01Q4L zk&ez+BvmR#t&P!FZn=dYn&%7y_ja*NAM;7?m)t02J%?2&8MI7vqg_=~F1e?gpyO3T zh5~OgomXk4@ihrxAmF0W$i^7wxU^+&E=*HH9i2Zvnn3JVEq-n+ zzt?ZKw56*H$M5bNk3Ac6H$w z4=nowQhG3h6_$`dB*x%uo0VUyqiy|z5y_S@01X(u3L~88%Ct4|f~R2h9j84!oWs6QGCzbW3bdf_;j}O(yY6Ar0*s)DlUMd3W+rz;%(-arbw4*$;7-LCFVeGx7%G&wu!SX?5tIV9YNcvdqgJ6jK4+&CXs?X#)|Y9P_?$Qu35vwIY~X4QzMjs=%*oh12R0W`7CIkFmXk1&U)MS=Fllf$zOaqc zo%aHE7evRuaZ6kpIFpqT?z^cjTEPD5iJ;gEx480^a6(Mx8wSRZnuBo=c~;ZU5W+F6 zOlN8V0{YO!#U(~49`t!!6|6aYONFAJ@9{z?-v6N7;zA7mA^^QBKBu(udovq=47A5u zm;W}oz9LpXyG6I=49^h|3VT74KuS@#W370Q0T{oU&p>e-+GM)XTQvgbh!37(=I%*o zBx(|u?GS=%|Kkn>`(NW*b1(N1)NEW1BJsCxju*HJd;0q5xZ9Ld>^AFT9wjR;?x&^WnAW`;2EV$Cb^00PC}- z*^;+IN?=zLoQW%cbQ$fRtLc~hk;0|+z{g1e%2)*KadmZd2t+*bG5+v%u$Jb4kP1YD z!ae}+$#X9^&q`qM%M@Mj!EQV0*pbOrvp22zWd|0ZrG$`{y`fBaKln*zLwi|F%r?dE zKKd!42Y7apK6>i2FEQ$R;6ZDHidz{*KR`+eL6iT86^Mes7zo=M*V}>5r0C^*@ODwd z0(bR+S&Qj_=k0@8g~td~4|-aVT?xM5mi*G~MCiw0+<5jX2Qr@M0FT)u6>DudNDPdWPonl!3urvqxhNR%sf|GamAA9I58Yy9?9O{w z)@v2m$Dx&Ie{tmn zwQ)Si6Yd9tqrbtXf`ST4Wu*r!7>-N%jSI*EG4TvCKuOMKXd?BzsqiZ=+|`4%njNKH4u?`2Gu(W0&fXePvT>9RxNee>vBRMCfSTG(#ebD+u~m~4v459- z=#cVZ9DUpyfvI|_9nRqDn6QPVd3VOI?NZz->f;-<=|yu1QD|k{C$zfj{*sy~UX4wm zT)BWx*)bV3k?LA|qKOv8NiE|)YvYh1GtSin79E`DGOGlwX9#3vWltA$%VbA~r%w(m z-+N@goGlMHY9cUfhJUf9_0k51kqZnUsV&>O&`f5n>PXr>XwK{`$+v{MWo(h5$J zr8@|TN6XT&IcSaYi(;r;otZ06RNkwbglr4jOF=s8lHBXU`sVLIc^;oiv_@u(^&o9@ zAweE5M3CLCa9TTdb%jiW9s--ecT^#M!`Jx3y1%>Ka;kYf9Fr7H42~etx7Jj(lJi1H z<^?fNma;a!&};Q|Yl!gVqvvAOJ9xocY!_L&ze2$?dRa9-B9JCgTG`EwVr=JT5a&#R0>h zTtd_Z8)VC+Rans;q3mm65bB)jyNYlklWq81RXQs8a9+hl95Zih;T6n$7+d3D6ijpk`(gOK(zRZodH}X&EWdK#V zI4Zi6f|=ZMEi!)#ecG=6xQ zEwI}a3jTxfGUSoiL3==kiMnn45S$6>q94JbU$7F>Tpmr&ci^M=A`=6BBd<`{`Qj|G zTfj2t{j_fc9tYFl0v@E(1DX!q*!C#3MHwDNrrZ_&+Rm#9TVVZLz3GG*N}ExUgc|vT zXV#NhK{J>*x;1v}Y>d6#zE<+=NsVi<>2{!x)dE+roEL4^kF`RA#QOjGA=$Eh%PVw6?kPZ04RlkPzfR0% zXcjd65D=QswM!E=XQhMF7Ol+YvYuTOU)M}eKEs)!7L7r&+GQKf4>i?ehRSb3Qw2{V zIE4)4#XAL{1P8(XxmTdBggx^)yJ;jSsFoL0lr(fwYIcDFP2(g zkx5-xMf5Oa0EBaEpIkOT(}ENEqfb1#|u$-7>gXdfbzA9()$I&-K7WeCL8shlYJS zuUBK)hvxiyuZdxO$)hd^Y_;PA7|+vjWl&Xa6^;>rUa8aQ{yk4`+Vl{AQ+*)HcQZ3f zak>qfQhEA;J-L_9$APZ^%+BJZR1HODkr>6%^oA%hwOS ziZ^?5DW5iV6s+CflAqhu1wqLQe*l2m-He$Xm`0(&Tg~%{b>K3_p^o(Uy_1a! z2M=Hfc{{Byg$EdZY?B_Ve$_4X$Si05u0G5F`#m)343lJ4N&FktKDbt^@MV0e9f5TW zxjXo|9$&XcOGNwYu=-R*d z8c{#wfws7HAfvO@lY)^s!5r_)6Z;)XLV(-UfpH>=TmC`j%<o{-r^>XAds8Zpm{WZ2)UweJSC@GK+iM_zwj=$y(&!wOM(^(YRq@J$v@1TEyQ^$j;*=K zHbuM2S^Jh2 zFs`dHw{LdN$WjQMoM{e4tCU>lidP{2pbo`m>-zZvX*o6hy1rJ|m$cueZ=9|cUPEBU zLU@-wpGW&x;KBP^;S?Y3XS(!C;qPRIkipy5je%{(DnH^g7A0x0%opXVKV4YjtcaeFIVp`Fm`pR*)yLTOzZg%jE593`~lOPl$PcL{TdmQFu+s7n2tH9S7D^v zEWA4j=t>4Kxh*Wi8J?VYmwhdF^+euU*pF;+=iB7R3N7Nzw^}+IyoECADRl?Wp*!V# z#B*iOJ_j8IG*+JQA^ZsXR#;bwzZGNNI zZZPJ01$m%SMn9rF(n~!YM=Pb4R-IYXX1OG>({foGCl>umI(IZ0tu{=0F78oj?lBj) z+in+?|CLT*1gTx98IYEHiDZfT9_XOa!<DE+c!9?njH7Q&UqwkH!X-9V|>Pb(+T; zBrq#Z1mwS=5o=%+n8!H}m)nAdhTh}%9|l#5W%rhv+`o|h?1A^pD*^jKTx(*#el=g| z9dfxlE6CRXqH@C6zyAN!8tXE34E=#D*NLop~$!s$6OT4N%A?%zS0ve)RglOk(z1TGKV{(#ON-YqMAhBV%%x5!K zi%fb2F&P;-26hX50IUqz4Vr}|Wg<^FQ&|ZYm)Y@ab+$9jykYOD>`!#c`S*F$snj3W zq%(3)kBWpvn?D%$a>sA+UpX07?ZaaS_QSx0Lsd4tAI&1$}qwzM-sS0 zWo5Iwj!rOjlb)GbA7%`|Gtp6Ep^41*(~4g%AqT1}up;WAZPc75n?y%Phkz@P<`Qs? zHOt$O0%*d-Tym9?B3}uuqNg{xUUz|xH?C=sJ2VxQdKA@dv2gIY{rWUJLoz0Og>R!J zPbn-hmHsxDx{toECa9unhsx97b?H4h1O2i4bVBNPqxnvS=qs0Ke}6;C*4@5*#wc@=1;f%vM^- z-f9^eMCBm#yc7)k;(5GU2;V|oQIyV4{O5kbMd(lGV97xn0laxy!rz(0`0o(6$QxX)#GT~HK23fCJ#N?vrj-hp(E6G>cr0|(5a4}zQ8xE=+49Q0arY66}^E}re z%5uM`Mr!chUK`tH6CTdjL^_B>v#q_NK@L>IK0W_dIw~u2mg*QpMGGnmG*?5}#kaA@ zQ{19khByz5JH@FP`hc_r2ZehQuo>wz{2IkjWwn9Rl~I!1w5T+b(m#fg%u2;mf97u8 z2R!H;>mjT`j~#F`ysRG|rmOw5MpZ7GvrxJ1ianfbO#R$#BC#2n6Y1kOvG_vIFeE## zK$mqYLFFCKid!p-z4^*OB!JwCmW_w}AMA18P6R4OEgT;HsI&mA&eD4S{;+ow=lYM6 zopMPnlEnK+or7c9`Dth{DnYicTq_MEQ*e)6$~IQ`QR-I~VLnJc%Ve_D?FurchWnui zeAHnf9X!^tyu~})_|*;{k64D=UY()`XIXhnovl;y-a`h0xerH{;&gap+LfIGTqDtuui zOI$&)5j3$qyXM;{>=#QtqPb9iThr%)-Nfor)m0J56vJ_h8bUrfV#Q|5m!@7Gg6@54 zB&!Q_Ei{4zI-EGZjfyAa{rHuE?oS{62_JOW@=Nnut~N9q7dg?)@Q6C!EcZ{)2&)fPAC){NB#=K2 zjH)=ODmacO+9V=*e0u5CF2i33SMV2@`UZwum5-8*Od4?e)pwr^ikn+v)f87o!gK}m z)nt@ts&1R}Sp_@wFNrS0`CWL7Agg3qnUGUw+(ha=YGyL$gm$5A!-uAN;w8@0!#!o3 zsHy5SzXJLDvD(edBS>LJI5bK)2_8~Y+&s{FP!|7@p%Egfe7Ojx zcyFto)@HWtYN&NPpDN-z7^XubgD0Q;c|Y{gU1vxWn~=+zf$`U8tM)P`fNn7J zqsYV33fA+@LvqE)ZwCyEALZNRC9{drhYCi*Q|436W!Vc`ox=h|=w7Qda3&$q^(kvd z^iSVSm|Ac>Ft?BSIA&*WB$1M{sF zHCxnQf<`8cH7Mj8KtazJ$PYk^5BAItMl$A7DbJ^69gbNp+kznR(CRrZw&#cq0X$}hQE49c9 zObjPzUDA*_bJOoN|E5+_+}gp^${M;V?IF0+%qh(yEr+k z>j*yk`fjYtZlDbHyp{q81yZ+c)8GH4o*GOGh1ey44B64o&{k7 zem4@BIF#6%wa+CJf8l1Xy*;?rSdfvZ^I9#OLb>_ z5wBuXx5l?GDew@W@E_i(7E7OYDZK}QapeN5`+z5~SH_xSPLuP17PU5-=zT_Z@&o(O zgGGX|pu*$Hgl+(Hzd9W`{K!+^eCD}pl8O^hJisfK@_X(v;6xyVmM>=;YU8O=LC;J4 zo1#m@-gNi60n3=tbhz1ot7s*>$Bk_^|VpqL&g9;15gXT@06 z_-45{wWg)-i=8ehz~}%tDm4>E_?N%cznhBz=v?GE(LZHrHoz)^$;o1=wL75c{Ia!3 z@shPIeymDS*wR<_l4ZB@1#%|Zj0_{81CAa&=SY(;TaWoXP1ssKL4p*#Ec36M{(603 zV1~-%fzLh?ONLvN1@3dM?>jcQ%#jC9>9J2)=jCB{u7C;WRa;{9Fs`y2)`!LGr%e`o=0#~)?|8b9-xKTivX?Ka>z;yuK+Rr#Tn{`$ER}9qhJm&n^BQ< z)lECVm#Fq%dN^NZJYN*iWxYFa+*wWe)82^I!JyS51T9Zh5c4BfInh;e@ZCSZ=N%&; z;@;cc?4kUUz2W?+EimUMWBd#Ml&v9}B*u8Oj?j1><pKt0Gc1@yf>77zxVBvZ1~r={?XeS>2`yz91BR|SX-q$K-e!SbN#}i$0D#e~ zp1C+c>AjNIF>2ZYrcK_zq7cazy=_K9B>Vx~k~$Q4pZ59$R2eXV@7 z<}^p;=A`yNe2XBstzo1@zMi=Epwah4c6_A4VrilOlb3EG=I>YMcb4q{gwN*{xKp7I zvcjHiaH6EY1qGBd;{|fYQ?ZOcvl~0fmu1xQ`8Q zy=t|L96vtZwR9Bgl!8*>_2%OTn(A@i4@~5cSkliXA;imJDX8Rp_NXXC(Co@{Q+OUYE zL_Llv@kghnBM$A1^vLYi2M4LM#XT8egZ}`pfqc|^x$ozNcZ-Nv8a)`0!ocuh@e1m< zXxh@r4GIs)cj;)?@TIeo79AqBv-1y1H9U`;k>KfqFiizu12p^Ah>QMx2LqTQ*5~fu zkfF1`OfcEij$+7PR_$yz@_gYuvCpBoG+uA!j$%CyP|swKd$dyAuNO}LoC zBmZ=h6few4Ek~bWyagBaR|+oW8K#R|x~jez$ZZPMKtB9t(B`vAk`Iu-0fVv?4%IPF zD+WSah{6}f&w1BZWDeafD;Pkp+?TYgyaN(-skNg#DJ%>z>Q3nd zawkj)D}$5v9`y1Tpz94@CM8%j z`uy!6QxVic7z-KYNpas4nH6I@N(L*0;_b#u@qmLfn0?Jg3XHw<@{j3}(bm^6zKpiJ zwdJQ7#I0Qoa&g1G=c~oQ!$TI_{25CQ1?ow?9y=tn<&9X;G2m@Ote}Xzc^8H;&dnLZ zCu2CD^1sE!JuCt7hX$*Cp#wq&|H^h%8|n*!niN+(0y`DhssKu7QK8XZ`<~J~)guEx z&A4S>fZl0dnVT?R*Uz}Y6S~HdSCOKv=i1w zZ5nM+ADFx*)z#E2+Q*gE-X~g&SvFf)`O~c2b^yl<^V7?S~bSxYG zoXP{{^j8%Xd@yRzAK2q0C>eQqucRk|6JYbNnOVGiNw$xp+WiKmE5D2i+M+~FU+JvV zHR({56cy{kkacN$*IPDWtDQ%Wcu`|wxg;OAtOXTD1-|Y?y82zk&~(F{+m>|4taU%` z#w)Tmi_!Vf1Kjh3?)f~>mn)&~j`DcycU2pR7zK5+54{NI{n!Fla=a%2ya z?J!YR)=?wo9mYk-KZf@ZXz$vPbvrd39S-8ThcFKt3{{$67QA^g@skWaaX2SC!Sy4T z0rN8MVY&D8+}VdE zyStdG~{LPj%H#NWj!KCo>RpUsukOEd*P@ z>lw`86Pb@ZFfWk)~pYqc6 zqcfK>)*s219nq+<*Wc_o+9+W4$D<(#w`Z3<>oJ?o(o`nGWB{T`c1Y?&?F zWpaWprOXq``xo1!JJAt$*4}oxOVfY=P?^EBy3riO% zSoh?;L)4DuyU!12GJlmM{Y=&#s^3?zQ$g=3^2$p3I{Ytd-}_81IWo8FSn5ei(p;9i z`~sg=$g$5)k+}=SpFhny62ldV8%k+fb?fF$|&Q-#c8Old<$(O%HKMng7iQ(ZD@(BL;1pdpA9X~Psb*4|*iw2bnLnQqj6iY>( zwq~XgaG8u>z{ilFNNK1$l#9;Idh8RIS|~blAQUTNTcz<#Z^#Q{7+~clGDL|a7C|}G zCe&X;6+Y8D*3>@K95prZSuZvE`hu5~($JWUgE=}26<;Oq3vcY_9ERo^o6mmxk=y=9 zuM2@XwrUDY02}almM(1LK)7>Z?6*NggHbec^mHF^!dz{$)ls9gY zS8`W+r@M+B{rZ!61-hg|$Gl(tlr9|(Wj(zJ1|@+w^(Rq+n9@#Fzg@JiSPXGoZZ~g# zWR~<|QKl@61tq}z2Rq(C(%+Pd5$-mRNO8H6#Al>q>0C;M8e|pc&KoY27yQ!M*=)v_ zNcoW$73kxWcIMl#Ai?SnN`K+&f%>g>n^yJvj*?$KsfvG=p!doPUwck-mVawoPBFf! zzlRvL5VF!0^=5`if0U9@UonoXSOUz2wjTzccE-TyGC-DX|j%EK?4+Zy(DI_EGV_Do#2tXFehRn zhLZ8c@JC&Z;WudOrL6V7hSM*`d>cV)d$%<{cr z&mX6SWaodgZq!8{>K?K8tJiU|YsedjZSS{+IPXm~S7LSV>{rnY57Dn=h9V z5=MJi32(Vn8pWz*HNw)-BcBNOV{5Q`L!q`xrkHF?=gq9&5xUk!l<-om1{$-MvsJHg zoW6cq2;SW|M|Hmz6^dRP>tpRq-Q*vwk;QTm?aIl&`oz0wh!lIYC)@X~>ZZvBTpfSM z^j22=FtwK_^Zl$~^)xH|w<0qH?gPb0t-v&3=&6QwMW6)pG{@Ay$@^TLsd7h5Jg|kzwz2WW3FSag{gje_uy8yX9 z=DlTErB;v33_6RZ;D%Ne{7Mn0%Qmj{ zj+54{Z%-XhQb@>8AcU&&LVf+1LQss|wB4Sia0~YZfs|wZP&oQ}$g8r|+OrmUHp(U9ZPx)qcOJsee`Z>zuSrJ!dMr-ybGzy1> zskWoWm447&YuLq0KD6JoQ|`fyEjir6#^>W`O~1D*&R7xJm*(7Vsz*8wD_uqLpFb}X z^|M@X>X6>gL^CbRbL0l^uwLxxYHr2G<*ga<;3!O^FJawEMR!Dm26eib#JtazJnjv( zJC_}0wY3=sbemUW zCr2&$3noo$sPK0--`UhV{VjFa+d{-@C{myLXjI~sza9Oa14}%-qy@IL*UET_?8>wO z+jV)*7D;36g55juA00D;9hJ{`@FquPRl+4)xE=f5#6G3ufLs6cll>-dGLy*q5fNZ- zEKj$tTO(^IQ>JZG$97gxJ!Ir7N5Lo7e$^CFTwycAkWjWbvEjqY#0{0taSX5I5^DEa zR8lprMKlv#y7bWxcYQO&%*2@Ci)kOP{ zHa;rDJyRa{^c+eVKQ#L)V?2GQRUg;b_rtpmq~r;e{FhScO3j2#2<&G6+3>TzKR4AmYWh`r_Cz&L@ z?s0y4euoZ~nT_6|dsA!H_}q+{NjK1vKa}I=r@yxW7Ch`(kpkChr{^zWKTc@k!l}T1 zJpOoCjt+JE2UWoKrs%`}Q`wn@bJ=!l{FbOBkts@wMb?c>XbR$mYu5HorFdnLmz=7UHYQ(-PEDLJ ze)&&0Ii~aef>J{OJH5Ac5DR6VuusLzz%`AUGkkj{deq8<%Z0nmqR+kZF8fsE<+N0{ zUfpR?(VvOPJN1sbf%BN&okWW6G_jXCWkPBQ%U9H#965&^2bgGBT?;O8_*wmVqw+n- z`aok=$v)Se4NL14HmP$nbugY(aR^$lxB9)jv6^Y;n~2<6JAHny+3F0s@<*hVW%4;o z9cqibAGOZ&ezZ*dt>lzO_p}Fr&BB~Z-_oqJj#cWOYnA)SteAM9w=ys2+4)<_%SUQH zb*?>6i1PWqQ`lpI0$MfqHXYu3#F!?i{Mor@I`&j24jyDRCMJzbLo%;NsM0*1n_E{n zki6Eo+&z7mfP-J&9?*>}QvI)h9${49i@8kN6`*r}}bO9+{w{HMQzT-98CS^RYM#KB?3^eQz}S z=KRm-NsYqij-IS5*@NqohG&V#f2Uhzho_`XnT>6c8kj&T`(n({U_myH!=JPjhHSqf zrp=B)qyEv|wv#I>t^q82IkRc3du|q62=!N%hWACq4Zg6Pj{Ni?;mqrvElxbeG;;$l zp5hIDdS8X~s=`|F3 z&{Y(rs;i%JT)pLRK;d&LHG!-RbW;0}=8BrFXnf_Qc#crY*5}ddpI8<3pQnP90}-?Y zjz7ZAbX3IKRg(z0I?dBYWB`^Ot7y}?{axQ(%gOP?-IJ?SGp2(Z3AvI}9Y=U+5a}W$ zgw;h^>e%caUr9E2Vc~7)W6aOu*tIK&q`iV_ zAY*LI{pE{TRgDbZJ0Dx`I}yD?)oYnOF=T@CzG2fZ`)EFf`(ko+>ge}5%pUkqfkH}M zo#`<97R*W0nbn6dZE}9zjEhVatE=a?dZ%mq{MYFWd;XdC{@bL!<*Q}hbf$93b&-f_ z;S;_KdAhf^mMGO-Z|`S$d3mklY8Nit(KK*l4wjgU=(e@Dw@*w?4$axm&rc9rwrsh2 z_3CST?F7^Nbr%Oj+FSdn3iRvmx6j&VM~Gi9%B7_(^UD;Wk2c?a-O3^o8|IC?Rhz_% znmtoHdb@hL+O7xYXP*Shq@we$xG|%JU*FOF`i~U5n3b{8HsGBVn^DE#D-j0`1N;6ZKp$kIaIoivt% zO|wR(MQQ2DRbMU*EcZ&}ca$vg_Rkmjjs&O@^grE)6g6Wg%A#*GPL3KxQxYc*m26$P z<;crw6?D921cjf=ak$<*g$FYFg)BCoojTh&tqfP zwIrzeYNyKE+6teLh>D5UPt}k~&Dlu|j*s`eTA?gq(c2@hrYETXY^18*NzXttApcF( z4vBLC_L5J^`@3Q`5HE_0iQ&iWmm-@NJ}0&uRsQ%{q^zB*WbLgas0a~mXg6#cveU}5 z+4HfbB?Lz7vzgV1EGivcxJ%1+2Nhd|F5qk7I?^gCbi{6$HL9i`k0saED&mzqOG=_a zl~_tnjtWzg0F0n5?pgSev70Q@RGXOIN7=;i&~dB0qQT}xPQwG_A`gl%BB7k9sEO0~ew#gP1CkzJR6T~AuGzbtR&PmDnG)qB z)>Bg(p&I2-7ZDsE92h8PVUhCTSLj~l%wxV}B_aHPFjM1M4)1Ii6~cy+^t`pf5@@!b$M`4Y5R zcPR1UkJIA2)>1cHntvB&Zfy?J81Q!-47__lILpi2)F6S4JnzY-sj{-&`zJ%WHyxI} zaq9YT=gn#sKJLBb=Kf9npVULFfL*ZK3NnugVxXm_#8pS%;NS+Iid(EkcCxS$=lStK$(7%f zV2p6+Jr(_L(WFqj$a6qw^PY2;F8M<*$s5*w@|VA$TB_75^;pexeGa`qhrWr4UXxuH zVC|djiX+(4M@Gzr9J8G$YK$CS$kqB$Hi6#ix3i2qVEDbGIQueD?vwcuj8A*6kt|-o zKNg$(KmOmKf8@XZ&)U}czpNi?=z|BIxJW8*Y}^X^4mhbS;I^8Wc++c@xE_ZT{OkAc zK4(Jr_O%;$goV9IP9{+%3_Ewya&mIkKRM2b;ecU56J5DmX?!Y%8`0Em(RNT&v@O;Z zi|<>rw6Zi|3^5m?xv%u|vZ?@9!SRb48h00_2W8@#rQ(_mSN<$$)ai{CKNadhOc(&n z_7v`R`tYHXlQuvM#FdovSS@QWEm<~3P>=`@mRXNJAJ);f^f&G`X*0Cpj~*F;n1F@x z!~ng;nISJUc|R{I(skf4bGq9lVrq6PsB2n${I!|Z1Et85ZUqX8irWw=nc?mI5S!9t zd>uph0lmL#0nk-MXSF|?@O7`4nFTD37plS&0lA@hRgWvP0}u@GAz}*Bah?>|s~Rmp zvY(qfIv{H9twKlsy4+ahcF17k0sbq#SzrS>K zIUTb%85$+#pL8!~&&_v5!>VL)|5XKL0avnziAj9-qJ7&$M_6C^I;Wvs%yXKG#V*B)adBa_OiWB0<1g?bM@Z>OC@IkgDBMp||5lZi z8;gL}?(w2&l?`#3W7_>kvK=S%lRc);$Gef>l915r#5>zd`1QIkeK6Nco9k(hP3_PA zfx87(DEf1CUZ$2B?CBK!QR23AFZ+6XPTqmE8IHnQ5sNIhB?t7X?_p8tzsfU@i6*-&7eKeS!LQeuJ2zm|Jt;4b2cq{oVO>uFm-u7o9Xda4WCgt4lQdug>ZVaYl@+?ve5#N>?un*G`B`fs{;`W1UK zk|iqtNojnebXvA$H7wHZ7@^5>ug|Hqo4NU=ZOY-TNWD*x9;EF60SH(XP052(w~oNh zLqSM5&pZelYmVChcm{Xa)a0a;l$56&+rYvPQHu^wXpG|!sT@Y^z!vX|b{Ri~hX}#r zhwD3UQhRy!l)U`iN|6rz>qUat#7O>5z%txiR5BDlzMv&rdOlDUfajB4{8>6_f~5w} z#*E#EUnLxJp1BG&`ByB4UqFD2yZcEJ+>`uWZ%EuB-YoCMi}mRxi~J-d;aZHy$x5lN zYKsQ8=z*M|+4YtV?qMKx*DRp1*%rM9@uckf%? z#m43j08lIl9KRPw(qXxyrj5A?*#nm2?1IHA*S~Z<&IxKyL_&+yX8y~~t)!n7nsohI zqUt>P!z}ui{G!`iKZcDPH^sW_C*}Cv~Qvs^zee=$_P0DD$gnXoWAr))bn|w9GSBXS;OEHGUiPWS=2pZa z1UWCps=!hk7+LtCt!kX>-l$NyF1D;#i;+iL@0WQdU5oI%7gh?d2C7%&MKLk=SZ} z0|34Ngz(Sy=H}*ak@CwL8a|u+^=q4mX+1s6r?6_7B<=_Szf(9X)Kgecpp97PH{M;i z85TpTUos5K*Cn@GPB;w=3`7;HoH^s~gs1n3iHVtAH(hV9lEkNm;q z^SxZblHR%d$GN#>z-T^o^)P$i&=6TNk%iw>m3r!Z7Z;|c)eZg+Uxuh@BjW%?==0@y4`7sE zUu}-1EA&tTUvB(y+b8bWw#qZ&{)yd3a@m*eP;Gu~)h+g^we_>!P;u%LaYs5>Y6YTh zQ@TN^L+NTOj(Rd6T}@7StnN74<79kV(>GDccH}1w{rPq^b@jiNODwxYivWmw_u)g> z9QN1p_I6gBnmEo&SaiImXl`!ih*lVyb>?NF;SI|XXTUZBj8y<|XGmE&yira0G@hlM zIuqA?_1QUIfw@S>>8k2#BPdg}@@;vXXMWzc>Mpp9NwHTgEZ+96%pFB~PNsXmf5ru0 zndj%_Ekoq<_4FjxQ&IIbh)=vlBp++D#vI+uv^P-SapNi*ew=B0^GAI-sRz8~f|DMJ zxB)v`$gqrf^c#KSJjGPpjee!4(zKV7zgX zpMwi*D2ZsvEde+mC!A`gKu-E#s$9une1&Z>TWV?drH$bCGn z7{ATBc$Ot-m&82)9!YFRP4DW8a^l1YfapY|o#J~DfjC3r~{5|D$I2en>HVK}bl&spbd z1_&{ELocIVj8#|5W0AQ}E{%$yVF>3!dRTac;UNW+;o)KL@bGZ*r%!F$hmb(5`KQGy zqw0x0R)u4t*Ou_|!nYqX^t2m`vMM-}qMLugp`nJ;LqJ+a#C}O{^^;Shhqjf3zN*mJ9pO2jDBVW>(ehVFihJI zNs-OZrahOG9_pu`wzL$)QK=6zGB8WR2rRC5@86%o0f&9Zj`KP?0ZB>xzkmNGh!ZDH zkcZnLc63|dyHtTmB4pWlm_!nygX16`&14osVWeTfbte_L%rB1q;Eq+P?C#dfNj=A# zGA^>6mLR;!Jz-M2@yv5KG4a0ssd)Ra1S(||hwbMh*^ihrkqI`&d9YyzkO#cQ$k;f3 zfZB^?V4O^MfDwbrQI7e`gYiDbS$P$v``bb~zn86(^@- z_(Mo&s8_kyhPoh$#h-B)jV_3WwnG^CJu}{|{0R z{S=&wOHz^(<6W|LsH)&&(Km~|B05&@7W z2y|#>=*}vk_nVYlot8vhHw#8gCVIeX{)XpfxGyi78oz67JPo2G9L45GJ=zK>9kiC=%C+GxKHap=;Pk!*B0G07u)Rk**&I zgLZ{jS3yDH>Umm{Z3sOhx$eg3Wh0yX$b9ovy;+RgU6gb5tMDI16Wxo+?m5u-Bm%mr9e;(@L|HjBb;MW;B71=at!#n>0w{H?e literal 0 HcmV?d00001 diff --git a/_images/2.6_resampling_63_2.png b/_images/2.6_resampling_63_2.png new file mode 100644 index 0000000000000000000000000000000000000000..4b507d1589d16a58a16cc11e1f83ee99b019f0db GIT binary patch literal 42890 zcmZ^Lby(J2*CmQ54N3@7iZnNiKq>KLn z|Ku?h9;IVrPQxr#bD-1AvZs1T1_Sy7KYZ~Z!v3xm+<*URYOX4ef&87(*^j z9w~l_JwMs|B;;;^N{YB3}Hkm>r#+m}F#R$tfx04c?x0o6nhu-rvMA9{&0~nnC5d znwnZ?40B*$pmd#!+vbGi$?hTtFK>H)|3|Gd^VJPCc#ug)L|cFV?S~H^?k;w9xXpTZ zB=Omok2t~n&AMXU-QAVb#nHZ*bx8%^q2=z-Z}1YJm5pxd?hgC}-Ak0S?;F!^0c07_D8OpiHV6u z!HbW7UbVEekn&g)y1Kf?Cnl=qYdq>r79g;%U+zoea`^KEHYd2cS^&nwZTb5RtfW== z1I;2`6!}DM8Loi%F8?a~*=&oxR6<788?Y6yz|#2|h2OnS9N%4p+AOq(tLJOrFf%jv zoK56wvi0o7%eCZd7MqWi7>$jOe|)6FyEanT<&Sk&q~_{-+=&P;@dIa7KYR@B%9jb( z8AL=xv^V#b`!rF^_Lh1QEBWka80_rqI$>X;-`~PxN=;4e47&Z0P*_;ltSy8{dlEI| z{rmT-71qzqS^{u7x29`jVC@*;Aa9P(>+Y7%Q%-+(=gyrBtt!JG?_@8} zPhtkLDv&?%EJ7XW|L>KB*F-e9JKX+X2Exdt-Mtdr9 zus*89!Nc?1yf3woT+sO$VrNG=TOldCJBd%JtoO(JTSO3}S+1KCou>!uL`q6ZZ9P2- z*P42*jn3J*>RCI7*A6SE8h~=uPh27%z)~-Dh4OE!KqDX6eEa!$3#> z?WF*Tr8rs8MOMINEqZrn?x~~-q1k+EaA%+>@!8>KK1%0jvG;`V6f+13*&^L)LQhZ6 z#go0|!~@ur{J%dxK4nz>67FMbe z(ym{>9{uN!A#zPa5)u;rtyx!>Tmrk%J7Yt`&)oJix;CP3knxCoOXoy|O$>7TAdX~q zz6*QoE2}fba60~d)`t9$uxBOmooxdHs;m8(f#&rvF=o`8*vgkD%T&m-69R{Qpw`V^ z5{ACVgNcEm@>p1y=*jAIZIwATgrf$bq)G(2Kn6CIi0*i~)hEZlKX04CPRUMI+Qz{1 z8Apo^lu9C@4$v#5s>7oP^3>?fj<%*dVFzMhu^EesiV|In8!R?9H)D8hCm4j>w$wF> z^$Q7EbzhX0mk*taX06-kR@v!g*-h8T+zZ98fl?qrZR~^a@bqM!o15#Ltg`>Nf4#km zd1^TkcPJ@S|5V<-eOuPu{X25(S&%5SyHIG|wx(oZg|d5QXASxX2i1Ho4m1^XDy)a2 z>t63M{rK@Cv9hV@Nn3ln)cRfVZoDf}E^|u?i;L3(%+Kc+N3)5Q@6fQAAd#wFo^6XN zBo!AIUuSr|`&VVA(YM%Yw$e7~I)jkw#S0Z7dfqm24>-&G+|xo>NA#XgF8 z{Cbz+HY6DueJT-dIFo3~kWfGU5#*TVB4XB1hg8VD>Eq)QlAfNvyID1B zJt3kYPwU1a&JdFE(@f++)Mq#vB=_za8ySfWW-I(k6&8Xm>S%f*?%z8SULq!jju{!^n@MW5~_6l= zi726{X9E;HKUq%G-UQU6u*(k_QvtGSf}qP+jkD0ZY$cVImn(<16Xod&NxT3@<~KKc ziW@HhLFxe%Z5kifD$^Ig(sU-O7XLygz(p&8*&WaE9?IL^ppvN7){ttRIteMM)rI)p z(b4E@J_FU(DTOMtF5*J2r|>|t<=zzSb>5d__{vuUAvS;)>U^*C%N`5=?M)%$h*SI8~MD>0J$b%Ae z)o=>o4CkHO*MN-o<OE zyazbZ0$?7-mT2CjV(Mck--pT&@IL1VX&74zAnl#~eN(`DglziBQ1y_QZ=^u$DPV1O zK0bOldw+Y9_-0;(5;02w%1Gd|r}XgffE14{Dk@4RAOEJlUKkRdLJ}XhHbm3O?A4_- zAnTpIy-fK8PI6J7WGJu$b+4W7@mNP^T*NY{yn~hEu;?Yn#=)@~%DoLJ!w4SuLR;Iq za1s_UTRx!~Id7dRRzABa!`;8X_yq;6iS&tyi3wR=eAt|<8Z0q-3R&c50#}YXQv~F2 zwL14#0O`7_otEPToXn$Ge_iemDxDwA`f|S<`vBPlqK)kGcmWR{3Ex{ZQUketA-}jG z1K|FR8#mZr%}W4pAQ5tX`E4exwVm2ek(B(+-TAWE-$UqtL!i#fzP*kXO)VM10Ot#S z(^+mcNC>R2ZEWlXqe_O~H_LwN6gRwUoxoo1+NYsm5r?_a4?{kV2HwIXB_;Lm^Hzh| zt5X&Z4ker(`<7V%RFUNn2^7tm-dyVh9JN4^35XOCQJAj;YY7E?sXGCqK^h)t(jKM) zfULl@FI5ltlSXoKax@$UCS=ak-kxs@mFH(?z8WauRs}y2CB2h)LGb$lYCwuO$!(vp&A zy9?yVk9;g8l$?VghEsJ{xIQ|~Aj+7D=&{c^iKpjT*j4~i!chG)*Akev|G}9tTUD&v z=?A5V7s<8?wn50wjze8tox`hFKYssa&#e8l^lifZ!Fsq>``KcbwMnn_g1-`#lcC}L z!^1-i5i;()FY&Ty9C3#%j~+Fy7abFZ-mlxupd*`aTT}jb21tKMZ7U!DM7~w4QG82DZ*N2(9+i2p07@B*+{%QPhlf@v^)ZxA(SaQ zLP8urd@EKKmayDh2H*!k=M>^hq$DM86B7pn2g}4Vu>NPPy|ItT0s;c28hs7Q^tFH9 z+pdHe_K9np(6Wh8ts;c!XNUivtMO4Du(8R{4-ZJEaS#a~jMtoqNipy!pQx)#9ZA5P zF)3iTVr1JOv2xZhQ-?p}IH;beCv#l#dxs`wkajk_zISeGDRuNuqoP87o{$8cLJ;i66gM!Jz!ctOJmMIs<`q=Xj8wJwz+GsJ}6A(&N^3=aqS6}Xb~tkp|eWF%UUW4iF2GqK;cr0-bSe zc)82Jk-8O}>jfxV*c5_hW@L3ZKW@nh$njEdiX13aJX}tb zV`C_WAnH|ARG3c#*0-Us0m_7=6$fk20R*K4WZubB2+8aFST8J}DxZ!)aJ(N&tW0xF*<6$PUMqf3NmKtV1{9iFW%4zwZlD@2RKw!I*9TQ{8VHI)- zk7FNvs*8kmhY$`ZD=W+HX>SiOZVR!}H~8*w&CSit%i9}R7?DapAC9p5&YLJ&Il7u{ z3gH!uY7gHN8t|UIXjlV%;`{gSf9B_#fmi;DVZMt; z`S`QUCptfWf7%*b5R6Kysx105B;iEH!MTFfxai+(U6y9;^l8^;(UYt#;<`5WjWU8Y zT(7bif2F#`o0-9LkuX<%&596`-j~E?e=HMA%b=>Ns_aeR4^wro3En`x+naC00!$?4<6t->P&oL2!u$nfrd#cZ z1_9WUP;?y))6mqk6`1^Y&m≫f8>Sw9gn`l-y^E!NkMEOBMC)g$ViyKu^H&@1O0) zt0f2wU~eBFM9o_9C7FIYw+#WscW`!YZEf|FjbVDVF;*%uD(d(bJ%;Idb8G7jh%sVT zT@w2gKv8PnOl88t!x^={(Ezek$ls#x+UmMQkys&9c3rvI&PVx1h33Z9b>EF(z3mRE z&yInHsD}HN2U=f0e865UgQ-}V_a@7v2)bBK*YJejqhj`0TOR0@(Fuiex$ zh}i^Q+k0i^Jp&UWz->VY3vp#2!fYBR*QVQzs-g27nnyxRX9fSo{ zkVFotsUy|61I-p7T$X^o0SRTfBjy3M#0KDyae{Q`eDC@0W4^wK7E8RxA)|ELI?7XX z`8K6pdNofow?3nATi;Mfd~?1`2z6pWK3jl`2&xf4P!cZlFpb*KP%L_-wT4fdur6@6 zEGu}d2K;E{V(}>{Bhu3!Xul!C&jK~zkW8&b@a&sT{vjUGs@e2$j05$5jd7ia$ zQa?-KRN|w2>2GGjg#{bkv=ZeS(AT`*%roJ-~O)%|3d>w zmmQjf{%}rv2vMvaEwLzdziM>WvaS12&LJ%+na+R-3fRiJjZ)}G?JFuy1&#wah13rp z{z?(5((nYbjsX5v9p2d3*n0rv5!M6^c({y1ir*o|4uk}!)xa0`O?`cRKw)$)�b{ zsYXt|#YlVnI8BK{QB<^;xq`Be-Wk)B3P)^>Oxl6`dL#K8s>ruSAF0nL>xK9lt)<-w zN!H`dX}RxQZ@I5o>33ER1W}1ho$k|cJC>GxH|Na0k)h!mkWIE{>gA4fu7G$X6?Jr3 zA}4Vi-_qQSj*Gjr(w`|IAz}Fl3lmc|X2BxSm?=OuYrvzBLAI_kvhd2t)A2|EcywVc z>vdGr(yFSCwl*{XK#_RV!JUG))O=m%ubrWLqjutIDOF+Bo{ZaE+soFWQzMc)qRY;{aV>Jy)YN&yakhLeyTf1QN)B?*)} zbLe=1a2^hnXZOz!RG=DoxonLt+cSD)K3A6))xK9EpztgJC1%m9iH2jwZY;6Em_+4s ze2tBbEn6wA7g8Ir8NsuoZ3_TztHO2e`v6B9Cfo=$R>@z@#$Tr;9vj!wP zCzdSz75M5m&m%h|jevI~0QPZO?j80}b%T_B49N)D0R$P_3|=fSXuK?oH<4xYZzF6C z7(@;0$t4nYs(HPE6U2}6*1$SnRJ63@E@~a0kG6$B08|#HLDOtwY;yh&&_G(#tpw8K zZVQ6NBA}Y!tui3u&d^Ncsfqg<<(aVk^!Dk^XtHmqMR#5ILPxL9Tw?C!Hy`y3cXjZo z``);~&WtQD-2X^KNLHDk+;aSy9m#E0V)J_C&3In1?Iqk>jqkc2Jfd!?xG1)k;CUNoNa(Q|+>umSnXF>t<>k#)X9DDsr&&B>aT`qr3!0(P z&@9lJV)809&&B&|S%bYxa*Fe;*%1d@_t4zFE$zB>^D4zMdLv8!{>?s?)>GBx~=VVVu)u4Fxn?W+F}msGZ|FYHbMGoUI0Vgh*idyc`qcPm zLSA2dYHCO^)89<}QeFNo0Y=4;*=Wb8B+Zv1Y1mg1w`0!sW z3-+^-Qy8rcMdLxK5piC`bob0T3GAFCL#3ipuZg8kk9Tr%S~%NoTn3RFc7QzNswB)a z0eS@gxVVTOHu!lBthh{{)e8*83<0ig#*)TAn(KeqB6Z1Wag1h7d9~1B)*| zZ7}J;h5r!;{Vdm@QG{8e;7OJ$0%Y79vyFWTfcUCs8yWj{Q=ju(i78+otUm9$ouj+7 zL8Y<$P=}sHeD)2dXu(1U-K-IbzhH6$v+If9O#o2$pBhf_V~25L_tKkOpf|Q?8 zAoZ63P%F}}?}P@;j||DsV`vi*cvIn02)2SS&F{Q|4^uaUKo_(>4zU4s*m+~@BXGHX zkkD#eH#gB)Ky^yQ~;(3Z(~l~z>MNzVgRlXudJ_|SXkujImU*E;{fG`@fliJ1g4~<^m;=# zHVqzJ>bj}T^!%#?ptu(R$$&BTGYtTjc>#U+EV;OBXor5UsiBKE;^gFP1}gx_s{*c5 za?UvSxD8u_ZbMHl9?(B3yU)2hG$P))A)F24mwW{`i~w!$B4*Wj1|6T?+r_udxrzV!-?;>%Z z0AAL_?tY914bQUVa=MHNhx%>|jgHdmM=_?HeqIgDSm{>t9=n_?n}>Gk(uvbAGjsFo zgNez>BtR8NZ%87y)jQa6B=iTZKquo&Mkejfq|~Tqy6LXy@2vRFzhT(rO00r^xfc%E zdfXALVQY=;qBxU9#y*9{)|QzW*mf_Fsz&~i(ectFDM(QKdyQK|?j+B~On(YsUeBZ| z-{ihQN9Bhhtr9rsdr5kydgNjuw(GGMQ8(2sI~j1|D9bhLIp>K5hs^64-j9uq%^leJ z(Fn?@gcRMS;VJN2WMK!XD_20s1sFHISKWPt#`$}+rMFXJuSSi?Q&6+Q;?+?nVbx%-7Afh9)unh)!Uz*2 ziIDfBoRz=sV`ttsym!u~$bXRoYmHbC%X;_ckNXAx>t!^3&9ru#yCAv*L!^R|z1W{A zUFVJvUlv3XE@)3XZ%)L3=7bE$8nz8)uKmtcc?jb1i$a!L^q5icjogCFTsDp$VLx;)=g z>KW%WS?E6D=Zc9MXH)mNiGF0jq1GUE2H>>DAnQY;=V4}T zjIpY`_m6L+t7;5!TOHTsZ8QTk7Iz04G7f3Qi_TR&PNmje86C+!AroW<)OdNz{@UEryPs?&J zW`E07e2&Fl?Bwt6hDuz@(~)Jmb)zbDXmELwv=+n-j<9!pgNARVH+F*$Oj=eSMijQ& zd&q^g5TprQAd(D6&K}?ArnYkXf<(eoK35lR(1Mf)@&c|OQ>bkuB&IVMH$lYJhTf;I zTXDCjcRv01UeZR*8#OhE$*-9x*!=lI$qn=XuS{G$*QSPXGo>ZkdsPOUdsU?D8@lUI ztJExz`nQB2$j2+{(~Qy?U0pSv9NV(@aWjR-bZg$4FYPPFnT%S^;8-82DlhdSVzPsN=Ffvd2vlj1=1|VLWLs-9wGaw?xR^xFl7ytaf0v2Mp$m z*1ekz)A;MVpkx}|?6-NfHj#pSe;yb`?nIAeHQ?!Wszr-GtlFCz(k4)>ir|X0NT)JX zb>_b~HkjSL2zEg^7V*l|TAs`Iqfa70!ZJ-&`QRJg8>+K`)Cc={yBF3{d>5204DP}d zmth2oZjl6vR6brfK7%>~R*D-B?e%Zbisa=)&N2(0zm8&#ydE{o2JoBu5u{4h=~G7q zZmygoQLIa@inyfk_tTO?X$EQ2Z)>Rh1_^c#n$?o)uM)T9`cT-X_XJa}4(a|pl#EA? zKNjX|HJ_DGL6@9*Ru3#|QFUXNST9|J&4u5)tv$E^h7pONxgVc$mx_QiYx;7{n?#f9 z*6#A0P;$*#l;fxRF{hK@$3;@;AJ+&a(}9+cjg5U)&D%LR$O1HpP0C4=SsQCTH9gH} z&``Hj0d*RBH44s2Lmqey(MPHwj32WDsz`2H3|T~tynL(ns(Fgd}6_{WAz{iCI zXwVkS(CYZ{<1Gj{rn>ZM(6Yk!Sl?U&_Mu!e3zNP`crHQ9 z^{aH?pzXYAPuD?U3vNFfCegcJpRS>YD)&jcY>e!=&pFrMNM)I^zC;Xd)#FoR)jBQX z0tifp#0WArQiT9u1VD*&x`Nxp%*?-{!lj0MUG6noR{Wjd(;Ryj-Tb?)Op`f1^7)|R zx%_65;-LsLBCJck##|{r7q^o}#JzIOgiJhMg#8tDu6n#*e%kZB6$SK9uGUJKhE}_a zqVXC*YzY|*b$Fg>hg5Tj$!I)kG>ljOC!QxKN7&AvO za>Bp?{Q{}`bfe=FCFl0kCbgcrTc?;y4mo!2Leob0t#M~1QOUDX-sg8k$vUe`8lUm> z_N~hvh5o)|!nVQ;W&TkpHE52{6fmAwI206zU`fI|QQ z9-ol#3S4Sn<3Ji!X1(@spp7+B@ZXp~u|Z=tD2Vb&yx|5uC$uvng#`t$rf4=J1?kZC zO*{mWZWY3df`x?@%VwYm=BR3~6Hf45{b+7}r;;h%C4TCaDW=n{KN&CM+y`TYU45} z`y}_i`r<(|jspx@ARVJUsj{0!KGbHkNMXPosjE}VIBJooO)44<)<@eKFcs5^^0M^~ zO^?1dv-SrW)O;(kWmNO9%#xnF9>-g|W!y_SovM2pwVt(US79spmqAp7UiQ=E#^ZMT z+9=tFkQb*53JOX}N}d=PQ2i6Ikm&@PIRXzqeLz}bR|jZe9)ZvaLV413hv@4iEV{Dn4A_ogI z%1c{Yf;vAEHHj4dSMNYvMkz7xxd&au@k(1V1K$fC6i`l)kO6?zZD>hW&H8i|Xq7o{ zan(cJh@!2^;!r{*@O3Cz98eg~3v>;-8lNF9H>RoyAoO%~ zb-CA(C=QaS!`Y$jOueTx*q#85%d8y%NJZ)v;PV+YH!*n%M5}zH)?w~CXgJ5Gr@L#z z%o!O&38T00D3!s2M?-Z;^YTW{KG=O)w8DicX;FczM=m4@ZMwE#MiqE zuS3-5p5{`@o%y{S)jW1CPPsF@mSfxC#l!*dLI_5l8F_YR6_9`ssTRLt4DM~{JaWf< z=e3=X02>4cyK)*cxWBT2AR>(_(8*!d{oVu|8RjSFkVbX5ZGyB3fEOavNfml>& zH;wt>?*ff$!IwH|nVuh6M2y)IiKls4hXyo(QbU<~ZC={8A3aXh&+KR)CgDgKyj7uZ z^5h`&z81-nZiGiN_>4l4%ER~(6nIdvYNC@i+D5RhvVOS({CoP3=19@iD8hcd-uZJ4 zoIyk7di5SLZ{DEDMl&E}I<_Y&n87Z64k8XY`2QfSTE-%S5SmMzc2oRd{gD4iE&1J7 z^wOCNgHiW8JM^yIJw0tE^c#J8;0W*(Lk8*vr8FLzKhQSI1|EXwB_t&!y+(5?62qbu z1>Ps55!A}_WS16-<@w(uhC%=vQCT)T2aId7Xk`mPG8DsYo0hKiaE|RHzdN3YqT! z0{X{t(1Up8;)3issTWh8=?;T_um|K2X)uPDTHxIBScFG4PfaC50CRyc8JCI-`NUekmg$u3mw(&2x_2m z520fQ3K<>Rw*2WwV_6!x*@=jk8{6G$Gs7jkJk*iTd6|gHe+=>S`ndUso1AA?+^Xdzb>bbFjtIJF`c3$ zZ{NsRITps&_Dn@*ECR;@(&u!1a-ss~2H8(@q5!fDA``Op=(0AH4iy3}6_kSaP)Vc# zuAP9OtXt=r9gVc84Ma8gE1;@ws*_(nJEG_It(z$spicXY8@TPZh`kSI8W2@h0{9 zL#3~2+jj{R?T09&_}(RpvAw9ZBhQRr>0sxat3AQh_3YGY)XWpc257Gp59Rggqg54B z9V`>N3f7nv53(-a?B*jIchir|`uyHfKrS?J{ol?cjg@;4Mif)7PAP2@S*(`qsB2?O z0xcq@ZHxY?97FMvpR4G0Vb|itN=>msVXlA!srN)U{ZLa>qg!*VuW`#N5d@;yg?*{b ziJ_prJbyB)iWm$a56m$Lt>1EncZ8i5jz8^hGpnX#3opMKO22NP7bxc|{=OF9^otLT zLSO{`OZ-mkzG{}SLuQR12&y~xNa4}=q+*vJZm&KPZdgXLDzvVbH-{c2h9>$uSyrT_ z{f=+c8?O3udFUdbaK;r%zQ4jBOtjfZKkE73eQw_oB)KI%rTJ=S{N5uVVUyleITxS( z@bA5%Qe~F#2sufW>#BXRIPNuH25jR+e?Aimu8FJFL^$@o1EX2sY&kK?SUhRJQ?1%<)$QdYQD0!D}1ckV>dW@G*Y7gcLV0Rtw8 zI7t7Djg8Iz!Qj?%J?x%Zp21XX*#cSV%9x&@CgYoi)R07qdt!UOuLTU*i8NW~&JEZL zFwXTz%}4xDBT8J$n%@j2<-VScqtXulo2npkj{4N0+bXvI=^g5>k}@^X+{g8lviS^{ z;4d_VWA-$)BW?!SgtIb%`#d9F+y81%_NT$A_|hH`cg0V6i~<@gOOtM|6H1ryE_czt ztlAz|@+3#%=JX-_?E7ZTM|Xe7TaU$EQFM0{+@Q35==aPUkO;6SFt*6KyHALI0H<6s z;C)r-KeKRg*l65i^YZG3T4LoP#S}oOHea@YP< z_GIl8?W?eAU$RdV#%X1Mu%uysgmSiL@4{55Z+gE}NvX_x6&hAfSuq1PoAX76*1-LP zgTckS$*|nu8jFvQHw~Vr2J4wf8iz$<=vSy$?Zd-FKu`c8I=HwjLKO?P1B)5p4W!Qm zn2JiVzVPM6kwMQcSP&2(l&clI-~f+4qw;4IxS&FJ|Ni}O>4$gJrWtSf3~K)_civU% z(qJ*{adIN_a87QGKCSh!;;go~u+!-^>0IZ-`_YfE0&&|W`!e}{yllwn zXc^6;ioFw!yqo_Dqq~nX5T0;YJZ6FJ)p`pRu!()DRHMqE#4ZOI)c3f~1 z3@!=vKoR0tQB|c zgy&tMC$@ELBY0`vHAYO$&A0GHr){)ZZ=dD)ki+3#eW*sLh7`942S0&4y0EbkR#wIp zO8f|XdhdZ8tV}@$2id6wP>|(l5d|ps=AfYi89?g$D9Cmi^jfTjzY@W%p$xJ2H_t&G z1Jw8_C@5&3JmVSdc-TJ2kfwo%(1ppd?IDbs;3o~H{Cr8QMIexB7j=w9WrdFN#R zJ@x6^)xmTroS;h|k7I4`k(K5al$pTno}=avwIkA+nYgA8=ty=z*MZb44ml;w!3L`K zLQ6~KAC3f$3mW1)kU>Ib4VD>Rka=5XXQ}Sqy{nM)A8+;|ytWS)wU$ebQ^{=&KkVob z+`A_WuGJ+Ms05#Jo3o^IIUlx$F>{4&PetMc1%)&>OL#w;=4iyB(DClO-61PKyLStV z06phOzzvs4gU0djrSh)We#!%1s_LH4r~U(9irozAM!iz|w{6W&@8#Si-Hv0+4;Mg& zu6K9dfxcOYaVLyPM`zM~6AtR}*%|$JoF{-xDkh*V_gtLSu;tZxokTIJWz)Q{Y&$*} zHAvvLQmu1^Ry0H}!8C6f@Nokvw+E6wET{|O`Tg9W)EvU;YRAYqvO!DrH|meL@3_C+ zmnLb$Ub%XI#- z!7l@d)!+;XhDLq&@){!GUP}}eSBZ}7%|guW`c-0JV}F5;9o!&^0$rW1rVnT$=gTqn zLfg&F%~xP89T?#3x8=(J-?j#>MLlZ!cg>`3hac#YXVy1xr6{x_M!%x_6yutZ<+ZHl z?EUC0{JpUx(<$2U1H@7O=OyH1Y0KtTM;9+l z^mw16Ls#omom5*M+C@Rote~xl0Nov~9L%o{<{)B)0V2*MIG>!IffP-ta0WLz z=WX{6H<5Q@L*P~rP~D4_yRBnmBqk;c?wgRz49@u+%qcQel3AIVgk#mMy7I1@X}P(x zwkS~*1KF6$akykFac=>geF12_oyk_c`qv-9vk5@3CE z8Ws&>+n#N-0CEC%59YVGBO4n<;m#Q;r^ZL#{}OZODW5wO>MIXY8e29iv7)X_`&|EV zGnQrljqUnc*loSlj>5%P_CT$zI3u0%f@Lj-qh#>%*v>E(*dAik{aG{{N zs|yG$77Fy*J0LWW>Iqy+1sBHS#7Gchve%C#P8qE&ZWnJpnX~5JO(-%w<`8k}gD7(z|#i%Z*ISUh95 z?&Fs@`GwKve}{CL)O%a}p#w=-=nj2X zjq_?bH~#wlK_T~o&n?$OVk`ZN?rNA{jf~&eA?Cy2v!=`+4fa; z@D&n_#n2ycf{n%R*^{0r6~W1M&wBI2A)bQVv3I+Ga<9R^S?gR2#m0|n=~oGl{M3tN z)8jZT62R8@3vjcRYUZ7qv{e$#_jM|ND}%1ErQW#28L*d@3MNyUTDHB@D-jk<-b%W~ zbnxCkCVdFjkA+Iyf@02DNRGhVjU|q00s1^2Um?FKDxvgJdQ|0_uS@=im1*BwSejW{ zeJA9u1rqCI4zI;t@_Ro4J@lepg`sgPrO!ae_kpMK2KL3N2a|lb$P6B!hO~d%M|k@H zk+5ADJ~YU%aZfjCEKj_9#`i9vjxpr4~Y$>?g#OQyQuzY?-0>`hoX4UvsBi<$hLeYQQ-sq!X$ zX3fDPc=?b0HP&gP?^rKxH5!BWD@?eY@Y7ER%(3{ab_WP5)BDJv+V_4>{kLpHPx%5U zg^!(@YJSf%QLC%xMU#R9HD}u_#bZ&smkzv&{NAoWoU|2J+|04$E>GV^y^R#LB8SM} zOoi~02F`Yw7j*^?-0KJpjV>?ao&N>$}0eGJOv^I@mfED|qLUn9#V3@rb^P59;p;`~^d% z!6|{RT}Qy+r0cuouZG!M7gWB!_==;noEQSguFk3w^hL~8y&Z0@L3jPwO_jhgz9S7+ zY;^o99$KJeyN#z&Y)UG{)GPb3yGe#m4-4MT0)rFEuuz;`zQGDTpKFORm6@-8jWLo# z2b9Ld8F_d@k%#B23Pa$C4XU?rcNmUyQNC=miP5_j7p2``*|y!zLaXVgkU8dYEQrN^ zS=6+wic;#nQ<2~YkmvO(mPOWv`} zS*|*J?b6<#onwn^*}tWK=apDdrhYCyS>I|b%UAU56h=#vWZwz%s2}I~tWEVj5$p8y z_r>jdum%CkHcfj8bgs+X@j#d;cw-tb6G{^TJSt@kZnRNt6|5& ztfU6Pre1*Vdy$3V_DIlUJM-eCXZ1-P{H(HZ$Dg)G(na%aj7TY0rQ zZ)`n_Y~zA;wUo5USabbl%)i`x0ZTn|1GJVSVH$kU_GT7a7~*w{#y+;DR4 z>qp~={pR&8dz*UKlM9BsR1GryV-Tn`;gB}IMEzmklvlH3Cg@r2^>_ST=pnX=XYmOO>x5fdSqVzJBi^)`C<-8JtQ-%f{@eCfYmZ0Ln_fQOFy74nah zNMHy{7u%lHq3jneqBmu1#jL&%5UsZs^zq7JBEqJ`77&ErA=mW% zeQ2J@t0UsvQ}*_|p zwZAr~Yjam6xclh=H#^Pi3uGoTMc##^ar|l3ju#&CVY)l$wnB&s*Xe5@p0aAsyrW)@ z8*b^2RfN9et?Zt~5fVkuVavTvn>L-b?zU+-C$7LROwAeMW`r?YeV61;Ef~(&#exgq z;so_;NOAK{1oX)>yL7sj1c?%XgN-)nxH-4(1vJ08R`<#Zmreh-!{P1D8c%QMQ9J{* zx$|`~*~{{{&4$RJXYEtZ;gC3gGL{YMgS_s&rTbDmZ0tgezrOp)m=1cuk!MCUalUbg^Jt7fJCL*sZ;j)~fCG&`P*a!`!eXU*6$2@`A zMeOAmehoXLeuLrE%>+|=FC++W6^jm93%OnKuzlhuwZxXB>}2u7*G5i(Yt-V2&BXq3 zidl@d${}O&1=-CM4Ys5O?BRyzeaSN&7Gye_I61#V0|k$`JZBZ^ibTRkFGaXl-ELkU z2?pI8#QnDOGlei51fT{92oXd=myw-(?%Ug+?j5v1t7|)~Aff8k|=JBzJy-3d55Nh|BXJ|~-ovV)y zh{nimCG-d1?m;#DdBYX2sOQg3|7-4$%=9VfcGWU{O!0V4N44Y2q#^u+Kqd1!<4%>k zrE)fNB5@>aG)dI6Jc=51`EYKrR{32EH3s_W&sE3|$IYNiOVBBE7Sp!qhO~jFw4h)p zL_^qTSxWJi4}T$UPTcAJWINK+#OGu_#^-M(g98TDG6wq27!jZ77wJ3^r{3{52L181 zV&Qn2QeUhITGclsbiJ*dwkRuCwdoW=qoSDG_jUSFWl>dTJIs#R=>B2D&X18)*FK z$bFUASDz@>%fBn{zNnh@r<*iZ!&)K1V(s198FE(b7q8~QwFxSV2> znRA9piTJnk#wO;ii2j3dfm~v;Ga(aOYeIVp8?_d9Tj^w`{_M_f7DJo)|vOhA`psYHvz9B@LEGQ|R0r`dvLO z$7SPDbrp;ee)fqO;B{K94oF1Lxp|XkRwD2`<9wu3YL``q8b6nO5#`tVFO-S!XNVaM z@h^&T=rk)D7Wu57K6aOhD4(fPVmnzd`SOC)CHCw7;F!ZHp2836eH>;!MbqZDk|ff8 zwE0wTf7~&@`#(r~>!_~2w*T{kNJ3adQxPXS_fR&}!!9=H5Y)1G4=K5PRJoisLYmtFN*3ISP6a zNv6bAW0y2l(?1r`=c=8qYu~l_{=_-5(9~;Y@WFVdc7k!qAW}G{84w2hDyVn~`Ia>B zs#D$@5rg8#TI_@+vBI~CW~=!&n)lQ)W%9N!!7RsDhJbWvX@k$94K~2gyl5U7i2}_7 znzwau8@5Q15$t<<;MgoQ8xBSqO!S+uy}iAkSJ-C{m6Nh)8$wtTf&`BQ-ro@`KTVNF z!3#-iDJi0S(OaZnIse|itj(h_?9LmvJZ#Q-0}Cj$9Te#~5C^bCF=&!J78o2`raQZ1 z*nOc{sA=VW$}(j$ueh^;7Zjj$1QiNKj=-}?VP67TR5C+bj8J57>i<^$BDu_+gVxv# z?8gHG15>(w|BfuTTYU>r9B6Q32m@*iI=04uIs&80y>ubSQ6m{r+8F5QS0H30=XexB zUj31LID)Sl-|fR(mx)p1(tUBn#2j{r|Mct3g~DGCTE^ozjxU0!_s{NxMNM5tC~ z0UeSFK(6FH5axcqfcO(ZQkMlHKKFWhDStF~}J|3uXV5h~Fon zqUx@8J4Hsz-oM|b^F8}zShVf!+^Ma-LM`ic#H-itN8U`H49Utm;6x_Dv$&DT?*Dgz?P%l!;2~Q0cZu&TgvNpBGK0CJhz9^us5!En&SGsYg{Fln<8Og9 z^qBx`4g(SfCF zb^I_g`%;N12n&{z#RluB@s;8WSLP0kLbP2d>&cu0T2u(pWZe z$=Q9NVVe(n9k9Nu3=wkjXFT5yIaMINM+tCW% zNjKRq4yAR+iK^yMzU!_XsrlBa>}ZU~TwXtIyb{%~ZXVm(cal;P4oC;Fg*P z(HA?B0uT^oQZN%y!NT$$k|Aar-DZ$01#k1P#v=4Hu3l}N^cDai&imavatbaC4%NCm_k{Wb#44@91}BY_Wp41}#b_hf}--n9Yy8g)$l{O|4o{ zhTgo7U$j>`uQPIg#pxYWMp<~^wAtkHRx{eL75ovj%!bkW?T~+lC?{Qca1y;nE-(cD z>27q#Jk%Sa{#kO#N{V0zHGh}K))|lcEJpv=cMO}y=da&VI2Xg7FmunB{B-)X-+k>R z+ZUacLw%#BuPeeNy~~!C8?qL`)!I9BZMZmCEx+!X89f2rqej*`N*;5Y{H?W@OhlsU zgRahHX4r0Dev3N!HAN9-b$|0RFgfP_=ecu=u9PQwd3w8xmZH{V1rMJ3F|BSiohnQ` zu>%_{JuK%mN)Oc^{;s}7!c@!k%O}oE@8TgVmbzbm2ab=Hcw*f|f#btlVpaSmD8H?@ z*+4(T{OJFqo#iylu2qTX@a>*)y)rB8*PNje$J~Cc!brx7=uTL)`+VJXk%&Uh;|)4< z1w^)LAFttdaF@+-SKaF$c2Wi_G^3o{h?t8($;qOY5w z7EBqxzAE+1bkZKxX;!^*=S&;Lcql2p>=4Jz}vTd5ArFXi(`R(<~$8F68 zm&v~n@H&j3Mug0E6587xnRk}f>pW4yb8DU3J_4CEhZRuXjGHDRcI~_W)F!#7eMuv} z^?=nmv_~<9#d_x;P=yj=YIj4R@b*_xPEW+$tx%bMoBmgjb@Tn#=-81k=c#g1cQi%! z)fSkY3>qSK**JXK5?8*cv4SHE_zPrVE0$sUf{VpyS92G>LBaLrU5D`8pKkd4Lrw4d z1t8mja`5n0BaG_gqeykC^n~1fCRU&1mQ6weCL&L4nqU8JK%J?i?1U&hARX7aKX*MO zO_)fIWtEyjj(UL78+U-n?c|wd+sc7Btm?G;f%DQsY&XQ~?AplhyS$ulVUAGtP=GoT zfh3NmzmfW$w3oG9iy4uWwW1YX)nuyR+=`Bn7Vzs2)N5tfFTc#p=vLASa5r|!&Jcg? zKF`|WtoCe(4a}~sA5$$+w#rxV)2?N$UU>QVw4hJq3gQ_Kqy#?3>OFr>0fI=5JY$N8 zsHk!#HGGr)QF$mtn&J8i?`Q`eCJ8p|b^j*z>!V`I8pR94JaV%%=Q-EW+@EmwfN}$- z2jE_)@tn70=b3y@N-~l8?KYB-ViVkFxBa^Q&iCimzd{ylLh@$TJa9%nZHY!e*})sC zD!V>WK?)&wus`}h7#SuS2>vJlEYAISo)m1|v1;eUB8K{4`ssHS%ywtF>3&LwcxKr! zj|Sx-P2Y^Iht2fCIo$s0H=@o-@doThEwzh8F-#Ah)=*GP)VW9p*Akz5xhrTI9 z51^F?05Ipo)YKN3eF2Ae4eA;rXg45jKVSo#`}0Q(Qk+f~FOBI)L>f;rLuPVYqiF9I5D6>buY{f zn?~trD3$GFyA>5={tSAcz5RhY9(HTL2|Xdu0Rb=%q$v=bg7M`7H$)6Iph7O1Qd>;D zrA{9)6}@vXRQNCSteq zWwDI~A`wGO4g=Ja0qZ3BTXY!_4z+HlH!3ykTX?P;Z=&_6>K>BhjEaN{vZnHhrPu0N z>ENAD&^2+uwoJ@a=2ujDDY3X70QP`x>5rs^-AF!1wE*iu`VcRT*wD;mIdP#j%5aMa zw3N!e$MaUHQ*6d8{_M&I~EOlgkeIIMwK%s5=;jypVxiVG(L!M?C!WZk9Q_J6P1cM zJlE_tq3c2lS}AHzEfdRUW-02Qx_;RZd_2KSw ztj~6LDs3NwfN87nsd55B@5?HV)mhtvXZp z`D5KTF3hmcOJiV4Lm?ofyOxm}v6WnlKN#oqe7CGq|DM>;=QaHm2;(n6t{E65O3+CI zSYX;d?4e)lk3K5RiRW(zOVi{Ex(|8n&lD&F5+X(GxG%6Uhd#n@-=$~pZ^8sstltFPm<-i65DdnK>+0KC zvp(>}YTF~2#_*Ue>*I~yy#O-+(M$CEs|0>ILf_Nkd>4woh>7@zJhf*7JL1EGjR_ef zhcQVA=2V_=Y*$y^F)kGywdf)yu7{>*ty$s+cA!pqQE~Cap^NO4BP9jq=sd*EAej~ zj47lApFzmCcHe}u@*)U%J>JdIh3=ZhqoydvCz#vw()PxtK(ctb5)+4=I}8rDUE$S-thJIL{&7zU*zQhhp{9eX!{S4-jc)5R0@w>gaKdkpsqIsT2@hB@IR{*a3|3_&&Y=j6+-RZpnygC zSej8m2a{^Y46Mj-++IudpvgQC+mj&x^&)0il}+CXO^OexuB=j zPV#put4kurt^DE0P-`88bIPJVh|R1G_axs{c6c>a*E z`*re31S-&|mz$&ETOOBaiHaaZK8v+-?tioO`^pZ6;NnIn*B58!#js#HlYCeb;ntkN zkPM#;lC}GHl9$pE4-i%%mM${=gX5ijS*ycOqsg=O;0H{>l5G1K6<;rFReFvY1P6w$ zg(#)>1GVcZ3@eBsTQBvd%3A@LEde(iJG_K@?Y9^9k_%qZxW)*2afe-q{M$fQ1W7n9l1)|u84}`h z`o?kztSEB{9>xoTuij!f7y7Q2LC5UKP6%iJ{YZto$x+|nzy`HYY)(gl%pfqg$!eF&~pMXNn(gnAEUr&ta)pf`o9&#}^Rok>wNU zBoPZOJqNwg5sI|fxHdu@%^~PZ9zqDJqy;OrXD2!&{j*@V9Pjn3*LDAmSz_;^5DrNb>k#W=l<-v$Zspec|Bn67 zVr{n=EKK51UxATo1`OB`W?_BRdwXy14|W<5B#e!re3pvL!#~LNtn{+FgLJHBqKlYQt9NR%qQ8q>uDTR;+$Rs!33$qM^*1Vo6?kPdGEZh?mm z-xIP#?2cQyAcuS(DVF-|Bj0z8=4u$7=;4OK4@}%msJS8KGjyHx7uo@d_l>dJoBedU zrn2c&Hb=ubKaFh!!pkGE1O4k2bbO`nHH8yIy~t0MP)Jw#0?~P-ja}Ts7G60qR94X< z*hs`P2%Xj-V8%5KfQx$zgu$jJ@qS}-b6N1-^THGb*hM5HE>_Sj8i=e)Fl4}1C%Qe` zbUYuSlLmxb?{lobv?TkTs#@XwKW?Dug7ZAJ`I8Vo+uVs#%i*_w3gpF~Z4xHTZ{HMB zAM(n%6gUYmpx`boV;e-CsfdZuiX)2{&k>(sA-07g{O|X zn~=QEf+oK*G4Xb}?Xrlla4p?@RhXMGBj-JpFOBnabEt{Ck4izr6cD(W*(n_p6Yr52 z&(#qE#s`)#SU!2IrV%j0=7)7W2Fw1-6WFy1aC1l+!DxOOwspRE8_dH%>+1s#sbj&U z#|NZWdG#Z&YRgz9FKB}Xkplcp+V$!8SicE&W?^}#zlT-njq+OO@||dWJ))1Z=96dr z!3kGitgj*|PoTPPEgJ-vMdP5}9IY1>;E7#K+QEl^44m|ZT;oV@X078fW_ zsm*O}g4@dp$m8(>{pLjd+CWpwwvhQk4-+=ll!bx0c~D-Sb)~(iXamay1N-XTE6Ir;-CXtt^6K9#jgT!7tDSg)eg zX#}cDYYaCFplo|b55Qsz3|m%Q2_~PT*=NyLODs`)Z$s-ybq}7AR&CP_su!LU73$-0 zBkzA*lyHC2-Yg`1t~vNtNAEXL2K5|Di2dmTRSJ$eq3;4lYwHyiMjm%c`*jgC zR~Kz4RhwG2+KH=IuAXbuyNK$Ju&7b3HH{f5_RL`S<}4H=y=Is+nlw4Q$snc0tw?%XmE*>%cOl8{fcJ zXLT~#rLc|l=>aK|7Iq(ZBe;wF?j}U#7Z(GB3q4#~9N>t+gRWS(1AfrGmBGNx>eGkJ zr;I)XQK4lYZ$NxKQn`Rb;xnt8(3%c8zm4<0rJgao^t}}{r(F?4LkR~>%+F#^1v%^h z-vpUcFkqWcRw5^iE_MLDBXPQ%31Q&mv#>F>Gm=S1r#!C+xgSf#VRJ%H`dgDs&D_^j zKHk#{<>*LwzA&Lz8MMUEm$HM|nxqOnOxmz2JDqufT~GK+7!lrg`+WCxvW)XXmYCs& z(10ybWY2Q;*4Ch1qV$dZdo{^29OYvo{$h9eJ>6k-k&ET|=5$_jc^(3orG9AlLF6nh zBaR5_5%JvUV1(=&Wo#A3>SexLC3qXaobjzmgq(bp7TwaAG=J>HK@Av7vw1|g)DKmnW*fLr z6!z}LzP$21LAU6O}Y_7;y ztm$9?Qcwr<0<`nOR&Ei)9eYV9*E7aA7tepl)=wxW(0}EPjI|E01SsB>9mB^^6Rs96 zjUtMz@g?Vk&SR9z!YoG(1qO>y5*QySYwjsCfR|Frp3Mj{htPmS08R{vl~a({`lQiQ z3fl*k7d=Zd?$%w|BT=L0B&Z5g_zy3z)^lJBLOnrtQ?e&Ee)XK<=9jLJiLM9GwY=$> zM$apAPfSAEo()zvW*`qjji(HA3l6hJAz~mzw=F@)Bf~)f>Hauh;b}5+d1c|(kQNtP z%+}HK6Gm+wn6`Zi465K8SMx6{7k#hX;a)XHWBXTbR zGvqsT+=3wDchtaXrGDD3<$nP}8|DK

  • @fGSW!-w_3K5^a%tS~FiWTt_}&12$uL3HBS~Z4m7Q z0wgLNYB7+b6$2SW4p1zCgdRrX2A))uM5Vs6-Q2w+=j)7#!)T>H2^fXEhes06xuJ$U zP{*5vRsh!%6a*66fMv2j;<%yM9Q?$eMFD1HST1Ik(&F#H87-mkXOtBNqF^|Hp}YzL z*@QiWsnXF={ehLb0)K5`~lE-l6;xpn6D zJtdOMT}*`?#}O&*o}Mi1AcLock*}$&h1=i%3kUe_Qb5u`a%#4w>ktFEItjp&EqF7* z*PS5LgD-UU>EHK0_>IsG1)S@jGJ?5EzjU5|X0`?KBY{bQBu4l5Pd2VtcOLk3c;T1Z zpw)%N_*X!2*lw5|e{i8JJ$NL3PC%O}eeffWnh_#LXxPM3AFDw#`l_#|?+=-@=wa|D z&DwGL`UXjhM|3Nv+Z*L2TTACX*2*w4+i4EMnr;nj`lF?%S#N90Ccrr<>tUg++ zbHpPI3=1f)_GK_Xm%>V7I$6n!f|BRahRof-21sJ}1mZ*Rw3S-E!sip3R2p}W+x?=j zx!*$m=cporc4RPBC+wLEB0ub0NnDKXkCw!_ zTFFY6V>NGRPKKGk{BUdX>6a%C!cAqFNC9Sy#h{h3%Ne@xI=SDY)6x^3PciaS?!O{^ zjzaI1MZ&ogY5Es*Ew5p8e?EB|NinC^@FbIYLw>yPS)iVQF|lO@k-<%b?hoq4mI`U{ zVL4@JX_4RP?N^7nBOGi*{H~}~nhpGSUL9`IoTZf9Z8_zJq{X)2BX4M(%!Z6A=GkIn zram$py1f$Ir0Y7+BUB_?=|ID!5&ZJ!@&+h)wJ^2)%gikeWmAAKK3G{?RFn*F`}K%A zv?P^wOt_7nhO|cyb7If;YHURI2gL|+2bRQTCu12m=XpF>EMnIaO~?=i*NQ~k2AM=1 z3&u?E&TlK{k32JbSp1iXuNWku9Xb&a|G6@YfbZ^c=KyfIf8|pn{gkhs({i^+47RMU zDD$c2g_Ml93Wq=d)N1xXhLQN^kOtRx(HAM}W!;zMYCmkLY&1yy4O>w6C%mu4^5=gy z)Cy)w%!tFA(zxUUy73f0-0{uP!bZ@*AgOA?L#@o3 ztSC%%l}_Qbnq`$+q(F1a&Bl(WY8-LoLT6i=fd`3=7ZEjPd_UKGsBaUwU=xZybcYVf z{Rr@{Y8O$q5iY*)V4GdYvc0HPPq$j%+|V%gEgaO1G8!r6d;RSDn0$xUw>RL zZ+c#8V<3b6t>(zasXtSar&GOC>Rj**VEB**<;eRRqjnuEcDb;;q`O?UoUnD#JbrwR ze!I~`8cDft6=~+YJX%|ZN2`>1c^$Db?ic7G(((YFu7~+mT$fr=nV;Bh_!1J+>v2O9 zB(nwgkq0FDJL=ajw_tyzbHO|-!1`(dNGbQmCyV!HU9VJLe#78UoB>BJa&-}r&mMkegDFuG;uIcqgjD;Qi3SH$p|=Tt!S@&~224hSFet*8BIfWk8;YX+tq;*8c1E zS0j#J@~#Hq0UJ}YFlt?1`dssXX}IS2rgO1ZiA3+os3LNj8|L39PlYV0Uj2aw(fEG2 zq*nqv6V0zUjY*o3D`X!9qO#F?!nneNc|C5m!K-b4%QGvyVpF|;j?-?w4W}QUitN`zr;Co$ivVm z5OxT7{A%@lSBEUTZ@}019Zw;r2Esv;2g}qGsn~;bLBhxsS3o+*7SpS%fvKr z%IwNY^b!|`ai=b9Kmc+Hm=Wr=wKb$A%yO#vA{?okgHZQ7&j2HWMJELg-$WABk;bxY zzq=q~S7D>&7noUDWbn^Vx3)SXh&%O8`qsz!NfjkREJ~KpeeIPwx+XI@2M* zO%MYSNdR^uO>J!-pe!}8u;>CGXTO;ve3}e!56u(lT_ZwSZ$gKJ$mwFWmpCakvFAcO zwN=2GU^{Mga;(L7NJPaD#jx$f(Yl0pw+VJ(NU|)LhoXx?)dh}L6P#MX0Owm)TEKqI z51eNYA3lucf-^6X$4$cjw>+FnjR20OJ_v$^ullY)3Lh|u!mnP@!=7E{=RdP!^Q7K& zvb5@t+#pMBZEg8*bqwe??(=`V6e`eZXjEYAR6afXR3&61SbOwl|Cc~knSO<%srx`)>cYCy| zvXYha{AhWz(;OrX@(EvC02Tg&oqv&@%nhl@ENb~KW+8Vm5;%$vDW4pbFC8p5ZX3fP!I1a?kqs=m?Rh z)P#SVF(9cxAO}CfqqOU2d(H`PTyVp5AW@i)6@P>yqoM%~ggj~^?i8RiOhC}?uf)T_ zX#_wj2scd3bMo$o_b~DCP2i3ny%{G1Wi4n!F1q8dz0jC^GxfzzZH%O)NaV=3M+U`b zf!V%ngOmjYe;UuPmN=P1zkp?m^|SL~cb+}RqYB(9PCo;*L5|eRBBJVJ(&8-g50ZHr zIHvsX+f_5^POKJuT8EE14%7b^6v0XkdA7B+0eOML!$Sa`JdQqqzSiqv5VrBay@o_B ze_>3nuKEGTA|PQpm*<-vOhN8D$9}MfgTs@8hu^$|%X(&jYhgO(-W=M7l6mI@~7@dY8?9 zD_>n$fB%&`xc{xQOy$iu$(o0m-GG}K-9HG)KFvj&|$x>w(TQf`N|B#$_bU?&2K9_qC>uyUf>yMY3OOHPfWsBBL z^*;kNU^+zlF2e9jzFvij^ED`Qi>ka_~ho^tb8 zu(={$)i1}ffGC{Mi&&|sb9>P1aY+>vH2tS-Z>5^xX(+?S0_y)z3)jp4TP++IY7{;s?~9uk6FAKA2`)qELuxUHe;zK3_tK z%Rz9OiTL6Dw4ReZO{6EdNhnSdNbte-D>4rZ3(-p)q1Nv=$(QodT#UNRv>Xil%*UQC z%GD%ZdC8J)BA0tXa78xJ24ksDO~8gPhRaJDO+NnasNcTBKE1$eA@HEc`x0V(i}|}I zE2(zmuMjv#n4--xo4sT|z%#!Vc0?)}F!F-cZW6!JZTG8GIF(%P%y0Ii<)5$_&aZ?J zYMhYsyGp0yiaFM1^J-#C9eGqyo_*PKvp2OXyRnt$vtcdweI6nmkUmnXyL{@?Ctp(j z6m_TA9M`|O!SJOc2qJ`OHf08K986iA43A7PY6ez)pAgIP;YfZ3D+)})+1ji~kBYhlzXQ*nNc8+_1UGY>A8Ny@ zBKu|w9j~@Z_N{KzuP6$uUMKlFkm5~6SLk_mOO6{CKUwvLWclGmTG0>&GI=d$WFN`Fgff`sJQg_X9?3C|ahB?|_&Y8@>0Z{DkF*3uFOL+|vGA$!tz zH(Igs%_RC|?We1UEhs&N+TV0w3GMWz+5`85 z)+tl|eWdwN#P#ci8*yTRKxgeIk?;0fHs>JM_8CE*Gwk59sc34{fD9DnlliL$55%OA z?Ph}6f-legZ|PbO+N)6ir1Xr&pP5bQoe#C=ndrHhFYfc!Y)D<@VpFH97#z#@*rjt0 zKMX+96*dPwp*bC{)H@}eAE4$rxRDc}N}n~d1ED#gEO0(sYH&pRYI>mPE`M+#KCyPt zu-7r9`TJgunC4}4;~BM13NJs%#X;FidI_C!)Mtq@7)ux7@QU{q7{J$&_KdXu$0n^A zkhQ>tVv=4ShP#n1t#4uKU)9xe?ZM_17!#%Og29#pycr+-KtofVAK*w$2mpL4f5kgo zlS_l0?##znn8wr5Hha&V?@!uj`yP?~=NUm%{|)D@?ejL@J9k#-UdOPaiUtIYcLM~5 z&Hu__!%9;74CidUOm-;?EGpBAru=0{6s{B$t4uztDv+BY-E?dZeHD7QA`DKT~v5BF17 z8pze7c$j~&CR%(dDA#u|+wt!&%ht`EYP4xwHdvjkF#mKe0N7NLCwyncLCzB&&04mG zza|tF>o_c+Oy%%&><}FaI%myLuC9()a#ObYl?O3ZhAU=#!$HEFZTe8kL%TExO+)POep|wG} zglQT{bJst06W^*1S8zk6oT~jiKkW_-I~`<3vSpal`gy_8_tT(XZ1RIF6}ic8TEtWS zb05s9WgEw7S^4Cz1Rd<#pG11mG)b5nNWZgW^Y{KBIsN>~%-#nK5^DoBO^^}F-)sd+ z>Hg}e=$UdmNfb+={X5QNzgyl)b+iC7SAW??dwe*9IeF9jYE{_7$0qcWdEQeURkE0V zi!i-=Q!ZqBC@VMZWD8r-IwM_uv%zuiexyJBgu@o+(Ryntj-sK+-x1jQ2p!@Axm}<~ zmS@W8iUe};qIWW@7nKRp}+(-&`H1CTHSXX-SJbV46 z80AJJyIx}~7md@^xqpo+jp$muINd`Dl&zbd%LD)zK>~)syWflZ%yyYU$scH%(NB;G z;$DAxKsu3?ZPRXK%iJr)@1ZGj+G6x)UZn2x!%}f`^u;x6>D|vikyS0Rx5`Jp?^IR@ z!KzX5KS@sNuASHYOoRYV^!3NhW4)N~Ei0u?rH_>@)@FC_nIOM=!Cpk5hHs-TnFmKoIM~MbMx=a^Ev&|gD^j!OsBM0Q@)M7LXcxAwLPO5Iq)+?jb~z; z^T^1LPe2bzI!=8TSjt<#EI~L!J#jfh(W9K4FuVItMPM=;o*s3?&HnCGmGw3T0AFuN zVe@==qA-k{b^`*Y7c6xY*X!oR4mX{egx2|31S$T#rhEvh(?^eayAI{yD+ObvZZa#~ z>QH!IbYlqI%<`Zb55w=nxfC5qU13DyHQp~5Ibgy>fESz~SKxl^#^g^Hbj7WHLY`vC4r*7>l@2TW_0v&m)MrOo%=-4r zPk!(iVq}o8sBYXmwcHu>4*MS$N{m*&i^vx$*$fcB zrwY&;(pvBO_J_?5#6=(~9Z65xPOrcI_tVgRh=1{?7M81c@whx3-*8R6^%PL?j`8au z4EgMeurDL33-hmkTXHcE9R`)JVV*%rHEPV#T4Tv}2`2~-jSw7tmj}JP_Fo?Ne_M(Mfj&B?`E_tFpZM7Qi ziyJHSQ2u>UG=hmr_uOCPxFw(MWz74x|0eVHh9o?zzc-d7kl*a!>0i6xBNR2bLnYuA z_RxS}`QOhotBgw}8@{P_1r|0tXAqN4q=}E$^5<&Y0{Cc=+X1eO1eJc6ga885Zp zoQ;3kCAw)~Vszc|cvNsOay*5YE1rM3*NzV;?w3TS6MiMl)1wc$V!Ly+5|s$;E>XS_ zmKUffTC*z)ZI(;ymbLscG@tDU+$(&bck3A<$dNh3TpP3?+`T+Dj$dWkA4PbVH`Y9* zlV{B@l!(dm!VllyC&uvP(HvHrvNQu0VdYr(HVx5pabr>!3qh0U2h& zviKA0M-By@gmi$FFaZF3bJ>R%kzh0`G7m^Met6)^GIHq=x0mgB9L%wQyC8 z?uzr@fpkST^N)@uf;Nh!X#c$#+a0a3yuwXBR8Kh|R#cR{%UOp7>Msp0*8>$|kTt^?IdjPKeo_m92akFu}E zsol_;seOrLpz~-qF`aq>7Yp%=n1QxgGohZwDOvfX`tEV&;b@20Njsb+3Ed-LjyAyo zCZMiEh82|cXGvq=zw*8REcz2bm+(u&+g0~Wfk+|CT*V>N~3FdqDw z>V7ree!7~S@jH}pD*H;}=pB$~1YF@cFxbJ^=XN*qgY9Fqg&TEsonGg|q$J|*$&jjD z`S`_%i~q+g?E)ku2B0knyS00z-JfVgf0x@mK%V3Qe$GW`oFfnLY;FA`5TpbPm4DvC z*veDw!!jp(N(q-~#VisMy`QcWX9bE5JZ=+0bI+^wl7WyX z^Iu-}1JI-3G)z=ouru)R^V`7T_JB=Jv8jmE@961~U)%v+?N_E3_2B1t1xGg{!132S zIT;T(*bn&70qP)l1}xez=-MWY6~@>uEjPR8k{Az#JUxt`qbrh$i-{4Azr}Kpv1+-l zXw~*M{VoHIX0PU`aY;QpYDMy)@x%Z-XVE}Tv|~m3s~nUSd>Ta}jyhaxlvo-?vYF#^ zIB>SJz7@gI={lK9noGLaX%oNe$}6}t-{}zl&hp`9a5jZ@%YgEV5i#w36u+~9rsd1k zE3U^xth5hqj085YEj3wwn%hY3mnSbsM<1pSP5<-9uyy|JGg>qRu#!J@%u7j2vq#Df z-sR-H0UHfCLL%A?;-8q9n8Hd*p>>8CrKMy|O-<1j$x7$xaL^4}xU_0!-t&rpQghDg zl{IGV+6#T-%Hp1z1{S~+gS4_^b zr?7F#Fz>n@Q_f0=={MEV6`s&5rcW>RzM6Do4=ful&AG666ky26%}uJUT|QD05kU&} z{H~Q@@RET&pm%f%M&I}I=BB0@XtWQH)Bu1LRLvph#~+{Q>nA1q^(OxJO}%APzX-V1 zmx2>=9D&j*I(l!e#(9&MCuuk{hVA@F{)ly3=IoqcYsqOky~S&nYGrn>1RrJd7Ghyj z=iTw?aN=rZHod)y&;oD|tE>t`UP^y29xhEwdqYKO(PwB{=Z)qZ7McMBdUV7mDcj+0 zI7w{6GAH^ZPRK(L4q43{QDY2;xTQE87y&BPsw)sHl9g!K*a*Q5*TFlb^|O$`!=f`8k`tIX9vgVs@-w>Yr=k-5Vy`JzKi2J1QxE(y#wVX<*d$sGv+!R(P+}k7zbm{#`wvi``F8-BgHEJ*wT<>U${bqp7{v zJP-xVD3YV;f&Dc{)CAiUTN5b`R*9lQowXRP!G}#FX1>qQ%}9(x)~+NhJd>q5Jf`sY zmiB`f#bUE&qeIEm<>Ttgl&`quRXBV-3FJkI8b}%w5EEbZ74ZU|r)jVN963si?c4Vw z^*(%#e(*$x*6ZN=M4}Xp_hBz{6@kj{h(M&^Yz?lhF02RR)1i;63$YPRHvU+?L?C1Z z&|;6SlR2Xt$)I;S;yCVLO@F<{`goNmpVZG_IYWT#G*|TKV(DI^tHW7!H|I`2DyEJ- z8TVzz@dkN1XMlq$oPrk&Ms+bs$vgM%p)oKp_y-3|I69W9Z94&G{-?zlSC_rJyWp?> zerurRA%u;M@57%t_Z8ljQF54cBadPI>9DE&BRN?QI@U`g1*r@DZg9Y3(Y}`LZKWwE zVgc7e8DXl`v4iSUzDYH$*qkq%;x1@EEpdOo%5|RKdxj#sN$M#&{~)#ICMUMyQy~PR z`wz*G=~~3jYD#=76?{n82oRAy!JABb_wH5rx|aqsNr$pEQwQ&Ja1ddO&!^tKe*Jnc z*fs$Ni-G`0%zFrM>w{f0nhU&inbn^8M44%K5aa4aKLdrHdEyF!G7Q7umxpL7_P z8__&7D$2|+Tb%aS&NZ*+r(vmkl6I{xObsP&$1AYQi|})8MV+TKcBP#zE%G=#g^}0Q%styY~R~i{cl9Mt&HY zo%x49yH1?NW@D9D?ygR(Z{JMR`LMX7A+k34Nh->(&ip1NbUecTR7@Gkf&RQ--NX8% zKSHRnM!g2biKySqr!=&D`DRxf16)i~DTD4sTQGkA2wnJ<>~X^-IO4XZlOp)oU?2fI zi(XECNf77Fz1o%a+7xQf1qa5!{^0|)+}LWpetw=|ho3_`aBR5YOEuj_p@W$)ttf@? zudnYZRB{;c-B*U!N1|Y=Urd{wuOi=~*0pu^Gx#~r%oCjDH7rCV#|7>)>yt0awU!-T zdLuC5v@$j=pL2wya}-=7wYsnV;evXjuCxdL4u39Y!Y04pZy#likffP7hJLmvxbJ+= z`*JCR3(}d{F7%(J2nhd#>??-Lqovc!sed6&z08LpvhiHw1z??XEAwiEf~&UBcPt}b z?VnD34m`^I6K@>jkRsb+7~t>UdWA#|N0>C%_&Iwr_XTeezIzlmCF1A$z5QR0vnPzK z9IP9ErMt1`<~dwTwC zZ4OmfD^~Ef#5tfdXZK9{J=qz4z9M7Y9!Ny1>{B}uIGQq&A#D%4>#Nx+1B&-sEja9$lK4XUgeNbj=fO8`&4|zaf9df-CD^8PnsT-#ep7UiG|P> zw!05-@mWUS4Z9!VN*3&Hx4m(%m#6+ac)1!C*ayFVJkje=4eXBzM`T`y(H~NbdeZ&t zp`6a~dQ9}}o=*2m4yQatm-@f2;=L?YuiEBCzk0aFSZnGV&BHfF)(uD5qon{K%t$Qb>yWvF3C$-H=3 z+Z_DwXSK0=`{?APdRXFBb&uI7<%Q)1>6mj+FLCOnf_AKXRyNG*gKkjA^#y9zccLk_ zcB;-!k5DK~s?uXQiIn zil+{j%%x;fR!i&ll)y8r${ald|PgdQ+VLGf=C=a|MF)^U4pkGatJ#|$VJ z(bVYg|-l(odj9 zr)76l$?R4_@_$`aAl6a0XS&4Ci80`~oO9vi4DMHS|JJo?h?yI>fE1rJF zxh*l@3Sg$;_CO2GBu)*9Md@T=k@HyZbv9(d^9x*gQ`Knl`rlxG32T_Cx$=2-%?f4m ziO$%7OCi*s!cNxCDjDTG0`ByzY0}mwQTOC^e;+ryV6+qbd;V|w3{WBma+!;(AEgbs z@sLTSc*07Da;Gor>XE6Wk@d-?>I1pU1Hb3yXB*6689kdB(rgw+?1Go`AsQhSG^~GD zJ8SJX4`F@6KPj?QTonwOD9T`EF@M-BRB+W3>RrHrS%uH;F@$-Y-4~ut4r{$|q;xfd zm+O3nt<=3Z7dBz?vAE#T-}_N9kt=jU#A#0juRhaEjJqy%M)Djv@)9t-CRtQSQmHiv zeMf5Cb9oO=zmr;TIDa#)SlK2X zw#^rPn@xhfm~3}roy*Mfrsa1DsNKaX)DFgNL}c2@Jm*cgqnT+eCsUhtq*Ay3E?Q#u zU(c+(G@xMNCO5|2^ikdnK}Y>g*B~X1N5kEJhYNol{XJE^>M~ zp|h5c<#?&xe;+7q7!SX+_1T0Xa-w}q^vAEbD`u(i^H-0Rp1vmmB`x;vDnAe%)KCRk zr&o9yv>*^+?ST+8!w87=O2exC!vJ5YSA^UZrF1##a!w(q_s9v2Fsk!=I>+N^zPWc; zC_HDztldmFoWBo__2RZP%`szdC9fpkK*vF-WVFxj*@ZVPYdXVcF}0X0c+eX_-yi4xOKtIEzQy=ycV}Ah>JMb$pnjk}EOWj)R)b0>_uPIO z{qNIDLLZb}NGm#b{`~+mVOt(iYhY3s*l+R?^~W_&eGCLkWpC{rPTapE##Et8D{lKR zZ-R5I;Jsbr)6MRsqZ9i-T)V=QczzK9b6B2xQ%fzqN)h ziNTv8)JJWSVPO#a8NBg;)g!eG3W zM~#XZ=LGZA&M*o(Zr3f@uy^uaDLrt)JX+(B!6}gVJ9ooz8lROCo`W*G%0lBudn&Pew*JThfBof|JMngk`|K$1dq2J4g$TO4RBr~JENNAJm z!%2=?dwV`Gy*N9U53L>_A4dwfaKTx<*x*Kjv$?2%HRdJqEv-fvc}>H*|D&}l4~Kf) zL>F$~vH#$sB0C&(; z>JjaE9|lPjAcLSs6bAt5!}gN>pHJhWM^kebCg&R^W@d^q9q(G?5tJZqg=3n9g@s^p ze)qn$%YO(A{9A^(w5)7ybv31|&{ji$fP#s}C4$WWxpSe&qlxU9MaZ~ z$Vq64W!??7i&aT~+S(eCmiF%KO=oB4=GNB2vJb;=-nb4nL@-FS)b>*#oSg=DAYdBa zT=F<;1&~+KQWy;HUzPROo{g3*u4l*wqqUe`fFig>o=BKghbFx=SAy$Q+TQceH=UA)kVqmg$PzWz#~2i6F_ezBuG@> zzcQV`YTEH%3KV_R%FCzIGJ6Xv6tekBWK-W1W~vz=c>) z+5Z77nyk)az18P&+PtzkuA#vMQf=44lj?#=cC4(aTJkov97jKh9U=s!s-;LByuoH-80!9S5 zKMP=DY(qVWaQO2qcNWIt72UX;k9Ku>LPD5Vc8Fb>6E~H5^r)7M7A1_$wgtXw5#c%W zq*q~GX=&-e)Rc>2js$kh%M>pF`O#~`>m(wL?VYp^mR|)f^?lwD*XcOr?!HE4 z^=h$7MO|umn=U^|oN+r_S@Kb0PsiH6k<~~zrFQe{dt}Rl`JC7+`hWZwm%1uUTf&4u zNZEBGVyE>v)RF0Q`ZZgPK~x`q9b|9(b3jj`hWMGG8R}>Mc~z0NnoYp9;$jH`K!voy zL_BKy7Y!|~aL4sUJg%hcF{2%8H8rlw<5kv~bsxqq?~%CqL2JoFeG@r=TsX zeJn!R+oH8q9RsYlaEgBz{_{`&^T(9fsOad%?c$pkL7s>&HO6@q)!fp;_E{bN0EC$V zh)JRz&o>q~2pCVXyTaj6p))CuDd62*zOE@=F&?Zknsa~sIpZ~wQGG=KxXG<_ad*$N z`UEafH0wT;e_~eX@=fg$%-2*0Or*9kg@uJNwgODYrA)^-*re4?zMJXoSmAf-6xp*a zGYaOE*Puu^#?F_*lkT^+ruqj5goMcJc@n^2?v(rH;8*M69~{dg_WZK4?b$OH=v3_$ zG<#HHuY)bi*xX z49rrbOoaA3I%>gS{ti!CT3Qv=Q?r8y(;sqM8M@o~`j84~X=z^E({R|(;BYvmj*giG zB@BRnn>3NA0a~jmD%~i9OJa>s*|e#5Y<7=f6{+ddhiAso&CTW|kaFRUW}l-&%2Nb( zCc1uon{tPKnwaQGKwO1qXJ^k2{3u@DJn0+a(G zrcR?YQp@1Qm{*5Jj&FB%+uiD_WBz*R^5MhFrY@ zGS{xcuYXHz{b@MiX%iw-QkJ*YVHOH(<-_o%D0uA^`(3!>A8>2Yc-H&MWf3_^Zo!wWaGrubL9ySgLIOaC4=?uFxgLqxu znGnq;0k%sE?Dlp*+Nm9~gIb5mo5vhfD*a=9eV1x37sf1a1X($Z*EUEmSrDLDmP1ax z%Hk;$sg4v6W*d-#OoUppHp&A1w+$921SLEG;W>H@g_YRwG{JX6-xr`_G>JsA$kHtP zDxa4c5cndZKemIV@7c0q&(%$GV2d?BecEt;sxCTl^-dKM>E&CN0GsS=GdwcFe?4CH zh{T847EW0`33D-3_u!K*h1+esl^yC+?iAwea_y_z*Pi~b7h!sr162cqppR?$+{J7=b&Y+$iyowu!nQ3X4a6?oO=Q2V%3@)9Yi)9+o82pF1G4g%#I(Zo>sUM}(tp?r? zHX0RKtdT7ARSs{f8yBtMTZlk4Bm#rpX>b!5WuH26A)yCh0t*L5M=xcE&MiUI-r=5h z8#n69nESpW`<_A77M_A%L}unn%p@ulY@m3e*Il`#NN3+S-TJxlpE9P-^2Q@%v=0qL zsb78m`3BA0t-h&J|I+1MstpYd&vSQ*KWb_sPBv1ED+~jD*?}$61sJ6e&+ zFiX0s{1oA>dFvG#5n=?Rb5Tz9p-#!^&_Bw}%Y$RnV!;9KQJu^C`ueI*O=h%xg`vudx3})L748jTIVfW*3AZuq3LAiuo%%F; z?_S;3#>b8a9;-8;_IYb2z@fS+Y_etWFIyCO7{-^+mE1HGWuKeB<-gh193XYABs1^P zi4mBhT#(j8u%aBFetWRC2sauHvOH}X`@;$Ct^MUkl5bjCS;h4&_=x{)hvo#)Sb^G% zagW%eCWX#p;Y)77GQR^P>1&FHCrrz9R8=46aSqr#^QB*;1M9lprA`Z?1}c1t>TkBgR$wdO@(%~Ph#yFI$DYZI6r1EopqEFTeLu(n5#Q(w<>!@m$EuX6 zG7Uz^F-;Cm+vk(a$YWWThCbHIEQ3#PUUl$qr5#Ms#}0~}RmyHw$kMx0wU!+@a)bjTGAbAh z4J_8q7)9g0!!7f_Ej%o8l9F#rKfmxhI<88G^wJTY4ey&4jnOD3S60z7bdlbfbdvET zC05|t3=Pow46=uZhYFc&2X9f4^gU|eBdcNcDWAjkI4&|OicccAj>Qm5gCpO7ax{4F zmf!ML=zAx$b8R#4-@a`g9v&VEZ()9FZij5FF4Ax97qWj%Nl6K5Iyo&({c7mk5&pu4 zP0OPfdyNY}bcXu2`NndwWOWbx@o<)w(m2HMUr}{+btJ?<=-8@f)ra}MA=(#57&;!G zvFx|UFyGAjV+DCkdt#`yZi;~;Or+2G#bem&nR*`P7r9N{1?Nj2|J%pebMK;iLRX3@ R9VFn-!pzF_uF2sG{{YQVlkxxn literal 0 HcmV?d00001 diff --git a/_images/2.6_resampling_65_2.png b/_images/2.6_resampling_65_2.png new file mode 100644 index 0000000000000000000000000000000000000000..54807a8e9c187092dfc4e93d9f1204a84f774c9c GIT binary patch literal 42672 zcma%jbyQZ}*DWTZB1))$w9+Bnph!q}NOzZXhX@J^h%^W&-QC?tODo+C(j9l5_x*j} zxH-oCgF!scbIv|{@3q!kbIy&wjFbraZM@qkC@AQnuLb2$P_D|Opj>IWbrb$F9N|U- z-#G1rRP5xf4DB3sYz$B&b?mIot?bNAbcr1dY-~-eESc#!=%3RP8{64g+j225Sp4@J z=&fvw7+4ERvfv_U*00~#qM%^tAYWI~`O{2LP*Mp*1z##SeOsS!bW%_}so(zFm0Tuj zRs3E?Z~4|!1sqbj=63TO^r+8YAe)5AThCK8?ae zen`KGmiq5&FW*s-z)v4dzi5lW3-=T8{{P+**s(p==6te}wtaZm*4la#6&1D8@o&!u zB9GTLHibXFB_t4$34cy+icks`OVJ(9e#7b#n4kar?Ci{R{jA8aTOdVl==bs3Y|QDw zh910}oSGWpWclm+%e#0i>8-gM@kt`VOxDvcidE^T!vmam7l&N%>9uM1q_?HsaCKYiHGQ@6DgDW(N=vW%i-pF0q^VMIVsL%u{UK$vyLXen zfA@Oz;a-7u!&OpJQk5DPdkyxYhA2*3^2?(({?$rc^p0Bh(2s5{yi`O`@K?37ZPT3J_#;_1 zv{b>Q`wt#8++nD$|3dOgrN|I{czD=v$?q<1BTZhlfRj`Co80iwP@lj+$(-QK!BQ_T zuS!dSB+SQ;Rg6aXoOhner%KFtqY^&vJidMVwoHbCiptNtF9C4NwA@%?Q}6LbtiZ-^ zoVM@^t$O({$}iN01_muY783 z32!%^sATU*OR_Jl%3-uPXX2cUSDVYL8~` zR61+~)B zztq%>m*or>YbiDvP^op}gaI}8^aRmsROWk}pV*u#o?Xz<(&}HF9s9B2FfZ^H!4oP_ z<8($cEQKp;{&-Vl2s388J=?;R=eoNnN$7d@_6Y$&pJ@rtb~9FUOG`MVc_*^0#y4 z_G?PMBjx98T0-s*&?C>@kl!^ z>fL)D9v<0Rb@86C%>+e6B3)yb;hEmQe?Psl(!P}785A3fPotDgOiTOu=*UUab%PZ} zS5FU@!CNLpIj<7fsI25i`G_VD4u)&LxuC?01ftGaVGB_*XNoHotI7j3?G z9zA9=f6P#`hY6qi#_Jk^!FS|!4fS5W#Tc7>9q-L1KlG&Z^p6<)XI~=d)V@YV{e*1s zdGT3yH1h}cDYwwH1dkZx``MWr-^nuB$>HB#?`x2f>o%-_hZ=LPd^vg+)Q;R20o*Zp8VK^VneBgB4e3GM9M!%2O^Z|o{l=R*7 zv^K0{H%zpyQ_tX`L;)_d;r%C1y58NmBa=1c1yi zfG+t{#8b*1>@0K^TTR6?>a|XFC5QDC(h9{LFq+zXIx*_`CW~SK zK`q>N_;)G~r2`psQvoazwO66%rAJbsx3_o4`Qen6)7i;dUZm=#?;}ka1?q5{&2i2q z#uv_OIc0Z)+dktaK@`&{=V`KLp4MN(pmcC>5HmH+Or#9hSS{3i()~3zKo{ZwouX>E-r3BSy|c6(Oht(b9cue`mI|sSFc_T z`}XY{)7Va*2oaSRqyYKZ3gn?+@3Qb{=4*RjrR2XnE0V2%4gKOu80IW-;H&Iy~nql9Yz%OlQ#{xOCwY4=>&YiLo z#+YALW(1!VZu>MP?^yd`vto%5N&$LsO?CCw-X87#x#{Y@q;oHJ)vnQZ+OaaLw!XfC zW{Z8OnGuw+(b4U77yAsO#U?(!zBeGHL7Dp!9&WJX`iz9c8**a&LpoJ$9UX5NJH*CS zYLB}8)uB)DOpNxc3T!Y~7Z;akg9MjVs-!j~)Zh|+y;u8++b#I|rYowd^o)!|BqStK zRx2th!Z{2rEF`6*r2OYv%FF|vJ$n}J@}z!bq^y~NLq0b=EKFf_l@N+>l34^f6;(!8 z>9{646&0GN=OyMsb#-+I%q`^eAAQDK2M6>;5{8E45Xk@;{T!#PLp5sAVZv#h_NvxyVayVq#e7}K{VK2c3cGRCwm!NPnZq6 z>L(}TacGqC0YtLkp+j^`1Md26)EmE0I@Q>Cm7TrJ#*J@)s3LEG4h+JRf>aszWWm=Hldp5~iXqLttrXxjt1#BqaNJQVR_Y4g29kr4?R|kK+Co6c@7$=V|pKZtA6}gQ^|VEx*TyI-Ajr?7Q`v8ro8}rD1-^d$Du!+& zG(c8%ESU6Muk|jrkWNP!)%?;@q*E(9A7pv?7r<7{$2oKRk| zorGK;El3c!qkBBNfp%kY-L zN~niq02Et3J&IH@ajcs4h-J#OnQ}i2fhde&HTxXIpjO(o@~g4yBD!5{rz2_wA(lbP-6f?Lro#@POY7E5lk@3D85AU( zy2}f0E%$vKhU%@W@SrqBo5*^f?5|ZU#k(HWU7qr*YiJx_oc=wAx_AsA1HdXu^QXoNPtl7{rG?^zqE95xi9JWpFi8P zpBOMPG2eaqbO)*KRyF$%BO)T)V4FPQcF69}LtSPbm5yZ#Y$J623`tTK+8X%A;c-^3 z!_w5-8w_`gWuJ8N5s##2v|E;ePUB;6@KU|^wclf7%&rIPa=lv7m6x#d5VQp`t8=oq zQf&U`YnF0e;oCXkCWcX|IIb&Oe~c0s-_8mG5J50iOe{rmUp5m=o_SzcLL zXgR^fW;JOprzR5gL{vuRK8&EbsmTXW&2y_s9@P?4p|Mhnz>ZwilG}Ig+<|sdSEYL- zMf?%;5!+%ld?#x zm08I9JAqtKudorqg;kqfTufC_Riy@?ql`RxN_zUw^e2wl_vNsKIN#2`XM%o9C~Jrs zpte{fy@r?ur~S^nsKM5BLqK3);Oy#ZrbIl?n>UqqCjLVXDJ6O7>93EW?F;|@ow%i= zLku>Yn6-62GC8lJ-A@mw8X6j)myDa8nfbx9+r``wLM9@XJk{&LcJ7Tpfq5OPh6gAgZZaDWTnlkrTQB^JLFb(wj=I4LgjFNV!r_JK@rA>Eg~ZF z&(8-NW6HC=gX&5oCVjaV{M608}mw9E&mwUSOZIR03blU0fzX<7g=E7Fe@fN4n#*sBRv{qQa{La@>hXWO1}ymld&!Y+3|8x zaJk1hm#?pHvBg*fv;u-`tPce~QhyzDL)fVML&O;m{$F&I{?$s{Wjij*$!h64mHjs-V@IqdeC#C`0{f@m;^UW8ziU#IQHY*??fRd6jeR~ZX8ygVXOG`_72su`dn#$q9lRG$vfBO3| z1BK=1HvZw`1aoAteap)^1Uh|Z&!!yN}skg{4<<``H@{?A>~aaz2? z($XlPA7QlyWl$R(|&O0z69+eWCcx`+Rm@lk;(bY9INMa-@>x0lk3MmRSt1naJ9zb&XEA7N_ezM>6=MOG`E#c3PU)tH( z1s(_u-bG7Y{Xv&DN3B6YPZ#+}=}Cx}*sVUwaMt}FY<#Dh?)!?RR#QDdl>8|+!QysU zpN1;#x3s&v>%0`_$l?$Y_7Q6))P`wKUgOtSf{L@$>%&u*v}0V)2^m_{aKS@e)>zzug3R&ps=$% zk?Bbh12c0d;PMEdFBtWI-baamYz|R}Za^*>qkmKhxXtb2cxi8SsPjwo*w7FT3NSAK zbkGfm-1lUY%-o?60x-7$<`xi3*C>W;k-mOrJm>vT39(YX0u{~dh;kef?5BTX6_l^& z4%om8>OOSXu#Sp-gCAnf);|RWk@NE>0Hx8ysI06!T4rVC{$WO%Ljj_ zdN0mTB{L~jiD30`T|4VGt1E-K-UUw4g$bZjsr@CLNz=qm9aC_+C*2m%31Ra}XVpkm z((RzcWZ)(+Wu#7jm$dhi9WMR2-mu zk?b0Jx>*$rq#WRA-GhTqqa^TLyF)>{etC3HcDLNlP;y^MB^FYW9tNNmd_w(VKU&sx zVv3Wj->$_f@Ub;1vW|vN6~7|}J>{xf@d*ps;^Opl{d{{U!jk`i&I|DUQ(D@t{0z&^ z2)cs8LV#?w)4;W6Yg9!zPCB@DGH);W?W2xl70s1@sdXdkhpF9v+oK zeKaV?cYyGzzPvbfJKJs(-j8K9YhC|S~CcOlg z%nUjB6f^Q&Y4;pZ3Ic@@?s#uwEHba|A_jrP@V)`)fG`*IbafF*5!iekNDk{0RgoF; zX@FaFRD>RYK7b|7)4=_=x~U0+zYF5p83q9m8l%SbFn5DqPNns$ig+1qb;78Ksvv&< zK?%ueHiPqs##?-cyK0xsmRHjuMohMg z5=nZHCl>ci=Hh6nW0Ib&rrpGma0i+Ma9Xrcyz@;jAe{>UPA~Q*^a3X-9;TJAeFb4` z*5d|24gg%++(zVSek*mcJGKoJkSL&bQ2;_AqzmNoVCd_AIB*@Lk;VxKTgpcFX0hDv zIj7gg|MFt?Bo~{U`^%QC)srf%R_9;1gApe$vYiaXgB{sJL)47Z^OROZasx~(=+N$% z_)4Ya8%y7LYPe|yUY5IUHX<*O?Kfgk& zsam-;K|#U$czC9E>(JLMjak(J3x|RPBPl7;C;2liSZGE^Mv4I0Kl9ebg$to3p;{}X zstMm~eyW#}ag>L-wwS>oF)1`#8k9_UKr#1`s3LM=+j)zUt=7cP=J>`96|)XLX-f~j zI}YkcYt?1pl098BDMa^nSFkj2$NM^e<*n}Jk(ijC`=*WD;5N<8&Wh1#si?fx)g^`UWDr5M_6-GUfx*H0pJzc734qfm3iyYrNh>Iw(kUa-jLJkRUZsR zGOxFPY7{gw@3Jy>0DdL4d;DZ%NlJOjBM6u}<6Bx<3Jncy0;-demX^hZo|}7&cEsv= zg976a!Ad=j5Y^l4#2rV%ymd~at|*=2RZ?EwI3TQGO#(tg?_9RVh zk%9&~d6bQ#qexO;*keYq*RLrV3l+M?#;OK)0O>=X3s+0cw!I1*u%3m5#%y^?ia`lq z@=5V_vp^CFP2Ja~A|>B)zQ?}yvDd${-w1IX@THl$SHBR?%wboh+wZ`#AlgOGvX@oq zZf^Wv*i(%g77^4u$TzQ4yl^IQmFT9ta1~4Z|<6^y?Fy! zEEx0EU@W^8`O~M#gIv%NJ?nsV^^fOu#nY@W>G z&z~=p9W`XDa{}8i?Cu%0-fqT`>Chvu_Ue_({q{ z%_Relh5$HWL(q#69nt=)-feBSe65n+A9CLE!JS7E<38bz)RpQqm?I8L!S_I)Pg9evWB#YS_7 z^{~{@XsqI^KL<@`KQGqbx2LbiMk0zoq7+KAll{%4v1|&~S&LN2u+@-kZ^#*?Lu7co zgqy5PLke~#GjeZ9uriP=*gJQwaQz|u8*GEouUqm&U(2p1(mX#Oo9b^FHn+eO_~<7f zi;XZmz{<#GC3v;(Um`?m=EJqcx)j3+ zTAYOZ3D|;HU$p9Y&PE)NG4vEG+#8X%p{55s9w-6Av3LZn4q(&f)>cex>}F7-KC?0B zc4{MnJILX&8*Y~XbpaxnrK~>Tary$d5(Z`b@o7}15hO;e$av+q4b(DfI5Q7jFnjw@ zfBjyP`vO|)PHpn0nNK1Ozh~ni>-}jo5<&Mz1O$P>!5AbYBu=ibdXP!7vS@;Wg6t=X z#TZ#-Gktt~NbJ94K%vfz%dh+qs+}1R9YjvK4C|kpo>}CQm_CcTM8N=#L_=X)`u;Bx(20P@c>Z93D01R=$#e6|q_3E>z1?m1R z2&<{m2|*BF>~9tkU7OVu``*2Kzz=ML#DYb1sk{oZsX0iSFsm3KnL;V+=-RA-Js0nB zV$$E=4^eB(f;Z`T>HdOW^#I|#fJ#@&G5|so%Ya;vWWe;T2vv2>bTM=0QdZGWsLex1n zqONE&to@4YQM<}XZCxP6BcYvOq9i99*{AMPQ^N39=6%?araiEztxysrA*cEW1};oD zeC1ZiRxJsDQoegIW`%{1FK%wWl3*2(xb^E5MhGaEK(YJ*F}km>4^gp&7ZQ__fG$8^ z8_6?*&9pvVF>s%Fg6iqh_kbE^=H~@LLj<`*8{n1S5gHO$`>6w57bGcep#BVCL#EIlRZbvi4Nw!O#~BBxvvV0~@uZxb zxL&Ya%r1Mzgf7b@iHV6$pshH8;MT#bLw+13|IX526k^F4aiJIlXUCOSpZpc3Vv{LOUe@RGo}n0NhUcbu5hs5 zV)yg37Q9!!3^X;`a^qYIA=N;>XO0l^7%32JHSB79C_3r zky9kNeT7dV%w}O>A&2!e3d)^_wBLbPbKC0^`H$3lA7p{e<5g~?sR>kVQ6sx{#q`=`PY4cIGi=Sovgwq*CF|VFcgJkF zJ`n%p68~rO5-jhpM4>yX#l|`u4;80s9 z!J8A^HRr;ePaQRyVh&eABB>+Szzy~B^ZP`8eyxCjyP}eb<+u9!PxV?qBX%8a*zQkwUBZB%PHJplQ8bZvwik1y3)@+YWI;ivH!+g`4?2DF zQIwp7?2)txzRU62;RgQ2v1LzdI3GztWi}7fHep@lV9mzs;Jd_Y3brO2%S~X$@QV1{_sHaggueGJ6OAx} zb0r|4Ox*l$(C}t@M?}p~8SI8}xDJy=s zNANpe$EU9VHqVd?cbBMe>MCQPs*tr8eo`eH8Am;OpsKHM&TOEL;$;J~uUOJF)ASQf zJ+gf3ommL74}|Xw zyZ0^`)Ky048iCq}JPABAIwqF*RE;i>!*-kF(P{B60kE&Fr|Yi(-BJ%czjzISa$JfYjaI(?efm4xpplWuF=;`jCbY5+Yl(rm|xsHxqJY5NxTPJkRq_pkVI;n87D6 zjx56~M7GM6+a`0GG*cY0i&RHEHTWOsPwLc%b1j;NTF!q4k5HUQbkl23`3jOIhB~=U zP;Gix-T7<5VYYM3FxjCCj1z0W1BoEn!s_k1i`yf4YnP7pIcpEMAxqjG?-+nAFBX@4 z?}S(fSm*Nc^5-B7fXhN+Z8+z6B`qP-e&frR`(SEuj(3_x1D*5;w4Y8|Ztzb*Me2b7 zUj{h_%xlcqJ6Vz!7Z->n0ZGKL<(WM%+?tG|OYB!ZC9HCX_y4j|7{0c$vSM7K3KhxP zhKVl8$)30F?EXyJEDgOe`He`PpOfR!g9`XEYu1~NglUs~DyHA_@%|Fy)3+?3+RXQ?zYUS0wU3W~wi zR(^+HUrtX!2tjOhfYX#RTvGQcst@BUJUlzUW!y9c#FcYX{+pBYol=Vj~sCR?ii`k%w&u>r0KGR; zN664Gmh4}OkM~SA{E9R-F6=Xg7Uy=Cb;kWxu-q3Xte+iJUFZvzP_p+K88oLX?7W-* z0kBDUqtW-yXFS$``uZ1>&PxQE&I>pIm=s64Gnvp*@hBn5od(-w?yqGkO#fQBSsUu0 zH$f_zuxzVmWO+Uun#hFdt|a_cg3Wcpr2Q52nSp~)mpXu&ZwI3eXmefPII-@0@^dYM zQhXC>zVEc!w~b{uEE0|P2*mn~goc!l+v2eZ%?rA|wSDVZ*z2lzI)3|pY=oIysyzZV zb6Llq%b=tzC5g3nEX7SpW5phfDA5B?L%2TM)TqH&uSND^2*Is+kIm1pMAfH!-(9CG zQ#x$sTgJ=vkxnY5&mKOun%b*)ofh`9LXn6(6CuJeC0MVv9H(14ddjrFPrxe)u%y$7 zs>#*=&YD=n{>ecrw|_r}hiMD9E_jgFLUfAg#c=z>c}@E!_ajDgRV8=36`Mp4UDu=b z-m;(37b%ne7*3MQ>8W2Zw=-zw2^bHEXJMZgww$Kbni!DHXhKmU)C}0DBJ)07#nYor4 z-3?YJi0G`Dw<;=+F?jc6D(t)V@mL~8cA zTX($nlV@_=+@G)WYqavu$T4~)b(vcv9rpoYSuS?feRG-d%$Mfk&xtn_H{XPYiCEee>#*@Y_$gwAz+dG*sB71=`Dq zSAyxsRVREBX=!$~w%DdNK85sAkqCwhiHOWWeTJ?I3Lc2lU<3Vq~!>q6gNd$EU|jRix*Jl_fpli-Q}zcvXg`4&F~Mu>}-FVG0;( zk4T|r3#G`-EG?lvo{GU^F}|;ytBxqP=?c^enT7I2fY-xilZ0ocr@g?Uf%sImw>>us zRNbm9j&~No9Qk9&6hybXAh@T*GtkkYtEs6qHZ=tX<$*#95P^xA`O48q-Gxw+b;W$`6@N5 zv8z_2(JUb?Z-1YGnyuN;#MARWG>!OF;auFvc(u1AB!W3|*grcmV?9%)7?0MAdYur( zezKYq)*G6ye8Ffa+I?U;MnpKUk93};3`s>&qPpG_smAjqSeC$IpIdqbbGX9!dNbU)^*_CNh>>+>V&neA{Lrh|Sh5 z-{q1sv1GMv&Auy{{YXGT%Yp6exT^MM#+4;Z5oYFw$=cb`{~4gCM7*`P7fR}TEUe#w zxK)CP_@yKy?$W6iqiDn48n++OKw8|YzqR-%aZ+tCA$QAaTZ4&ufv$G`TXQJJ`xo)A zzDL9Q+0z5IF2B7!JD?}DZ)u`Ty6s9fjeu#jdZ&X1As(s^M$K?)Zvs<>SOI9&N`xZ;%L9v4H$Zo(Jk6S)U0ux$4Oc+nK;hx#?X327nrXZNU0~;A zjVtWNE7M>VNfY|?5HgA%2*7u}-o3l}kX8khY80-xARuV{AXLg5YX_g=Mq>)InBrIk z-pvj-%b>M`BJ?nif~=3jU=7RNgGizy=z!99(bX)M%f)9a^eg$xTe6Pew0Q-Ke%BlO zg|;>^n6ZK9X|?X^?d>(b7ZMyCJmc`j#1Dfg2#ja2jyJR?D(w+d7VxQ*yI^JL&(q?E zUgxc~wKf>2AcBXI9iS}=O-PUi6@MlQ8htPduv0t!pSlgX7V2JJ2wWE!aJDD5wzf&o zl?dmB#KjR@xpKv?4YJQdt#ApPSdbOizS+^^Fx1Owa62}l9rALZ`!CiPLMIn&&GZ-~ zml4Mo=I(%%OTPt0wl50|VmUaRJV=Z=i;T~mJK0z0AFvm0+gLZPs|!dB<4RcVnTv>M zO{k&{za5vme%&1u7vObb!fBMRp46{ww-L293V6;@F)@7w7c7K11`guESyBizHI zwtXY_wUW}qA3uJ84KH7}<@P;7o}WPIUy-Plavot?U}Z{)V->aB^_Ro3;@({-{p41( zMtTgQuM2O9J;`QMu-*t;eDanQ_ETejjZuuHi>0@fra**_gBcu@wHu zl`0qQkd?z_$3;oquO*`4^9mJ4imkYXi~IQTParQU95!Nf>{h{GnVgc+2Oc+5jZ35@ zW?=~f3x0v?p=FZVyZ^xb>g`s1KRw8|jK|{^qs0yV{a=6nd<|w1v}Fo^@JYpkeetUG z!TKA(*hsEGcjvZS{?g~1oxMj>*6A7tLJbu--7hcB{l?r7X^P*ob~H~`GBkurmK@L& z|IIRkhWAxw8!-+Wv)ggS_+ws9l>J{SlgPID4}LuF=JDsVCm!p*Mbg#rzheI>yZ&NHM+L^lGnifF8m z)Ddz6kYwiVJc*4EZ7~H(#-hdkXJNu~Up}-YeXu5Qc@l0w;yf~5UQx~;O%W4K*S9oM zrK>_@Kfpr)lCue7Yy?Lr7@;Lr* zYfBs9K6g49uHU@517b&H)cr|t;TiVEcO$MNF!RI3X!cbRrWDcUnm<0cj*6N@c^jY2 zobs(%Uac&Zy?au@gV)m1B3VOUBO?5OpVwe-TZfM5mfDks4>bW!8(x0ZiG{oAQED#( z2t?}~N&fnIJo{)-#WB9g@7>z7ce-UDd*zZ~EDn&Im}c33_ZKdgugvKsa}X&ZJT_Jw zk}otlzkd&!-;U6QGzR$;OwFH#wvkhPDn* zFSSbjIaao-OIM8c{rP%bZ4rRYpv2#oc2z>dSy1T&3>fJT;ZTk*q{2M@Uq3qbb6BZs z@x}rtF7eb;PM{Y1ByC6MKN2syYxjn2{A9!OYopJv1!exerFHu>gYX169z`9hEf%G} zm4Ht?#VKHrL3J51l~2qdRkw@M#C57`@WW8dvyQr~p@W7XA)l9H(jCpKOE2f+c`kp& zh(@NHl-KWK^*=VkAOMGpnqHTs!q>v9?_0xtsy{!wV*HB1Qon-X3&p2b1aveTn95i(#?s@knB;5JY z#vLo#P34-@9q_wYtPzN?uVv#x!|jX7BE=+!Ur{ZalJa*bE9Of{8OsVY#~+fsU(xRl zO}8l7jt?DkYoyJl9hBIdiYXJh!C2wB#&nJ97pneW{!!SvgA^w`ey8b8=@vWf|8&y) z%UUbgw>wGmepXYFn96M5ZUpxVm!-e4X~2{%Yej$}I343219P+2U~z2M>1&$MS^MhA zaJT&HlO*PfNFLEY4__Y$NsoUZYHDmR9&>Dea||>JJ>#mOr4X0zHO6+~GEvsmQE^rh zL5)6R7UcNWflN_R5skeoj&1*n9k@$FV`Imj%H3cA>&~&e61MO9x;b!XfYpSPGA`bw z6hfP@+Ewg2w$tQo)|{g3S^L%Z6=8f5##iU;XH;WcUmb_yVnNAa-NQccW`DlGd}?TV z?>mMQX;LW4k?z_Jm$L0-X|pm@RNnt~wRrB2jJ3y5xRx~cPH4WP>05Sob-gw?npzx? z_yx{?<>XidqFV01{8#5OGBRp%%}Yf_@mV-Wci6|9r*8J+o1Qc|Z@rPM-^CJ7w-0mY zr|d{f+?8$Uon~Av(O60sdi%IsSaG3Q%FE+=DW%Crbnq_EQEPUWfRSVD&CUfG%&7uX zLmE{hu$YYjWaG|cjP$&{#&$g-W=+8BWw{ZMtTF>B4s1Le=mM3~y(c*XPM!TOF?$3_ z#hA(eO{|>fk6Au7Rn_6;j|z+sNO1_mHec)ER&`kTr^jR^Ch$=HL9)=zFQsL4f0o>S zR&Bl;yVh2KUan|Z!!OlZpnJ)RlKuDSk9arz^f8Wz%JW>;lxuOMag7jO;@9O;{KY#F zOHY)R@7k?C8Do|h)#Dp!ea0Xjf)w#zJ|xeRac#@Y)a2yn9%oK)Do`~i0$iq{F)^x^ z1VXY=;Clu$*zeI%CgWekVDdC@;^X9uh72D9);h$_4rYd9IG`e>s;Y{9C_HXy{r&iZ zmZIs6r7xeHkR3|fQAjc~qWRQB z#Mv`y>VT~+YiKs$K#uO&(e}bHVvdDmEqw&(meXmA7|;rclJ7r%zKa6hwRV8x$3XXk zA@VxNEF?TU-=H*&2uC(2AjxdO*g)Q%8zCc#zHkYtgDC%wC5Lip z^ot=(Hzl?Y;c_i&h(d;sKFc-*>Hii61_b~UK!(@y!I1)IZjci|fUp>3MP#uN{T)C` z16eT7)q1dSAhw2uj&L4uDMQb=4Lm>YDsq?s=o?1MaSm{m7UUb>XOQ+ulg*0arA}|G zkncs`S}OTL;Qv{QbXJb^J1Hx70?uh(gqpNPMw9)PiTPM_Xz`CbzEt->iFwC%L^}HA zPPo(_Ze)af#!h^Y;@F4`rvGgc!KPotiM}5{-YQnjA^CE3c_0k~)(_xaIG#jHbMyU2 zkHB@GJ`+_^!V3DD{#30yGR73mET^UAovRtu)jT^pJ9mQz1_rL23zm;YDZF_UaH=SO zUX@qFz1!w6GnFOvMMFk^@0-{SY1FdW1rm!s9Gw16X>kUAI+SByE)QP2mgM8t!&m${ zr2dFDwh}W*u~JxQso5|%PoHaJ4{x^m^W_W$^j(&@ULMMSUY<9wnF3|Gd93eU*m_5e zLvCq|syqMC-eGxd$OW4Rlr6*>cg`2PRw74*PE4=?AQ|zLEcGU^b4})Ia3kuFVONxF zVh$lYV?JJ9AQ+dN{1iDgd$c|03?~IT&3ggU!vRzW|2dEd z;AmkklLnT(elMZcL)v8l!&Dq4B_W9@>lmFT`aVIqBG?Eo5`Ni2d++BRmYF#al2Q2X z>lgu#)BW#*XAc4r6{5uFdX_pfL*wInz%2$xVCQqnCaDjg(vT8s+?2GCp_j@OKFN2W^8Nsjt)Wtw)|I396IR<^9^Kj!a@@_OsWw7Gan? zKWE`5tX9hK;2oJtc=XpyIfH9RHlePK_2vI;z*KiL%BWmriHc#fzyorfs_Zie9Bsiw z6nuQO&9-1;ZtTq38>4GMtDK#k-P%4j^LGaIz@H0C*UWlkE|)=1goNx)H>xy?;YoeJ=*0X2)rEj2FtSG55*14f54j&i01K&wK- zgh*)6N?jucgBys}I{@Y$cci4HAx9{{XV5)bVpdR)F{-a4TjqE3__?S0Atr7sO(N8W zLz>^kC(M0D+06cHl_8FOp`U}=P&A_L>wY_gte*vlG-)0$Joc~*uRF(oGEF|#3n1j$ zFJkiVj_bcee!Tj?WYB?KdvRj+g8$G2@SkvKFChJTu=OCv2|;5<98Pfb=>vdaM1X{* z&IcMY$bmONXn>wa-^i#4dY=A)0rXcMaKN|ZtAbQi?=NB^zw0je?}D2@^GqI}e-^c; zn<(7!FeNg1U;)Co-)H7-ICHIDfX*8vl+`S^7KQoxiv9x5+f_rq_H)Y8OF2x>(~Daf zoSu?j!tSnsarTnsqxNm2^IiJud0C}nKM5v-pI~V;QCNhr3Zt=W!NE@(8=ELNB|$|+ zg-B~~&~0XU`BpuMUw`U6`B9+HVdPQ>u)kyEEdynouXN&L+q})5`-CYCfMIj zHR{=jy_5GfM5P?Oh+OA>pECiG^}UqVH7t|dt#(7#U+*i4#x0W71aM4LfM;K~CBUY0 zyyCfRiX5ZaFfBqVn;wI-9G*^whw-m=M#CG~F-j4r6zbTwsesC6ZYG&bLqw15C8xIC7$#IS;ZT`Jkk`iQ;!27a@F~s_1sl?e3Q<2h_=Fam+7FzBS$C*)u?k-uEt6_C>Zf1lnnV$j9G!H4cCT^IJsg<_>=#j zc8(X*L);#7h}+|KxX^=&NZyYcJYLz%B~^tzy+cyu33o^Yd6A=1m>0aXzs#59GU_wh z4F2)@#Rbrh1T>dSRFss`2vw96y*T(C$P!>zh^YvZe+?Orwpq$cy+!XQh)J$(;}yOQ zp#oQ7FALeh*p+#82j;)NVj*!_PqU7J0geYVH4AR3(qgZ1UOy$rVV&1u`7K&?CaR9& zXESMhPp!}dm1TjlL)>(qtn>$@}Z?^yl-iMNM`E|5cn=PHit~#8|1BX!loPDjQzhKPV=o& zT9O4N7Sa>*4-0`^##p@Q=?QKBOMN@JeQB_6B#y$`OA6B{?*`tD7D&1Jp~`ZW8}a*K z%HF1ZJvr$AUh8k_^P-d8vIF5M>V2mWDH2jH|4X3>Vp1+qIZ8+e=vi^e90G&a=6ueb zmJXRqJT&g4sq-ZKmTuMImvgWqKKx2i0Kj+u0_(Tq$E+RaJc^~qy!8E4ZWSA(QyYOK ztZDVuJ`pJ=**%x4PUydea* z`ps``ry1@l97eKXI^vDN?yo0DAEf-+BN7!#lS!73s@W_SU63!jb7V8tlF5b`-Eon7 zi$RO_&4O;N5*I~$^u!}0Q zu5C}D%74+lu)BB1L8#~?Jy{Y?AJ_sv!NLi$&mqx@pvfFxCjVvk{Cv`o?Ma8=8 zum6@GN4Mfutp1u3wl1QPxCVk6(`s~jhX~roBXKw8D(5zmtv-Oc;w3wb5q~X06!ZXm zZrio8cEnag_I4a$ z>fp$RM~wHXb!o}`O09=PRT&*#iHFRQ1anBDqZ z_aQ9z2!p=O&U73CZ=5iieyWsOO@Ui|VQ@+zh6U-4U;N>WuZ}Y>kNK*+5a_G8%>FE% zubj?f^T6OHaamc?>$K+-XW0;^h~j1yQeI1Q15MR3XT=+sMs?H#VG9kF7Nu}Y(PkXJ zb;X0-e|x^-zSWoQx%BVv+r&zLw5hpxf$Al*0OLZ)w=+IH8rh>V^$ zZ*XaFSg4%W`sx_l_ETTSRN_8Fmb2dUyqBgKDHE;pUF;?QsGSumL+zw}doq`N1OXgz z&j}O?t1Q2*}3k@?T8NBG{T!7j`Bl9~bUQ zc9w)|$TX*^(f@Kj5N_9a_TE?yB0Q0>@cCPO{6LNW65wFRj%fIwTcY5$b%ieP&IKCL zXi(7PeaxTp_3A~fld18V(gYr6dvcGzw!+ch&eF0uEmhr(7V{$Zle@3 z47#x$7IvLYiN0B&cyGM-?+^=Rm{aOJQ`RyDzi+ssC7`($?7bF=wCK)JN+s}4^oQSC%*>zSS+MzN4u zn!lg>DmbZ-_UYdkd?dOyoNS?lRuAkY1jSq?1Go$Z(nXMW1dL(IuHr@U@+nu_=tsaV z8~ZG2UJbLZmWIg9n%#FuV$V5^M)Zv#FH+Fi;p~)bugM_wBms^B*;1)pd#joG^`2|J z?^H$flNppBqCY)NO#71?5@At076vyVLMG|j^Xww4a9b%w!IYa83C5~?H6J4A2BLtfwqHwITvf1bom^;m8O=fP-9I4Gy! z*t7)v6ClvCbitVQjoUGI5dMz^a*}q^X%3yxdHw+i!HALa&!0cp>J|Oz>mZpN0fVDb z?ex~dPUNF0n#o*Hk;XAr|3*&cVUooF6Yi8~RRKojJ#d8mWb-6Hu}dFzzJjd{SyQ-d zbJ3DRvWoq3x{QpyBj@ygu=dtbU431d~_f&wBSAR=7~f;5Pzh;)jSfOMCDNJ+Oy zw}5nsbfePU9nv8!oo8h#Gv4uzp?~Q3*4}&Vwb#1lb$w3z$+=4<7WHw~dTMBh-j~Fg491 zxePGy!6~blhg@5fJ`6PHFUQQf0wm*T5ttWpebaNWEGV3?_q?tq7q_R~e)M9c$LR~j zM&4UY4^W$bUT(5_7&{Ms2AclX7RIDb)iRh!(lwZt%TZI|8-Ml|%r4)7fEMhaTe2_y znw!(H9&2s&Ll7$DP*jNncM{~PbSxb}d1-1r`pqfw?zirkb#cW)BKpyb z%~i8Ld){n8%;kwfCpHJWwdnfzb3V{#RvR zK0pS7xo8~BVm~@^-yNm*+k%5W_cu*n=HbMo63>MFUBBbVpT_%EpBH|rhY2q5^1rAE z2oJE7x*Nk;q_sJH+cLKl|7=_+Rh+xy^P|Cx5$m4>#m1Od3|bw1m_Tt5Tw1t`1b&Ig9NK^5FN~*I|&V`IC67`jV5?zf^Q2HMs`T$ zF)_Et2z?VU6h9faW{9_S5|j{oTRk=c{IIKYw_T1*cn!5x7g#SPBID=4bwihO7>K94cq*jPyT(B zJ4gT0Y9KMuI6hwW!xGX6plw)yXYbuk&lzzAkaa-%z_@aSz9_J!Mi6vSo^h{`+b%HRHb0w7UzJHS z-@@Y#8zM0O1e(<5h!rujK6_^K)>5*KC3|--?f&~9#$=FgqSX^(AjGol$T|4C@Aka7 z&3{)(P!RJylG+4k9?l%k|Ep4xtdt_bV>bMa`t+0|+kfQ|w?+Ol13XE)(HAe+`J7gZ2JMzoA`nRgPy(}nC@_Zb&$DNZ zBc|1OJK^+M7h9*tc}UlN9L!hjp<B4;;+W^%BkosFnP(5)HM;fK-nHx z9CRiAmW}UB0Dy+*lpIFk&4XosZV5j?d+hc;a!*8QOZ%!)rg~5~i!rwY*5FYG66xyk zWFbf$!rybm7!e@q-mP*Gld}?(lT#wsd?&1uIzBpJJ}L{wa}_r*D+u>xPd~WmOxoA* zWedD-^8rhycE-OW+}A;Hm`s87>y7U4(m6+Z(QK!r&aL<5a~Jq0$J;z-9vW@)z)yuD zpF7@D^_v8>u-I;G|CW1Uf`r)HEdb4A%mk;gpVOl>h|BZH?V0rGYzV~}*q0wW^-FFm z$A_+5NX_MI8N*34TDt?Ea}GzO#>Uy2+K71^DNst*QQYt-ENH;+Z{C)8ej{xTjVu_xiIkv$Ya%PylMsI)YL&0~*T=iQr7Nwz*TNFFBd%7Cz!kn>9 zTcNxZ8l{MOyTYGO=0>1B=mj6!(!-I}^qwy-Y-MYix9`3sGgG|ZtyiCVcFSX+;}eXK zH{@Y>Ns6#Yai>$VHy}hABg<}iFA1v@Q>A=^Fp=p)mf6PgkEOY!Z;2|+ark{2298J7 zX9<_>mSaxrc!%%({x0+rBN`Sh1jrfc?-?taW)5XiE7%|>dh|*J#lT_oljA@{(mTs%YYgo81xs6UQm7RzAuJ(g}AJAw7D?>?+4#(uLy<=GiA>B z!TRnZW@|3H)9Ee?`b+3hmZ46&$_0?8n?I5k>d zdc^m~lHikTPO>yPSd^KPu#pfclBaenACdL?{j1kbpqe7!@l}uJt93aTlr~Z-p)J3}@zKj(`GV(K`uBkr|nc*M{H%aQE=IhKJ_@d?oOHf&T?TRYDbo-*h4r zyH5Cl0_()!)f|(#G)+Te%uTy{n0vv`q*aJMQY?r=BI65%sY0@kz}( zCI|8DL@0=e$8udOdesi$%oYgX43%0?A#@+4C;|m6#2Nr5p?EM0^;=hX;O#)6aN6w| zuTojHjp!+f=KTK!zJx{e_E|t6fd+|edOYrg_QCFaT+$t)6 zbG!ousf*@dx<en@F3#{<0vX?qRGqb&a%Fn1?tup|E`5^Y4AIjuGbpr$jpfrpxNT4HY2d zTthT-rQ%~#-TGDOVRv)}Lav?C4>=llV8DEWQ!_oX_C})=_NfMPFR4}s=)dw!vxOX$ zKsg~aW~YitAqRFsLw7qv@qVnp=J{mQVPkH{6l(m1VhdlbTYor=2_P|9<|Le9z35=u zcES?P#{8YUD3Ju-&dH=GKjwnLI2z8?JZ^cITP8@9oj7+O zZ?U65D|Shiupb5xc^G-rt9&gqNXKb`cb}u19E|A?vI}tc(Cta*@$1K0repZ;znPB` zID2lQ;I6VrzcO<7x2Xl27NaBy zVQ(6tWX0~19A3xKa?+d+FWQ=B;wC#oH3o}O_GF$l^N>kx&EMYAR`XWt!Hsa}_|>(; zkV&E{w6LVFy?-bq{;iq*wrSo!pUw}+ObAlp0(D?|VZkdUWs}bv@&u7N7N9vz?aE~R z)&9L-v@+X}%iae+>{_{xgx{M_oYs^uA2-MF1Ur7mDnSp_o_fhXsrJ4m=#G_I*xB1BW;P3=!i*LOHzy>~5j}+A9%lO5du-S; zyw?(hYbiQD>^gQ+$}y?)Nb2<@Wyi`Y>EV(jPlId6+jQ>9WeLg(TuRjmyC{Yx&rJ#z7ntSo25r*Akx3Jl^CkELa)F}k@Fcp?p9ISGstj&AUH z+@tIGqOSOKlRLakBnxUd@|MtK(Cs3g%3#1lSFv192^&uxdL4?Cs++`|b$ zONvQ>kRajv#Wx|f`tt|1UlO*;b*GibTLXcMn9EL+Rikp$kZbW03la|?eHaLy4G30% znV0cCDnGZf01%Fgk}I))546jIP%nX$@}O!yBW+}<&1X(Q>=CB)j;wGX@{1UVF6q|y zIDn~0qVEYSsCKy1tPR$FOe%(tbv%K4V)TSI-w0o-hawJHc!6pWd!$~Qyk5^^V0It5 z3NtcGuMMZ`d^ozVf=2%h+)Q@6<<3zKC?l5%Xb)FJcI_!-ZA)muHIttch+@Mo9Qr9t zgLaTmI8q~w7VqxeyXHVWg2lh-HnNHT;ZhtwCy z9Uc}fV#<QUJYzG#Z9jQpFCaL{-)B^@t}!3vVe zHh~Yu?+4S@y?3H!apIcGmL=CH;_~^|Jx06m^=}!{bn6*_H-5okpW$k>uy?e~ zQg8->Ed>f+zS*PzaBM}y#r>xy!4zkh6aXtB%D=$~wv22KPOo{XCu{~iSL8vZN~$U? zvqKqPs5B}KYjEOypQ8x3Tskq#LcTsenlNobekJvMoGKvGK1jmsMyvGGJ*^ZvvKe4h zW6f8HYilopHEx%skp%9FTkaIk{sTj!Kh%dztvm9{-LxXw(lF|Q=sN?fIRsO)oH82X z*pM>!_4hHe;l<>T=ZD`1X6s641g2jG+&z?Ue#<8O05dG!<#ey+EDl^OkgD{P zOk+Q!bq$4&={`qUbj@xdQ3cQV+L>;*^wljoQR_P}Dtqo+ly2h_>Tl`qsH7zj?(-2t zmjnN$c!B^KD{Ee~eh{8;9Qo&=_ znz||c;Bwg2R74B`x{Nx$$u(hb5_Y&^{AcA66sg;qvKoTMObn;{y+d;|n;Vd_A$trX zbpl68tA0tSA)OvrGxMc#LV%|;ibrmy37oxu^tz-$Y{v>w0L z?c$i7jyWl^XZ{)p<$<_d?Orw?aI<~1Z4Us!bXIlyhsmPFgIxt&@9R1R+LR<73_0^w zU?m1{1QH}&1okpDNP9_-z8+e=Y3ZZ?bz|gKWrN5kr>`6t6{EpcG6{>lt5BvY@`GLZ z09i$IC@QK#CZl`0U}k8c9Lytru##*Utx2Hb%$b(C6Gl>4#j5$+*$={i^rdrkIsN?k z>()4fM+~su+z+tkycMMLQZFHsQv*W=SKdBZ8{|>!%eLEWZ7J_~z7Pg-5}pMZ?C2#) zL88h2&oAMQql>Qs#!`yWi@O4_Fv7$`~Zg*Z)v zKqCR`LHj8WB3Q!-0>wFestnMIFu!y_YU&AOHNZCknCIhGN4fuJtx$#qfWZ(kC4%e( zh!=>22t+&GbvL}EQ^u>=r)INiuqY%mOWP`WpKlQSVZFBkIbG7h)q?*7a2^~)LqhIx z4Q}x@C${3~93tU9w2%)O01V0piZXCCrTBLUkQ9lsGL+`M!R`Z|2W>`7R+(Q`7Re6(*f@?-9rrhU_>%f`KCQ5kts=xzzY;t5)Bmt?d ze4X~bBrp6xh(=0ieXNWf=$RZ4jr|4kDw6*INHVbSmLQY|d^L`NCWx;>3P%#+pI}$N z{JJ~o30P;XfD{Z^B8?g zr@Uxul9d*f$%7M=eMJF-(Tp8!m1h6?zel@>XbfKsiM)%Ci?rm83k@o1Z2_EGDBatJlP<2#;_ zP%awx^cvW)NJKwqrYjQ4&jth>V9&yzj%R=w3T$VgK*h!*CVmbx0z!QHx0ecuf}E^Y z0S3i~+iLzR;2QslB7k(@PsTeSJr8lGIS4H*3~D&fP1pM&AvF-R+3dGwNtXQZk}SX% zt=$xRIvkmMd@ltTee&jyuN~EQLoKkRbrOHhO|aYX6ZD=r=q+Apom&6>mCbO7-(WE@a24!erZ$+J`2pUag1{rt#UbKLXa z^}{B3JrL8seEHG^r3(NDyy@FT4g|P55L1@4v}98&x7Gw$#HCA3^U1>ATZFXxm2yw0 zUT`vpKlR?{fzw$m1z~bf$3wb;Ft-gKc7n); zv!gZMYEzjoyvT^c%cg+f)9Ipk2ep)JG5Xe?#XCwXA=w4L$TJNNeA>(*JBIL*Q`=Ab{xw^2+{5~jV|g6CYbK13!tiX`W?virs&#b{ zD6oSkKV#cESbrpx&0|_j@>39pxDhz`?;zH2v+|AY-i_`g>mG+#A#J_b3~v4sZ>bX1 zUlooK_GiJ8uydrJX@k|j;!^*6*idM$PgHp}BG6pq;f9!-sj2I;1K`AXE^mZoI+DMF ze8rADlr}p)ylPx>lpIs#bBWc5=t`O{(FV{k-WSjDJt^PPHMl})CL#RZch24by7@sFUq`=ch*X%Q% z@B>+3RPVkE=H9;jo;@Q1~-_X8jn;-DJS`>+Qz48IIu9&O;nAtD{qFzHX;nuPnU z+^f9DVTdy{o~}G>BS)d_!bj*Qfb4GF z5n9Ac4d(~C;+=X^kzNbh=oUEqt}Wj_jxnwwqo+--nlMndYX7GUn-y03;7!WtQaD0o zWo7XgP8_I70vQ(oCif4)WS4XowxGWP)phyP#LxoAbEol((HRp6Lit{N8nC6>bRMT` z$!981e-td-l^r0itozCnm<$InPgg(&75*8R%A8h@(vQUiLGmL&IN3osC<6R&_2DujWO)N1 zp$O~v1t>8igAfVNa&$k1odLnxt}QT%2>%M<)BL6sH*%u@>B11yx$AK-`~s=I%5bnzEZabPC>EEV+?C|7@qCE;oYXPVxZBOVYi0MA@Q{xfWp zsAnf2c?HFicIXU56-+&V)Jql7^#i*ZWq}F1z$zkqYKL+>n#^s(YKW*J01AW`4GB(Y z{lE^MV=W}7$;&$^gb%I|i}a2g>|u$;eaNo681>3slSOe&-;0Cc9vhF>>TLLN zOQlWTGspRkK!~m8;O1pIL&&mSREpS1x!pXGJ{HiYnkZ6-$nMMoh95<|;{2pvA38Y=sM1qs^VY zvvcgf0xp8O1UM}agU{p*cN{x-3HSTbKS3}Bxuc|_ob74Dg8W^uN9ygh{@XU&dUZ<{ ze3gTFjntp7e-Qif6v)QVk0U#0hf&bd%E}&~E%_yb3yfus0%4$Q^@6iTz^;%Te4w&= zCekX)=46(b5F&*Kv#{p3i%^~E@>CTfy%iv)#-@L`(`2)&D*gsCQ=f+99vILBi9^Sg zYcP}i4GIBRX6pBEBfAyo7zB}R!*4k-x$EPAg!;X7&4wokv$og<#_LzAvi= zQe(caF+Z)oV5W$OZ^eSs{J;V}6B-cMatwp~r@sXzNCchIz$ze}w%P?Q-P2z(-$olk z3hBL%UlM86{0?fZO0!seS0s`oh4y@fKAJPi1#E#kqN1d>D>)oC(R$8o1X7ZJyYw zBz4w_D|_FKruq9#(J*dcDcsmU(Xv?jx77KkVWVPyt9h+xgyzMbcxB`I6Vmsn@|enL zF&1D^0|Pti#%6<6+vt1A9%^rzw6*IoFcjzpzjg?WQOveOa_Typ<)(FEVnj`r=BGXQ zZzgG5J-9)^i$}72pl=e%T}j2VJ8*2h!C;hR8l5A-5b)uT%O6C5+jmgHlv{bepMe|5 zuVqed7jCb@`t9`swSavk)=!?n_S6pHKF+^CyfXGYo- z$b*wS|-ld1IvjkNAq?VeJo(!;mri zw*LN=Re~f=q}YmwqiT;D5#|wn#AEk$LHNUPURE)~kJZzVp&}nz3l%J1VcOs~6jB3o z26lFnt)6GAGbw57^_-Nad15sum#${@UNHJ>HF#V6Q|xG8nJC zqN&L-^op|W1r$r&^=CnLf6N=!hNUBE^|R*nV*Lq|;J3J{KdTmjOPGqo*|*Bj*Yo*( zEI01uzBahxh92SgLn6kouu3>G1U!2f-IsvSlm4`Ga&?}YiQwd>yyz>YlJF<@8Q!B1 zyt2v~r!1FZp6(B6Nu2y2C1If5%* z{;^><)*ekBqW-gqe{{tzomDA^j8cF+)N)H^$r_JLE!pJ857oc#ugmrPkXhyye_5Vx zk-d<}>v^)N+MTHwec`t_m*S#dsO|L}qS4MD*ktT~SsnSl*nQZ%EZldl9*f|!rFrh2 z9M$Cbb$yoRYd_gtTD$thV`aQJ1Z@&cD|qa~odr_y1iRSy#EYUuUl~@d-@)G9Ccz8+ zmVheN>Wv?_{{8|a#024=z=Aj(pM^qBo$OrpM`w}A@`dUfWk$4R#kYN~dL6lnO_?{b zR3?}-OHHh{1 zS^pmrjgO;1kwdgDgh~OzI?}txZrX>I3#fY%w$Guy0fp%#GZouYduMd`>u^|X@eEAx zFrh4Vx0LlPFtT1{Xdhj`wb;tK^S)#IvIJ_(<@LIgrQ2^yALMNpd88YGWsb*c9(!tP z3c(?Qw1y8|P?DbbA;=q0gBgqdyTaxU-69Yi`P;Xg;9z?Y>gVnK3-bM6K(9cG=0MHH zhkR||EpAzraoE|sn_E~AHZNwjC;h5A$JEC7qH*O-?pa}ip5mSd-!ryX@xS7UWFv>F z{6!Lk`{e$^zPG2rEe3=dH@J2XQcM}}`QOAeefczv8YhJNahH}hxp!$Fpah_tX#<&@ zV}JrG4xMlVA|Yv6o6t-VxkcwI%sj;rSLF z{ND5JlNCM5=YO4R#g4<7{L1QOyQoehE4JaP*Pn*x1HWW36W{1@yGY3^l=3>bCpIYe z>bx120KkSqIw&V+8uH2=C8eamTo+eZSZH{1n%f&pZ)L}3LDFOO6K^RgjX9k$-0B8n}Bj+VK=m~{DfuI8%%0A;Ag{%PQV-6A=9<||KikzGr zV6L-Rj6p+;?i$w^VG1(@IE_%AHG1uMM?;k4cjH_xF+SV1w|U()=le$@>PNt>U9*Xf zhy|YeCsPENYPsy=_VkQtGzB_Kom|5a$Ji`>?}JEdGIxhn^W@wjT_%7E4joN^i7Myq z?|&Bp%b=Cr)2hQj5dL(7K)U}+*I%#tCu|5X4=X6v0WSzjz1m2?bqmh-6rfLM00Ic@ znV_;;a;KL8=^f1(6?8ujJ#>RalV&{7Jz2Ky01rGb)^xsDU&YTzQiBl$|)+gvmGs z;QUbCcl#$(xJcCln7m(8Q{Q2YT~S z#BBUd^=GR-P>xlp@FEr*3t(ssPz@^JD_&Rktl7JEfcAtiLCKqB;I`r)RHPfw-((^8 z$%}s{3w7hb9J&Ru?WklQcoe52D_AfAv_ah+vHV&P@nU^Yspua0c};*WC8^|LEKka$ zc3w6;L3Q=l_uSZ|in_&rxEHQ&^(mQRlMnlqUPT|0-X|f?%hewLl7hXsqVY{w%=h#x zkSx(i>18RNsv6^<0i`%_#*uA;joJU0&pEZKY-z#V`V+voI-HEF#m9GBU}B$}m347& zJx@rl4&!CPWnVE0i*iOrA5uY@`}X@YOiSNfts};KV<_ZShUDy$oB-|*YrOlJM(iIhj-6tD`8?}cw>NgN-u~!thuujs zrHA5ZXRzj}{~fAU>@U6JOY7(1M& z!!;&Hc@kb%=IKl>*c$sVfPsS`KZWtG4wMdg8Jk z*>|C<;_|;4ao_3B%9kbJTp6#I!aDgHXy!KkvB`m|r29LAUre~pU72co{CLOW9yRN~HxGGp@&C{oyXPCrXH0Z)3!zm07e5$or#l zH*->`*myMHvCI_k7fk=)c4IU*g+fZ_u(6*|e26mn!C9$gZ0nz14DV%JL$aeI(?)GE zBSnXaV%I9@X`>67FyzG<{_XP;-F&Pe?4-Dx=BMbeNtsx%pB*;hyUF)am{9uV%PDU6 zdtt~Dl5#oC+uJZfODk{pma4JeLRrQ4I|(*>>vfL8O1nU!%E8^!b1u{r1-*S#-^woZ&av0*7By2Q# z^g5&?$!o8BdUGOnv>ZJtx&1A3_xAa^KFLWotSH5@e>}!AKxH!Sj`eR8x^KU9e>q)9 zdv))(>-|Ibq=|`p?+V8b@x$)?JwE!oU!F=D<;V?{IuJ1u6*cfsqQw1V))lnz4t)IX zTEwTsNz$&+FY(RIhqYPuR#$4Hxz5KzpA;6+kEYi<6E$-2DlLd8 zSXX^%+9QMqv-ln^VV}I4l$dYw+Gad$d9_ob*QpW1Mr8Ko{iGwCaQ~&h=LKwRxPt5s z)HJ?}2T_FrH!c{GIq>FvFBn!H;5l4=D6U>pJ=-K_XxNNzGD<@wFY)p3C92`w+sH!A zvF!CxuL_EAUJGCt^|+N_<^OK&GVUI+5T#hNinG0aN`mO_iIF9;Hin3HS^0+|n;g|; z!L&WASw<{AmhDS^d;{3y9t-=XBHOq0RljE2t8Q+xQC9gtG7*mO=j(<_Il`rAd%x0k z+|Aj;(~oA)#C|8cTOY>}37lLWPYzmE+6XJM{VYj~-xG85{ER-pJ~`}Pp6jb^d0a7E zSW9;F+tyWr1gj^lOUx<+t6BNuN9nh7(^r3vvTyiNDmhSaO+m2f2m3}i;>b?7SkZ79Qpgk<6(< z^?nU%OeK14+h=9gK26hZ?O0_xOT|$vd6jJCuQy*xbqQx(>O+djLD)l+%pQ&>KmQJ3 zPpZ3@9z@rWj}9$f{Bn(IyDYu3YNyfI`1NAfr=19{y>BFp%W z@#PK=+Y|PtM|E9wlo*Wq6Z9V-sSUVs+?##n?utBJwvu92O{d6bka&a&%(?e%{R)C& zXosWD`T1d{AB;4~Wu_|jH{L%yCWxjnQpR zfc_Za*0M5wWUG%$Rt?)8Nl8|XOn8ztL;0CSYp*uWj;}WmXU(Yr&4@n5EuHs#R??5Y z!P3{6oO$_d%$g-{q;b-D$&H~g%6O6;+nFV>yXsKxC0_s|tJIbxhvh$S@O@U6$whzi zHX+V;wpMANRBh#Ic-b+h@k8~Qa*M8J6^+lC_GzC&c3fZnnZN$A|9r>hu0Ima)GhTg zFEyTc^DfvYwQKggE~tFE7}#^=+4 zuswkx^|F&dX$%fl<=2{P-dZsY5y@2gJNoy!ZTIqyuTW9#xZafKzm3m<*oa{Yu{#Zo zqVW^_XdUHl)_Gt5NT|!8bcFuHTNB&+dkbRovCF*+dAFsKy9ICT1fJg|BAdq<-*!i{ zF7T>d8?{|~^SpxNWopS|J?9YTgtCN=yc$uhSH%Xj^jEi{IeO1DVo8Mi7|%}$Uj5-V zJ%7wQ4)Nm!0@KsT7ikwSqH<{-QMc>bYA?;Z5h`)&F<{7OpWj%NzRao^L3~LRS2Eka zZ0D%7c4U$hc^$Q9-J1Lw!rfYtEV*|_!y*1F|MxL=2hQO#w0VPyboPI~$CTmjBE+L2I2h=W5|JIe#o#+MjN?%Xul? zE;%`;`Li*ZN`HU)T4-!G?nm+QFI;Tbt;@yKrv31bhR%{%a|hqK>0A}mImPK*g302C zgrn=C{>gm%?}4S!#NJ1yEZG{Y2S6V`zvaDo329rI{KU{6dxB?qm*8@kxvlDh%}KK9 zZk&_ETF<+K?c1ui>bA|CJW&ClQS*lSN$`8Q9sl!dR2OF|6>iUKWOO3(=NWmoo+RsA z2TZq?+02&KpTbIYdFXEo){H1tOy7#+Ki8ZHpxs!XX(S{~>-lZ7t{yevO+tgrAs7~E zydgRQhv`ltbPtsTA1-%1Kr4|_6|~8;96bEPLv>xdbf?|^a2>E$m1Fi4sH{VOf}NFS zwsa-OZ)ZxKkFIIS{^#Muc+zD?ION9rJ(5awxvRX&g{A!A&vWQ{8n#C2=*n@(guc}$ zP^tS~@Vct7Mw0aOdx5Ja;q{EdT3uU_5 z8%v*A@kos-Gg-NbX~esn`87Xe?`G-z9R>3PK+cnzQvUd}dD52M;R$XZar~@dyIQ2GB9P3!FCI?lvvvbj@GPcNJxHJd?x(si;M zWAQ^eOib~p{~KU90{%z45cHz=17FKI_D*>oD7;$G0{Ix+QqVNOtF28O3Gv7nywLK1 zt1I{NRrE=y;p@{)$CVhfAS-dDuPwTBP5gF2tItELjx^8+Q?li}Nwj1JaqiXsU#Uw) z>K0#Z!0sxWAob$K46M|3;2+qhRvb{sX4D6hEtD9ifW-IESq~2Mfm34QA-4p_Z7$|; zl~yhL>^+nL?1|2tw_b|^{b3QOiygJo!p{Qxnu?w*k%-(Qymrl1F^l7pEDE$XeU#OY zbTeXe%kaG=@IDe4ppXN?X@q`^S1>WPK%CIIEN5?TKRaGrFZ5r@y$2oRHGcnn`_JiQ zGqMmQ=*g^NxP4uag12eJD2G^3n6hz!DM6q-B5X>1#o9W}X1yZu%KN;mBYw_7hvY|> zU%S~->;nDyr0;>s)_nOMyY9(x5RwFk#ch)3**-02cMBg{v%%#8=yofzk?Xk{z=n8 zQbN}4FXsqFfu2|c8Vc>$*(g{~KsjmyHuj|CX=!P_f5}D`nc}9wml3S_zv6L5uUUi~ zd;cXXG~`Jhjpb8~RVo`rkm4}u4~H!MyiVVvKFvEm=`+F}5O5anR^TR)Q&@hYp%-rb_e!p_7Fskn)js z3Q)Z1hLqdSWdYMgn`)Be~jCNx_-ZWt8G4Pa-t# zv&nvPR($mTvdM>pXbR+MkW7pV@LjudR2~9M_ch%gfb?&Hx_~r-=>VTe0|XmYP6Z89Kr+gvUPq>)=)N`1==^Bf6I6O^QNOX zzFCaNhm5KXX`wwxUVCIOLt4l4Q*>2{M?|sP0aU#f6 zW*2=|W6G&}}gbf4rD*O(ebVl637=f2V>Ro@c6oSt|r^1RYL{dT$w_6OC4)^NGvpv~uUVf5~7{`1JgaY>; z?UzVV=qP(!z`&VXt-kTkPv5uu6{UwFC^#ny#ALQdzW(wZ!ItLI9U<=y4Q}7hU)uEX zISi0KX{af_Ue?^WsiA@E_N52EUm)ThBMpUA0Eyo#ACai{MH_D_s|uo1uEEbT_FXQH z6Ts%uD&*WFn0H+EfpD#7l9%K(SVR^F%$w7o2kV!1CTyx1|`q$X(8sQ;P}ish)j zJrr15`hDMe(qbGvJe)yEwq%pAKMFaR;ZM_A$*}`fiC1ZH$$xtJT zw~to^AFC@TpL|}_f4yfqSN^i%Exm@4wwn*(`A=4vp3&~>&1(|$%TmegO1lHsIM#d& zC85MiyHjc*`i6iV9v&_q+DrK_;@NN4i!+L{&d=ZQCvbwZ%+m+oG+vX}=4WU%UmBCB zELy)Jn#m_KzH@euYEFiatmN8G$vT}z_{wz8@#<5`P^${#OMkz$Co95o`&puNM+#f` z$x;5)0)_dm9J-wb$yMv@`s$H~Q#*>6oW$CV?I#o^0@}ycw2_k}vU=m)I;W|V{e@22 zpv#68pZVypk~MN`r@tqE)?fN%RxQIKU^sXF`-0VPp}e;^NZu|0m9WJjH`A4=KZdJ@ND zbi-+xer`HhF|ZjKn#`jmQhQDr1m1oZmw)5DS{+OBqw}o^eAe55BK!gCv9n06EbIFl zc!v&&Bd`ABU4DK>P8wcUYZtqPUPW7;esZ&X$Spx|wWmQ12QZ_dY6YoWx(TgwaOw&teoHSfH^ldE_GMXeGdh+B{XOzt&MkSx)C2oj z(K%*8p@SN#XAD6O^Tcz%4Y0XncLZx$9Y?ziJ* zst5(G;m^U+#-}TLA5v0UpkaqVg75jS$?@~v=XZrUHi6=cSS)$v&S0eBY>N;Kmni#N z=$sDUcMgBL6x@o@`;xd&o>FR^ETT+D^OQTN<;Q~DePoXQX5-^i>rdPgoJPzZnlPHV zS;=tGhpx(V^h(VypP$;Uo`G~9Pf2l4Ry8a4nj>m$Cr?g86VW=;{!Y}tU$JlXeF~<+ znarK!VkF=SeTO|Nxb7xd;_!G%(SL}yb83p#b1FQ!bsg>T;}}67;`8rJ3a@V@ec$Zf z5MN=B`cROu_M`uO6qi^{!K6l63gcA)A?4eQt?4@@MCU`)5Kfo%bou?vjJ)qrq4LH< zH$1P-Ii>%p^nJprR?9x6?E>?~;3WC^xow)R-1$wcdf-6)p(F6pErOfMOb-{!l|0`> z<-oz-Y3<#oubt=OLYbI|9+l6^Euo~u%nqkAvn6?Jyyhi1r$c<~Bm7wN{PxTViA+}| z9`D56*n=ivxe{rTEqf;iM~oq~&d$G%?dLA-H#}ElY-1@;hlUTiCngV*0_ROpklFZ3 zznm-X)*m^Rm4naT7`M4zmI=sf(?r_p7~VoodD1Sg)2)pih10cPC?FxJH@0}cV2Z?g zhCI5`Pd>Q0#ynKf5D*|ADnOT}^B<(apFy4m*P;T&Q)A_H9{-&Y42pI$Y8#jyT=_ef zq=rSN$Ex%X*d#|gyz6TF=QYi5gv5Ne=IVt}sHvGLdJ`{#lDauMaP{x0s(iyXzJ6k5 zjso|RqvVu(02t4B&{AH`DO&r9efyEajk^(S(?!j_7S?Yg?U`bW{bO@`Ya>Uw%) zvtQ<4fVP2)P;+^=yW#`2yrjy?F*{ehYu9At%1x)}2>|c?hOM_K4JVr>3K}esLz}aY zpFVwn)%Y779prm>f-wus7* z^JW-G$U1L8_*?u0wicq#pFe`O^U(j`D$39|9W2;Hx`GuN(h~aol3~VbRqqsjpF*-? zWu)lE2{#wlO;}ylga6;_@bI1WiawzRF3e&!jLiLU;>vbOI)qem;QWV!UKYVbfw&80 zm{@RlxNcW@OKa=Y+FFMQP-B|pwX~wEKg~ZXpO;fc$!fX@twMk0%+-5?O`oo3XRbu% z`SUAC|3N0@Zz6hS(a|K(6);_}bl=- z0)@tyuoPZR685LRUj*(13`0 z{ZTJozRk(0s5cD6lAKimz?t&ct{H#aeVGZFo9K!wG&=w7D;g>+v|Du`2C8dY^l&~i zGxIIkU?hACl-abwI?2-t6yhn^kJGWRn0{M_Uxe-v zadS#JuROpVuXdu$5j`B*!e>vn%F|@XFNPSuO^*qP2S+%7igN8 zMq6RkZ7@1oVb;y^9~>p!KQwy1EdP3aBK3&u77E$@qKCSV9ir}acHa-`2dUjpl_^egRqRuH4+jManidmtg2p!UphXCFMpOrAc$`VaQ`GpXKpkR6*-Y6dZ z;0p93`T=K|qh)q}-jJyjGEM$q!GpHW#3)EZKnP(WR(=#0kVlZy0AM79)C^IIK0!zT zJybJ?^}`p{P26P~dGb`8|aW0(a^$4Y4$ z;l2zeZhli6N?-eMl5TQ*F!AE&g-~+sg6KCexV=~0m&x7}6ARgu)>nr}c_2@hYsxpG z#1B{m7&V6yFmv!D>SEP(eELP63pEaYgedO$ z?CQN;`^NVbEVZvdn;>)W6x+&)|M<`03Ge$F8_E68d(IyW|CbZ`?LNpnNDK3^v9VvP zs{znCkm}(>rDT7+3$TOt1ey;BKKFne4(&hGlf@+@a1^s&qO!8GS}*mWLDjq-BHMjO z(2WAqM?kmoa2T9{ zFF-GDwP3)=_=RI>VIcufYlI*T3DcB6+*=6!oQ{=skSmCKTT`yVnEqraba2Sn@#RMe zAAf%WNIOk~8}|+);|sVcl($!g<;E&(rPOpmnf%e-E`dzz5adLN1z3P`qKs(m*8$fN z12DW;pWP$)QGznsbK7UNhzkh>H0CTZ7I4}&4nO+r&!Y{nyA>3_zbc02e4&;sp zfsFL@_Z=!J-fy@9k_#VB_5~L@Mn)r9C3*Q!3>+Lnup!)GW|naG^z;SC#GLes`O)hD|uQ>&{0<(|QbTV>zg;m~Ol#<+I#CLMw#3D|{CTQp86 zQrA{l{t5TA7R1h=PpUGc8kG?`LK4V`TEKNCu~8PL;M8dg?+KEy4`}cAiV`0#1!?38 z$~0uKq5MRE=>dTjLO>8GMP%gW-jL0Z2SraAgR%}D)gH;o$?!6-a`8uxT+PkR@xbWz z>UTy?4k0|KrmOZQdWYjZu!wxYNV7z&@Mi>n-3{zmNjtbwl9GWaw;{&aHwtMWG!zTy zc9dgcU^Kp}nQd2e(5i8I=iSb7N`ZfVULIaU0QbFn(nx3N98*7LHEorppA5XVYXosT zHrL@nAdJzv`cwEOtF8%CA_XbCy48;6#C(B8CZ%+g_+^x)*4D=`V?u1}3(E{l>cD%0 zvx|fBF)GTZyqqV14Q@a<>k1JDOwdNwc5UpDwY9aM3D3K2Iv{j+LuVsowuTg+p_!dT zA??Hf^hNQKXQ&6ZdjII($9D{WP~!4H{mV^GrHD*&HGg|Yg;f-PqCemw|FyK_1N6Js zt0P4`WICCZ@xzG$c!qo^DX|S%g=^IAMC+MZ!QJ3rk`ETT zU(jvw2N0ud!rA9{(EKU>0FlNQiL$~MaoKO(RfGpJVEK_=o3C0&;b2k(RAps9K%k5Q z`WwiY71Rk}-+VaVfLsS&{#fn??+5>^j>?M=#KJ3+*adJOfKotO|GeJkwQ3wHvc!Vc`Zz zVFY^!oWCCBfyhCkdroc6$1@cDHMk@XFyPnj|D-tmd>UbDm3=}oDoYXGIv2@j&vqI6 zrpwUK%eaLuoA}+naq@;h<$Bq}{QMaXC5m|y0n#F1nuCFF2K+sX-N|0>D!`kG^57t1 zC`YBFFRBdwWoTq1qo_Dw9EDDO_ik-(FFs6oCRV&B$H#ck-xeZIMF&IZOZa9+`-g`~ z&;Yb~7jj|`9mpT|=LF=>C_ww9I*1nE2NzUbV`IsI-D5S4TI>6QqC1y*VSQAzR^nlV zJtRqyo1QKNtpuUrcfMXHIiQ9NV;esm-g|ui!IaxaR89<#=h#!Cf711C$GBO4kTSi!+%3!H;;vvP9}9Wme1FOv>mV)$9wq*+KD zI^|oZ0!$*f;j^+mtl_66)g3s%<(|8BALOai;1`r1A2K1~3cZ25FR;ldz&tJ<#&o|X zuGkwcZ~4#~^yK*z6Y-;c1Q1+^D1@e$tgI{=uR#R8OCHxxL@TO-`wCwC`HSWhWZu%w`D+r^nA#1cbMpRW*L3Qn5v3+UD4_jiq zYE4E9zp|yvBInVe9GXkzxgZM-ILton ziUc+G5!tCPD zq_=XU(wb|V6PSop5s1pqJBl-RmK{!MAHKAvQ>9XwG(i%8(c6@4hqN9ckw_9<_+bfr zO=%{+>q<+@l#W}M&L|fsm1pf?v>OfSkvSM3oWDR;KqwT60$$pE<9$gr~Ka#{G0r5gy}`T z&uwXOsB_R@a~aWtbOHlDH6w$a_82o&2czH|m!T)+bX)=puPuYFf^NI zSD}56A{qolj-c>Jk6U+l_fzsD1IBnfoTt$_HthQ~LAScGTt7(R@SMBTc|51I^c zzb@!d0d6dV-J>EIBA_!U)PL!no>-=oFl|$u(@*A>5n8R5hBoFk4K#7!;Ri+ryF`%| zVLN>%;$hu{qhCcbd^;#~h(Eq{Y|a#X|8q$j$4jYnxc=8I#A9bk-1 zptlhk4uGz)xOueH=4=weFg0+XZJ9`%B@lez;pLSkmCiV{KoeR$@=*jP5s`%sIo2vjrIjtv%Thlg7aB*Wbf6Jz&l)_m~> z9ahUOJ=9sEruk9K7fz>Lr%{}xM!~S3CwHwos#CL|ow42D3^h7+wsg!KGfx0<1z!lc z5?fLPLZIKg&H~QTLcc~+Q3&1$>~HxP1-g}siv^Jw!Sg5rm2#h-pBjoG)2KFuBD<+e zt#0Z5z7BVLEi==%`>yzNH#gU+uyN=Sr|if;tpJLofB*7D46CQu`s&CfXa^}%J2E0D zFaIegc9y2L)(NsWv8e%o5KfGbXd*2VB+Y$$_ErZuXe<)YG8ygy)GII{f;?bpL z<>kI8EpX;p3tvjd5f+Silnq=SD5RYG~ldh*%H#X&*Sj+`sJX<-3Q; zoI$?XJePOPTk~4c;Jtc^CK0S-TyxL9DcQL1!YXXKwh5Vx4JS`l$ipS+>FKCpX6jq4 zi}CU~Q5%!j3TZcCz@rj-F~h+s76(N)Tsa(CeSN+5f%DK)P=G%@epGlj{O_F!-Z1tr p4EleW+Q$%^Pi=_)&zH|8r-e6#m|a&a*+=1LGwTaxzUw#Pe*x%TDfa*X literal 0 HcmV?d00001 diff --git a/_sources/Chapter2-DataManipulation/2.6_resampling.ipynb b/_sources/Chapter2-DataManipulation/2.6_resampling.ipynb index 6e3b2172..87a1fc7f 100644 --- a/_sources/Chapter2-DataManipulation/2.6_resampling.ipynb +++ b/_sources/Chapter2-DataManipulation/2.6_resampling.ipynb @@ -26,7 +26,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 233, "metadata": {}, "outputs": [], "source": [ @@ -39,7 +39,17 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 234, + "metadata": {}, + "outputs": [], + "source": [ + "# fix the random seed for reproducibility. Place it on the top to reproduce the entire notebook exactly once. But use it in every cell to re-run each cells independently.\n", + "np.random.seed(42)" + ] + }, + { + "cell_type": "code", + "execution_count": 235, "metadata": {}, "outputs": [], "source": [ @@ -47,6 +57,26 @@ "rng = np.random.default_rng()" ] }, + { + "cell_type": "code", + "execution_count": 236, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Generator(PCG64) at 0x318353900" + ] + }, + "execution_count": 236, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "rng" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -62,20 +92,22 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 237, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "The means of A and B are, 4.916816615939592 and 5.629794831291764, respectively.\n", - "The difference of means is, -0.7129782153521722.\n" + "The means of A and B are, 4.874325971290356 and 5.473420405447642, respectively.\n", + "The difference of means is, -0.5990944341572852.\n" ] } ], "source": [ "# We begin with two datasets, A and B\n", + "np.random.seed(42)\n", + "rng = np.random.default_rng(seed=42)\n", "A = rng.normal(5, 2.5, 100)\n", "B = rng.normal(5.5, 2.5, 100)\n", "\n", @@ -101,7 +133,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 238, "metadata": {}, "outputs": [], "source": [ @@ -111,7 +143,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 239, "metadata": {}, "outputs": [], "source": [ @@ -133,7 +165,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 240, "metadata": {}, "outputs": [], "source": [ @@ -152,12 +184,12 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 241, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA08AAAGwCAYAAABxZV7/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABUGUlEQVR4nO3deXgP5/7/8dcnInvyIcimEWorpWor0Vbs27FVaz/KqYMe+9Z9EV3oppxW9+OgpdX2WKql1lprD2lpbVWKSqQlEklJSO7fH77m50MSkwgJeT6ua64rM3PPzHtuH0lemZl7HMYYIwAAAABAjtwKugAAAAAAuBkQngAAAADABsITAAAAANhAeAIAAAAAGwhPAAAAAGAD4QkAAAAAbCA8AQAAAIAN7gVdwM0iMzNTx44dk7+/vxwOR0GXAwAAbDDG6PTp0woLC5ObG38zBnBtCE82HTt2TOHh4QVdBgAAyIMjR47otttuK+gyANzkCE82+fv7S7rwzTcgIKCAq0FBSk38Q2HvV5IkHXv0F/mWLFPAFQG4mtRUKSzswtfHjkm+vgVbD26c5ORkhYeHWz/HAeBaEJ5sunirXkBAAOGpiCuWcVbyuvB1QIC/fPk8AIVesWL//+uAAMJTUcQt9wDyAzf/AgAAAIANhCcAAAAAsIHwBAAAAAA2EJ4AAAAAwAbCEwAAAADYQHgCAAAAABsITwAAAABgA+EJAAAAAGwgPAEAAACADYQnAAAAALCB8AQAAAAANhCeAAAAAMAGwhMAAAAA2EB4AgAAAAAbCE8AAAAAYIN7QRcAAIWBw+Eo6BJyzRhT0CUAAFCkcOUJAAAAAGwgPAEAAACADYQnAAAAALCB8AQAAAAANhCeAAAAAMAGwhMAAAAA2EB4AgAAAAAbCE8AAAAAYAMvyQWQ727GF84CAABcDVeeAAAAAMAGwhMAAAAA2EB4AgAAAAAbCE8AAAAAYAPhCQAAAABsIDwBAAAAgA2EJwAAAACwgfAEAAAAADYQngAAAADABsITAAAAANhAeAIAAAAAGwhPAAAAAGAD4QkAAAAAbCA8AQAAAIANhCcAAAAAsIHwBAAAAAA2EJ4AAAAAwAbCEwAAAADYQHgCAAAAABsKNDxNnDhR9evXl7+/v4KCgtS5c2ft3bvXpU2/fv3kcDhcpoYNG7q0SUtL07Bhw1S6dGn5+vqqY8eOOnr0qEubxMRE9enTR06nU06nU3369NGpU6eu9ykCAAAAuEUUaHhas2aNhgwZok2bNmn58uU6f/68WrVqpdTUVJd2bdq0UVxcnDUtXrzYZf3IkSM1f/58zZkzR+vXr1dKSorat2+vjIwMq02vXr0UGxurJUuWaMmSJYqNjVWfPn1uyHkCAAAAuPm5F+TBlyxZ4jI/ffp0BQUFKSYmRo0bN7aWe3p6KiQkJMt9JCUladq0afrkk0/UokULSdKsWbMUHh6uFStWqHXr1tq9e7eWLFmiTZs2qUGDBpKkjz76SJGRkdq7d6+qVq16nc4QAAAAwK2iUD3zlJSUJEkKDAx0Wb569WoFBQWpSpUqGjBggBISEqx1MTExOnfunFq1amUtCwsLU40aNbRhwwZJ0saNG+V0Oq3gJEkNGzaU0+m02lwuLS1NycnJLhMAAACAoqvQhCdjjEaPHq377rtPNWrUsJa3bdtWs2fP1nfffadJkyZp69atatasmdLS0iRJ8fHx8vDwUMmSJV32FxwcrPj4eKtNUFDQFccMCgqy2lxu4sSJ1vNRTqdT4eHh+XWqAAAAAG5CBXrb3qWGDh2qH3/8UevXr3dZ3r17d+vrGjVqqF69eoqIiNCiRYvUpUuXbPdnjJHD4bDmL/06uzaXeuqppzR69GhrPjk5mQAFAAAAFGGF4srTsGHDtHDhQq1atUq33XZbjm1DQ0MVERGh/fv3S5JCQkKUnp6uxMREl3YJCQkKDg622hw/fvyKff3xxx9Wm8t5enoqICDAZQIAAABQdBVoeDLGaOjQoZo3b56+++47VahQ4arbnDhxQkeOHFFoaKgkqW7duipevLiWL19utYmLi9OuXbvUqFEjSVJkZKSSkpK0ZcsWq83mzZuVlJRktQEAAACAnBTobXtDhgzRp59+qq+++kr+/v7W80dOp1Pe3t5KSUlRdHS0HnzwQYWGhurQoUN6+umnVbp0aT3wwANW2/79+2vMmDEqVaqUAgMDNXbsWNWsWdMafa9atWpq06aNBgwYoA8++ECSNHDgQLVv356R9gAAAADYUqDh6b333pMkNWnSxGX59OnT1a9fPxUrVkw7d+7Uxx9/rFOnTik0NFRNmzbV559/Ln9/f6v95MmT5e7urm7duunMmTNq3ry5ZsyYoWLFilltZs+ereHDh1uj8nXs2FFTp069/icJAAAA4JbgMMaYgi7iZpCcnCyn06mkpCSefyriUhMT5PfWhWflUoYfl2/JK0dyLOqyG4gF+Ytv3/alpkp+fhe+TkmRfH0Lth7cOPz8BpCfCsWAEQAAAABQ2BGeAAAAAMAGwhMAAAAA2EB4AgAAAAAbCE8AAAAAYAPhCQAAAABsIDwBAAAAgA2EJwAAAACwgfAEAAAAADYQngAAAADABsITAAAAANhAeAIAAAAAGwhPAAAAAGAD4QkAAAAAbCA8AQAAAIANhCcAAAAAsIHwBAAAAAA2EJ4AAAAAwAbCEwAAAADYQHgCAAAAABsITwAAAABgA+EJAAAAAGwgPAEAAACADYQnAAAAALCB8AQAAAAANhCeAAAAAMAGwhMAAAAA2EB4AgAAAAAbCE8AAAAAYAPhCQAAAABsIDwBAAAAgA2EJwAAAACwgfAEAAAAADYQngAAAADABsITAAAAANhAeAIAAAAAGwhPAAAAAGAD4QkAAAAAbCA8AQAAAIANhCcAAAAAsIHwBAAAAAA2EJ4AAAAAwAbCEwAAAADYQHgCAAAAABsITwAAAABgA+EJAAAAAGwgPAEAAACADYQnAAAAALCB8AQAAAAANhCeAAAAAMAGwhMAAAAA2EB4AgAAAAAbCE8AAAAAYEOBhqeJEyeqfv368vf3V1BQkDp37qy9e/e6tDHGKDo6WmFhYfL29laTJk30008/ubRJS0vTsGHDVLp0afn6+qpjx446evSoS5vExET16dNHTqdTTqdTffr00alTp673KQIAAAC4RRRoeFqzZo2GDBmiTZs2afny5Tp//rxatWql1NRUq81rr72mN998U1OnTtXWrVsVEhKili1b6vTp01abkSNHav78+ZozZ47Wr1+vlJQUtW/fXhkZGVabXr16KTY2VkuWLNGSJUsUGxurPn363NDzBQAAAHDzchhjTEEXcdEff/yhoKAgrVmzRo0bN5YxRmFhYRo5cqSeeOIJSReuMgUHB+vVV1/VoEGDlJSUpDJlyuiTTz5R9+7dJUnHjh1TeHi4Fi9erNatW2v37t2qXr26Nm3apAYNGkiSNm3apMjISO3Zs0dVq1a9am3JyclyOp1KSkpSQEDA9esEFHqpiQnyeytYkpQy/Lh8SwYVcEWFj8PhKOgSioRC9O270EtNlfz8LnydkiL5+hZsPbhx+PkNID8VqmeekpKSJEmBgYGSpIMHDyo+Pl6tWrWy2nh6eioqKkobNmyQJMXExOjcuXMubcLCwlSjRg2rzcaNG+V0Oq3gJEkNGzaU0+m02lwuLS1NycnJLhMAAACAoqvQhCdjjEaPHq377rtPNWrUkCTFx8dLkoKDg13aBgcHW+vi4+Pl4eGhkiVL5tgmKOjKqwNBQUFWm8tNnDjRej7K6XQqPDz82k4QAAAAwE2t0ISnoUOH6scff9Rnn312xbrLbwEyxlz1tqDL22TVPqf9PPXUU0pKSrKmI0eO2DkNAAAAALeoQhGehg0bpoULF2rVqlW67bbbrOUhISGSdMXVoYSEBOtqVEhIiNLT05WYmJhjm+PHj19x3D/++OOKq1oXeXp6KiAgwGUCAAAAUHQVaHgyxmjo0KGaN2+evvvuO1WoUMFlfYUKFRQSEqLly5dby9LT07VmzRo1atRIklS3bl0VL17cpU1cXJx27dpltYmMjFRSUpK2bNlitdm8ebOSkpKsNgAAAACQE/eCPPiQIUP06aef6quvvpK/v791hcnpdMrb21sOh0MjR47UhAkTVLlyZVWuXFkTJkyQj4+PevXqZbXt37+/xowZo1KlSikwMFBjx45VzZo11aJFC0lStWrV1KZNGw0YMEAffPCBJGngwIFq3769rZH2AAAAAKBAw9N7770nSWrSpInL8unTp6tfv36SpMcff1xnzpzR4MGDlZiYqAYNGmjZsmXy9/e32k+ePFnu7u7q1q2bzpw5o+bNm2vGjBkqVqyY1Wb27NkaPny4NSpfx44dNXXq1Ot7ggAAAABuGYXqPU+FGe+JwEW85+nqeM/TjcG3b/t4z1PRxc9vAPmpUAwYAQAAAACFHeEJAAAAAGwgPAEAAACADYQnAAAAALCB8AQAAAAANhCeAAAAAMAGwhMAAAAA2EB4AgAAAAAbCE8AAAAAYAPhCQAAAABsIDwBAAAAgA2EJwAAAACwgfAEAAAAADYQngAAAADABsITAAAAANhAeAIAAAAAGwhPAAAAAGAD4QkAAAAAbCA8AQAAAIANhCcAAAAAsIHwBAAAAAA2EJ4AAAAAwAbCEwAAAADYQHgCAAAAABsITwAAAABgA+EJAAAAAGwgPAEAAACADYQnAAAAALDBvaALAAAAKGgZGRk6d+5cQZcBoAAUL15cxYoVs9WW8AQAAIosY4zi4+N16tSpgi4FQAEqUaKEQkJC5HA4cmxHeAIAAEXWxeAUFBQkHx+fq/7iBODWYozRX3/9pYSEBElSaGhoju0JTwAAoEjKyMiwglOpUqUKuhwABcTb21uSlJCQoKCgoBxv4WPACAAAUCRdfMbJx8engCsBUNAufh+42rOPhCcAAFCkcaseALvfBwhPAAAAAGAD4QkAAAAAbCA8AQAA3KLKly+vKVOmFHQZ+SYv59OvXz917tzZmm/SpIlGjhxpzf/111968MEHFRAQIIfDoVOnTmW5rCiKjo5WcHCwHA6HFixYUNDlFAqEJwAAgJvMkSNH1L9/f4WFhcnDw0MREREaMWKETpw4UdClFXrz5s3Tiy++aM3PnDlT69at04YNGxQXFyen05nlsqJm9+7dGj9+vD744APFxcWpbdu2BV1SocBQ5QBwk7oZH3I3xhR0CcBN79dff1VkZKSqVKmizz77TBUqVNBPP/2kxx57TN9++602bdqkwMDAAqktIyNDDodDbm6F9+/zl/fNgQMHVK1aNdWoUSPHZbl1M/RFTg4cOCBJ6tSp00358+Z6uTn/NQEAAPKbMVJqasFMufjDwpAhQ+Th4aFly5YpKipK5cqVU9u2bbVixQr9/vvveuaZZ1zanz59Wr169ZKfn5/CwsL09ttvu6yPjo5WuXLl5OnpqbCwMA0fPtxal56erscff1xly5aVr6+vGjRooNWrV1vrZ8yYoRIlSuibb75R9erV5enpqY8++kheXl5X3Oo2fPhwRUVFWfMbNmxQ48aN5e3trfDwcA0fPlypqanW+oSEBHXo0EHe3t6qUKGCZs+efdW+ycjI0OjRo1WiRAmVKlVKjz/++BV/tLn0tr0mTZpo0qRJWrt2rRwOh5o0aZLlsrz2xW+//WZ7u6VLl6patWry8/NTmzZtFBcX51L3f//7X915553y9PRUaGiohg4daq1LSkrSwIEDFRQUpICAADVr1kw//PBDjn21c+dONWvWTN7e3ipVqpQGDhyolJQUSRc+Ex06dJAkubm5ZRueVq9eLYfDoaVLl6p27dry9vZWs2bNlJCQoG+//VbVqlVTQECAevbsqb/++svazhij1157Tbfffru8vb1Vq1Yt/e9//3P5d+zfv78qVKggb29vVa1aVf/+979djn3xdsw33nhDoaGhKlWqlIYMGeIy1Pi7776rypUry8vLS8HBwXrooYdy7BNbDGxJSkoykkxSUlJBl4IClnLyuFG0jKJlUk4eL+hyCiVJTExZTgUlJcUY6cKUklJgZaAA5PTz+8yZM+bnn382Z86cubDg0g/KjZ5sfjBPnDhhHA6HmTBhQpbrBwwYYEqWLGkyMzONMcZEREQYf39/M3HiRLN3717z1ltvmWLFiplly5YZY4z58ssvTUBAgFm8eLH57bffzObNm82HH35o7a9Xr16mUaNGZu3ateaXX34xr7/+uvH09DT79u0zxhgzffp0U7x4cdOoUSPz/fffmz179piUlBQTHBxs/vOf/1j7OX/+vAkODjYffPCBMcaYH3/80fj5+ZnJkyebffv2me+//97Url3b9OvXz9qmbdu2pkaNGmbDhg1m27ZtplGjRsbb29tMnjw52/559dVXjdPpNP/73//Mzz//bPr372/8/f1Np06drDZRUVFmxIgRVn8OGDDAREZGmri4OHPixIksl11LX9jdrkWLFmbr1q0mJibGVKtWzfTq1cuq+d133zVeXl5mypQpZu/evWbLli1WP2RmZpp7773XdOjQwWzdutXs27fPjBkzxpQqVcqq/XKpqakmLCzMdOnSxezcudOsXLnSVKhQwfTt29cYY8zp06fN9OnTjSQTFxdn4uListzPqlWrjCTTsGFDs379erN9+3ZTqVIlExUVZVq1amW2b99u1q5da0qVKmVeeeUVa7unn37a3HHHHWbJkiXmwIEDZvr06cbT09OsXr3aGGNMenq6ef75582WLVvMr7/+ambNmmV8fHzM559/bu2jb9++JiAgwDz66KNm9+7d5uuvvzY+Pj7W53fr1q2mWLFi5tNPPzWHDh0y27dvN//+97+z/exc8f0gG4QnmwhPuIjwdHUF/Qs6U+GdCgrhqei61cLTpk2bjCQzf/78LNe/+eabRpI5fvzCz6eIiAjTpk0blzbdu3c3bdu2NcYYM2nSJFOlShWTnp5+xb5++eUX43A4zO+//+6yvHnz5uapp54yxhjrF+zY2FiXNsOHDzfNmjWz5pcuXWo8PDzMyZMnjTHG9OnTxwwcONBlm3Xr1hk3Nzdz5swZs3fvXiPJbNq0yVq/e/duIynH8BQaGuryS/q5c+fMbbfdlm14MsaYESNGmKioKJf9XL4sr32Rm+1++eUXa/0777xjgoODrfmwsDDzzDPPZHnOK1euNAEBAebs2bMuyytWrGiF1ct9+OGHpmTJkiblks/dokWLjJubm4mPjzfGGDN//vyrft++GJ5WrFhhLZs4caKRZA4cOGAtGzRokGndurUxxpiUlBTj5eVlNmzY4LKv/v37m549e2Z7rMGDB5sHH3zQmu/bt6+JiIgw58+ft5Z17drVdO/e3RhjzNy5c01AQIBJTk7O8RwushueeOYJAABAknx8pP+7balAjp0PzP/donbpbVaRkZEubSIjI60R67p27aopU6bo9ttvV5s2bdSuXTt16NBB7u7u2r59u4wxqlKlisv2aWlpKlWqlDXv4eGhu+66y6VN7969FRkZqWPHjiksLEyzZ89Wu3btVLJkSUlSTEyMfvnlF5db8YwxyszM1MGDB7Vv3z65u7urXr161vo77rhDJUqUyPbck5KSFBcX53K+F/dxsV/yKq99YXc7Hx8fVaxY0ZoPDQ1VQkKCpAu3Lx47dkzNmzfPsraYmBilpKS47E+Szpw5Yz23dLndu3erVq1a8vX1tZbde++9yszM1N69exUcHJzldtm59JyDg4Pl4+Oj22+/3WXZli1bJEk///yzzp49q5YtW7rsIz09XbVr17bm33//ff3nP//Rb7/9pjNnzig9PV133323yzZ33nmnihUrZs2HhoZq586dkqSWLVsqIiLC+my3adNGDzzwgHyu8f8a4QkAAECSHA7pkl8mC6NKlSrJ4XDo559/dhl++6I9e/aoZMmSKl26dI77uRiuwsPDtXfvXi1fvlwrVqzQ4MGD9frrr2vNmjXKzMxUsWLFFBMT4/ILqiT5+flZX3t7e1/xTMw999yjihUras6cOfrXv/6l+fPna/r06db6zMxMDRo0yOX5qovKlSunvXv3utRZ0PLaF3a3K168uMs6h8NhBT5vb++r1hYaGuryHNVF2YVNY0y2fZuXPr+0fofDkeX5ZGZmWvVK0qJFi1S2bFmXdp6enpKkL774QqNGjdKkSZMUGRkpf39/vf7669q8eXO2x738OP7+/tq+fbtWr16tZcuW6fnnn1d0dLS2bt2aYwi/GsITAADATaJUqVJq2bKl3n33XY0aNcrlF+v4+HjNnj1bDz/8sMsvwJs2bXLZx6ZNm3THHXdY897e3urYsaM6duyoIUOG6I477tDOnTtVu3ZtZWRkKCEhQffff3+ua+3Vq5dmz56t2267TW5ubvrb3/5mratTp45++uknVapUKcttq1WrpvPnz2vbtm265557JEl79+7N8X1LTqdToaGh2rRpkxo3bixJOn/+vGJiYlSnTp1c13+pvPbFtfahdCEElC9fXitXrlTTpk2vWF+nTh3Fx8fL3d1d5cuXt7XP6tWra+bMmUpNTbWuPn3//fdyc3O74ipZfrs4mMbhw4ddBhC51Lp169SoUSMNHjzYWpbdVbScuLu7q0WLFmrRooXGjRunEiVK6LvvvlOXLl3yXH+eRtu7/fbbs3yPwKlTp1wu0QEAACB/TZ06VWlpaWrdurXWrl2rI0eOaMmSJWrZsqXKli2rl19+2aX9999/r9dee0379u3TO++8oy+//FIjRoyQdGGkt2nTpmnXrl369ddf9cknn8jb21sRERGqUqWKevfurYcffljz5s3TwYMHtXXrVr366qtavHjxVevs3bu3tm/frpdfflkPPfSQvLy8rHVPPPGENm7cqCFDhig2Nlb79+/XwoULNWzYMElS1apV1aZNGw0YMECbN29WTEyM/vnPf171KsyIESP0yiuvaP78+dqzZ48GDx6cLy+4zWtfXGsfXhQdHa1Jkybprbfe0v79+7V9+3Zr1MQWLVooMjJSnTt31tKlS3Xo0CFt2LBBzz77rLZt25bl/nr37i0vLy/17dtXu3bt0qpVqzRs2DD16dMn17fs5Za/v7/Gjh2rUaNGaebMmTpw4IB27Nihd955RzNnzpR04Qrrtm3btHTpUu3bt0/PPfectm7dmqvjfPPNN3rrrbcUGxur3377TR9//LEyMzNVtWrVa6o/T+Hp0KFDysjIuGJ5Wlqafv/992sqCAAAANmrXLmytm3bpooVK6p79+6qWLGiBg4cqKZNm2rjxo1XvMdozJgxiomJUe3atfXiiy9q0qRJat26taQLt3V99NFHuvfee3XXXXdp5cqV+vrrr63nZ6ZPn66HH35YY8aMUdWqVdWxY0dt3rxZ4eHhtuqsX7++fvzxR/Xu3dtl3V133aU1a9Zo//79uv/++1W7dm0999xzCg0NtdpMnz5d4eHhioqKUpcuXayhuHMyZswYPfzww+rXr591u9cDDzxgq1+vJq99cS19eFHfvn01ZcoUvfvuu7rzzjvVvn177d+/X9KFW9UWL16sxo0b65FHHlGVKlXUo0cPHTp0KNsg5OPjo6VLl+rkyZOqX7++HnroITVv3lxTp0613yHX4MUXX9Tzzz+viRMnqlq1amrdurW+/vprVahQQZL06KOPqkuXLurevbsaNGigEydOuFyFsqNEiRKaN2+emjVrpmrVqun999/XZ599pjvvvPOaaneYXDxBt3DhQklS586dNXPmTJe3LWdkZGjlypVavny5dZ/qrSQ5OVlOp1NJSUkKCAgo6HJQgFITE+T31oVvRinDj8u3ZM7fyIuiwnKPOgqfa31oO69SU6WLjxekpBT6x1qQj3L6+X327FkdPHhQFSpUcLkqAqDosfv9IFfPPF18MNHhcKhv374u64oXL67y5ctr0qRJua8WAAAAAAq5XIWni6NXVKhQQVu3br3qSC4AAAAAcKvI02h7Bw8ezO86AAAAAKBQy/NQ5StXrtTKlSuVkJBgXZG66L///e81FwYAAAAAhUmewtP48eP1wgsvqF69egoNDeXhcAAAAAC3vDwNVf7+++9rxowZ2rx5sxYsWKD58+e7THatXbtWHTp0UFhYmBwOhxYsWOCyvl+/fnI4HC5Tw4YNXdqkpaVp2LBhKl26tHx9fdWxY0cdPXrUpU1iYqL69Okjp9Mpp9OpPn365MuY/8CNcPn/gZthAgAAuBXlKTylp6erUaNG13zw1NRU1apVK8cx5du0aaO4uDhruvyFYiNHjtT8+fM1Z84crV+/XikpKWrfvr3Le6h69eql2NhYLVmyREuWLFFsbKz69OlzzfUDAAAAKDrydNveP//5T3366ad67rnnrungbdu2Vdu2bXNs4+npqZCQkCzXJSUladq0afrkk0/UokULSdKsWbMUHh6uFStWqHXr1tq9e7eWLFmiTZs2qUGDBpKkjz76SJGRkdq7d2+2bxlOS0tTWlqaNZ+cnJyXUwQAAABwi8hTeDp79qw+/PBDrVixQnfddZeKFy/usv7NN9/Ml+IkafXq1QoKClKJEiUUFRWll19+2Xq7dExMjM6dO6dWrVpZ7cPCwlSjRg1t2LBBrVu31saNG+V0Oq3gJEkNGzaU0+nUhg0bsg1PEydO1Pjx4/PtPAAAAADc3PJ0296PP/6ou+++W25ubtq1a5d27NhhTbGxsflWXNu2bTV79mx99913mjRpkrZu3apmzZpZV4Ti4+Pl4eGhkiVLumwXHBys+Ph4q83FsHWpoKAgq01WnnrqKSUlJVnTkSNH8u28AAAAcHUzZsxQiRIlrtouq2fnr0X58uU1ZcqUfNtfVpo0aaKRI0de12Mg/+XpytOqVavyu44sde/e3fq6Ro0aqlevniIiIrRo0SJ16dIl2+2MMS4PrWf1APvlbS7n6ekpT0/PPFYOAABwffTr10+nTp3K17BQWHXv3l3t2rWz5qOjo7VgwYIr/lgfFxd3xR/TgeshT1eeCkpoaKgiIiK0f/9+SVJISIjS09OVmJjo0i4hIUHBwcFWm+PHj1+xrz/++MNqAwAAgPyRnp6eL/s5d+6cvL29s7yD6HIhISH80Rs3RJ7CU9OmTdWsWbNsp+vlxIkTOnLkiEJDQyVJdevWVfHixbV8+XKrTVxcnHbt2mWNBhgZGamkpCRt2bLFarN582YlJSXly4iBAADg1mCMUWp6aoFMxph8O481a9bonnvukaenp0JDQ/Xkk0/q/PnzkqSvv/5aJUqUUGZmpiQpNjZWDodDjz32mLX9oEGD1LNnT2t+w4YNaty4sby9vRUeHq7hw4crNTXVWl++fHm99NJL6tevn5xOpwYMGJBlXZmZmXr11VdVqVIleXp6qly5cnr55ZclSYcOHZLD4dAXX3yhJk2ayMvLS7NmzXK5bW/GjBkaP368fvjhB+vVGDNmzJB05W17R48eVY8ePRQYGChfX1/Vq1dPmzdvliQdOHBAnTp1UnBwsPz8/FS/fn2tWLHCdv8uXbpUXl5eV7z2Zvjw4YqKipJ04XfWnj176rbbbpOPj49q1qypzz77LMf9ZnXrYYkSJaxzlKTff/9d3bt3V8mSJVWqVCl16tRJhw4dsl07rl2ebtu7++67XebPnTun2NhY7dq1S3379rW9n5SUFP3yyy/W/MGDBxUbG6vAwEAFBgYqOjpaDz74oEJDQ3Xo0CE9/fTTKl26tB544AFJktPpVP/+/TVmzBiVKlVKgYGBGjt2rGrWrGmNvletWjW1adNGAwYM0AcffCBJGjhwoNq3b5/tYBEAAKDo+evcX/Kb6Fcgx055KkW+Hr7XvJ/ff/9d7dq1U79+/fTxxx9rz549GjBggLy8vBQdHa3GjRvr9OnT2rFjh+rWras1a9aodOnSWrNmjbWP1atXa9SoUZKknTt3qnXr1nrxxRc1bdo0/fHHHxo6dKiGDh2q6dOnW9u8/vrreu655/Tss89mW9tTTz2ljz76SJMnT9Z9992nuLg47dmzx6XNE088oUmTJmn69Ony9PTUsmXLrHXdu3fXrl27tGTJEivsOJ3OK46TkpKiqKgolS1bVgsXLlRISIi2b99uBcaUlBS1a9dOL730kry8vDRz5kx16NBBe/fuVbly5a7axy1atFCJEiU0d+5c9e/fX5KUkZGhL774Qi+88IKkC4Or1a1bV0888YQCAgK0aNEi9enTR7fffrvLIGa58ddff6lp06a6//77tXbtWrm7u+ull15SmzZt9OOPP8rDwyNP+0Xu5Ck8TZ48Ocvl0dHRSklJsb2fbdu2qWnTptb86NGjJUl9+/bVe++9p507d+rjjz/WqVOnFBoaqqZNm+rzzz+Xv7+/Sy3u7u7q1q2bzpw5o+bNm2vGjBkqVqyY1Wb27NkaPny4NSpfx44dc3y3FAAAwM3o3XffVXh4uKZOnSqHw6E77rhDx44d0xNPPKHnn39eTqdTd999t1avXq26detaQWn8+PE6ffq0UlNTtW/fPjVp0kTShVDUq1cva2CDypUr66233lJUVJTee+89eXl5SZKaNWumsWPHZlvX6dOn9e9//1tTp061/tBesWJF3XfffS7tRo4cme1z7d7e3vLz85O7u3u2r7GRpE8//VR//PGHtm7dqsDAQElSpUqVrPW1atVSrVq1rPmXXnpJ8+fP18KFCzV06NBs93tRsWLF1L17d3366adWeFq5cqUSExPVtWtXSVLZsmVd+mPYsGFasmSJvvzyyzyHpzlz5sjNzU3/+c9/rOf2p0+frhIlSmj16tUuo0/j+slTeMrO3//+d91zzz164403bLVv0qRJjpeply5detV9eHl56e2339bbb7+dbZvAwEDNmjXLVk0AAKBo8inuo5Sn7P8ROL+PnR92796tyMhIl0Gx7r33XqWkpOjo0aMqV66cmjRpotWrV2v06NFat26dXnrpJc2dO1fr16/XqVOnFBwcrDvuuEPShdfC/PLLL5o9e7a1P2OMMjMzdfDgQVWrVk2SVK9evavWlZaWpubNm+fY7mr7sSM2Nla1a9e2gtPlUlNTNX78eH3zzTc6duyYzp8/rzNnzujw4cO2j9G7d29FRkbq2LFjCgsL0+zZs9WuXTtr0IqMjAy98sor+vzzz/X7779b7w/19c371cWL/xaXXkSQLlzlOnDgQJ73i9zJ1/C0ceNG6y8QAAAANxOHw5Evt84VpKxGE774h+qLy5s0aaJp06bphx9+kJubm6pXr66oqCitWbNGiYmJ1nM70oXnlAYNGqThw4dfcaxLb3G7Wijw9va2Vf+1hAu7x3rssce0dOlSvfHGG6pUqZK8vb310EMP5Wqgi3vuuUcVK1bUnDlz9K9//Uvz5893uY1x0qRJmjx5sqZMmaKaNWvK19dXI0eOzPEYDofjiosK586ds77OzMxU3bp1XYLsRWXKlLFdO65NnsLT5ZdTjTGKi4vTtm3b9Nxzz+VLYQAAAMid6tWra+7cuS4hasOGDfL391fZsmUlyXruacqUKYqKipLD4VBUVJQmTpyoxMREjRgxwtpfnTp19NNPP7nc9pYXlStXlre3t1auXKl//vOfed6Ph4eHMjIycmxz11136T//+Y9OnjyZ5dWndevWqV+/ftYz9CkpKXkadKFXr16aPXu2brvtNrm5uelvf/ubyzE6deqkv//975IuBJ/9+/dbV+qyUqZMGcXFxVnz+/fv119//WXN16lTR59//rmCgoIUEBCQ63qRP/I02p7T6XSZAgMD1aRJEy1evFjjxo3L7xoBAABwiaSkJMXGxrpMhw8f1uDBg3XkyBENGzZMe/bs0VdffaVx48Zp9OjRcnO78GvfxeeeZs2aZT3b1LhxY23fvt3leSfpwgAOGzdu1JAhQxQbG6v9+/dr4cKFGjZsWK7q9fLy0hNPPKHHH39cH3/8sQ4cOKBNmzZp2rRpudpP+fLlrQHG/vzzT6WlpV3RpmfPngoJCVHnzp31/fff69dff9XcuXO1ceNGSReef5o3b55iY2P1ww8/qFevXtZgErnRu3dvbd++XS+//LIeeughl7uvKlWqpOXLl2vDhg3avXu3Bg0apPj4+Bz316xZM02dOlXbt2/Xtm3b9Oijj6p48eIuxytdurQ6deqkdevW6eDBg1qzZo1GjBiho0eP5rp+5E2erjxdelkSAAAAN9bq1atVu3Ztl2V9+/bVjBkztHjxYj322GOqVauWAgMD1b9//ytGwWvatKm2b99uBaWSJUuqevXqOnbsmMvVkbvuuktr1qzRM888o/vvv1/GGFWsWFHdu3fPdc3PPfec3N3d9fzzz+vYsWMKDQ3Vo48+mqt9PPjgg5o3b56aNm2qU6dOafr06erXr59LGw8PDy1btkxjxoxRu3btdP78eVWvXl3vvPOOpAuDjT3yyCNq1KiRSpcurSeeeELJycm5Pp/KlSurfv362rp1q6ZMmXLFuR48eFCtW7eWj4+PBg4cqM6dOyspKSnb/U2aNEn/+Mc/1LhxY4WFhenf//63YmJirPU+Pj5au3atnnjiCXXp0kWnT59W2bJl1bx5c65E3UAOcw0vFoiJidHu3bvlcDhUvXr1K/4T30qSk5PldDqVlJTEB7SIS01MkN9bF16wnDL8uHxLXv3lfdfi8nvXgZtZfr7LJjdSUyW//xuBOiVFyofHKnCTyOnn99mzZ3Xw4EFVqFCBZ7aBIs7u94M8XXlKSEhQjx49tHr1apUoUULGGCUlJalp06aaM2cOD60BAAAAuOXk6ZmnYcOGKTk5WT/99JNOnjypxMRE7dq1S8nJyVmOxgIAAAAAN7s8XXm6+GbnS++JvXgvKS/oAgAAAHArytOVp8zMTJfRPy4qXrx4nkYrAQAAAIDCLk/hqVmzZhoxYoSOHTtmLfv99981atSoq745GgAAAABuRnkKT1OnTtXp06dVvnx5VaxYUZUqVVKFChV0+vRpvf322/ldIwAAAAAUuDw98xQeHq7t27dr+fLl2rNnj4wxql69ulq0aJHf9QEAAABAoZCrK0/fffedqlevbr1IrGXLlho2bJiGDx+u+vXr684779S6deuuS6EAAAAAUJByFZ6mTJmiAQMGZPmSWKfTqUGDBunNN9/Mt+IAAAAAoLDIVXj64Ycf1KZNm2zXt2rVSjExMddcFAAAACBJTZo00ciRI3NsM2PGDJUoUSLfjrl69Wo5HA6dOnUq3/Z5uUOHDsnhcCg2Nva6HQP5L1fh6fjx41kOUX6Ru7u7/vjjj2suCgAAAFnLLkwsWLBADofjxhd0nc2bN08vvviiNV++fHlNmTLFpU337t21b9++G1wZiqJchaeyZctq586d2a7/8ccfFRoaes1FAQAA4OZkjNH58+eveT/nzp2TJAUGBsrf3z/Htt7e3goKCrrmYwJXk6vw1K5dOz3//PM6e/bsFevOnDmjcePGqX379vlWHAAAwI1ijJSaWjCTMfl/PtHR0br77rv1wQcfKDw8XD4+PuratavLrWj9+vVT586dNX78eAUFBSkgIECDBg1Senr6Jf1i9Nprr+n222+Xt7e3atWqpf/973/W+ou3uC1dulT16tWTp6dntgOIHT16VD169FBgYKB8fX1Vr149bd682aXe//73v7r99tvl6ekpY4zLlbYmTZrot99+06hRo+RwOKwrbVndtrdw4ULVq1dPXl5eKl26tLp06WKtmzVrlurVqyd/f3+FhISoV69eSkhIsN23PXv2VI8ePVyWnTt3TqVLl9b06dMlSUuWLNF9992nEiVKqFSpUmrfvr0OHDiQ7T6zOoesriZ+/fXXqlu3rry8vHT77bdr/Pjx+RJWYU+uhip/9tlnNW/ePFWpUkVDhw5V1apV5XA4tHv3br3zzjvKyMjQM888c71qBQAAuG7++kvy8yuYY6ekSL6++b/fX375RV988YW+/vprJScnq3///hoyZIhmz55ttVm5cqW8vLy0atUqHTp0SP/4xz9UunRpvfzyy5L+/+9/7733nipXrqy1a9fq73//u8qUKaOoqChrP48//rjeeOMN3X777Vk+f5SSkqKoqCiVLVtWCxcuVEhIiLZv367MzMwr6p07d66KFSt2xT7mzZunWrVqaeDAgRowYEC2571o0SJ16dJFzzzzjD755BOlp6dr0aJF1vr09HS9+OKLqlq1qhISEjRq1Cj169dPixcvttWvvXv3Vrdu3ZSSkiK///vQLF26VKmpqXrwwQclSampqRo9erRq1qyp1NRUPf/883rggQcUGxsrN7c8vWpVS5cu1d///ne99dZbuv/++3XgwAENHDhQkjRu3Lg87RO5ZHLp0KFDpm3btsbNzc04HA7jcDiMm5ubadu2rTl48GBud3fTSEpKMpJMUlJSQZeCApZy8rhRtIyiZVJOHr/ux5PExHTLTAUlJcUY6cKUklJgZaAA5PTz+8yZM+bnn382Z86cMca4fk5u9JSbz2VUVJQZMWLEFcvnz5/v8v9s3LhxplixYubIkSPWsm+//da4ubmZuLg4Y4wxffv2NYGBgSY1NdVq89577xk/Pz+TkZFhUlJSjJeXl9mwYYPLsfr372969uxpjDFm1apVRpJZsGBBjnV/8MEHxt/f35w4cSLL9ePGjTPFixc3CQkJOZ5vRESEmTx5skub6dOnG6fTac1HRkaa3r1751jPpbZs2WIkmdOnT7ucU2JiYpbt09PTTenSpc3HH39sLevZs6fp2rVrtsdISEgwkszOnTuNMcYcPHjQSDI7duzI8hyMufLf9P777zcTJkxwafPJJ5+Y0NBQu6eKbFz+/SA7uX5JbkREhBYvXqzExET98ssvMsaocuXKKlmyZG53BQAAUGj4+Fy4AlRQx74eypUrp9tuu82aj4yMVGZmpvbu3auQkBBJUq1ateRzSQGRkZFKSUnRkSNHlJCQoLNnz6ply5Yu+01PT1ft2rVdltWrVy/HWmJjY1W7dm0FBgZm2yYiIkJlypSxfX45HSunK1M7duxQdHS0YmNjdfLkSevq1+HDh1W9evWr7r948eLq2rWrZs+erT59+ig1NVVfffWVPv30U6vNgQMH9Nxzz2nTpk36888/XY5Ro0aNPJ1XTEyMtm7dal0VlKSMjAydPXtWf/31l8u/I66PXIeni0qWLKn69evnZy0AAAAFxuG4PrfO5beAgAAlJSVdsfzUqVNZvovzUhefn7EzKp/D4bB+4V+0aJHKli3rst7T09Nl3vcqneft7X3VY15tH3bldKzU1FS1atVKrVq10qxZs1SmTBkdPnxYrVu3dnnW62p69+6tqKgoJSQkaPny5fLy8lLbtm2t9R06dFB4eLg++ugjhYWFKTMzUzVq1Mj2GG5ubjKXPfx2cdCMizIzMzV+/HiX57cu8vLysl078i7P4QkAAAA33h133KFvv/32iuVbt25V1apVXZYdPnxYx44dU1hYmCRp48aNcnNzU5UqVaw2P/zwg86cOWMFjk2bNsnPz0+33XabSpYsKU9PTx0+fNjl+aa8uOuuu/Sf//xHJ0+ezPHq09V4eHgoIyPjqsdauXKl/vGPf1yxbs+ePfrzzz/1yiuvKDw8XJK0bdu2XNfRqFEjhYeH6/PPP9e3336rrl27ysPDQ5J04sQJ7d69Wx988IHuv/9+SdL69etz3F+ZMmV0+vRppaamWiHy8ndA1alTR3v37lWlSpVyXS/yB+EJAADgJjJ48GBNnTpVQ4YM0cCBA+Xt7a3ly5dr2rRp+uSTT1zaenl5qW/fvnrjjTeUnJys4cOHq1u3btYte9KFW/D69++vZ599Vr/99pvGjRunoUOHys3NTf7+/ho7dqxGjRqlzMxM3XfffUpOTtaGDRvk5+envn372q67Z8+emjBhgjp37qyJEycqNDRUO3bsUFhYmCIjI23vp3z58lq7dq169OghT09PlS5d+oo248aNU/PmzVWxYkX16NFD58+f17fffqvHH39c5cqVk4eHh95++209+uij2rVrl8t7pOxyOBzq1auX3n//fe3bt0+rVq2y1pUsWVKlSpXShx9+qNDQUB0+fFhPPvlkjvtr0KCBfHx89PTTT2vYsGHasmWLZsyY4dLm+eefV/v27RUeHq6uXbvKzc1NP/74o3bu3KmXXnop1+eA3MvbUB8AAAAoEOXLl9e6det04MABtWrVSvXr19eMGTM0Y8YMde3a1aVtpUqV1KVLF7Vr106tWrVSjRo19O6777q0ad68uSpXrqzGjRurW7du6tChg6Kjo631L774op5//nlNnDhR1apVU+vWrfX111+rQoUKuarbw8NDy5YtU1BQkNq1a6eaNWvqlVdeyXJUvZy88MILOnTokCpWrJjt81FNmjTRl19+qYULF+ruu+9Ws2bNrCHRy5QpoxkzZujLL79U9erV9corr+iNN97IVQ0X9e7dWz///LPKli2re++911ru5uamOXPmKCYmRjVq1NCoUaP0+uuv57ivwMBAzZo1S4sXL1bNmjX12Wefufw7SFLr1q31zTffaPny5apfv74aNmyoN998UxEREXmqH7nnMJffXIksJScny+l0Kikp6ar3E+PWlpqYIL+3giVJKcOPy7fk9X0p3634tngUXQX1Iyc19f8PQX29hoRG4ZTTz++zZ8/q4MGDqlChwi35vEh0dLQWLFhwxa1fl+rXr59OnTqlBQsW3LC6gMLI7vcDrjwBAAAAgA2EJwAAAACwgfAEAABwC7r4HqOczJgxg1v2gFwgPAEAAACADYQnAABQpF18ESyAosvu9wHe8wQAAIokDw8Pubm56dixYypTpow8PDwY4RQoYowxSk9P1x9//CE3NzfrRcfZITwBAIAiyc3NTRUqVFBcXJyOHTtW0OUAKEA+Pj4qV66c3NxyvjGP8AQAAIosDw8PlStXTufPn1dGRkZBlwOgABQrVkzu7u62rjwTngAAQJHmcDhUvHhxFS9evKBLAVDIMWAEAAAAANhAeAIAAAAAGwhPAAAAAGAD4QkAAAAAbCA8AQAAAIANhCcAAAAAsIHwBAAAAAA2EJ4AAAAAwAbCEwAAAADYQHgCAAAAABsITwAAAABgA+EJAAAAAGwgPAEAAACADYQnAAAAALCB8AQAAAAANhCeAAAAAMAGwhMAAAAA2EB4AgAAAAAbCjQ8rV27Vh06dFBYWJgcDocWLFjgst4Yo+joaIWFhcnb21tNmjTRTz/95NImLS1Nw4YNU+nSpeXr66uOHTvq6NGjLm0SExPVp08fOZ1OOZ1O9enTR6dOnbrOZwcAAADgVlKg4Sk1NVW1atXS1KlTs1z/2muv6c0339TUqVO1detWhYSEqGXLljp9+rTVZuTIkZo/f77mzJmj9evXKyUlRe3bt1dGRobVplevXoqNjdWSJUu0ZMkSxcbGqk+fPtf9/AAAAADcOhzGGFPQRUiSw+HQ/Pnz1blzZ0kXrjqFhYVp5MiReuKJJyRduMoUHBysV199VYMGDVJSUpLKlCmjTz75RN27d5ckHTt2TOHh4Vq8eLFat26t3bt3q3r16tq0aZMaNGggSdq0aZMiIyO1Z88eVa1aNct60tLSlJaWZs0nJycrPDxcSUlJCggIuI49gcIuNTFBfm8FS5JShh+Xb8mg63o8h8NxXfcP3EgF9SMnNVXy87vwdUqK5OtbIGWgACQnJ8vpdPLzG0C+KLTPPB08eFDx8fFq1aqVtczT01NRUVHasGGDJCkmJkbnzp1zaRMWFqYaNWpYbTZu3Cin02kFJ0lq2LChnE6n1SYrEydOtG7zczqdCg8Pz+9TBAAAAHATKbThKT4+XpIUHBzssjw4ONhaFx8fLw8PD5UsWTLHNkFBV14ZCAoKstpk5amnnlJSUpI1HTly5JrOBwAAAMDNzb2gC7iay29ZMsZc9Tamy9tk1f5q+/H09JSnp2cuqwUAAABwqyq0V55CQkIk6YqrQwkJCdbVqJCQEKWnpysxMTHHNsePH79i/3/88ccVV7UAAAAAIDuFNjxVqFBBISEhWr58ubUsPT1da9asUaNGjSRJdevWVfHixV3axMXFadeuXVabyMhIJSUlacuWLVabzZs3KykpyWoDAAAAAFdToLftpaSk6JdffrHmDx48qNjYWAUGBqpcuXIaOXKkJkyYoMqVK6ty5cqaMGGCfHx81KtXL0mS0+lU//79NWbMGJUqVUqBgYEaO3asatasqRYtWkiSqlWrpjZt2mjAgAH64IMPJEkDBw5U+/btsx1pDwAAAAAuV6Dhadu2bWratKk1P3r0aElS3759NWPGDD3++OM6c+aMBg8erMTERDVo0EDLli2Tv7+/tc3kyZPl7u6ubt266cyZM2revLlmzJihYsWKWW1mz56t4cOHW6PydezYMdt3SwEAAABAVgrNe54KO94TgYt4zxOQd7znCTcaP78B5KdC+8wTAAAAABQmhCcAAAAAsIHwBAAAAAA2EJ4AAAAAwAbCEwAAAADYQHgCAAAAABsITwAAAABgA+EJAAAAAGwgPAEAAACADYQnAAAAALCB8AQAAAAANhCeAAAAAMAGwhMAAAAA2EB4AgAAAAAbCE8AAAAAYAPhCQAAAABsIDwBAAAAgA2EJwAAAACwgfAEAAAAADYQngAAAADABsITAAAAANhAeAIAAAAAGwhPAAAAAGAD4QkAAAAAbCA8AQAAAIANhCcAAAAAsIHwBAAAAAA2EJ4AAAAAwAbCEwAAAADYQHgCAAAAABsITwAAAABgA+EJAAAAAGwgPAEAAACADYQnAAAAALCB8AQAAAAANhCeAAAAAMAGwhMAAAAA2EB4AgAAAAAbCE8AAAAAYAPhCQAAAABsIDwBAAAAgA3uBV0AAKDocDgcBXRkH0mpkiQ/P19Jf9ne0hhzfUoCANx0uPIEAAAAADYQngAAAADABsITAAAAANhAeAIAAAAAGwhPAAAAAGAD4QkAAAAAbCA8AQAAAIANhCcAAAAAsIHwBAAAAAA2EJ4AAAAAwIZCHZ6io6PlcDhcppCQEGu9MUbR0dEKCwuTt7e3mjRpop9++sllH2lpaRo2bJhKly4tX19fdezYUUePHr3RpwIAAADgJleow5Mk3XnnnYqLi7OmnTt3Wutee+01vfnmm5o6daq2bt2qkJAQtWzZUqdPn7bajBw5UvPnz9ecOXO0fv16paSkqH379srIyCiI0wEAAABwk3Iv6AKuxt3d3eVq00XGGE2ZMkXPPPOMunTpIkmaOXOmgoOD9emnn2rQoEFKSkrStGnT9Mknn6hFixaSpFmzZik8PFwrVqxQ69atb+i5AAAAALh5FforT/v371dYWJgqVKigHj166Ndff5UkHTx4UPHx8WrVqpXV1tPTU1FRUdqwYYMkKSYmRufOnXNpExYWpho1alhtspOWlqbk5GSXCQAAAEDRVajDU4MGDfTxxx9r6dKl+uijjxQfH69GjRrpxIkTio+PlyQFBwe7bBMcHGyti4+Pl4eHh0qWLJltm+xMnDhRTqfTmsLDw/PxzAAAAADcbAp1eGrbtq0efPBB1axZUy1atNCiRYskXbg97yKHw+GyjTHmimWXs9PmqaeeUlJSkjUdOXIkj2cBAAAA4FZQqMPT5Xx9fVWzZk3t37/feg7q8itICQkJ1tWokJAQpaenKzExMds22fH09FRAQIDLBAAAAKDouqnCU1pamnbv3q3Q0FBVqFBBISEhWr58ubU+PT1da9asUaNGjSRJdevWVfHixV3axMXFadeuXVYbFC2XD32fl6nMJcG7THBwvuwzpwkAAACFQ6EebW/s2LHq0KGDypUrp4SEBL300ktKTk5W37595XA4NHLkSE2YMEGVK1dW5cqVNWHCBPn4+KhXr16SJKfTqf79+2vMmDEqVaqUAgMDNXbsWOs2QAAAAACwq1CHp6NHj6pnz576888/VaZMGTVs2FCbNm1SRESEJOnxxx/XmTNnNHjwYCUmJqpBgwZatmyZ/P39rX1MnjxZ7u7u6tatm86cOaPmzZtrxowZKlasWEGdFgAAAICbkMMYYwq6iJtBcnKynE6nkpKSeP7pJpYft8F5F5fOPPN/X78snTl3zbsEcN35SEr9v699Jf1le0t+TN7c+PkNID/dVM88AQAAAEBBITwBAAAAgA2EJwAAAACwgfAEAAAAADYQngAAAADABsITAAAAANhAeAIAAAAAGwhPAAAAAGAD4QkAAAAAbCA8AQAAAIANhCcAAAAAsIHwBAAAAAA2EJ4AAAAAwAbCEwAAAADYQHgCAAAAABsITwAAAABgA+EJAAAAAGwgPAEAAACADYQnAAAAALCB8AQAAAAANhCeAAAAAMAGwhMAAAAA2EB4AgAAAAAbCE8AAAAAYAPhCQAAAABsIDwBAAAAgA2EJwAAAACwgfAEAAAAADYQngAAAADABsITAAAAANhAeAIAAAAAGwhPAAAAAGAD4QkAAAAAbCA8AQAAAIANhCcAAAAAsIHwBAAAAAA2EJ4AAAAAwAbCEwAAAADYQHgCAAAAABvcC7oAAAAKM4fDUdAl5JoxpqBLAIBbEleeAAAAAMAGwhMAAAAA2EB4AgAAAAAbeOYJeXIzPgMAAAAAXAuuPAEAAACADYQnAAAAALCB8AQAAAAANhCeAAAAAMAGwhMAAAAA2EB4AgAAAAAbCE8AAAAAYAPhCQAAAABsIDwBAAAAgA1FKjy9++67qlChgry8vFS3bl2tW7euoEsCAAAAcJMoMuHp888/18iRI/XMM89ox44duv/++9W2bVsdPny4oEsDACBfORyOm24CgJtBkQlPb775pvr3769//vOfqlatmqZMmaLw8HC99957BV1agf/A4occAAAAcHXuBV3AjZCenq6YmBg9+eSTLstbtWqlDRs2ZLlNWlqa0tLSrPmkpCRJUnJy8vUrFDcFYySdveRrADcBIyn5kq9R2Fyvn68X92v4hg0gHxSJ8PTnn38qIyNDwcHBLsuDg4MVHx+f5TYTJ07U+PHjr1geHh5+XWrEzePseUmv/N/XBVoJAPvOSHIWdBHIgdN5ff99Tp8+fd2PAeDWVyTC00WX325mjMn2FrSnnnpKo0ePtuYzMzN18uRJlSpVitvWrlFycrLCw8N15MgRBQQEFHQ5Nz36M3/Rn/mL/sxf9GfuGWN0+vRphYWFFXQpAG4BRSI8lS5dWsWKFbviKlNCQsIVV6Mu8vT0lKenp8uyEiVKXK8Si6SAgAB++Ocj+jN/0Z/5i/7MX/Rn7nDFCUB+KRIDRnh4eKhu3bpavny5y/Lly5erUaNGBVQVAAAAgJtJkbjyJEmjR49Wnz59VK9ePUVGRurDDz/U4cOH9eijjxZ0aQAAAABuAkUmPHXv3l0nTpzQCy+8oLi4ONWoUUOLFy9WREREQZdW5Hh6emrcuHFX3BaJvKE/8xf9mb/oz/xFfwJAwXIYxu4EAAAAgKsqEs88AQAAAMC1IjwBAAAAgA2EJwAAAACwgfAEAAAAADYQnnBDvPzyy2rUqJF8fHxsv2zYGKPo6GiFhYXJ29tbTZo00U8//XR9C71JJCYmqk+fPnI6nXI6nerTp49OnTqV4zb9+vWTw+FwmRo2bHhjCi5k3n33XVWoUEFeXl6qW7eu1q1bl2P7NWvWqG7duvLy8tLtt9+u999//wZVenPITX+uXr36is+hw+HQnj17bmDFhdfatWvVoUMHhYWFyeFwaMGCBVfdhs8nANw4hCfcEOnp6eratav+9a9/2d7mtdde05tvvqmpU6dq69atCgkJUcuWLXX69OnrWOnNoVevXoqNjdWSJUu0ZMkSxcbGqk+fPlfdrk2bNoqLi7OmxYsX34BqC5fPP/9cI0eO1DPPPKMdO3bo/vvvV9u2bXX48OEs2x88eFDt2rXT/fffrx07dujpp5/W8OHDNXfu3BtceeGU2/68aO/evS6fxcqVK9+gigu31NRU1apVS1OnTrXVns8nANxgBriBpk+fbpxO51XbZWZmmpCQEPPKK69Yy86ePWucTqd5//33r2OFhd/PP/9sJJlNmzZZyzZu3GgkmT179mS7Xd++fU2nTp1uQIWF2z333GMeffRRl2V33HGHefLJJ7Ns//jjj5s77rjDZdmgQYNMw4YNr1uNN5Pc9ueqVauMJJOYmHgDqru5STLz58/PsQ2fTwC4sbjyhELp4MGDio+PV6tWraxlnp6eioqK0oYNGwqwsoK3ceNGOZ1ONWjQwFrWsGFDOZ3Oq/bN6tWrFRQUpCpVqmjAgAFKSEi43uUWKunp6YqJiXH5XElSq1atsu27jRs3XtG+devW2rZtm86dO3fdar0Z5KU/L6pdu7ZCQ0PVvHlzrVq16nqWeUvj8wkANxbhCYVSfHy8JCk4ONhleXBwsLWuqIqPj1dQUNAVy4OCgnLsm7Zt22r27Nn67rvvNGnSJG3dulXNmjVTWlra9Sy3UPnzzz+VkZGRq89VfHx8lu3Pnz+vP//887rVejPIS3+Ghobqww8/1Ny5czVv3jxVrVpVzZs319q1a29EybccPp8AcGO5F3QBuHlFR0dr/PjxObbZunWr6tWrl+djOBwOl3ljzBXLbhV2+1O6sl+kq/dN9+7dra9r1KihevXqKSIiQosWLVKXLl3yWPXNKbefq6zaZ7W8qMpNf1atWlVVq1a15iMjI3XkyBG98cYbaty48XWt81bF5xMAbhzCE/Js6NCh6tGjR45typcvn6d9h4SESLrwV9XQ0FBreUJCwhV/Zb1V2O3PH3/8UcePH79i3R9//JGrvgkNDVVERIT279+f61pvVqVLl1axYsWuuCqS0+cqJCQky/bu7u4qVarUdav1ZpCX/sxKw4YNNWvWrPwur0jg8wkANxbhCXlWunRplS5d+rrsu0KFCgoJCdHy5ctVu3ZtSReer1izZo1effXV63LMgma3PyMjI5WUlKQtW7bonnvukSRt3rxZSUlJatSoke3jnThxQkeOHHEJp7c6Dw8P1a1bV8uXL9cDDzxgLV++fLk6deqU5TaRkZH6+uuvXZYtW7ZM9erVU/Hixa9rvYVdXvozKzt27ChSn8P8xOcTAG6wghytAkXHb7/9Znbs2GHGjx9v/Pz8zI4dO8yOHTvM6dOnrTZVq1Y18+bNs+ZfeeUV43Q6zbx588zOnTtNz549TWhoqElOTi6IUyhU2rRpY+666y6zceNGs3HjRlOzZk3Tvn17lzaX9ufp06fNmDFjzIYNG8zBgwfNqlWrTGRkpClbtmyR6885c+aY4sWLm2nTppmff/7ZjBw50vj6+ppDhw4ZY4x58sknTZ8+faz2v/76q/Hx8TGjRo0yP//8s5k2bZopXry4+d///ldQp1Co5LY/J0+ebObPn2/27dtndu3aZZ588kkjycydO7egTqFQOX36tPX9UZJ58803zY4dO8xvv/1mjOHzCQAFjfCEG6Jv375G0hXTqlWrrDaSzPTp0635zMxMM27cOBMSEmI8PT1N48aNzc6dO2988YXQiRMnTO/evY2/v7/x9/c3vXv3vmLo50v786+//jKtWrUyZcqUMcWLFzflypUzffv2NYcPH77xxRcC77zzjomIiDAeHh6mTp06Zs2aNda6vn37mqioKJf2q1evNrVr1zYeHh6mfPny5r333rvBFRduuenPV1991VSsWNF4eXmZkiVLmvvuu88sWrSoAKounC4O5X751LdvX2MMn08AKGgOY/7vyVIAAAAAQLYYqhwAAAAAbCA8AQAAAIANhCcAAAAAsIHwBAAAAAA2EJ4AAAAAwAbCEwAAAADYQHgCAAAAABsITwAAAABgA+EJQLYcDocWLFhgze/Zs0cNGzaUl5eX7r777myXFTV//fWXHnzwQQUEBMjhcOjUqVMFXRIAALgO3Au6AAA3Vr9+/TRz5kxJkru7uwIDA3XXXXepZ8+e6tevn9zc/v/fVOLi4lSyZElrfty4cfL19dXevXvl5+eX7bKiZubMmVq3bp02bNig0qVLy+l0FnRJAADgOuDKE1AEtWnTRnFxcTp06JC+/fZbNW3aVCNGjFD79u11/vx5q11ISIg8PT2t+QMHDui+++5TRESESpUqle2y3EpPT7+2EypgBw4cULVq1VSjRg2FhITI4XAUdEkAAOA6IDwBRZCnp6dCQkJUtmxZ1alTR08//bS++uorffvtt5oxY4bV7tLb9hwOh2JiYvTCCy/I4XAoOjo6y2WS9Pvvv6t79+4qWbKkSpUqpU6dOunQoUPWfvv166fOnTtr4sSJCgsLU5UqVXK13RtvvKHQ0FCVKlVKQ4YM0blz56w2aWlpevzxxxUeHi5PT09VrlxZ06ZNs9b//PPPateunfz8/BQcHKw+ffrozz//zLG/5s6dqzvvvFOenp4qX768Jk2aZK1r0qSJJk2apLVr18rhcKhJkyZZ7iM6Olp33323/vvf/6pcuXLy8/PTv/71L2VkZOi1115TSEiIgoKC9PLLL7tsl5SUpIEDByooKEgBAQFq1qyZfvjhB2v9gQMH1KlTJwUHB8vPz0/169fXihUrXPZRvnx5TZgwQY888oj8/f1Vrlw5ffjhh9b69PR0DR06VKGhofLy8lL58uU1ceLEHPsEAICiiPAEQJLUrFkz1apVS/PmzctyfVxcnO68806NGTNGcXFxGjt2bJbL/vrrLzVt2lR+fn5au3at1q9fLz8/P7Vp08blCtPKlSu1e/duLV++XN98843t7VatWqUDBw5o1apVmjlzpmbMmOES+B5++GHNmTNHb731lnbv3q3333/fup0wLi5OUVFRuvvuu7Vt2zYtWbJEx48fV7du3bLtl5iYGHXr1k09evTQzp07FR0dreeee8465rx58zRgwABFRkYqLi4u2/6TLgSdb7/9VkuWLNFnn32m//73v/rb3/6mo0ePas2aNXr11Vf17LPPatOmTZIkY4z+9re/KT4+XosXL1ZMTIzq1Kmj5s2b6+TJk5KklJQUtWvXTitWrNCOHTvUunVrdejQQYcPH3Y59qRJk1SvXj3t2LFDgwcP1r/+9S/t2bNHkvTWW29p4cKF+uKLL7R3717NmjVL5cuXz/Y8AAAosgyAIqVv376mU6dOWa7r3r27qVatmjUvycyfP9+ar1Wrlhk3bpzLNpcvmzZtmqlatarJzMy0lqWlpRlvb2+zdOlSq4bg4GCTlpaW6+0iIiLM+fPnrTZdu3Y13bt3N8YYs3fvXiPJLF++PMvze+6550yrVq1clh05csRIMnv37s1ym169epmWLVu6LHvsscdM9erVrfkRI0aYqKioLLe/aNy4ccbHx8ckJydby1q3bm3Kly9vMjIyrGVVq1Y1EydONMYYs3LlShMQEGDOnj3rsq+KFSuaDz74INtjVa9e3bz99tvWfEREhPn73/9uzWdmZpqgoCDz3nvvGWOMGTZsmGnWrJlL3wMAgCsxYAQAizHmmp/XiYmJ0S+//CJ/f3+X5WfPntWBAwes+Zo1a8rDwyPX2915550qVqyYNR8aGqqdO3dKkmJjY1WsWDFFRUVlW9uqVauyHNjiwIED1u2Dl9q9e7c6derksuzee+/VlClTlJGR4VLL1ZQvX97l/IKDg1WsWDGXQTqCg4OVkJBg1ZuSknLFs2Rnzpyx+iQ1NVXjx4/XN998o2PHjun8+fM6c+bMFVee7rrrLutrh8OhkJAQ6zj9+vVTy5YtVbVqVbVp00bt27dXq1atbJ8XAABFBeEJgGX37t2qUKHCNe0jMzNTdevW1ezZs69YV6ZMGetrX1/fPG1XvHhxl3UOh0OZmZmSJG9v76vW1qFDB7366qtXrAsNDc1ym6wCpTEmx+NkJ6vaczqfzMxMhYaGavXq1Vfsq0SJEpKkxx57TEuXLtUbb7yhSpUqydvbWw899NAVg3DkdJw6dero4MGD+vbbb7VixQp169ZNLVq00P/+9788nScAALcqwhMASdJ3332nnTt3atSoUde0nzp16ujzzz+3Bji43ttdqmbNmsrMzNSaNWvUokWLLI8xd+5clS9fXu7u9r79Va9eXevXr3dZtmHDBlWpUiVXV53yok6dOoqPj5e7u3u2zyCtW7dO/fr10wMPPCDpwjNQlw6yYVdAQIC6d++u7t2766GHHlKbNm108uRJBQYGXsMZAABwa2HACKAISktLU3x8vH7//Xdt375dEyZMUKdOndS+fXs9/PDD17Tv3r17q3Tp0urUqZPWrVungwcPas2aNRoxYoSOHj2a79tdqnz58urbt68eeeQRLViwQAcPHtTq1av1xRdfSJKGDBmikydPqmfPntqyZYt+/fVXLVu2TI888ogyMjKy3OeYMWO0cuVKvfjii9q3b59mzpypqVOnauzYsbnvnFxq0aKFIiMj1blzZy1dulSHDh3Shg0b9Oyzz2rbtm2SpEqVKmnevHmKjY3VDz/8oF69ellXlOyaPHmy5syZoz179mjfvn368ssvFRISYl3dAgAAFxCegCJoyZIlCg0NVfny5dWmTRutWrVKb731lr766qtrvpri4+OjtWvXqly5curSpYuqVaumRx55RGfOnMnxilJet7vce++9p4ceekiDBw/WHXfcoQEDBig1NVWSFBYWpu+//14ZGRlq3bq1atSooREjRsjpdLo8d3SpOnXq6IsvvtCcOXNUo0YNPf/883rhhRfUr1+/XPVLXjgcDi1evFiNGzfWI488oipVqqhHjx46dOiQgoODJV0IPiVLllSjRo3UoUMHtW7dWnXq1MnVcfz8/PTqq6+qXr16ql+/vg4dOqTFixdn2ycAABRVDpPXm/cBAAAAoAjhz4oAAAAAYAPhCQAAAABsIDwBAAAAgA2EJwAAAACwgfAEAAAAADYQngAAAADABsITAAAAANhAeAIAAAAAGwhPAAAAAGAD4QkAAAAAbCA8AQAAAIAN/w+VWB/ohKCxtQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA08AAAGyCAYAAAA8rf/0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABYAElEQVR4nO3deVwV9f7H8fcR2ZejomyGQm5pLrmlWIm5gHrdstLUTG9etdxTb2XdEls0K9Pb9bZeU0vL6qamZa65FeKCUlpumaYmRLmAEILC9/eH1/l5BHHEBdTX8/GYh8x3vjPzmfHA4c3MfI/DGGMEAAAAAChUqeIuAAAAAACuBYQnAAAAALCB8AQAAAAANhCeAAAAAMAGwhMAAAAA2EB4AgAAAAAbCE8AAAAAYAPhCQAAAABsIDwBAAAAgA2li7uAa0VeXp4OHTokf39/ORyO4i4HAADYYIzR8ePHFRYWplKl+JsxgEtkitEbb7xh6tSpY/z9/Y2/v79p2rSpWbRokbU8Ly/PjB071oSGhhovLy8THR1ttm3b5rKNEydOmCFDhpjAwEDj4+NjOnbsaA4cOODS58iRI+bBBx80AQEBJiAgwDz44IPm6NGjF1XrgQMHjCQmJiYmJiama3A693cDACgKhzHGqJgsXLhQbm5uqlq1qiRp5syZeuWVV7Rlyxbdeuutmjhxol588UXNmDFD1atX1wsvvKA1a9Zo586d8vf3lyQ9+uijWrhwoWbMmKHAwECNGjVKR44cUWJiotzc3CRJ7dq108GDB/XOO+9IkgYMGKCIiAgtXLjQdq1paWkqU6aMDhw4oICAgMt8JnAjyMzJVNikMEnSoVGH5OvhK2VmSmGn23TokOTrW4wVAjcevgWvf+np6QoPD9exY8fkdDqLuxwA17hiDU8FKVeunF555RU9/PDDCgsL04gRI/TEE09IkrKzsxUcHKyJEydq4MCBSktLU4UKFfTBBx+oe/fukqRDhw4pPDxcixYtUmxsrLZv365atWopISFBTZo0kSQlJCQoKipKO3bsUI0aNWzVlZ6eLqfTqbS0NMITiiQzJ1N+E/wkSRljMv4/PPmdblNGBr+5AVcZ34LXP96/AVxOJebm39zcXM2ZM0eZmZmKiorS3r17lZKSopiYGKuPp6enoqOjFR8fL0lKTEzUyZMnXfqEhYWpdu3aVp9169bJ6XRawUmSmjZtKqfTafUpSHZ2ttLT010mAAAAADeuYg9PW7dulZ+fnzw9PfXII49o3rx5qlWrllJSUiRJwcHBLv2Dg4OtZSkpKfLw8FDZsmUL7RMUFJRvv0FBQVafgkyYMEFOp9OawsPDL+k4AQAAAFzbij081ahRQ0lJSUpISNCjjz6qPn366Mcff7SWnzuynTHmgqPdndunoP4X2s6YMWOUlpZmTQcOHLB7SAAAAACuQ8Uenjw8PFS1alU1atRIEyZMUL169fTPf/5TISEhkpTv6lBqaqp1NSokJEQ5OTk6evRooX1+++23fPv9/fff813VOpunp6cCAgJcJgAAAAA3rmIPT+cyxig7O1uRkZEKCQnRsmXLrGU5OTlavXq1mjVrJklq2LCh3N3dXfokJydr27ZtVp+oqCilpaVpw4YNVp/169crLS3N6gMAAAAAF1KsH5L71FNPqV27dgoPD9fx48c1Z84crVq1SosXL5bD4dCIESM0fvx4VatWTdWqVdP48ePl4+Ojnj17SpKcTqf69eunUaNGKTAwUOXKldPo0aNVp04dtW7dWpJUs2ZNtW3bVv3799fbb78t6fRQ5R06dLA90h4AAAAAFGt4+u2339S7d28lJyfL6XSqbt26Wrx4sdq0aSNJevzxx5WVlaVBgwbp6NGjatKkiZYuXWp9xpMkTZ48WaVLl1a3bt2UlZWlVq1aacaMGdZnPEnS7NmzNWzYMGtUvk6dOmnq1KlX92ABAAAAXNNK3Oc8lVR8TgQuFZ/zBJQ8fAte/3j/BnA5lbhnngAAAACgJCI8AQAAAIANhCcAAAAAsIHwBAAAAAA2EJ4AAAAAwAbCEwAAAADYQHgCAAAAABuK9UNyAaCkcDgcxV3CReNj+gAAuLq48gQAAAAANhCeAAAAAMAGwhMAAAAA2EB4AgAAAAAbCE8AAAAAYAPhCQAAAABsIDwBAAAAgA2EJwAAAACwgfAEAAAAADYQngAAAADABsITAAAAANhAeAIAAAAAGwhPAAAAAGAD4QkAAAAAbCA8AQAAAIANhCcAAAAAsIHwBAAAAAA2EJ4AAAAAwAbCEwAAAADYQHgCAAAAABsITwAAAABgA+EJAAAAAGwgPAEAAACADYQnAAAAALCB8AQAAAAANhCeAAAAAMAGwhMAAAAA2EB4AgAAAAAbCE8AAAAAYAPhCQAAAABsIDwBAAAAgA2EJwAAAACwgfAEAAAAADYQngAAAADAhtLFXQCA64/D4SjuEgAAAC47rjwBAAAAgA2EJwAAAACwgfAEAAAAADYQngAAAADABsITAAAAANhAeAIAAAAAGwhPAAAAAGBDsYanCRMmqHHjxvL391dQUJC6dOminTt3uvTp27evHA6Hy9S0aVOXPtnZ2Ro6dKjKly8vX19fderUSQcPHnTpc/ToUfXu3VtOp1NOp1O9e/fWsWPHrvQhAgAAALhOFGt4Wr16tQYPHqyEhAQtW7ZMp06dUkxMjDIzM136tW3bVsnJyda0aNEil+UjRozQvHnzNGfOHH3zzTfKyMhQhw4dlJuba/Xp2bOnkpKStHjxYi1evFhJSUnq3bv3VTlOAAAAANe+0sW588WLF7vMT58+XUFBQUpMTFTz5s2tdk9PT4WEhBS4jbS0NE2bNk0ffPCBWrduLUmaNWuWwsPDtXz5csXGxmr79u1avHixEhIS1KRJE0nSu+++q6ioKO3cuVM1atS4QkcIAAAA4HpRop55SktLkySVK1fOpX3VqlUKCgpS9erV1b9/f6WmplrLEhMTdfLkScXExFhtYWFhql27tuLj4yVJ69atk9PptIKTJDVt2lROp9Pqc67s7Gylp6e7TAAAAABuXCUmPBljNHLkSN15552qXbu21d6uXTvNnj1bX3/9tSZNmqSNGzeqZcuWys7OliSlpKTIw8NDZcuWddlecHCwUlJSrD5BQUH59hkUFGT1OdeECROs56OcTqfCw8Mv16ECAAAAuAYV6217ZxsyZIi+//57ffPNNy7t3bt3t76uXbu2GjVqpMqVK+vLL79U165dz7s9Y4wcDoc1f/bX5+tztjFjxmjkyJHWfHp6OgEKAAAAuIGViCtPQ4cO1YIFC7Ry5UrddNNNhfYNDQ1V5cqVtXv3bklSSEiIcnJydPToUZd+qampCg4Otvr89ttv+bb1+++/W33O5enpqYCAAJcJAAAAwI2rWMOTMUZDhgzR3Llz9fXXXysyMvKC6xw+fFgHDhxQaGioJKlhw4Zyd3fXsmXLrD7Jycnatm2bmjVrJkmKiopSWlqaNmzYYPVZv3690tLSrD4AAAAAUJhivW1v8ODB+vDDD/X555/L39/fev7I6XTK29tbGRkZiouL07333qvQ0FDt27dPTz31lMqXL6977rnH6tuvXz+NGjVKgYGBKleunEaPHq06depYo+/VrFlTbdu2Vf/+/fX2229LkgYMGKAOHTow0h4AAAAAW4o1PL355puSpBYtWri0T58+XX379pWbm5u2bt2q999/X8eOHVNoaKjuvvtuffzxx/L397f6T548WaVLl1a3bt2UlZWlVq1aacaMGXJzc7P6zJ49W8OGDbNG5evUqZOmTp165Q8SAAAAwHXBYYwxxV3EtSA9PV1Op1NpaWk8/4QiyczJlN8EP0lSxpgM+Xr4SpmZkt/pNmVkSL6+xVjh5XO+gVhwefHj+9Jdp9+COAvv3wAupxIxYAQAAAAAlHSEJwAAAACwgfAEAAAAADYQngAAAADABsITAAAAANhAeAIAAAAAGwhPAAAAAGAD4QkAAAAAbCA8AQAAAIANhCcAAAAAsIHwBAAAAAA2EJ4AAAAAwAbCEwAAAADYQHgCAAAAABsITwAAAABgA+EJAAAAAGwgPAEAAACADYQnAAAAALCB8AQAAAAANhCeAAAAAMAGwhMAAAAA2EB4AgAAAAAbCE8AAAAAYAPhCQAAAABsIDwBAAAAgA2EJwAAAACwgfAEAAAAADYQngAAAADABsITAAAAANhAeAIAAAAAGwhPAAAAAGAD4QkAAAAAbCA8AQAAAIANhCcAAAAAsIHwBAAAAAA2EJ4AAAAAwAbCEwAAAADYQHgCAAAAABsITwAAAABgA+EJAAAAAGwgPAEAAACADYQnAAAAALCB8AQAAAAANhCeAAAAAMAGwhMAAAAA2EB4AgAAAAAbCE8AAAAAYAPhCQAAAABsIDwBAAAAgA2EJwAAAACwoVjD04QJE9S4cWP5+/srKChIXbp00c6dO136GGMUFxensLAweXt7q0WLFvrhhx9c+mRnZ2vo0KEqX768fH191alTJx08eNClz9GjR9W7d285nU45nU717t1bx44du9KHCAAAAOA6UazhafXq1Ro8eLASEhK0bNkynTp1SjExMcrMzLT6vPzyy3rttdc0depUbdy4USEhIWrTpo2OHz9u9RkxYoTmzZunOXPm6JtvvlFGRoY6dOig3Nxcq0/Pnj2VlJSkxYsXa/HixUpKSlLv3r2v6vECAAAAuHY5jDGmuIs44/fff1dQUJBWr16t5s2byxijsLAwjRgxQk888YSk01eZgoODNXHiRA0cOFBpaWmqUKGCPvjgA3Xv3l2SdOjQIYWHh2vRokWKjY3V9u3bVatWLSUkJKhJkyaSpISEBEVFRWnHjh2qUaPGBWtLT0+X0+lUWlqaAgICrtxJwHUrMydTfhP8JEkZYzLk6+ErZWZKfqfblJEh+foWY4WXj8PhKO4Sbggl6Mf3Nes6/RbEWXj/BnA5lahnntLS0iRJ5cqVkyTt3btXKSkpiomJsfp4enoqOjpa8fHxkqTExESdPHnSpU9YWJhq165t9Vm3bp2cTqcVnCSpadOmcjqdVp9zZWdnKz093WUCAAAAcOMqMeHJGKORI0fqzjvvVO3atSVJKSkpkqTg4GCXvsHBwdaylJQUeXh4qGzZsoX2CQoKyrfPoKAgq8+5JkyYYD0f5XQ6FR4efmkHCACXmcPhuOYmAACuZSUmPA0ZMkTff/+9Pvroo3zLzn3DNcZc8E343D4F9S9sO2PGjFFaWpo1HThwwM5hAAAAALhOlYjwNHToUC1YsEArV67UTTfdZLWHhIRIUr6rQ6mpqdbVqJCQEOXk5Ojo0aOF9vntt9/y7ff333/Pd1XrDE9PTwUEBLhMAAAAAG5cxRqejDEaMmSI5s6dq6+//lqRkZEuyyMjIxUSEqJly5ZZbTk5OVq9erWaNWsmSWrYsKHc3d1d+iQnJ2vbtm1Wn6ioKKWlpWnDhg1Wn/Xr1ystLc3qAwAAAACFKV2cOx88eLA+/PBDff755/L397euMDmdTnl7e8vhcGjEiBEaP368qlWrpmrVqmn8+PHy8fFRz549rb79+vXTqFGjFBgYqHLlymn06NGqU6eOWrduLUmqWbOm2rZtq/79++vtt9+WJA0YMEAdOnSwNdIeAAAAABRreHrzzTclSS1atHBpnz59uvr27StJevzxx5WVlaVBgwbp6NGjatKkiZYuXSp/f3+r/+TJk1W6dGl169ZNWVlZatWqlWbMmCE3Nzerz+zZszVs2DBrVL5OnTpp6tSpV/YAAQAAAFw3StTnPJVkfE4ELhWf8wSUvM+muk6/BXEW3r8BXE4lYsAIAAAAACjpCE8AAAAAYAPhCQAAAABsIDwBAAAAgA2EJwAAAACwgfAEAAAAADYQngAAAADABsITAAAAANhAeAIAAAAAGwhPAAAAAGAD4QkAAAAAbCA8AQAAAIANhCcAAAAAsIHwBAAAAAA2EJ4AAAAAwAbCEwAAAADYQHgCAAAAABtKF3cBAAAAxS03N1cnT54s7jIAFAN3d3e5ubnZ6kt4AgAANyxjjFJSUnTs2LHiLgVAMSpTpoxCQkLkcDgK7Ud4AgAAN6wzwSkoKEg+Pj4X/MUJwPXFGKM///xTqampkqTQ0NBC+xOeAADADSk3N9cKToGBgcVdDoBi4u3tLUlKTU1VUFBQobfwMWAEAAC4IZ15xsnHx6eYKwFQ3M78HLjQs4+EJwAAcEPjVj0Adn8OEJ4AAAAAwAbCEwAAwHUqIiJCU6ZMKe4yLpuiHE/fvn3VpUsXa75FixYaMWKENf/nn3/q3nvvVUBAgBwOh44dO1Zg240oLi5OwcHBcjgcmj9/fnGXUyIQngAAAK4xBw4cUL9+/RQWFiYPDw9VrlxZw4cP1+HDh4u7tBJv7ty5ev755635mTNnau3atYqPj1dycrKcTmeBbTea7du3a9y4cXr77beVnJysdu3aFXdJJQKj7QEAAFxDfv75Z0VFRal69er66KOPFBkZqR9++EF///vf9dVXXykhIUHlypUrltpyc3PlcDhUqlTJ/fv8uedmz549qlmzpmrXrl1o28W6Fs5FYfbs2SNJ6ty5M88FnuXa/N8EAAC4QQ0ePFgeHh5aunSpoqOjValSJbVr107Lly/Xr7/+qqefftql//Hjx9WzZ0/5+fkpLCxM//rXv1yWx8XFqVKlSvL09FRYWJiGDRtmLcvJydHjjz+uihUrytfXV02aNNGqVaus5TNmzFCZMmX0xRdfqFatWvL09NS7774rLy+vfLe6DRs2TNHR0dZ8fHy8mjdvLm9vb4WHh2vYsGHKzMy0lqempqpjx47y9vZWZGSkZs+efcFzk5ubq5EjR6pMmTIKDAzU448/LmOMS5+zb9tr0aKFJk2apDVr1sjhcKhFixYFthX1XPzyyy+211uyZIlq1qwpPz8/tW3bVsnJyS51v/fee7r11lvl6emp0NBQDRkyxFqWlpamAQMGKCgoSAEBAWrZsqW+++67Qs/V1q1b1bJlS3l7eyswMFADBgxQRkaGpNOviY4dO0qSSpUqdd7wtGrVKjkcDi1ZskT169eXt7e3WrZsqdTUVH311VeqWbOmAgIC1KNHD/3555/WesYYvfzyy7r55pvl7e2tevXq6b///a/L/2O/fv0UGRkpb29v1ahRQ//85z9d9n3mdsxXX31VoaGhCgwM1ODBg11Gy3vjjTdUrVo1eXl5KTg4WPfdd1+h58QWA1vS0tKMJJOWllbcpeAalZGdYRQnoziZjOyM/zVmGCOdnjIyirfAy0gSE1OBU0lznX4L4iyFvX9nZWWZH3/80WRlZZ1uyMs7/UIojikvz9bxHD582DgcDjN+/PgCl/fv39+ULVvW5P1ve5UrVzb+/v5mwoQJZufOneb11183bm5uZunSpcYYYz799FMTEBBgFi1aZH755Rezfv16884771jb69mzp2nWrJlZs2aN+emnn8wrr7xiPD09za5du4wxxkyfPt24u7ubZs2amW+//dbs2LHDZGRkmODgYPOf//zH2s6pU6dMcHCwefvtt40xxnz//ffGz8/PTJ482ezatct8++23pn79+qZv377WOu3atTO1a9c28fHxZtOmTaZZs2bG29vbTJ48+bznZ+LEicbpdJr//ve/5scffzT9+vUz/v7+pnPnzlaf6OhoM3z4cOt89u/f30RFRZnk5GRz+PDhAtsu5VzYXa9169Zm48aNJjEx0dSsWdP07NnTqvmNN94wXl5eZsqUKWbnzp1mw4YN1nnIy8szd9xxh+nYsaPZuHGj2bVrlxk1apQJDAy0aj9XZmamCQsLM127djVbt241K1asMJGRkaZPnz7GGGOOHz9upk+fbiSZ5ORkk5ycXOB2Vq5caSSZpk2bmm+++cZs3rzZVK1a1URHR5uYmBizefNms2bNGhMYGGheeukla72nnnrK3HLLLWbx4sVmz549Zvr06cbT09OsWrXKGGNMTk6OefbZZ82GDRvMzz//bGbNmmV8fHzMxx9/bG2jT58+JiAgwDzyyCNm+/btZuHChcbHx8d6/W7cuNG4ubmZDz/80Ozbt89s3rzZ/POf/zzvayffz4PzKHnvZCUU4QmXivDExFTy3nKu029BnOWiwtPZL4irPdl8ASYkJBhJZt68eQUuf+2114wk89tvvxljToentm3buvTp3r27adeunTHGmEmTJpnq1aubnJycfNv66aefjMPhML/++qtLe6tWrcyYMWOMMcb6BTspKcmlz7Bhw0zLli2t+SVLlhgPDw9z5MgRY4wxvXv3NgMGDHBZZ+3ataZUqVImKyvL7Ny500gyCQkJ1vLt27cbSYWGp9DQUJdf0k+ePGluuumm84YnY4wZPny4iY6OdtnOuW1FPRcXs95PP/1kLf/3v/9tgoODrfmwsDDz9NNPF3jMK1asMAEBAebEiRMu7VWqVLHC6rneeecdU7ZsWZNx1uvuyy+/NKVKlTIpKSnGGGPmzZt3wZ/bZ8LT8uXLrbYJEyYYSWbPnj1W28CBA01sbKwxxpiMjAzj5eVl4uPjXbbVr18/06NHj/Pua9CgQebee++15vv06WMqV65sTp06ZbXdf//9pnv37sYYYz777DMTEBBg0tPTCz2GM+yGJ555AgAAuE6Y/92idvZtVlFRUS59oqKirBHr7r//fk2ZMkU333yz2rZtq/bt26tjx44qXbq0Nm/eLGOMqlev7rJ+dna2AgMDrXkPDw/VrVvXpU+vXr0UFRWlQ4cOKSwsTLNnz1b79u1VtmxZSVJiYqJ++uknl1vxjDHKy8vT3r17tWvXLpUuXVqNGjWylt9yyy0qU6bMeY89LS1NycnJLsd7ZhtnzktRFfVc2F3Px8dHVapUseZDQ0OVmpoq6fTti4cOHVKrVq0KrC0xMVEZGRku25OkrKws67mlc23fvl316tWTr6+v1XbHHXcoLy9PO3fuVHBwcIHrnc/ZxxwcHCwfHx/dfPPNLm0bNmyQJP344486ceKE2rRp47KNnJwc1a9f35p/66239J///Ee//PKLsrKylJOTo9tuu81lnVtvvVVubm7WfGhoqLZu3SpJatOmjSpXrmy9ttu2bat77rnnkj8Um/AEAAAgST4+0v+e+SiWfdtQtWpVORwO/fjjjy7Db5+xY8cOlS1bVuXLly90O2fCVXh4uHbu3Klly5Zp+fLlGjRokF555RWtXr1aeXl5cnNzU2JiossvqJLk5+dnfe3t7Z3vmZjbb79dVapU0Zw5c/Too49q3rx5mj59urU8Ly9PAwcOdHm+6oxKlSpp586dLnUWt6KeC7vrubu7uyxzOBxW4PP29r5gbaGhoS7PUZ1xvrBpjDnvuS3KOT+7fofDUeDx5OXlWfVK0pdffqmKFSu69PP09JQkffLJJ3rsscc0adIkRUVFyd/fX6+88orWr19/3v2eux9/f39t3rxZq1at0tKlS/Xss88qLi5OGzduLDSEXwjhCQAAQJIcDumsv8SXRIGBgWrTpo3eeOMNPfbYYy6/WKekpGj27Nl66KGHXH4BTkhIcNlGQkKCbrnlFmve29tbnTp1UqdOnTR48GDdcsst2rp1q+rXr6/c3Fylpqbqrrvuuuhae/bsqdmzZ+umm25SqVKl9Je//MVa1qBBA/3www+qWrVqgevWrFlTp06d0qZNm3T77bdLknbu3Fno5y05nU6FhoYqISFBzZs3lySdOnVKiYmJatCgwUXXf7ainotLPYfS6RAQERGhFStW6O677863vEGDBkpJSVHp0qUVERFha5u1atXSzJkzlZmZaV19+vbbb1WqVKl8V8kutzODaezfv99lAJGzrV27Vs2aNdOgQYOstvNdRStM6dKl1bp1a7Vu3Vpjx45VmTJl9PXXX6tr165Frp/R9gAAAK4hU6dOVXZ2tmJjY7VmzRodOHBAixcvVps2bVSxYkW9+OKLLv2//fZbvfzyy9q1a5f+/e9/69NPP9Xw4cMlnR7pbdq0adq2bZt+/vlnffDBB/L29lblypVVvXp19erVSw899JDmzp2rvXv3auPGjZo4caIWLVp0wTp79eqlzZs368UXX9R9990nLy8va9kTTzyhdevWafDgwUpKStLu3bu1YMECDR06VJJUo0YNtW3bVv3799f69euVmJiov/3tbxe8CjN8+HC99NJLmjdvnnbs2KFBgwZdlg+4Leq5uNRzeEZcXJwmTZqk119/Xbt379bmzZutURNbt26tqKgodenSRUuWLNG+ffsUHx+vf/zjH9q0aVOB2+vVq5e8vLzUp08fbdu2TStXrtTQoUPVu3fvi75l72L5+/tr9OjReuyxxzRz5kzt2bNHW7Zs0b///W/NnDlT0ukrrJs2bdKSJUu0a9cuPfPMM9q4ceNF7eeLL77Q66+/rqSkJP3yyy96//33lZeXpxo1alxS/UUKTzfffHOBH8J27Ngxl/sbAQAAcHlVq1ZNmzZtUpUqVdS9e3dVqVJFAwYM0N13361169bl+xyjUaNGKTExUfXr19fzzz+vSZMmKTY2VtLp27reffdd3XHHHapbt65WrFihhQsXWs/PTJ8+XQ899JBGjRqlGjVqqFOnTlq/fr3Cw8Nt1dm4cWN9//336tWrl8uyunXravXq1dq9e7fuuusu1a9fX88884xCQ0OtPtOnT1d4eLiio6PVtWtXayjuwowaNUoPPfSQ+vbta93udc8999g6rxdS1HNxKefwjD59+mjKlCl64403dOutt6pDhw7avXu3pNO3qi1atEjNmzfXww8/rOrVq+uBBx7Qvn37zhuEfHx8tGTJEh05ckSNGzfWfffdp1atWmnq1Kn2T8gleP755/Xss89qwoQJqlmzpmJjY7Vw4UJFRkZKkh555BF17dpV3bt3V5MmTXT48GGXq1B2lClTRnPnzlXLli1Vs2ZNvfXWW/roo4906623XlLtDlOEJ+hKlSqllJSUfC/g3377TZUqVVJ2dvYlFVUSpaeny+l0Ki0tTQEBAcVdDq5BmTmZ8ptw+v7mjDEZ8vXwlTIzpTP3PGdklPjbRewqKfeoo+S51Ie2L7fr9FsQZyns/fvEiRPau3evIiMjXa6KALjx2P15cFHPPC1YsMD6esmSJXI6ndZ8bm6uVqxYYfteSwAAAAC4llxUeDozqovD4VCfPn1clrm7uysiIkKTJk26bMUBAAAAQElxUeHpzNB/kZGR2rhx4wWHwQQAAACA60WRhirfu3fv5a4DAAAAAEq0In/O04oVK7RixQqlpqZaV6TOeO+99y65MAAAAAAoSYoUnsaNG6fnnntOjRo1UmhoKCNrAQAAALjuFSk8vfXWW5oxY4Z69+59uesBAAAAgBKpSB+Sm5OTo2bNml3uWgAAAACgxCpSePrb3/6mDz/88HLXAgAAAAAlVpFu2ztx4oTeeecdLV++XHXr1pW7u7vL8tdee+2yFAcAAIAb14wZMzRixAgdO3as0H4Oh0Pz5s2zPpP0UkVERGjEiBEaMWLEZdleQVq0aKHbbrtNU6ZMuWL7wOVXpPD0/fff67bbbpMkbdu2zWUZg0cAAABcOX379tWxY8c0f/784i7liuvevbvat29vzcfFxWn+/PlKSkpy6ZecnKyyZcte5epwIypSeFq5cuXlrgMAAADXgZycHHl4eFzydk6ePClvb295e3tfsG9ISMgl7w+wo0jPPAEAAKBkWr16tW6//XZ5enoqNDRUTz75pE6dOiVJWrhwocqUKWN9RmdSUpIcDof+/ve/W+sPHDhQPXr0sObj4+PVvHlzeXt7Kzw8XMOGDVNmZqa1PCIiQi+88IL69u0rp9Op/v37F1hXXl6eJk6cqKpVq8rT01OVKlXSiy++KEnat2+fHA6HPvnkE7Vo0UJeXl6aNWuWZsyYoTJlykg6fQvfuHHj9N1338nhcMjhcGjGjBmSTt/5dPaVuIMHD+qBBx5QuXLl5Ovrq0aNGmn9+vWSpD179qhz584KDg6Wn5+fGjdurOXLl9s+v0uWLJGXl1e+WwmHDRum6OhoSdLhw4fVo0cP3XTTTfLx8VGdOnX00UcfFbrdc49BksqUKWMdoyT9+uuv6t69u8qWLavAwEB17txZ+/bts107Ll2Rrjzdfffdhd6e9/XXXxe5IAAAgOJgjNGfJ/8sln37uPtclkcffv31V7Vv3159+/bV+++/rx07dqh///7y8vJSXFycmjdvruPHj2vLli1q2LChVq9erfLly2v16tXWNlatWqXHHntMkrR161bFxsbq+eef17Rp0/T7779ryJAhGjJkiKZPn26t88orr+iZZ57RP/7xj/PWNmbMGL377ruaPHmy7rzzTiUnJ2vHjh0ufZ544glNmjRJ06dPl6enp5YuXWot6969u7Zt26bFixdbYcfpdObbT0ZGhqKjo1WxYkUtWLBAISEh2rx5sxUYMzIy1L59e73wwgvy8vLSzJkz1bFjR+3cuVOVKlW64Dlu3bq1ypQpo88++0z9+vWTJOXm5uqTTz7Rc889J+n0+AANGzbUE088oYCAAH355Zfq3bu3br75ZjVp0uSC+yjIn3/+qbvvvlt33XWX1qxZo9KlS+uFF15Q27Zt9f3331+Wq324sCKFpzPPO51x8uRJJSUladu2berTp4/t7axZs0avvPKKEhMTlZycnO9Bv759+2rmzJku6zRp0kQJCQnWfHZ2tkaPHq2PPvpIWVlZatWqld544w3ddNNNVp+jR49q2LBhWrBggSSpU6dO+te//mX9JQMAAODPk3/Kb4Jfsew7Y0yGfD18L3k7b7zxhsLDwzV16lQ5HA7dcsstOnTokJ544gk9++yzcjqduu2227Rq1So1bNjQCkrjxo3T8ePHlZmZqV27dqlFixaSToeinj17WgMnVKtWTa+//rqio6P15ptvysvLS5LUsmVLjR49+rx1HT9+XP/85z81depU63fFKlWq6M4773TpN2LECHXt2rXAbXh7e8vPz0+lS5cu9Da9Dz/8UL///rs2btyocuXKSZKqVq1qLa9Xr57q1atnzb/wwguaN2+eFixYoCFDhpx3u2e4ubmpe/fu+vDDD63wtGLFCh09elT333+/JKlixYou52Po0KFavHixPv300yKHpzlz5qhUqVL6z3/+YwXt6dOnq0yZMlq1apViYmKKtF1cnCKFp8mTJxfYHhcXp4yMDNvbyczMVL169fTXv/5V9957b4F92rZt6/KXjXNT9YgRI7Rw4ULNmTNHgYGBGjVqlDp06KDExES5ublJknr27KmDBw9q8eLFkqQBAwaod+/eWrhwoe1aAQAASrrt27crKirK5SrWHXfcoYyMDB08eFCVKlVSixYttGrVKo0cOVJr167VCy+8oM8++0zffPONjh07puDgYN1yyy2SpMTERP3000+aPXu2tT1jjPLy8rR3717VrFlTktSoUaML1pWdna1WrVoV2u9C27EjKSlJ9evXt4LTuTIzMzVu3Dh98cUXOnTokE6dOqWsrCzt37/f9j569eqlqKgoHTp0SGFhYZo9e7bat29vDVqRm5url156SR9//LF+/fVXZWdnKzs7W76+RQ/IZ/4v/P39XdpPnDihPXv2FHm7uDhFCk/n8+CDD+r222/Xq6++aqt/u3bt1K5du0L7eHp6nvevC2lpaZo2bZo++OADtW7dWpI0a9YshYeHa/ny5YqNjdX27du1ePFiJSQkWEn/3XffVVRUlHbu3KkaNWpcxBECAIDrlY+7jzLG2P8j8OXe9+VgjMl3+58xRtL/j4jcokULTZs2Td99951KlSqlWrVqKTo6WqtXr9bRo0et53ak088pDRw4UMOGDcu3r7NvcbtQKLAz6IOd7dhxoX39/e9/15IlS/Tqq6+qatWq8vb21n333aecnBzb+7j99ttVpUoVzZkzR48++qjmzZvn8sf+SZMmafLkyZoyZYrq1KkjX19fjRgxotB9OBwO6//qjJMnT1pf5+XlqWHDhi5B9owKFSrYrh2X5rKGp3Xr1lmXby+XVatWKSgoSGXKlFF0dLRefPFFBQUFSTqdwE+ePOlymTIsLEy1a9dWfHy8YmNjtW7dOjmdTpdLpE2bNpXT6VR8fPx5w9OZvxCckZ6eflmPCwAAlCwOh+Oy3DpXnGrVqqXPPvvMJUTFx8fL399fFStWlCTruacpU6YoOjpaDodD0dHRmjBhgo4eParhw4db22vQoIF++OEHl9veiqJatWry9vbWihUr9Le//a3I2/Hw8FBubm6hferWrav//Oc/OnLkSIFXn9auXau+ffvqnnvukXT6GaiiDLrQs2dPzZ49WzfddJNKlSqlv/zlLy776Ny5sx588EFJp4PP7t27rSt1BalQoYKSk5Ot+d27d+vPP///GbwGDRro448/VlBQkAICAi66XlweRRptr2vXri7TPffco6ZNm+qvf/2rBg4ceNmKa9eunWbPnq2vv/5akyZN0saNG9WyZUsr1KSkpMjDwyPfuP7BwcFKSUmx+pwJW2cLCgqy+hRkwoQJcjqd1hQeHn7ZjgsAAOBSpKWlKSkpyWXav3+/Bg0apAMHDmjo0KHasWOHPv/8c40dO1YjR45UqVKnf+0789zTrFmzrGebmjdvrs2bN7s87ySdHsBh3bp1Gjx4sJKSkrR7924tWLBAQ4cOvah6vby89MQTT+jxxx/X+++/rz179ighIUHTpk27qO1ERERo7969SkpK0h9//OHyh+4zevTooZCQEHXp0kXffvutfv75Z3322Wdat26dpNPPP82dO1dJSUn67rvv1LNnT2swiYvRq1cvbd68WS+++KLuu+8+lwsIVatW1bJlyxQfH6/t27dr4MCBhf7eKZ1+bmzq1KnavHmzNm3apEceeUTu7u4u+ytfvrw6d+6stWvXau/evVq9erWGDx+ugwcPXnT9KJoihaezQ4XT6VS5cuXUokULLVq0SGPHjr1sxXXv3l1/+ctfVLt2bXXs2FFfffWVdu3apS+//LLQ9c69ZF3Q6DUFXdY+25gxY5SWlmZNBw4cKPqBAAAAXEarVq1S/fr1XaZnn31WFStW1KJFi7RhwwbVq1dPjzzyiPr165dvFLy7775bubm5VlAqW7asatWqpQoVKrhcHalbt65Wr16t3bt366677lL9+vX1zDPPKDQ09KJrfuaZZzRq1Cg9++yzqlmzprp3767U1NSL2sa9996rtm3b6u6771aFChUKHP7bw8NDS5cuVVBQkNq3b686deropZdesp6Fnzx5ssqWLatmzZqpY8eOio2NVYMGDS76eKpVq6bGjRvr+++/V69evfIda4MGDRQbG6sWLVpYYa4wkyZNUnh4uJo3b66ePXtq9OjR8vH5/9s5fXx8tGbNGlWqVEldu3ZVzZo19fDDDysrK4srUVeRw5x7c2UxcTgc+UbbK0i1atX0t7/9TU888YS+/vprtWrVSkeOHHG5+lSvXj116dJF48aN03vvvaeRI0fmG4u/TJkymjx5sv7617/aqi89PV1Op1NpaWm8QFEkmTmZ1ihO1qhKmZmS3/9GdsrIkC7Dvd4lweUYbhfXpxLylmO5Tr8FcZbC3r9PnDihvXv3KjIy8rI/dgDg2mL358ElfUhuYmKiZs2apdmzZ2vLli2XsilbDh8+rAMHDlh/7WjYsKHc3d21bNkyq09ycrK2bdumZs2aSZKioqKUlpamDRs2WH3Wr1+vtLQ0qw8AAAAAXEiRBoxITU3VAw88oFWrVqlMmTIyxigtLU1333235syZY3vEj4yMDP3000/W/Jl7WMuVK6dy5copLi5O9957r0JDQ7Vv3z499dRTKl++vPWAn9PpVL9+/TRq1CgFBgaqXLlyGj16tOrUqWONvlezZk21bdtW/fv319tvvy3p9FDlHTp0YKQ9AAAAALYV6crT0KFDlZ6erh9++EFHjhzR0aNHtW3bNqWnpxc4lOX5bNq0ybpPV5JGjhxp3bPr5uamrVu3qnPnzqpevbr69Omj6tWra926dS7j20+ePFldunRRt27ddMcdd8jHx0cLFy607muVpNmzZ6tOnTqKiYlRTEyM6tatqw8++KAohw4AAADgBlWkZ56cTqeWL1+uxo0bu7Rv2LBBMTEx+Z4vuh7wzBMuFc88ATzzhKuPZ54A2HFFn3nKy8tzGTrxDHd39yIN9QgAAAAAJV2RwlPLli01fPhwHTp0yGr79ddf9dhjj6lVq1aXrTgAAAAAKCmKFJ6mTp2q48ePKyIiQlWqVFHVqlUVGRmp48eP61//+tflrhEAAAAAil2RRtsLDw/X5s2btWzZMu3YsUPGGNWqVcsa4Q4AAAAArjcXdeXp66+/Vq1atZSeni5JatOmjYYOHaphw4apcePGuvXWW7V27dorUigAAAAAFKeLCk9TpkxR//79Cxxtzul0auDAgXrttdcuW3EAAAC4sbVo0UIjRowotM+MGTNUpkyZy7bPVatWyeFwXNERpPft2yeHw6GkpKQrtg9cfhcVnr777ju1bdv2vMtjYmKUmJh4yUUBAACgYOcLE/Pnz78uPypi7ty5ev755635iIgITZkyxaVP9+7dtWvXrqtcGW5EF/XM02+//VbgEOXWxkqX1u+//37JRQEAAODaZIxRbm6uSpcu0qP1lpMnT8rd3V3lypW7YF9vb295e3tf0v4AOy7qylPFihW1devW8y7//vvvFRoaeslFAQAA4NLExcXptttu09tvv63w8HD5+Pjo/vvvd7kVrW/fvurSpYvGjRunoKAgBQQEaODAgcrJybH6GGP08ssv6+abb5a3t7fq1aun//73v9byM7e4LVmyRI0aNZKnp+d5n4E/ePCgHnjgAZUrV06+vr5q1KiR1q9f71Lve++9p5tvvlmenp4yxrhcaWvRooV++eUXPfbYY3I4HNaVtoJu21uwYIEaNWokLy8vlS9fXl27drWWzZo1S40aNZK/v79CQkLUs2dPpaam2j63PXr00AMPPODSdvLkSZUvX17Tp0+XJC1evFh33nmnypQpo8DAQHXo0EF79uw57zYLOoaCriYuXLhQDRs2lJeXl26++WaNGzdOp06dsl07Ls1F/Umgffv2evbZZ9WuXbt8n7yblZWlsWPHqkOHDpe1QAAAgKvBGOnPP4tn3z4+0pW44+6nn37SJ598ooULFyo9PV39+vXT4MGDNXv2bKvPihUr5OXlpZUrV2rfvn3661//qvLly+vFF1+UJP3jH//Q3Llz9eabb6patWpas2aNHnzwQVWoUEHR0dHWdh5//HG9+uqruvnmmwt8/igjI0PR0dGqWLGiFixYoJCQEG3evFl5eXn56v3ss8/k5uaWbxtz585VvXr1NGDAAPXv3/+8x/3ll1+qa9euevrpp/XBBx8oJydHX375pbU8JydHzz//vGrUqKHU1FQ99thj6tu3rxYtWmTrvPbq1UvdunVTRkaG/Pz8JElLlixRZmam7r33XklSZmamRo4cqTp16igzM1PPPvus7rnnHiUlJalUqSJ9WpCWLFmiBx98UK+//rruuusu7dmzRwMGDJAkjR07tkjbxEUyFyElJcWEhYWZ8PBwM3HiRDN//nzz+eefm5deesmEh4ebsLAwk5KScjGbvGakpaUZSSYtLa24S8E1KiM7wyhORnEyGdkZ/2vMMOb0+/Xpr68TkpiYCpxKmuv0WxBnKez9Oysry/z4448mKyvLGOP6erja08W8/qKjo83w4cPztc+bN8/l+2zs2LHGzc3NHDhwwGr76quvTKlSpUxycrIxxpg+ffqYcuXKmczMTKvPm2++afz8/Exubq7JyMgwXl5eJj4+3mVf/fr1Mz169DDGGLNy5UojycyfP7/Qut9++23j7+9vDh8+XODysWPHGnd3d5Oamlro8VauXNlMnjzZpc/06dON0+m05qOiokyvXr0KredsGzZsMJLM8ePHXY7p6NGjBfbPyckx5cuXN++//77V1qNHD3P//fefdx+pqalGktm6dasxxpi9e/caSWbLli0FHoMx+f9P77rrLjN+/HiXPh988IEJDQ21e6g4j3N/HpzPRV15Cg4OVnx8vB599FGNGTNGxhhJksPhUGxsrN544w0FBwdfzCYBAABwhVSqVEk33XSTNR8VFaW8vDzt3LlTISEhkqR69erJx8fHpU9GRoYOHDig1NRUnThxQm3atHHZbk5OjurXr+/S1qhRo0JrSUpKUv369Qt9hqly5cqqUKGC7eMrbF+FXZnasmWL4uLilJSUpCNHjlhXv/bv369atWpdcPvu7u66//77NXv2bPXu3VuZmZn6/PPP9eGHH1p99uzZo2eeeUYJCQn6448/XPZRu3btIh1XYmKiNm7caF0VlKTc3FydOHFCf/75p8v/I66Mi36Sr3Llylq0aJGOHj2qn376ScYYVatWTWXLlr0S9QEAAFwVPj5SRkbx7duugIAApaWl5Ws/duxYgR8nc7Yzz8/YGZXP4XBYv/B/+eWXqlixostyT09Pl3lfX99Ct2dnQIcLbcOuwvaVmZmpmJgYxcTEaNasWapQoYL279+v2NhYl2e9LqRXr16Kjo5Wamqqli1bJi8vL7Vr185a3rFjR4WHh+vdd99VWFiY8vLyVLt27fPuo1SpUtaFiTNOnjzpMp+Xl6dx48a5PL91xrmP1ODKKPIwKGXLllXjxo0vZy0AAADFxuGQLtPv7lfULbfcoq+++ipf+8aNG1WjRg2Xtv379+vQoUMKCwuTJK1bt06lSpVS9erVrT7fffedsrKyrMCRkJAgPz8/3XTTTSpbtqw8PT21f/9+l+ebiqJu3br6z3/+oyNHjtgaQe98PDw8lJube8F9rVixQn/961/zLduxY4f++OMPvfTSSwoPD5ckbdq06aLraNasmcLDw/Xxxx/rq6++0v333y8PDw9J0uHDh7V9+3a9/fbbuuuuuyRJ33zzTaHbq1Chgo4fP67MzEwrRJ77GVANGjTQzp07VbVq1YuuF5fHpY0hCQAAgKtq0KBBmjp1qgYPHqwBAwbI29tby5Yt07Rp0/TBBx+49PXy8lKfPn306quvKj09XcOGDVO3bt2sW/ak07fg9evXT//4xz/0yy+/aOzYsRoyZIhKlSolf39/jR49Wo899pjy8vJ05513Kj09XfHx8fLz81OfPn1s192jRw+NHz9eXbp00YQJExQaGqotW7YoLCxMUVFRtrcTERGhNWvW6IEHHpCnp6fKly+fr8/YsWPVqlUrValSRQ888IBOnTqlr776So8//rgqVaokDw8P/etf/9Ijjzyibdu2uXyOlF0Oh0M9e/bUW2+9pV27dmnlypXWsrJlyyowMFDvvPOOQkNDtX//fj355JOFbq9Jkyby8fHRU089paFDh2rDhg2aMWOGS59nn31WHTp0UHh4uO6//36VKlVK33//vbZu3aoXXnjhoo8BF69oQ30AAACgWERERGjt2rXas2ePYmJi1LhxY82YMUMzZszQ/fff79K3atWq6tq1q9q3b6+YmBjVrl1bb7zxhkufVq1aqVq1amrevLm6deumjh07Ki4uzlr+/PPP69lnn9WECRNUs2ZNxcbGauHChYqMjLyouj08PLR06VIFBQWpffv2qlOnjl566aUCR9UrzHPPPad9+/apSpUq530+qkWLFvr000+1YMEC3XbbbWrZsqU1JHqFChU0Y8YMffrpp6pVq5ZeeuklvfrqqxdVwxm9evXSjz/+qIoVK+qOO+6w2kuVKqU5c+YoMTFRtWvX1mOPPaZXXnml0G2VK1dOs2bN0qJFi1SnTh199NFHLv8PkhQbG6svvvhCy5YtU+PGjdW0aVO99tprqly5cpHqx8VzmHNvrkSB0tPT5XQ6lZaWdsH7iYGCZOZkym/C6eFMM8ZkyNfDV8rMlP43xKkyMq6N+0VsuB4/4R6XR0l7y7lOvwVxlsLev0+cOKG9e/cqMjLyunxeJC4uTvPnz89369fZ+vbtq2PHjmn+/PlXrS6gJLL784ArTwAAAABgA+EJAAAAAGwgPAEAAFyHznyOUWFmzJjBLXvARSA8AQAAAIANhCcAAAAAsIHwBAAAbmh5eXnFXQKAYmb35wAfkgsAAG5IHh4eKlWqlA4dOqQKFSrIw8ODj1oAbjDGGOXk5Oj3339XqVKl5OHhUWh/whMAALghlSpVSpGRkUpOTtahQ4eKuxwAxcjHx0eVKlVSqVKF35hHeAIAADcsDw8PVapUSadOnVJubm5xlwOgGLi5ual06dK2rjwTngAAwA3N4XDI3d1d7u7uxV0KgBKOASMAAAAAwAauPAElHA8vAwAAlAxceQIAAAAAGwhPAAAAAGAD4QkAAAAAbCA8AQAAAIANhCcAAAAAsIHwBAAAAAA2EJ4AAAAAwAbCEwAAAADYQHgCAAAAABsITwAAAABgA+EJAAAAAGwgPAEAAACADYQnAAAAALCB8AQAAAAANhCeAAAAAMAGwhMAAAAA2EB4AgAAAAAbCE8AAAAAYAPhCQAAAABsIDwBAAAAgA2EJwAAAACwoVjD05o1a9SxY0eFhYXJ4XBo/vz5LsuNMYqLi1NYWJi8vb3VokUL/fDDDy59srOzNXToUJUvX16+vr7q1KmTDh486NLn6NGj6t27t5xOp5xOp3r37q1jx45d4aMDAAAAcD0p1vCUmZmpevXqaerUqQUuf/nll/Xaa69p6tSp2rhxo0JCQtSmTRsdP37c6jNixAjNmzdPc+bM0TfffKOMjAx16NBBubm5Vp+ePXsqKSlJixcv1uLFi5WUlKTevXtf8eMDAAAAcP1wGGNMcRchSQ6HQ/PmzVOXLl0knb7qFBYWphEjRuiJJ56QdPoqU3BwsCZOnKiBAwcqLS1NFSpU0AcffKDu3btLkg4dOqTw8HAtWrRIsbGx2r59u2rVqqWEhAQ1adJEkpSQkKCoqCjt2LFDNWrUsFVfenq6nE6n0tLSFBAQcPlPAK57mTmZ8pvgJ0nKGJMhXw9fKTNT8jvdpowMydc333oOh+NqlglcUSXkLcdi41sQ1zjevwFcTiX2mae9e/cqJSVFMTExVpunp6eio6MVHx8vSUpMTNTJkydd+oSFhal27dpWn3Xr1snpdFrBSZKaNm0qp9Np9SlIdna20tPTXSYAAAAAN64SG55SUlIkScHBwS7twcHB1rKUlBR5eHiobNmyhfYJCgrKt/2goCCrT0EmTJhgPSPldDoVHh5+SccDAAAA4NpWYsPTGefesmSMueBtTOf2Kaj/hbYzZswYpaWlWdOBAwcusnIAAAAA15MSG55CQkIkKd/VodTUVOtqVEhIiHJycnT06NFC+/z222/5tv/777/nu6p1Nk9PTwUEBLhMAAAAAG5cJTY8RUZGKiQkRMuWLbPacnJytHr1ajVr1kyS1LBhQ7m7u7v0SU5O1rZt26w+UVFRSktL04YNG6w+69evV1pamtUHAAAAAC6kdHHuPCMjQz/99JM1v3fvXiUlJalcuXKqVKmSRowYofHjx6tatWqqVq2axo8fLx8fH/Xs2VOS5HQ61a9fP40aNUqBgYEqV66cRo8erTp16qh169aSpJo1a6pt27bq37+/3n77bUnSgAED1KFDB9sj7QEAAABAsYanTZs26e6777bmR44cKUnq06ePZsyYoccff1xZWVkaNGiQjh49qiZNmmjp0qXy9/e31pk8ebJKly6tbt26KSsrS61atdKMGTPk5uZm9Zk9e7aGDRtmjcrXqVOn8362FAAAAAAUpMR8zlNJx+dE4FLxOU8An/OEq4/3bwCXU4l95gkAAAAAShLCEwAAAADYQHgCAAAAABsITwAAAABgA+EJAAAAAGwgPAEAAACADYQnAAAAALCB8AQAAAAANhCeAAAAAMAGwhMAAAAA2EB4AgAAAAAbCE8AAAAAYAPhCQAAAABsIDwBAAAAgA2EJwAAAACwgfAEAAAAADYQngAAAADABsITAAAAANhAeAIAAAAAGwhPAAAAAGAD4QkAAAAAbCA8AQAAAIANhCcAAAAAsIHwBAAAAAA2lC7uAgAANw6Hw1HcJZzDR1KmJMnPz1fSn/l6GGOubkkAgBKLK08AAAAAYAPhCQAAAABsIDwBAAAAgA2EJwAAAACwgfAEAAAAADYQngAAAADABsITAAAAANhAeAIAAAAAGwhPAAAAAGAD4QkAAAAAbCA8AQAAAIANhCcAAAAAsIHwBAAAAAA2EJ4AAAAAwAbCEwAAAADYQHgCAAAAABsITwAAAABgA+EJAAAAAGwgPAEAAACADYQnAAAAALCB8AQAAAAANhCeAAAAAMAGwhMAAAAA2EB4AgAAAAAbCE8AAAAAYEOJDk9xcXFyOBwuU0hIiLXcGKO4uDiFhYXJ29tbLVq00A8//OCyjezsbA0dOlTly5eXr6+vOnXqpIMHD17tQwEAAABwjSvR4UmSbr31ViUnJ1vT1q1brWUvv/yyXnvtNU2dOlUbN25USEiI2rRpo+PHj1t9RowYoXnz5mnOnDn65ptvlJGRoQ4dOig3N7c4DgcAAADANap0cRdwIaVLl3a52nSGMUZTpkzR008/ra5du0qSZs6cqeDgYH344YcaOHCg0tLSNG3aNH3wwQdq3bq1JGnWrFkKDw/X8uXLFRsbe1WPBQAAAMC1q8Rfedq9e7fCwsIUGRmpBx54QD///LMkae/evUpJSVFMTIzV19PTU9HR0YqPj5ckJSYm6uTJky59wsLCVLt2bavP+WRnZys9Pd1lAgAAAHDjKtHhqUmTJnr//fe1ZMkSvfvuu0pJSVGzZs10+PBhpaSkSJKCg4Nd1gkODraWpaSkyMPDQ2XLlj1vn/OZMGGCnE6nNYWHh1/GIwMAAABwrSnR4aldu3a69957VadOHbVu3VpffvmlpNO3553hcDhc1jHG5Gs7l50+Y8aMUVpamjUdOHCgiEcBAAAA4HpQosPTuXx9fVWnTh3t3r3beg7q3CtIqamp1tWokJAQ5eTk6OjRo+ftcz6enp4KCAhwmQAAAADcuK6p8JSdna3t27crNDRUkZGRCgkJ0bJly6zlOTk5Wr16tZo1ayZJatiwodzd3V36JCcna9u2bVYfAAAAALCjRI+2N3r0aHXs2FGVKlVSamqqXnjhBaWnp6tPnz5yOBwaMWKExo8fr2rVqqlatWoaP368fHx81LNnT0mS0+lUv379NGrUKAUGBqpcuXIaPXq0dRsgAAAAANhVosPTwYMH1aNHD/3xxx+qUKGCmjZtqoSEBFWuXFmS9PjjjysrK0uDBg3S0aNH1aRJEy1dulT+/v7WNiZPnqzSpUurW7duysrKUqtWrTRjxgy5ubkV12EBAAAAuAY5jDGmuIu4FqSnp8vpdCotLY3nn1AkmTmZ8pvgJ0nKGJMhXw9fKTNT8jvdpowMydc333oXGtwEwKXwkZT5v699Jf2Zrwdvk9c23r8BXE7X1DNPAAAAAFBcCE8AAAAAYAPhCQAAAABsIDwBAAAAgA2EJwAAAACwgfAEAAAAADYQngAAAADABsITAAAAANhAeAIAAAAAGwhPAAAAAGAD4QkAAAAAbCA8AQAAAIANpYu7AOBqcjgcxbdzd0lPn/7Sz89POin5SMr832JfPz/9WUylAQAA4MK48gQAAAAANhCeAAAAAMAGwhMAAAAA2EB4AgAAAAAbCE8AAAAAYAPhCQAAAABsIDwBAAAAgA2EJwAAAACwgfAEAAAAADYQngAAAADABsITAAAAANhAeAIAAAAAGwhPAAAAAGAD4QkAAAAAbCA8AQAAAIANhCcAAAAAsIHwBAAAAAA2EJ4AAAAAwAbCEwAAAADYQHgCAAAAABsITwAAAABgA+EJAAAAAGwgPAEAAACADaWLuwAAAEoyh8NR3CVcNGNMcZcAANclrjwBAAAAgA2EJwAAAACwgfAEAAAAADYQngAAAADABsITAAAAANhAeAIAAAAAGwhPAAAAAGAD4QkAAAAAbCA8AQAAAIANhCcAAAAAsIHwBAAAAAA2lC7uAnBtcjgcxV0CAAAAcFVx5QkAAAAAbLihwtMbb7yhyMhIeXl5qWHDhlq7dm1xlwQAwGXncDiuuQkArgU3THj6+OOPNWLECD399NPasmWL7rrrLrVr10779+8v7tIAAAAAXANumPD02muvqV+/fvrb3/6mmjVrasqUKQoPD9ebb75Z3KUBAAAAuAbcEANG5OTkKDExUU8++aRLe0xMjOLj4wtcJzs7W9nZ2dZ8WlqaJCk9Pf2y1+d0Oi/7NlECGUknzvr6f/+kuzYBuKr4LiwprsT769nbNYb/XwCX7oYIT3/88Ydyc3MVHBzs0h4cHKyUlJQC15kwYYLGjRuXrz08PPyK1IgbwClJL7k2ZUkiOgPFie/CkuJK/yHx+PHj/LESwCW7IcLTGec+kGqMOe9DqmPGjNHIkSOt+by8PB05ckSBgYE82HoR0tPTFR4ergMHDiggIKC4y7muca6vLs731cO5vrqut/NtjNHx48cVFhZW3KUAuA7cEOGpfPnycnNzy3eVKTU1Nd/VqDM8PT3l6enp0lamTJkrVeJ1LyAg4Lp4E74WcK6vLs731cO5vrqup/PNFScAl8sNMWCEh4eHGjZsqGXLlrm0L1u2TM2aNSumqgAAAABcS26IK0+SNHLkSPXu3VuNGjVSVFSU3nnnHe3fv1+PPPJIcZcGAAAA4Bpww4Sn7t276/Dhw3ruueeUnJys2rVra9GiRapcuXJxl3Zd8/T01NixY/PdAonLj3N9dXG+rx7O9dXF+QaA83MYxu4EAAAAgAu6IZ55AgAAAIBLRXgCAAAAABsITwAAAABgA+EJAAAAAGwgPOGyevHFF9WsWTP5+PjY/lBhY4zi4uIUFhYmb29vtWjRQj/88MOVLfQ6cfToUfXu3VtOp1NOp1O9e/fWsWPHCl2nb9++cjgcLlPTpk2vTsHXkDfeeEORkZHy8vJSw4YNtXbt2kL7r169Wg0bNpSXl5duvvlmvfXWW1ep0uvDxZzvVatW5XsNOxwO7dix4ypWfG1as2aNOnbsqLCwMDkcDs2fP/+C6/DaBoD/R3jCZZWTk6P7779fjz76qO11Xn75Zb322muaOnWqNm7cqJCQELVp00bHjx+/gpVeH3r27KmkpCQtXrxYixcvVlJSknr37n3B9dq2bavk5GRrWrRo0VWo9trx8ccfa8SIEXr66ae1ZcsW3XXXXWrXrp32799fYP+9e/eqffv2uuuuu7RlyxY99dRTGjZsmD777LOrXPm16WLP9xk7d+50eR1Xq1btKlV87crMzFS9evU0depUW/15bQPAOQxwBUyfPt04nc4L9svLyzMhISHmpZdestpOnDhhnE6neeutt65ghde+H3/80UgyCQkJVtu6deuMJLNjx47zrtenTx/TuXPnq1Dhtev22283jzzyiEvbLbfcYp588skC+z/++OPmlltucWkbOHCgadq06RWr8Xpysed75cqVRpI5evToVaju+iXJzJs3r9A+vLYBwBVXnlCs9u7dq5SUFMXExFhtnp6eio6OVnx8fDFWVvKtW7dOTqdTTZo0sdqaNm0qp9N5wXO3atUqBQUFqXr16urfv79SU1OvdLnXjJycHCUmJrq8JiUpJibmvOd13bp1+frHxsZq06ZNOnny5BWr9XpQlPN9Rv369RUaGqpWrVpp5cqVV7LMGxavbQBwRXhCsUpJSZEkBQcHu7QHBwdby1CwlJQUBQUF5WsPCgoq9Ny1a9dOs2fP1tdff61JkyZp48aNatmypbKzs69kudeMP/74Q7m5uRf1mkxJSSmw/6lTp/THH39csVqvB0U536GhoXrnnXf02Wefae7cuapRo4ZatWqlNWvWXI2Sbyi8tgHAVeniLgAlX1xcnMaNG1don40bN6pRo0ZF3ofD4XCZN8bka7tR2D3fUv7zJl343HXv3t36unbt2mrUqJEqV66sL7/8Ul27di1i1defi31NFtS/oHYU7GLOd40aNVSjRg1rPioqSgcOHNCrr76q5s2bX9E6b0S8tgHg/xGecEFDhgzRAw88UGifiIiIIm07JCRE0um/boaGhlrtqamp+f7aeaOwe76///57/fbbb/mW/f777xd17kJDQ1W5cmXt3r37omu9HpUvX15ubm75rnoU9poMCQkpsH/p0qUVGBh4xWq9HhTlfBekadOmmjVr1uUu74bHaxsAXBGecEHly5dX+fLlr8i2IyMjFRISomXLlql+/fqSTj8DsXr1ak2cOPGK7LOks3u+o6KilJaWpg0bNuj222+XJK1fv15paWlq1qyZ7f0dPnxYBw4ccAmvNzIPDw81bNhQy5Yt0z333GO1L1u2TJ07dy5wnaioKC1cuNClbenSpWrUqJHc3d2vaL3XuqKc74Js2bKF1/AVwGsbAM5RnKNV4Przyy+/mC1btphx48YZPz8/s2XLFrNlyxZz/Phxq0+NGjXM3LlzrfmXXnrJOJ1OM3fuXLN161bTo0cPExoaatLT04vjEK4pbdu2NXXr1jXr1q0z69atM3Xq1DEdOnRw6XP2+T5+/LgZNWqUiY+PN3v37jUrV640UVFRpmLFipzvs8yZM8e4u7ubadOmmR9//NGMGDHC+Pr6mn379hljjHnyySdN7969rf4///yz8fHxMY899pj58ccfzbRp04y7u7v573//W1yHcE252PM9efJkM2/ePLNr1y6zbds28+STTxpJ5rPPPiuuQ7hmHD9+3Pq5LMm89tprZsuWLeaXX34xxvDaBoALITzhsurTp4+RlG9auXKl1UeSmT59ujWfl5dnxo4da0JCQoynp6dp3ry52bp169Uv/hp0+PBh06tXL+Pv72/8/f1Nr1698g3ffPb5/vPPP01MTIypUKGCcXd3N5UqVTJ9+vQx+/fvv/rFl3D//ve/TeXKlY2Hh4dp0KCBWb16tbWsT58+Jjo62qX/qlWrTP369Y2Hh4eJiIgwb7755lWu+Np2Med74sSJpkqVKsbLy8uULVvW3HnnnebLL78shqqvPWeGeT936tOnjzGG1zYAXIjDmP89+QkAAAAAOC+GKgcAAAAAGwhPAAAAAGAD4QkAAAAAbCA8AQAAAIANhCcAAAAAsIHwBAAAAAA2EJ4AAAAAwAbCE4Dzcjgcmj9/vjW/Y8cONW3aVF5eXrrtttvO23aj+fPPP3XvvfcqICBADodDx44dK+6SAADAFVC6uAsAcHX17dtXM2fOlCSVLl1a5cqVU926ddWjRw/17dtXpUr9/99UkpOTVbZsWWt+7Nix8vX11c6dO+Xn53fethvNzJkztXbtWsXHx6t8+fJyOp3FXRIAALgCuPIE3IDatm2r5ORk7du3T1999ZXuvvtuDR8+XB06dNCpU6esfiEhIfL09LTm9+zZozvvvFOVK1dWYGDgedsuVk5OzqUdUDHbs2ePatasqdq1ayskJEQOh6O4SwIAAFcA4Qm4AXl6eiokJEQVK1ZUgwYN9NRTT+nzzz/XV199pRkzZlj9zr5tz+FwKDExUc8995wcDofi4uIKbJOkX3/9Vd27d1fZsmUVGBiozp07a9++fdZ2+/btqy5dumjChAkKCwtT9erVL2q9V199VaGhoQoMDNTgwYN18uRJq092drYef/xxhYeHy9PTU9WqVdO0adOs5T/++KPat28vPz8/BQcHq3fv3vrjjz8KPV+fffaZbr31Vnl6eioiIkKTJk2ylrVo0UKTJk3SmjVr5HA41KJFiwK3ERcXp9tuu03vvfeeKlWqJD8/Pz366KPKzc3Vyy+/rJCQEAUFBenFF190WS8tLU0DBgxQUFCQAgIC1LJlS3333XfW8j179qhz584KDg6Wn5+fGjdurOXLl7tsIyIiQuPHj9fDDz8sf39/VapUSe+88461PCcnR0OGDFFoaKi8vLwUERGhCRMmFHpOAAC4ERGeAEiSWrZsqXr16mnu3LkFLk9OTtatt96qUaNGKTk5WaNHjy6w7c8//9Tdd98tPz8/rVmzRt988438/PzUtm1blytMK1as0Pbt27Vs2TJ98cUXttdbuXKl9uzZo5UrV2rmzJmaMWOGS+B76KGHNGfOHL3++uvavn273nrrLet2wuTkZEVHR+u2227Tpk2btHjxYv3222/q1q3bec9LYmKiunXrpgceeEBbt25VXFycnnnmGWufc+fOVf/+/RUVFaXk5OTznj/pdND56quvtHjxYn300Ud677339Je//EUHDx7U6tWrNXHiRP3jH/9QQkKCJMkYo7/85S9KSUnRokWLlJiYqAYNGqhVq1Y6cuSIJCkjI0Pt27fX8uXLtWXLFsXGxqpjx47av3+/y74nTZqkRo0aacuWLRo0aJAeffRR7dixQ5L0+uuva8GCBfrkk0+0c+dOzZo1SxEREec9DgAAblgGwA2lT58+pnPnzgUu6969u6lZs6Y1L8nMmzfPmq9Xr54ZO3asyzrntk2bNs3UqFHD5OXlWW3Z2dnG29vbLFmyxKohODjYZGdnX/R6lStXNqdOnbL63H///aZ79+7GGGN27txpJJlly5YVeHzPPPOMiYmJcWk7cOCAkWR27txZ4Do9e/Y0bdq0cWn7+9//bmrVqmXNDx8+3ERHRxe4/hljx441Pj4+Jj093WqLjY01ERERJjc312qrUaOGmTBhgjHGmBUrVpiAgABz4sQJl21VqVLFvP322+fdV61atcy//vUva75y5crmwQcftObz8vJMUFCQefPNN40xxgwdOtS0bNnS5dwDAID8GDACgMUYc8nP6yQmJuqnn36Sv7+/S/uJEye0Z88ea75OnTry8PC46PVuvfVWubm5WfOhoaHaunWrJCkpKUlubm6Kjo4+b20rV64scGCLPXv2WLcPnm379u3q3LmzS9sdd9yhKVOmKDc316WWC4mIiHA5vuDgYLm5ubkM0hEcHKzU1FSr3oyMjHzPkmVlZVnnJDMzU+PGjdMXX3yhQ4cO6dSpU8rKysp35alu3brW1w6HQyEhIdZ++vbtqzZt2qhGjRpq27atOnTooJiYGNvHBQDAjYLwBMCyfft2RUZGXtI28vLy1LBhQ82ePTvfsgoVKlhf+/r6Fmk9d3d3l2UOh0N5eXmSJG9v7wvW1rFjR02cODHfstDQ0ALXKShQGmMK3c/5FFR7YceTl5en0NBQrVq1Kt+2ypQpI0n6+9//riVLlujVV19V1apV5e3trfvuuy/fIByF7adBgwbau3evvvrqKy1fvlzdunVT69at9d///rdIxwkAwPWK8ARAkvT1119r69ateuyxxy5pOw0aNNDHH39sDXBwpdc7W506dZSXl6fVq1erdevWBe7js88+U0REhEqXtvfjr1atWvrmm29c2uLj41W9evWLuupUFA0aNFBKSopKly593meQ1q5dq759++qee+6RdPoZqLMH2bArICBA3bt3V/fu3XXfffepbdu2OnLkiMqVK3cJRwAAwPWFASOAG1B2drZSUlL066+/avPmzRo/frw6d+6sDh066KGHHrqkbffq1Uvly5dX586dtXbtWu3du1erV6/W8OHDdfDgwcu+3tkiIiLUp08fPfzww5o/f7727t2rVatW6ZNPPpEkDR48WEeOHFGPHj20YcMG/fzzz1q6dKkefvhh5ebmFrjNUaNGacWKFXr++ee1a9cuzZw5U1OnTtXo0aMv/uRcpNatWysqKkpdunTRkiVLtG/fPsXHx+sf//iHNm3aJEmqWrWq5s6dq6SkJH333Xfq2bOndUXJrsmTJ2vOnDnasWOHdu3apU8//VQhISHW1S0AAHAa4Qm4AS1evFihoaGKiIhQ27ZttXLlSr3++uv6/PPPL/lqio+Pj9asWaNKlSqpa9euqlmzph5++GFlZWUVekWpqOud680339R9992nQYMG6ZZbblH//v2VmZkpSQoLC9O3336r3NxcxcbGqnbt2ho+fLicTqfLc0dna9CggT755BPNmTNHtWvX1rPPPqvnnntOffv2vajzUhQOh0OLFi1S8+bN9fDDD6t69ep64IEHtG/fPgUHB0s6HXzKli2rZs2aqWPHjoqNjVWDBg0uaj9+fn6aOHGiGjVqpMaNG2vfvn1atGjRec8JAAA3Kocp6s37AAAAAHAD4c+KAAAAAGAD4QkAAAAAbCA8AQAAAIANhCcAAAAAsIHwBAAAAAA2EJ4AAAAAwAbCEwAAAADYQHgCAAAAABsITwAAAABgA+EJAAAAAGwgPAEAAACADYQnAAAAALDh/wA0ZtbT9onDeQAAAABJRU5ErkJggg==", "text/plain": [ "
    " ] @@ -202,7 +234,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 242, "metadata": {}, "outputs": [], "source": [ @@ -219,12 +251,12 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 243, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAGwCAYAAABRgJRuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACY4ElEQVR4nO29e3wbZ53v/9iSpVycuk0cS5ZGE0VNnaQ2CTb2kqb8aFoWKLtnKXBggUIoL1heUO4Lh/ul5ZwtvXHpdUmTptk9TpMCp1bsnBdUtd0mLK5lt0t7qERpoWltpQVC6ZEboBeSfn9/5DzDM898n7norvH3/XrNq7UszTwzmvj7me+1BQCAEQRBEARBNDmt9V4AQRAEQRBEJSBRQxAEQRCELyBRQxAEQRCELyBRQxAEQRCELyBRQxAEQRCELyBRQxAEQRCELyBRQxAEQRCELwjWewG15OWXX2ZPP/00W7FiBWtpaan3cgiCIAiCcAEAsOPHj7NYLMZaW9X+mEUlap5++mmWSCTqvQyCIAiCIEqgUCgwTdOUv19UombFihWMsVMX5bTTTqvzagiCIAiCcMNzzz3HEomEYcdVLCpRw0NOp512GokagiAIgmgynFJHKFGYIAiCIAhf0DSi5nvf+x7btGmT4WU555xz2I9//ON6L4sgCIIgiAahaUSNpmnsqquuYg888AB74IEH2AUXXMAuuugils/n6700giAIgiAagBYAgHovolRWrlzJrr32WvbBD37Q1fufe+451tHRwRYWFiinhiAIos6cPHmS/eUvf6n3MogGoK2tjQUCAeXv3drvpkwUPnnyJPvhD3/I/vSnP7FzzjlH+b4XX3yRvfjii8bPzz33XC2WRxAEQdgAAOy3v/0tKxaL9V4K0UCcfvrpLBqNltVHrqlEzcMPP8zOOecc9sILL7D29naWTqfZ2WefrXz/lVdeyb7xjW/UcIUEQRCEE1zQdHV1sWXLllEz1EUOALA///nP7NixY4wxxrq7u0veV1OFn1566SU2Pz/PisUiu/POO9mtt97KDh8+rBQ2mKcmkUhQ+IkgCKJOnDx5kj322GOsq6uLrVq1qt7LIRqIP/zhD+zYsWOsp6fHEoryZfgpFAqxdevWMcYYGxwcZPfffz+7/vrr2S233IK+PxwOs3A4XMslEgRBEDbwHJply5bVeSVEo8Hvib/85S+2+TV2NE31EwYAmDwxBEEQRHNAISdCphL3RNN4ar785S+zN73pTSyRSLDjx4+zO+64gx06dIjddddddVnPwsICO378ODqD4ujRo2zFihWso6OjDisjCIIgiMVJ04ia3/3ud2z79u3sN7/5Devo6GCbNm1id911F3v9619f87UsLCywCy+8kB07dowdOnTINCSzUCiwbdu2sa6uLnbXXXeRsCEIgiCIGtE04afdu3ezJ598kr344ovs2LFjbGJioi6ChjHGjh8/zo4dO8aOHDnCtm3bxgqFAmPsr4LmyJEj7NixY+z48eN1WR9BEARRP5LJJLvuuuvqvYyKcejQIdbS0tIUJfhNI2oaCU3T2KFDh1gqlTKEzX333WcImlQqxQ4dOmQ7Hp0gCIIojYWFBXb06FH0d0ePHmULCwtVO3ahUGAf/OAHWSwWY6FQiK1Zs4Z96lOfYn/4wx+qdsxasm3bNvbpT3/a9NrWrVuNKEmjQ6KmRBKJhEnYnHvuuSZBI4akCIIgiMrAw//nnXee4SXnFAoFdt5557ELL7ywKsLmyJEjbHBwkD322GNs//797Ne//jXbsWMHm5ycZOeccw579tlnK35MN5w8eZK9/PLLVdt/KBQquylerSBRUwaJRIINDw+bXhseHiZBQxAEUSXqGf7/2Mc+xkKhELv77rvZeeedx3RdZ29605vYxMQEe+qpp9hXvvIV0zovvvhi1t7ezmKxGLvxxhtN+7r88suZrussHA6zWCzGPvnJTxq/e+mll9jnP/95Fo/H2fLly9mrX/1qdujQIeP3//Zv/8ZOP/109r//9/9mZ599NguHw2zXrl1syZIllhDRJz/5SXbeeecxxk71gXn3u9/NNE1jy5YtY694xSvY/v37jfe+//3vZ4cPH2bXX389a2lpYS0tLezJJ59Ew0933nkn6+3tZeFwmCWTSfbtb3/bdNxkMsm++c1vsg984ANsxYoVTNd1tnPnzlIvvXtgEbGwsACMMVhYWKjI/ubn5yGVSgFjzNhSqRTMz89XZP8EQRB+4/nnn4df/OIX8Pzzz5e8D/FvbyqVgqmpKdPP1fgb/Ic//AFaWlrgm9/8Jvr7D33oQ3DGGWfAyy+/DGvWrIEVK1bAlVdeCY8++ijccMMNEAgE4O677wYAgB/+8Idw2mmnwY9+9COYm5uDmZkZ2Llzp7Gviy++GLZu3Qo/+clP4Ne//jVce+21EA6H4bHHHgMAgD179kBbWxts3boVpqam4Je//CX88Y9/hEgkArfeequxnxMnTkAkEoFbbrkFAACOHj0K1157LTz44IPw+OOPG+vKZrMAAFAsFuGcc86BD33oQ/Cb3/wGfvOb38CJEyfg3nvvBcYY/N//+38BAOCBBx6A1tZW+O///b/Do48+Cnv27IGlS5fCnj17jGOvWbMGVq5cCTfffDP86le/giuvvBJaW1vhkUceUV5ju3vDrf0mUVMi9fhHRRAE0exUQtQA1P6hMpvNAmMM0uk0+vvvfOc7wBiD3/3ud7BmzRq48MILTb9/5zvfCW9605sAAODb3/429PT0wEsvvWTZz69//WtoaWmBp556yvT66173OvjSl74EAKdEDWMMHnroIdN7PvnJT8IFF1xg/JzJZCAUCsGzzz6rPK+/+7u/g89+9rPGz+eddx586lOfMr1HFjUXX3wxvP71rze953Of+xycffbZxs9r1qyB9773vcbPL7/8MnR1dcH3vvc95VoqIWoo/FQCR48etSQFb9261ZI8rEpka2bqmaBHEATBabTwP/y/iUM870QetnzOOeewRx55hDHG2Dve8Q72/PPPs1QqxT70oQ+xdDrNTpw4wRhj7Gc/+xkDANbT08Pa29uN7fDhw+zxxx839hcKhdimTZtMx3jPe97DDh06xJ5++mnGGGO33347+7u/+zt2xhlnMMZO5d5cccUVbNOmTWzVqlWsvb2d3X333Wx+ft7TuT7yyCPs3HPPNb127rnnsl/96lfs5MmTxmvi+lpaWlg0GjXmO1ULEjUlsGLFCtbV1WVJChaTh7u6utiKFSvqvNLKUs8EPYIgCJFCocC2b99uem379u2Wv02VYt26daylpYX94he/QH//y1/+kp1xxhmss7NTuQ8ueBKJBHv00UfZzTffzJYuXco++tGPste+9rXsL3/5C3v55ZdZIBBg//mf/8keeughY3vkkUfY9ddfb+xr6dKllsTdv/mbv2Fnnnkmu+OOO9jzzz/P0uk0e+9732v8/tvf/jb77ne/yz7/+c+ze+65hz300EPsjW98I3vppZc8XQsAsBwbkDGSbW1tlvOvZkIzYyRqSqKjo4Pddddd7PDhw5angkQiwQ4fPuzLxnvUn4cgiEZA/JuTSqXY1NSUyUteDWGzatUq9vrXv57967/+K3v++edNv/vtb3/Lbr/9dvbOd77TMPbZbNb0nmw2yzZs2GD8vHTpUvbmN7+Z3XDDDezQoUNsenqaPfzww6y/v5+dPHmSHTt2jK1bt860RaNRx3VefPHF7Pbbb2cHDx5kra2t7O///u+N3/3Hf/wHu+iii9h73/tetnnzZpZKpdivfvUr0+dDoZDJ24Jx9tlns5/+9Kem1+677z50EGWtIVFTIh0dHco+NJqm+U7QMEb9eQiCqD/1DP/fdNNN7MUXX2RvfOMb2U9+8hNWKBSMzvbxeJxdccUVxnunpqbYNddcwx577DF28803sx/+8IfsU5/6FGPsVPXS7t27WS6XY0eOHGHDw8Ns6dKlbM2aNaynp4e95z3vYe973/vYyMgIe+KJJ9j999/Prr76avajH/3IcY3vec972M9+9jN2xRVXsLe//e1syZIlxu/WrVvHxsfH2X333cceeeQR9uEPf5j99re/NX0+mUyymZkZ9uSTT7JnnnkG9ax89rOfZZOTk+x//I//wR577DH27//+7+ymm25i/+2//bdSL23lsM248RmVrn5arFDVF0EQpVJuonCxWIQtW7agf3P436YtW7ZAsVisxHItPPnkk/D+978fotEotLW1QSKRgE984hPwzDPPGO9Zs2YNfOMb34B//Md/hGXLlkEkEoHrrrvO+H06nYZXv/rVcNppp8Hy5cthy5YtMDExYfz+pZdegq9//euQTCahra0NotEovPWtb4Wf//znAHAqUbijo0O5xqGhIWCMwT333GN6/Q9/+ANcdNFF0N7eDl1dXfDVr34V3ve+98FFF11kvOfRRx+FLVu2wNKlS4ExBk888YQlURgA4H/9r/8FZ599NrS1tYGu63DttdeajrVmzRr47ne/a3pt8+bNcNlllynXXYlE4RYAJBDmU5577jnW0dHBFhYW2GmnnVbv5TQ19913nylRbGpqim3durWqx6QhogTR/LzwwgvsiSeeYGvXrjV5EbxAfwv8id294dZ+U/iJ8EytE/QYoyRlgiD+ymIM/xPuIFFDeKIeCXqMUZIyQRAE4QyJGsI19UzQoyRlgiAIwolgvRdANA+8Pw9jDO3Ps23btqr25xGPw4eIMsZoiChBNCGLKJ2TcEkl7gkSNYRreH8eLEGP9+epdoIe7yIqJinTEFGCaB54Q7Y///nPbOnSpXVeDdFI/PnPf2aMWZv2eYFETR1o5sz9jo4O5dpqEfpRJSmTp4YgmoNAIMBOP/10o13+smXLLN1picUFALA///nP7NixY+z0008vq4EfiZoaw6t4jh07ZjHEPOm1q6vLlx2Jy0VOUh4eHmbbt283cmxI2BBEc8A741Z7DhDRXJx++umuuibbQaKmxshVPNwQiwabv49EzSkWFhbYY489xt71rneZkoITiQTbv38/e+c732lcz8OHD1OycA1oZm8jUX9aWlpYd3c36+rqYn/5y1/qvRyiAWhra6vIiAUSNTWGV/FwAbNt2zaTx6HSVTzNbny4Z+u3v/0tW7lypUnQFAoF9u53v9uYQNtoQ0Sb/dqrIG8jUSkCgUDdZwUR/oJKuuuAOM2bV/HIHohK4IeGddyz9eSTT7Jnn32W7d+/3+LZWlhYYD/4wQ8ayoj64dqroJ5BBEE0LLZDFHxGo81+mpqaMs1Pmpqaquj+C4WCMaNJnJMizm5KpVJQKBQqetxKI693amoKPa9Gwi/XXkUzficEQTQvbu03iZo6UauhkOUYn2KxqDS6hUKhogPjnI6Vy+Waboim3w0/DTYlCKJWkKhBaBRRU2tjV4rxqeUkXLfHymQyJXm2ainOZPxu+KvtbSQIggAgUYPSCKKmXmEJr8anlut0cyxd10HXdc/ioJbiTIVfDb/fBRtBEI0DiRqERhA19TCypRqfWnqU7I4lChqv66h3botfDb/fQ2sEQTQWJGoQGkHUANQ2HFKu8amlUcaOJQuaUkRJvQywXw1/vYUiQRCLDxI1CI0iampFpYxPLcMn8rEymUxFPFu19pj42fA3QkiPIIjFBYkahMUmaiphfOrtqUmlUpDL5Sri2aqlOPO74a9n8jVBEIsPEjUIi03UAJRnfBolp6YSx6pHbgsZfoIgiMpAogbBL6KmFsay0aqfyjmWX3NbCIIgFgtu7TeNSWgyatV+f8WKFayrq8syukEc8VCpWUvVPNbRo0dNk70PHTrEtm7dahpTsW3bNnb06FHHfS0sLCjfd/To0aYceUAQBOEnaKBlk1GrKd8dHR3srrvuQgcyJhIJdvjw4YoNZKzmsbhgYoyhgokPX3QSTJUe4ujXYZcEQRB1pUaeo4bAL+Enr+EUr+Eqv+WCVOJ8Khki83sSMUEQRKWhnBoEv4gaAPeJr14N6GIxuKUInUrl5vi53JsgCKIakKhB8JOoAXBXouzVgC4Gg1uOcKtUFRUlLxMEQbiHRA2Cn0SNF+Pq1YD63eCWK9wq1e/GryMUCIIgKg2JGgS/iJpSRIdXA+p3g1uqcKv0dfHrsEuCIIhKQqIGwQ+iphwvg1cD6neDW47Qq4QHy+/CkSAIolKQqEHwg6gpNR+kmTw1tay+civcKp1r5PcQH0EQRCUhUYPgB1ED4N3oN1NOTS2rr7wIt0qua7EkY/upLQBBEPWFRA1CLUVNo/xRb7bqp1odvxThVqnv1O9l834/P4Igag+JGoRaiZpG+qPejH1qqu0pqrdwA2gc0VsNGuH6EgThL0jUINRK1FT7j3q1OwQ3gsGtZk5PIwg3v0M5QwRBVBISNQi1DD9V6496oxlkOwGUz+chn8+jv3MjjqpZfVWKcGsEsddMUHUXQRCVwnei5pvf/CYMDg5Ce3s7rF69Gi666CL45S9/6WkftU4UrsYf9UZy7dsJrFwuB+FwGMLhMORyOdPv3IivRjOIjSYmmwW/twUgCKI2+E7UvPGNb4Q9e/ZALpeDhx56CP7+7/8edF2HP/7xj673UY/qp2r8UW8U176dwNJ13ThnXdc9ia9GOD/ZKyOeq67rhlCrV0ixGWg0YUoQRPPiO1Ejc+zYMWCMweHDh11/xg+eGq/7rraxtBMguq4b4satOGkET5TKKyOKtXA4DJlMxpchxUrQCMKUIAj/4HtR86tf/QoYY/Dwww8r3/PCCy/AwsKCsRUKhabPqRFx8gKVayzdCiI7geVV2DWCgceEVbFYhJmZGZMHSvREySG2co8H0LzVQn47H4Ig6o+vRc3LL78M//AP/wCvec1rbN932WWXWQyQH6qf5H2pxEI56/AqLuwEltsQHBdRmJgSX69FEq94jZLJJPT29kIwGATGGMRiMdP5xGKxsoWWGxHcLCGqRhCmBEH4C1+Lmo9+9KOwZs0aR1FQL09Ntf+oe/ECleox8iKIKuGpKeeaVcsjJecGMcYgEAhAPB5HvTWVbAgoX6tmEwrNIsAIgmgOfCtqPv7xj4OmaXDkyBHPn/VDR+FSvC+l5va4EUSVyqkpx6tUTY+U7JURvTPi72KxmDJHyMt3rfJqUUiHIIjFjO9Ezcsvvwwf+9jHIBaLwWOPPVbSPvww+6nUJ/ZSq7DsBFGlq5/KyUOqhkcKy5+RN03TIBQKod4arx4UJ/FJybcEQSxWfCdqLr30Uujo6IBDhw7Bb37zG2P785//7HoffhA1AOUNtPTiqeGoBFE1+tSUs9ZKeqRkUZbJZCAcDltETTqdNlVElVrq7VawUJk0QRCLEd+JGtWT8p49e1zvwy+ixgvlPt07GdFqdBQup7dPJT1SspdpYmICAoGA5Vpks1nPpevytfASWqKGdgRBLDZ8J2oqwWITNeXmYdQj3FFLTw0XZHNzczA7O2sRC9FoFMbGxmBubs6072AwCL29vZBMJk3CptR1ix6vXC6nDGHl83nI5XLkqSEIYtFBogbBb6LGKQw1NzdXcsVMPRJTa5lTw4WEruuwfPlyCAaDlqTgYDAIgUAAli1bZvwulUrBzMwMFItFU95NKpWCdDpdsgelWCxCPp9Hv69CoQC5XA50XTdCYFhSdiUSlQmCIBoREjUIfhI1bhOG5+bmSqrCqnUJca2rn8TPiFskEkErntra2izCgYuacDgMmzZtMjw3pXpQSkm85rlLlUhUJgiCaFRI1CD4SdTUwpNSy14j9ehT47bCiefRqKq4YrEYJBKJioTp7DxO4XDYIqwKhUJFEpUJgiAaGRI1CH4SNQCNX+LrVRSVIqLK6UIMYPZ0yBsPSfX395vyZ+Swj6ZptuIymUx6EhVYbhAfxYCdIw9NNep9QBAEUS4kahD8JmoAGrfEtxbhq0odI5PJoKJmx44dhiBSXefp6Wlob2+HYDAIY2NjpmNls1kIBoPQ3t4Oc3Nzns5NTlrGmvuJ50gJxARB+BkSNQh+FDUA9n1kqhU+ctp3Pp+venisEiE40cuBeWrGx8eN98riZ2pqCgqFguHFCQaDMDAwYBFBXj01qjXpum5KUpbP0U2pNyUOEwTRjJCoQfCjqFF5EHK5XNU8JSoPCZ9kjXkPeAO7SodFygnB2YWexG18fBzNv9E0Debn5w2PDBc26XS65PMU16Rpmqm5H99/b2+vJeSlClnJic2UOEwQRDNCogbBb6LGzqDLc5cq6SnBPCTFYhEGBgYM4873jYmBZDIJMzMzyn2XM1HbbehFTLAVBcPo6Cg6xJJXROm6DpFIxPhdNBo13s/PvdTwj7ymUCgEuq5DNptFK7LC4TBMT08bQpKvT3wvF16UOEwQRDNDogbBT6LGTejFy0BJr8hGMp1Om7wV2WzWeJ9skHt7eyvuQfLaZZd7m2KxGLS0tBh5K/KIBFmkZLNZw0sie0VGRkY8rUG1Jl3XTZPAI5EIOhm8q6sLNmzYYBKSXMCI17y7uxsVuARBEM0CiRoEP4kat0my1UwgxTwkooFVCQTZCMv78upJcOupkb1APC9oenraIrx0XYfx8XGIRqPGmkdGRoz8GXlcwvDwsOVcS7nOfE3z8/MW8SQfMxAIGMM0ZSGJXXcSNARBNCskahD8JGoA3CcCV3NWkLzvkZERtKmdrusmT5EsfirR1yWZTEJvby8qmnjyLeYFKhQKaBIw37/cVE8WF3LoKRaLVcQzIncoFj03fA3BYNAQXvK1lIUazYgiCKJZIVGD4DdR44Zqlnyr9i2HYcRyZHmGUinr4mJODsHNzMxY8ltSqRRMTk6akm9nZ2dN5yCOH8DWIgs3MadGFBjiuZabw4JdW/EY4jnKeTT8tUp4jgiCIBoBEjUIi03UVLM5n92+ZbGiqsLp7e317EmQhz+KIThZoMiVQoz9NflWfL/ogcEGVcqeGsYYxONxZdk1FzCl5giJ11bTNMv15MKGD9EcGBgwvDWy8KFmfARB+AESNQiLSdRUc4yCat9yafPevXuVYZiZmZmSZiXJx+ZddlUJ0qLYEJNtY7GY6WfubeEeH1mgYUJt586dFg+OLGC8VnOJ5yeex8qVK03Ham1thWw2CzMzM2hlFP+8XV8bgiCIZoFEDcJiEjXV7OiL7Vs0xsFgEPr7+5XGtFwPkpvPY3lEWAJtW1ubSdDwY8/MzBhCJplMGl4RUQBhIoLPXioVsQKKrxUTaXwdq1evtggzUbiJeUT8ug0ODkI+n0ePT835CIJoREjUICwmUQNQ247CotDh3gGOKKIq1WnYLlfI7ney2FF5iYrFojHzCVsj33hVVCXDO8ViEfL5vEXcpFIp2LlzJ7S2tqLnwAXQ+Pi4yXsjhsTy+TwMDQ1VRewSBEFUCxI1CItN1NQaNyKqkh4krGJJroaSq4FUPWgymYxpnarzkSuSRkZGTGsXRVm5ojKfz6PhOzkRWxY1Yim9OLm7WCzC7OwsKsDEcCCFpwiCaDRI1CCQqGkMKuFBwkYciF4NMQSWy+WMfi5yyIlvoVAIxsfHbUUVVt6NeZu2bNkCc3NzSvHmVF4uiip5H26qorBwmLgvMZTGq9XEUFupnqZqegYJgljckKhBIFHT/PD5UqLHRfTAhEIhUzl3Pp+HgwcPmhJ9efimtbXVFMoRc2vk0JqYPJxMJk3znUQhIHpoMI+IKMbEsBAA7qkShYKcDC2WljPGLD+L1WTyekRhI4bSVOMr3Hwv1Z7KThDE4oVEDUIjiBp6mi0dnuci9mfhYiYWi5m8L9xLsWXLFkgmk9DX12f6vfj/orCRDbt8TFW1F5/ErRIhqdSpURKJRMK0Rrc5RaqqKKxHjSpPSD7Gjh070FBaKVSz2o4gCIJEDUK9RQ09zZZHoVAwwj98LABW0RQKhYxSb9Gbsm/fPtup3GLICjtmIBCAsbExALA2Eezr64OHH37YVbhI0zTPM7mwqij+XlFcyZ4rO2FjJ4LKHSyKnRf/TlTfLd33BEGoIFGDUG9RQ0+z5SPmtXDDKXsqeNIvf794bb/zne8oRU06nbYYVjncJVc7JZNJGBsbg2QyCQMDA6a1qRJ70+l0SZ2exaoo/l7xnuJiSZ75Jd9T8nq++c1voqGpUgS26rzkRonYZ0jQEwShgkQNQr1FDUB1u/xWg0YMl9l5G7x6J+w+J3rWxsbGLA34uIeGCxld1w2Bw/cnJuHKYSe5vBwTVRjidyJ7/8TvBBMLYv8d8TxGR0dNnqdyBDbWI4gEPUEQ5UCiBqERRA1AdecxVZJKhcuchNHc3Jxn4SQbzlgsZisQZe9EZ2enbbgGK3+WOwiLAiAcDhv74f1t5PfecsstRvgLKy8PBoMwMDDgWSi6FZ6ilysYDMLOnTtNHZPFn0utgnLbP6gZBD1BEI0DiRqERhE1ANWdnF0pKvF07SSMkskktLe3o0ZUJZywPBpxnpO8Nsw7wZh5fpOYq5JMJqG/v99SJYTtg39WbnZ3/fXXm94TiURgdnbWsu5YLGby5vBE5Up7weREY54bJOfjiNfSK25ES7MIeoxG9FoSxGKBRA1Co4iaev9h9/LHudynazfCSKxmwn6v67rR1l98XfSOYIaT55aI3onh4WFTSbWYP8LzUOTcmNHRUaWgYexUToooVrq7uy3v1zQNZmZmYGxszPT66tWrjRlUclWXKOYq0QGaV4JxTxKv8pK9WGeddRbMzc152r+qUaAoQLnIxAR9owsGr17LRj8fgmg2SNQgNIKoqbcLvpSQUrkizOmcDxw4YDTH4x1x+e/j8ThomoaOWMCGWXLDWSgUTO8XjThvfsffPzs7axEPmOhy2uShmYydKhfnE7SDwaBlmjbfQqEQbNiwAYLBoHEt+LlUKpGWh9REkSfm0ohbX1+f7bHkvJ6hoSEIh8OmIZr8u+eT0wcHB00JzHzjSdaNnETsxWtJVY4EUXlI1CDUW9Q0QrJkqWsoN1xmVxXT39+PDomMx+PG68lk0lL5g+1ffloux7hgHYT5FgwG4fOf/7zpteuvv97SAI+HmMTzi0ajsGvXLtN7WlpaTJ/lXqtSxxfYeQrGxsYs1xtLHlY14sOSk0URilVg6boOExMTSnGL9QFqtCRitw8kjfDvnCD8BokahHqLmkZ5gvPqLapUuMypKkY2tPxn0cB6deuXGwbA5iyJ+S9O3hvsPdFoVNkwTxQ1pY4vcHOfrV+/3vG8VIYXM9pynpMcFhQ7MjuFIfk9iZXHe/nuqoHbfwv19sgShN8gUYNQb1ED0Dix9lr/cXaqilENmgwEApDNZo39lHr9Svmcqvz5hhtusFQNyd2KxV424rZy5UrTz5FIxCLmZMHjNL5APjc5KZjPfxLDbslkEl1fKuWuTw12X2DfIf+OZaGFdV7GqsZ4k0Xs2PUK4bj1WtY7d44g/ASJGoRGEDWNhNMf50q50eX3ZzIZ01N8NptVippIJGIct1RPV6l5RGLuycjICGpwBwYGIJ/PW4SIpmloCbgsYEZGRiyfPeOMMyzvUaE6N1EohsNhGBkZsSRIY6G14eFh47t3EgyY0ZbPRbynuJDB1sxfxzxjjRTC8SpUmqHKkSCaARI1CCRq/oqbP86VCJfJwoh3lpUnajNm7h0jbnzwY6kiy+3n8vm85Tg8wbhQKEAulwNN00yCK5fLQbFYhIGBAdtwVE9PDxpy4p+R827svhdRcNidm0ooiqXsWMhP9ozYgfULcjL4qjVj5eVySKqeIZx6hW0JgiBRg9JMoqaaYSovf5zLXYddUqmu66BpGrS3t0NXV5fSqxEOh40QSqnhMKfPiW385f/n+SA8+VXTNKNCKZlMmvI/sB41O3fuNIV+uCASQ1jZbNbi2WltbTWqqcRQnSwm7c5NFhliMrI4yFMMgwUCAZicnPR0H8ki1IvBT6VSll49YvhOFjr1EAZeBTXl1BBEZSFRg9AsoqaaCcX1qMyQhZF4LF3X4aqrrrKIAP57bmhVBsOLobP7HOZRyufzlgnd3JMzPj6OGlssrCNP1dZ1HQYHB2Hz5s0mT40qqZh7h7gIlNfCS9CxhoTya5qmKZvtZbNZk5DkvYH4d8g9WfK1jMViJlFq1wjR6fsQc2hUoqkeIRwv/yap+okgKg+JGoRmETXV/KPYiBVY4jY6Omr5PTY+oNRcBbvPydc3nU5bvCl2axfFWDKZhHQ6bfwcCoUgFosZAqpYLBrDMmOxmOH54V4Ksd9NW1sbBAIBaGtrM61F/L5yuZylBw730vBz4WJLDvPxnJ35+XnjuKKoKRaLMDg4aOpDI4rSaDQKLS0tEAqFLKLL6Z6Svw85fwgLSdXL0+HWa9ko/8YIwk+QqEFoFlEDUF33daNUYMkGbdeuXabfi1UxYofbanhq7N6jyutQ5dCo8kQCgYClikmssOKCga8Dy4mRuw7z/+/u7kbXInZNHhgYMOUEifsUwz1ixRTAqXtCXIumadDf328ZDxGPx02hOqduyE7fh/h7HuZrlhBOo/wbIwi/QKIGoZlEDYC/Ew3dntvs7KxS0FQyp0b8HOY9sBM6okdH5W3im9hvRq6wkgXP/Pw8mhMjvhaLxSzviUajhudHnm/F3xsOh2F4eNi1F0QWWd3d3WizQADvlVPY9+Gmr02zhnBI8BCEd0jUIDSbqAHwZ0mo/ATe29tr21FWzFXAGrLJ++OGgRsOOZzH2/hjBlIltpxKjUWPTDAYNIWeUqkUjI2NmdYuGnFxhIN8nTDPimoTBYymaSbRITbDEz0x8nml02nb7w3zHqkGYKqMt+j5sfse+VBRP4VwKDRFEKVBogah2USNHz01mMCQwznYk3qhUIC5uTlob29HG7JxUdHe3g4PP/ywpdEb/1luLCfnpai8B1ipsbyGsbExW8+Hl+9TLB/n4SG7LsQ8Xwc7RjgchunpaYsxdfIkYcgiWyW05+bmlPOcJiYmIBwOm6raOOL3MTc35zuPBiURE0RpkKhBaCZRU+uS0Fq5xLEnVTkpuLe3F/XIqDw1cqfc2dlZS34IT8rFDIc8/NIuJ6anp8fWq9TT02My+HLiq+wZwQRBPp83GuWJOTRuRA0AQCaTQdfAB1piXioxkdhtCErlqSkWi5aqMex6JhIJpSenGQWLW6jcmyC8Q6IGoVlETa2f5mrtEscElFsvhnwNMpmMqVOueK3EjrqZTMbWcKi63Ipiq6+vz5QDY+dtwjw6bit5RFETi8Usk7/FTWyep2kajI+PG/k0sugQE6+dwnjy/SULGjmXR86pwbxvci8au9EPfsePXliCqCYkahCaRdTUWmQ0iku8nJk6dqLGreGQxZb4PUxMTEA+n0e9SolEwtGA79y5U9lcLpU61RdHPLbofRKb5IlihosKUdiI7xXfI1ZLJZNJZWgIu7/k6idRJMmvY31s3ITu3OC3BFs/5ssRRLUgUYPQLKIGoPZ/wJ1c4rLRrfR6vD65qtrzy91ssVlEXq4tbzo3ODiINpWzE02qtv9YvxveA0YuL1clCl911VWGqJA9M6KQkMNWPEyFDcFUlWDLfWrkNeq6DuFwGIaGhoz+O6qka8b+Ol/KCyqhL4YVZaGPnUejiCLy1BCEN0jUIDSTqKkHqj+04tiAaniOvOYYYOsURxeIngPZWxOPx2HTpk2ezkUMB3GjLouqlpYWSCQSln3KOTRyjo0oCsTzFRvzYaKGsVPN/lTeHKwMvaWlBTRNK+k7lDsKi/CcJC5oxHsFqxrjCcKiyHASWVjOkzxzS/QmyufUSFVHlFNDEN4hUYNAosYZzCVezfBUJWfqyMMZeUmzGPZRPRnbnYscfsF6wwQCARgbGzOdm9uncT4sU0xuFhOSxa2jo8PyGhae4iEw8TXeoK+aIUbx+1SNfuAilIfAZNGMVaRh1WluOj7zc2qUEGujrIMgmg1fiprDhw/Df/kv/8X442zXUwODRI09dka4Wk+XlZqpo5pIzYWOHIbxMv2Ze03cHKPUwZv8GPLcKPEYqinmfJNDb9iMJ3GMAdbwDvNUeA3bzM+bmwYGAgFTzxxZZGKzseT/54Yeu0dV36Xc/0f8rK7rtsnj1QpVNZLHiCCaCV+Kmh/96Efwla98Be68804SNRXGjRGuVh5AuTN1RFETCoUsxj8SiVgM5cDAgEVAyPvlvXH4Mfft24eKjd7eXkMshMNhmJyc9PQ0Lp7Xrl27bIWLauvs7DRCMmNjY4bQkhsBhkIh5SBOzKCWYoQLhQKaCySKFLmaDMv9wRr0Abjr+Kxq3ocJYEzQVFN4NFJuD0E0C74UNSJuRM0LL7wACwsLxlYoFBa1qCmnwys3wvWq2OBrx3Iv5E65WIM48dy4WNm7dy96LmI4SBQ/8sBI0QCL4wey2awno4iVQHvdAoEAjI+PQ39/vykMt3nzZigWi6YJ3PImz30Sp3OXEi7hokC+XlNTU6ay8rm5Oduka0xwqIQ11hlZtW5sXeL5qnoWOYWISKwQRPUgUQMAl112GfqHcjGKGrunz1wu56rDq5jToDI69V67nZHkxktOMBU9Cdls1pK4axd64oJCFFX8GF4qrMRuxMFgEL72ta95FjbBYBBWr15t/ByNRmFyctL0vWH5N3IYSPZClBJ6FEvSRe/JzMyM5fxVIlQWHHbrsPM+ie/HPEiyJ7K/vx+mp6c9hw+r5d0hsUQQJGoAgDw1Im6euMU+I/Jn7UYIVFvYuF272AQP68DLK5fEydjBYNCU7yF6M/j7C4WCbRUS/5zcTM6NMZK773rx1Fx11VUW4SCun3uQxMotlbcpGAwa54h5IdyEHrFSbn6viL18xB41dvlQ4jFU94DTzC1R2GDfGW9sKIfGBgYGPIn4aiUAUw4OQZyCRA3CYs+pKTXZtxEqNpzWLgsabDI1N/Si8eLvEYUNfx8/T7GkW7W1tbWZwjZujVE+nzd1Kd65c6drURMMBmH9+vUWIaRpmkW8iOcdj8dNHh1M+GHYhR75+WqaZhJH3AMiJ2nPzMxYBI0syMSQKNZWQA7b9fT0oCMgrrnmGtO6Ozs7jWPJScz89VLCrdVIpm+Ef3sE0QiQqEFY7KIGoLSmX43ytGi3dr5GuWKGG1UxpMSbyNk9xWcyGeO4c3NzsHHjRlsvSjgchomJCbQLr5Mxmp+ft4xf8CJsrr76atNrV1xxBbS1tVnOh1+fWCxm+T1jp5KI5fCjm2vPz1dMvMYGbMojHeQKKVmQygJJ7JMjJnHrug5Lly5Fy7rXr1+PCrfR0VHltZbDUV7+rVQjmb5alYcE0UyQqEEgUXOKUpJ9GyWu7+QtyOfzlgndvE8JDycMDQ0ZBlIe/oiJpYGBAcPohkIhZcItD1twb4Gcm2NnjLDuw06bWOHk9N5UKgUHDhxAS6v51tXVZXSOFr9T0agmk0nlechhvZGREYtYi8fjlrwWsWcNFxPJZBLa29tB0zRLno8opOfm5uDgwYOm4/J+Qbt37zYd5xvf+IappB3zimGCJplMKhOPsXu/Gsn01ao8JIhmwZei5vjx4/Dggw/Cgw8+CIwx+M53vgMPPvggzM3Nufo8iZrm++Moiils7clkEk3a5MZGFjjilGpsxIAc9tizZ48hHlpbW01hC1XS7djYGBoKU11vMcQgbldffbWybw1jp0rVRbHg1MfGzRYKhYxrwMNjYohHFG2yx0lOeJY3/l3JRn/v3r0W0Tw5OWmE0OT+P3LvGgCrKPzCF75gOsatt95qJAHbecVGRkZM34c4J0tOPBbHM8zNzSn76IjrLweaFUUsZnwpau699170j+Ull1zi6vOLXdQ0mxtbFCWyQREHRmLCBgAsxon3LeEVTvJ9xEMyctLokiVLTO9RDZBkjEFPT49lAraTMcrn87Bp0yZlBY+u66Y1cEHD/z8QCKDhJFGEyZv4uuo9vLxbTGTGhlb29/fDxMQEDA0NKT0gjDHo6+tDq6Lk5OFisQh9fX0QCAQM0cnvV3Hy+uTkpOk6jo2NocflgobvR640k9cyPj5u3HdirpZ4H4riiN9bcuhTXm85wqbZHkYIotL4UtSUy2IWNc2YcIj1b5EFDjb3RwTL6RCNuCgGWltbjWqYeDxuvC8ej1sSiZ02/nQu5stgxggLU2UyGZNxvO2229BkYFVejOjB6erqUq4xEomYrsXKlSst5yAaZv4Z0ZDOzMwYa+ECROWpkSvNxPeJwkYUJ4FAAK3YamtrQ5OaL730UtP7PvKRjygTyu2mqk9MTChHc+zdu9cUxpJL/vl8LTkRWlVd6ESzPYwQRDUgUYOwmEVNoyT7eiWXy5mMpdwojpcs8wnRGJiw4AYay+8Qy6C5gcrlcqiI4NsZZ5xh+jkWi6GhDlmcyUaPV/nI3iJMLMheolgsZuTEzMzMGONE5E3lmRGFkXxd5MokzGgHg0HHfYv7wDw2u3btspynfN1Fb5l4P996663K4/EKKtnzxD9fKBRgfHwc9UjxewgLK/Fji/dpKBQyjWBQ9f9xQzM+jBBENSBRg7CYRQ1A4yT7ekEeJikaFLFsWyynxkin00qDpxINvEpK7m3jdnPyLvH/hsNh0DTNaEzH3ycOhMSGaGLXROzf4lZgyEMy77zzTsv1ksVGJBKxrMfL9eHdhVU9amSvDiawxOt71VVXmd7z3ve+1/TzddddB4ODg6DrOoyPj8Py5csN7xBfx+DgIOzfvx+CwSC0t7dbcvXkMKJY9j8/P2/b2K/Uf1/N+jBCEJWGRA3CYhc1zYrc54QbFPnp1e7zqtJt0fjIrfb5MUQB1dLSotyH3PMkFAqZhIYq0Xl6eto0p0h8X1tbG7S2thpeADfCBkvW7ezsRBObsQ2r8EqlUraeEE3TlJPFZcEhfm8qYcOvo7wOfv52zQqvueYa9PvmHp9YLGYIELGPkeihSiaTjp4a/nkxHCR/P5VI5m3GhxGCqDQkahBI1DQnKsNn1yhO/KzopseSWIPBIIyOjqLhBZ5jw5g150S1iaEVTdNMBglLGsZCDNg5d3d3W/JLurq6LIYd89AEAgFYu3at7bqvuuoq0/kGAgFTuE/liYnFYkYojfeLka8v/29vb68lkVoWk3zDRBgWlhO3L37xi8rvG+u2jK1TFsryPZTJZCxVc7JAksUbQRDlQaIGgURN8yEaFMxbY2cwZLFg12xPNGjik3d3dzdqwOy2TCZjlBiLYQy7Chbxd7quQyaTsYRfuKehra0NotGoYdztkoFV4gDbdF235OHoug7Dw8O2oaWVK1dahEYqlYJ0Om3pHyOXg4tJzXbrEr8TLmzOPPNM5fcollGPjY0ZYs3pWHbl9mIoyc67xO9N1ZRxgiC8Q6IGgURNcyEaFKzfC3+de0JkN72Yj3Dw4EHHrr28fT/AXwdlMsZg1apVpvfZhaDkteq6DrOzs2gFi2z0xGM6iZS+vj5TYqubz6h+t2LFCtB1Hfr7+2H58uXKEnGnTRQ0qqRc3thvenradAxVDo04U0u8hnZCLhAIQCwWM3JNxAqzTZs2KROoGbOGi1Q5LXbNErkHkZJ5CaJykKhBIFHTXKhGH2D9P1TGp1gswszMDCSTSVi2bJnFkyAKpd7eXnTMgWqTK55OP/10k2HmnXLFsIQcXhJLuWdnZy3eqEAggIa97BJpS9m6urrgjjvuMISf2yRjceNl1uKcplwuZ2pSx7s69/X1mYQWP5dYLGZ6PRgMmvq75HI5SwguEomYwmaiuJBngk1OTtrmJWFeFVksi2IFC7XJAzspmZcgyodEDcJiEjV+SS7M5/PKGUri67Ozs46lr1jOhFjuLSeHik/jgUDAImKcNrlsmc9WkkNNvNw3l8uhBtdJYHgZlyBun/vc50yfiUajtiE68XjYtQiFQjA5OakM2YhTrxOJhNFgT7xe/PwDgYDFw8MnmnPRI04Wj8Vilus0PDxsCT+qhGokEnEVLpLPDcsHkr0yzfTvjSAaFRI1CItF1PipDNTLudjN6xHnC83MzJg8MtzYitcEa/ynEhk7d+60eE0ikQhs2bLFFCIKBALoDKHZ2VmYnp42XrebL6Xa+DE0TXMtvpLJJOzevdt0rEgkAtdee21Jc6g2b96Mzovi3jUuHnmpfC6Xg4mJCUvIjQ8Hlb8X2Xu2e/du27JwUWTIDfKw6imxb5EqXKTqci3ul4+SIAiicpCoQVgsosZvDbu8eJ2wRnuiEcVCIXzGEd/P3Nwc3HPPPYbxkp/G5RlLWNVLMBg0eQowQ8vzaOLxuCkMlcvlbPvqqDZN04ykZjth09HRYRjvYDAIt956KwSDQcdcIXlrbW2FnTt3moSjOOhR9MyI10UOxV133XWm98RiMdM0bvH7nZmZMXmmRkZGLNdeDtdNTU1BPp83rnEgEIC+vj7Ue7NhwwZIJpO2op+HNGXRJgpqSgwmiMpCogZhsYgagMXdWl0WBNyLIifwiuEGPrV7bm4O2tvbjVb58hO+uE9xnAHfp9huX3xd9uRMTU2ZEoPb2tpM3YuxHBF5E8M1co6Nk6dHrDoKBoPwrW99C2688UZPoobn0IyPjxvnIeaxbNmyBYaHhy2fE689lhekqmrjAsdpojnWYyeXy8HmzZtN88J4ArK4v2QyaQw9VeG3hwaCaAZI1CAsJlEDsDiH4GHnLDfFk8ttxcRWedgh/5xsRCORiEXw8Eos2bOza9cutBxdfI1XNE1PT1tKyDGBIk6w5l6XcDhsmeckb2IS7qpVq4yfA4EA9Pb2wumnn+5J2DB2ajYWP5e2tjbjmonzszBhI3u8Vq5caZy73INIDjViuSziucsjNeSkZf5aKR4WP4V3CaJZIFGDsNhEDQDe7M2vyE/Kw8PDtgaeGzH5yXt0dNTWE8CNtjydeXBwECYmJlBRpdqXaNgDgYDF0GPjCGRhxo+/adMmSCQSjmKm1JJtJ2Ejrj0YDJoSenfu3OmYpyNXo3GRKH+vdt4zfjzxvbL3pBJi3y+J+ATRLJCoQVhsomYxeWpEYZJMJmFychK2bNliW/YslnDLhlPO8+DGcmxszPQ0Pjc3B4VCAfL5vCm8kUqljFwVtwIH2zRNg97eXuNzPEyF5QTNzc3B0NCQ0TBPNvjRaNRVHxyvm10ujlji7BQ20nXdlOMSDoctE8udqrN4d2PxuuRyOUOA8u9bFvuZTKZi9yIJHoKoPCRqEBaTqFlsOTU8JCB6T5zyUsRmewDOM6J27NhhvFc2TrOzs6awVTabhWKxCL29vY6iIBAIWMY3DA8PW7wRPNlZPLb4/8ViEQYHB02zjeTjnHnmma47DNtdN7eiZmRkxHR9ZU8UY+auzbKw4RuviJIr0vjMKfk7FROVh4aGYPPmzYZnDvueeb+jcu/BfD6PhqZUVXYEQbiDRA3CYhE1izWRsVgsmvrViF4R2ZDz38nGR36CV3kdRAqFAjz88MOwbNky4728pFyuxMK2zs5OixFPJpOWvBExdIh5A+SSZ7GUvFQBgwkgL/16xO66mMjESqt1XYe9e/ea3sc9MH19fcrwknjt5KZ7WIK4XLXmZpaY3b2HNYpUNVp0+2+PvD4EcQoSNQiLRdQs9kTGmZkZw/C1traiRl1OFlblWjDG4Gtf+5pS2PDP8M7BmCdD/HnFihW2okll6EUjKXqlRE9ToVAwddvt7Ox0nOptJ3rK9eiI11oOA2LzosTrIOf88D5D0WgU2traTJ4VuUkiNjRT7meD5SR5FRwiqpEe5Qinxf7vmCBESNQgLBZRA7C4n/CKxSIMDAwo8zei0Sj09/fDxMSE0ZME66kiGiLRKAeDQXSekyqBlbFTDfU6OjocBYCcqBwIBGDXrl3K44giK5fLuR6+2dLSAj09PbaCplQPj5vPhUIhGB8fd0yq5nOc5N9Fo1EjpKO65uJQS3595JwiUfSUKxLkTtGyoPTqCVqsHleCwCBRg7CYRM1ip1gsWkIYokHlU677+/tNyaeBQABaW1shGAzC6OioyUhxYdPS0gIjIyOm8Qq8S7GY3yFuy5cvN/38sY99zGLAg8Eg3Hbbbab5S8uWLYNkMmlaYzKZhLVr15o+J5YvO23cA6NpmudhnW62zs5OVFCuWrXKJA7lvj7xeBxN7MYEQiAQgOHhYVNDPflz4lBLTiaTMb1HDOlVQuzb5WWVUnm42HLjCEIFiRoEEjWLh/n5eYshxAYf6rpumSat6zocPHjQ2I/YgRjrHNzb22vpcWO3dXd3g6ZplqTZVCoFuq5De3s7JJNJGBsbM4VRuLDp7e31PMZAPr4sHlpbW5Vl3qeddprnY6xevdoSvhKvL5ZDJDbxkz/DN7tSdOyaiFPca1UNqMrLKvVYi6mKkSBUkKhBIFGzOJDzJ+TZRvIQRXEuEWYsxCd4zGCpcmCwbdmyZcrwjNzVFgCMCeN8bWLysdPxurq6TD+vWrUKuru7jWsirqO7uxvWrVtXslCSz4OHwVRTrGWPiehpsmsgKJ+TvMk9eMRE5Vp4PLBZVHL+VinHWkz9pggCg0QNAoka/yPmIfCZT1iJcCAQsOSf8HwVVQgCe2Iut8IoEAiYGuaJOTL8eP39/ZYqKqcmgdjUai4YxDVfc801jgMhVZvoiZHnLfE1qsYkcHElXgf+O+5NK7dqSywTlztIY039CoVCWSGoaiUjk6eGIEjUoJCo8T9ixQg3XgDWJ92uri6LweXeAixZ1O5Jv5xQELZhnXDleVa33HKLRRiIm1hlJXYlDofDsG/fPpNXCJtX5WXj+UmySBkbG7O8LooNeRPHWfC8p3KuIxcSQ0NDMDg4aBmJIScIl9NHBhPTsoeIr8fL/imnhiBOQaIGgUTN4kCu/FIlb6pKr+UnaTdVKJXaeI6OmITs1EXXSXDMzMyYqoR4/o+bHjpO2+rVqy371XUd+vr6jP1jib6ikMEEFffS2JWV2/2Oe7y454U3xhP7GPHvslAoGJVw2Pevuq9E8vm8SThh9588Dd4Jqn4iiL9CogaBRM3iY35+3mSspqamTAY2EAjAd7/7XUs3YBG7fiFOrf/lqie7DWsQuHHjRiM8lUwmYWpqCvXQqEJIu3fvtngiBgcHIZ/PW/JaytnE0N3s7KzR0Vj0iGBJ1qKA4VtXV5epyR62hUIhZX6NKE759yV+h6JITKVSJk8VnzIuw9sEYEMvucgYGhqCfD6PflY1+dsu3EV9agjir5CoQSBRs7goFAqmpFr+5K4SACpPDQD+lC4+MZeT/+F227RpExSLRZiZmbEIIMxrkUgkTN6SyclJyGazxnwozHuC5ca42YaHhw0jOz09DeFw2GiQx70kGzdutHwGW8Pq1atNoadIJAKrV682vQcbtyCvRfwuZ2dn0Uoy+fvnlWzcg8MFg9jQURQ2Tl6TcoVJs/Wbarb1Es0DiRoEEjWLi2KxaCrVFnMqsERanlPDPRkY/A+zGBoQjV1fXx8qME4//XTLa3ZVPtjGy5P5eTl9VvQ+xGIxCIfDsHnzZnQuVLkbX0s8Hjclx2azWRgYGEC9KpFIxLEvDk+2VV1X1WfEoZbcQyUmXOu6Dt/5zndMn9u1a5clsVduzCjeS27yW0RhrQohJZNJX4SQyLNEVBMSNQgkahYf3LMhGp9MJoPOIUqlUjA5OQlDQ0OOf5jn5uZMAzT5+3O5HNpATm5yxxiD/fv3myZwOwkacT35fB4mJyfhu9/9rqOwEdcTj8ddjU4oV9xwAakSX24ESmtrq/E9OSUyY6X6PJdI/O4nJiaUk8r5tRETmeVybMzDY5ewK3e3xpLMBwYGfGHoKQeIqCYkahBI1PgXzO3NXxMnJGNiQTQy2EBCAPwPM98//6/4Hp7zIXsiOjs7DeObSCRQAYQJBWyaeF9fnydPTzweNzxVuq678ti0tLR4ngElhvpkAaXal90ICac+QLFYDObn5y35TVh/mEKh4BjKwtYoztmSK+n27t2r9OyJYS+3ienNDFVrEdWCRA0CiRp/grm95anJW7ZssSTGtrW1GbOBsNJb7A+zan6PnLORy+VgdnbWEnaJRCKmyiM3okS1TtkQ24mPUChkrJ3nuPT29roSKaXkC/Hr5kY4iaXcTsJG13VLqTcXNQCncl/kY4qCZGJiwrLvrq4uy7WThQ/PtVFVooVCIdOcKfG74gnGquvkN0NPfXWIakCiBoFEjT/B3N5yQrD41C4aSswDohpwKfYfEeEVVny8Af+9asCkruu2jfOwTfYoyYJm9+7dtmElLhr49RETX+22SsyC8iKK/vmf/1n5O03TTDkvYhWY+L3InpSenh5DkIiCx+7cZFEje4vkqilZXMkeC2yEBlZp5xeoAzJRaUjUIJCoaV6cqirk3ImpqSmTiJGNkpjcKwobsUJDbnjHRYMclhJ7yvDxBqJRi0ajFk9EOc3udF2HZcuWmQQD/6/K4yFOu7brG1POZpf4bFet5GX/4vXnHXx5jozctFDe+DXXNM0iWlTXWRyhIe5HNUBUFp923h3xXPxUGUSeGqIakKhBIFHTnLitqsC8K7FYzCIguKERcx3k3iRY/xksLCWXjAOApTJqYGDA1PzOzWbn3RgZGYG5uTmYnJyEyclJkzdILMmWQ1Ld3d3otOtyxUYgEDC8Jph4cQqNud3C4TDEYjFTmEcUtGKYJ5U61YUZ847s3LlTed7i9ePen5mZGcd5XeK8K/E+cyOySuk03KhQTg1RLUjUIJCoaU68VFXIbu9MJmPJHeGucFXvEVHQBINBSKfTaL4NZpx4zoo89TufzyunN4sGPxKJGPsPBoOwbt06dNo1F1CqMJLomRENspzjYzf12u22YcMG2LRpU1V69WAeNqxaSM5pwr5LL8JJntOUzWaV58fFy969ey33GVZ+L+5fnEHW7AnDVP1EVBMSNQgkapoXN0+AmNsbq/IR8y/EKdi6rsPevXvR7sLivmVvx/DwsBECkUMWmqZBLBZDh1KKm6ZpMDk5aami4sZQ0zQYHh42rU0MgcgGVwzV8IGeoVBIWc5c6nbmmWdCNptFS+SxLRAIwFVXXeV6/6tWrYJwOAwbN240VY3J1UYqb16xWIT9+/e7KiuXuwrLfVX279+Piq5sNouKJy52xPtLzAkS7yNVAnozQX1qiGpCogaBRE1zYxerx0SP6FHRdR0ymYxJfIhPkpj3RU7ilHM4xH1jOSqaphlP4dyoqsqTZaPmxovkdHxZvHFxx70RbsutMWEifmZkZAQ9PiYkbr31VmU4ZtWqVehnVq1aZaydJwtjxlEusS8WizA4OAjhcNi2U/K6detMYcT+/n7TPlT3CN/EEKfs2RP7GOVyOTQcFQ6HYWJioqbGvlqdf6mjMFEtSNQgkKhpfrCqCjfVT7quw+zsrOU17hmRjXI6nbYcWzRsWKm3nKSrSg6WRYjYsI4bhHw+D5s2bUJnDY2MjFiMqvhf8XV+LbDwmddkZTls4uWzXADxNWqahnZZZkxdlSR7OlRzlvgYiImJCVcJ0Xzop9zhF+sejZ2T+HNfXx8Ui0VLx+B77rnH8GLI3584YqIWRp88KkQzQqIGgURNc6Py1PCGck59arix4YYxHA5DJpNBn8DlP/iycOKTmMU1YSIhGo0a3ppQKGQSBqFQCAKBgDHRWlxjKvXXAYni06+qTw1Wsi4af/H6iBVbwWDQVWVSIBCAiYkJw/gPDAzALbfcYnpPMpl0JXaCwSCceeaZnkURF4nidypPvc7n84YnLRQKuapy4oniWNI57x4tdgW2E3WiMJWnc6vuEzdN+CrpAaHcF6IZIVGDQKKmstTS1eyUU8NFBrY+eS2qUAJWjotNeZZFlBgSkhNxY7EYjI+PW44neh14Wbn8hJ9KpUyCRCwNDofDpmNxI8u9QDwBWBwqya/P7OwsTE9P2+b4yFsoFDIa0MnjB8QNGwdht7W0tCg9NtgmijesashuYKndxj1iWHsAMQkZSxQXv1PZ8yHee3IC+o4dO2ynw4v3caU9K1SlRDQbJGoQSNRUjlq6sKvxZCmHsewap/H9iiIJC+dEo1HUW6PruqXnTTqdthwnk8lYeuGIAxHFpGG5qy43jFifGvEcuGFtb2+3hEHcbuI5lzrXiW/RaNRTzxxRvMkVSpxcLudqn52dndDW1maqPsKMu3yvqyqqxsfHTfeseO9jA1DF783uHnZz//NQKvZZ1b9B6idDNBMkahBI1FSOWrqwKy2gVFVS4r6d9ivuIxwOQyQSsVQmiWEmuQKLP5ljaxFb7heLRejr6zN+19LSAj09PSbDyOcz8dfa2tpMYoPnecieAjdzp+RNzHcpt4Tbbt6TnUASc3OwaicednQKPWECSWXcsfle8iYnrYv3jngPy2KSV7HZ3cN2nhW7TtdO+6XOv0SzQKIGgURNZamlC7tSoS7MO4INsHSzX8zABYNBGB8fRxOQdV2HW2+91RJykA2LOMDS7TgDWaCJbfkDgYAl1MHXxSuh7ASOm/BQW1sbmpvjZcyCysNjl78ihx3tknpVwmxsbMwyFwwz7uK+5TXxn+XwGF9boVCAubk5mJmZQQUUDz+6vXfF79rtAFY3+yNPDdGokKhBIFFTeZrpD6McNlK58VUTlzFkQTI8PGw8kYsGLBwOw759+yCVOjVdWxQYmBiQ83vcekUikYhROqwqs+ahq2QyaXQlVoVreI6M3QiEQCAA+/fvR3NNMEH24Q9/2LXQ4YIJe33v3r1GF2Ex92lsbMyTF0lsgMc3rOoMa6qoum6i94TfX/39/aay+kwm4/khAPOsyPevm/1STg3RbJCoQSBRUx2axYUt9i3Bwk28B83Q0JArz4/Tk3MymYSBgQFIJBKwYcMGU+4ENuBQlV+SSqVgdHTUlaHWNA16e3uNfcuCaeXKldDe3g66rhsNATdv3mwJoclbX18fXH/99crjxuNx03HtNqecm09/+tOuxMjq1atNvXxyuZyle6/dJnuR4vG4yWMlCxsxv0kMNcliTp6zhZXQi+0E3IZrxao18d5QrUMlTqj6iWhGfCtqbr75ZkgmkxAOh2FgYAB+8pOfuP4siZrK00yeGoBTJb8qd70q8RTD7klXFja7du2yhJwKhYJFcPDkYVnYqIYnyptszFtbW1EDH41G4eDBg5bEVVVjQP6ak1iQGwzKAkI+X9X+dF1Xhrw6OzstFWb8ePF43LbJnt0Wj8dN1x1L3hV74Ij3Nzb+QvbidHV1GR4nrNGiruvo+AcA68BWbGJ4Npu13Deqh4t69KmhpnxEufhS1Nxxxx3Q1tYGu3btgl/84hfwqU99CpYvXw5zc3OuPk+iprI0qwu73HW7rUZRzYhKpVIwPDxsMYTcOKk+V+pk79bWVjjjjDNMYiKbzZpa+GMippRjiSJGFFWBQMAiauRE4c7OTmMwpkr0xGIx6OnpMb0WiUQs4SOv10f00MTjcaN8XjTu+Xwe+vv7laFLN9dOrLLjn9d1HZYuXYom+/JO0OIkcrG03+7esLuXaykyqNkfUQl8KWr+5m/+Bj7ykY+YXtuwYQN88YtfdPV5EjWVo9ld2OV4mNz+kZaTTzGPSyAQML0ueh3uvPNOi+jQdR0dSim/5rQFAgGIx+MwMDBg23dFVUHklADMRYLKW4Rt69at8zRgk+972bJlFsFU6lTwUChkiAtu3IvFouFNkcWFHFpyEoOxWMzUk0gVTgIw97WRQ6aqKiy7Xkv1otn/VhCNge9EzYsvvmgYAJFPfvKT8NrXvhb9zAsvvAALCwvGVigUSNRUCD88fZWTC+T0pIs1p9N1HXbt2mV6bfXq1TA2NgaTk5OW6qT+/n44cOCAqYpJ7E8jigU3wiESiRi5OVyUJBIJy3RpvmUyGdi8eXNJ4iAWiynXVKrgUG2rV692df4rVqxwtW7R+BaLRVM3YbsePalUCvbt2+e4lmAwCL29vaauzuJ/edm3+Dofdmp3/7rptVQLsH8b4nqSyWTDCS+i8fGdqHnqqadQw3PFFVdAT08P+pnLLrsM/aNCoqYyNHOcvJq5QFjZOH/CVxm8jRs3wubNmyEYDBqhlGAwCJs3b4ZNmzaZKnT4U3s2mzWJHN57RhWK4Q8F/DPBYBDa2tqUk7uxCed2QsFpcngpW2trqyfvTblbd3e3KbcqnU5b8qFyuZyl+SGfNaW69qrqMVU4SbymY2Nj6D2Gdan20mupGtg97KgmmZOgIdzgW1Fz3333mV7/l3/5F1i/fj36GfLUEBjVzAVSDdeMx+MmcbFr1y5Lb5jrr7/e8BSIT+35fB7uueceGBoaMvVmyefzJgE0MDAA+XweDhw44NmYq6aIe82tkb0Mbo/rRtw4veeMM84w5Q6pPtvR0WEbPovH48q8pmQyCb29vZZ1p9NpU6KueEy7c+QPaapwUk9Pj+WeFAVNOBw2NXr02mup0rgJNWHnTxBO+E7UlBJ+kqGcGqLa8X3sSVWeRxQKhZSDNGVBg3W15YjDG2OxmCF23AxxxIQF9xrwsIiXMNENN9zgqkJL3tyEhPjmVNnkpdEftonXTRacThVomqYZAlNMjpb3I19T8TvGxlbI9wI2fd5taXitPKt2Dw3kqSFKxXeiBuBUovCll15qem3jxo2UKEy4pha5QLLxEFv3ix4bbpSw5ntu/9jncjnTU7o8OdtJnMRiMRgYGDDlkPT29noO+4TDYUtuTi3DRk4Ch1djYe/lXaC5ByQUClnCSNwDhV0/0UPDB5iqQnr8+1iyZIlJsIyOjloMvuw9k0OZXsJNtc6Bs6sKa6ZKSaJx8KWo4SXdu3fvhl/84hfw6U9/GpYvXw5PPvmkq8+TqCEA6pMLxI8pJ3eKoQP5dbeoXPtuQju33Xab6XqIYxlCoRBEo1H4yle+ovw8F2ShUAgSiYStoLLzpJx22mmuBYqbmVHYtbjmmmvQa7Jz507jWs7MzBjeFbnrr2oQpbjpug6zs7OOAzWdwntOYUCs/BtAff/WowIJ699D1U9EqfhS1ACcar63Zs0aCIVCMDAwAIcPH3b9WRI1RD2xe3rFDCafIYUhGy/ZgLgdVhkIBODgwYNG2bJswKPRqOO+IpGI0V+GexNET4coSlpbWyte/VTuxq/17OysKTE6Ho9DoVCwdH8OBoNoAnU0GoUtW7ZALpezeOTkz4+OjirDWVjy8Nq1a03vKSUXpZZ9pVT3ejabRd/X6JWSRP2puKjxg4omUUNUGrdeH9mgiFU1ojGTk2zlZm3ivrghUI1rEBvZyUJG/vmss86yhEO8JvGGw2Fjuvj09LQlx6Tczc7To5rmfd1117kWeKtXrzaFzOTBoKJ4wV4PhUJw4MABk+dNNfgylUqhwy1Fw8+bI5555plo+bjYS0e+31TUogM4Jp7k8RIijV4pSTQGFRc1HR0d8D//5/8se2H1hEQNUUnc5ink83njjzwPG/DcFdGYTUxMAIC19FXVdI0bRtXTt0pMRCIRZXjEyYtgJ5BisRjk83mYnZ2FYrEIuVwOuru7Yfny5aBpmiVs1NHRAfF4vCKiRxXGaWtrQ8Xdzp07lecYjUaVvWgYM1dH8bJ4+Xrwsns5D6ezsxN0XYctW7bA3Nyc6R4QRQb31Jx55pkmkdbT02PpmcO9Q249HtWc1UaN9ohqUXFRc/PNN8OKFSvgbW97GzzzzDNlL7AekKghKonbP+D5fB6GhoYsXWHn5uagr68PAoEAtLW1weDgoNHB9uDBg6aKGi5YxKRgWdDw/c7MzDgKBZ7gqprzhH3GKXR06623wqZNm4zycp7E3N/fD/v370e9FpdffnnZgoZvXV1dsGnTJrTxH1Z1JIZ45GuDlaXLid5ikrDY04cLVPH7Ebf9+/cb4T6n5GCV2JK9eW7nllXbU+OHppxEY1KVnJojR47A+eefb3QmbTZI1BCVxm2egmqQ5vT0tGnQYT6fN4zC2NiYae4P33iYRzQgvPU+wKmKKLnySM7dCYVCsG/fPjS5V94ikYil2Ry2yR2OuQColDfGSWBpmmYqlRe9Jhs2bLAIhmQyCbt373Z9zKmpKcjlcpbvg3+f8/PzoGkabNq0ydRRWg43luIN49dSHpTZ1tZmiCkncVKrnJpmbspJNC5VTRS+8cYbIRgMwite8Qro7+83bY0MiRqiGrh9+sWMitxzBEvWlUNFkUjENDmaf4aHurB5QphXQsyh2bFjB2pQh4eHYXZ2VtlTRyU4xLWKgkYV+kokEhUVPrquw7Jly4wkYDkRmosdUWiMjIzYVi2lUqcaH27YsMH0eiaTMXrFaJoGGzduNL4DXdeNPCMsD8dNk0M+vd1OBDmJEgoLEc1O1UTNk08+Cdu2bYOuri746le/Cpdffrlpa2RI1BDVwm2eAmac5PCBGPpQNXDjrfNlozQ5OWmEgLixzGazUCwWUaOaTCZhbGxMOa2bG/ItW7ZALBYrq3KJJz1PTEygfWQYO+V58NpEjyc6y0KAX1Oe8AuAt+rnU8unp6ct15o3/ORiBwtthcNhiMfjpvBTb28vmvOyceNG9BpjPXBkwYKVSDvdbxwKCxHNTlVEzc6dO2HFihXw1re+FY4dO1bWAusBiRqiknA3u6r6iD+hy2CDCFX5HeIWiURMokJMdhW9MUNDQzA5OWkIFd7aX0ww7evrg2QyaWr6pvKUpFIpGB8fN+WTeB2fEIlEYH5+HnK5nJEnJIuX1tZW02ttbW2uRFQikbB4kpLJJPT19Smvl7gtWbIEDhw4YBxbXlc0GlVeG/m9/H2aphkhO3EIJtZscWRkxFIiLk9v1zTN1lvmJnxEYSGimam4qHnjG98IZ5xxBvz7v/972YurFyRqiEohdgkWvSxiSEksceaowghYpQz2NH7bbbehBk0URTyMMD8/b/HAiJ6bPXv2oGXlu3fvthhxuRrLaa3Y+c3MzJjCO3bjHOLxOOzbt8+TZ0jOE/EivOQRDE6hsFWrVqFri0ajtjkv2WzWIk7k/diV1mMdjFVznwjCT1Rc1Pzt3/5t08dbSdQQlQKbwcOTRbHZPADOOTVORpgLKLkR244dO9A+IHLZuGj8xRBXMBiEDRs2mCqzsDCNOB3czmsgD3PkRhibj4RtnZ2dcPDgQU95PMFgEGZmZgAATMm8bvN0wuGwZRimSth1dXV5qhoTBQ3//uPxONo/JxAIwO23346W5YsCSfb+uK1+IohmxbcdhcuBRA1RSUTjqeu6yUsg5lNwt78qUdMuOZWHIewauomv89wRAEBLhrGf77jjDhgaGrK03k+n06b33nnnnZaGcZFIxBS+4oKmtbXVVG0kGnDZmyFv3HiL07CdxElvb6+pCZ0YzrHL0fnMZz7jSTx1dnbalryrPpdOp43vn4vD4eFh9PPhcBiGh4eN44TDYeju7oYDBw6Y8mK4SB4YGIDp6WlTXkwjhJoaYQ2EfyBRg0Cihqg04kBJ8alc7vaqStSUPT7YJoccuGjCKpZ4eEn2GKm2kZERVHBhnxdDHdwwT09PQ19fn6lUPBAIwMDAAOzbtw/tussFh+ypkHNNNE2DsbExpQBatWqVsa9kMmkyoG569YgiShQWn//8512LHLd5P7quw8DAgMmr4iY8lkwmYXp6GjZv3gzxeBymp6chn8+bZnVpmgZDQ0OQz+chn8/D3Nxc3ZOCKTGZqDQkahBI1BDVwG3lE/bkWiwWob+/H/WgYJU4XFCMj48rE4vlz9oZd/mpnxtgVd4GFzO5XM7oqcMrqHiS8j333GNU+8hVSXfeeadRSYU1t4vFYqa5UfF4HJ1izs9z9+7dkEwmLQayUCg4DpXEto9//OOecnFisRjcdNNNyt+LJe08r0gM7QWDQdixY4fyO5qamoJ8Pm9ck7a2Nti0aZMRzuKiLhwOw8TEBKRSKejv7zclidejfJtKyIlKQ6IGgUQNUWnK7dAqJvPyPBv+s2yUeZmwKGjk/BjM8HPjKr6+du1aSx4O5p0Rc4X4+zVNg0KhYDJcuq7DxMSEZRYVlog8Pj5uNP3j/WHE/YyPj4Ou6yZxI2+iCFi/fj3Mzc2ZrisXi9UcnhkMBm0HfornLgoblacGWysXjHJjQ/kaRCIRU16NWL6fTCYtoVEvE75LpZYDNAn/Q6IGgUQNUUmc/mjncjnbnAJxJpT8NIuFjng4Rv5MoVCAiYkJZa8ZrKNvMpk0Ja4mk0mYnZ21VDVNTU1BoVAwzSlavny5ISLEtYbDYchkMhZBo6pKSiaTRifkiYkJYz/JZBIOHjwId955p1JQyJ6ogwcPWq4vNkm7HpvoRRkcHIShoSFIpVKWnJpVq1Y5Cjg7gcWvtTzhW14LJmqqFRKqxQBNYnFAogaBRA1RKdy4150MiGjgxPfIQmFkZMRISNY0DQYGBixhoy1btsD4+DjqseGl07JXhBvAZDIJ7e3toGmaxTvEQ098RhU3snz4pkqAiUaWCxfR28OrlYrFojEXKxaLgaZpxlrEvjh8a21tteTALFu2DDRNM5XPY6MiarFh3pYNGzYYoUeexItN6HYjYOw8T8FgEHbt2mXx4snfp909W42QUDUHaBKLBxI1CCRqiErhlAip67ohROwMiJj0CQCWkA739ogGUNM0mJ2dteTB2CWgRqNRo+RZXgMfnim+12l2lOyVkd/f29tr8hpwDwC/Nn19fYahF8+ts7NTGc7BNnEuVSgUQq8XY6cqoFSCoKWlxdKnppJbd3e36TuWvzdxrlZnZ6dynXahLnmTPTbivSP3VapmSIg8NUSlIFGDQKKGqCSqktVisQizs7OWoYbylG3sD7tKLIkekVAoBHv37rUVNHJ4Q+zjwvfHxYY4bJMxdQ+VeDyOJt+qwltyqEwMY8kJrE59b+QeMtzI9/f3m5r48aGWYj6Om/BNKXOngsEgLFmyxHGsw4EDB4zrLgou0dvmFCpraWlxNVSUb2L3ZFmQivdLNYWG15waKgEn7CBRg0Cihqg2sijBnlSxTsPyPrA/7pjx47k7YgUV91gAgCkklUgkIJ/PG/sTwyFyd2SVp4AxawIzf102nqLAmp+fh2KxCAMDA5bXAQBGR0c9i4q2tjZTZZQsTEKhEMRiMTSM5bTJIymw3/Nr4SQ2xPPkvY3ke8BurpO8YSX+dsKLr0H03Mif9xoSUlXy8QRyOV9MDEFioS4qASecIFGDQKKGqDZYrg0266nUvAW5Id7IyAgAAExPT5u69YpeGd7LJBwOw+DgIGoYuEFyMq5iebe4aZqmnATO1yJeG9HY2lVvud2CwSBcf/31lmvDy867urpc7Wf16tXG+XV3dyvfx71W/Jo7VZ9xwy5617BO005ba2urqUOzm9J9UVTyXB4eGuUbNqtM5R3BBIgsjMV8MSwEKYsUKgEnnCBRg0CihqgFdj1f+GuluPox4ycn/3LDpqqmsjMM2P5lQymWJoseing8jgo4sdMvwCmBJSYLlyNkxO2aa66xGGruDZmYmLCcRywWs/S/Wb16tcW7Jnpr5Hwfvs9QKARnnXWWrbDhITc7o61pmiU3KRKJmAQZH2kRDAahr6/PEF4tLS1w4MABSKVS0NPTY9pHOp02iQ5+P/JBp2L/Iy5s7LwjmADBxobk83mTkBPvPUwwUQk4YQeJGgQSNUStcOrI6/WPtPwHH/NuyCEGL4YB6y1jNw6AG3exSkkWOtxwil6CVMrcHA7bxIZ1bjcx0Vfu3yL/zEN4mNCZmZmBubk5OHjwoOX8ebhLPsfVq1cbeTXJZNIyV0v+jvh3IIuDyclJw/Mjiil5Srh47fn7Y7EYzM7OmkSjeF779++3iA55wKj4upN3xGmOmTw2RPQW2eXNiHlo2DUjFi8kahBI1BC1AutoOzU1VZI7XeWal8t10+k0AHivOBH3n0wmob+/3+JhwsI38hBPuVme2I9GHKWg67olVISJDq/bGWecYZo3JVc0xWIxyOVy0NfXZxJAnZ2dhpcnGAzCsmXLQNd12LBhA4RCIYjH4yYhI864CgaDpkThyclJAABUXPB7gCOHcYrFIgwODpqGhvJ1xWIxy7RuLiI0TTO+M1E0p9Np03e4a9cu06yykZERS1M/lUcJA7vP7JKQ3ebNZDIZ5TUjFi8kahBI1BC1Qhx2Kf9xd5v4KPY2kY0BZjTFiiIvvUHk/YvVUOJgzltuucUiQHjoQTSe0WhUmWsSDAaVYw+4ge7r63PdCRh7H+blOXDgAOTzeTh48KDp9xs3boR8Po/OqdI0DSYnJ6FQKMDY2Jhln11dXSaxF41GTYnY2KRz2aDLngvxZ5XnQt6f3PNGFJuyGNu3bx+aEyV7n9x6R7D7THXvucmbqVVlFtF8kKhBIFFD1AL5jzTmhncqUcWe4rmxE41lMpmEdDpterrGEnadDIO4/7m5OVODPzvjqus6ZDIZkwfAa2M5rOR43bp1rkQNJmyuvPJKi/jI5XKwZcsWS96KpmmWcNHGjRuV09dVWzQaNU1lF+8BeUyB21AMvz/skre5YLCbGC9ed03TLINQI5GIJQHdjXfEq6dG/owcHpU9TZRTQ4iQqEEgUUNUm0pVcaj2MzMzYzLAWEM91XgCN4aBiyk+wkDedyAQgLPOOgstKdY0zXS+8nswD00ikTDNsuIJsG57smA9YjDxtHr1atM+uQiRxdXBgwctfXtU4kkUBaIxnp2ddbwHksmkSTiKiJ48N54a/vmJiQljppb4+2w2a1sCHo/HPXtHSs2pkT+LiaFU6q8jRrB/N9SzZnFCogaBRA1RbZzyBrgxw/4oy3+sMcMhVg5ls1njmIVCwSR4eChK9rI4CSpZTIlJo6IBwpJMxUonVUM5ubqnra0NBgcHjTUODAzA3Nwc5HI524GW2CaLmZ07dyrzc6LRKHzta18zvTYyMmJ8B9ls1nWyslxx5iZ3hOfA2Bl8sfuvruumEnNZSHHvHJ/PxTfucZmfn7c0VOzs7DT18LETInb3iKr6SSVKAKzep0wmY1wz7lXDwrX8PqGeNYsPEjUIJGqIWmDXaZhX/rhtMIY91YpeFNGA5nI5GBgYMPbvZAzsmvyJwyXFsl9usHgiq+zpmJmZsXh2nLwdq1evNnJXxHMfHx937NbLtxUrVliOFQwG4Vvf+pZrUcR7z2zevFkphlTemkAgAGNjY+i1la8z76wsNkyUvWqBQMAQdaIXQ5Us7FRtNTMzY7k+kUjEJEydhIh4Hzv1qRHvM/neViWyc++MSjR5EeeE/yBRg0CihsCoVXv2UkNTdkm/8j7duu29zK4SjZ7KiGIt+LEePapN7ILM1+D2s4yd8rysXbsWFRtOn8VGMIiCC3sdC6UFAgGLF06saBKvMzafCrsmuq7DxMSEsQ+x4V84HIbh4WHj2oseIzlXRdVIkHddFoWIKCBUHhGnjsJYbxuso7CbEBXl1xAAJGpQSNQQMrVuz+71j7Wb8uxSDIAbgYWVpIshLnE9YnJyOBw25WmohjDKPWRisRhaTeV1UwkZldcnEomgv8PybpyOIXeLzufzpgReu5wjedM0zZifJXqPMLHo1HRRXJ88Gysej8Ps7Kyl228+n69oiMerqPfamoDwNyRqEEjUEDL1aM/u9o+1F7FSigFwW4ki7i+Xy9nmbcgGmH9G7nIrip1gMGgY2VQqBZlMxpJ7w5g69CNvX/rSl9DXt2/f7loYtbS0GGtKJpOwd+9etDz9yiuvNK1r48aNJiGA5ZrISbWYYOKiRTVHC+vcjH3fk5OTJpGE5b+EQiHI5/OQy+WUnacr4bEs5QHCzktJAzAXFyRqEEjUEBj1cHU79ZEpRWx56U3DcVOJIosdbKgmX1+hUIBsNguDg4OmRE9VjgpPOp6cnLTtMhyNRi3N9FRCp5LjFxKJhJHUu2rVKsf3B4NBmJ2dtVxjlYhRrTUSiSjzY5zyrPj3kM/nYW5uDjZt2mSqTJPXFAqF4M4770Q9SuI9UgmPpRchYifUK5mQTzQHJGoQSNQQKmrp6nZzLDkBWDQE/PODg4MwOTmpTL7EEpIxsIGbmJiSn+6xsQ98HUNDQ5DP5y2fk0VIZ2ensnKHe3A0TYONGzeaPBltbW3Q1tZWkoD56Ec/qvyduD6e/Cuu3+54wWAQ+vv7UYOZy+Us3iceMnJbZZXJZEzfcygUMl0D8TvgOVFDQ0MwNzfnmBAubnKYrB7JuU4PGvIoB3G9YoWgKPTE/VL1VPNBogaBRA1hRymeDq948QoVi0VjyrT8u3w+D5s3b0aHJYrN5JyEDSaGeIKqnNjKxQ4XGtwAyt2H+TruueceU+6HynhzISH/PhqNwsTEBMzOzpoM1djYGIyOjppEgtvQlJMwkdchD5TUNA0Nb/F1qQwlVn0UDAZdVYfxTRSRcl6NmKiNVTSpsBO09UrOlcd2YP2SUqkUjI2Nme57cb2y0MM+T9VTzQWJGgQSNYSKWnhqSgkpuWnCJ65XTNgV/7C7GUoodgbmU7c5vGNtKBSC6elp02e5IeWf5d6loaEhCIfD0NbWZikflo23+HMsFrPk5IhjIWKxmEloBAIB2L9/v8mbU84m92+RhZxqk+8XHgISc1VUWzwet02o5p8Ph8OWmVvidRCFntM0eKfQo9N+qhXGERtAyg0K+Zp5awTewsDu30E9BRpROUjUIJCoITBqlVNTaqWV3frEAY4jIyOm9/E/7Ng+S22gJj752wlBcf9tbW3GOmOxmK2nRNd1o98Ofx835FhvHL5pmmYqWw4EAp4nfYvb5ZdfbhEWt956q+PnUqlTHYW5kAmFQqZKI3niNhd0u3fvVl4X+dzFCis3ISSsZ4743fExDqpqNbEqTdV7ptIUi0VlZ2ZR4KZSKeWIB6qe8hckahBI1BAyta5+KrViA3va58LFKXFX1WcEE1iikQyHw5DJZGwFnl3IDvMkyB4QeZuamjJ9J2JllK7rqDcDayrHr4mdgGppaXFcD9/i8TjqqZF73PT09ICmaWg3ZC405Onq2DnwjXtedF2HaDRqVGWJPX2w2VD8e5Bzs8QGefz69Pf3Qy6XA03TlGXvYi+bWjbBc3rgcJpzVouQMlEbSNQgkKghZGrdp6YU+BqxvjFYv5NMJuNKOKkaqGEDKXlyptvqFPE98r7sPCj886KI6+7uVs6CCgaDcN1111nOn3+no6OjyuPxxnrBYBDWr1+P5rPIoSh5X4FAwDYPJhAIwNKlSyGRSCgrl/jW2tqK7j8SidhOfMeEHhdQ2MR1xk6F0/ixsJATYwyGh4fRPjfYeIdqorrPnEJMpQx2JRoXEjUIJGoIjEbvd6HqPqvq2CvmXYg4iTRR4MneBB7awlrdO4XsVFOmRQMuVvEkk0mjjNrOk2I3GoDn4chhOnGTK4euvvpqy3v27t1r8tC0tbWBrutw++23OyYci+czOztruWbytGyVl0TuGMx/1jTN4ikSOx3HYjEYGBgATdOM+0S+Z9ra2iw9ccRGfmLSeT3FgXwPpdNpRw9rOYNdicaDRA0CiRrCiUYUOLK3IxaLWcQM1tTNa2muHPbBDCvPGXEbsrPzTGDnIhtWO6/O1VdfbVpnT0+PkWthN65B3ifPWVFNHu/r6zM+EwqFYHR0FLZs2aJM7JWN/8zMDOTzeUcvgrhhHptoNGp4bDDv0OjoqMVzx98XDAZtOxjrug79/f3G2py8a7UM46jaFfD1ygIFG+yquj+J5oFEDQKJGsKORgxFiUJDFSYQ+3HIAsjt5GVONps1eUB27Nhh+jmbzbq+TmLuRTweR5/44/E4jI2NgaZphsGWq3hUm7w/Xv7LjymPa1Bdv1gsZkoy7uzsNAmAaDQKkUjElNvjZoxDa2srjI6OQip1qm8Pb0goh02Gh4cdz41fj+7ublToXXXVVej3v27dOotQxLZ0Om1KIpbPTxZw2Hc/OzsLc3NzFb3/7TyCcsNBTimDY4nGh0QNAokawo56jExwQhYQshs+EAhYGr6JzdecDJGIW08N91jZebREz4SYOCuXdvN99/b2wvT0tGPps+yBEAWN/H0NDg5CNpu1vX6iWBGFIOatEPNJ3G5iKCefz6NerlwuZypRt9sXloDMr+GuXbtMAnhiYgKKxSKMjY05VoLFYjHI5XLKair+nqVLl6L3ExfD7e3thrAp1+tZzr/HRvS4EuVBogaBRA3hRK3Ku72AleHKxkimUChAJpMxvdcpZOAlp8bNmnmljdwMjgsG0RsTDAYhnU5bBI88GgGbjo11jsUSorHrl0gkoLe3F8LhsCUJVswn4RVHqvwgu01cX7FYNI0t4P1/GDvlEfLSRFC1yQJA13XHxoeMnfIGiQnZ8Xjc4rGS95NKnWqCJ3rz+HDMcr2ejeg5JeoHiRoEEjWEGxqxv4VXsVXqOfDqJ+yzcvWTE2JHZLnbcDqddmxmJxtdLorkUEhvb69lXfKTung94vG4qVQ9mUwanYvHx8ctwkrTNMjlcpaRCW63jRs3QjabNRrx8SaGk5OTpv3JU8udhJLYl0jcdu3aZZyz3XoxgSheZ6wEPB6Pm9a4du1aS3gSoHJeT/K4EBwSNQgkagi3NFJ/C68GohxvUzU8VXaeEl3XLTklsVgMhoeHTcnC119/vWFYZcOfSCRM3iqxIy1P0pVLmeVwF/coYWXVU1NTMDo6ahI5vb29rudO8RBXKBQy5e6I+xG9VqoqKL4FAgHIZrNQKBRgfHwcDRViggdLPsZEVHd3t6Vxn+gZmZiYQI/JBY2Xe6nZREuzrddPkKhBIFFDuKHRPDVe3PDlPCHXIqdIFosjIyMWb4KY3Ct2FRYnV/NwldgokAubQqFgVEEFAgHYuHEjhMNhS/hEbJQn5x/JokT8eWxsDHK5nKtkYWwTOyzLZdpOW2trK4yNjSnzppw2TdMsHhrMGyZ3EObXlf8sl6Pv2LED/b7t/i01W3ip2dbrN0jUIJCoIZzAni7FluzyH7NaPZ25fUIs5w9vtf9oYwZOFC1iTos8GkFMkBW74GJjHQDw2Viq0A5/XTb4gUDAIgBGR0dN4i8Wi6H7DQQCRnM/1fEwweJGmMhl8PF4HPbt2+cYzuNiBcsLisViJk8KDzlh37dYISd+J7KnhqPyejZiYr4dzbZev+E7UfMv//IvcM4558DSpUuho6OjpH2QqCHswP5oFYtF0xwiLMzTaE9n5bjIVZ/ls3iwz7oRdvIf/nQ6bfK6jI+PK+dMFQoFmJ6eNrwSsVjMlBOj6zpomgYDAwOmdWDG186DIVZoYZ8LBoOQz+dNSdCyR8kpJ8ZNbxtx6+zsNO1TXFcoFDK8Wq985SthyZIltvtaunQpHDhwAM2z6erqQquf5Cnfbkr+Vd873+wEQSMk5tshCml5vTwPiagOvhM1X//61+E73/kOfOYznyFRQ1QFzFMhlznz8unF9HRWrgenUmJRNf8ql8sp+5Ls3LnTlXjYu3evIZp0XYdvfvOblveEw2HI5/MAAKY8HXGadDabtRUuTqJH9tZEo1G45ppr0LWIAsWtWJKrncSfQ6EQZDIZNKQHcKoPDSZgZKEzOztr+h6dBEujhXtVYGJWFH8qzxZRGXwnajh79uwhUUNUDcxTIf7R5RONG/lpstKU63ZXiSKx0ko2BirvDxbKEAWGWKWVzWZdVxOlUikYHx+HRCKhfM+NN95orGlubs7U0VZMqJVHOwQCAbjuuutceY1CoRDoug7j4+OGUGlpaYEvfvGLpvd9/etft4SK3Jwn32KxmOkY8oZ5Hebm5qC9vR31yMh9asS8JtU9k0wmjXumkRLzVchhR/l6Ov07IMqDRA0AvPDCC7CwsGBshUKBRA1REs3yNFktyg0TVKJqBPsOeNhJDgX19PQ45qjwKiFufJPJJKxdu9b2M729vTA3N2eqrhLXJ4sLLmR0XbctoZYFhdj7hTFmqpqS70HuqXIr4BizNkF0OwZhbm7O8MTIiB2FvQigZvq3ZVcmj81bIyoHiRoAuOyyy9Cbj0QNUQrN8DRZTVThH6xSptLIuTaYQY7FYkpviOp1N+XZsvdmz549Jm/DzMyMZegoz3cZHx+39aJgQiSRSJhydLigSaVScOWVV5ree91118Hs7KwpSVhuWOi0YbPEyhUVKk+NeA/JYy10XTflSjWisCFRUz+aQtSoRIe43X///abPkKeGqAfN9DRZDXgISTZ+U1NTZSdMexm5wK+5bFzsvBRcICQSCejp6VEKC6f+MIwxWL58ueFd4EY7GAzCLbfcYsrJmZiYMHIsDhw4YHy+u7vbVBW1evVq0HVduS4eyuL5OvI9yEUMT3LGuv46XSNRNLnxwLn1usnevUwmY7pGsqDh10ucGdZI4RwKP9WXphA1v//97+GRRx6x3Z5//nnTZyinhqg1zVahUQ1kT4T4dCrms3j9g+4mCVkcBinnrzjlkrS2thp9arjYUI1acBI0q1evhunpaWN9WNk4L0PH8l14Z2IuDrmIikajkM/nLcnJbW1tpsnZ4j2HJUCvXr3aVty9853vVP4uGo0aOTR2uVJek8axhwF+XbCOxfx43KODCeV8Pm8kbGP3abU8hpQoXF+aQtSUAokaopb4vTeFl6du8Q+5HLIo1fXu9vrm83ljPXYDKlUGm6+Vi5BYLOZqiCRmjMU1yom2O3bsMK2bG27x3IrFInz/+983CZAbbrgBFVY33nijZQhmLpeDQqEAu3btclyvKhdH3gKBAKxfv94iRrZs2QL33HOPkSsjfl9iTpH8ffH8mnw+D+l02nQs/l1ommZqviiKVi4e5GRlPmZCrsyS11wtYUEl3fXDd6Jmbm4OHnzwQfjGN74B7e3t8OCDD8KDDz4Ix48fd70PEjWEV/zcRdTtuYnhH1WljdzPxEtisBdPmGhUnap+RJHQ2dlpKjvGOhk7GX0e4uFrtPu8WIUlXwsxlOeU3Mt7+PDvCfNuOH3+bW97m+k1cRRES0uLKaH6tttuM11rPhJBnL4th97EZGvuVUomk7B8+XIIhUKWhG3svFVtFGShK/fQqeVDht8fcBod34maSy65BP1He++997reB4kaohT8Ou/Fi5fEzjsSi8VMwq4UIeglZ0k2bnLn3kgkopwT5bYZn2iw+bo0TUOFRDAYtISOdu7caTpP8R4Sr7uqIkpsuhcMBmFyctJoRCgb9nQ6bfE6XXXVVY7nigkqN/1nAPDQWzAYhNHRUePc5P0PDw8rhZicdG8ndOVwVa3CwX5+wGkGfCdqKgGJGsIPVFJkufWSOA2lFN3upT7Ruq0uU+X3BAIBI7Sh8mRgTfXsNjmfRU4QdZrdhIlC+VpggiaXy0FfXx8wxmDZsmWm8I/YB4eHcGQBgTUQfP/7348eLxwOw0033aTsFMwYg3379pm+r5mZGXQMhFjCLofmIpGIsi+OnVDA3ldK4r7TvxveX0f1e8zrhr2HqA4kahBI1BDNTjWeFt0aCC9hIq/J1V6MlKoSa2RkxHQNsGnS2MbDI2KYRBRIPJSEDZCUh2yKQoJ7PVQiT9UcMBgMwtjYmPGZaDRq5K7wnBJ5vXzNkUjE85DLTCZjux4ufHi4x6mpYTAYhOHhYWMdqvfyDsZ294Wd0PXSYsHp300ymYT29na0KzV5YRoDEjUIJGqIZqdacX0nA1HKcashljhOPXPEsuBkMuk4LkFuRhcKhWByctIwZnKCaCaTMb0fC8WI1wQ7R7nzsCgAgsEg7Nu3z8jjkUNhsVjM0o9mZGQECoUC7Nu3z/T6F77wBXRtfONiZX5+Hg2HiaIkEolYxJ/dddV1HUZGRtDr7VRtVUlPjZv7V/zOKF+m8SBRg0CihvADlS4xd2MgSvUQuRFLXtrpuzl/sf+J/LO4nX766WjYJhaLweDgoBFqwPrkAJi9JnJYhQsQN+XN4iY2EAwGg2iIBwvt8LXJnYh7enqM62snVuLxuOeZVU6hN34dsDBgLBZDPXv8elUjp8bpvpHL5hdj64ZGhkQNAokawi9UqhmgF4HkNZ/AzRq9tNPnx3F64k4mk6a5THNzc2jXYE3T4Oqrr7aILvlc7ARdLpeDWCxmCflwMSUmTxcKBbQEPRKJmMIwXNgsX74cDhw4YBEbZ5xxhklY7Nq1y2Twly1bZoSw+EgHXdchGo0CY6cqnriXKRAIQFtbm0WsyDk1qk30bmDeMHEfsVjMVGIuVi+JU+Dl75hfx0pUPzndk5X6d0VUHhI1CCRqCD9R7tiGapaouhVLXj01bj1GPOkTmwaeTqeV3gtVvx1VwzfR0KrO065pG8/dkTvpdnd3Q29vr2UkhLyNj49brpeu63Dw4EFjjcVi0UhWjsfjMD09rfQatba2otVPdpvs5cA+wz0zmDCRE6nF75jvl3twKtGnxunfzWIfh9KokKhBIFFD+IVKPFG6SZ7s7+9HDYRdpYdXseRGAIleItljJK5FXtfs7KwpnMMN9ujoqOnaXX/99aYW/nahEa/nOTs7azLk2Lwp3ueHf3ZgYMA0zwkLDXV2dqJhOZVRl6+bbLxFQcO59dZbHT01YlIzFyLJZBKWLVtmOT++Tp50PTg4iIb3xAnu8v1STkdh8tQ0LyRqEEjUEH6gkjk1qpAS93CUUg1S6T415VR8FYtF6O/vt3hqREHR19cH+Xze4kHAEnxLGRkg7zsWi1kSjXVdN4Vf5M+oclrEKeEA5U08j8fjpvMQe9G0tLSYhJW4nmg0CgMDAxYPXDabhdHRUXR8AD9H1ZyoauSzUE5Nc0OiBoFEDdHs1KqraTnH4eEO7HeyMePvx/JNeH6LKlHX7TnLT/2ylwEbBREOh11NjLbLM+IeBS5+NE0zqplEMaPruiEg+/v7YW5uzrbrsPizpmlVyaPK5/OGp0gcrCmGw1pbW435VZqmmZrzyaKuVKFVKTFB1U/ND4kaBBI1RLNTy66mpTw9e12f2yGB8uRmpxCVvKbZ2VnIZDKm/afTaXRkg7wOccYRgH24S3Ud+Bp4si7fMpkMzMzMmMYODAwMGMIQy6cZGRmxeHn4OpxCdGLjQrscpr6+PgiFQqBpGkxOTppyXOLxOITDYdiwYYMhdsQcl3KEQLXyWahPTfNDogaBRA3hB2rZ1dTr07NXDw/W9l+eq4SFgtyGqHj4SZzdhIkm8ZrJ4qe3t9cQNqKB40JrYGDAqM6yuw7z89YBmJ2dnca5yr1tisUibN682SJquLjgeSlDQ0NGlVMqZR2iKa55enraMdF28+bNRn4RD0lxbxdfaygUgmw26ypRulr3mlcq0VGYqB8kahBI1BCEd7w+PWMeHqzCCeCUsZC9DipRY7cWlZiamZmx9GOx2z/mqeGfl8MwohjBEqrliiS7KiZV6INfN35dxHOcmZkxQjuqQZ92/28XHnQrNOXzLFWM1CKnhmhuSNQgkKghCG+UarCwz2G9aHiJLg912HlSvFSucMOIhbTceILsRIg4MFP2rohw7wZ2XnJ/HP66mGjrNY/Ibv2xWAwNO9l9f6rhk1jZezlhI5p+TbiBRA0CiRqCcE+5T89YozmV0eLTpmXDyN3+bteCCZ9wOAzxeNw2ZwdLRs7lcugoAzvvCoeHw5LJJKxbt870uZ07d6K9XIaHhy2fd8pNkkMm2PmX6kGZn5+3CDu5E7DqmF6OQ9OvCTeQqEEgUUMQ7ij36VnlqVGJErGcVjaMXtcii6lMJmNbXcWnL2MN4OxCRowxNLFUvn5uN9mT5SYHBBMDmJgsxYPiRtRUKmxUbp4YTc/2PyRqEEjUEIQ7ynl6tjN0sodCFjSYYZQTX+3WovIa2Ikm8ZxVCcyq7eqrr1YaTDcdeYPBoMlzEwwGLb1nVKiSke3W7VZouAk/VSNsVIo4IU/P4oBEDQKJGoJwTykGxo2hE7d0Ou3KMKr63ohrcSOmnLwJ/JydxIG49fX1Wa6FeB3shM3Y2BgAmAWQPMDTDrs8GjFB2ktOjduKNHm8AbYuL2KiVHFCOTmLAxI1CCRqCKK62BkmzHMhD58U8WIY7aqfMC8IZvCwnjlyXxm+rVy5EhUn2HUYGRlB93HWWWeZzov3q/HqVbCr2FJVP9kZ+Xw+j46MEI8TDodNlVeq78TLeZQjTqh6yv+QqEEgUUMQ1QczdHJzN9HoyM3tRNwaRqc+NWJTO3lNXESIRjUcDoOu65DL5SyC4fTTT7dM5ca8K6pOxuJnxGonvoZSwiRYbx0xJMXPk/fWsRNOxWIRBgcH0SonLmwGBwdLDufYCSGxEaFXcVLtPjdEfSFRg0CihiBqT63CA04dhd0M5pTDOSMjI9Da2qrMTxkbG1N6V8R9yR4qMRwmT6L2CmbMS+mCLF+zaiTeugkx8ZERbsSJ05DOTCZT0jqJxoNEDQKJGoKoPdVM5KyG8cVEQiAQgC984Qum10ZGRpTHwXJqnP5birDzGnYpNRG31iEmrLxfXot8X4leHr5hnZOJ5oREDQKJGoKoD9UQH9UUS7JR3blzJ1qirgqbiX1q+ARrsQIrGAxCT0+PKTmYVxS5Xa9XD1gp16sa19hJiKkq1eQqOPH8xcGfmqZZulTPzMxQ9VOTQ6IGgUQNQfiHaoW15ufnLU/8ojdlZGTEIkYwxBwZvgbeQRnLrZFFQql9asRrIAqOUq5XNa8xJlzsyvvlRGd+zeReOny+ljzKQs6pIpoLEjUIJGoIwl9UuupFTmjetWuXKUzEm+PJCa1ujbo864qHVrAS9lI6CsvHksURFuZRzeXCrkklK4vk/Bc35f2ysJmamrKMoeDvm5+fL7lUnmg8SNQgkKghiOZH9mBUquoF80oUi0UYGBhA815KCb9g5ddYD5lKeUiw8JEqsbiWlUWqNbgp7+cVXOJn5dL7WCxmqbCjKqjmhkQNAokagmhuVDkelah6sSsL56XZsoDxkgNj1yhP9C5g7y/VQ6ISR3LvnHQ6bXtdnMZMeEEsk5fPS9M0mJycVJ4LP5a8FrtxFlTW7Q9I1CCQqCGI5sbtaACsxwqAu3lK1ShlxtaNGWa7/j6lGmlZHIk5QU77xBoSitdYnKLuBi+N/VRgvYP4/tLptMVr42XeFdG4kKhBIFFDEM2PncfDbhxAPWcEycfGxIqq/BjzkHgFO14wGISRkRFb74/bkQluc1Wy2Sy0tLQAYwzi8bhJ1PCJ6C0tLabBniJionU8Hjd99/znUCjkSuA2AjSI0z0kahBI1BCEP7DzzqjyTipZyVNOvxcsrKQSYpXMZZHL1HmfHafqp0qKmkKhYErsxfanaRq6P3ktmqbBwMAA6LpuCCJZ4HAB1IghKBrE6Q0SNQgkagjCP8ijAUQPhsooVCJPpRxj5EVYya9lMhml+HF6qsfK1LHjq/rUuAk/ufUs5HI5ZQ5MLBZTNsvD1pJMJiGdTpv2p2makWwtJhWXUnpeTWgQpzdI1CCQqCEIf+DGg6EysuV6P8oxRm4FUT6fN+2LN57DhlI6CSm5TF1VOu3kYcJEpDghnTcatBtHIQoT3k+Gb5FIxDFHB/N28S0UChmCRnVdG83rUa1yeT9CogaBRA1BND92hkCVPyEb7HLzVMoxRm5CV7L4EYWU6CFx8kRUyhvgFO7jXiCsy7JKrPEOwHzjP7v1TmAVb/XITyk3L6bS5fJ+hUQNAokagmhuVEZaTCCVczzkJ/VKGZFqGyO7fjy6rkMmk3EUUpXI23CbmC328rETT2JDPHkTGxza0ShCoFJ5MZVIBvc7JGoQSNQQRHMjGxFu+MUkUl5FhOVUyJ2AZQ+L1xlBtTZGpRjzcjwJXkro7UYciB4nrBxb3pedp6aRQjaV8IQ1ikBrdEjUIJCoIYjmR0xKlcukucHkHgWx+kUUNKJHQDQqwWAQ+vv7XQmbehmjWgopr80Ona6J2KcGy6nholTVp6YRk2vLEVmNJNAaHRI1CCRqCMI/YAYOq6zhuR/5fB42b96Mhkm8zgiqlzGqh5DyOpbCTnQVi0UYHBw0ha3E7ykWi8Hg4KBtonAjlkGX8r00okBrZEjUIJCoIQh/IVf29Pb2WhJQxYGRQ0NDMDk5qWzT72ZGUL2MUSM81TutQQxBqYy73ZgEXdeVJd2cRm1Y59WD1qgCrVEhUYNAooYg/Af2lCxucpfhmZkZ0HXdCIN49XjUwxg1wlO9mzWIXjBVTk29z6MalOpBa1SB1oiQqEEgUUMQ/kR+SmbMWjIsJ7PKYSovuSm1NkbVHrZZzhoAAGZmZkzhO5VYyefzvvNONIIHbTFAogaBRA1B+A+sGgcrGebN3bjAkT/T6AZIFlKiyJCrtqolEFRirlgsQn9/Pxq+k9dSL+9ENY7rV89TI0KiBoFEDUH4C9F4hMNhNAFV3uSuvM36ZN1oBrWRQynVChlSXkztIFGDQKKGIBobL4ZRNuq8N41dczcx7FQvIVBJ40+hD3dUUwA2spjzEyRqEEjUEETj4vWpF3u/nLTa09NjETjhcBgdp1CLJ+tqPNlT8zZ31EsAkuipDCRqEEjUEETjUsrTtGgw5M+PjY2Zmu2J/3U7I6oRztEN1WrIV22DXGuDX2sBSOGpykGiBoFEDUE0NuU8TcuJs1j/lIGBAdOYhHokcFbaY1AtQ11tg1wvg1/LjsyNlvfUzPhK1DzxxBPwgQ98AJLJJCxZsgRSqRR8/etfhxdffNHTfkjUEETjU46RVo1QAPjrk38jPCFXSohUM6RSbYNcD4Nfj1Ad5T1VBl+Jmh//+Mfw/ve/HzKZDDz++OMwOjoKXV1d8NnPftbTfkjUEERzUImn6XJCG7UIi5R7jrUQBdU2yLU0+PUUF5T3VD6+EjUY11xzDaxdu9bTZ0jUEETjU28DUIuwSCXOsVbhG7drLVXs1eL7boQwUK0nuvsN34uar3zlK/CqV73K9j0vvPACLCwsGFuhUCBRQxANTCO46qttACt5jrVKtJUN8sjIiOn35Yqoahv8eifsVlK4LdZqKl+Lml//+tdw2mmnwa5du2zfd9lll1l6VJCoIYjGpBGepjnVEleNdI5uEQdQ8i0YDEI2m4VCoQC5XK6stdfKM1cvMVBpEbtYq6maQtSoRIe43X///abPPPXUU7Bu3Tr44Ac/6Lh/8tQQRPPQaH+wq2FsG+0cncjlcsbgT13XYWRkxFQeH4lEjN83WqJzI1BpEduMorhSNIWo+f3vfw+PPPKI7fb8888b73/qqaegp6cHtm/fDidPnvR8PMqpIYjGptFc69UIizTaOaooFAomDw3v7YN1bFb1/eFg5ywaaLshmM1soKvdbNGPQlBFU4gaLxw9ehTOOusseNe73gUnTpwoaR8kagiCcEu9E5brDTfI2KysSCTiWuzZTRjv7++HYDAIAwMDNRnIqVpfszUYXIz3pq9EDQ85XXDBBXD06FH4zW9+Y2xeIFFDEIQbFsPTsBtjy9+DGVG3BtUuZGLXCLEUg+9VQDRbOFBksVVT+UrU7NmzR/mPyQskagiCcGIx5C2UYsxlIxqLxVyLvVqIxFLOqVm/a/LUqGkKUVMpSNQQBOFELZ/e65Vf49WYz8/PWyqgeB6NWwFQbUNcqkBpNq9cs623UpCoQSBRQxCEG2ohNuod+nBrHMX3hcNhiMViphwbUdg4rbfaIZNSDX6zeD6a1bNUCUjUIJCoIQiiUWgEA+VkzOU15nI5S44NX6Od2CsWi6Yho+KxZmZmKircShUozZCjUm8hXE9I1CCQqCEIopFohFCCnTGvhBEVq5yw8wwGg9Df319RQ+xVoDSLpwageVoCVBoSNQgkagiCaDTqaVDdHLtcIzo7O2tq2JfNZgEATP1ugsEgzM7O1uycVO9fTDkqzQaJGgQSNQRBNCL1CH3UypgXi0UYGBiw9dTIfWpKxes5uQmv6bqOhtf87BVpREjUIJCoIQiilrjxctTDU1PrfJ5a5NSUck5ieC2Xy5lCbXxERDgchvHxcUilUjA4OAj5fB4NvZHIqS4kahBI1BAEUSvc5KMMDAyYGtDVKvRRr4TTanqkSj0nLjxlUTQzM2NUeXEvUzgchng8bqr+Ej07bq/ZYs2LKQcSNQgkagiCqBVuPAdiSKbW1U+1Nqy18EiVe07ytRcHeAYCAdN4CK99esQ1LtYKpnIgUYNAooYgiFohh1xkT4yu69Df378ojJto+JPJJKTTaVTwNYKXAhNf8gBP/v2V4llrhFL+ZoREDQKJGoIgaoH4NJ7NZlEj2d/fD3Nzc74PQ8jTuAcGBizXhYd7GkXIyWGyHTt2mH6OxWJleZyo4so7bu13KyMIgiAqyvHjx9mxY8fYkSNH2MUXX8y+9a1vmX5/4sQJtrCwwFpbW5mmaeg+NE1jHR0dtVhuVVmxYgXr6upiqVSKff/732fFYtG4Lvv27WOpVIp1dHSwd77znezIkSPs2LFj7Pjx48r9LSwssKNHj6K/O3r0KFtYWChrvYVCgW3fvt302sc//nHbzwwPD7NEIuH6GIlEgh06dIilUil25MgRdu6557IjR46wVCrFDh065GlfhESNRFZDQJ4agiBqBZY7wwRPDe/XshgQc11kL0U6nTYlS9t5Kaqdj2KXUxMMBmFkZMQyA8vNulU0QxfjRoHCTwgkagiCqCVigzlR0JRjCP1AqUnD1cxHwaqfZFGq6zrE43FTGEqeg1Xta7BYofATQRBEHTl69Ci7+OKL2YkTJ0yv/+AHPzDCDtu2bVOGUvxMIpFgw8PDptfchHA0TTOFbbZt28buu+8+tm3bNlP4RhXSs0MMkx06dIitX7/e+PmnP/0p03Wd/e53v2NPPfUU03Xd2H70ox95/j4LhYJpzVNTU6Z9FAoFz+sn/h81ElkNAXlqCIKoFXInXSY8jfMk2UZIiq0H5XopquXlkEvCxZ/z+TwMDQ0ZxxETub2EvvxW/VSr1gAUfkIgUUMQRK2Yn5+3baxX6enUzUKlKn/qkY9SCQPupz41tTwXEjUIJGoIgqgFfnsarxSq65LL5SxdesXPyEax2fNRGrmjsJe11fI+p5wagiCIOiHnZ/BcEbGUt6uri61YsaLOK60t2HVZWFhg//RP/8QYY0zXddN1KRQK7LzzzmMXXnihUarth3yUjo6OhizlX1hYYBdeeCE777zzLNcR+y6qmeNUMmXLpyaCPDUEQdSKRn4aryfydRGf9nVdh1wuBwD40z55wKpLqde3Fp4zCj8hkKghCIJoPNzm2fgpH6VRKTXnqdo5Tm7tdwsAQO38QvXlueeeYx0dHWxhYYGddtpp9V4OQRAE8f8Qw0ocrMPuwsICO378OBrSOHr0KFuxYoUvOjFj1Orc3X4Xpb6/FNzab8qpIQiCIOqO2941jZqPUm285ruUg5c+Qo2W40SihiAIgqg72Myl7du3N0Xiby0Q54mJYkEUFU5zs9zi9rs4evSoJSl469atluThWjaYJFFDEARB1BWvT/vVHmrZiNSq0sjLd9GQVX4VzeRpcChRmCAIorHwWnFTSrKwnyrRqllpVEr1U6N1FCZPDUEQBFE3vD7tew3D1DIXpRaUOjfLDaV4Xhoux6kiEqpJIE8NQRBE4+H1ad9L2bHfettUuydMo3q1qKQbgUq6CYIg/IGXMmI5T2R4eJht377dlItSqdLjauKX8ygFt/abRA1BEATRlNx3333s3HPPNX6emppiW7duRd9bi14q1eTo0aPsvPPOswgYWegcPny4tmMJagT1qSEIgiB8i9cS8GrmotSChqw0akBI1BAEQRBNRSkN35q9D05HRwe766672OHDhy1CLJFIsMOHD7O77rrLt80H3UKihiAIgmgaSmn41mhdb0ul4SqNGhASNQRBEETT4DUM04hdb4nqEaz3AgiCIAjCLTwMgw125GEYcbAjF0GMMVQEbdu2jXJRfARVPxEEQRC+ZjFP9vYLbu03eWoIgiAIX9PR0aEULX4sf17MUE4NQRAEQRC+gEQNQRAEQRC+gEQNQRAEQbhgYWFBWSV19OjRphmK6WdI1BAEQRCEA36b9u1XSNQQBEEQhAPHjx9nx44dszTsExv7HTt2jB0/frzOK13ckKghCIIgCAc0TbM07Lvvvvssjf2omqq+kKghCIIgCAQ5h0bsWnzkyBF27rnnWqZmE/WFRA1BEARBSKhyaBKJBPvWt75lem8zTfv2OyRqCIIgCEJClUMzMzPD/vEf/9H03maa9u13mkbUvPnNb2a6rrMlS5aw7u5utn37dvb000/Xe1kEQRCED1mxYgXbv3+/KYcmnU6z17zmNezEiRMsGAyykZGRppz27WeaRtScf/757Ac/+AF79NFH2Z133skef/xx9va3v73eyyIIgiB8Bg89vfvd72b79u0zhMvb3vY2duLECcYYY+vXr2cXXHABTftuMJpG1PzzP/8z27JlC1uzZg3bunUr++IXv8iy2Sz7y1/+Uu+lEQRBED5CDD1dfPHFlhwaxhh7/vnn2fHjx03JwzTtu/405ZTuZ599ll166aXsqaeeYj/96U+V73vxxRfZiy++aPz83HPPsUQiQVO6CYIgCFvE/jPBYNDw0DDGWDAYZD/96U/Zq1/9auM1mvZdXdxO6W4aTw1jjH3hC19gy5cvZ6tWrWLz8/NsdHTU9v1XXnmlMZ21o6ODstMJgiAIVyQSCbZv3z5U0Jw4cYJdfPHFphwaTdNI0DQAdRU1l19+OWtpabHdHnjgAeP9n/vc59iDDz7I7r77bhYIBNj73vc+Zudo+tKXvsQWFhaMjZK4CIIgCDccPXqUXXzxxSZBwxhjP/jBDyiHpoGpa/jpmWeeYc8884zte5LJJFuyZInl9aNHj7JEIsHuu+8+ds4557g6nlv3FUEQBLG4WVhYYBdccAH7+c9/bhI2qVSK7du3j1188cWsq6uL3XXXXeShqQFu7Xewhmuy0NnZyTo7O0v6LNdiYs4MQRAEQVSC5557jj377LPsxIkTLJVKseHhYbZ9+3YjeXj//v1s/fr1JGgajKbIqZmdnWU33XQTe+ihh9jc3By799572cUXX8zOPPNM114agiAIgnDD0aNH2bZt29iTTz5pjEDYunWrqXz73e9+Nw2vbECaQtQsXbqUjYyMsNe97nVs/fr17AMf+ADr6+tjhw8fZuFwuN7LIwiCIHzEihUrWFdXl2WmE5VvNz5NWdJdKpRTQxAEsbhZWFhgx48fR6dpi2XZbt9H1AZflnQTBEEQRKmohlQydqovzXnnnccuvPBCtrCwwDo6OlBBwxiVbzcyJGoIgiCIRYFqSKXYaO/YsWOUK9PEkKghCIIgFgWapllmNd13332GoOE5NCoPDdH4UE4NQRAEsagQPTMcOSmYaCwop4YgCIIgEBKJBBseHja9Njw8TILGB5CoIQiCIBYVhUKBbd++3fTa9u3baZSODyBRQxAEQSwaxNBTKpViU1NTphwbEjbNDYkagiAIYlHAOwWLScFyp2AaUtnc1HX2E0EQBEHUCt4pmDGGdgretm0bdQpucqj6iSAIglg0UKfg5qQppnQTBEEQRC3p6OhQihbqT9P8UE4NQRAEQRC+gEQNQRAEQRC+gEQNQRAEQRC+gEQNQRAEQRC+gEQNQRAEQRC+gEQNQRAEQRC+gEQNQRAEQRC+gEQNQRAEQRC+gEQNQRAEQRC+YFF1FOYTIZ577rk6r4QgCIIgCLdwu+002WlRiZrjx48zxpgxxIwgCIIgiObh+PHjtrO5FtVAy5dffpk9/fTTbMWKFaylpcXy++eee44lEglWKBRo4KUDdK3cQdfJHXSd3EHXyR10ndzRTNcJANjx48dZLBZjra3qzJlF5alpbW11NbDstNNOa/gvuFGga+UOuk7uoOvkDrpO7qDr5I5muU5upqdTojBBEARBEL6ARA1BEARBEL6ARI1AOBxml112GQuHw/VeSsND18oddJ3cQdfJHXSd3EHXyR1+vE6LKlGYIAiCIAj/Qp4agiAIgiB8AYkagiAIgiB8AYkagiAIgiB8AYkagiAIgiB8AYkaG9785jczXdfZkiVLWHd3N9u+fTt7+umn672shuLJJ59kH/zgB9natWvZ0qVL2Zlnnskuu+wy9tJLL9V7aQ3HFVdcwbZu3cqWLVvGTj/99Hovp2H413/9V7Z27Vq2ZMkS9qpXvYr9x3/8R72X1HD85Cc/Yf/wD//AYrEYa2lpYQcOHKj3khqSK6+8kg0NDbEVK1awrq4u9pa3vIU9+uij9V5Ww/G9732Pbdq0yWi6d84557Af//jH9V5WRSBRY8P555/PfvCDH7BHH32U3Xnnnezxxx9nb3/72+u9rIbil7/8JXv55ZfZLbfcwvL5PPvud7/LduzYwb785S/Xe2kNx0svvcTe8Y53sEsvvbTeS2kYvv/977NPf/rT7Ctf+Qp78MEH2f/3//1/7E1vehObn5+v99Iaij/96U9s8+bN7Kabbqr3Uhqaw4cPs4997GMsm82y8fFxduLECfaGN7yB/elPf6r30hoKTdPYVVddxR544AH2wAMPsAsuuIBddNFFLJ/P13tpZUMl3R4YGxtjb3nLW9iLL77I2tra6r2chuXaa69l3/ve99iRI0fqvZSG5N/+7d/Ypz/9aVYsFuu9lLrz6le/mg0MDLDvfe97xmsbN25kb3nLW9iVV15Zx5U1Li0tLSydTrO3vOUt9V5Kw/P73/+edXV1scOHD7PXvva19V5OQ7Ny5Up27bXXsg9+8IP1XkpZkKfGJc8++yy7/fbb2datW0nQOLCwsMBWrlxZ72UQDc5LL73E/vM//5O94Q1vML3+hje8gd133311WhXhJxYWFhhjjP4e2XDy5El2xx13sD/96U/snHPOqfdyyoZEjQNf+MIX2PLly9mqVavY/Pw8Gx0drfeSGprHH3+c3XjjjewjH/lIvZdCNDjPPPMMO3nyJItEIqbXI5EI++1vf1unVRF+AQDYZz7zGfaa17yG9fX11Xs5DcfDDz/M2tvbWTgcZh/5yEdYOp1mZ599dr2XVTaLTtRcfvnlrKWlxXZ74IEHjPd/7nOfYw8++CC7++67WSAQYO973/vYYojYeb1OjDH29NNPswsvvJC94x3vYP/0T/9Up5XXllKuE2GmpaXF9DMAWF4jCK98/OMfZz//+c/Z/v37672UhmT9+vXsoYceYtlsll166aXskksuYb/4xS/qvayyCdZ7AbXm4x//OHvXu95l+55kMmn8f2dnJ+vs7GQ9PT1s48aNLJFIsGw26ws3nR1er9PTTz/Nzj//fHbOOeewnTt3Vnl1jYPX60T8lc7OThYIBCxemWPHjlm8NwThhU984hNsbGyM/eQnP2GaptV7OQ1JKBRi69atY4wxNjg4yO6//352/fXXs1tuuaXOKyuPRSdquEgpBe6hefHFFyu5pIbEy3V66qmn2Pnnn89e9apXsT179rDW1sXjACznflrshEIh9qpXvYqNj4+zt771rcbr4+Pj7KKLLqrjyohmBQDYJz7xCZZOp9mhQ4fY2rVr672kpgEAfGHbFp2occvs7CybnZ1lr3nNa9gZZ5zBjhw5wr7+9a+zM8880/deGi88/fTTbNu2bUzXdfatb32L/f73vzd+F41G67iyxmN+fp49++yzbH5+np08eZI99NBDjDHG1q1bx9rb2+u7uDrxmc98hm3fvp0NDg4aXr75+XnKyZL44x//yH79618bPz/xxBPsoYceYitXrmS6rtdxZY3Fxz72MbZv3z42OjrKVqxYYXgBOzo62NKlS+u8usbhy1/+MnvTm97EEokEO378OLvjjjvYoUOH2F133VXvpZUPECg///nP4fzzz4eVK1dCOByGZDIJH/nIR+Do0aP1XlpDsWfPHmCMoRth5pJLLkGv07333lvvpdWVm2++GdasWQOhUAgGBgbg8OHD9V5Sw3Hvvfei984ll1xS76U1FKq/RXv27Kn30hqKD3zgA8a/udWrV8PrXvc6uPvuu+u9rIpAfWoIgiAIgvAFiyf5gSAIgiAIX0OihiAIgiAIX0CihiAIgiAIX0CihiAIgiAIX0CihiAIgiAIX0CihiAIgiAIX0CihiAIgiAIX0CihiAIgiAIX0CihiAIgiAIX0CihiCIpuTkyZNs69at7L/+1/9qen1hYYElEgn21a9+tU4rIwiiXtCYBIIgmpZf/epX7JWvfCXbuXMne8973sMYY+x973sf+z//5/+w+++/n4VCoTqvkCCIWkKihiCIpuaGG25gl19+Ocvlcuz+++9n73jHO9js7Cx75StfWe+lEQRRY0jUEATR1AAAu+CCC1ggEGAPP/ww+8QnPkGhJ4JYpJCoIQii6fnlL3/JNm7cyF7xilewn/3sZywYDNZ7SQRB1AFKFCYIoum57bbb2LJly9gTTzzBjh49Wu/lEARRJ8hTQxBEUzM9Pc1e+9rXsh//+MfsmmuuYSdPnmQTExOspaWl3ksjCKLGkKeGIIim5fnnn2eXXHIJ+/CHP8z+9m//lt16663s/vvvZ7fccku9l0YQRB0gUUMQRNPyxS9+kb388svs6quvZowxpus6+/a3v80+97nPsSeffLK+iyMIouZQ+IkgiKbk8OHD7HWvex07dOgQe81rXmP63Rvf+EZ24sQJCkMRxCKDRA1BEARBEL6Awk8EQRAEQfgCEjUEQRAEQfgCEjUEQRAEQfgCEjUEQRAEQfgCEjUEQRAEQfgCEjUEQRAEQfgCEjUEQRAEQfgCEjUEQRAEQfgCEjUEQRAEQfgCEjUEQRAEQfgCEjUEQRAEQfiC/x+muMRH+pZqLQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAGwCAYAAABRgJRuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACRH0lEQVR4nO2de3Qc1Z3nr9StbowtC9uyHt2tot0Yg5FiR4qcMSYTm7wgM5uE2U1OZpIx5CSbnWTynDwmk2Q2kMzwcNgQCDAYG69nVmCzyUGN5D0JQlJiMyvcEiSwoTuEJDhIbSBxHiPhJDyC+e0fnFvcuvW71VX9UD/0/ZxTB9RdXXXrdrnvt37PJiIiAQAAAABQ5zRXewAAAAAAAOUAogYAAAAADQFEDQAAAAAaAogaAAAAADQEEDUAAAAAaAggagAAAADQEEDUAAAAAKAhCFd7AIvJSy+9JJ566inR2toqmpqaqj0cAAAAAPiAiMTJkydFLBYTzc1me8ySEjVPPfWU6OnpqfYwAAAAAFAE+XxeJBIJ4/tLStS0trYKIV6elJUrV1Z5NAAAAADwwzPPPCN6enrsddzEkhI10uW0cuVKiBoAAACgzigUOoJAYQAAAAA0BBA1AAAAAGgIIGoAAAAA0BAsqZgaAAAAtcOpU6fEH//4x2oPA9QALS0tIhQKlXwciBoAAACLChGJX/ziF2J+fr7aQwE1xBlnnCG6urpKqiMHUQMAAGBRkYKmo6NDnH766SiGusQhIvGHP/xBnDhxQgghRHd3d9HHgqgBAACwaJw6dcoWNGvWrKn2cECNsGzZMiGEECdOnBAdHR1Fu6IQKAwAAGDRkDE0p59+epVHAmoNeU+UEmcFUQMAAGDRgcsJ6JTjnoCoaTAWFhbE8ePH2feOHz8uFhYWFnlEAAAAwOIAUdNALCwsiIsvvlhs375d5PN5x3v5fF5s375dXHzxxRA2AAAAGhKImgbi5MmT4sSJE+LYsWNix44dtrDJ5/Nix44d4tixY+LEiRPi5MmTVR4pAAA0LslkUlx//fXVHkbZOHz4sGhqaqqLFHyImgYikUiIw4cPi1QqZQub+++/3xY0qVRKHD582LNtOwAA1DrVdLPn83nxgQ98QMRiMRGJRMSZZ54pPvGJT4jf/OY3FTvnYrJjxw7xyU9+0vHatm3bxNNPPy3a2tqqM6gAQNQ0GD09PQ5hc8EFFzgETU9PT7WHCAAARVNNN/uxY8fE4OCg+MlPfiIOHjwofvazn4ndu3eLyclJcf7554vf/va3ZT+nH06dOiVeeumlih0/EomUXBRvsYCoaUB6enrE0NCQ47WhoSEIGgBA3VNNN/tHPvIREYlExL333iu2b98uLMsSb33rW8XExIR48sknxRe/+EXHON/znveIFStWiFgsJm688UbHsa644gphWZaIRqMiFouJj3/84/Z7L7zwgvj7v/97EY/HxfLly8Wf/MmfiMOHD9vv/+u//qs444wzxP/5P/9HnHfeeSIajYq9e/eK0047zeUi+vjHPy62b98uhBDiN7/5jfirv/orkUgkxOmnny5e9apXiYMHD9r7vu997xNHjhwRN9xwg2hqahJNTU3iiSeeYN1Pd911l+jt7RXRaFQkk0nxta99zXHeZDIprrrqKvH+979ftLa2CsuyxJ49e4qdev/QEmJhYYGEELSwsFDtoVSUubk5SqVSJISwt1QqRXNzc9UeGgBgifPss8/Sj370I3r22WeLPob6G5dKpWhqasrxdyV+637zm99QU1MTXXXVVez7H/zgB2nVqlX00ksv0Zlnnkmtra109dVX02OPPUbf+MY3KBQK0b333ktERN/61rdo5cqV9O1vf5tmZ2dpenqa9uzZYx/rPe95D23bto3uu+8++tnPfkbXXnstRaNR+slPfkJERPv376eWlhbatm0bTU1N0Y9//GP63e9+R52dnXTbbbfZx3nxxReps7OTbr31ViIiOn78OF177bX00EMP0eOPP26PK5PJEBHR/Pw8nX/++fTBD36Qnn76aXr66afpxRdfpO9973skhKD/+I//ICKiBx98kJqbm+krX/kKPfbYY7R//35atmwZ7d+/3z73mWeeSatXr6abb76ZfvrTn9LVV19Nzc3N9Oijjxrn2Ove8Lt+Q9Q0GNX4xw4AAH4ph6ghWvyHt0wmQ0IISqfT7PvXXXcdCSHol7/8JZ155pl08cUXO95/97vfTW9961uJiOhrX/sabdiwgV544QXXcX72s59RU1MTPfnkk47X3/jGN9LnP/95InpZ1Agh6OGHH3bs8/GPf5ze8IY32H+PjY1RJBKh3/72t8br+rM/+zP69Kc/bf+9fft2+sQnPuHYRxc173nPe+jNb36zY5/PfvazdN5559l/n3nmmfTXf/3X9t8vvfQSdXR00C233GIcSzlEDdxPDcTx48ddQcHbtm1zBQ+bAuwAAKBeqDU3OxEJIV4pIHf++ec73j///PPFo48+KoQQ4l3vepd49tlnRSqVEh/84AdFOp0WL774ohBCiB/84AeCiMSGDRvEihUr7O3IkSPi8ccft48XiUTEpk2bHOd473vfKw4fPiyeeuopIYQQd9xxh/izP/szsWrVKiHEy7E3V155pdi0aZNYs2aNWLFihbj33nvF3NxcoGt99NFHxQUXXOB47YILLhA//elPxalTp+zX1PE1NTWJrq4uu79TpYCoaSBaW1tFR0eHKyhYDR7u6OgQra2tVR4pAACURj6fFzt37nS8tnPnTlfwcLlYv369aGpqEj/60Y/Y93/84x+LVatWifb2duMxpODp6ekRjz32mLj55pvFsmXLxN/+7d+K17/+9eKPf/yjeOmll0QoFBLf//73xcMPP2xvjz76qLjhhhvsYy1btswVuPva175WnHXWWeLOO+8Uzz77rEin0+Kv//qv7fe/9rWvia9//evi7//+78V3v/td8fDDD4uLLrpIvPDCC4Hmgohc55aiTqWlpcV1/ZUMaBYCDS0bira2NnHPPfeIkydPutK2e3p6xJEjR0Rra2tdpOUBAIAJNSg4lUqJoaEhsXPnTtsaXYlMzzVr1og3v/nN4l/+5V/E3/3d39kNGIV4uev4HXfcIS699FJ7sc9kMo7PZzIZce6559p/L1u2TLz97W8Xb3/728VHPvIRce6554pHHnlE9Pf3i1OnTokTJ06IP/3TPw08zve85z3ijjvuEIlEQjQ3N4s///M/t9/793//d/GOd7zDFjovvfSS+OlPfyo2btxo7xOJRBzWFo7zzjtP/N//+38dr91///1iw4YNRTeiLBew1DQYbW1txjo0iUQCggYAUNdU081+0003ieeff15cdNFF4r777hP5fF7cc8894s1vfrOIx+PiyiuvtPedmpoSX/3qV8VPfvITcfPNN4tvfetb4hOf+IQQ4uXspX379olsNiuOHTsmhoaGxLJly8SZZ54pNmzYIN773veKSy+9VAwPD4uf//zn4oEHHhC7du0S3/72twuO8b3vfa/4wQ9+IK688krxzne+U5x22mn2e+vXrxfj4+Pi/vvvF48++qj4m7/5G/GLX/zC8flkMimmp6fFE088IX7961+zlpVPf/rTYnJyUvzTP/2T+MlPfiL+7d/+Tdx0003iM5/5TLFTWzYgagAAANQN1XSzn3322eLBBx8UZ511lnj3u98tzjrrLPHf/tt/ExdeeKE4evSoWL16tb3vpz/9afH9739f9Pf3i3/6p38SX/va18RFF10khBDijDPOEHv37hUXXHCB2LRpk5icnBSHDh0Sa9asEUIIsX//fnHppZeKT3/60+Kcc84Rb3/728X09LQv69PZZ58ttmzZIn74wx+K9773vY73/vt//+9iYGBAXHTRRWLHjh2iq6tLXHLJJY59PvOZz4hQKCTOO+88sXbtWjbeZmBgQHzzm98Ud955p+jr6xNf+tKXxFe+8hXxvve9L+CMlp8m4hxhDcozzzwj2traxMLCgli5cmW1hwMAAEuO5557Tvz85z8X69atc1gRgrCwsMC62YV42ZIDN3t94nVv+F2/EVMDAACgrmhrazOKFrSBWdrUjfvplltuEZs2bRIrV64UK1euFOeff774zne+U+1hAQAAAKBGqBtRk0gkxDXXXCMefPBB8eCDD4o3vOEN4h3veIfI5XLVHhoAAAAAaoC6cT+97W1vc/x95ZVXiltuuUVkMhnR29tbpVEBAAAohiUUzgl8Uo57om5EjcqpU6fEt771LfH73//eVbVR5fnnnxfPP/+8/fczzzyzGMMDAABgQBZk+8Mf/uCo9QLAH/7wByGEu2hfEOpK1DzyyCPi/PPPF88995xYsWKFSKfT4rzzzjPuf/XVV4svf/nLizhCAAAAXoRCIXHGGWfY5fJPP/10V3VasLQgIvGHP/xBnDhxQpxxxhklFfCrq5TuF154QczNzYn5+Xlx1113idtuu00cOXLEKGw4S01PTw9SugEAoIoQkfjFL34h5ufnqz0UUEOcccYZoqurixW5flO660rU6LzpTW8SZ511lrj11lt97Y86NQAAUDucOnVK/PGPf6z2MEAN0NLS4mmhWRJ1aojIYYkBAABQP4RCoar3CgKNRd2Imi984QvirW99q+jp6REnT54Ud955pzh8+LC45557qj00AAAAANQAdSNqfvnLX4qdO3eKp59+WrS1tYlNmzbZjcQAAAAAAOpG1Ozbt6/aQwAAAABADVM3FYUBAAAAALyAqAEAAABAQwBRAwAAAICGAKIGAAAAAA0BRA0AAAAAGgKIGgAAAAA0BBA1AAAAAGgIIGoAAAAA0BBA1AAAAACgIYCoAQAAAEBDAFEDAAAAgIYAogYAnywsLIjjx4+z7x0/flwsLCws8ogAAACoQNQA4IOFhQVx8cUXi+3bt4t8Pu94L5/Pi+3bt4uLL74YwgYAAKoIRA0APjh58qQ4ceKEOHbsmNixY4ctbPL5vNixY4c4duyYOHHihDh58mSVRwoAAEsXiBoAfJBIJMThw4dFKpWyhc39999vC5pUKiUOHz4sEolEtYcKAABLliYiomoPYrF45plnRFtbm1hYWBArV66s9nBAHaJaZiRS0PT09FRxZAAA0Lj4Xb9hqQEgAD09PWJoaMjx2tDQEAQNAADUABA1Swxk8JRGPp8XO3fudLy2c+dOV/AwAACAxQeiZgmBDJ7SUF1PqVRKTE1NOWJsFlPYQJwCAIAbiJolBDJ4iuf48eOuoOBt27a5godNQqOcQJwCAAAPRM0SQD7Vcxk8d999t3j961+/pDJ4irFytLa2io6ODldQcE9Pjz2nHR0dorW1taJjFwLiFAAATCD7qcGRT/UnTpywF2MugyeZTIr77rvPXqwXFhbEyZMnWYFz/Phx0draKtra2hbtOvxSaNwvvfSSePe73+2YD4mcl46ODnHPPfe4rq+W5kR3hQ0NDYmdO3c6xCmClwEAjYLv9ZuWEAsLCySEoIWFhWoPZdHI5/OUSqVICEGpVIrm5uaIiGh4eJiEEPaWTqftz8zPz9PWrVsd+0vm5uYolUrR1q1baX5+fjEvpSB+xt3f30/JZNI1H/J9+Xo+n6/GJQRCHbPcuGsHAIB6x+/6DVGzBNAX7OHhYQqHw8bF0CSEgiz88/Pzxvfz+XxFBJHfcU9PTzv+npqaYj/nl2pcq2RqasrxPU5NTVXsXAAAUC0gahiWqqgh4p/qw+EwDQ8P+xICQRb+alp6/I67XFaOWrlWWGoAAI0MRA3DUhY1RETpdNqxAA4PDxOR2QJT7KJZDktPKfgddzmsHNW61lJEJwAA1BsQNQxLWdTMzc3ZsSTcQm+yKhS78Fd70S007mIFG+dqUo+VTCYrfq3VFo0AALDYQNQwLFVRoy+66XSaXRTz+TzNzs56WmqSyaTvRboc7pFi4lUKnbdYweXlaspkMp5xSuWkXgO5AQCgWCBqGJaiqAnyVK8ulplMxhhcHETYlOLiKWbxLiRY9CDhIFYOP3O5WEG71QxOBgCAxQaihqERRU2hxW12dta3MFAXbSlgdIGjvl7IvVGqpSaom8XP/slkkgYGBoq2cniJpsWy1AAAwFIDooah0USNX0uG6lLS0Z/q1dgbLjtKCpxC7o1yxdQEOU4l5qPQmNRMMgTtAgBAZYCoYWg0UVOpgNFCQcWFFv5yjyuIxadcbplCxxkbG3O5m2olaBeuKQBAowFRw9BoooaocllGix0LU8nxBEUfvyoS5ubmyLIsikajLktNJpNxHKcaQbsIIgYANCIQNQyNKGqIyl+ErVpZS5UcTxBUS1MymaT+/n7b9WZZlj2GWCxGsViMIpGIcUyLbRlBujcAoBGBqGFoVFFDVD5LRrXry9TKeNTzyngZNRA4FovZAseyLPv/F1MwmISjtCbVyncIAAClAlHD0KiiplyWjFp7yq/2eEyp2p2dnQ7RMDc3t+iunUJuJs5FBkEDAKhX/K7fzQLUNfl8XuzYsUMcO3ZMpFIpMTU1JVKplDh27JjYsWOHyOfzvo/V2toqOjo6RCqVEocPHxY9PT1CCCF6enrE4cOHRSqVEh0dHaK1tbVSl1NT4+np6RFDQ0Ou13/5y1+Kubk5x7h6enrEkSNHxD333CPa2toqMh6VkydPihMnTri+Z3k/zM3NiTVr1jg+MzQ0ZM8hAAA0JIsksmqCRrPUVMKSMTs7SzMzM+x7MzMzNDs7W5ax+6WamTwmS43cqt0R28s1p7rERA1ZapCZBQAoBrifGBpN1JQ70wWZM6+gCwa1onItiQROeOkxPrUSU4P7CwBQLBA1DI0maojK++Rb7RiWWkGfB66islpsr9rCRg8Sj8ViNfkd4v4CABRLw4maq666igYHB2nFihW0du1aesc73kE//vGPAx2jEUVNuSkm26jRXAqqRUHvFSUFzsDAgF2gsJiFuFxzxllqotEoWZZVk9aQWsuuAwDUBw0nai666CLav38/ZbNZevjhh+nP//zPybIs+t3vfuf7GOUUNY22kKsEreDbiC4F+f1y1ydfL/b6yjVnhWJquO+rFu7Nxa47BACofxpO1OicOHGChBB05MgR4z7PPfccLSws2Fs+ny+LqGnUhVzFb92bcrsUalEs+h2T3/3KMWf17spZzArRAID6p+FFzU9/+lMSQtAjjzxi3Ofyyy9ns1ZKFTX1vqAUIuiTtJfFIJlM0vT0NPs5XaRUIvC5kMgoZ6+oIGMv1Q1Tz8IalhoAQFAaWtS89NJL9La3vY1e97rXee5XKUsNUePGBhR7XdxCpbYY8LPwllMs+ln0BwcHacuWLUUJA10MqWOPxWKUzWZdY7csi3K5nOecBbl3atGqVYhG/XcDAKgsDS1q/vZv/5bOPPPMwJaQcgcKN9oTZ6miQncppNPpwMcr16Ln51r01Ge/12sSTNls1u4DFYlEaGxszHUuXSQVcsPk83manZ2tO/HC0egWTgBA5WhYUfPRj36UEokEHTt2LPBnK5H91EixAaW4NEwCT02H9itSstmssXBcsZlBpnMXI6JMi/P09LSrlg0nntSO3zKDihPF8v0VK1ZQMpmsOzeTTj27zGqBerTMAVAuGk7UvPTSS/SRj3yEYrEY/eQnPynqGLDUFKaYH85CwkAVNn6zqWStFVUsqgufX+uFn++omO+Ru2YpUEKhkONY8lpUYaJ+nqt9w9XGaQTrRqH7q1GsUuUGghAsdRpO1Hz4wx+mtrY2Onz4MD399NP29oc//MH3McopapZCbIAfgePXpZBOp31ZtPL5vMtKo1s7gsbq+LGmBbG4yevmxFAoFKK1a9e6xh8Oh2lgYICds0LF/YqxdtUjWLjNwHUHljoNJ2r0RUJu+/fv932McomapfAD43eBmZ2dLbifWqiukCVkbm7OIWpisZjDamNZlqsgntf8c8JDr+FSSl0eXQzJjRM2lmUZa9+YAq293m8kQUO0NP5dlcJSeJACwETDiZpyUC5R0yhPlF6WmJmZGUfFXK8Fxus409PTjuN4/RCri5plWZRIJIzCwM9x9bGOjY1RNBq1j5PNZh0CKRwOU29vr31cLo5FHyNnVeJcUFKgyXni5qyQtaiU+K16icfAwu3NUhC3AHBA1DCgovArcMJMd6v09/fbC7xlWY5sHj8/pEGfvNUxZbNZ6u3tdYmCrVu3UjabLWgB4s6tu7ZaWlpYd8/o6Kj9dzKZdH3PnDWps7PTaE2UAicajdqp3jqFFqtSFrN6E+FYuL1ppOQEAPwCUcOA3k+voC/62WyWtm7d6srUmZ6eNmYiFaKYxVQKKy6TyLIsGh8f9xWrYzq3Lkj069LjW/r7+12LvSnuJxQKUXNzs+v1zs5OO9Wbc58UsjoFjanxqqEjLVTqd1AOt065RT4Wbh4IPrBUgahhgKhxotds0WNXpAuHy0RS8Vq0Ss2m0i0ppgBa7gfedG5O2IRCIbrhhhtcgk4eI5fLOdohcBla0vrDCaZwOEyhUMgOFpZMTEzYlhw9hkaOJUj2kx8xF41GA1vdvCi3JQgLNw9cc2ApA1HDAFHjhltApKiZmppiLRLc4lou94VXZpAqEEZHR33/wPuJX9GvXRcX0WiUBgcH7WvkaumocTTd3d2s6EkkEvaxs9msQwRNTEw4vhd53uXLl/uuU+Pl8jNllXGLYRDrSjkCfLmMMvm9cgUSlxoIogZLHYgaBogaHn2B5xZjP6nG5fhB5Z769fFt2LAhUBCzn0wj3V0krVRqsLIMUlY/n0wmjeJPfiYej7OCUZ3nUChk98jSLWiZTCaQtcvriV7/bmOxWNmtK0GtCPI74io8q+JuKS/c9RYXBUC5gahhgKhxwy3w3MJXqJZKOZ+gVcuKKSXbb50aPzVhTMKmu7vbtfirx1NjbrLZrL3wqpssGhiPx+24GpNgLKdLwTRvhaw1pTz5F+s2Uuc0Go06XJ+quOPaTCwl6j05AYBSgKhhgKhx4mXq5xa9QrVUFmN8qoXEb/dvPzE6XgJHnYP5+XkaGBhwCBF5vo0bN7o+J4WUZVm0efNm6urq8hSMJjFQjmBbKVa571paj0oVVMUG+OoChhsLFm4Ali4QNQwQNa/A+ej1uIuuri7HQjg3N+e7MnAlxkdUvCVhbs7dZ4lzpZ199tkuYaKLAbWOzcTEhCtbKxQK0d69e23XlXzdsixX6re0AI2NjRnntVzBtpxVplDMVBBKDfBFgDAAwAREDQNEzSvoPnpVREQiEdu1ImvCyAVYt2hUatGpRAyBbkXo7e11HH96epot+BeLxVyLfzKZpM2bN1M0GnW8r1p+1LkKh8PGWjZ61WSTdcyviNM/oxcd1LOiCmW3+aFcmTlI5QYAcEDUMEDUOFF99FywpnQt6QtfOBymdDpd8XTScsYQmFxnanCuKlz0mBpdkKTTacf+kUiELMuikZERl/ALhUKOLCdTZpkublSx5HeOTRYuNVtLFUectSbo91kuqxosNQAAExA1DBA1PFI8cGm1lmXR7bff7rBAZDIZIqqfdNJCVgS9wKBqJSlUqE8XQlzm2De+8Q3WUqIXGJyYmGDPaUq75ghi4SqXdSWoVY0Tq1xGWaVFMwCgfoCoYYCocTM/P09btmxh3RL64qoKGnW/Wk4n9WNFUF1J+jxkMhlbeEQiEVfROl3YcFsymaRNmzY5go2liOzv76dwOEybN2+2X9fja8bGxgJdczm7q/sVqn6tapwAMmWU1YtoBgBUHogahmqLmlpMyczlcqwVYW5ujnW5cNRyVkqQbuO5XM7YXiCRSBjbC+jB09J1xGVr6eOZn5+nmZkZexFXa7JU0gVTrbonnJgyZZRVeiwAgPoBooahmqKmVotn6X2MuMJw9R7fEMSKoO6nfmdSkEjkd9bf328MLtYDfePxOM3MzLgW9ZmZGTp69GhFUqzLMS/lPjbX64orpliusQAA6h+IGoZqippaLnPuFTsSDodpeHi46vENlbZymUTn/Pw8TU9Ps6JTz5ZqaWlxtEqQlq+jR49SU1OTI25GzSgLhUL2+5zFrNr3hx+4oHOuvoy8Hq8O6wAAoANRw1Bt91O5AjMrNTbdOhMKhWoiKDiIC8mv8Cm1kzVn4cpms2zQ8aFDh2yxI+OSstmsy73X0tJCiUSCRkdHjVah2dnZss1puUSiV3kAtRKwWh6Ac9uNjY3VnHsWAFAbQNQwVFvUENVu2ionamQPJHWfarjJ/Ab7+m2d4KeTNRcUPDc3R7lczu7YvWXLFkdwsVx41dgY2QRTDTgOhUK0bt06l1VseHiY+vr6HMGyEumyKcfcl9sV6qeQo56ezlVR5gK1ix0TAKCxgKhhqAVRQ1R7Bca83E/6IlOtJ2a1IjBn5Tp06JDvJpdeIomLj5H7yP5O0WiUstkszc/P28HF+sKbz+dt8SNRhQ23qcUNw+Ew2+CyHFYy9fr1Wj3qeWQAs9/vR7dCmqoV641QuZYN9eZ+AwBUFogahloQNbVmqTEFCuuvVXsxUdOfTYuk2ltJFz6qS4nI2xWoxsVI0akLv2IX3t27d7NiRi9uWKqL0uRektlW2WzWFoEyboqzpJTamkG3/pmKNnLzW073bC1mHgIA/ANRw1BtUVOLMTVeKd1ykYlGo5TL5RZ9bBK5EOsLphCC9u7day/OkUiEQqGQqxu2qcMztwhblsV2KZdzoVZcDvodFrLUcOdTxVs2m3WlncvFWrUMqdWhVSGnCsOBgQGanJx0jScajdL4+LhDDAb57k1NNOVWyE1YrpT2oIHLcG0BUNtA1DAg+8nN/Pw8DQ4OGmMZLMuy40JMn1+srKSRkRGXFUVuXV1djpgVbmHl5te0CHPixqtbeVBB097ezgqcWCxGW7dupeHhYcfrY2NjdgxPLBaz3V9SvMTjcTuGJ5fLOQSpFDZqBWPp3hoaGnKcp7293SXg/C743LxwVpdCHda9mnv6odjA5WpbIwEAZiBqGFCnxjy2YoTJYlyTXm2WEy1S1Kj7cAuraYymfTnBI+cpSFzUzMyMQ0yMj49TPp+nkZER9tx33323y1ohhYv8OxKJ0OTkpCsGyLIsNgNLFRVeXcN165a64PutPaMLwiDNOYsRjH4y2fR4KT1wWa9DBACoLSBqGKrtfgoiHuohBmCxrE+6heGqq65iF+J4PM4WDdRFjVp7Rr6ndrJOJBJs+wNp9Si08Orf3ezsLK1YsYLC4bCdrq0fY9myZfb5VNGmLr6ypo18b+3atY5GmaFQyFFTiHPFyXgZ/dqam5sdf0uxI6/LS8Cq308ymaRsNutqjirvAy+xG8Q9q7aa0MeVy+VocnLSYa266667XHOhzgdcUADUNhA1DNUWNX6pZauOzmLECell9E2btNZwqelyPLlcznGsaDRK8Xic5ubmaHx83H5dLvLRaJTGxsZ8x9TIBV2/9tnZWRodHaVU6uV6M2qm1qFDh2h2dtYhDkKhkG2Z0S0fJhecusnj6HMxNjZGMzMzxjnSRaK8Bi8BqwYcS7eS2hzVsizasmWLfb9yotyvQJYp9WqlZ1WcSitXJBKx7wevTS8sCRcUALUJRA1DvYiaWo2/MbEYGV3z8/O0Z88exzlWr17t+LulpYVisZjDTSNfTyQStHXrVsrlcvYiHAqFbEsHF5wrxMtunlwu5zv7SRc9ppo6AwMDrPVBCq7+/n5HzIdqLdLjYEybOhb1811dXazVQhdLXV1dbJ0iTtBFIhG7NYR+bxSKy5LXXkjIDw4O2s1X9UwtU0kCk3tNF3/VzEAEABQGooahXkQNUW1mSnlR6do7qhVD3dauXev4W3WjqIt0PB53VAlWrQvq57u7ux2vqensep0aFdWCpgegct9doZRrKQD0eR0aGirYFVxeuxR3cgz65zo7O43uOu761es0iadSRHghl2sul2PFo1dsEHfP6K42rvu8X+rBTQxAIwBRw1BPooao9mramKj0OFUREgqFHAuYZVl02223GRcuLq7DNGZuQdevQbo/dHQxUuycqIskdww93qajo8PzGhKJhH1OXRh2dXVRb2+v45jhcJjS6TSbPSXhBKwuYFSXnX7dpSz2ulXMS5SZ3HScACrG8llPbmIA6h2IGoZ6EzVEtVd9WKfSFiW9+u3k5CQbhHrFFVewC5WadaMvMPrc6gsfN3ZuQZ6dnWVrr+jHHxsb87xWdZHUq+7qrrdYLEYTExOsG0ndpPtMHl/WqeE+p7ZnUN1thcSgPs9ewrAci70fQWr6TnXXpLzugYGBwOOpNzcxAPUMRA1DvYmaWrfUVPpHXbYh0J+G1aq4qRTf8VmIl4NA1eJ0euE9LzeO2sxT/UwqlaItW7Y4hIIaeKymEOtWhEQiwdZnkdejulfU442Pj7uuz7IsmpycdImTDRs2OFKXVVGjnkuvBROLxVxpzboA8SNguTT4Siz2JkEaDodpaGiIFW1qdpwMAFcFczabDexKqjc3MQD1CkQNQz2Jmnr4sayk+V09tr7YqMeemJgwxseEw2Hq7e11jU8VNJFIxBWXo36e61KuN7HUhUgkEqE1a9Y4BJJaR0ftwq1X+dXbF3R2djoqPp911ln2vrlcziFgmpub6eyzz3Zk/SQSCUdncS6dnLOoSNT6NIUELBeYLF8v5/1rEqSqEFTnQA8el8ULvb5X/Xxe93KtP3wA0AhA1DDUi6ipJ7N2pQIlgy6iahbL8PAw2yNKihB1QdTjSbjX1H5FXFCsl9VHWnz0eJa+vj67Xo5e5VcvFCfPq6Yvq/Vg1EaY6sKtVgOW86ZatYKI5UICVm1vIGNquHiXVMpfoTvTfaVbwLq7u22rDCde5BwcPXrUIQ51kayPP+i/uSBuYgQXAxAciBqGehE1jR6A6PdHvZC1KpvNOppcqvOltiVQn+DVIntqarMsuCcXfq7GCRc7Ysoskpsam3PHHXcYxZLexFIXBHKR1M991113sXEisVjMrn/DZXupc6VWA/ZauE3fmyoU5fci4570oFxZF8br/jXd/+p5mpqa7CDobDZrv55IJCgSidgBzur9JPfjzp3P531lrXFwlhpTKwjprkwmkw35bxuASgFRw1AvooaocZ/mggq2Qqb92dlZtuYL0SuL9ebNm9m2A9lsljZt2kShUMgOFFVdNPqCrD59c+Pyajmgiik9K0dm8ehjNF0zd24udVm631Rrlu6O0y04xSyoXr2WOJdgIfFkstLJlHpVtHH3zujoqDFFu9C/naCuJE7gqgJSH4defbmWrbAA1BIQNQz1JGoalSCVY019ltLpdKCWErlcjrV8qBYMfSHhXEr64qaPSxcrpgrIuviRY9OtQ7FYzGgt4AJlZewKZ2WSY0kkEjQ5OcnOuZqSHhT9O9AtZdddd53jb32x1z+vuxnVoN5EIsEKWdXaUoq1w68ryXQvcy5F/Zp0y1ytxcsBUGtA1DBA1NQGftxKXGqzukDL1GO/59MFit7QkEs79lp0TGnFoVCI9u7da7+nC52mpiZW6DQ3Nzv6OKnWJDWWRsakcOeOxWI0NjbGZv4MDw87gqPVIn6cOCh3E1IvS40pJZ7LINOvv9wxZ0EsNV5WR1XUJZNJ1z3E3dcQNACYgahhgKipHdQ4CP1HfWZmho0BUQOA1SdgL/Qnfn2R1LNdggYoW5ZF3d3d9vFaWlrIsizP0v1em2z1oBa/syyLDhw4YFso1LlZtmyZq0KuyTrEuce86sjMzs6W3L19eHjYJa5US4qeEq/HRemi0BRbVIy1I4h1yEvY+OlczgmXWq9BBUAtAVHDAFGzeMgaM9wPfi6Xo82bN7vcJGpl2t7eXoeAURsP+onLIOIFCldHRT1G0CwfaVVKJBIO0RCLxWwB1dLSQu3t7b5ETWdnp50BpYuicDhsH1N1J3V2dhpdXaFQiFatWmX/rQsgUx2ZZDLJWk/U/QoF+3IWpWQySYcOHXI0t9StWrqANYkCL2FcyNrkFQckRSvX8iKo9cckXJAGDkAwIGoYIGoWh/n5eRocHGTrfnAuBdVqIBepZDJJfX19bGq2NN0XipvQFy5uIeHaAHg9fedyORocHHQsQHpHatX909nZaadn6+4l0yYDSLlg5XA47MjmkvOli5WmpiZf3bzlcXRLh54RZRI+pnkKEkDrlRIvhZc6PumWk+ns6r5jY2O+RJcueNWMLb2ScrHWK5Nw0atFI6YGgMJA1DBA1CwOei0YKWxMi5dq1VD3n5+fp3Q6zT7p+o37UAWHvpBwMSV+ss4K7aPWRFEXswMHDhQUGqoVau/evfb++udUF5V8Ty8i2Nrayp6jq6vLmIYu06S5SsmqO4ZrLSCtczMzM65FOp/P08GDB+2x6gG0flLi9ewnThxHIhFbRBayrHDuJvWzqsUnn89TJpOhLVu2+LJeebnHOFcbsp8A8KYhRc2RI0foP/2n/2THMKTT6UCfh6hZPPSFiluE4vG4sQKtLkRUcRD0STZIxpXfdPNCwkaPJUmn02wrB31bt26da79wOEx79+5l91dFQiaTobvvvtszxiYUCjnqu+iWoJaWFspms2xcEye85Byo1jk9O0m1YC1btsw+jh5Aywk+1dKnZrFFIhFHLJN+zaYKyTqqUFKvL5PJOL5z6eryU6CPE3VyP3VO9Zgw1KkBwExDippvf/vb9MUvfpHuuusuiJo6wPQEHolE7EWHi3HhYhlKMdH7rY2j9l4qRfyoi5+6gJ9zzjkFRU04HKbPfe5zjtd27drFZjsJ8XKvJzXLRtbdKXSeeDxOGzduZPddu3YtxeNx2rRpk6uysUlc6tY52edKvwf0goi6OONe091DqhDr7OxkRZxeNdhEPp9nLT56MDj3/6b7stD9JuOVOOFSqzWoGrVuFqgfGlLUqEDU1AdcPZWxsTGjJUY2avQjLoKY6AvFycimj/o5VAuL6pIwxZvobjfO7WAK6vUSOvJ4XJPM0dFR+xymlHGTK8pLWLS0tLB9sbg6M9z1x2IxRzC4zAozCTQ5hj179rhaVqhiQlYNNh1DCmM/Cy0nvNV54FL//VgQSxUBtSQiGr3COagPIGqI6LnnnqOFhQV7y+fzEDWLiMlSoy9u+hNvMpk0Vgku948o94PNLVrSZSM/o7ZnkG4U9VojkYijaaLqdti3b58vYfO5z33OIYSkoNHFjZxPUwC2ny0UCvnO0JLnnJiYcH0Hpu88Ho97pmoL8bILaWRkhHVHbd682WG9U11P3Nj04G/T/anG1HjNn34vVjIdu9ZERD31ogONC0QNEV1++eXsDxRETeUpFFNTKFgymUzSzMwMe+xyPqmafrD1mBg1YFV3tZgWVr0Giszo8hNbI+dAzwDTg67VwFk/bqdVq1ZRZ2en0aLjZ1PHs3nzZtd3wVnnZOq4V1Bwc3OzfY/E43HbrdTS0uLols59PhQKOdL+C7ko1e9d9mnixs2JlkqnY9eiiChHXSAASgGihmCpqRZ+s5+qFSxZqOja0NCQZ9CqV1q6up+OV/CtSTgkk0k6cOAARaNRV/q52hagt7fXl1A5evQoTU9Pe46fi1GRokEXFD09PQXbS6jCxo81qb293TH/GzdudPQC04+hxt7oFkA1kJmrRySFYyKR8BSqapr9YizutSgiUFsHVBOIGgbE1CwOherUSAsD95RPVNmYgfn5edqyZYtxXNyCpi6w8Xjcc2E2xZvIc+vVc/fs2eP4fCKRsINz1Via0dFR+u53v8vOy/T0tCO9W41J0a9jfHzcXphMDTiF4GNz9KrEoVDIIUoLxdToWzwepxtuuKGgyJHixGQhU7PoUqlX2iiomWqcO2d+fp5GR0cLfr9cXM9iWFBqUUSgCjKoFhA1DBA1i4dXRWHZZFJfoBcjODKXy9kuG1XYzM3N0Zo1axw/2Hv27LEXFc56YbK2mBYePcCYK6Ovt0kIh8MUiURo8+bNbBdtrs+SlxtKXaD9WE1Wr15ttACpopSzzmWzWerv72fH09nZSZZl0cDAABuMzM3l0aNH7QBhWVdGnjMej1MikbDnR71fvNw5piBhXejobSsWK9YliIio9L+fWhRZYOnQkKLm5MmT9NBDD9FDDz1EQgi67rrr6KGHHqLZ2Vlfn4eoqV30p2n1B1pfMEr5geYW36mpKTbwVLozTGnNnIDwauGgX6Ns5Ki3WJBWju7ubnsRNx1XPaZudfAas5eQ0Pddt24dK0qkMJXfR39/v13JOJPJONxtpnmT16W2clDnUlq9VDGqBh2rwiQSiRitZGqwtu7OiUaj1NXVxfYF09slDA4O2ply3L1VbL8s05j9iohKBxfXojsMLC0aUtR873vfY38gL7vsMl+fh6ipXfTATdl3SI+R0F0LxeDlahLi5TotUshYluUrK0iv8Ltx40Z28cvlcjQ5OUmzs7N2TIdez8VLKMnCeHolX2n94tKlk8kkjYyMGIvy+W2noG5dXV2Obupzc3OUyWTsVhByPnp7ex3Hb2pqco0jHo8bxyCtIl4WNtWKYhIcuutPFQkTExOUSCTo7LPPdrw3NTXlsCoG7Sel33NB7tugIqKSwcW1GLgMlh4NKWpKBaKmtlF/JPWaLl5BoMWeS38yb25upng8bj/1+13s1cwe1TKhNoskerl6bSwWo2g0Sps2bXK5orgGjerim81m7YVZL94mz3366aezna3n5uYoHo9TS0sLnXbaaY59vvrVrwaunSPFiBpjMjo66rJqmeZQnq+5ublgl3H5Xavzoy/0XBq3au1TF2Z1Gx4eNlqT1HvOjxgp1+Jf7HEqZU2ptRRzsDSBqGGAqKl9OJO73qW7HOZuTtR0dnZSJpMxCguTxUZN356ennalYGezWZqcnHQUjLMsyxHgGw6Hqbe3lzo6OthzTE1N0ejoqEPsqb2T5NyYsrbkeXp6emhkZMRxrFI2VdiEw2HasGGDLzF49tlns7E6esVgIQT19vY6sp/8uGS4hTiTyRSsZFxsR3ju/i1WWJQiIioV91JLxQDB0gSihgGipj7wqhdSLkFjEi6WZblq1EjBw32ms7PTtcBMT087LBYtLS0Oa0Q4HKbR0VHbcuNHPHR2droWYH3RDIfDjk7gegp1IpGw3Xpzc3N08ODBosWMDGDesmULHTx40Ffbg0LvW5Zlz1ssFnNkf8nsp/n5eV/Bs7q1o1AlY13ADA8PswLS7/1VrLBQ3Vy6iFBf9xIRyFACjQhEDQNETe3DLQjF/kCbFgYuUJjrT+S18KlCgatem81m2VL+aoCsKkD8Lvymcah/q/E96qaX/J+YmCg4Bq9z9/T00NDQEDtfJqtWV1cX20RTTf+WAcIyO0wN1B0YGHC5i3TBIBd9L3cmd01quwn1db0buR+KERblcPOUQ1BxwBoDqg1EDQNETW2jm+7Vp+VifqC5BSKXy9liQ29loFs1xsbG2FouqRTfE0o998zMDGuFWbVqlSuGxCReurq6XOKgvb3daN1R0431RbWrq4v6+/sdrQYsy2LdXWeccUZBQVOM66pQ7Iw+x9PT05TL5RxjlueNRqOefZnk4q/HOXFjD4VCtotLn7d0Os0GZXNwYirIfVtqTE4pri/EzYBaB6KGAaKmdvFyF3BBw0EWCJlhROS0oFiWZWcSqRaclpYWymazrJuqubnZUbJfHbNsjMl1ky60NTU1+cqyikQixiaT4+PjxkahkUjE7l9VKPur0BYOh+nMM890vc5dcyHxo8fVqG4+GWekV2H220FbLv6cOzORSFBvb6+jcjMXTyUrCRP5W/j7+/uNqeN+7ttihUmpgggZTqDWgahhgKipXdQFQ6Zt6wJHdT34+YFVn9L1AFC1qebWrVtpdnaWBgcH7cVfFVWJRMKxOKsLnfzRHxwctCsVywwqVQgVEgpr1661LTCc5ea6665zHVffdDHIudZkdWKvhpC6KPET/BsKhejGG290udy6uro8qwpzwmhkZMQlhtQ0/2w267hHZCFBmfLNfT/6eXTxxM27KqKy2ayvhb9QTzO/921QS0+5XVflzJ4CoBxA1DBA1NQ2ahDk4OCgox6Jatq3LIsGBwd9mcL1bCRu8ZcLTS6Xcy10ct+enh7H68lk0pEurNaIURfHUCjEFpbjxIM83759+1zvx2IxT8uPbs1SXVG6ZYYTWabX9u3b59mAU69BowqEWCxGW7dupfHxcV/uKq6ar9ympqbsKtVy8eaCf9V0d3WRTiaTDsuMnFOvgHHVciNr4Hgt/JZlUV9fHysA1PggP/dtsTE5pcbEoGowqFUgahggauoDU38molcyl7Zs2eLbv69nM+3evdv4BKoLALVVQiqVsq0IK1ascFWy1uM3gha1k8Gq8hihUIgNqpX/n0wmXdlPy5cvdzRnVGNNuFic5uZmh5jQY2ykRScej7Mp2FxMjhRIlmXRxMQEaylpbW11/F3I9SavQ7eWcJlqqVSKZmZmXN/x/Py8I41eChv93LJisTpn0WiUMpmM0b2XSCTsVhYTExNsw9SBgQHKZDIF79tqCwtkT4FaBKKGAaKmPiinf98rm8q0UPix7qiWGv18XpYNL1fU+vXr7c8mk0kaHR2lsbEx9vOqi0UtSifjhHQrxdTUFOu+kqJJXm8ikXAJlXg8TplMxhXLYwoovuGGGxzXsWHDhoKCjhOA3d3dNDY25grI5tw9qjCUwkF1Z8rGllKUyKaq3FhisZjDbReJRGh8fNzh3tEX/s7OTvt4upVMjlVmfnH9u7773e/S7Oxs1V1A1RZUAJiAqGGAqKkfgvy4m8zuqtUllUrR7t27HT/Ww8PDxvMHse7oeNXZ8RI1sViMBgYGbAHFLbxNTU12wK+8dhmYLPsUyQWTKzanb3IB3rdvH4VCIVqxYgXdddddjn3UeB8/mx7gq76udhAPhULGOCFpperv76dNmza5atZ4XZuMu8nlcnbsjYx5kiInl8u5BKNpk0JRdTOZUubV61HdW3r9ILWvmfzMsmXLFrULuE61BRUAXkDUMEDU1Bd+nhpNAZJqNlM0GqXx8XE2/oIrqlaMdUf9rL7grV692mHl4ISNtFRIC41XLR091khdbNUUddM16AtuV1eXfX6vOBN5jg9/+MOu15uammjt2rUOwfLlL3/Zsc8NN9xgtLCYhF9LS4sdzyTEy1aTkZERTzEk9+vq6nL08FLjpfr6+tgAZv27UVtd6N+tXtxQj8ORW2dnp+O4suGnKmjkuU0xOZVOq0b2E6h1IGoYIGrqj0L+fdOPcTabta0cej0Ttf6N6sYhcv+IB7Hu6Iue6lLxkwHF1YCR6eX62OQCKt0pqrsnnU67Ap65hVtPwVZ7X0WjUWppaXG5ha644gp27G1tbQWvNZFIOCxRJmGiC4CDBw/6Lo5omtfR0VHPgGVT/JMqavTCjaqYUe+vdDpd8ByhUMgRyyOFTrUK4KFODah1IGoYIGrqC7/+fS+zOVegjeiVbBT1CdRPaX2TdUf9rHTp6E/tXPPGQrVs9POp8SCnn366XdGY60CtHuO0004ruIjLoOCenp5ANXYKbWr6dCKRsK+nUEXj5uZmikQiNDg46Nns00tIqdfLVXgW4uWYoZGREdecyLGpgcZbt251WXiGhoZsN1dvb69RrA0PD7PvSUFTbVBRGNQyEDUMEDX1Q1D/vkkAZbNZ30+g6tOqnvLtZd0hcj7pypom8hyF3DmmeBVTzRP9eF1dXQXdMYUqAd966620detWux5MPB53CIUg1YDVTVo6VMuZjFFRs7y8hIoUncXGKqnb6tWrXa+pli1107PI8vk8HT16lBVHsVjMjkvy+q737Nnjen337t0V/JcEQGMAUcMAUVMfFOvfN7mqgjyByhYH3Pk5646K6Tz6uGR2jTxHPB5nC7+NjIx41kRRhUxTU1PBFHIp1kytH7LZLM3MzLjiPEzH85OyPjU15aoBJGOcli9f7nLDcEJAzyIq95ZIJGyh0t3dTbfffrsrKFg27lQblXJNRouZp1qx1ABQy0DUMEDU1Ad+/fuzs7MOi4i+6HEWlXKe328xM90KIK0Xhaw4JheYHFc2m/VdrVeKg0wm4xIqeqHBRCJh16ThBFB7e7vRlcOdV2ZlqS6kRCLhq5nmgQMHXLFEa9asKVnIdHZ2uqotd3d3O2J+VNF51llnOUSQGmStH1uv58PVwmlubmZjagAAPBA1DBA1tYWXBUX2UeLI5/M0OztbkquokOWm3NVZI5GI44ndsiyanp725XrSA0+Hh4dt4RWLxXy5Xm6//XY6dOiQsRWA/t9EIsH2mJILuek9VTTomUGmwnVy4yovd3R0OLK+5DG9zu/HetLZ2Ulzc3N09OhRW4SsXbvWFimp1CuFFk877TTHMUdHRwsKUilmTPuMj4+z2U+HDh0q6Z4Lco8DUE9A1DBA1NQOpVpDVBeVbmngXpc/8IuV5aG70GS/It0yoForLMtydP+WqcdcvZfR0dFA7phwOOwQP2q6s77JujW6WPLT7kFuLS0tDiuGFDVE3nV8uHFv3rzZIWgikUigujmmLR6P0/T0tD0PTU1N1NTUZFuhTD2hpCuw0BjS6bTrWpubm+nAgQP2/aUKm6amJmMV7SD3JTKZQCMCUcMAUVM7lKMuhprKrDesVAWO+gO+WPU4TAuL2iVcFxJyvGqnZ1WYqRaocDhM11xzTVGLuXR1cD2mIpGIw9Wify7ouaS1Qn4HQWNjWlpa6OjRozQxMWEHGhczDiFerpOju4ukxUx9XW0doW6FihDqn5H9r9TXZCaYfk/eeeedZSu8V62aM7AOgUoCUcMAUVNblKOCKdeWgGuEqf5/JSunqj/s+o+8DJjVF7pYLOZyoe3fv591ofmpEuxHiHR0dLDvrVq1iu3x5Pc8+jFvv/1225Wox8ZMTU0ZrT/qcVQ3TigUomXLlhV0uTU1NblidlKpl6sJqy6fSCRCY2NjBV1J4XCYIpEIG2Ok19XR42f0tgvy+nUBUM77crGrA8M6BCoNRA0DRE3tUY5eM1x2UaEfVlNgMVeDhsjfk6afH/b+/n6X26e9vd3xlJ7JZCiZTNLpp5/OuiP0Fg5q4Tt9kTX1ZypGsJg2tSaPLiQsy6KBgQFHgTrpPrrjjjsCjUOP+9HT1dXt2muvpb6+Purp6bFddTK4/NChQ9Td3e2ymHnV5gliHdKbf4bDYVfaOCdq1PuklH8PlThWIVCRGFQaiBoGiJrapJSuwCZ3hioGTD+s+nl7e3sDZVzpTE5O2oLFVFtGLsCxWMy1UKouKCmyZmZmfF2vvjgX66LhhFGhbd++fTQ35+wC3tzcbAscec3RaJS6urp8Z06ZBNSGDRtcbjl9v0gkQi0tLbbAlf2iNm/eTOFwmFpaWujss8/2JVxkUUJ9fvQ5uummmyiVStGWLVto06ZN1NXV5RJceo8uzmWj96RS/z0EdeMsZsdt9I4ClQSihgGipvYo5WmS+xHleiYVeoJUn6i99ksmk3bKrz4+WVyupaXFIWz0ManH1xdj3WJTqHLy0NCQYyHes2eP/b4ubK677rrAQserfozXvqpFRQ+6jcViRVcrDoVC1NvbS5Zl2T2SJiYm2DgXVUxIsajv51e4+Z2HWCxGo6OjNDs7a4uVvXv3OvZJp9OODDu9k7hapFBu0v2oWvtmZ2cr+m+rWKpxTrA0gKhhgKipLUp5svMyd3PxEV4mcfW8qrDRi91NTEwYz6k2XVTFib7F4/GCxeS4a9evV5bl18esZ1gFETJcLZWgwkN3EUnLhBr8XMqmNv48ePCgMb5It6SY5sFk1dKbVRZqwKmKt4GBAZqfn2fjn8LhsF2PRs/g27hxoyuQWV5DLBazxbJ6jkr82yqVxbQOgaUDRA0DRE3tUKoPvlD8iv5ULn9Y/TTA9HIZZLNZ42KhLo7c030oFKLzzjuP7r77bodFRm+aOTQ05LrWXC7nuF55/ZZl2R3IpUtDXks0GqVbb73VKAyKfb1QoLJu8ZKWCX2xC9qYstA4W1pafLneTGJNxsGEQiGanp6mTCbjOJYpiLqlpYX27t3rEHT633v27HH8LYUNJ3y8Ao/leEwxOTIYvVrxLbDUgEoBUcMAUVM7lCNbwpRCyllrdDGgn1ftwKwHu0qBJBcC0w/36OhowYVajSfRY2jUbWJiwjVPak8pIrIr9G7dupVyuZxjrnK5HI2MjBjjV0wLezgcLuge6uzsLHidcn5nZmZodnaWnTO/RfJ060VLSwsrGuU1FbIw9fb2si4rWSCxv7+fstlsIMuSKWjZJGBk8DAniAvNsWyYavp3Mzg4SFu2bFn0TCTE1IBKAlHDAFFTW1SiroWfH1YvMWSqQ6IvIiYT+8jIiHHhC4fD1NHR4Vi49ABiufX09NhWjiBP3fLadGHX3NzsK1V748aNNDg4yMa+SMGjx3xw2/XXX0/j4+MUDoftLC451uHhYd9usc7OThodHS058FndvBqAxuNxGhsbKxiMbfp+9YaVw8PDjnuMs8xwwc6xWIyuuuoq9j70U88ml8stas0YZD+BSgNRwwBR09iU+sNqisfRRY3JUqPHs+gLnjyOnk2jLtidnZ127ATXWiCVSjmqDqvXqbqk1NYCasVcfVzNzc20fv16R02ckZERisfj1N/fbwflmq4rSNyNDOwNGigci8XotttuK5uoUb/TdDpttIgU6myub+vXr3el63MWwdtvv90lfPyKqOHh4Zq0iKBODag0EDUMEDWNTSk/rKog4orjqcLFtKB4NWmUwcMyLodrUSCF09GjRykSiVA0GqWJiQnPujr6gin3UV0UExMTnpYOy7LsWi6bN2+2XVaJRIIOHTrExsOYRBm3tbS0kGVZlM1m6dxzzy342XA47Kqv4xXvU2w2VWdnJx06dMizoKF0K5oKFap/S4HX1NRE3d3dLouKFM26pUtNeeeaX+r7ZjKZmoxdQUVhUEkgahggahqfYn9YOSuHuugnEgnq7e1lLSRq/yB9odIXUdmkkxMJslHlwMCAw0ogM11018auXbtc15fNZm0RZlkWjY2N+XIXJZNJSqfTjuuQ6el33313wW7ghSw2sViM0um0QxyEw2Hq6uqidevWOUTKxo0bfXfx9iOqvMYcDodp3759Dregut199900Pz9PGzZsMAojvbmmHE88Hnd8F6rLK5FIOKxE4XDYdz+rcDhM09PTyDICSwqIGgaIGuCFDLyVokW1wkQiEdslw7m2Nm7c6FrUZKyEKnAmJiaMbi5To8pwOEy7du1iF7iRkRF7HMlkkjZs2EChUKhg/IxXlpBlWUbrR5CmloXieOS8SEEkLUZSOJqERjm21atX+xJD3d3ddODAAaNoa25udqTzy7mV1q5QKEQtLS2OgG0ZjPzII49QX1+fPQ/xeNwzgPu2225zdFE3BcNXE1hrQKWAqGGAqAEm/Na96enpsVsp6IX51q9f7xA08hiqeyORSDieyPWAXD3918922223uTJ1TAt2c3NzQXfNnj17jB28g9au6ejooDVr1rgWfU7UDQ0N2fPpZRnSu5urQsXvGC3Lossvv9zxWiEhGAqF6NZbbzXuFwqFqLm5mZYvX87OscyukvfLwMAAJZNJGh0ddbil9OOrKfKHDh2iRCJh71uOmJpyCRHE1YBKAlHDAFEDTHA/yHomkbqQcMG6s7OzxorD09PT1NPT40rplrEWhariyu2aa67xFVTqtwquV28oXYz4FTZqL6qmpiY2XZlrbSA3vYWE7rLiBIO0iPixvhQSjKFQiD1OPB5nXY3c3HOiTLqpZI8xVYhMTEzQ4OAgayWTgcQydb9c3bxN970kqBBBBhSoJBA1DBA1wAu9w7b6Yy/jVQoF63o99eZyOerv72frjMzNzbkWMy6lN5V6peGln8VbtWgEaXsgBUmQ/YNsXsJIrfkixZ4uWNTO3WqfKXVbvXq16zzSmlNIlKjiJxQK2SIlSEq6aZ/Nmzez3eLHxsbYVHMZoK63VtDrFkkXZH9/v6tuERFvddGFiDymPJYqRLiO9zq1mJkFGgOIGgaIGuAX01OnbmFIp9NE5N+EL6sD6/t6pZOrIkWOR+8pJDe9Y7cQzoDVcgsQr8/4ERAm4aRm+ejzEo1GKZvNeraa6OzsLOmaY7EYTUxMUCKRoIGBAVbQ+tk4q1IsFrO/f1U8qJvsW8ZZZbgK0/L1gYEBO95GtbB4WV3UeZQd1NWWDJlMhqanpymZTDqqapssOLWYmQXqH4gaBogaEAT9qVMP+lWfbvUWBuqipS4A3BOufh5dsKiNKoPWThHiZfeFXByj0SiNjY0F7sPkFeNicmFJS0VHR4ex2J1JMK1du5bm5uYom826hIFsI5HP510drU0ChRN7Xltzc7NdnyebzRIRUTqdZq/P9LcQvGiLx+MOi2Bvb69rvFwKuOq64US3WhVbCiOuzhEnvrPZrKv6tNqEVP1/VWiZhDwys0C5gahhgKgBQeGeOsPhsKNgmpoGrnbyVlsgqDVu1CdcrlGlLjj0+jhBN7Xwn1ygTRYCbovH457uFi9LTmdnJ83NzXlWWtabT8qtq6uLdSuFw2EaGRkhy7IKpn03NzfTN77xjaKsTer8j4yM+BKSzc3NdNppp3nOk7Q0ERFNTk665la2z9ALKPb39zsEsR6oHqRLvU4+n3cVhezs7HQJSjnfXsdaTEsNsq2WDhA1DBA1oBj0J3RZ+l798VaFjW5NkQJHfcKdmZlxxUiovalkVowqgqanp9neQtdccw27iKpZUWoPIonfKr2lxNaEQiHatWtXIFFk2vdzn/ucUVisWbOmrK0U5GayMKnzry/8t912Gxu/pFrMUqkUTU5O2lYYvXeU/DsajdLRo0ftTCldGHCFA021lqSQ4vBqEaJviUTCl6CpdEwNsq2WFhA1DBA1S49Sn+Q4iwaX2bF161Y6evQoW+huz549DveP3lVbH6P6tx6PI2Mmli9fblssOAvOsmXLaHZ21tF9XO3snM1mfRe3KyRC/L7nVwR5vc+5upqamnw12SxmM2WAqWPV57Gjo4OdW7WBaX9/vyOLKh6PszFV8XicZmZmXNY8U5VpKZ50908sFvMVA1OoyKIQLzcE5Vypi539hGyrpUXDipqbb76ZkskkRaNRGhgYoPvuu8/3ZyFqlhalPsnp5n21q7J6TPnjns/nCz7t+o1J8LqmfD5Ps7OzjkJ9svCe6mrS4yyk2yOfzxe0QBTa2tvbWQHiJQIKiZZyWFqCFAc0bV7FB9VNViRWx9/e3u54TbfkxGIxmp6eptnZWVcFa+7eGR8fd92L4XDYUd1aF3OhUIj9flVRK+Hcn4Wy5NQikeq/H9O/N2lllJlZuhAyxZr5AdlWS4eGFDV33nkntbS00N69e+lHP/oRfeITn6Dly5fT7Oysr89D1CwtSnmSK+azhTKYZP+ncvzgcuOTi4c+PnVcMnXYVOjN7xYKhVyVdOUWiUTKIi5U8eBnP1NRv6CCJpPJeIrT7u5udky7du1yzadlWTQ9Pe0SNupi7reRKudqUl2ceqq5ngGmlxEgcguRTCbjKS4516rJyqgeP5lMUl9fn8OFJv8t9ff325lVpQobuUHQNB4NKWpe+9rX0oc+9CHHa+eeey79wz/8g6/PQ9QsPYp9kgtq5dHja7ye9Mvxg1vK+NTF1Y+7gRM0Xu+3t7f7FiLyWMUGIpd7a21tZedEDw7nrBn652SQtC5GNm7c6Ar41UWU2k9KD/g13U8mC5xqDeJEvBQiXMwW992qwkZW1zahim89xox7vVhXEbKtGp+yi5pq+yWff/55CoVCdpCm5OMf/zi9/vWvZz/z3HPP0cLCgr3l83mImipSrUyFYp/k/I5Xt5oUetLX7+FiCTqf+g//2NgYbd26taDLiFvY1L9XrlxZtIhYu3Zt0V22TeMp16YH7yYSCRofH/ftuguHw7R7926HCDh48KDL/cJZafT0avWY+t8yAFwKXX0+p6amCpYWyOfzrtgxr5grtdFqIXTXGfffUoQ+LDVLg7KLmra2Nvpf/+t/lTywYnnyySdZBX7llVfShg0b2M/ovV3kBlGz+FQ7U6GST3LqtU1PTxd0gYRCIZqcnCzb+f1g+uE3FfHjtmuuucZTrC2mRaXS24oVKygSiVA0GqU77rjDIXDU6/z617/OWjd0yxOXfUZErkBuPS3bz6b+m1KbsspNja9SA4z1eBi1O7xMIzedM51OB/q36lUosVyCBjE1jU3ZRc3NN99Mra2t9J//83+mX//61yUPMChS1Nx///2O1//5n/+ZzjnnHPYzsNTUDtXMVFiMJzn59KsWMQuFQo6nZrUztlqrpNJ4/fAHFSVesTJXX3110RlVtbrFYjFWyIVCIZqYmCAiYmvw6Naj3bt3u74XtY+TGu8yNzfnyy2oBp3r/aQsy2Ljabz+vc3OzlJ/f7/LXcW1hSjm34/+YCG3Yh8wkP20tKhITM2xY8fowgsvpM7OThoZGSlpgEEpxv2kg5ia6lKNp6rFPKf6I2vqU6S+zmWjlIruklLHFIvFbCGlx08EDRjmBFA4HKZ9+/bR+vXrixYRtSaKONdWKBSyrS66YF62bBnrTtMtNfPz8zQ4OGjsA+Yni06N1zn99NNdQeh6ALKeecfd+3rDTC72pRiXUSUsNdW2/oLFpaKBwjfeeCOFw2F61ateRf39/Y6tkrz2ta+lD3/4w47XNm7ciEDhOmIx/d+L/SSn/siOj4873ApqiwWuN0+5z6/2AxocHKRIJOKIg5ifn6f+/n4KhUIUDodp2bJlrsUmEonQbbfdRpZluZ7UTW0HYrGYI8i11kRKKVskEqF4PE6HDh0iIncQ7DnnnEN33HGHQyzqgbVS2Kif1a00qhAxxTvJrCr1GFyHeC6zym+AvJ5JJwWOLATo999PJWNqUFF46VAxUfPEE0/Qjh07qKOjg/7xH/+RrrjiCsdWSWRK9759++hHP/oRffKTn6Tly5fTE0884evzEDW1wWJlKlTjSU79keXiG2RKayV+cE0ibmJigs1YyWazdtBrMpl0VSYeGxsjopetOnoJfbmpFhvderNmzRrfQcCpVCpQ8Tx5rkIus3LF+ajp4moKfX9/P9sjSXYY37p1K42Pjzten5mZISJvK2I0GvVsRLphwwaHsJDjUVPFJVyAuJ97mPv3k8vlKJfLsf9+CnUBr2T2E2h8KiJq9uzZQ62trfQXf/EXdOLEiZIGWCw333wznXnmmRSJRGhgYICOHDni+7MQNdVnsTMVqv0kt5ippnqdGr1goLS2pFIpSqfTjkVRbeOgWgP01/XO2+vWrSuY4u1HWKiLvqn+jb5Voi2Cl6jRe3lNTU055vDo0aO0YsUK2yKj3l9S2KxYscJRV8tkSZmYmPDVtkD/t6MLEe7fW5B4LvXfj35s9fpMDwlqnRrdklSuOjVgaVB2UXPRRRfRqlWr6N/+7d9KHly1gKipLkstUyGIgCtVfKkLTiaTcaXnhsNhu/iZ+noymXQs1pZlOYJU9dggv/2B/G5/93d/Z3RNlLJ97nOfK7uwicfjNDo66tk2Y3Z21rbE6N9NLBajo0ePuu4RfU737t3LCsw9e/a4BGI6nXbdK+p3qQYiFyrEV4hi3bkmC5I8ZikVhcHSoeyi5k1velPdmwYhaqrHUstUCCLgyuEm0+eXS9VOpVJ0ww03uBZQdRGUzRN1YdHe3m4vitFolIaGhsrWa2nfvn3GINJit3JZcdSMNXncDRs2OPYpZH3Tg2/Ve5+reRMOh+mss85yCBBpMdNjlBKJhN36Qr1nVFHU3d3tEDeltOlYag8moHZoyIrCpQJRUz2WUqZCUAFXLsHHBWSqG1e3SfbjkYuddAXo+6kWAsuyKJfL0bp168oiOkKhkG0BKXdgsd+YmrVr17I9lPr7+2l8fNw1XnU/P4G3upiYmppyCJpEIkHpdNphrVq/fj1ZluUq+NfZ2UkdHR12ILrMoFLFjVpaQP2u5+bm7Fgv7t+b3yavi+lCBoAIooYFoqa6lCO+pdoxMn4oRsCV6wmY6w9kskDIRTaRSNhWmFQqRaOjo8ZjxONxmpubo0OHDpUkNuLxON1444226Egmk/SFL3yh7IKGE2jqFolEqKuryw7obWlpoZaWFrvwnGVZlE6nXS4iLi5Jt5gQOQWrzHrjBJ4M3la/v1AoRN/4xjcc4iSRSNDo6Cjlcjm6++67HaItHA5TIpGgubk5V78pIV7urq020tTjaoI8XKAtAVhsIGoYIGrqm3qy9hQjvvw8AXsJN3UBVTc9vuSMM86wF2x1sY7FYnTw4EFj92e5jxogK7cgdW5knRfpfpEWB3W75pprPMdRrMjRjzU2NuaYUzW7R79GNdBaTW+WAoirOUPkFCp6Ub3m5maamJiw7xWvwnvNzc10zjnnUDgcpo0bNxqbkq5du5Z1v6ndtfV7K4hVsNyWmnp4UAHVB6KGAaKmvlkKcTljY2OuJ2C1m7NXGq2eYqwuZpyw0C0WHR0d9t/JZJKGh4c9RUIymaSbbrqpqPgVtRCcblHYtWsXEXkXbFO31tZW1+Kvu51CoRBZlsV20TYtxul02jWPMr5FjUOKxWIUiURsi4ped0buy7nCQqEQ9fX1kWVZdODAAVtI6XPqlRpvEjHcpqdTB7UKelkUTXPpJUzq6UEFVBeIGgaImvqnkQMVufTeRCLBlq7XRc7s7CxNT0/bi6Je8C8UCtFHP/pRY4yJWjlXf6I3bel0OnCfIn2Lx+OuHkPq95jJZMqeut3c3EyhUMgWOF4LKjdPXNCtZVk0MjLi6uMkj8FZX0zXlUgkXPuvWbOG3V/93kzfbTgcppGREce/EzX1n5t3DtNDhd6/Sg9a9hImS+FBBZQHiBoGiJrGoBEDFdVr0t1CemsFvf5IMpmkvr4+W8BEo1GHJUQ9TqGO1jJmQ11Qbr/9dnZBTSQSJbmG1NgVvaaOblHgNr2q8YoVK3ydVwoGNcYlmUwai+Lt3bvXdf3d3d32d5RIJGh6eppmZmbYJpDd3d3s/OmZVXJTKzKXYxseHrb7kqkCI2hcjMmqonYaV2vg+BUmjfygAsoHRA0DRE3j0EiBitzTKme1kaJG/9FXLTSykq0Qwm6NoB/D9EQfCoXowIEDDovQxMQEbdq0yZX9o7tDOjs7jSX9TZtcvE1P6Gql2X379pVlgZfXrs5zMpmkFStWuJpCqsLq7LPPZo8n3U5SRPb29rqEivq3PvdesUjlqoYsx7Z161bK5XKOTt3qfn4EhCn+Rb1fixEmjfigAsoLRA0DRE1j0Gg/gKYnYF246S4JXQyoric9AFgXITJYmFukpQUlk8n4LrZXjMUmEomwcRi60JAtAM4999yyLPwyQ0hy6NAhh8VGVr7lSvkXOn8hV9lXvvKVkl12119/fVHzLV1DlbKMlPrvspEeVED5gahhgKipfxrVVK0/AXMLhC4w9B/9QoG1iUTCVbvEJE5U15BaO6aQiPAT/xIOhx0xGHNzc3bWkSSfz9Ps7Czl83k70HRiYqIs1gvZ+0htK6E2aUwmk7R3715X9pVlWQXdd342rl6Q1yavWc6tGifl9T3oY7Usi2ZmZioaw1KsMCk18w80PhA1DBA19c1SCSrkhBv3dM+JOH1R0ReYoaEhx2tNTU2ufk7q1tnZaYspzjqwevVqW/z4ERyrV6+miYkJO75DiFfEViQSoYmJCddc9PT00Nlnn+3Izipli8VilM1mHZlipuBZVdDI76DcMS+FtpaWFgqFQrRv3z7Hd2ASNZxLS3Zol3VqKpFtVKylRv2cHg+mugmRCbW0gahhgKipb5ZC+qcu3LLZLE1PTztEjfqjL90zRIUtNbFYzFi/pFCdmUQiYUwr9uomzW2WZdH09LRd2Va1HskaNvJ6uMDbUCjECijuGlauXMmOYdWqVfYxZANKInKlsa9bt84haGKxGMXjcV+Vj5uammj37t1lq7NjWRatX7+ePY9a3Vn/jmOxGPX399uNNCtRF6ZYC6pXr6pytXYAjQFEDQNETf3j9we5Xgt6qcJNtybIH3dZ/Va+rge4cjE1uuhob28PlCq9atUqz/eDpl2HQiHq7e1lRUs4HKbh4WHWOtXc3Fz2pppyDtUUeHWcN954Iw0ODjoCr4MKlXIF/XJByJlMhrLZrFF0ctWDy0kpFlSvruLyPpauynp2L4PSgahhgKhZGtS7RUcKsnw+74jryGQyjtRc+frGjRvt/VQrjvqEqy6Ga9eupZmZmaJqwOj1b/xsQaoNl0McnHHGGew5ZQG+QkIhHA7Tnj17HK9fccUVJVlcyiVq9C0Wi9HY2Jh9XWpav/p6MYIgyANEKf/e/MSTQdAAiBoGiJqlQaPE3sjgWLVSrWrWlz2bXv3qV1N/fz9Fo1G7WJ/65JtIJKipqYlaWlooEonYtUTm5uYKWj30eJs9e/bY5y9nUbxwOEznnHMOe0wvQaC/t379esrlcpTJZHwLCb3ezfDwMM3NzQVOUa/EFg6HjWJKt8zIuZOWGZlmrVo6/N7zQYVKIQEkg75N7+uCB5lQQAeihgGiZulQ71lSandnTniEw2Fb7KRSKZqcnHTE2cgGiWr9EBkPIhc++bpp8ZeLJreoWpZlDDA+44wzAlsm9u3bx7qi/IobuSWTSXvxLGSJMr1nWZax/1KhMQYRK372+/KXv2w8p35ftLS0sMUZVbelX+uk+mCg309qE8+ZmRnHMTmBElQgwVIDOCBqGCBqlhb1/OOoB1B6xUuYLFGckNOL+nll8nR1ddmWnS9/+cus4OHcPPK1cDhMvb29RoGgn8tP8C23sB89epRGR0fJsiwaHBx0LKozMzO0Z88e9rO7du1y/L1q1aqi4nWam5tp7969nv2Z9Lkr1FfLJIIKxfTE43HH9y4FCSc2CsWWqQJGxjmpf8vWC1KQmFxNQSyn9f4wAioHRA0DRM3So57N2Fx1XX1B99OzSF8M1F49+maqhmtaROX7+ueam5tpdHTUznAKKhSCiBop1mSWj7qgmjKovK6J27zq08TjccpkMr6tOO3t7UXVu5HNNPXzdHZ2ssIxmUw6XJHcfVLIejM9PW1skGpKh+fcXH7ESjFu43pNCADBgahhgKhZWtSzpUaSyWSMiy8naoj8Cbnbb7/ddTxZRVcPOlUXs+uuu479HGd5UIOWy5XWbBIVamsINSWc63+lX9O+ffs83U1e1psgBfH8uM+89onFYo4Yq5aWFurq6qJoNEqbN292Wd30XlpBY8ukYNC/26uuusohbIaHh31ZUwr9eywmjkff329He1B/QNQwQNQsHRrBjK0+uZo2y7Iol8vZCxO3cKi1bOQ+0o2gLu6qGEilUtTX12e01KivF+robRI0pQodU5G5/v5+yuVyLkFjsnR0d3ezlpN4PE6jo6PU3d3tKWgqubW0tNDatWttIdPT02O76bq6uuyxxeNx13gsy6Lx8fGi/h2oMV1+LW1+/l0VEtxBLC9cTSd9zLpbq5azHoE3EDUMEDVLg0bKflLr1MhNrTsTiUSor6/PXsDUH3M19bqnp8fOiFHjLdLptCPwU86VzFiR7QP0p3UZX9HX1+f4vKn6sfpkL2Mx+vv7y+qaUrN/MpkMbdmyhaLRqKvHlO5SMaWcr1692ihcyiVoQqGQ8fyWZdHExARZlkWbNm2y5zkSibgajKp/r1+/3hZu0WjUIWxMAkQXE2rnbSFetljt3r3bcQy9dpEuUHQRUgnLKVfXRp0/PWi6Hv7dAx6IGgaImqVBvdepkcgWAaqYUWvQmNwiclHXBUMkErGPZxJ7yWSSZmZm7DGo/ZH0xWh0dJQVRFyqeG9vryOLRoqm3t7eQCJg9erVdOONNxrfl0/pg4ODlMlk7J5S+oI9OTlpdDlxgkXWgykU9Nzc3Bw4XsaURXbgwAFXwK8fEcgt7ul02rHP2NiYPSf6v5d8Pu+ydElXl9d5uXtKDyKW+xWyGAWx2JgqaXMd7evBQgt4IGoYIGqWDvUeQKham6LRqDFVNxaLuZpUqv2a1EU6EonQ5s2bjWJP74wtX1eDlaU4kQstF4jKxbLIRVn9XlSLiW5t8No6OzvZ2BNV9KlzRsTHWoyMjLiOwRXeW7t2Lc3NzdmWM1NhP/lfP1lcpgBrfSzyv319fTQ/P+/Z20vOgbTSSIGnNuuUmzo/XKuCwcFB2rx5M+si5ESbGjSsdjeXad8m8auKNpPI0u9T7qFEnxddVEPQ1D8QNQwQNaBe0NslcBVXt27dSrlczjPDSG2xkM1mPcWevvioFhpTpotu2dFF19jYmGNfKYK4Y/sVAqZNCp1EIuFww5liLXK5nKNnEre1tLTYLQby+bwxw0kXWYXGOjw87DsFXM5Rodglff9MJkPT09P2d8qJYFUsq9emiiOul5T6uindXAqJ2dlZWrFihSNuSyID4VesWGH3pgrqPuYsNYU62svz1PrDDXgFiBoGiBpQTwQ1wZvcUUGeUvWn597eXtcipe6nZ5cUWozUflUDAwOeNXh0kbBhwwbHAmuKRenr63O0kjDFWkxMTHiec+3atbR582aan5+3v4vJyclAQsT0Xmdnp2/LlC4e/M6ZV4NIWYRR/j02Nuay+AnxskDULU/SyiMtMv39/S5LkGrtU9t9+LHU6O95uau4/TiBr1rtTPcvqG0gahggakCj4iVqgtbm8RvQqQsrP24D1RWSTCbp9ttvN9bMaW5ups7OTvv9WCzmEgrc4t7R0eEq5KYvcMPDww5R0d7ebqycnMvlbEvP+Pi4MRuKEzR+BYguYNTt2muvdVhB/MTsyP1lLIwqaObm5mh6epoSiYRx7rn51WO6pOuKc4vp91wx2YiF7kNOROuuT3U+EThc30DUMEDUgEaEi2Hxekr1Q7FFC/1Yl7jFilvMu7q6aHp62mF10a0GnBBpamqyA5L1rC3981I4ec0dF6Dr9ZlQKETnnnsuxeNxR4uKYlPYLcuivr4+9vMdHR2uc3MWFyGEnQUmLSwDAwOu+fFqHWESBH5FcDHZT173IRfgrMcG9ff3u9xqpTT5BNUDooYBogY0GnrqramMfhBhU2rqrR9hwwW8SneX6enasix7wW5ubvZ03yQSCRoZGTHW15Fbe3u7UaDIz6op9PIYnLVk5cqVtuUjEonQ2rVrbRdbNpt1ZSDJOJzu7u6C7RkSiQR9/vOfd7y2du1aR0aSvLZEIsFek183FjdnaiyM6rpRBacfC0wQseznPlTvNU7kSBGti1IImvoDooYBogY0Grlczl5I9QwU7ofcy9Sup2/ri5RexM90jCAuKHUhzWQy9hjUscvUXPlaIpFwxISoi7yXMCh1M8XwqNsVV1zhSMNfvXq13b6BCzLu6uqibDZLmzZtcs2HXotG/2wsFqPly5c7MsdkhlqhufByY3GflfeOFAoy7VsXMNw9pGa76d87Fwiv3ivyvvPjrpqfn3el70t0QVlP7VLAy0DUMEDUgEZjfn6etmzZQolEggYGBlxBlGrhNq+gyPn5eRoYGGCDgtVWDXpAp07QYGGvQGTLslwxH3IR5IoS6kXpvLbOzs5AsS5eliFd7Fx77bXGHlr6FgqF6MCBAy7BE4lE6ODBg6zLae3ata4MJNM5QqGQr+vcsGGDsTt5KBSi/v5+2yoj7yNdwKp/SxeX3Fe/h1SRoqffq/dQOBymgYEBttaN3gPKJKa5ViOw1NQfEDUMEDWgEZFPzpzbR33dK8tDzVDhWibI1/WGker5JbLmjRDutG51YSv0ZJ/P52lsbMz1hK0e3yvjxWuT7Qe490yxL21tbZ6iR/287ioqdPz169c7REkikaCpqSmXNUUKFK74oi5epGDSrRTclkwmaXR01GUBU11aeusB/bvXBa2sS6TWIwqHw3a8k+4WksJGr6TNpW/77QSuCppwOGzshwVqH4gaBogaAMxwYoFbpFRMTQVVq4+6cErLjHz6Vs+tL1ZcTIWamqxWKM5mswUr3upFCU3b9ddfHziod2RkhEZHRwt+Tm3lwLl/CvVa4t6PRCJsRlZLSwu1tLT4vhbTfqpYKhSb5ZVizdWp0bOw5Ge4FHCJSaDr506n0w5Bwwl1ZD/VDxA1DBA1AHgTNEiYe0LWg5flJvtFyX259gVysVLjL3SBFY1GKZFI2IX8pDuqkOupp6eHhoaGjEKDW+T9xKeoi6MpGNgkrnQhMTU15Qqm7e7udlgYdGE2NDTkek0XTOFwmK655ppAQk3fotFowQKO+XzeETysnn90dJS91/r7++no0aMlBad73b+cmEKdmvoDooYBogaAwgRN5+aezjmLiOpOkFV+uYVLdVeYWjaoqblch2rTZtpP79QtF+FsNuurLoxe8M/vpouaRCLhmrtEIkHT09PG1H3umoLMid+5GhsbM1rm9BYUuttQFylc4b1iywgUun/T6TS7HyoKF0812tBA1DBA1ADgTbHp3KZCd/qiLZ+avQKK1dge6V7Sz6OnExcKErYsy2E1MWUyqe4ay7I8rTRqjE1zc7MtRvwW3JPj4faPRCKOVgWyu7nafXtoaMhxTV1dXY74JTknXC+qcDhMGzZsKFj1WL8PdAsa14JCjb/hhI1qdZOuSE4QlstSg9iZ8lKthsEQNQwQNQCYKabqqwrXVFAv7iaPpRdt49LHdUEjUZ8EVRHkd4vFYsaqwN3d3TQ6OkqWZflqTMkde2RkxFgAj9ufS09PJBI0OTlJhw4dYuvG3Hjjja6MqebmZpdAiMfjdMUVV7iOn06naX5+ni6//HLP8YVCIert7bXPlUwmHYUA9YBltfhfoVge9RhqEHKxnbV1648pKBgWmtII2purXEDUMEDUAMBT6g8V94SsuojUhUzNoCpHob/e3l7jwqm7jtrb2+0x6cJGiphUKkW33367vTjradHXXHONvSBHIhHatWsXCfGy9Wd8fJwGBwcpEonYVpRwOGxc4PWYm5aWFkokEjQ4OEhbtmyhVCrFFhGUWzQadVQVTiQSDsHY19fHxvVYlkX79u3zJbxkDJBeD8lPh/FC49cFTbELpHr/qo1T9Y7hMtMOsTSlUeoDUDFA1DBA1ADAU4pJWf+BGxsbczWQ9CriV0oshRp/47Uo6wswl0XEuU3i8TgdOnSIjWfp7Oykvr4+SqVSdPDgQdutplqOvFLH1U3NipqZmXEVthsdHWWL911//fVss04iotHR0YJ1bAptTU1NjrElEgmH5cZrU++lkZERVvhMTEwUdd/pMR3y/k0mk3TTTTfZ41OFTV9fnz1XyHoqncV29UHUMEDUAGCmmOA/P9lPlmWx7ib5Gldl1o+rgCvoxy3glmXRnj17HO+ri5uadqwH6fb29trj0cWX2mxT7jM/P08bN250jMNvSrVsp6Ben9r8c926dZ6iSFqW9HRmeV1clWn1817iKxwO08GDB2nz5s3GNgz6Njw87LoOTvhMTk5SLpfzfd+ZBPjs7Kw999LiJc+xd+9e+56IRCKOeQbFU67gbj9A1DBA1ABQXkzZMGrwKFd7Rgb6qkHBw8PDDtGjV6VVzzkzM2PvyxWik8c0pU6rVg29r5R+DLkvJwj0Bom33367cZHn3ECqqIjH445r1YvQ+RFFpjHK74bruSWDt7mMJXUOTEHHXkJodHTUKGjUGjJ9fX00Ozvr654zuUp1q11nZ6dxPmClKR1Yakrkn//5n+n888+nZcuWUVtbW1HHgKgBoPxwFh75GvekrfcN0ntWca/rTQuTyaTdFkJm4OjWg40bNzpaDXDp09z5otEoWwVZLoi6u0c9RqmbtGrJefIbBC2FiV4n5/bbb3dU49WPl0gkbPeaqTDhnj17AhUj7OzsdMy52gtLiJdjkrhaMnpBRi+8YjrUsXIVmf0sutVIWa4nEFNTBr70pS/RddddR5/61KcgagCoc7g+QfIHcXh4mK1TQ+QOCJUZUuPj466FV03PTiaTrPjgOldL14SpLozcT7XQ6GLCT20bblOtCPPz87Rhw4ZAn+WqOEtrlMkqplq6WlpaXBalIIJGBoJz34e6DyeUgsa5mCwFXm42P93qq5WyXC8g+6nM7N+/37eoee6552hhYcHe8vk8RA0ADNV4MlXPyS1Qpq7geuru3r17HZaBvXv3OhY1tTYOt9haluVqBirJZrMUjUZdbhfZgyqVerkiLtd13LTwe7mhNm3a5Kiq7EdQhEIhRwaUnAP5WTUAWreK6VYUk1Wr0Ka6emQxPT2dX80a0zc/HeA5TDEdXCkBNY7K61zVWrTrBdSpKTNBRI2pBgNEDQCvUMkfqSBiKUjQIedKkbEZMo1YDRaOx+OOtGT9PF7jnJiYcGX7yLnSi9HpAbrqphb8MzWqlIJA71QdRGAcOHCAdanprrJkMknr1693iCN5HXpgtTyWmuquC0M1BspUTI87brGCxmSpMfXgUuOfLMsyBifrx14s90o9gYrCZQSWGgDKS6WeTIOIpWKCDnWXz65du1yLORfcyrk9TOfxWtxUF1RPT4/d8NOrbo48v55eLdsjyPlQ527fvn1sOja3cF999dWuVPBkMkmDg4P2Is7NdXNzs53pZaor09vbS9ls1iHw9EDp6elph6CRKf66pUjdhoaGAt1Xhb4XPY1djbWSMVHRaJS2bNniufiiOnFtUReiplA1SyEEPfDAA47PBBE1OoipAYCnEk+mfsWSLIgW5NymxoVqrIZ0w3Ddu/2cx8/4o9EoRSIRikQiZFmW3XW60O+aHN/Q0JCjFcL4+Lh9/lwuRwcOHDBaary6kquxSgMDAzQ7O+t4guayoDhXntpKQXVjqZltqojRY41kEDcX76Nu6nUXsgLoNXxM2U9qfR296rH8rF7rRj8v+kjVDnUhan71q1/Ro48+6rk9++yzjs9A1ABQGSrxZFpILOmCxo+VSH9PDSz2smKo78lFlGusKPFjadq8ebNDXHR1ddnuGTV2Rre0hEIhGh8fdy34st+VVzaSn+36669n59nkGjL16Jqfn3d8R9KNJesR6an6W7ZsocHBQXvOTB3b9Vo38rr9zLl+DvX72rx5Mwnxci2a8fFxh9hSz6e7vLjzmoQzOn5Xh7oQNcUAUQNA5ahEMS0vsRQ0nsdkPdEDQ/UA2M7OTlq2bJn9dzQapaNHj1I+n6dMJkPhcJhWrFhh10qRC7af2AE9S6qlpcVV/E8f36233uqotaMKm66uLtYKY1kWff7zn3eJozVr1viy2HCWFFVkqpssnKd+F8lkkjZv3szGokgLCjdn2WzWEYfT3d3tKHaoZqipc+IlcjOZDM3MzLjGMT8/T3feeactPPwGoOv3FZfqzwkbBA8vHg0namZnZ+mhhx6iL3/5y7RixQp66KGH6KGHHqKTJ0/6PgZEDQBmKhlD4CWWggQd+n2i1rdYLObIEJJP82pMiLTUFPPkbUr/NtWx4QJ3uTFKcSTr8liWFShdfM+ePUZBI+dPijqv710WAuQEgZ/5Onr0qCvAWA+25uKrOOuedGn5FcJ+hTpXodrUwyocDhsbZoLK0HCi5rLLLmP/0X7ve9/zfQyIGgB4KpntUW6xZEoFTyaTrLjhgmz19gWJRMJRXbiYJ28uTkWtByM7R+stJLzqqsjgXd0FtGrVKte+XqniJjGgL+S9vb2ObC65XzmCyfWKxaq40MWrycIyPT1tbM2hByjrrTn83HucOFX31/tpQdAsHg0nasoBRA0AbipZl6OSYkkfN5fKywka3RoirTZqlk40Gg3UH8hkqVFdK2rnaHXfWCxmtL6oBQY5S4K6eVlwpqamKJ/P2wHD3PzJmBbT917Kd1mMsNVFotqHSz2eDATW+3AVM14ue02KL3k8vSBiJfsdgVeAqGGAqAHATaXq1JRDLHm5pnK5nCNgVO+VFA6HXU0gw+Ew3XDDDcbFX7Wg+BVxuqDRWynIHkh6zIap35Q8hl9Xkbq1tLQ42hSo16P34Srmey9GnAQVF3pwMicQdauaep3SclPMvccVPCwUYwNLzeIAUcMAUQMAj5+4lqAFt0oVS34zYdTAVdOCyC2Opk1tAFkIriM5t+DKdG91QU2n067O2O3t7a60abm/GkSrbqtXr/a8TvV6dbFWTBG1IMHkQcWFLkx1ESS3ZDJJU1NTrgwxOZZSBZs+d1yMDQryLS4QNQwQNQAUR7ECpZTKo6VYevRso927d/tOkfbTH0i9vi1btjhSndV5sSyLotEoDQ4OGosM6ufmspW2bt1Ks7Oz1NfX5/pMNBqlrq4uV0yNtBip1qAgFiiOoJaaoPfNzMyMQ0DILKNCFipuLEHuPa/sJ69zIPtp8YCoYYCoAaA4qtUPp5i4CM6FoBdgk5secCvjUvRjewmw+fl5Y4pxPp+n7373u3aqOJHb0hEKhWhoaMhhlVFbDshUadX6wzWlPHjwoF0MUC8AyLmfKvVd6GJC/ZsTE3p228DAgNEiIgsC6uKtVKsJJ77072nZsmVFZ3+B0oGoYYCoAaB4Khn06/e8JuuAWjPG1I06EomwgcPq1tzcbNeIkSKt0KIVtB2EHgci3V36/M7MzLD1eUzBw6lUiiYnJymXy7EuolKq3voVtblcrmiXoxQ/JhdiMpmk0dFRVrBx81dMWw+vBqvShWiaHwiaygJRwwBRA0BplDs92y+mdGB1AVS7ZSeTSTp06JCxOJ5asC4cDtOuXbscgqerq4sGBwdpYmLCYQ2R8TvqIlZMO4hoNMoGA5sW/kr30SoUkJ3JZNjzq6nU0qpUjEXPj6Vkw4YN9vcbdP6CUC3xLqlGs8h6AKKGAaIGgNKpRNVhL0xZLtls1hFUKgvUce4b+flIJOKo1qv2B1KDdpubm2n9+vX2sbleRzLORa+HIhdCaVHQBU0qlaKJiQnK5XLsYm9auLjFTr6mWqpUETY2NlZwQfYSTNlslqLRqKMCs/q96C4y9fUgoiBoTEs2m3XNu9rhvNIWqUrFzlQqE7ERgKhhgKgBoDQW21LD1SOR5+3s7LRFialXkeoSkUJILtTS9aPWOOEK2KmdntWMpGQyaRer090f6jY+Pu5YrFTBpQqRoIuVvgCqC7Kp4SS3IHst5Fxml/69cMcsNfXblHUkhKCRkRHH57g2F8VSbVFRbVFVy0DUMEDUAFA8i22W537gOauN2nXZb/BqNptlK8dmMhlH40N16+zsdLg71GJ/UthwVYWlGOAElymAthDz8/OuPklqR2zVSuQnLsjru/XqF+X1vRdj0TPViVEr+crml/q49YakxVJt90+13V+1CkQNA0QNAMVRjSdI01OzvlgODQ0VZT3iFl1ONHHuD64YG5dhVYm6JpzVRx5zaGjIJbQkhRZkL+tKUMuLGrDN7Z/JZGhycpK9Nv08Ugypad2yTk2jLvbVil2rZSBqGCBqACgOTmDIJ1rOClCuJ1r9qdn0Y6/XpSlkFTBlt6jdo02iZvfu3a74Dy6jSVpLOMuDbElQDH7iT1RrRhC8rCtBGkOaMtBSqRTdfffd1NTUREK87JpTGRkZYUWkvOdk88ulsNgvduxarQNRwwBRA0DxqAKDi+fQA0XLHXvgZZYPUrqeO44qSuLxeEFrjXqOfD7vEkFjY2OOIGZ1k4t8OTN0du/e7TqHX3Rxqgu9bDbr23KgCi7VSqUKLzXLTC2wpwua2267jbXELIXFHpYaNxA1DBA1AJSHxXZHmc6nuiTC4TCl02lPl4TpOGrwsJoRpYoVvcaNFA7qZzmrj76pi325q/sGXQClOOXiZtSMMTVGx8vt4+UaGx4etq+9q6vL8b1dffXVjvHLYGCvtPhGXewRU8MDUcMAUQNA+VjMH1/O/aVbBQYGBjy7TJuOI5mcnLSFSyKRcPRg4oKH9UaVlmU55iAWizkW7t27d7MtAEqBawcR5Dvw27tKfY/IW7wWKmInY31MrQ/07CZ5jIGBAdv11KiLPbKfzEDUMEDUAFBeFtNMzpXflwJFj1HxcoGZsltkM0XLsmhyctJhcVCtFrfeeivb4NCUCq0v3OWy1PjpKO3nHKqlSRdmiUSCIpEIRaNRymazjs/5dTPq7iLVNaa7zS6//HL2GDMzMw5BU2ixr3YGU7FUO6W8GBZrriFqGCBqACg/1YxxKPcP6uzsrF3AL5vNOtKm4/E4JRIJ2rp1K01MTDjK9Y+OjjqOMzExQUIIampqoj179rgW9XLE1HgF446Pjxt7PXHzYkpxn5ubo1wu5+iEXuhY+ji5IOZMJkOZTMbl0guFQqwFK8hiX4/CQKWeBNlizjVEDQNEDQDlpdECGnXzv6z9osec5PN5h6VETZ9W56Srq4sVC+XKfjL1gZJtBIJYV8otTnUrihpTEwqFHIKmvb3dVUhRx+9iDxfO4rGYcw1RwwBRA0D5aNSARv26xsbGXD2GJGqKsT4HxRatK4R8OlYFjTp2y7IoEol4xsGofaz097gYGhU/1gKvwG7dOhOPx10xNuFwmO167pdS7816spZUm8X6HYCoYYCoAaA8NPrTcBALVKGaN5WYn0ceeYR6e3vZMY2OjlJXV5ddC0aPk1FbKHCB1WNjY44YG1kNOUhNIpNbYn5+nq655hrWIpTP52liYoLC4TAtX7685JYHxVoR6919VQ0Ww2ILUcMAUQNAeVgKP/xB3DH6vmNjY55NIoPEu+jMz8/TwMCAw/UlLTaqtYPrY2VZliM9W2+1MD097WgAKoOFBwYGWBdckIBsfdzq4ieDmwcGBqirq4v6+/vLcu8U41JrdMFeKSodWwdRwwBRA0D5aGQTfamWGhmPw3XVVptrcscpJAa5AnfhcJj27Nnj+Hvfvn0uV4/sUK42AOUabaqBwy0tLdTd3e1yS+mut0KLPJetZWpcWQ7RUIr1oFFdq5UClpoqAVEDAJCYRJmakl1oQfOz+Knn0a0A09PTNDs7G7jRpVfhvXA4TCMjI8bif2oD0Lm5OZqdnXXU25Hnz2az1NLSwlp71KBfvccUh0mIceMrx2JYDlHSaEHwlQIxNVUEogaApYOXJSmXy9GWLVtcP7pqMTq1NgvnevDjpkgmk9Tf3298PxwO07Jly1xCQ93PT2dtdbvqqqscgkYvHKh2G08mk9Tb28vW25mennZZeriGnX56TJkqDeubH4FUiHK6j5ZCS4ZSQPZTlYGoAWBpUCjmx7IsOxhW3UcvRMc10wxSD0WvgqtmAXGuGJnK7HdR0CsK65upjxX3un5+7nPt7e2Ov4eGhgJ9J/I6dLEQVDQUEqyDg4Mlx3vBUlMY1KmpMhA1ACwN/DxBeqVcm9KZ9UJ0umtJ/fGWf3uZ5znXi1/zvanNgCpATP2cotEoDQ0NGc+vCprm5ma2TYRuzfKLl+usXNlJW7ZsMRYM9FNMsBSXSiPHmnGgonAVgagBYOngZ2EK8jReylMpdx5T0KyfBV4NutWDhL2EgmqBKXR+IV6Jv9FFjZpZZRKAhb4TryBhr+OV4vLw8x329/cHaskQ9Pj1nhVYLSBqGCBqAFha+BEtfuMmSo0f4FwuXpYbr3GoLRJGRkZcQkEVJXp1XtXCk0wmjeePxWKUyWRccTRyU6sl+4mb4IKF9Rgbv9lPxVpS/MZByVYZQYUJ0sErB0QNA0QNAEsPTrToxeTU97l0a0mxi6nJUiMFB+dKKmQxSiaTdOjQIcf5pUDo6+tz1KPhsq/UoFzu/JZlUSaTcfS44t73a31Qx20KnpYxSJWMeQmasaYTpN9VUNcVMANRwwBRA8DSglv45JM4F1PDZT75OaZfQcNlG+mWit7eXtb9oSIXXc7doceFqAKB2193Cannl+NU69RIK44c38zMDM3OzvoSAeq49f3V171Eg1fAcTqd9uXaqXQQMIKMyw9EDQNEDQBLB68nZjVVWcaE6Bk/PT09xv5D6XS6aJfV/Py8oy6NKnBko8sg7oqgVoVCdXPk+VVho7ug1FYLs7OzixZHUig1PBwOs9WIuTmqdLo20sHLC0QNA0QNAEsDP7EN6gKtZz4lEglasWIFWzelGFcR9342mzWeRxa/K5TJU2p2SaHA1kQiYTfH1IWhdNMtZhyJKS5HLQao184pZJ1SLXiw1NQuEDUMEDUALA38ZKFs2rTJFS8i95+ZmSlYXyYcDlM6nS4YL8FZCdR2CUePHjXWw8lkMiXXXClkyTG5jtRChIW6fXtZxfx0+w5ibdIzv4aHhz0DjXXRxQUm+8288gNiaioDRA0DRA0ASwc/C6WXi0BfnNLptGMRDFooTz9/obThZDLpajgZ1ApSSorx/Pw8DQ4OUjQadQkT6aqLRqO0ZcsWl8tMbtxn9XMHdV/5aYypX5NXKrkudEqxKiH7qXJA1DBA1AAAJH5cBIWylvT9/MaOzM/PU39/v2NhVZ/o1diQUp78S11k1Y7d+ue5dG5dJKoBxaZzFyPc5ufnjXFNXv2ypJDkvu9yxP+gTk3lgKhhgKgBABAFcxFwGTYcQeJbuNgQVTTpC3kpMRqlukP8ft4Ur+SnOWjQMRY7H4WCd8tRAXepVRReLCBqGCBqAABBrBeVCvjUM6D0jQtaLSWbptTrKPT5QjE1eh+pUoRKOWsF1XqMCwTSK0DUMEDUAAD8ughk9lG5Az7V84+MjLDtCfr6+owxIcUuyKWmGJs+70ck6inhpnP7saT4EaS5XI4NvpYia2xsrOaDd+HKcgJRwwBRAwAgKvwEnMvlKhbw6eV6Ul1QMi25HNk0lbTUBOmIXqqlxs9CPzg4SFu2bLH3Uedbra+ji9ZaC95F0LETiBoGiBoAgB8q/ZSspiWbtmKDaHUWI6bGJBL1gOJyxNQEFaTZbNZOn9eDm2vd4oH08FdoKFHz85//nN7//vdTMpmk0047jVKpFH3pS1+i559/PtBxIGoAqC+qGVNQyXPPz89TX18fa6GR/x0YGCi5Wm+pT/ulfN7vZ8sh3HT0z46NjbFZXHKctShoJPUYC1QJGkrUfOc736H3ve99NDY2Ro8//jiNjIxQR0cHffrTnw50HIgaAOqHRo4pUOvUqJtaSC6ZTBr7JKnHKVR4r5Q5LLXOjZ/PVqrNQiOJAbRcaDBRw/HVr36V1q1bF+gzEDUA1A+NHFOg16lRF90gna/9nqsUi1OpoipIo8tix2iiEcSA31ijRs+SanhR88UvfpFe85rXeO7z3HPP0cLCgr3l83mIGgDqiEaNKVALwXHXJRtLguJpBEuN33imoBWZ61EANbSo+dnPfkYrV66kvXv3eu53+eWXswF4EDUA1A+FMm/q7Qe6kS1QtUIjiOFKxCTVs0u3LkSNSXSo2wMPPOD4zJNPPknr16+nD3zgAwWPD0sNAI0B50ao1R9oPw0ka3HcjUKjiMYg97dfEVfPc1MXouZXv/oVPfroo57bs88+a+//5JNP0oYNG2jnzp106tSpwOdDTA0A9YfJUqNW5K2VH+ggwbH1ZmGqF2pV7BZDEEtkpSsyV5u6EDVBOH78OJ199tn0l3/5l/Tiiy8WdQyIGgDqi0I/wHp35Wr/QNfzkzBHLbv3vMaWy+Uol8ux71V73JUiSJPPeow3aihRI11Ob3jDG+j48eP09NNP21sQIGoAqB/8CgSuh1I1f6Dr9UlYp5YtHrU8tmpQTDZdvWWGNZSo2b9/vzHmJggQNQDUD0EWrlr7ga7HJ2GdWrQ6SesMN7Z8Pl/zrQ8qhVqhOhwOO+odlbvre7VoKFFTLiBqAKgv/Lg/avUHutaEVjHUktVJF7nq2CzLolgsZveYqoXvf7HgeomlUikaHh52CJ1y9hKrBhA1DBA1ADQWtfoDXatCiyh4nEytXAtnnVF7S8nNsqyamOfFQhV7aoyZ3GTLDfm915r1zS8QNQwQNQA0DrX6A12rQouo+FiUclmdSq1OrGe8TU1NUSwWq3uLWKmo86p/V+l02lF4r15jkSBqGCBqAGgcavEHulaFVinjK5elplx9pDhrRLWtSLWCWqmamw9ZJ6lWM9q8gKhhgKgBoLGotZTjWhRaOkEsSeW0OpWz4/fw8LBLzMRiMWMn7qWAKmj0YGGvLKh6AaKGAaIGAFBpak1ocfixvlTC6lSKSFI/q6cuh8NhymQyNWMRW2xMwcKqVYvLgqonIGoYIGoAAOBlCsXJVMrqVIo7K5PJsIJGDx6uZ4tEMZjcc3oWVDKZrFsLlt/1u4mISCwRnnnmGdHW1iYWFhbEypUrqz0cAACoCvl8XuzYsUMcO3bMfi2VSonDhw+Lnp4e+7WFhQVx8uRJkUgkXMc4fvy4aG1tFW1tbYHPf//994sLLrjA/ntqakps27bN8zPHjx8X27dvd4xZCCGGh4fFZz7zGXHs2DGRSqXEkSNHhBCi6LHVK+p3xX2/yWRS3HfffY7vt57wu343L+KYAAAAVBl1wUulUmJqakqkUilx7NgxsWPHDpHP5+1929raWEEjhBCJRKIo0ZDP58XOnTsdr+3cudNxXg4pUsLhsOP1z3zmM+LAgQMilUqJjo4O0draWvTY6hn1u+rp6RFDQ0OO9++44466FTRBgKgBAIAlwvHjxx2C5vDhw2Lbtm3i8OHDDmFz/Pjxipw/iKDSeeaZZ8R//Md/iBdffNH12fe85z3i4MGD4p577llyYoajWOHYCEDUAADAEqG1tVV0dHS4XE09PT22sJHWjnJTiqCSn33iiSeMn/2rv/orcfLkybKPu94oRTg2AuHCuwAAAGgE2traxD333MPGyfT09IgjR45ULBZFCiohBCuoduzYYRRUpXx2KcEJR3WOpLA5cuSI0a1Y7yBQGAAAwKJQSuBxpYKWS6WWxrWwsCAuvvhiceLECVfQt7TgdHR01KWbzu/6DVEDAAAAFEEtiohaElnlBNlPAAAAQAU5efKkOHHihCteRY1rOXHixKLG+lQiY62egKgBAAAAiiCRSLgCne+//35XXEujxq/UIhA1AAAAQJGomWPHjh0TF1xwgStQtxALCwvGNPrjx4+LhYWFcg+7YYGoAQAAUNdUWxRwxe6GhoZ8C5qLL75YbN++3ZVunc/nxfbt28XFF18MYeMTiBoAAAB1Sy2IglKK3dViXE49A1EDAACgbilWFJTLulNqsTvE5ZSZirfWrCHQpRsAABoPtfN3KpWiqakpx996Z+pydSDP5/PsefTx5PP5QNcgAnYvXwr4Xb9hqQEAAFDXBA3WLZfLp5xtJ0qJywGvgOJ7AAAAGoL7779fXHDBBfbfU1NTYtu2bey+uttoaGhI7Ny5s6jMpXIUu1PHIwkyjkYHxfcAAAAsGYIG65YjFVuI8hS7W+pNKMsJRA0AAIC6plhRUAsun1K6lwM3EDUAAADqllJEQSmp2OWinHE5AKIGAABAHVOsKKgVl09bW5u45557xJEjR1wWop6eHnHkyJG67KpdLRAoDAAAoK4JGqx7/PhxsX37dlcMjS50jhw5gvowNYLf9Tu8iGMCAAAAyk5bW5vRksGJEmndEUKw1p0dO3bA5VOnwFIDAABgyVGuVGywOMBSAwAAABgIat0B9QEChQEAAADQEEDUAAAAAKAhgKgBAAAAQEMAUQMAAACAhgCiBgAAAAANAUQNAAAAABoCiBoAAAAANAQQNQAAAABoCCBqAAAAANAQ1I2oefvb3y4syxKnnXaa6O7uFjt37hRPPfVUtYcFAAAAgBqhbkTNhRdeKL75zW+Kxx57TNx1113i8ccfF+985zurPSwAAAAA1Ah129BydHRUXHLJJeL5558XLS0tvj6DhpYAAABA/dHQDS1/+9vfijvuuENs27bNU9A8//zz4vnnn7f/fuaZZxZjeAAAAACoAnXjfhJCiM997nNi+fLlYs2aNWJubk6MjIx47n/11VfbnVjb2tpET0/PIo0UAAAAAItNVUXNFVdcIZqamjy3Bx980N7/s5/9rHjooYfEvffeK0KhkLj00kuFl/fs85//vFhYWLC3fD6/GJcFAAAAgCpQ1ZiaX//61+LXv/615z7JZFKcdtpprtePHz8uenp6xP333y/OP/98X+dDTA0AAABQf9RFTE17e7tob28v6rNSi6kxMwAAAABYutRFoPDMzIyYmZkRr3vd68SqVavEsWPHxJe+9CVx1lln+bbSAAAAAKCxqYtA4WXLlonh4WHxxje+UZxzzjni/e9/v+jr6xNHjhwR0Wi02sMDAAAAQA1QF5aaV73qVeK73/1utYcBAAAAgBqmLiw1AAAAAACFgKgBAAAAQEMAUQMAAACAhgCiBgAAAAANAUQNAAAAABoCiBoAAAAANAQQNQAAAABoCCBqAAAAANAQQNQAAAAAdcTCwoI4fvw4+97x48fFwsLCIo+odoCoAQAAAOqEhYUFcfHFF4vt27eLfD7veC+fz4vt27eLiy++eMkKG4gaAAAAoE44efKkOHHihDh27JjYsWOHLWzy+bzYsWOHOHbsmDhx4oQ4efJklUdaHSBqAAAAgDohkUiIw4cPi1QqZQub+++/3xY0qVRKHD58WCQSiWoPtSo0ERFVexCLxTPPPCPa2trEwsKCWLlyZbWHAwAAABSFapmRSEHT09NTxZFVBr/rNyw1AAAAQJ3R09MjhoaGHK8NDQ01pKAJAkQNAAAAUGfk83mxc+dOx2s7d+50BQ8vNSBqAAAAgDpCdT2lUikxNTXliLFZysIGogYAAACoE44fP+4KCt62bZsreNhUx6bRCVd7AAAAAADwR2trq+jo6BBCCEdQcE9Pjzh8+LDYsWOH6OjoEK2trdUcZtVA9hMAAABQRywsLIiTJ0+yadvHjx8Xra2toq2trQojqxx+129YagAAAIA6oq2tzShalmp9GgliagAAAADQEEDUAAAAAKAhgKgBAAAAQEMAUQMAAACAhgCiBgAAAAANAUQNAAAAABoCiBoAAAAANAQQNQAAAABoCCBqAAAAANAQLKmKwrIjxDPPPFPlkQAAAADAL3LdLtTZaUmJmpMnTwohhN0ADAAAAAD1w8mTJz37Wi2phpYvvfSSeOqpp0Rra6toamoq67GfeeYZ0dPTI/L5PJplGsAcFQZz5A/MU2EwR4XBHBWmVuaIiMTJkydFLBYTzc3myJklZalpbm6ueLOvlStX4h9HATBHhcEc+QPzVBjMUWEwR4WphTny03kcgcIAAAAAaAggagAAAADQEEDUlIloNCouv/xyEY1Gqz2UmgVzVBjMkT8wT4XBHBUGc1SYepujJRUoDAAAAIDGBZYaAAAAADQEEDUAAAAAaAggagAAAADQEEDUAAAAAKAhgKipAG9/+9uFZVnitNNOE93d3WLnzp3iqaeeqvawaoYnnnhCfOADHxDr1q0Ty5YtE2eddZa4/PLLxQsvvFDtodUcV155pdi2bZs4/fTTxRlnnFHt4dQE//Iv/yLWrVsnTjvtNPGa17xG/Pu//3u1h1RT3HfffeJtb3ubiMVioqmpSdx9993VHlLNcfXVV4stW7aI1tZW0dHRIS655BLx2GOPVXtYNcUtt9wiNm3aZBfdO//888V3vvOdag+rIBA1FeDCCy8U3/zmN8Vjjz0m7rrrLvH444+Ld77zndUeVs3w4x//WLz00kvi1ltvFblcTnz9618Xu3fvFl/4wheqPbSa44UXXhDvete7xIc//OFqD6Um+N//+3+LT37yk+KLX/yieOihh8Sf/umfire+9a1ibm6u2kOrGX7/+9+LzZs3i5tuuqnaQ6lZjhw5Ij7ykY+ITCYjxsfHxYsvvije8pa3iN///vfVHlrNkEgkxDXXXCMefPBB8eCDD4o3vOEN4h3veIfI5XLVHponSOleBEZHR8Ull1winn/+edHS0lLt4dQk1157rbjlllvEsWPHqj2UmuRf//VfxSc/+UkxPz9f7aFUlT/5kz8RAwMD4pZbbrFf27hxo7jkkkvE1VdfXcWR1SZNTU0inU6LSy65pNpDqWl+9atfiY6ODnHkyBHx+te/vtrDqVlWr14trr32WvGBD3yg2kMxAktNhfntb38r7rjjDrFt2zYIGg8WFhbE6tWrqz0MUMO88MIL4vvf/754y1ve4nj9LW95i7j//vurNCrQCCwsLAghBH6DDJw6dUrceeed4ve//704//zzqz0cTyBqKsTnPvc5sXz5crFmzRoxNzcnRkZGqj2kmuXxxx8XN954o/jQhz5U7aGAGubXv/61OHXqlOjs7HS83tnZKX7xi19UaVSg3iEi8alPfUq87nWvE319fdUeTk3xyCOPiBUrVohoNCo+9KEPiXQ6Lc4777xqD8sTiBqfXHHFFaKpqclze/DBB+39P/vZz4qHHnpI3HvvvSIUColLL71UNLqnL+gcCSHEU089JS6++GLxrne9S/zX//pfqzTyxaWYeQKv0NTU5PibiFyvAeCXj370o+KHP/yhOHjwYLWHUnOcc8454uGHHxaZTEZ8+MMfFpdddpn40Y9+VO1heRKu9gDqhY9+9KPiL//yLz33SSaT9v+3t7eL9vZ2sWHDBrFx40bR09MjMplMzZvuSiHoHD311FPiwgsvFOeff77Ys2dPhUdXOwSdJ/Ay7e3tIhQKuawyJ06ccFlvAPDDxz72MTE6Oiruu+8+kUgkqj2cmiMSiYj169cLIYQYHBwUDzzwgLjhhhvErbfeWuWRmYGo8YkUKcUgLTTPP/98OYdUcwSZoyeffFJceOGF4jWveY3Yv3+/aG5eOkbDUu6lpUwkEhGvec1rxPj4uPiLv/gL+/Xx8XHxjne8o4ojA/UGEYmPfexjIp1Oi8OHD4t169ZVe0h1ARHV/DoGUVNmZmZmxMzMjHjd614nVq1aJY4dOya+9KUvibPOOquhrTRBeOqpp8SOHTuEZVnif/yP/yF+9atf2e91dXVVcWS1x9zcnPjtb38r5ubmxKlTp8TDDz8shBBi/fr1YsWKFdUdXBX41Kc+JXbu3CkGBwdtC9/c3BzisRR+97vfiZ/97Gf23z//+c/Fww8/LFavXi0sy6riyGqHj3zkI+LAgQNiZGREtLa22ta/trY2sWzZsiqPrjb4whe+IN761reKnp4ecfLkSXHnnXeKw4cPi3vuuafaQ/OGQFn54Q9/SBdeeCGtXr2aotEoJZNJ+tCHPkTHjx+v9tBqhv3795MQgt2Ak8suu4ydp+9973vVHlrVuPnmm+nMM8+kSCRCAwMDdOTIkWoPqab43ve+x94zl112WbWHVjOYfn/2799f7aHVDO9///vtf2dr166lN77xjXTvvfdWe1gFQZ0aAAAAADQESyeQAQAAAAANDUQNAAAAABoCiBoAAAAANAQQNQAAAABoCCBqAAAAANAQQNQAAAAAoCGAqAEAAABAQwBRAwAAAICGAKIGAAAAAA0BRA0AoC45deqU2LZtm/gv/+W/OF5fWFgQPT094h//8R+rNDIAQLVAmwQAQN3y05/+VLz61a8We/bsEe9973uFEEJceuml4v/9v/8nHnjgARGJRKo8QgDAYgJRAwCoa77xjW+IK664QmSzWfHAAw+Id73rXWJmZka8+tWvrvbQAACLDEQNAKCuISLxhje8QYRCIfHII4+Ij33sY3A9AbBEgagBANQ9P/7xj8XGjRvFq171KvGDH/xAhMPhag8JAFAFECgMAKh7/uf//J/i9NNPFz//+c/F8ePHqz0cAECVgKUGAFDXHD16VLz+9a8X3/nOd8RXv/pVcerUKTExMSGampqqPTQAwCIDSw0AoG559tlnxWWXXSb+5m/+RrzpTW8St912m3jggQfErbfeWu2hAQCqAEQNAKBu+Yd/+Afx0ksviV27dgkhhLAsS3zta18Tn/3sZ8UTTzxR3cEBABYduJ8AAHXJkSNHxBvf+EZx+PBh8brXvc7x3kUXXSRefPFFuKEAWGJA1AAAAACgIYD7CQAAAAANAUQNAAAAABoCiBoAAAAANAQQNQAAAABoCCBqAAAAANAQQNQAAAAAoCGAqAEAAABAQwBRAwAAAICGAKIGAAAAAA0BRA0AAAAAGgKIGgAAAAA0BP8fUystrq7LPN0AAAAASUVORK5CYII=", "text/plain": [ "
    " ] @@ -250,20 +282,50 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 244, + "metadata": {}, + "outputs": [], + "source": [ + "# The correlation matrix of the first and second columns of correlated_data\n", + "correlation_matrix = np.corrcoef(correlated_data[:, 0], correlated_data[:, 1])\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 245, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 1. , -0.72540304],\n", + " [-0.72540304, 1. ]])" + ] + }, + "execution_count": 245, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "correlation_matrix" + ] + }, + { + "cell_type": "code", + "execution_count": 246, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "The correlation coefficient is: -0.7589433978306135.\n" + "The correlation coefficient is: -0.7254030411293304.\n" ] } ], "source": [ - "# The correlation matrix of the first and second columns of correlated_data\n", - "correlation_matrix = np.corrcoef(correlated_data[:, 0], correlated_data[:, 1])\n", "\n", "# Check the correlation coefficient\n", "print('The correlation coefficient is: ' + str(correlation_matrix[0,1]) + '.')" @@ -278,12 +340,41 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 247, "metadata": {}, "outputs": [], "source": [ "nsubset=10\n", - "subset = rng.choice(correlated_data, size=nsubset, replace=False)" + "subset = rng.choice(correlated_data, size=nsubset, replace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 248, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 1.08149552, -0.75473902],\n", + " [-0.15064708, -0.88421426],\n", + " [ 0.03331803, 0.51951422],\n", + " [ 0.58669726, 0.51967288],\n", + " [ 0.42511267, 0.47888931],\n", + " [-0.05371048, 0.15998988],\n", + " [ 0.13428352, 0.24026582],\n", + " [-0.13976786, 0.57151718],\n", + " [-0.74081486, 0.22763649],\n", + " [ 0.02037839, -0.36898269]])" + ] + }, + "execution_count": 248, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "subset" ] }, { @@ -295,19 +386,19 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 249, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "The correlation coefficient of our sample is: -0.8537303444308123.\n" + "The correlation coefficient of our sample is: -0.19742697173045337.\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAGwCAYAAABRgJRuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACfiElEQVR4nO29eXgc1Znv/6q71e1FRl4ktdRdXbQb4yVSbKRIxDZJbMgEyEwmhGw34caQCckEJmRgcm8CWdh+WTCESVhCAjZgMnJkwlwkS56bICRhOzdCC0zYuiFAsJHawIwhpIUTVpv394c5lVOn3qqu3he9n+c5D6i7uupUdbnPt961BhERGIZhGIZhKhxPqSfAMAzDMAyTD1jUMAzDMAxTFbCoYRiGYRimKmBRwzAMwzBMVcCihmEYhmGYqoBFDcMwDMMwVQGLGoZhGIZhqgJfqSdQTN5++214/vnnYcGCBVBTU1Pq6TAMwzAM4wJEhEOHDkEoFAKPx94eM6tEzfPPPw+RSKTU02AYhmEYJguSySRommb7/qwSNQsWLACAoxflmGOOKfFsGIZhGIZxwyuvvAKRSMRYx+2YVaJGuJyOOeYYFjUMwzAMU2GkCx3hQGGGYRiGYaqCihE1P/vZz2D16tWGlWXdunXw61//utTTYhiGYRimTKgYUaNpGmzevBkefPBBePDBB+GUU06BM844AxKJRKmnxjAMwzBMGVCDiFjqSWTL4sWL4Yc//CGce+65rrZ/5ZVXoL6+HmZmZjimhmEYJg1vv/02vPnmm6WeBjMLqK2tBa/Xa/u+2/W7IgOFjxw5Av/+7/8Of/nLX2DdunW2273xxhvwxhtvGH+/8sorxZgewzBMxfPmm2/C/v374e233y71VJhZwsKFC6G5uTmnOnIVJWoee+wxWLduHbz++utQV1cHfX198K53vct2+6uuugquvPLKIs6QYRim8kFEeOGFF8Dr9UIkEnEsdsYwuYKI8Oqrr8LBgwcBAKClpSXrfVWU++nNN9+E6elpSKVScPfdd8Ott94Ke/futRU2lKUmEomw+4lhGMaBt956C/7whz9AKBSC+vr6Uk+HmSX88Y9/hIMHD8Ly5cstrqiqdD/5/X5YtmwZAAB0dnbCAw88ANdffz3ccsst5PaBQAACgUAxp8gwDFPxHDlyBACO/uYyTLGYN28eABwV1U7xNU5UtE0REU2WGIZhGCZ/cI88ppjk436rGEvNt771Lfjwhz8MkUgEDh06BHfeeSfs2bMH7rnnnpLMZ2ZmBg4dOkT2oDhw4AAsWLCAzbYMwzAMU0QqRtT893//N2zatAleeOEFqK+vh9WrV8M999wDH/rQh4o+l5mZGTj99NPh4MGDsGfPHlOTzGQyCRs3boSmpia45557WNgwDMMwTJGoGFFz2223lXoKBocOHYKDBw/Cvn37YOPGjYawEYJm3759xnYsahiGYZhSsXHjRjjhhBPguuuuK4v9FJqKjqkpFZqmwZ49eyAWixnC5v777zcETSwWgz179ji2R2cYhqlWZmZm4MCBA+R7Bw4cgJmZmbwfs6amxnF8/vOfz/sxq5E9e/ZATU0NpFIp0+u9vb3w3e9+tzSTyoCKsdSUG5FIBPbs2WMImZNOOgkAwBA0skuKYRhmtlAq9/wLL7xg/P8vf/lLuOyyy+DJJ580Xps7d65p+7feegtqa2vzdvxqZ/HixaWegivYUpMDkUgEuru7Ta91d3ezoGEYZtaiuueTySQAgMk9f/DgQTh06FBej9vc3GyM+vp6qKmpMf5+/fXXYeHChXDXXXfBxo0bYc6cObB9+3a44oor4IQTTjDt57rrroNoNGp6bdu2bbBq1SqYM2cOrFy5En760586zmXjxo1wwQUXwAUXXAALFy6EJUuWwHe+8x2Qy8L96U9/grPPPhsWLVoE8+bNgw9/+MPw9NNPG+/fcccdsHDhQti5cycsX74c5syZAx/60IeM6wkA8PnPfx4+9rGPmY590UUXwcaNG23ntn37dujs7IQFCxZAc3MznHXWWUbRu2effRZOPvlkAABYtGiRycK1ceNGuOiiizKe/+DgIKxatQrq6urg9NNPN4nPQsCiJgeSySRs2rTJ9NqmTZtMNx3DMMxsopzd8xdffDH88z//MzzxxBNw2mmnufrM1q1b4dvf/jZ8//vfhyeeeAJ+8IMfwKWXXgo///nPHT/385//HHw+H0xMTMANN9wAP/7xj+HWW2813v/85z8PDz74IAwMDMDY2BggIvzt3/4tvPXWW8Y2r776Knz/+9+Hn//85zA6OgqvvPIKfOYzn8nu5N/hzTffhO9+97vwyCOPwM6dO2H//v2GcIlEInD33XcDAMCTTz4JL7zwAlx//fXkftzO/9prr4Xu7m74zW9+A9PT0/C///f/zmn+acFZxMzMDAIAzszM5Lyv6elpjMViCAAYi8VwdHTU9Pf09HQeZswwDFN8XnvtNXz88cfxtddey3of8m+kGMX6bdy2bRvW19cbf+/fvx8BAK+77jrTdpdffjmuWbPG9NqPf/xjPPbYY42/I5EI9vT0mLb57ne/i+vWrbM9/oYNG3DVqlX49ttvG69dfPHFuGrVKkREfOqppxAAcHR01Hj/pZdewrlz5+Jdd91lnAMA4Pj4uLHNE088gQCAExMTiIh4zjnn4BlnnGE69oUXXogbNmwwzeXCCy+0nevk5CQCAB46dAgREXfv3o0AgH/6058s5yT2k8n8//CHPxjb3HTTTRgMBm3n4nTfuV2/2VKTBQcOHLA8daxfv97ydGIXKFfJlCIAkGGYyqMc3fOdnZ0Zbf/iiy9CMpmEc889F+rq6ozxve99D5555hnHz65du9ZUTG7dunXw9NNPw5EjR+CJJ54An88H733ve433lyxZAitWrIAnnnjCeM3n85nmvHLlSli4cKFpm0x56KGH4IwzzoBjjz0WFixYYLiqpqenXe/D7fznzZsHxx13nPF3S0uL4eoqFBwonAULFiyApqYmAABTIJwcPNzU1AQLFiwo5TTzDtfnYRjGLXbu+VImUsyfP9/0t8fjMcW5AIDJfSI6lG/dutW0gANA1mX8AcByTPl1taouVWVXvJZu/ip/+ctf4NRTT4VTTz0Vtm/fDo2NjTA9PQ2nnXYavPnmm3mfvxqIXVNTY/vZfMGWmiyor6+He+65B/bu3Wv5xxmJRGDv3r1VubCXKgCQYZjKQv5NiMViMDo6arJil0vcYWNjI/zXf/2XaaF9+OGHjf8PBoMQDodh3759sGzZMtNYunSp477Hx8ctfx9//PHg9XrhXe96Fxw+fBgmJiaM9//4xz/CU089BatWrTJeO3z4MDz44IPG308++SSkUilYuXKlMX818Faev8rvf/97eOmll2Dz5s3w/ve/H1auXGmxnIh+X6L/F4Xb+ZcCFjVZUl9fbxvopmla1QkagPIOAGQYpjyoJPf8xo0b4cUXX4RrrrkGnnnmGbjpppvg17/+tWmbK664Aq666iq4/vrr4amnnoLHHnsMtm3bBj/60Y8c951MJuFrX/saPPnkk7Bjxw648cYb4cILLwQAgOOPPx7OOOMM+NKXvgS//e1v4ZFHHoHPfe5zEA6H4YwzzjD2UVtbC1/96ldhYmICfve738E//MM/wNq1a+HEE08EAIBTTjkFHnzwQfi3f/s3ePrpp+Hyyy+HeDxuOydd18Hv98ONN94I+/btg4GBAUvtmWOPPRZqamrgP/7jP+DFF1+EP//5z5b9uJ1/KWBRw2SEcLGJH6eTTjrJ9OPF6ewMM7sR7nn1N0H+7SgX9/yqVavgpz/9Kdx0002wZs0amJyctGTnfPGLX4Rbb70V7rjjDnj3u98NGzZsgDvuuCOtpebss8+G1157DU488UT4yle+Al/96lfhH//xH433t23bBu95z3vgIx/5CKxbtw4QEX71q1+ZXDbz5s2Diy++GM466yxYt24dzJ07F+68807j/dNOOw0uvfRS+MY3vgFdXV1w6NAhOPvss23n1NjYCHfccQf8+7//O7zrXe+CzZs3w7XXXmvaJhwOw5VXXgmXXHIJBINBuOCCC8h9uZl/KajBQju4yohXXnkF6uvrYWZmBo455phST6eiuf/++42CgwAAo6OjsH79+oIek5uIMkxxeP3112H//v2wdOlSmDNnTsafn+3/VvPRUuCOO+6Aiy66yFLZt5pxuu/crt9sqWEyphT1eUSQ8oYNGyzHSSaTsGHDBjj99NM5+4phyoDZ6J5nygMWNUxGlCoAkIOUGYZhmHSw+4lxzYEDB2DDhg2WGBpV6Ozdu7cgwcLqcbq7u2HTpk0c08MweSZX9xPDZEM+3E9cp4ZxTanr83ATUYZhGMYJFjWMa0R9HioAUNTnKXQAoKhSKgcpl7pKKcMwDFMecExNCajkVgOlDgDkJqIMwzCMHSxqigxn8WRPpVQpZRiGYUoDi5oiw1k8mTMzMwMPPPAAWaV0x44dEI1Gy6pK6Wygkq2NDMNULyxqikyxWw1U+uIjLFuf/vSnYeHChZasq89+9rOwaNEiiEajZVOlVFDp194OtjYy1cyePXugpqZmVhW9qyZY1JSAYrUaqIbFR1i2nn32WXj55Zdhx44dljTymZkZuOuuu8qqiWg1XHs72NrIlDMHDx6EL3/5y6DrOgQCAWhubobTTjsNxsbGSj01g40bN8JFF11U6mlUJSxqSoTI4pHJdxZPNSw+smXr2Wefhc9+9rOkZaurq6tsBA1AdVx7O7ixKeOaI0cA9uwB2LHj6H8dOj/ni0984hPwyCOPwM9//nN46qmnYGBgADZu3Agvv/xywY/NlAE4i5iZmUEAwJmZmVJPBaenpzEWiyEAGCMWi+H09HTBjhOLxXB0dNT0t9PxUqkUJpNJ8r1kMompVCpv80x3rHg8XpTrlU9yufaVQLHuYab4vPbaa/j444/ja6+9lv1O7r4bUdMQAf46NO3o6wXiT3/6EwIA7tmzh3x///79CAD40EMPWT6ze/duRETcvXs3AgD+x3/8B65evRoDgQCeeOKJ+OijjxqfefbZZ/EjH/kILly4EOfNm4fvete78P/+3/9rvJ9IJPDDH/4wzp8/H5uamvBzn/scvvjii4iIeM4555j+zQAA7t+/P+/XohJxuu/crt8sakpAsRe7bBafVCqFa9euJbcT+1u7dm1ehI3bYw0ODprOYXR01PX+iyXOVKp94R8dHc3qO2HKm5xFzd13I9bUmAUNwNHXamoKJmzeeustrKurw4suughff/11y/uZiJpVq1bhvffei48++ih+5CMfwWg0im+++SYiIv7d3/0dfuhDH8JHH30Un3nmGdy1axfu3bsXERGff/55bGhowG9+85v4xBNP4O9+9zv80Ic+hCeffDIiHv09WrduHX7pS1/CF154AV944QU8fPhwQa5HpcGiJkPKQdQkk0lSwKhCx24RzpZMF59iztPNsXRdR13XMxYHxRRndlTrwl/tgm02k5OoOXzYaqFRhU0kcnS7AvB//s//wUWLFuGcOXNw/fr1+M1vfhMfeeQRRMxM1Nx5553GNn/84x9x7ty5+Mtf/hIREd/97nfjFVdcQR7/0ksvxVNPPdX0WjKZRADAJ598EhERN2zYgBdeeGGezrh6YFGTIeUgakqxyGa7+BTTouR0LFnQZDqPUolI6ryqaeGvdtfabCcnUbN7t72gkcc7IqIQvPbaa3jvvffilVdeievWrUOv14vbtm3LSNRMTU2Z9nnCCScYQmbr1q3o8/lw/fr1eNlllxmiCRHxb//2b7G2thbnz59vGgCAv/rVrxCRRY0dLGoypBxEDWJx3SG5Lj7FXJSpY6mCJhtRUqoFuFoX/lILRabw5CRqenrciZqenvxP3IZzzz0XdV3HqakpBAD83e9+Z7x38OBB16LmyiuvNP6enp7Gn/3sZ3jmmWdibW0t3nDDDYiIePrpp+PHP/5xfPrppy3jz3/+MyKyqLGDRU2GlIuoKRb5WnyK6T5RjzU4OJgXy1axLSbVvPCXg0uPKSyVbqlR+dd//VdcsmQJvvrqqwgApqDee++9lxQ1wtWEiPjyyy/jvHnzTK/JXHLJJfjud78bERG/9a1v4YoVK/Ctt96ync+HPvQhvOCCC/JwZtUFi5oMmW2iJh+LT6ktNbFYDOPxeF4sW8UUZ9W+8Jcy+JopPHmJqaEChQscU/PSSy/hySefjN3d3fjII4/gvn378K677sJgMIhf+MIXEBFx7dq1+P73vx8TiQTu3bsXTzzxRFLUtLa24vDwMD722GP40Y9+FHVdxzfeeAMRES+88EK85557cN++ffif//mfeOKJJ+KnP/1pRER87rnnsLGxET/5yU/ixMQEPvPMMzg4OIj/8A//YAQEf+lLX8Kuri7cv38/vvjii3jkyJG8X4tKhEVNhsw2UYOY2+JTLjE1+ThWKWJbeOFnKpW8ZT+pwqbA2U+vv/46XnLJJdjR0YH19fU4b948XLFiBX7nO9/BV199FRERH3/8cVy7di3OnTsXTzjhBFtLza5du7C1tRX9fj92dXXhww8/bBznggsuwOOOOw4DgQA2Njbipk2b8KWXXjLef+qpp/DMM8/EhQsX4ty5c3HlypV40UUX4dtvv42IiE8++aQxBwBO6RawqMmQahE1xVgsyy37KZdjVWtsC8MUioLVqYlEClqnhqls8iFquKJwhVGs8vsLFiyApqYmS+sGucVDvnotFfJYBw4cIBthqhVx3TTCrNZeTgxTED7+cYBnnwXYvRugp+fof/fvP/o6wxQIX6knwGSGWn5fbu4oFm+xXS5tA+rr6+Gee+6BQ4cOWcrdRyIR2Lt3LyxYsCAvrQkKeSwhmACAFEwbN250JZiEmDx48KClP5e49k1NTa77T83MzJDnC3BUIOXr2jJMSfF6ATZuLPUsmFkEW2oqjGz67mRqYRDb19fXWxZdsb2maXlddKljCXI5lhBMe/futfTVEoLJjRDJZy+nam52yTAMU0pY1FQgmXT5znQBrcYFlxJMQrhRgokSevls4ljNzS4ZhmFKCYuaCsVtl+9MF9DZsOBmK9wyEZNOcJdrplJAxFJPgZlF5OV+K0wMc3lSLdlPiJmlKGea/VPt2UK5Zlvlq95NtbZQYCqfN998Ex9//HEuO8AUlZdeegkff/xxssGn2/W7BnH2SPFXXnkF6uvrYWZmBo455phSTydrZKtJLBaD7u5u2LRpk6PVQA0kBgBHC0Om21ca2VxD9XOCXK7L/fffDyeddJLx9+joKKxfvz67k2KYPIGIMD09DW+99RaEQiHweNiozxQORIRXX30VDh48CAsXLoSWlhbLNm7XbxY1FcaBAwdgw4YNlsVXXaT37t1rcV9kuoBW+4Kbi9DLRAjl6/gMU0zefPNN2L9/P7z99tulngozS1i4cCE0NzdDTU2N5T0WNQTVIGqyTS2uJEtNMdOd3Qq3XMQkRb4FEsMUgrfffhvefPPNUk+DmQXU1taC1+u1fd/1+p1vn1g5Uy0xNZlWFK6kmJpi9kzKJKYln/Oq5maXAm4RwTBMPuE2CQTFFDXl8qOe6QJa6gW3WMfPRrjl6zudDc0uq/n8GIYpPixqCIolasrpRz3TuZTD3AttKSq1cEMsH9FbCMrh+jIMU12wqCEolqgp9I96pgtiobcvBIVMdy4H4VbtVHtZAIZhiguLGoJiup8K9aNebguykwBKJBKYSCTI99yIo3zVg6HIRriVg9irJLgOD8Mw+aLqRM0PfvAD7OzsxLq6OmxsbMQzzjgDf//732e0j2IHChfiR72cTPtOAisej2MgEMBAIIDxeNz0nhvxVW4LYrmJyUqhkMKUYZjZQ9WJmtNOOw23bduG8XgcH374Yfy7v/s71HUd//znP7veRymynwrxo14upn0ngaXrunHOuq5nJL7K4fxUq4x8rrquG0KtVC7FSqDchCnDMJVL1YkalYMHDyIA4N69e11/phosNZnuu9CLpZMA0XXdEDduxUk5WKLsrDKyWAsEAjg4OFiVLsV8UA7ClGGY6qHqRc3TTz+NAICPPfaY7Tavv/46zszMGCOZTFZ8TI1MOitQroulW0HkJLAyFXblsMBTwiqVSuHExITJAiVbolQXW67HQ6zcbKFqOx+GYUpPVYuat99+G//+7/8e3/e+9zlud/nll1sWoGrIflL3ZScWcplHpuLCSWC5dcEJEUWJKfn1YgTxytcoGo1ia2sr+nw+BAAMhUKm8wmFQjkLLTciuFJcVOUgTBmGqS6qWtT80z/9Ex577LFpRUGpLDWF/lHPxAqUrcUoE0GUD0tNLtesUBYpNTYIANDr9WI4HCatNfksCKheq0oTCpUiwBiGqQyqVtRccMEFqGka7tu3L+PPVkNF4WysL9nG9rgRRPmKqcnFqlRIi5RqlZGtM/J7oVDINkYok+/azqrFLh2GYWYzVSdq3n77bfzKV76CoVAIn3rqqaz2UQ29n7J9Ys82C8tJEOU7+ymXOKRCWKSo+Bl1aJqGfr+ftNZkakFJJz45+JZhmNlK1Yma888/H+vr63HPnj34wgsvGOPVV191vY9qEDWIuTW0zMRSI7ATRIWoU5PLXPNpkVJF2eDgIAYCAYuo6evrM2VEZZvq7VawcJo0wzCzkaoTNXZPytu2bXO9j2oRNZmQ69N9ukW0EBWFc6ntk0+LlGplGh4eRq/Xa7kW4+PjGaeuq9ciE9cSF7RjGGa2UXWiJh/MNlGTaxxGKdwdxbTUCEE2NTWFk5OTFrHQ3NyMAwMDODU1Zdq3z+fD1tZWjEajJmGT7bxli1c8Hrd1YSUSCYzH42ypYRhm1sGihqDaRE06N9TU1FTWGTOlCEwtZkyNEBK6ruP8+fPR5/NZgoJ9Ph96vV6cN2+e8V4sFsOJiQlMpVKmuJtYLIZ9fX1ZW1BSqRQmEgny+0omkxiPx1HXdcMFRgVl5yNQmWEYphxhUUNQTaLGbcDw1NRUVllYxU4hLnb2k/wZeQSDQTLjqba21iIchKgJBAK4evVqw3KTrQUlm8BrEbuUj0BlhmGYcoVFDUE1iZpiWFKKWWukFHVq3GY4iTgauyyuUCiEkUgkL246J4tTIBCwCKtkMpmXQGWGYZhyhkUNQTWJGsTyT/HNVBRlI6JyqUKMaLZ0qEO4pNrb203xM6rbR9M0R3EZjUYzEhVUbJBoxUCdo3BNlet9wDAMkyssagiqTdQglm+KbzHcV/k6xuDgIClqbr75ZkMQ2V3nsbExrKurQ5/PhwMDA6ZjjY+Po8/nw7q6Opyamsro3NSgZaq4n3yOHEDMMEw1w6KGoBpFDaJzHZlCuY/S7TuRSBTcPZYPF5xs5aAsNUNDQ8a2qvgZHR3FZDJpWHF8Ph92dHRYRFCmlhq7Oem6bgpSVs/RTao3Bw4zDFOJsKghqEZRY2dBiMfjBbOU2FlIRCdrynogCtjl2y2SiwvOyfUkj6GhITL+RtM0nJ6eNiwyQtj09fVlfZ7ynDRNMxX3E/tvbW21uLzsXFZqYDMHDjMMU4mwqCGoNlHjtKCrfZfyaSmhLCSpVAo7OjqMxV3smxID0WgUJyYmbPedS0dtt64XOcBWFgz9/f1kE0uREaXrOgaDQeO95uZmY3tx7tm6f9Q5+f1+1HUdx8fHyYysQCCAY2NjhpAU85O3FcKLA4cZhqlkWNQQVJOoceN6yaShZKaoi2RfX5/JWjE+Pm5spy7Ira2tebcgZVplV1ibQqEQ1tTUGHEraosEVaSMj48bVhLVKtLb25vRHOzmpOu6qRN4MBgkO4M3NTXhypUrTUJSCBj5mre0tJACl2EYplJgUUNQTaLGbZBsIQNIKQuJvMDaCQR1EVb3laklwa2lRrUCibigsbExi/DSdR2HhoawubnZmHNvb68RP6O2S+ju7racazbXWcxpenraIp7UY3q9XqOZpiokqevOgoZhmEqFRQ1BNYkaRPeBwIXsFaTuu7e3lyxqp+u6yVKkip981HWJRqPY2tpKiiYRfEtZgZLJJBkELPavFtVTxYXqegqFQnmxjKgVimXLjZiDz+czhJd6LVWhxj2iGIapVFjUEFSbqHFDIVO+7fatumHkdGS1h1I28xJiTnXBTUxMWOJbYrEYjoyMmIJvJycnTecgtx+g5qIKNzmmRhYY8rnmGsNCXVv5GPI5qnE04rV8WI4YhmHKARY1BLNN1BSyOJ/TvlWxYpeF09ramrElQW3+KLvgVIGiZgoB/DX4Vt5etsBQjSpVSw0AYDgctk27FgIm2xgh+dpqmma5nkLYiCaaHR0dhrVGFT5cjI9hmGqARQ3BbBI1hWyjYLdvNbV5+/bttm6YiYmJrHolqccWVXbtAqRlsSEH24ZCIdPfwtoiLD6qQKOE2pYtWywWHFXAZJrNJZ+ffB6LFy82Hcvj8eD4+DhOTEyQmVHi8051bRiGYSoFFjUEs0nUFLKiL7VveTH2+XzY3t5uu5jmakFy83kqjogKoK2trTUJGnHsiYkJQ8hEo1HDKiILIEpEiN5L2SJnQIm5UiJNzKOxsdEizGThJscRievW2dmJiUSCPD4X52MYphxhUUMwm0QNYnErCstCR1gHBLKIylelYadYIaf3VLFjZyVKpVJGzydqjmKIrKh8undSqRQmEgmLuInFYrhlyxb0eDzkOQgBNDQ0ZLLeyC6xRCKBXV1dBRG7DMMwhYJFDcFsEzXFxo2IyqcFicpYUrOh1Gwguxo0g4ODpnnanY+akdTb22uauyzKchWViUSCdN+pgdiqqJFT6eXO3alUCicnJ0kBJrsD2T3FMEy5waKGgEVNeZAPCxLV4kC2asgusHg8btRzUV1OYvj9fhwaGnIUVVR6N2VtWrt2LU5NTdmKt3Tp5bKoUvfhJiuKcofJ+5JdaSJbTXa1ZWtpKqRlkGGY2Q2LGgIWNZWP6C8lW1xkC4zf7zelcycSCdy1a5cp0Fe4bzwej8mVI8fWqK41OXg4Go2a+jvJQkC20FAWEVmMyW4hRNpSJQsFNRhaTi0HAMvfcjaZOh9Z2MiuNLv2FW6+l0J3ZWcYZvbCooagHEQNP81mj4hzkeuzCDETCoVM1hdhpVi7di1Go1Fsa2szvS//vyxs1IVdPaZdtpfoxG0nQmKxo60kIpGIaY5uY4rssqKoGjV2cULqMW6++WbSlZYNhcy2YxiGYVFDUGpRw0+zuZFMJg33j2gLQGU0+f1+I9Vbtqb09PQ4duWWXVbUMb1eLw4MDCCitYhgW1sbPvbYY67cRZqmZdyTi8qKEtvK4kq1XDkJGycRlGtjUeq8xHdi993yfc8wjB0saghKLWr4aTZ35LgWsXCqlgoR9Cu2l6/tj370I1tR09fXZ1lYVXeXmu0UjUZxYGAAo9EodnR0mOZmF9jb19eXVaVnOStKbCvfU0IsqT2/1HtKnc8PfvAD0jWVjcC2Oy+1UCL1GRb0DMPYwaKGoNSiBrGwVX4LQTm6y5ysDZlaJ5w+J1vWBgYGLAX4hIVGCBld1w2BI/YnB+Ga3E779+NjN96InwHADQDosRFVFPJ3olr/5O+EEgty/R35PPr7+02Wp1wENlUjiAU9wzC5wKKGoBxEDWJh+zHlk3y5y9IJo6mpqYyFk7pwhkIhR4GoWicaGhoc3TVU+rNaQVgWAIFAwNiPqG+jbnvLLbdgIBDAMwHwOY8HEcAY0wD4SY8HOzo6MhaKboWnbOXy+Xy4ZcsWU8Vk+e9ss6Dc1g+qBEHPMEz5wKKGoFxEDWJhO2fni3w8XacTRtFoFOvq6shF1E44UXE0cj8ndW6UdQLA3L9JjlWJRqPY3t5uyRKi9iE+qxa7u/76603bBINBnJycxH9saMAjAHhEEjT4zt9H3hE2ExMTebeCqYHGIjZIjceRr2WmuBEtlSLoKcrRaskwswUWNQTlImpK/cOeyY9zrk/XboSRnM1Eva/rulHWX35dto5QC6eILZGtE93d3aaUajl+RMShqLEx/f39toIG4GhMiiyyWlpaLNtrmoYT99+Pry5ZYhE0srCZAsBoJGKpY5OPCtAiE0xYkkSWl2rFOv7443Fqaiqj/dsVCpQFqBCZlKAvd8GQqdWy3M+HYSoNFjUE5SBqSm2Cz8allKsIS3fOO3fuNIrjiYq44v1wOIyappEtFqhmlmLhTCaTpu3lRVwUvxPbT05OWsQDJbrSDbVpJsDRdHHRQfsUxeVkN/5GiWnJVyCtcKnJIk+OpZFHW1ub47HUuJ6uri4MBAKmJpriuxed0zs7O00BzGKIIOtyDiLOxGrJWY4Mk39Y1BCUWtSUQ7BktnPI1V3mlBXT3t5ONokMh8PG69Fo1JL5Q+1ffVrOZXGhKgiL4fP58Bvf+Ibpteuvv95SAA/grzV0PuNC0CAAfkayWmXbvsDJUjAwMGC53lTwsF0hPio4WRahVAaWrus4PDxsK26pOkDlFkTs9oGkHP6dM0y1waKGoNSiplye4DK1FuXLXZYuK0ZdaMXf8gKbqVk/VzcA1WdJDq5NZ72Rt9ngUtRseEcEZNu+wM19tmLFirTnZbfwUou2GuekugXliszp3JDinqTS4zP57gqB238LpbbIMky1waKGoNSiBrF8fO3F/nFOlxVj12jS6/Xi+Pi4sZ9sr182n7NLf77hhhssWUNqtWK5lo0YHgA8UFOTNqZGa2lxbTWhzk0NChb9n2S3WzQaJd1OsZi7OjXUfUF9h+I7VoUWVXmZyhoTRRapY5fKhePWalnq2DmGqSZY1BCUg6gpJ9L9OOfLjK5uPzg4aHqKHx8ftxU1wWDQOG62lq5s44jk2JPe3l5ywe3o6MBEImEpAKhpGpkC/gmPxzH76UwAXLRokekzTu0L7M5NFoqBQAB7e3stAdKUa627u9v47tMJBmrRVq+DfE8JIUPNWbxOWcbKyYWTqVCphCxHhqkEWNQQsKj5K25+nPPhLlOFkagsq3bUBjDXjpGHaPyYrchy+7lEImE5jggwTiaTGI/HUdM0k+CKx+OYSqWwo6PD0R21fPlyY8E/E47WpZFFzQGPBz8h9aBy+l5kweF0bnZCUU5lp1x+qmXECapeULoF327OVHq56pIqpQunVG5bhmFY1JBUkqgppJsqkx/nXOfhFFSq6zpqmoZ1dXXY1NRkWXzFghsIBAwXSrbusHSfk8v4q/8v4kFE8KumaUa2VjQaNcV/UDVqtmzZYnL9AAC2NDXhKR4PfgaOZkWNj45aLDsej8fIppJddaqYdDo3VWTIgcxyI89gMGhcb6/XiyMjIxndR6oIzWTBj8XMlZfVVhSq0CmFMMhUUHNMDcPkFxY1BJUiagoZUFyKzAxVGMnH0nUdN2/ebBEB4n2x0NotGJksdE6foyxKiUTC0qFbWHKGhobIxZZy66hdtXVdx87OTlyzZo2xj1AoRFp6mpubDeuQEIHqXEQKOlWQUH1N0zTbYnvj4+MmISlqA4nvUFiy1GsZCoVMotSpEGK670OOobETTaVw4WTyb5Kznxgm/7CoIagUUVPIH8VyzMCSR39/v+V9EbsizynbWAWnz6nXt6+vz2Q9SLfYymIsGo1iX1+f8bff78dQKGQIqFQqZTTLDIVChuVHWCnkeje1tbXo9XqxtrbWNBf5+4rH40Y9HDGElUacixBbqptPxOxMT08bx5VFTSqVws7OTlMdGlmUNjc3Y01NDfr9fovoSndPqd+HGj9EuaRKZelwa7Usl39jDFNNsKghqBRRg1hY83W5ZGCpC9rWrVtN78tZMXKF20JYapy2sYvrsIuhsYsT8Xq9liwmOcNKCAYxDyomRt5Wtv60KBlTstVEZDN1dHSYYoLkfcruHjljCvHoPSHPRdM0bG9vt7SHCIfDJlddumrI6b4P+X3h5qsUF065/BtjmGqBRQ1BJYkaxOoONHR7bpOTk7aCJp8xNfLnKOuBk9CRLTp21iYx5HozaoaVKnimp6fJmBj5tVAoZNmmubnZsPyo/a3EtoFAALu7u11bQVSR1dLSYorPkVtcZJo5RX0fburaVKoLhwUPw2QOixqCShM1iNWZEqo+gbe2tjpWlJVjFaiCbOr+xMIgFg7VnSfK+FMLpJ3YSpdqLFtkfD6fyfUUi8VwYGDANHd5EZdbOKjXibKs2A1ZwGiaZhIdcjE82RKjnldfX5/j90ZZj+waYNot3rLlx+l7FE1Fq8mFw64phskOFjUElSZqqtFSQwkM1Z1DPaknk0mcmprCuro6siCbEBV1dXX42GOPWQq9ib/VwnJqXIqd9YBKNVbnMDAw4Gj5yOT7lNPHhXtItcjIQ8TrUMcIBAI4NjZmWUzTWZIoVJFtJ7SnpqZs+zkNDw9jIBAwZbUJ5O9jamqq6iwaHETMMNnBooagkkRNsVNCi2USp55U1aDg1tZW0iJjZ6lRK+VOTk5a4kNEUC61cKjNL51iYpYvX+5oVVq+fLlpwVcDX1XLCCUIEomEUShPjqFxI2oQEQcHB8k5iIaWlJVKDiR264Kys9SkUilL1hh1PSORiK0lpxIFi1s43ZthModFDUGliJpiP80V2yROCSi3Vgz1GgwODpoq5crXSq6oOzg46Lhw2FW5lcVWW1ubKQbGydpEWXTcZvLIoiYUClk6f8tDLp6naRoODQ0Z8TSq6JADr9O58dT7SxU0aiyPGlNDWd/UWjROrR+qnWq0wjJMIWFRQ1ApoqbYIqNcTOK59NRxEjVuFw5VbMnfw/DwMCYSCdKqFIlE0i7gW7ZssS0uF4sdrYsjH1u2PnmISsNer9cQFbKwkbeVt5GzpaLRqK1riLq/1OwnWSSpr1N1bNy47txQbQG21RgvxzCFgkUNQaWIGsTi/4CnM4mri26+55Ppk6tdeX61mi3ViyiTayuKznV2dpJF5ZxEk13Zf6rejagBo6aX2wUKb9682RAVqmVGFhKq20q4qagmmHYp2GqdGnWOuq5jIBDArq4uo/6OXdA1wF/7S2WCndCX3Yqq0KfOo1xEEVtqGCYzWNQQVJKoKQV2P7Ry24BCWI4yjTGg5im3LpAtB6q1JhwO4+rVqzM6F9kdJBZ1VVTV1NRgJBKx7FONoVFjbGRRIJ+vXJiPEjUAR4v92VlzqDT0mpoa1DQtq+9QrSgsI2KShKCR7xUqa0wECMsiI53IomKe1J5bsjVRPadyyjrimBqGyRwWNQQsatJDmcQL6Z7KZ08dtTmjSGmW3T52T8ZO56K6X6jaMF6vFwcGBkzn5vZpXDTLlIOb5YBkedTX11teo9xTwgUmvyYK9BXSxSh/n3atH4QIFS4wVTRTGWlUdpqbis/inMrFxVou82CYSqMqRc3evXvxIx/5iPHj7FRTg4JFjTNOi3Chni7z1VPHriO1EDqqGyaT7s/CauLmGNk23hTHUPtGycew62Iuhup6o3o8yW0MqIJ3lKUiU7fN9LS5aKDX6zXVzFFFJtUbS/1/sdBT96jdd6nW/5E/q+u6Y/B4oVxV5WQxYphKoipFza9+9Sv89re/jXfffTeLmjzjZhEuVBxArj11ZFHj9/sti38wGLQslB0dHRYBoe5X1MYRx+zp6SHFRmtrqyEWAoEAjoyMZPQ0Lp/X1q1bHYWL3WhoaDBcMgMDA4bQUgsB+v1+20ac1IKazSKcTCbJWCBZpKjZZFTsD1WgD9FdxWe74n2UAKYETSGFRznF9jBMpVCVokbGjah5/fXXcWZmxhjJZHJWi5pcKryKRbhUGRti7lTshVoplyoQJ5+bECvbt28nz0V2B8niR20YKS/AcvuB8fHxjBZFKgU60+H1enFoaAjb29tNbrg1a9ZgKpUydeBWh9r3Se7OnY27RIgC9XqNjo6a0sqnpqYcg64pwWEnrKnKyHbzpuYln69dzaJ0LiIWKwxTOFjUIOLll19O/lDORlHj9PQZj8ddVXiVYxrsFp1Sz91pkRSLlxpgKlsSxsfHLYG7Tq4nIShkUSWOkUmGlVyN2Ofz4aWXXpqxsPH5fNjY2Gj83dzcjCMjI6bvjYq/Ud1AqhUiG9ejnJIuW08mJiYs528nQlXB4TQPJ+uTvD1lQVItke3t7Tg2Npax+7BQ1h0WSwzDogYR2VIj4+aJW64zon7WqYVAoYWN27nLRfCoCrwic0nujO3z+UzxHrI1Q2yfTCYds5DE59Ricm4WI7X6biaWms2bN1uEgzx/YUGSM7fsrE0+n884R8oK4cb1SKVyi3tFruUj16hxioeSj2F3D6TruSULG+o7E4UNVddYR0dHRiK+UAHAHIPDMEdhUUMw22Nqsg32LYeMjXRzVwUN1ZlaLPTy4iW2kYWN2E6cp5zSbTdqa2tNbhu3i1EikTBVKd6yZYtrUePz+XDFihUWIaRpmkW8yOcdDodNFh1K+FE4uR7F+WqaZhJHwgKiBmlPTExYBI0qyGSXKFVWQHXbLV++nGwBcc0115jm3dDQYBxLDWIWr2fjbi1EMH05/NtjmHKARQ3BbBc1iNkV/SqXp0WnuYs5qhkzYlGVXUqiiJzTU/zg4KBx3KmpKVy1apWjFSUQCODw8DBZhTfdYjQ9PW1pv5CJsLn66qtNr33/+9/H2tpay/mI6xMKhSzvAxwNIlbdj26uvThfOfCaarCptnRQM6RUQaoKJLlOjhzEres6zp07l0zrXrFiBSnc+vv7ba+16o7K5N9KIYLpC5V5yDCVBIsaAhY1R8km2Ldc/PrprAWJRMLSoVvUKRHuhK6uLmOBVJs/UmKpo6PDWHT9fr9twK1wWwhrgRqb47QYUdWH0w05wyndtrFYDHfu3EmmVovR1NRkVI6Wv1N5UY1Go7bnobr1ent7LWItHA5b4lrkmjVCTESjUayrq0NN0yxxPrKQnpqawl27dpmOK+oF3XbbbabjXHnllaaUdsoqRgmaaDRqG3hM3fuFCKYvVOYhw1QKVSlqDh06hA899BA+9NBDCAD4ox/9CB966CGcmppy9XkWNZX34yiLKWru0WiUDNoUi40qcOQu1WqLAQ8AfmLJErxgyRLcAIDLli7Fbdu2GeLB4/GY3BZ2QbcDAwOkK8zuessuBnlcffXVtnVrAI6mqstiIV0dGzfD7/cbrh/hHpNdPLJoUy1OasCzOsR3pS7627dvt4jmkZERw4Wm1v9Ra9cgWkXhxRdfbDrGrbfeagQBO1nFent7Td+H3CdLDTyW2zNMTU3Z1tGR558L3CuKmc1UpajZvXs3+WN5zjnnuPr8bBc1lWbGlkWJuqDIDSMpYYOIlsVJ1C0RGU7yPXQmAE4DIEpjGgA/6fHgnDlzjO1qa2ttG0gCAC5fvtzSATvdYpRIJHD16tW2GTy6rpvmIASN+H+v10u6k2QRpg75dbttRHq3HMhMNa1sb2/H4eFh7OrqsrWAAAC2tbWRWVFq8HAqlcK2tjb0er2G6BT3q9x5fWRkxHQdBwYGyOMKQSP2o2aaqXMZGhoy7js5Vku+D2VxJO4t1fWpzjcXYVNpDyMMk2+qUtTkymwWNZUYcKgGgnoA8LMtLfj0//f/4WdbWtAjLUp2c6diOuRFvLa2Fs8EwCPvDFnUiNe+uHixJZA43RBP53K8DLUYUW6qwcFB0+J4++23k8HAdnExsgWnqanJdo7BYNB0LRYvXmw5B3lhFp+RF9KJiQljLkKA2Flq1EwzeTtZ2MjixOv1khlbtbW1ZFDz+eefb9ruvPPOsw0od+qqPjw8bNuaY/v27SY3lpryL/prqYHQdtmF6ai0hxGGKQQsaghms6gpl2DfTInH4+j3+0lLynNeL567aJGpQzQFJSzEAq2HwzhNCBpZ2LzV0oLxRx4hRYQYixYtMv0dCoVIV4e8kKoWIyGE1IBnO6uCaiUKhUJGTMzExITRTkQddpYZWRipcS9qZhK1aPt8vrT7lvdBWWy2bt1qOU/1usvWMvl+vvXWW22PJzKoVMuT+HwymcShoSHSIiXuIcqtJI4t7lNx/eQWDHb1f9xQiQ8jDFMIWNQQzGZRg1g+wb6ZkEwm8R8bGhwtKf/Y0GBKp6bo6+sjF7sNNmJGHY//9KdZZSbJAka1EIj/BgIB1DTNKEwntpMbQlJNNNUhL7JOFYTVoTbJvPvuuy3XSxUbwWDQMp9Mro+oLmxXo0a16lACS76+mzdvNm3zuc99zvT3ddddh52dnajrOg4NDeH8+fMN65CYR2dnJ+7YsQN9Ph/W1dVZYvVUN6Kc9j89Pe1Y2C/bf1+V+jDCMPmGRQ3BbBc1Fcnhw/hWS0taSwoePmy7C+opW4zPuBQ1FyxZggCANTU1tgu1WvPE7/ebhIZdoPPY2JipT5G8XW1tLXo8HsMK4EbYUMG6DQ0NZGAzNagMr1gs5mgJ0TTNtrO4Kjjkxd5O2IjrqM5DnL9TscJrrrmG/L6FxScUChkCRK5jJFuootFoWkuN+LzsDlK/n3wE81biwwjD5BsWNQQsaiqQ3btdiQ7cvZv8uGqmV4NYN7gUNRvAGnNiN2TXiqZppgWJChqmXAzUYt/S0mKJL2lqarIs7JSFxuv14tKlSx3nvXnzZqPCrviM3BfKzhITCoUMV5qoFyO/LwuQ1tZWSyC12rdJDEqEUW45eVxyySW23zdVbZmap2oVUe+hwcFBU9acPDd1nxzzwjD5gUUNAYuayuOlG290J2p6eiyfVcUCVWzPA5A2pmb6ne3cCBqAo4XuRIqx7MZwymCR39N1HQcHBy3uF2FpqK2txebmZmNxdwoGthMH1NB13RKHo+s6dnd3O7qWFi9ebBEasVgM+/r6LPVj1HRwOajZaV6yNUQIm+OOO86yrRwTI7KNBgYGDLGW7lhO6fayK8nJuiREk12XcYZhModFDQGLmsoimUziZ1taXFtqVDO9HI+wa9cu2/ok6bKfzq6rM23v5IJSrQm6ruPk5CSZwaIueqI5Zzrx4fF4sK2tzRTY6uYzdu8tWLAAdV3H9vZ2nD9/vm2KeLohCxq7oFxR2G9sbMx0DLsYGrmnlnwNnYSc1+vFUChkxJrIGWarV6+2DaAGsLqL7GJanIolCpcjB/MyTP5gUUPAoqaySKVSuP6978XnvF5HS8obzc2Y+uMfycUnlUrhxMQERqNRnDdvnsWSIITFmQD4gs9nya4602ERVzOeFi5caFqYRaVc2S2hupfkVO7JyUmL+8Lr9ZJuL6dA2mxGU1MT3nnnnYbwcxtkLA+RZi33aYrH46YidaKqc1tbm0loiXMJhUKm130+n6m+Szwet7jggsGgyW0miwu1J9jIyIhjXBJlVVHFsixWKFeb2rCTg3kZJndY1BDMJlFTLcGFiUQibfbTecEgTk5Opk19pWIm5HTv2LHH4sG77jrqytq9G8dHR43PeL1ei4hJN9S0ZdFbSXU1iXTfeDxOLrjpBEYm7RLk8fWvf930mebmZsd+WPLxqGvh9/txZGTE1mUjd72ORCJGgT35eonz93q9FguP6GguRI/cWTwUClmuU3d3t8X9aJdtFQwGXbmL1HOj4oFUq0wl/XtjmHKFRQ3BbBE11ZQGKs7lvGDwaJaTJGreamnB84JBk5tBLDhqvx65v9DExISp8aRYbOVrohb+cxIZW7ZssVhNgu/MS3YReb1esofQ5OQkjo2NGa879ZeyG+IYmqa5Fl/RaBRvu+0207GCwSD+8Ic/zKoP1Zo1a8h+UcLdJsSjaCgaj8dxeHjY4nITzUHV70WNZbntttsc08JlkaEWyKOyp4LBoKmoHvVQYFflWt6vaCXBMEz+YFFDMFtETbUV7DKsTocPH81yeseSgocPW56CqUJ78iJKuUJEjyOxn6mpKbzvvvuMxUt9Gld7LFFZLz6fz2QpoBZaEUcTDodNbqh4PG5bV8dpaJpmZOU4CZv6+npj8fb5fHjrrbeiz+dLGyukDo/Hg1u2bDEJR7nRo2yZka+L6oq77rrrTNuEQiFTN275+52YmDBZpnp7ey3XXnXXjY6OYiKRMK6x1+vFtrY20nqzcuVKjEajjqJfuDTtqvzate1gGCZ7WNQQzBZRgzi7S6urgkBYUdQAXtndILp2T01NYV1dnVEqX33Cl/cptzMQ+5TL7cuvq5ac0dFRU2BwbW2tIQqE0EknKmR3jRpjk87SI2cd+Xw+vPbaa/HGG2/MSNSIGJqhoSHjPOQ4lrVr12J3d7flc/K1p+KC5KJ2MkLgpOtoTtXYicfjuGbNGlO/MBGALO8vGo0aTU/tqLaHBoapBFjUEMwmUYM4O5vgUeesFsVT023lwFa12aH4nLqIBoNBi+ARpfVVy87WrVst1gS1TorIaBobG7PUQKEEitzBWlhdAoGApZ+TOuQg3CVLlhh/e71ebG1txYULF2YkbACOdggX51JbW2tcs3A47NgsU7V4LV682Dh3ta+T6jalYlnkcxdWHFlkyJY68Vo2FpZqcu8yTKXAooZgtokaRLrYW7WiPil3d3c7LvBiEVOfvPv7+x0tAWLRVrszd3Z24vDwMCmq7PYlL+xer9ey0FPtCFRhJo6/evVqjEQiacVMtinb6YSNPHefz2cK6N2yZUvaOB05G02cVzKZtHyvTtYzcTx5W9V6kg+xXy2B+AxTKbCoIZhtomY2WWpkYRKNRnFkZATXrl3rmPbc2tpqG9iqxnmIxXJgYMD0ND41NYXJZBITiYTJvRGLxYxYFbcChxqapmFra6vxOeGmomKCpqamsKuryyiYpy74zc3NrurgZDqcYnHkFOd0biNd100xLoFAwNKxPF12lqhuLF+XeDxuCFDxfatif3BwMG/3Igsehsk/LGoIZpOomW0xNcIlIFtP0sWl+Hw+I64C0blHFADgzTffbGyrLk6Tk5Mmt9X4+DimUilsbW1NKwq8Xq+lfUN3d7fFGiGCneVjy/+fSqWws7PT1NtIPc5xxx3nusKw03VzK2p6e3tN11e1RAEcbf8gu52o1GuREaVmpImeU+p3Kgcqd3V14Zo1awzLHPU9BwIBUz2cbO/BRCJBuqbssuwYhnEHixqC2SJqZmsgYyqVMtWrka0i6kIu3lMXH/UJ3s7qIJNMJvGxxx7DefPmGduKlHI1E4saDQ0NlkU8Go1a4kZk1yFlDVBTnuVU8mwFDCWAMqnXI1fXpUQmlVqt6zpu377dtJ2wwLS1tdm6l+RrpxbdowLE1aw1NY4n03tv7dq1lgB0u0KLbv/tsdWHYY7CooZgtoia2R7IODExYSx8Ho+HXNTVYGG7WAsAwEsvvdRW2IjPiMrBlCVD/nvBggWOosluoZcXSdkqJVuaksmkqdpuQ0ND2q7eTqInV4uOfK1VNyDVL0q+DmrMj6gz1NzcjLW1tSbLiuzWEgHPatNMtZ4NFZOUqeCQkR8k8iWcZvu/Y4aRYVFDMFtEDeLsfsJLpVLY0dFhG7/R3NyM7e3tODw8bNQkoWqqyAuRvCj7fD6yn5NdACvA0YJ69fX1aQWAGqjs9Xpx69attseRRVY8Hie7R1OjpqYGly9f7ihosrXwuPmc3+/HoaGhtEHVoo+T+l5zc7Ph0rG75nJTS3F91JgiWfTkKhLUStGqoMzUEjRbLa4MQ8GihmA2iZrZTiqVsrgw5AVVdLlub283BZ96vV70eDzo8/mwv7/ftEgJYVNTU4O9vb2GNUBYTFKplCm+Qx7z5883/f2Vr3zFsoD7fD68/fbbTf2X5s2bh9Fo1DTHaDSKS5cuNX1OTl9ON4QFRtM0XLJkiUXsZCNk5NHQ0EAKyiVLlpjEoVrXJxwOk4HdlEDwer3Y3d1tKqinfk5uaikYHBw0bSO79PIh9p3isrLJPJxtsXEMYweLGgIWNbOH6elpy0JINT7Udd3STVrXddy1a5exH7kCMVU5uLW11VLjxmm0tLSgpmmWoNlYLIa6rmNdXR1Go1EcGBgwuVGEsGltbc24jYF6fFU8eDwe2zTvY445JuNjNDY2WtxX8vWlYojkIn7qZ8RwSkWnrolIC5e/S/Wa51sY2MVlZXus2ZTFyDB2sKghYFEzO1DjJ9TeRmoTRbkvEbVYyE/w1IJlFwNDjXnz5tm6Z9SqtohodBgXc5ODj9Mdr6mpyfT3kiVLsKWlxbgm8jxaWlpw2bJlWQsl9TyEG8yui7VqMZEtTU4FBNVzUodag0cOVC6GxYPqRaXGb2VzrNlUb4phKFjUELCoqX7kOATR84lKEfZ6vZb4ExGvYueCoJ6Yc80w8nq9poJ5coyMOF57e7sliypdkUCqa7UQDPKcr7nmmrQNIe2GbIlR+y2JOdq1SRDiSr4O4j1hTcs1a0tOE1crSFNF/ZLJZE4uqEIFI7OlhmFY1JCwqKl+5IwRsXghWp90m5qaLAuusBZQwaJOT/q5uIKoQVXCVftZ3XLLLRZhIA85y0quShwIBLCnp8dkFaL6VWUyRHySKlIGBgYsr8tiQx1yOwsR95TLdRRCoqurCzs7Oy0tMdQA4VzqyFBiWrUQiflksn+OqWGYo7CoIWBRMztQM7/sgjftUq/VJ2k3WSj5GiJGRw5CTldFN53gmJiYMGUJifgfNzV00o3GxkbLfnVdx7a2NmP/VKCvLGQoQSWsNE5p5U7vCYuXsLyIwnhyHSPxXSaTSSMTjvr+7e4rmUQiYRJO1P2ndoNPB2c/McxfYVFDwKJm9jE9PW1arEZHR00LrNfrxR//+MeWasAyTvVC0pX+V7OenAZVIHDVqlWGeyoajeLo6ChpobFzId12220WS0RnZycmEglLXEsuQ3bdTU5OGhWNZYsIFWQtCxgxmpqaTEX2qOH3+23ja2RxKr4v+TuURWIsFjNZqkSXcRVRJoBqeilERldXFyYSCfKzdp2/ndxdXKeGYf4KixoCFjWzi2QyaQqqFU/udgLAzlKDSD+ly0/MucR/uB2rV6/GVCqFExMTFgFEWS0ikYjJWjIyMoLj4+NGfyjKekLFxrgZ3d3dxiI7NjaGgUDAKJAnrCSrVq2yfIaaQ2Njo8n1FAwGsbGx0bQN1W5BnYv8XU5OTpKZZOr3LzLZhAVHCAa5oKMsbNJZTXIVJpVWb6rS5stUDixqCFjUzC5SqZQpVVuOqaACaUVMjbBkUIgfZtk1IC92bW1tpMBYuHCh5TWnLB9qiPRkcV7pPitbH0KhEAYCAVyzZg3ZFyrXIeYSDodNwbHj4+PY0dFBWlWCwWDaujgi2Nbuutp9Rm5qKSxUcsC1ruv4ox/9yPS5rVu3WgJ71cKM8r3kJr5FFtZ2LqRoNFoVLiS2LDGFhEUNAYua2YewbMiLz+DgINmHKBaL4cjICHZ1daX9YZ6amjI10BTbx+NxsoCcWuQOAHDHjh2mDtzpBI08n0QigSMjI/jjH/84rbCR5xMOh121TshV3AgBaSe+3AgUj8djfE/pApmpVH0RSyR/98PDw7adysW1kQOZ1XRsysLjFLCrVremgsw7OjqqYqHnGCCmkLCoIWBRU71QZm/xmtwhmRIL8iJDNSREpH+Yxf7Ff+VtRMyHaoloaGgwFt9IJEIKIEooUN3E29raMrL0hMNhw1Kl67ori01NTU3GPaBkV58qoOz25dRCIl0doFAohNPT05b4Jqo+TDKZTOvKouYo99lSM+m2b99ua9mT3V5uA9MrGc7WYgoFixoCFjXVCWX2Vrsmr1271hIYW1tba/QGolJvqR9mu/49asxGPB7HyclJi9slGAyaMo/ciBK7eaoLsZP48Pv9xtxFjEtra6srkZJNvJC4bm6Ek5zKnU7Y6LpuSfUWogbxaOyLekxZkAwPD1v23dTUZLl2qvARsTZ2mWh+v9/UZ0r+rkSAsd11qraFnuvqMIWARQ0Bi5rqhDJ7qwHB8lO7vFBSFhC7Bpdy/REZkWEl2huI9+0aTOq67lg4jxqqRUkVNLfddpujW0mIBnF95MBXp5GPXlCZiKJ/+Zd/sX1P0zRTzIucBSZ/L6olZfny5YYgkQWP07mpoka1FqlZU6q4Ui0WVAsNKtOuWuAKyEy+YVFDwKKmckmXVaHGToyOjppEjLooycG9srCRMzTUgndCNKhuKbmmjGhvIC9qzc3NFktELsXudF3HefPmmQSD+K+dxUPudu1UNyaX4RT47JStlMn+5esvKviKGBm1aKE6xDXXNM0iWuyus9xCQ96PXQNRVXw6WXfkc6mmzCC21DCFgEUNAYuaysRtVgVlXQmFQhYBIRYaOdZBrU1C1Z+h3FJqyjgiWjKjOjo6TMXv3Awn60Zvby9OTU3hyMgIjoyMmKxBckq26pJqaWkhu13nKja8Xq9hNaHESzrXmNsRCAQwFAqZ3DyyoJXdPLHY0SrMlHVky5YttuctXz9h/ZmYmEjbr0vudyXfZ25EVjaVhssVjqlhCgWLGgIWNZVJJlkVqtl7cHDQEjsiTOF2tUdkQePz+bCvr4+Mt6EWJxGzonb9TiQStt2b5QU/GAwa+/f5fLhs2TKy27UQUHZuJNkyIy/IaoyPU9drt2PlypW4evXqgtTqoSxsVLaQGtNEfZeZCCe1T9P4+Ljt+Qnxsn37dst9RqXfy/uXe5BVesAwZz8xhYRFDQGLmsrFzRMgZfamsnzk+Au5C7au67h9+3ayurC8b9Xa0d3dbbhAVJeFpmkYCoXIppTy0DQNR0ZGLFlUYjHUNA27u7tNc5NdIOqCK7tqRENPv99vm86c7TjuuONwfHycTJGnhtfrxc2bN7ve/5IlSzAQCOCqVatMWWNqtpGdNS+VSuGOHTtcpZWrVYXVuio7duwgRdf4+DgpnoTYke8vOSZIvo/sAtArCa5TwxQSFjUELGoqGydfPSV6ZIuKrus4ODhoEh/ykyRlfVGDONUYDnnfVIyKpmnGU7hYVO3Sk9VFzY0VKd3xVfEmxJ2wRrhNt6aEifyZ3t5e8viUkLj11ltt3TFLliwhP7NkyRJj7iJYmFoc1RT7VCqFnZ2dGAgEHCslL1u2zORGbG9vN+3D7h4RQ3ZxqpY9uY5RPB4n3VGBQACHh4eLutgXqvIvVxRmCgWLGgIWNZUPlVXhJvtJ13WcnJy0vCYsI+qi3NfXZzm2vLBRqd5qkK5dcLAqQuSCdWJBSCQSuHr1arLXUG9vr2VRlf8rvy6uBeU+yzRYWXWbZPJZIYDEHDVNI6ssA9hnJamWDrs+S6INxPDwsKuAaNH0U63wS1WPps5J/rutrQ1TqZSlYvB9991nWDHU709uMVGMRZ8tKkwlwqKGgEVNZWNnqREF5dLVqRGLjVgYA4EADg4Okk/g6g++KpxEJ2Z5TpRIaG5uNqw1fr/fJAz8fj96vV6jo7U8x1jsrw0S5adfuzo1VMq6vPjL10fO2PL5fK4yk7xeLw4PDxuLf0dHB95yyy2mbaLRqCux4/P58LjjjstYFAmRKH+natfrRCJhWNL8fr+rLCcRKE4FnYvq0XJVYCdRJwtTtTu33X3ipghfPi0gHPvCVCIsaghY1OSXYpqa08XUCJFBzU+di50rgUrHpbo8qyJKdgmpgbihUAiHhoYsx5OtDiKtXH3Cj8ViJkEipwYHAgHTscQiK6xAIgBYbioprs/k5CSOjY05xviow+/3GwXo1PYD8qDaQTiNmpoaW4sNNWTxRmUNOTUsdRrCIkaVB5CDkKlAcfk7VS0f8r2nBqDffPPNjt3h5fs435YVzlJiKg0WNQQsavJHMU3YhXiyVN1YToXTxH5lkUS5c5qbm0lrja7rlpo3fX19luMMDg5aauHIDRHloGG1qq5YGKk6NfI5iIW1rq7O4gZxO+RzzravkxjNzc0Z1cyRxZuaoSSIx+Ou9tnQ0IC1tbWm7CNqcVfvdbuMqqGhIdM9K9/7VANU+Xtzuofd3P/ClUp91u7fINeTYSoJFjUELGryRzFN2PkWUHZZUvK+0+1X3kcgEMBgMGjJTJLdTGoGlngyp+Yil9xPpVLY1tZmvFdTU4PLly83LYyiP5N4rba21iQ2RJyHailw03dKHXK8S64p3E79npwEkhybQ2U7CbdjOtcTJZDsFneqv5c61KB1+d6R72FVTIosNqd72Mmy4lTpOt1+ufIvUymwqCFgUZNfimnCzperi7KOUA0s3eyXWuB8Ph8ODQ2RAci6ruOtt95qcTmoC4vcwNJtOwNVoMll+b1er8XVIeYlMqGcBI4b91BtbS0Zm5NJmwU7C49T/IrqdnQK6rUTZgMDA5a+YNTiLu9bnZP4W3WPibklk0mcmprCiYkJUkAJ96Pbe1f+rt02YHWzP7bUMOUKixoCFjX5p5J+GFW3kZ0Z367jMoUqSLq7u40ncnkBCwQC2NPTg7HY0e7assCgxIAa3+PWKhIMBo3UYbs0a+G6ikajRlViO3eNiJFxaoHg9Xpxx44dZKwJJci+/OUvuxY6QjBRr2/fvt2oIizHPg0MDGRkRZIL4IlBZZ1RRRXtrptsPRH3V3t7uymtfnBwMOOHAMqyot6/bvbLMTVMpcGihoBFTWGoFBO2XLeEcjeJGjRdXV2uLD/pnpyj0Sh2dHRgJBLBlStXmmInqAaHdvElsVgM+/v7XS3UmqZha2ursW9VMC1evBjr6upQ13WjIOCaNWssLjR1tLW14fXXX2973HA4bDqu00gXc3PRRRe5EiONjY2mWj7xeNxSvddpqFakcDhsslipwkaOb5JdTaqYU/tsUSn0cjkBt+5aOWtNvjfs5mEnTjj7ialEqlbU3HTTTRiNRjEQCGBHRwf+5je/cf1ZFjX5p5IsNYhHU37tzPV2gacUTk+6qrDZunWrxeWUTCYtgkMED6vCxq55ojrUxdzj8ZALfHNzM+7atcsSuGpXGFC8lk4sqAUGVQGhnq/d/nRdt3V5NTQ0WDLMxPHC4bBjkT2nEQ6HTdedCt6Va+DI9zfV/kK14jQ1NRkWJ6rQoq7rZPsHRGvDVqpj+Pj4uOW+sXu4KEWdGi7Kx+RKVYqaO++8E2tra3Hr1q34+OOP44UXXojz58/HqakpV59nUZNfKtWEneu83Waj2PWIisVi2N3dbVkIxeJk97lsO3t7PB5ctGiRSUyMj4+bSvhTIiabY8kiRhZVXq/XImrUQOGGhgajMaad6AmFQrh8+XLTa8Fg0OI+yvT6yBaacDhspM/Li3sikcD29nZb16Wbaydn2YnP67qOc+fOJYN9RSVouRO5nNrvdG843cvFFBlc7I/JB1Upak488UQ877zzTK+tXLkSL7nkElefZ1GTPyrdhJ2Lhcntj7QafEpZXLxer+l12epw9913W0SHrutkU0r1tXTD6/ViOBzGjo4Ox7ordhlE6QKAhUiwsxZRY9myZRk12BT7njdvnkUwZdsV3O/3G+JCLO6pVMqwpqjiQnUtpRODoVDIVJPIzp2EaK5ro7pM7bKwnGotlYpK/61gyoOqEzVvvPGGsQDI/PM//zN+4AMfID/z+uuv48zMjDGSySSLmjxRDU9fucQCpXvSpYrT6bqOW7duNb3W2NiIAwMDODIyYslOam9vx507d5qymOT6NLJYcCMcgsGgEZsjREkkErF0lxZjcHAQ16xZk5U4CIVCtnPKVnDYjcbGRlfnv2DBAlfzlhffVCplqibsVKMnFothT09P2rn4fD5sbW01VXWW/yvSvuXXRbNTp/vXTa2lYkD925DnE41Gy054MeVP1Yma5557jlx4vv/97+Py5cvJz1x++eXkjwqLmvxQyX7yQsYCUWnj4gnfbsFbtWoVrlmzBn0+n+FK8fl8uGbNGly9erUpQ0c8tY+Pj5tEjqg9Y+eKEQ8F4jM+nw9ra2ttO3dTHc6dhEK6zuHZDI/Hk5H1JtfR0tJiiq3q6+uzxEPF43FL8UPRa8ru2ttlj9m5k+RrOjAwQN5jVJXqTGotFQKnhx27TuYsaBg3VK2ouf/++02vf+9738MVK1aQn2FLDUNRyFggu+aa4XDYJC62bt1qqQ1z/fXXG5YC+ak9kUjgfffdh11dXabaLIlEwiSAOjo6MJFI4M6dOzNezO26iGcaW6NaGdwe1424SbfNokWLTLFDdp+tr693dJ+Fw2HbuKZoNIqtra2Weff19ZkCdeVjOp2jeEizcyctX77cck/KgiYQCJgKPWZaaynfuHE1UefPMOmoOlGTjftJhWNqmEL796knVbUfkd/vt22kqQoaqqqtQG7eGAqFDLGjxsF4AHADAH7mnf96bISFsBoIt0gmbqIbbrjBVYaWOty4hMRIl9mUSaE/asjXTRWc6TLQNE0zBKYcHK3uR72m8ndMta1Q7wWq+7zb1PBiWVadHhrYUsNkS9WJGsSjgcLnn3++6bVVq1ZxoDDjmmLEAqmLh1y6X7bYiEWJKr7n9sc+Ho+bntLVztlnAuA0AKI0pt95XYihjo4OUwxJa2trxm6fQCBgic0pptsoncAR2VjUtqIKtLCA+P1+ixtJWKDUz4ZCIZOFRjQwtXPpCWEzZ84ck2Dp7++3LPiq9Ux1ZWbibip2DJxTVlglZUoy5UNVihqR0n3bbbfh448/jhdddBHOnz8fn332WVefZ1HDIJYmFkgcUw3ulF0H6utusTPtf8LjwSMAeEQRNeK1MwHw9ttvN10PuS2D3+/H5uZm/Pa3v227QAtB5vf7MRKJkAu4ndCQxzHHHONaoLjpGaUOr9eL11xzDekK2rJli3EtJyYmDOuKWvXXrhGlPHRdx8nJybQNNdO599K5Aan0b0T7+7cUGUhU/R7OfmKypSpFDeLR4nvHHnss+v1+7OjowL1797r+LIsappQ4Pb1SC6boIUWhLl7qAtLS1ITThKCRhc0UANZ6PLhr1y4jbVldwJubm9M2vgwGg0Z9GWFNkC0dsijxeDx5z37KdYhrPTk5aQqMDofDmEwmLdWffT4fGUDd3NyMa9euxXg8brHIqZ/v7++3dWdRwcNLly41bZNNLEox60rZ3evj4+PkduWeKcmUnryLmmpQ0SxqmHzj1uqjLihyVo28mKlBtmqxNnlfYiGgFpBPNzWRYkYdG+CoFeP444+3uEMyDeINBAJGd/GxsTFLjEmuw8nSY9fN+7rrrnPdjbyxsdHkMlMbg8rihXrd7/fjzp07TZY3u8aXsViMbG4pL/yiOOJxxx1Hpo/LtXTU+82OYlQAp8ST2l5CptwzJZnyIO+ipr6+Hv/t3/4t54mVEhY1TD5xG6eQSCSMH3nhNhCxK/JiNjw8jIjW1Fe7omtiYaSevj/jQtAgHA0eVhdVJyuCOuTFNhQKYSKRwMnJSUz98Y+47/bb8fyFC/H0OXNQD4ctbqP6+noMh8N5ET12bpza2lpTlWIxtmzZYnuOzc3NtrVoAMzZUSItXr0eIu1ejcNpaGhAXddx7dq1ODU1ZboHZJEhLDXHHXecSaQtX77cUjNHWIfcWjwK2auNC+0xhSLvouamm27CBQsW4Mc//nF86aWXcp5gKWBRw+QTtz/giUQCu7q6LFVhp6amsK2tDb1eL9bW1mJnZ6dRwXbXrl2mjBohWOSgYFXQiP1OTEzgKR6PK1FzCmHhsBMI6VxHt956K65evRo/6fHgf9XWmo7zl8WL8RPKZ71eL15xxRU5CxoxmpqacPXq1WThPyrrSHbxyCMUCpFp6WqgtxwkLNf0EQJV/n7ksWPHDsPdly442E5sqdY8t33LCm2pqYainEx5UpCYmn379uHJJ59sVCatNFjUMPnGbZyCXSPNsbExU6PDRCJhLAoDAwOmvj9iCDePvICI0vuIRzOiAj5f2piaPy9ZgsemKa4HcDRmRi02Rw2v14tnAqQNTs6HgKEElqZpplR52WqycuVKi2CIRqN42223uT7m6Ojo0WurfB/i+5yenkZN03D16tWmitKquzEba5gQU2qjzNraWkNMpRMnxYqpqeSinEz5UtBA4RtvvBF9Ph+++93vxvb2dtMoZ1jUMIXA7dMvtaioNUeoYF01kyYYDJo6R4vPCFeXiF9IJzA++Y4oiMViePPNN5MLand3N05OTtrW1DEJDYC0QuqAx4Ma4Q6KRCJ5i70R13LevHlGELAaCC3Ejiw0ent7HbOWYrGjhQ9Xrlxpen1wcNCoFaNpGq5atcr4DnRdN+KMqDgcN0UORfd2JxGUTpSwW4ipdAomap599lncuHEjNjU14Xe+8x284oorTKOcYVHDFAq3cQrU4qS6D2TXh10BN1E6X12URkZGcPXq1cbnP+nx4OtK0PAU/NViEo1GcWBgwLZbt1jI165di6FQyNH9tMFGzKjjwWuvPVo3Bv5aFHDjO6KotrY24yJ6ItBZFQLimoqAX0S6VL/oWj42Nma51qLgpxA7lGsrEAhgOBw2uZ9aW1vJmJdVq1aR15iqgaMKFipFOt39JmC3EFPpFETUbNmyBRcsWIBnnnkmHjx4MKcJlgIWNUw+EWZ2SqjIT+gqVCNCu/gOeQSDQZOokINd5RiRrq4uHBkZ+WvGybHH4uejUfyfHg9uAMBoJIJtbW0YjUZNRd/sLCWxWAyHhoZM8SSUZcFtcPLn3nFTUUUBPy7tr7a21lX6dyQSsViSotEotrW12V4vecyZMwd37txpiClVVDU3N9teG3VbsZ2maYbLTm6CSRVb7O3ttaSIq93bNU1ztJa5cR+xW4ipZPIuak477TRctGgR/vznP895cqWCRQ2TL+QqwbKVRXYpySnOAjs3ApUpQz2N33777eSCJosi4UaYnp62WGBEynAqlcJt27aRaeW33XabZRFXs7GouW5wKWq+A+njbsLhMPb09GRU00aNE8mkb5XagiGdK2zJkiXk3Jqbmx1jXsbHxy3iRN2PU2o9VcHYru8Tw1QTeRc1f/M3f1Px/lYWNUy+oHrwiGBRqjcPYvqYmnSLsBBQaiG2m2++mawDoqaNy4u/7OLy+Xy4cuVKU2YW5aaRu4NTVgM3MTXTLrZJejy4S6n3km74fD6cmJhARDQF87qN0wkEApZmmHbCrqmpifyunL4/VXiGw2Gyfo7X68Vf/OIXxnbyHGSBpFp/3GY/MUylUrUVhXOBRQ2TT+TFU9d1k5VAjqcQZn+7QE2n4FThhnAq6Ca/LmJHEJFMGab+vvPOO7Grq8tSer+vr8+07d13320pGBcMBk3uq0/U1DhaYb5jI2bU8cmGBlM37HTipLW11VSETnbnOMXofO1rX8tIPDU0NDimvNt9rq+vz/j+hTjs7u4mPx8IBLC7u9s4TiAQwJaWFty5c6cpLkaI5I6ODhwbGzPFxZSDq6kc5sBUDyxqCFjUMPlGbigpP5Wr1V7tAjVViw81VJeDEE1UxpJwL6kWI7vR29tLCi7q87KrQyzMY2Nj2NbWZuoX9QmiTo0ITv6c1+u6KKCmaTgwMGAr+pYsWWKIl2g0alpAJyYmXFtp5OJ5Ho8Hv/GNb7gWOW7jfnRdx46ODpNVxY17LBqN4tjYGK5ZswbD4TCOjY1hIpEw9erSNA27urowkUhgIpHAqampkgcFc2Ayk29Y1BCwqGEKgdvMJ+rJNZVKYXt7O2lBoTJxhKAYGhqyDSxWP+u0uKtP/WIBtovbEGImHo8bNXVEBpUIUr7vvvsw/sgj+NmWFryouRk3wFHXFADg3iuvdCVqNryzfTgcJruYi/O87bbbMBqNWhbIZDKZtqkkNS644IKMYnFCoRD+5Cc/sX0/GAwa11+k7MuuPZ/PhzfffLPtdzQ6OoqJRMIowlhbW4urV6823FlC1AUCARweHsZYLIbt7e2GOzIajZYkfZtTyJl8w6KGgEUNk29yrdAqB/OKOBvxt7ooizRhWdCo8THUwi8WV/n1pUuXWuJwKOuMHCskttc0DZPJpGnh0nUdh4eHLb2o1HktW7oUX2tocIypea2xEaORiKkppjpkEbBixQqcmpoyXVchFgvZPNPn8zk2/JTPXRY2dpYaaq5CMMrnS7nkgsGgKa5GrokTjUYtrtFMOnxnSzEbaDLVD4saAhY1TD5J96Mdj8cdYwrknlDq0yzlOhLuGPUzyWQSh4eHbWvNUP2VotGoKXA1Go3i5OSkJatpdHQUk8mkqU/R/PnzDREhzzUQCODg4KBF0KjX5pMej2PczZcbG3HXrl1499132woK1RK1a9cuy/WlOmmXYshWlM7OTuzq6sJYLGaJqVmyZAn5eTduNPlaqx2+1blQoqZQLqFiNNBkZgcsaghY1DD5wo15Pd0CIi9w8jaqUOjt7TUCkjVNw46ODovbaO3atTg0NERabBobG40FTq59IhbAaDSKdXV1qGmaxTokXE+iR5VYZEXzTTsBJi+yooWDbO2higIe8Hjwi0uWGHOR6+KI4fF4LDEw8+bNQ03TTOnz8XjctF2xBmVtWblypeF6FEG8VIduNwLGyfLk8/lw69atFiue+n063bOFcAkVsoEmM3tgUUPAoobJF+kCIXVdN4SI0wIiB30iosWlI6w98gKoaRpOTk5a4mCcAlCbm5uNlGd1DqJ5prytKgjUcv6qVUbdvrW11WQ1EBYAcW3a2tow9cc/4sG77sILliwx4m4aGhps3TnUkPtS+f1+8noBHM2AshMENTU1ljo1+RwtLS2m71j93uS+Wg0NDbbzdHJ1qUO12Mj3jlpXqZAuIbbUMPmCRQ0Bixomn9ilrKZSKZycnLQ0NVS7bFM/7HZiSbaI+P1+3L59u6OgUd0bch0XsT8hNuRmmwD2NVTC4TAZfGvn3lJdZbIbSw1gdcrU8ng8lhoyYpFvb283LFFi0R4cHDTF47hx32TTd8rn8+GcOXPStnXYuXOncd1lwSVb29K5ympqalw1FRVDrp6sClL5fimk0Mg0poZTwBknWNQQsKhhCo0qSqgnVarSsLoP6sedWvxE7I6cQSUsFohocklFIhFMJBLG/mR3iFod2c5SAGANYBavq4unLLCmp6cxlUphR0eH5XVExP7+/oxFRW1trSkzShUmfr8fQ6EQ6cZKN9SWFNT74lqkExvyeYraRuo94NTXSR1Uir+T8BJzkC036uczdQnZZfKJAHI1Xkx2QVKuLk4BZ9LBooaARQ1TaKhYG6rXU7ZxC2pBvN7eXkREHBsbM6wTXq/XZJURtUwCgQB2dnaSC4NYkNItrnJ6tzw0TSPdHbKFSL428mLrlL3ldvh8Prz++ust10aknTc1NbnaT2Njo3F+LUQ3cTGE1Upc83TZZ2Jhl61rVKXpdMPj8RiCRNM0V6n7sqgUsTzCNSoG1avMzjpCCRBVGMvxYpQLUhUpnALOpINFDQGLGqYYONV8Ea9lY+qnFj81+FcsbHbZVE4LA7V/daGUU5NlC0U4HCYFnFzpF/GowBLBwrkKGXlcc801loVaWEOGh4ct5xEKhSz1bxobGy3WNdlao8b7iH36/X48/vjjHYWNcLk5Ldqapllik4LBoEmQiZYWPp8P29raDOFVU1ODO3fuxFgshsuXLzfto6+vzyQ6xP0YjUZNVZtl65GTdYQSIFTbkEQiYRJy8r1HCSZOAWecYFFDwKKGKRbpKvJm+iOt/uBT1g3VxZDJwkDVlnFqByAWdzlLSRU6YuGUrQSxmLk4HDXkgnVuhxzoq9ZvUf8WLjxK6ExMTODU1BTu2rXLcv7C3aWeY2NjoxFXE41GLX211O9IfAeqOBgZGTEsP7KYUruEy9debB8KhXByctIkGuXz2rFjh0V0TExMkILbTog43Y9qHzO1bYhsLXKKm5Hj0KhrxsxeWNQQsKhhigVV0XZ0dDQrc7qdaV5N1+3r60PEzDNO5P1Ho1Fsb2+3WJgo943axFMtlicXf5NbKei6bnEVUaIj07Fo0SJj8ff5fJaMplAohPF4HNva2kwCqKGhwbDy+Hw+nDdvHuq6jitXrkS/34/hcNgkZLxeryE6fD6fKVB4ZGQEEZEUF+IeEKhunFQqhZ2dnaamoWJeoVDI0q1biAhN04zvTBbNfX19pu9w69atpl5lvb29lqJ+dhYlCuo+cwpCdhs3Mzg4aHvNmNkLixoCFjVMsZCbXao/7m4DH+XaJupiQC2ackZRJrVB1P3L2VByY85bbrnFIkCE60FePJubm21jTXw+n23bA7FAt7W1ua4ETG1HWXl27tyJiUQCd+3aZXp/1apVmEgksKenxzJXTdNwZGQEk8kkDgwMWPbZ1NRkEnvNzc2mQGyq07m6oKuWC/lvO8uFuj+15o0sNlUx1tPTQ8ZEqdYnt9YR6j6zu/fcxM0UKzOLqTxY1BCwqGGKgfojTZnh06WoUk/xYrGTF8toNIp9fX2mp2sqYDfdwiDvf2pqylTgz2lx1XUdBwcHTRaATAvLUSnHy5YtcyVqKGFz1VVXWcRHPB7HtWvXWuJWNE2zuItWrVpl233dbjQ3N5u6ssv3gNqmwK0rRtwfTsHbQjA4dYyXr7umaZZGqMFg0BKA7sY6kqmlRv2M6h5VLU0cU8PIsKghYFHDFJp8ZXHY7WdiYsK0AFMF9ezaE7hZGISYikaj5L69Xi8ef/zxZEqxpmmm81W3oSw0kUjE1MtKBMC6rclC1YihxFNjY6Npn0KEqOJq165dlro9duJJFgXyYjw5OZn2HohGoybhKCNb8txYasTnh4eHMRKJWN4fHx93TAEPh8MZW0eyjalRP0uJoVjsry1GqH83XLNmdsKihoBFDVNo0sUNiMWM+lFWf6yphUPOHBofHzeOmUwmTYJHuKJUK0s6QaWKKTloVF6AqCBTOdPJrqCcmt1TW1uLnZ2dxhw7OjpwamoK4/G4Y0NLaqhiZsuWLbbxOc3NzXjppZeaXuvt7TW+g/HxcdfBymrGmZvYERED47Tgy9V/dV03pZirQkpY50R/LjGExWV6etpSULGhocFUw8dJiDjdI3bZT3aiBNFqfRocHDSumbCqUe5acZ9wzZrZB4saAhY1TDFwqjQsMn/cFhijnmplK4q8gMbjcezo6DD2n24xcCryJxYoNe1XLFgikFW1dExMTFgsO+msHY2NjUbsinzuQ0NDaav1irFgwQLLsXw+H1577bWuRZGoPbNmzRpbMWRnrfF6vTgwMEBeW/U6i8rKcsFE1arm9XoNUSdbMeyChdNlW01MTFiuTzAYNAnTdEJEvo/T1amR7zP13rYLZBfWGTvRlIk4Z6oPFjUELGoYimKVZ8/WNeUU9Kvu063ZPpPeVfKiZ7eIUiX4qRo9dkOugizm4PazAEctL0uXLiXFRrrPUi0YZMFFvU650rxer8UKJ2c0ydeZ6k9FXRNd13F4eNjYh1zwLxAIYHd3t3HtZYuRGqtiV0hQVF2WhYgsIOwsIukqClO1baiKwm5cVBxfwyCyqCFhUcOoFLs8e6Y/1m7Ss7NZANwILColXXZxyfORg5MDgYApTsOuCaNaQyYUCpHZVJkOOyFjZ/UJBoPke1TcTbpjqNWiE4mEKYDXKeZIHZqmGf2zZOsRJRbTFV2U56f2xgqHwzg5OWmp9ptIJPLq4slU1GdamoCpbljUELCoYVRKUZ7d7Y91JmIlmwXAbSaKvL94PO4Yt6EuwOIzapVbWez4fD5jkY3FYjg4OGiJvQGwd/2o45vf/Cb5+qZNm1wLo5qaGmNO0WgUt2/fTqanX3XVVaZ5rVq1yiQEqFgTNaiWEkxCtNj10aIqN1Pf98jIiEkkUfEvfr8fE4kExuNx28rT+bBYZvMA4WSl5AaYswsWNQQsahiKUpi609WRyUZsZVKbRuAmE0UVO1RTTTG/ZDKJ4+Pj2NnZaQr0tItREUHHIyMjjlWGm5ubLcX07IROPtsvRCIRI6h3yZIlabf3+Xw4OTlpucZ2IsZursFg0DY+Jl2clfgeEokETk1N4erVq02Zaeqc/H4/3n333aRFSb5H8mGxzESIOAn1fAbkM5UBixoCFjWMHcU0dbs5lhoALC8E4vOdnZ04MjJiG3xJBSRTUA03KTGlPt1TbR/EPLq6ujCRSFg+p4qQhoYG28wdYcHRNA1XrVplsmTU1tZibW1tVgLmn/7pn2zfk+cngn/l+Tsdz+fzYXt7O7lgxuNxi/VJuIzcZlkNDg6avme/32+6BvJ3IGKiurq6cGpqKm1AuDxUN1kpgnPTPWiorRzk+coZgrLQk/fL2VOVB4saAhY1jBPZWDoyJROrUCqVMrpMq+8lEglcs2YN2SxRLiaXTthQYkgEqKqBrULsCKEhFkC1+rCYx3333WeK/bBbvIWQUN9vbm7G4eFhnJycNC1UAwMD2N/fbxIJbl1T6YSJOg+1oaSmaaR7S8zLbqGkso98Pp+r7DAxZBGpxtXIgdpURpMdToK2VMG5atsOql5SLBbDgYEB030vz1cVetTnOXuqsmBRQ8CihrGjGJaabFxKborwyfOVA3blH3Y3TQnlysCi67ZAVKz1+/04NjZm+qxYSMVnhXWpq6sLA4EA1tbWWtKH1cVb/jsUCllicuS2EKFQyCQ0vF4v7tixw2TNyWWo9VtUIWc31PtFuIDkWBW7EQ6HHQOqxecDgYCl55Z8HWShl64bfDrXY7r9FMqNIxeAVAsUijmL0giihIHTv4NSCjQmf7CoIWBRw1AUK6Ym20wrp/nJDRx7e3tN24kfdmqf2RZQk5/8nYSgvP/a2lpjnqFQyNFSouu6UW9HbCcWcqo2jhiappnSlr1eb8advuVxxRVXWITFrbfemvZzsdjRisJCyPj9flOmkdpxWwi62267zXRdPAC4AQA/A4CfbmrCcSm4WM6wcuNComrmyN+daONgl60mZ6XZ1Z7JN6lUyrYysyxwY7GYbYsHzp6qLljUELCoYVSKnf2UbcYG9bQvhEu6wF27OiOUwJIXyUAggIODg44Cz8llR1kSVAuIOkZHR03fiZwZpes6ac2gisqJa+IkoGpqatLOR4xwOExaatQaN8uXL0dN08hqyEJoqN3V1XM4EwCnARCl8ZzXi19YuNDIypJr+lC9ocT3oMZmyQXyxPVpb2/HeDyOmqbZpr3LtWyKWQQv3QNHuj5nxXApM8WBRQ0BixpGpdh1arJBzJGqG0PVOxkcHHQlnOwKqFENKUVwptvsFHkbdV9OFhTxeVnEtbS02PaC8vl8eN1111nOX3yn/f39tscThfV8Ph+uWLGCjGdRXVHqvrxer2McjNfrxblz52IkErHNXBLD4/HgJzwePAKARxRRI147U7lO09PW9geygKI6rgMcdaeJc6FcTgCA3d3dZJ0bqr1DIbG7z9K5mLJp7MqULyxqCFjUMBTlXu/CrvqsXcVeOe5CJp1IkwWeak0Qri2q1H06l51dl2lZIMhZPNFo1EijdrKkOLUGEHE4qptOHmrm0NVXX23ZZvv27SYLTW1tLeq6jr/4xS/SBhzL5zM5OWm5Zmq3bC8ctdCogkYWNlMA6H/nXDRNs1iK5ErHoVAIOzo6UNM04z5R75na2lpLTRy5kJ8cdF5KcaDeQ319fWktrLk0dmXKDxY1BCxqmHSUo8BRrR2hUMgiZqiibpmm5qpuH2qBFjEjbl12TpYJ6lzUhdXJqnP11Veb5rl8+XIj1sKpXYO6TxGvY9d5vK2tzfiM3+/H/v5+XLt2rW1gr7r4T0xMYCKRSGtF2GAjZtSxAegsqf7+fovlTmzn8/kcKxjruo7t7e3G3NJZ14rpxrErVyDmqwoUqrGr3f3JVA4saghY1DBOlKMrShYadm4CuR6HKoDcdl4WjI+PmywgN998s+nv8fFx19dJjr0Ih8PkE384HMaBgQHUNM3InlKzeOyGuj+R/iuOqbZrsLt+oVDIFGTc0NBgEgDNzc0YDAZNsT1u2jh4PB7s7+/HWOxo3R5RkFB1m3R3dyPA0aBgN6LmLCLuZfPmzeT3v2zZMotQpEZfX58piFg9P1XAUd/95OQkTk1N5fX+d7IIqgUHBdk0jmXKHxY1BCxqGCdK0TIhHaqAUM3wXq/XUvBNLr6WbiGScWupERYrJ4uWbJmQA2fV1G6x79bWVhwbG0ub+qxaIGRBo35fnZ2dOD4+7nj9ZLEiC0HKWiHHk7gdsisnkUiQVq54PI5NTU0ZWWoogbd161aTAB4eHsZUKoUDAwNpM8FCoRDG43HbbCqxzdy5c8n7SYjhuro6Q9jkavXM5d9jOVpcmdxgUUPAooZJR7HSuzOBSsNVFyOVZDKJg4ODpm3TuQwyialxM2eRaaMWgxOCQbbG+Hw+7OvrswgetTUC1R2bqhxLBURT1y8SiWBraysGAgFLEKwcTyIyjuzig5yGPL9UKmVqWyDq/wAAhoJBVzE1njTHUwWArutpCx8CHI2vkQOyw+GwxWKl7icWO1oET7bmieaYuVo9y9FyypQOFjUELGoYN5RjfYtMxVa25yCyn6jPqtlP6ZArIqvVhvv6+tIWs1MXXSGKVFdIa2urZV7qk7p8PcLhsClVPRqNGpWLh4aGLMJK0zSMx+OWlglux6pVq3B8fNwoxCeKGI6MjJj2FwwGXWc/qXWJ5LF161bjnJ3mSwlE+TpTKeDhcNgkbJYuXWpxTyLmz+rJFhdGwKKGgEUN45Zyqm+R6QKRi7WpEJYqJ0uJrutGTIkYoVAIu7u7TcHC119/vbGwqtaCSCRislbJFWlFkK6ayqy6u4RFyePxkEGx/f39JpHT2trquu+UcHH5/X5T7I68H9lq9XGw1qmZkgSN1+vF8fFxTCaTODQ0RLoKKcFDpaNTFpyWlhZL4T7ZMjI8PEweUwiaTO6lShMtlTbfaoJFDQGLGsYN5WapycQMn8sTcjFiilSx2Nvba7EmyMG9clVhuXO1cFfJhQKFsEkmk0YWlNfrxVWrVmEgELC4T+RCeWr8kSpK5L8HBgYwHo+7ChamhlxhWa4ILW8jVxTeAH91OXk8HhwYGLCNm0o3NE2zWGgoa5haQVhcV/G3mo5+8803k9+307+lSnMvVdp8qw0WNQQsaph0UE+Xckl29cesWE9nbp8Qc/nhLfSPNrXAyaJFjmlRWyPIwbxyFVyqrQMi3RvLLq7EK9V9kRd8r9drEQD9/f0m8RcKhcj9er1eo7if3fHU4bYpp5oGHw6HsaenJ607T4gVKi4oFAqZLCnC5UR933KGnPydqJYagZ3VsxwD852otPlWG1Unar73ve/hunXrcO7cuVhfX5/VPljUME5QP1qpVMrUh4hy85Tb01kuJnK7z4pePNRn3Qg79Ye/r6/PZHUZGhqy7TOVTCZxbGzsrwG1oZApJkbXddQ0DTs6OkzzoBZfJwuGnKFFfc7n82EikTAFQasWpXRZRm5q28ijoaHBtE95Xn6/37BqnXDCCThnzhzHfc2dOxd37txJxtk0NTWR2U9ql283Kf9237sYToKgHALznZCFtDpfEYfEFIaqEzWXXXYZ/uhHP8Kvfe1rLGqYgkBZKtQ0Z5E+PZueznK14ORLLNr1v4rH47Z1SbZs2eJKPGzfvt0QTbqu4w9+8APLNoFAABOJBCKiKU5H7iY9Pj7uKFzSiR7VWtPc3IzXXHMNORdZoLgRSx4APLmmxnBpBXw+0/H8fj8ODg6SLj3Eo3VoKAGjCp3JyUnT95hOsJSbu9cOSszK4s/OssXkh6oTNYJt27axqGEKBmWpkH90RUfjcn6azDe5mt3tRJGcaaUuBnbWH8qVIQsMOUtrfHzcdafuWCyGQ0NDGIlEbLe58cYbjTlNTU2ZKtrKAbVqawev14vXXXedK6uR3+9HXddxaGjIECo1NTV4ySWXmLa77LLLLK4ip/1STTJfa2jAf6ivJ7enrA5TU1NYV1dHWmTUOjVyXJPdPRONRo17ppwC8+1Q3Y7yfMXf1f6AU0pY1CDi66+/jjMzM8ZIJpMsapisqJSnyUKRq5sgH1kj1Hcg3E6qK2j58uVpY1RElpBYfKPRKC5dutTxM62trTg1NWXKrpLnp4oLIWR0XXdMoVYFhVz7BQBMWVPqPSgsVXYC7kyAtGnibtsgTE1NGZYYFbmicCYCqJL+bTmlyVP91pj8waIGES+//HLy5mNRw2RDJTxNFhI79w+VKZNv1FgbqpdTKBSytYbYve4mPVu13mzbts1kbZiYmLA0HRXxLkNDQ45WFEqIRCIRU4yOEDSxWAyvuuoq07bXXXcdTk5OmoKE5YKFHkjfJPOAx4OaIppyFRV2lhr5HlLbWui6boqVKkdhw6KmdFSEqLETHfJ44IEHTJ9hSw1TCirpabIQCBeSanYfHR3NOWA6k5YL4pqri4uTm0kIhEgkgsuXL7cVFjVETyV1zJ8/37AuiEXb5/PhLbfcYorJGR4eNmIsdu7caXy+paXFlBXV2NiIuq7bzku4skS8jnoPChEjgpzVtPUNNmJGHRvAvQXOrdVNte4NDg6arpEqaMT1knuGlZM7h91PpaUiRM2LL76ITzzxhON47bXXTJ/hmBqm2FRahkYhUC0R8tOpHM+S6Q+6myBkuRmkGr+SLpbE4/EYdWqE2LBrtZBO0DQ2NuLY2JgxPyptXKShU/EuojKxEIdCRDU3N2MikbAEJ9fW1po6Z8v3HBUA3djYaBF3bptknldfb8TQOMVKZRo0Tj0MiOtCVSwWxxMWHUooJxIJI2Cbuk8LZTHkQOHSUhGiJhtY1DDFpNprU2Ty1C3/kKu1UrI1vbu9volEwpiPU4NKajQ3NxtzFSIkFAphU1NT2s9Si7E8RzXr6OabbzbNWyzc8rmlUin85S9/aRIgN9xwAymsbrzxRksTzHg8jslkErdu3Zp2vh9fvNiVqDnF48EVK1ZYxMjatWvxvvvuM2Jl5O9LjilSvy8RX5NIJLCvr880J/FdaJpmKr4oi1YhHtRgZdFmQs3MUudcKGHBKd2lo+pEzdTUFD700EN45ZVXYl1dHT700EP40EMP4aFDh1zvg0UNkynVXEXU7bnJ7h+7TBu1nkkmgcGZWMLkRTVd1o8sEhoaGkxpx1QlY6fh9XoNF4+Yo9Pn5Sws9VrIrrx02Vmiho/4nijrhtPwe7344ty5rptk3n777aZrLVoiyN23VdebHGwtrErRaBTnz5+Pfr/fErBNnbddGQVV6Ko1dIr5kFHtDzjlTtWJmnPOOYf8R7t7927X+2BRw2RDtfZ7ycRK4mQdCYVCJmGXjRDMJGZJXdzUyr3BYNC2T5TbYnzygi3mpWkaKSR8Pp/FdbRlyxbTecr3kHzd7TKi5KJ7Pp8PR0ZGjEKE6sLe19dnsTpt3rzZOFc32U/yuaSrP4NIu958Ph/29/cb56Ze++7ublshpgbdOwld1V1VLHdwNT/gVAJVJ2ryAYsaphrIp8hyayVJ15RSNrtn+0TrNrvMLr7H6/Uarg07SwZVVM9pqPEsaoCoXe8m+fOqKFSvBSVo4vE4trW1IQDgvHnzTO4fuQ6OcOGoAkItIHgmAP5x3jyySWYgEMCf/OQntpWCAQB7enpM39fExATZBkJOYVddc8Fg0LZIoJNQoLbLJnDf+Hdz+DDi7t2IPT1H/3v4MCaTSaO+jt09R1ndqG2YwsCihoBFDVPpFOJp0e0CkYmbKNPg6kwWKbtMrN7eXtM1oLpJU0O4R2Q3iSyQhCuJaiCpNtmUhYSwetiJPLvigD6fDwcGBozPNDc3G7ErIqZEna+YczAYtG1yadckc3Bw0HE+AH/txTU9PZ22qKHP58Pu7m5jHnbbigrGTveFk9DNpMSCuGfOCwbxrZYWk7h7q6UFv9zYiHV1dWRVarbClAcsaghY1DCVTqH8+ukWiGyOWwixJEhXM0dOC45Go2nbJQSDQZNI8vv9ODIyYixmaoDo4OCgaXvKFSNfE+oc1crDsgDw+XzY09NjxPGorrBQKGSqRyNEXTKZxJ6eHtPrF198MTk3MYRYmZ6eJt1hsigJBoMW8ed0XXVdx97eXvJ6p8u2yqelJplM4nnBoKMb7pPvnBfHy5QnLGoIWNQw1UC+U8zdLBDZWojciKVMyum7OX+5/on6tzwWLlxIum1CoRB2dnYargaqTg6i2WqiulWEAHGT3iwPuYCgz+cjXTyUa0fMTa1EvHz5cuP6OomVcDiccc+qdK43cR0oN2AoFCIte+J65T2m5vBhfKulxTFg+vVgEJe9U1G6mLE6jDtY1BCwqGGqhXwVA8xEIGUaT+BmjpmU0xfHSWcxikajpr5MU1NTZNVgTdPw6quvtogu9VycBF08HsdQKGRx+QgxJQdPJ5NJMgU9GAya3DBC2MyfPx937txpERuLFi0yCYutW7eaFvx58+YZLizR0kHXdWxubkaAo0UGhZXJ6/VibW2tRayoMTV2Q7ZIUdYweR+hUMjU7kHOXpK7wKvfsbiOOWU/7d7tKrX9v3/5y7z8u2LyD4saAhY1TDWRa9uGQqaouhVLmVpq3FqMRNAn1Q28r6/P1nphV2/HruCbvNDanadT0TYRu6NW0m1pacHW1lZLSwh1DA0NWa6Xruu4a9cuY46pVMoIVg6Hwzg2NmZrNfJ4PGT2k9OIxczB1NRnhGWGEiZqILX8HYv9CgtO1nVqenpciRrs6Zn17VDKFRY1BCxqmGohH5aadAJBWDyo4EinTI9MxZIbASRbiVSLkTwXdV6Tk5Mmd45YsPv7+03X7vrrrzeV8HdyjWR6npOTk6aFnOo3Jer8iM92dHSY+jlRrqGGhgbSLWcX0KpeN3XxlgWN4NZbb01rqZGDmoUQiUajOG/ePMv5iXmKoOvOzk7SvSd3cFfvl6wqCrOlpuJhUUPAooapBvIZU2PnUhIWjmyyQfJdpyaXjK9UKoXt7e0WS40sKNra2jCRSFgsCFSAbzYtA9R9h0IhS6Cxrusm94v6GbuYFrlLOGJuHc/D4bDpPORaNDU1NSZhJc+nubkZOzo6LBa48fFx7O/vJ9sHiHO06xOV93gWjqmpeFjUELCoYSqdYlU1zeU4wt1BvacuZmJ7Kt5ExLfYBeq6PWf1qV+1MlCtIAKBgKuO0U5xRsKiIMSPpmlGNpMsZnRdNwRke3s7Tk1NOVYdlv/WNK0gcVSJRMKwFMmNNWV3mMfjMfpXaZpmKs6nirpshVa+xARnP1U+LGoIWNQwlU4xq5pm8/Sc6fzcNglUOzenc1Gpc5qcnMTBwUHT/vv6+siWDeo85B5HiM7uLrvrIOYggnXFGBwcxImJCVPbgY6ODkMYUvE0vb29FiuPmEc6F51cuNAphqmtrQ39fj9qmoYjIyOmGJdwOIyBQABXrlxpiB05xiUXIVCoeBauU1P5sKghYFHDVAPFrGqaTT2QTKwqVNl/ta8S5Qpy66IS7ie5dxMlmuRrpoqf1tZWQ9jIC5wQWh0dHUZ2ltN1mJ62NsBsaGgwzlWtbZNKpXDNmjUWUSPEhYhL6erqMrKcYjFrE015zmNjY2kDbdesWWPEFwmXlLB2ibn6/X4cHx93FShdqHstU/JRUZgpHSxqCFjUMEzmZPr0TFl4qAwnxKOLhWp1sBM1TnOxE1MTExOWeixO+6csNeLzqhtGFiNUQLWakeSUxSQLGlkIiusmrot8jhMTE4Zrx67Rp9P/O7kH3QpN9TyzFSMFj6lhKh4WNQQsahgmM7JdsKjPUbVoRIqucHU4WVLSzYVaGCmXlhtLkJMIkRtmqtYVGWHdoM5LrY8jXpcDbTONI3KafygUIt1OTt+fXfNJKu09F7cRd79m3MCihoBFDcO4J9enZ6rQnN2iJbpNqwujMPu7nQslfAKBAIbDYceYHSoYOR6Pk60MnKwrAuEOi0ajuGzZMtPntmzZQtZy6e7utnw+XWyS6jKxqz+TjQVlenraIuzUSsB2x8zkONz9mnEDixoCFjUM445cn57tLDV2okQu3qYujJnORRVTg4ODjtlVovsyVQDOyWUEAGRgqXr93A7VkpUudkqOo5HnQInJbCwobkRNvtxGucaJcffs6odFDQGLGoZxRy5Pz04LnWqhUAUNtTCqga9Oc7GzGjiJJvmc7QKY7cbVV19tu2C6qcjr8/lMlhufz2epPWOHXTCy07zdCg037qdCuI2yESds6ZkdsKghYFHDMO7JZoFxs9DJo6+vz9XCaFf3Rp6LGzGVzpogzjmdOJBHW1ub5VrI18FJ2AwMDCCiWQCpDTydcIqjkQOkM4mpcZuRprY3oOaViZjIVpxwTM7sgEUNAYsahiksTgsTZblQm0/KZLIwOmU/UVYQasGjauaodWXEWLx4MSlOqOvQ29tL7uP44483nZeoV5OpVcEpY8su+8lpkU8kEmTLCPk4gUDAlHll951kch65iBPOnqp+WNQQsKhhmMJDLXRqcTd50VGL28m4XRjT1amRi9qpcxIiQl5UA4EA6rqO8XjcIhgWLlxo6cpNWVfsKhnLn5GzncQcsnGTULV1ZJeUOE9RW8dJOKVSKezs7CSznISw6ezszNqd4ySE5EKEmYqTQte5YUoLixoCFjUMU3yK5R5IV1HYTWNO1Z3T29uLnnfK51PxKQMDA7bWFXlfqoVKdoepnagzhVrMs6mCrF6zQgTeunExiZYRbsRJuiadg4ODWc2TKT9Y1BCwqGGY4lPIQM5CLL6USPB6vXjxxRebXuvt7bU9DhVTk+6/2Qi7TN0u2QbiFtvFRKX3q3NR7yvZyiMGVTmZqUxY1BCwqGGY0lAI8VFIsaQuqlu2bCFT1O3cZnKdGtHBWs7A8vl8uHz5clNwsMgocjvfTC1g2VyvQlzjdELMLlNNzYKTz19u/KlpmqVK9cTEBGc/VTgsaghY1DBM9VAot9b09LTliV+2pvT29lrECIUcIyPmICooU7E1qkjItk6NfA1kwZHN9SrkNaaEi1N6vxroLK6ZWktH9NdSW1moMVVMZcGihoBFDcNUF/nOelEDmrdu3WpyE4nieGpAq9tFXe11JVwrVAp7NhWF1WOp4ohy89j15aKuST4zi9T4Fzfp/aqwGR0dtbShENtNT09nnSrPlB8saghY1DBM5aNaMPKV9UJZJVKpFHZ0dJBxL9m4X6j0a6qGTL4sJJT7yC6wuJiZRXZzcJPeLzK45M+qqfehUMiSYcdZUJUNixoCFjUMU9nYxXjkI+vFKS1cpGarAiaTGBinQnmydYHaPlsLiZ04Umvn9PX1OV6XdG0mMkFOk1fPS9M0HBkZsT0XcSx1Lk7tLDituzpgUUPAooZhKhu3rQGoGiuI7vopFSKVmZo3tTA71ffJdpFWxZEcE5Run1RBQvkay13U3ZBJYT87qNpBYn99fX0Wq00m/a6Y8oVFDQGLGoapfJwsHk7tAErZI0g9NiVW7NKPKQtJplDH8/l82Nvb62j9cdsywW2syvj4ONbU1CAAYDgcNoka0RG9pqbG1NhTRg60DofDpu9e/O33+10J3HKAG3G6h0UNAYsahqkOnKwzdnEn+czkMRajw4cRd+9G7Ok5+t/Dh9PWe6HcSnZCLJ+xLGqauqizky77KZ+iJplMmgJ7qf1pmkbuT52LpmnY0dGBuq4bgkgVOEIAlaMLihtxZgaLGgIWNQxTPaitAWQLht2ikI84FbEYnRcM4lstLYgAxnirpQXPCwZtF6NMhJX62uDgoK34SfdUT6WpU8e3q1Pjxv3k1rIQj8dtY2BCoZBtsTxqLtFoFPv6+kz70zTNCLaWg4qzST0vJNyIMzNY1BCwqGGY6sCNBcNukc3V+pFMJvG8YBCPAOARSdDgO38fAcDzgkHblg1uns4TiYRpYROF56imlOme6tU0dbvU6XQWJkpEyh3SRaFBp3YUsjAR9WTECAaDaWN0KGuXGH6/3xA0dte13KwehUqXr0ZY1BCwqGGYysdpIbCLn1AX7JziVA4fxrdaWiyCRhY2b7W0HHVNEbiJo1DFj/xUL1tI0lki8mUNSOfuE1YgqsqynVgTFYDFEH+7tU5QGW+liE/JNS4m3+ny1QqLGgIWNQxT2dgt0nIAqRrjoT6p57yI7N5NihnL2L07p3N1qsej6zoODg6mfarPR9yG28BsuZaPk3iSC+KpQy5w6ES5CIF8xcXkIxi82mFRQ8CihmEqG3UREQu/HEQqsoiomAq1ErBq7nfVI6inx52o6enJ+/lns5jnYknIJIXeqcWBbHGi0rHVfTlZasrJZZMPS1i5CLRyh0UNAYsahql85KBUNU1aLJjCoiBnv8iCRrYIyIuKz+fD9vZ2Z2FTJEuNHcV8qs+02GG6BVquU0PF1AhRalenphyDa3MRWeUk0ModFjUELGoYpnqgFjgqs0bEfiQSCVyzZg3pJsmoR1COMTW5UIqn+kzbUjiJrlQqhZ2dnSa3lfw9hUIh7OzsdAwULsc06Gy+l3IUaOUMixoCFjUMU12omT2tra2WAFS5YWRXVxeOjIzYlul30yMol+ynfJ1rqZ7q081BdkHZLe5ObRJ0XbdN6RaUa8G6TC1o5SrQyhUWNQQsahim+qCekuWhVhmemJhAXdcNN0imFo9c6tRkSzk81buZg2wFs4upKfV5FIJsLWjlKtDKERY1BCxqGKY6UZ+SAawpw2owq+qmyiQ2JZuKwrlQ6GabucwBEXFiYsLkvrMTK4lEouqsE+VgQZsNsKghYFHDMNUHlY1DpQyL4m5C4KifKfcFSH2ql0WGmrVVKIFgZ1lIpVLY3t5Ouu/UuZTKOlGI41ar5akcYVFDwKKGYaoLefEIBAJkAKo61Kq8lfpkXW4Lajm7UgoVv8JxMcWDRQ0BixqGKW8yWRjVRV3UpnEq7ia7nUolBPK5+LPrwx2FFIDlLOaqCRY1BCxqGKZ8yfSpl9peDVpdvny5ReAEAgGynUIxnqwL8WTPxdvcUSoByKInP7CoIWBRwzDlSzZP0/KCoX5+YGDAVGxP/q/bHlHlcI5uKFRBvkIvyMVe8IstANk9lT9Y1BCwqGGY8iaXp2k1cJaqn9LR0WFqk1CKAM58WwwKtVAXekEu1YJfzIrM5Rb3VMlUlajZv38/fuELX8BoNIpz5szBWCyGl112Gb7xxhsZ7YdFDcOUP7ks0nYtFBD/+uRfDk/I+RIihXSpFHpBLsWCXwpXHcc95YeqEjW//vWv8fOf/zwODg7iM888g/39/djU1IT/63/9r4z2w6KGYSqDfDxN5+LaKIZbJNdzLIYoKPSCXMwFv5TiguOecqeqRA3FNddcg0uXLs3oMyxqGKb8KfUCUAy3SD7OsVjuG7dzzVbsFeP7Lgc3UDHdXtVI1Yuab3/72/ie97zHcZvXX38dZ2ZmjJFMJlnUMEwZUw6m+kIvgPk8x2IF2qoLcm9vr+n9XEVUoRf8Ugfs5lO4zdZsqqoWNX/4wx/wmGOOwa1btzpud/nll1tqVLCoYZjypByepgWFElfldI5ukRtQiuHz+XB8fByTySTG4/Gc5l4sy1ypxEC+RexszaaqCFFjJzrk8cADD5g+89xzz+GyZcvw3HPPTbt/ttQwTOVQbj/YhVhsy+0c0xGPx43Gn7quY29vryk9PhgMGu+XW6BzOZBvEVuJojhfVISoefHFF/GJJ55wHK+99pqx/XPPPYfLly/HTZs24ZEjRzI+HsfUMEx5U26m9UK4RcrtHO1IJpMmC42o7UNVbLar+yOgzlleoJ2aYFbyAl3oYovVKATtqAhRkwkHDhzA448/Hj/zmc/g4cOHs9oHixqGYdxS6oDlUiMWZKpXVjAYdC32nDqMt7e3o8/nw46OjqI05LSbX6UVGJyN92ZViRrhcjrllFPwwIED+MILLxgjE1jUMAzjhtnwNOxmsRXbUIuo2wXVyWXiVAgxmwU/UwFRae5AmdmWTVVVombbtm22/5gygUUNwzDpmA1xC9ks5uoiGgqFXIu9YojEbM6pUr9rttTYUxGiJl+wqGEYJh3FfHovVXxNpov59PS0JQNKxNG4FQCFXoizFSiVZpWrtPnmCxY1BCxqGIZxQzHERqldH24XR3m7QCCAoVDIFGMjC5t08y20yyTbBb9SLB+ValnKByxqCFjUMAxTLpTDApVuMVfnGI/HLTE2Yo5OYi+VSpmajMrHmpiYyKtwy1agVEKMSqmFcClhUUPAooZhmHKiHFwJTot5PhZROcuJOk+fz4ft7e15XYgzFSiVYqlBrJySAPmGRQ0BixqGYcqNUi6obo6d6yI6OTlpKtg3Pj6OiGiqd+Pz+XBycrJo52S3/WyKUak0WNQQsKhhGKYcKYXro1iLeSqVwo6ODkdLjVqnJlsyPSc37jVd10n3WjVbRcoRFjUELGoYhikmbqwcpbDUFDuepxgxNdmck+xei8fjJlebaBERCARwaGgIY7EYdnZ2YiKRIF1vLHIKC4saAhY1DMMUCzfxKB0dHaYCdMVyfZQq4LSQFqlsz0kIT1UUTUxMGFlewsoUCAQwHA6bsr9ky47bazZb42JygUUNAYsahmGKhRvLgeySKXb2U7EX1mJYpHI9J/Xayw08vV6vqT1EpnV65DnO1gymXGBRQ8CihmGYYqG6XFRLjK7r2N7ePisWN3nhj0aj2NfXRwq+crBSUOJLbeApvr9sLGvlkMpfibCoIWBRwzBMMZCfxsfHx8lFsr29HaempqreDaF24+7o6LBcF+HuKRchp7rJbr75ZtPfoVAoJ4sTZ1xljtv12wMMwzBMXjl06BAcPHgQ9u3bB2eddRZce+21pvcPHz4MMzMz4PF4QNM0ch+apkF9fX0xpltQFixYAE1NTRCLxeCXv/wlpFIp47r09PRALBaD+vp6+B//43/Avn374ODBg3Do0CHb/c3MzMCBAwfI9w4cOAAzMzM5zTeZTMKmTZtMr11wwQWOn+nu7oZIJOL6GJFIBPbs2QOxWAz27dsHJ510Euzbtw9isRjs2bMno30xCkUSWWUBW2oYhikWVOwMSJYaUa9lNiDHuqhWir6+PlOwtJOVotDxKE4xNT6fD3t7ey09sNzM245KqGJcLrD7iYBFDcMwxUQuMCcLmlwWwmog26DhQsajUNlPqijVdR3D4bDJDaX2wSr0NZitsPuJYRimhBw4cADOOussOHz4sOn1u+66y3A7bNy40daVUs1EIhHo7u42vebGhaNpmslts3HjRrj//vth48aNJveNnUvPCdlNtmfPHlixYoXx929/+1vQdR3++7//G5577jnQdd0Yv/rVrzL+PpPJpGnOo6Ojpn0kk8mM58+8Q5FEVlnAlhqGYYqFWkkXpKdxESRbDkGxpSBXK0WhrBxqSrj8dyKRwK6uLuM4ciB3Jq6vast+KlZpAHY/EbCoYRimWExPTzsW1st3d+pKIV+ZP6WIR8nHAl5NdWqKeS4saghY1DAMUwyq7Wk8X9hdl3g8bqnSK39GXRQrPR6lnCsKZzK3Yt7nHFPDMAxTItT4DBErIqfyNjU1wYIFC0o80+JCXZeZmRn44he/CAAAuq6brksymYQNGzbA6aefbqRqV0M8Sn19fVmm8s/MzMDpp58OGzZssFxH6rsoZIxT1uQsnyoIttQwDFMsyvlpvJSo10V+2td1HePxOCLST/tsASss2V7fYljO2P1EwKKGYRim/HAbZ1NN8SjlSrYxT4WOcXK7ftcgIhbPLlRaXnnlFaivr4eZmRk45phjSj0dhmEY5h1kt5KAqrA7MzMDhw4dIl0aBw4cgAULFlRFJWaKYp272+8i2+2zwe36zTE1DMMwTMlxW7umXONRCk2m8S65kEkdoXKLcWJRwzAMw5QcqufSpk2bKiLwtxjI/cRksSCLinR9s9zi9rs4cOCAJSh4/fr1luDhYhaYZFHDMAzDlJRMn/YL3dSyHClWplEm30VZZvnlNZKnzOFAYYZhmPIi04ybbIKFqykTrZCZRtlkP5VbRWG21DAMwzAlI9On/UzdMMWMRSkG2fbNckM2lpeyi3HKi4SqENhSwzAMU35k+rSfSdpxtdW2KXRNmHK1anFKNwGndDMMw1QHmaQRq3Ei3d3dsGnTJlMsSr5SjwtJtZxHNrhdv1nUMAzDMBXJ/fffDyeddJLx9+joKKxfv57cthi1VArJgQMHYMOGDRYBowqdvXv3FrctQZHgOjUMwzBM1ZJpCnghY1GKQVlmGpUhLGoYhmGYiiKbgm+VXgenvr4e7rnnHti7d69FiEUiEdi7dy/cc889VVt80C0sahiGYZiKIZuCb+VW9TZbyi7TqAxhUcMwDMNUDJm6Ycqx6i1TOHylngDDMAzDuEW4YajGjsINIzd2FCIIAEgRtHHjRo5FqSI4+4lhGIapamZzZ+9qwe36zZYahmEYpqqpr6+3FS3VmP48m+GYGoZhGIZhqgIWNQzDMAzDVAUsahiGYRjGBTMzM7ZZUgcOHKiYppjVDIsahmEYhklDtXX7rlZY1DAMwzBMGg4dOgQHDx60FOyTC/sdPHgQDh06VOKZzm5Y1DAMwzBMGjRNsxTsu//++y2F/TibqrSwqGEYhmEYAjWGRq5avG/fPjjppJMsXbOZ0sKihmEYhmEU7GJoIpEIXHvttaZtK6nbd7XDooZhGIZhFOxiaCYmJuDTn/60adtK6vZd7VSMqPnoRz8Kuq7DnDlzoKWlBTZt2gTPP/98qafFMAzDVCELFiyAHTt2mGJo+vr64H3vex8cPnwYfD4f9Pb2VmS372qmYkTNySefDHfddRc8+eSTcPfdd8MzzzwDn/zkJ0s9LYZhGKbKEK6nz372s9DT02MIl49//ONw+PBhAABYsWIFnHLKKdztu8yoGFHzL//yL7B27Vo49thjYf369XDJJZfA+Pg4vPXWW6WeGsMwDFNFyK6ns846yxJDAwDw2muvwaFDh0zBw9ztu/RUZJful19+Gc4//3x47rnn4Le//a3tdm+88Qa88cYbxt+vvPIKRCIR7tLNMAzDOCLXn/H5fIaFBgDA5/PBb3/7W3jve99rvMbdvguL2y7dFWOpAQC4+OKLYf78+bBkyRKYnp6G/v5+x+2vuuoqoztrfX09R6czDMMwrohEItDT00MKmsOHD8NZZ51liqHRNI0FTRlQUlFzxRVXQE1NjeN48MEHje2//vWvw0MPPQT33nsveL1eOPvss8HJ0PTNb34TZmZmjMFBXAzDMIwbDhw4AGeddZZJ0AAA3HXXXRxDU8aU1P300ksvwUsvveS4TTQahTlz5lheP3DgAEQiEbj//vth3bp1ro7n1nzFMAzDzG5mZmbglFNOgUcffdQkbGKxGPT09MBZZ50FTU1NcM8997CFpgi4Xb99RZyThYaGBmhoaMjqs0KLyTEzDMMwDJMPXnnlFXj55Zfh8OHDEIvFoLu7GzZt2mQED+/YsQNWrFjBgqbMqIiYmsnJSfjJT34CDz/8MExNTcHu3bvhrLPOguOOO861lYZhGIZh3HDgwAHYuHEjPPvss0YLhPXr15vStz/72c9y88oypCJEzdy5c6G3txc++MEPwooVK+ALX/gCtLW1wd69eyEQCJR6egzDMEwVsWDBAmhqarL0dOL07fKnIlO6s4VjahiGYWY3MzMzcOjQIbKbtpyW7XY7pjhUZUo3wzAMw2SLXZNKgKN1aTZs2ACnn346zMzMQH19PSloADh9u5xhUcMwDMPMCuyaVMqF9g4ePMixMhUMixqGYRhmVqBpmqVX0/33328IGhFDY2ehYcofjqlhGIZhZhWyZUagBgUz5QXH1DAMwzAMQSQSge7ubtNr3d3dLGiqABY1DMMwzKwimUzCpk2bTK9t2rSJW+lUASxqGIZhmFmD7HqKxWIwOjpqirFhYVPZsKhhGIZhZgWiUrAcFKxWCuYmlZVNSXs/MQzDMEyxEJWCAYCsFLxx40auFFzhcPYTwzAMM2vgSsGVSUV06WYYhmGYYlJfX28rWrg+TeXDMTUMwzAMw1QFLGoYhmEYhqkKWNQwDMMwDFMVsKhhGIZhGKYqYFHDMAzDMExVwKKGYRiGYZiqgEUNwzAMwzBVAYsahmEYhmGqAhY1DMMwDMNUBbOqorDoCPHKK6+UeCYMwzAMw7hFrNvpOjvNKlFz6NAhAACjiRnDMAzDMJXDoUOHHHtzzaqGlm+//TY8//zzsGDBAqipqbG8/8orr0AkEoFkMskNL9PA18odfJ3cwdfJHXyd3MHXyR2VdJ0QEQ4dOgShUAg8HvvImVllqfF4PK4alh1zzDFl/wWXC3yt3MHXyR18ndzB18kdfJ3cUSnXyU33dA4UZhiGYRimKmBRwzAMwzBMVcCiRiIQCMDll18OgUCg1FMpe/hauYOvkzv4OrmDr5M7+Dq5oxqv06wKFGYYhmEYpnphSw3DMAzDMFUBixqGYRiGYaoCFjUMwzAMw1QFLGoYhmEYhqkKWNQ48NGPfhR0XYc5c+ZAS0sLbNq0CZ5//vlST6usePbZZ+Hcc8+FpUuXwty5c+G4446Dyy+/HN58881ST63s+P73vw/r16+HefPmwcKFC0s9nbLhpz/9KSxduhTmzJkD73nPe+D//b//V+oplR2/+c1v4O///u8hFApBTU0N7Ny5s9RTKkuuuuoq6OrqggULFkBTUxN87GMfgyeffLLU0yo7fvazn8Hq1auNonvr1q2DX//616WeVl5gUePAySefDHfddRc8+eSTcPfdd8MzzzwDn/zkJ0s9rbLi97//Pbz99ttwyy23QCKRgB//+Mdw8803w7e+9a1ST63sePPNN+FTn/oUnH/++aWeStnwy1/+Ei666CL49re/DQ899BC8//3vhw9/+MMwPT1d6qmVFX/5y19gzZo18JOf/KTUUylr9u7dC1/5yldgfHwchoaG4PDhw3DqqafCX/7yl1JPrazQNA02b94MDz74IDz44INwyimnwBlnnAGJRKLUU8sZTunOgIGBAfjYxz4Gb7zxBtTW1pZ6OmXLD3/4Q/jZz34G+/btK/VUypI77rgDLrroIkilUqWeSsl573vfCx0dHfCzn/3MeG3VqlXwsY99DK666qoSzqx8qampgb6+PvjYxz5W6qmUPS+++CI0NTXB3r174QMf+ECpp1PWLF68GH74wx/CueeeW+qp5ARbalzy8ssvwy9+8QtYv349C5o0zMzMwOLFi0s9DabMefPNN+E///M/4dRTTzW9fuqpp8L9999folkx1cTMzAwAAP8eOXDkyBG488474S9/+QusW7eu1NPJGRY1abj44oth/vz5sGTJEpienob+/v5ST6mseeaZZ+DGG2+E8847r9RTYcqcl156CY4cOQLBYND0ejAYhP/6r/8q0ayYagER4Wtf+xq8733vg7a2tlJPp+x47LHHoK6uDgKBAJx33nnQ19cH73rXu0o9rZyZdaLmiiuugJqaGsfx4IMPGtt//etfh4ceegjuvfde8Hq9cPbZZ8Ns8Nhlep0AAJ5//nk4/fTT4VOf+hR88YtfLNHMi0s214kxU1NTY/obES2vMUymXHDBBfDoo4/Cjh07Sj2VsmTFihXw8MMPw/j4OJx//vlwzjnnwOOPP17qaeWMr9QTKDYXXHABfOYzn3HcJhqNGv/f0NAADQ0NsHz5cli1ahVEIhEYHx+vCjOdE5lep+effx5OPvlkWLduHWzZsqXAsysfMr1OzF9paGgAr9drscocPHjQYr1hmEz46le/CgMDA/Cb3/wGNE0r9XTKEr/fD8uWLQMAgM7OTnjggQfg+uuvh1tuuaXEM8uNWSdqhEjJBmGheeONN/I5pbIkk+v03HPPwcknnwzvec97YNu2beDxzB4DYC7302zH7/fDe97zHhgaGoIzzzzTeH1oaAjOOOOMEs6MqVQQEb761a9CX18f7NmzB5YuXVrqKVUMiFgVa9usEzVumZychMnJSXjf+94HixYtgn379sFll10Gxx13XNVbaTLh+eefh40bN4Ku63DttdfCiy++aLzX3NxcwpmVH9PT0/Dyyy/D9PQ0HDlyBB5++GEAAFi2bBnU1dWVdnIl4mtf+xps2rQJOjs7DSvf9PQ0x2Qp/PnPf4Y//OEPxt/79++Hhx9+GBYvXgy6rpdwZuXFV77yFejp6YH+/n5YsGCBYQWsr6+HuXPnlnh25cO3vvUt+PCHPwyRSAQOHToEd955J+zZswfuueeeUk8td5AhefTRR/Hkk0/GxYsXYyAQwGg0iueddx4eOHCg1FMrK7Zt24YAQA7GzDnnnENep927d5d6aiXlpptuwmOPPRb9fj92dHTg3r17Sz2lsmP37t3kvXPOOeeUemplhd1v0bZt20o9tbLiC1/4gvFvrrGxET/4wQ/ivffeW+pp5QWuU8MwDMMwTFUwe4IfGIZhGIapaljUMAzDMAxTFbCoYRiGYRimKmBRwzAMwzBMVcCihmEYhmGYqoBFDcMwDMMwVQGLGoZhGIZhqgIWNQzDMAzDVAUsahiGYRiGqQpY1DAMU5EcOXIE1q9fD5/4xCdMr8/MzEAkEoHvfOc7JZoZwzClgtskMAxTsTz99NNwwgknwJYtW+B//s//CQAAZ599NjzyyCPwwAMPgN/vL/EMGYYpJixqGIapaG644Qa44oorIB6PwwMPPACf+tSnYHJyEk444YRST41hmCLDooZhmIoGEeGUU04Br9cLjz32GHz1q19l1xPDzFJY1DAMU/H8/ve/h1WrVsG73/1u+N3vfgc+n6/UU2IYpgRwoDDDMBXP7bffDvPmzYP9+/fDgQMHSj0dhmFKBFtqGIapaMbGxuADH/gA/PrXv4ZrrrkGjhw5AsPDw1BTU1PqqTEMU2TYUsMwTMXy2muvwTnnnANf/vKX4W/+5m/g1ltvhQceeABuueWWUk+NYZgSwKKGYZiK5ZJLLoG3334brr76agAA0HUd/vVf/xW+/vWvw7PPPlvayTEMU3TY/cQwTEWyd+9e+OAHPwh79uyB973vfab3TjvtNDh8+DC7oRhmlsGihmEYhmGYqoDdTwzDMAzDVAUsahiGYRiGqQpY1DAMwzAMUxWwqGEYhmEYpipgUcMwDMMwTFXAooZhGIZhmKqARQ3DMAzDMFUBixqGYRiGYaoCFjUMwzAMw1QFLGoYhmEYhqkKWNQwDMMwDFMV/P/5dWDaue5yDAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAGwCAYAAABRgJRuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACXuUlEQVR4nO29eXgc1Znv/6pXL5LlRVJLvRTtxjYIKRYScmJDggWZBOfeJJCQzJDMGLhZZuBCAjeTXLINJpME7JBLcByCsfEYRsYmyQ/JkudOUCQFmVzhlmBiErohQLBRt4CJYRIJhTXY7+8Pc4pTp86prupFvej9PE89oO7qqlOny32+9a5ViIhAEARBEARR5riKPQCCIAiCIIh8QKKGIAiCIIiKgEQNQRAEQRAVAYkagiAIgiAqAhI1BEEQBEFUBCRqCIIgCIKoCEjUEARBEARREXiKPYDZ5MSJE/D8889DTU0NVFVVFXs4BEEQBEHYABFhZmYGgsEguFxqe8ycEjXPP/88RCKRYg+DIAiCIIgsSKfTEA6Hle/PKVFTU1MDACcnZdGiRUUeDUEQBEEQdnj55ZchEono67iKOSVqmMtp0aJFJGoIgiAIoszIFDpCgcIEQRAEQVQEJGoIgiAIgqgISNQQBEEQBFERzKmYGoIgCMI+J06cgDfffLPYwyDmAF6vF9xud87HIVFDEARBmHjzzTfh6NGjcOLEiWIPhZgjLF68GBobG3OqI0eihiAIgjCAiPDCCy+A2+2GSCRiWeyMIHIFEeHVV1+FY8eOAQBAU1NT1sciUUMQBEEYeOutt+DVV1+FYDAICxYsKPZwiDnA/PnzAQDg2LFj0NDQkLUriuQ3QRAEYeD48eMAAODz+Yo8EmIuwQT0X/7yl6yPQaKGIAiCkEI98ojZJB/3G4maCmN6ehomJyel701OTsL09PQsj4ggCIIgZgcSNRXE9PQ0bNiwAdavXw/pdNrwXjqdhvXr18OGDRtI2BAEQRAVCYmaCmJmZgaOHTsGR44cga6uLl3YpNNp6OrqgiNHjsCxY8dgZmamyCMlCIIgZoOuri649tprS+Y4hYZETQURDodhZGQEYrGYLmweeughXdDEYjEYGRmxbNtOEASRK8Vwg1dVVVlul19+ed7PWYmMjIxAVVUVTE1NGV7v6emBb3/728UZlAMopbvCiEQiMDIyoguZc845BwBAFzSRSKTIIyQIopJhbvBjx46ZfnOY1bihoQHuv/9+qK2tzdt5X3jhBf3/f/KTn8D1118PTz75pP4aSxlm/OUvfwGv15u381c6S5cuLfYQbEGWmgokEolAd3e34bXu7m4SNARBFJxiucEbGxv1rba2FqqqqvS/X3/9dVi8eDH89Kc/ha6uLpg3bx7s2bMHbrjhBjjzzDMNx7n11lshGo0aXtu9ezc0NzfDvHnz4PTTT4cf//jHlmPp6uqCq6++Gq6++mpYvHgxLFu2DL75zW8CIur7/OlPf4JLL70UlixZAgsWLIAPfehD8PTTT+vv33XXXbB48WLYv38/rFq1CubNmwcf+MAHDPGSl19+OVx00UWGc1977bXQ1dWlHNuePXugs7MTampqoLGxET796U/rRe+effZZOO+88wAAYMmSJQYLl+h+sjv+gYEBaG5uhurqatiwYYNBfBYCEjUVSDqdho0bNxpe27hxoyl4mCAIIt+Ushv8uuuugy9+8YvwxBNPwAUXXGDrMzt37oRvfOMb8N3vfheeeOIJuPHGG+Gf/umf4O6777b83N133w0ejwfGxsbghz/8IfzgBz+AO++8U3//8ssvh0ceeQT6+/vh0KFDgIjw3/7bfzPUaHn11Vfhu9/9Ltx9990wOjoKL7/8MlxyySXZXfzbvPnmm/Dtb38bfvOb38D+/fvh6NGjunCJRCJw3333AQDAk08+CS+88AJs3bpVehy74//+978P3d3d8OCDD0IqlYIvf/nLOY0/IziHmJ6eRgDA6enpYg+lYKRSKYzFYggAGIvFcHR01PB3KpUq9hAJgihxXnvtNXz88cfxtddey/oY/G8R22brN2j37t1YW1ur/3306FEEALz11lsN+23atAnb2toMr/3gBz/AU045Rf87Eong3r17Dft8+9vfxnXr1inPv379emxubsYTJ07or1133XXY3NyMiIhPPfUUAgCOjo7q77/00ks4f/58/OlPf6pfAwBgPB7X93niiScQAHBsbAwRES+77DK88MILDee+5pprcP369YaxXHPNNcqxjo+PIwDgzMwMIiI+8MADCAD4pz/9yXRN7DhOxv/73/9e3+e2227DQCCgHIvVfWd3/SZLTQUxOTlpeho6++yzTU9NqgA+giCIfFGKbvDOzk5H+7/44ouQTqfhs5/9LFRXV+vbd77zHXjmmWcsP7t27VpDMbl169bB008/DcePH4cnnngCPB4PvOc979HfX7ZsGZx22mnwxBNP6K95PB7DmE8//XRYvHixYR+nHD58GC688EI45ZRToKamRndVpVIp28ewO/4FCxbAqaeeqv/d1NSku7oKBQUKVxA1NTXQ0NAAAGAI0OODhxsaGqCmpqaYwyQIYg6gcoMXM2Fh4cKFhr9dLpchzgXAWKKfdSjfuXOnYQEHgKx7EwGA6Zz862JVXVmVXfZapvGLvPLKK/DBD34QPvjBD8KePXugvr4eUqkUXHDBBfDmm2/mffxiIHZVVZXys/mCLDUVRG1tLdx///1w8OBB049GJBKBgwcP5j3jgCAIQoQPCo7FYjA6OmqwFpdKfF99fT3853/+p2GhffTRR/X/DwQCEAqF4MiRI7BixQrDtnz5cstjx+Nx098rV64Et9sNZ5xxBrz11lswNjamv/9f//Vf8NRTT0Fzc7P+2ltvvQWPPPKI/veTTz4JU1NTcPrpp+vjFwNv+fGL/O53v4OXXnoJNm/eDO973/vg9NNPN1lOWL8v1v9Lht3xFwMSNRVGbW2tMgAvHA6ToCEIoqCUkxu8q6sLXnzxRfje974HzzzzDNx2223w85//3LDPDTfcADfddBNs3boVnnrqKXjsscdg9+7dcMstt1geO51Ow5e+9CV48sknYd++fbBt2za45pprAABg5cqVcOGFF8LnP/95+H//7//Bb37zG/i7v/s7CIVCcOGFF+rH8Hq98IUvfAHGxsbg17/+NfyP//E/YO3atfDud78bAADOP/98eOSRR+Bf//Vf4emnn4ZNmzZBIpFQjknTNPD5fLBt2zY4cuQI9Pf3m2rPnHLKKVBVVQX/9m//Bi+++CL8+c9/Nh3H7viLAYkagiAIIm8wN7hYG4u5wWOxWMm4wZubm+HHP/4x3HbbbdDW1gbj4+Om7JzPfe5zcOedd8Jdd90F73rXu2D9+vVw1113ZbTUXHrppfDaa6/Bu9/9brjqqqvgC1/4Avz93/+9/v7u3bvhrLPOgg9/+MOwbt06QET493//d4PLZsGCBXDdddfBpz/9aVi3bh3Mnz8f7r33Xv39Cy64AP7pn/4J/vf//t+wZs0amJmZgUsvvVQ5pvr6erjrrrvgZz/7GZxxxhmwefNm+P73v2/YJxQKwbe+9S346le/CoFAAK6++mrpseyMvxhUYaEdXCXEyy+/DLW1tTA9PQ2LFi0q9nAIgiBKktdffx2OHj0Ky5cvh3nz5jn+/PT0NMzMzEitxpOTk1BTU1PRVuOuri4488wz4dZbb836GHfddRdce+21psq+lYzVfWd3/aZAYYIgCCKv1NbWKkULtWkhCknZuJ9uv/12WL16NSxatAgWLVoE69atM/k+CYIgCIKYu5SN++nAgQPgdrthxYoVAHCyWuPNN98Mhw8fhpaWFlvHIPcTQRBEZnJ1PxFENswp99NHPvIRw9/f/e534fbbb4d4PG5b1BAEQRAEUbmUjajhOX78OPzsZz+DV155BdatW6fc74033oA33nhD//vll1+ejeERBEEQBFEEyiamBgDgscceg+rqavD7/XDFFVdAb28vnHHGGcr9b7rpJj1grba2lrpUEwRBEEQFU1ai5rTTToNHH30U4vE4XHnllXDZZZfB448/rtz/a1/7GkxPT+tbqVSxJAiCIAgi/5SV+8nn8+mBwp2dnfDwww/D1q1b4Y477pDu7/f7we/3z+YQCYIgCIIoEmVlqRFBREPMDEEQBEHkwsjICFRVVc2poneVRNmImq9//evwq1/9Cp599ll47LHH4Bvf+AaMjIzA3/7t3xZ7aARBEESJcOzYMfiHf/gH0DQN/H4/NDY2wgUXXACHDh0q9tB0urq64Nprry32MCqSsnE//eEPf4CNGzfCCy+8ALW1tbB69Wq4//774QMf+ECxh0YQBEHIOH4c4Fe/AnjhBYCmJoD3vQ/A7S7oKS+++GL4y1/+AnfffTfEYjH4wx/+AMPDw/DHP/6xoOclSgScQ0xPTyMA4PT0dLGHQhAEUbK89tpr+Pjjj+Nrr72W/UHuuw8xHEYEeGcLh0++XiD+9Kc/IQDgyMiI9P2jR48iAODhw4dNn3nggQcQEfGBBx5AAMB/+7d/w9WrV6Pf78d3v/vd+Nvf/lb/zLPPPosf/vCHcfHixbhgwQI844wz8P/+3/+rv59MJvFDH/oQLly4EBsaGvDv/u7v8MUXX0RExMsuuwwBwLAdPXo073NRjljdd3bX77JxPxEEQRBlQk8PwCc+ATA5aXz9uedOvt7TU5DTVldXQ3V1Nezfvz/neMuvfOUr8P3vfx8efvhhaGhogI9+9KPwl7/8BQAArrrqKnjjjTfgwQcfhMceewy2bNkC1dXVAADwwgsvwPr16+HMM8+ERx55BO6//374wx/+AH/9138NAABbt26FdevWwec//3l44YUX4IUXXqByI3mkbNxPBEEQRBlw/DjANdectM2IIAJUVQFcey3AhRfm3RXl8Xjgrrvugs9//vOwfft26OjogPXr18Mll1wCq1evdnSsTZs26eENd999N4TDYejt7YW//uu/hlQqBRdffDG8613vAgCAWCymf+7222+Hjo4OuPHGG/XX/uVf/gUikQg89dRTsGrVKvD5fLBgwQJobGzMw1UTPGSpIQiCIPLHr35lttDwIAKk0yf3KwAXX3wxPP/889Df3w8XXHABjIyMQEdHB9x1112OjsNXq1+6dCmcdtpp8MQTTwAAwBe/+EX4zne+A+eccw5s2rQJfvvb3+r7/sd//Ac88MADutWouroaTj/9dAAAeOaZZ3K/QMISEjUEQRBE/njhhfzulwXz5s2DD3zgA3D99dfDQw89BJdffjls2rQJXK6TSx5yViTmUrJDVVUVAAB87nOfgyNHjsDGjRvhscceg87OTti2bRsAAJw4cQI+8pGPwKOPPmrYnn76aTj33HPzeJWEDBI1BEEQRP5oasrvfnngjDPOgFdeeQXq6+sB4GTcC+PRRx+VfiYej+v//6c//Qmeeuop3eICABCJROCKK66Anp4e+Md//EfYuXMnAAB0dHRAMpmEaDQKK1asMGwLFy4EgJOFZI8fP57vyySARA1BEASRT973PoBw+GTsjIyqKoBI5OR+eea//uu/4Pzzz4c9e/bAb3/7Wzh69Cj87Gc/g+9973tw4YUXwvz582Ht2rWwefNmePzxx+HBBx+Eb37zm9Jj/fM//zMMDw9DIpGAyy+/HOrq6uCiiy4CAIBrr70WBgYG4OjRo/DrX/8afvnLX0JzczMAnAwi/uMf/wif+tSnYHx8HI4cOQK/+MUv4DOf+YwuZKLRKIyNjcGzzz4LL730Epw4cSLvczFXIVFDEARB5A+3G2Dr1pP/Lwob9vettxakXk11dTW85z3vgR/84Adw7rnnQmtrK/zTP/0TfP7zn4cf/ehHAHAyaPcvf/kLdHZ2wjXXXAPf+c53pMfavHkzXHPNNXDWWWfBCy+8AP39/eDz+QAA4Pjx43DVVVdBc3MzbNiwAU477TT48Y9/DAAAwWAQRkdH4fjx43DBBRdAa2srXHPNNVBbW6u7v7785S+D2+2GM844A+rr6yGVSuV9LuYqVYiyEPXK5OWXX4ba2lqYnp6GRYsWFXs4BEEQJcnrr78OR48eheXLl8O8efOyO0hPz8ksKD5oOBI5KWg+/vG8jJOoLKzuO7vrN6V0EwRBEPnn4x8/mbY9yxWFibkNiRqCIAiiMLjdAF1dxR4FMYegmBqCIAiCICoCEjUEYZPp6WmYVBQVm5ychOnp6VkeEUEQBMFDooYgbDA9PQ0bNmyA9evXQzqdNryXTqdh/fr1sGHDBhI2REUxh/JIiBIgH/cbiRqCsMHMzAwcO3YMjhw5Al1dXbqwSafT0NXVBUeOHIFjx47BzMxMkUdKELnjfjuY98033yzySIi5xKuvvgoAAF6vN+tjUKAwQdggHA7DyMiILmC6urqgu7sbNm7cCEeOHIFYLAYjIyMQDoeLPVSCyBmPxwMLFiyAF198Ebxer15fhSAKASLCq6++CseOHYPFixfrojobqE4NQTiAt8wwmKCJRCJFHBlB5Jc333wTjh49StVuiVlj8eLF0NjYqPfY4qE6NQRRACKRCHR3d8M555yjv9bd3U2Chqg4fD4frFy5klxQxKzg9XpzstAwSNTMMaanp2FmZkbqJpmcnISamhqora0twsjKg3Q6DRs3bjS8tnHjRrLUEBWJy+XKvqIwQRQBcpTOISiDJzd411MsFoPR0VGIxWKm4OHZgNLLCYIgzJComUNQBk/2TE5OGgTNyMgInH322TAyMmIQNiqhkU9InBIEQcghUTMHYE/1LIOHX4T3798P55577pzK4MnGylFTUwMNDQ2moOBIJKLPaUNDA9TU1BR07AAkTgmCIFRQ9lOFw57qjx07pi/GsgyeaDQKDz74oL5Yl2vsTaZxnzhxAv7mb/7GMB8MNi8NDQ1w//33m66vlOZEdIXJ0sspxocgiErB9vqNc4jp6WkEAJyeni72UGaNdDqNsVgMAQBjsRimUilEROzp6UEA0Lfe3l79M1NTU7h27VrD/oxUKoWxWAzXrl2LU1NTs3kpGbEz7vb2doxGo6b5YO+z19PpdDEuwRH8mNkmu3aCIIhyx+76TaJmDiAu2D09PejxeJSLoUoIOVn4p6amlO+n0+mCCCK74x4bGzP8PTo6Kv2cXYpxrYzR0VHD9zg6OlqwcxEEQRQLEjUS5qqoQZQ/1Xs8Huzp6bElBJws/MW09Ngdd76sHKVyrWSpIQiikiFRI2EuixpExN7eXsMC2NPTg4hqC0y2i2Y+LD25YHfc+bByFOtacxGdBEEQ5QaJGglzWdSkUik9lkS20KusCtku/MVedDONO1vBJnM18ceKRqMFv9Zii0aCIIjZhkSNhLkqasRFt7e3V7ooptNpnJiYsLTURKNR24t0Ptwj2cSrZDpvtoLLytUUj8ct45TySbkGchMEQWQLiRoJc1HUOHmq5xfLeDyuDC52ImxycfFks3hnEixikLATK4eduZytoN1iBicTBEHMNiRqJFSiqMm0uE1MTNgWBvyizQSMKHD41zO5N3K11Dh1s9jZPxqNYkdHR9ZWDivRNFuWGoIgiLkGiRoJlSZq7FoyeJeSiPhUz8feyLKjmMDJ5N7IV0yNk+MUYj4yjYnPJKOgXYIgiMJAokZCpYmaQgWMZgoqzrTw53tcTiw++XLLZDrOwMCAyd1UKkG75JoiCKLSIFEjodJEDWLhsoxmOxamkONxijh+XiSkUinUNA39fr/JUhOPxw3HKUbQLgUREwRRiZCokVCJogYx/0XYipW1VMjxOIG3NEWjUWxvb9ddb5qm6WMIBoMYDAbR5/MpxzTblhFK9yYIohIhUSOhUkUNYv4sGcWuL1Mq4+HPy+Jl+EDgYDCoCxxN0/T/n03BoBKOzJpUKt8hQRBErpCokVCpoiZfloxSe8ov9nhUqdqBQMAgGlKp1Ky7djK5mWQuMhI0BEGUK3bXbxcQZU06nYauri44cuQIxGIxGB0dhVgsBkeOHIGuri5Ip9O2j1VTUwMNDQ0Qi8VgZGQEIpEIAABEIhEYGRmBWCwGDQ0NUFNTU6jLKanxRCIR6O7uNr3+hz/8AVKplGFckUgEDh48CPfffz/U1tYWZDw8MzMzcOzYMdP3zO6HVCoFy5YtM3ymu7tbn0OCIIiKZJZEVklQaZaaQlgyJiYmcHx8XPre+Pg4TkxM5GXsdilmJo/KUsO2YnfEtnLN8S4xKCFLDWVmEQSRDeR+klBpoibfmS6UOfMOomDgKyqXkkiQCS8xxqdUYmro/iIIIltI1EioNFGDmN8n32LHsJQK4jzIKirzxfaKLWzEIPFgMFiS3yHdXwRBZEvFiZobb7wROzs7sbq6Guvr6/HCCy/E3/3ud46OUYmiJt9kk21UaS4F3qIg9opiAqejo0MvUJjNQpyvOZNZavx+P2qaVpLWkFLLriMIojyoOFFzwQUX4O7duzGRSOCjjz6K//2//3fUNA3//Oc/2z5GPkVNpS3kPE4r+FaiS4F9v7LrY69ne335mrNMMTWy76sU7s3ZrjtEEET5U3GiRuTYsWMIAHjw4EHlPq+//jpOT0/rWzqdzouoqdSFnMdu3Zt8uxRKUSzaHZPd/fIxZ+XuypnNCtEEQZQ/FS9qnn76aQQAfOyxx5T7bNq0SZq1kquoKfcFJRNOn6StLAbRaBTHxsaknxNFSiECnzOJjHz2inIy9lzdMOUsrMlSQxCEUypa1Jw4cQI/8pGP4Hvf+17L/QplqUGs3NiAbK9LtlDxLQbsLLz5FIt2Fv3Ozk5cs2ZNVsJAFEP82IPBICYSCdPYNU3DZDJpOWdO7p1StGplolL/3RAEUVgqWtT8z//5P/GUU05xbAnJd6BwpT1x5ioqRJdCb2+v4+Pla9Gzcy1i6rPd61UJpkQiofeB8vl8ODAwYDqXKJIyuWHS6TROTEyUnXiRUekWToIgCkfFipqrr74aw+EwHjlyxPFnC5H9VEmxAbm4NFQCj0+HtitSEomEsnBctplBqnNnI6JUi/PY2Jiplo1MPPEdv1kGlUwUs/erq6sxGo2WnZtJpJxdZqVAOVrmCCJfVJyoOXHiBF511VUYDAbxqaeeyuoYZKnJTDY/nJmEAS9s7GZTsVorvFjkFz671gs731E236PsmplAcbvdhmOxa+GFCf95We0bWW2cSrBuZLq/KsUqlW9IEBJznYoTNVdeeSXW1tbiyMgIvvDCC/r26quv2j5GPkXNXIgNsCNw7LoUent7bVm00um0yUojWjucxurYsaY5sbix65aJIbfbjfX19abxezwe7OjokM5ZpuJ+2Vi7yhFauNWQ646Y61ScqBEXCbbt3r3b9jHyJWrmwg+M3QVmYmIi4358obpMlpBUKmUQNcFg0GC10TTNVBDPav5lwkOs4ZJLXR5RDLFNJmw0TVPWvlEFWlu9X0mCBnFu/LvKhbnwIEUQKipO1OSDfImaSnmitLLEjI+PGyrmWi0wVscZGxszHMfqh5hf1DRNw3A4rBQGdo4rjnVgYAD9fr9+nEQiYRBIHo8HW1pa9OPK4ljEMcqsSjIXFBNobJ5kc5bJWpRL/Fa5xGPQwm3NXBC3BCGDRI0Eqij8DjJhJrpV2tvb9QVe0zRDNo+dH1KnT978mBKJBLa0tJhEwdq1azGRSGS0AMnOLbq2vF6v1N3T39+v/x2NRk3fs8yaFAgElNZEJnD8fr+e6i2SabHKZTErNxFOC7c1lZScQBB2IVEjgXo/vYO46CcSCVy7dq0pU2dsbEyZiZSJbBZTJqxkmUSapuHg4KCtWB3VuUVBIl6XGN/S3t5uWuxVcT9utxtdLpfp9UAgoKd6y9wnmaxOTmNqrGroMAsV/x3kw62Tb5FPC7ccEnzEXIVEjQQSNUbEmi1i7Apz4cgykXisFq1cs6lES4oqgFb2A686t0zYuN1u3Lp1q0nQsWMkk0lDOwRZhhaz/sgEk8fjQbfbrQcLM4aGhnRLjhhDw8biJPvJjpjz+/2OrW5W5NsSRAu3HHLNEXMZEjUSSNSYkS0gTNSMjo5KLRKyxTVf7gurzCBeIPT399v+gbcTvyJeuygu/H4/dnZ26tcoq6XDx9E0NTVJRU84HNaPnUgkDCJoaGjI8L2w8y5cuNB2nRorl58qq0y2GDqxruQjwFeWUca+V1mBxLkGBVETcx0SNRJI1MgRF3jZYmwn1TgfP6iyp35xfKtWrXIUxGwn00h0FzErFR+szIKU+c9Ho1Gl+GOfCYVCUsHIz7Pb7dZ7ZIkWtHg87sjaZfVEL363wWAw79YVp1YE9h3JKjzz4m4uL9zlFhdFEPmGRI0EEjVmZAu8bOHLVEsln0/QvGVFlZJtt06NnZowKmHT1NRkWvz54/ExN4lEQl94+Y0VDQyFQnpcjUow5tOloJq3TNaaXJ78s3Ub8XPq9/sNrk9e3MnaTMwlyj05gSBygUSNBBI1RqxM/bJFL1MtldkYH28hsdv9206MjpXA4edgamoKOzo6DEKEna+5udn0OSakNE3DtrY2bGxstBSMKjGQj2BbJlZl3zWzHuUqqLIN8BUFjGwstHATxNyFRI0EEjXvIPPRi3EXjY2NhoUwlUrZrgxciPEhZm9JSKXMfZZkrrSVK1eahIkoBvg6NkNDQ6ZsLbfbjTt37tRdV+x1TdNMqd/MAjQwMKCc13wF28qsMplippyQa4AvBQgTBKGCRI0EEjXvIProeRHh8/l01wqrCcMWYNGiUahFpxAxBKIVoaWlxXD8sbExacG/YDBoWvyj0Si2tbWh3+83vM9bfvi58ng8ylo2YtVklXXMrogTPyMWHRSzojJlt9khX5k5lMpNEIQMEjUSSNQY4X30smBN5loSFz6Px4O9vb0FTyfNZwyBynXGB+fywkWMqREFSW9vr2F/n8+HmqZhX1+fSfi53W5DlpMqs0wUN7xYsjvHKgsXn63FiyOZtcbp95kvqxpZagiCUEGiRgKJGjlMPMjSajVNwz179hgsEPF4HBHLJ500kxVBLDDIW0kyFeoThZAsc+yHP/yh1FIiFhgcGhqSnlOVdi3DiYUrX9YVp1Y1mViVZZQVWjQTBFE+kKiRQKLGzNTUFK5Zs0bqlhAXV17Q8PuVcjqpHSsC70oS5yEej+vCw+fzmYrWicJGtkWjUVy9erUh2JiJyPb2dvR4PNjW1qa/LsbXDAwMOLrmfHZXtytU7VrVZAJIlVFWLqKZIIjCQ6JGQrFFTSmmZCaTSakVIZVKSV0uMko5K8VJt/FkMqlsLxAOh5XtBcTgaeY6kmVrieOZmprC8fFxfRHna7IU0gVTrLonMjGlyigr9FgIgigfSNRIKKaoKdXiWWIfI1lhuHKPb3BiReD3478zJkgY7Dtrb29XBheLgb6hUAjHx8dNi/r4+DgeOnSoICnW+ZiXfB9b1utKVkwxX2MhCKL8IVEjoZiippTLnFvFjng8Huzp6Sl6fEOhrVwq0Tk1NYVjY2NS0SlmS3m9XkOrBGb5OnToEFZVVRniZviMMrfbrb8vs5gV+/6wgyzoXFZfhl2PVYd1giAIERI1EortfspXYGahxiZaZ9xud0kEBTtxIdkVPrl2spZZuBKJhDTo+MCBA7rYYXFJiUTC5N7zer0YDoexv79faRWamJjI25zmSyRalQfgKwHz5QFkbruBgYGSc88SBFEakKiRUGxRg1i6aasyUcN6IPH7FMNNZjfY127rBDudrGVBwalUCpPJpN6xe82aNYbgYrbw8rExrAkmH3Dsdrtx+fLlJqtYT08Ptra2GoJlGcxlk4+5z7cr1E4hRzE9XVZFWRaone2YCIKoLEjUSCgFUYNYegXGrNxP4iJTrCdmviKwzMp14MAB200urUSSLD6G7cP6O/n9fkwkEjg1NaUHF4sLbzqd1sUPgxc2so0vbujxeKQNLvNhJeOvX6zVw5+HBTDb/X5EK6SqWrHYCFXWsqHc3G8EQRQWEjUSSkHUlJqlRhUoLL5W7MWET39WLZJ8byVR+PAuJURrVyAfF8NEpyj8sl14t2/fLhUzYnHDXF2UKvcSy7ZKJBK6CGRxUzJLSq6tGUTrn6poo2x+8+meLcXMQ4Ig7EOiRkKxRU0pxtRYpXSzRcbv92MymZz1sTHYQiwumACAO3fu1Bdnn8+Hbrfb1A1b1eFZtghrmibtUs7mgq+47PQ7zGSpkZ2PF2+JRMKUds4Wa94yxFeH5oUcLww7OjpweHjYNB6/34+Dg4MGMejku1c10WRbJjdhvlLanQYuk2uLIEobEjUSKPvJzNTUFHZ2dipjGTRN0+NCVJ+fraykvr4+kxWFbY2NjYaYFdnCKptf1SIsEzdW3cqdCpq6ujqpwAkGg7h27Vrs6ekxvD4wMKDH8ASDQd39xcRLKBTSY3iSyaRBkDJhw1cwZu6t7u5uw3nq6upMAs7ugi+bF5nVJVOHdavmnnbINnC52NZIgiDUkKiRQHVq1GPLRpjMxjWJ1WZlooWJGn4f2cKqGqNqX5ngYfPkJC5qfHzcICYGBwcxnU5jX1+f9Nz79+83WSuYcGF/+3w+HB4eNsUAaZomzcDiRYVV13DRusUv+HZrz4iC0ElzzmwEo51MNjFeSgxcFusQEQRRWpCokVBs95MT8VAOMQCzZX0SLQw33nijdCEOhULSooGiqOFrz7D3+E7W4XBY2v6AWT0yLbzidzcxMYHV1dXo8Xj0dG3xGPPnz9fPx4s2fvFlNW3Ye/X19YZGmW6321BTSOaKY/Ey4rW5XC7D30zssOuyErD89xONRjGRSJiao7L7wErsOnHP8q0mxHElk0kcHh42WKvuu+8+01zw80EuKIIobUjUSCi2qLFLKVt1RGYjTkgso6/amLVGlprOxpNMJg3H8vv9GAqFMJVK4eDgoP46W+T9fj8ODAzYjqlhC7p47RMTE9jf34+x2Ml6M3ym1oEDB3BiYsIgDtxut26ZES0fKhccv7HjiHMxMDCA4+PjyjkSRSK7BisBywccM7cS3xxV0zRcs2aNfr/KRLldgcxS6vlKz7w4ZVYun8+n3w9Wm1hYklxQBFGakKiRUC6iplTjb1TMRkbX1NQU7tixw3COpUuXGv72er0YDAYNbhr2ejgcxrVr12IymdQXYbfbrVs6ZMG5ACfdPMlk0nb2kyh6VDV1Ojo6pNYHJrja29sNMR+8tUiMg1Ft/Fj4zzc2NkqtFqJYamxslNYpkgk6n8+nt4YQ741McVns2jMJ+c7OTr35qpippSpJoHKvieKvmBmIBEFkhkSNhHIRNYilmSllRaFr7/BWDH6rr683/M27UfhFOhQKGaoE89YF/vNNTU2G1/h0drFODQ9vQRMDUGXfXaaUayYAxHnt7u7O2BWcXTsTd2wM4ucCgYDSXSe7fv46VeIpFxGeyeWaTCal4tEqNkh2z4iuNln3ebuUg5uYICoBEjUSyknUIJZeTRsVhR4nL0LcbrdhAdM0De+8807lwiWL61CNWbagi9fA3B8iohjJdk74RVJ2DDHepqGhwfIawuGwfk5RGDY2NmJLS4vhmB6PB3t7e6XZUwyZgBUFDO+yE687l8VetIpZiTKVm04mgLKxfJaTm5ggyh0SNRLKTdQgll71YZFCW5TE6rfDw8PSINQbbrhBulDxWTfiAiPOrbjwycYuW5AnJiaktVfE4w8MDFheK79IilV3RddbMBjEoaEhqRuJ35j7jB2f1amRfY5vz8C72zKJQXGerYRhPhZ7O4JU9Z2Krkl23R0dHY7HU25uYoIoZ0jUSCg3UVPqlppC/6izNgTi0zBfFTcWk3d8BjgZBMoXpxML71m5cfhmnvxnYrEYrlmzxiAU+MBjPoVYtCKEw2FpfRZ2Pbx7hT/e4OCg6fo0TcPh4WGTOFm1apUhdZkXNfy5xFowwWDQlNYsChA7AlaWBl+IxV4lSD0eD3Z3d0tFG58dxwLAecGcSCQcu5LKzU1MEOUKiRoJ5SRqyuHHspDmd/7Y4mLDH3toaEgZH+PxeLClpcU0Pl7Q+Hw+U1wO/3lZl3KxiaUoRHw+Hy5btswgkPg6OnwXbrHKr9i+IBAIGCo+n3rqqfq+yWTSIGBcLheuXLnSkPUTDocNncVl6eQyiwqDr0+TScDKApPZ6/m8f1WClBeC/ByIweOseKHV9yqez+peLvWHD4KoBEjUSCgXUVNOZu1CBUo6XUT5LJaenh5pjygmQvgFUYwnkb3G9yuSBcVaWX2YxUeMZ2ltbdXr5YhVfsVCcey8fPoyXw+Gb4TJL9x8NWA2b7xVy4lYziRg+fYGLKZGFu8Si9krdKe6r0QLWFNTk26VkYkXNgeHDh0yiENRJIvjd/pvzombmIKLCcI5JGoklIuoqfQARLs/6pmsVYlEwtDkkp8vvi0B/wTPF9njU5tZwT228MtqnMhiR1SZRWzjY3PuuecepVgSm1iKgoAtkuK577vvPmmcSDAY1OvfyLK9+LniqwFbLdyq740Xiux7YXFPYlAuqwtjdf+q7n/+PFVVVXoQdCKR0F8Ph8Po8/n0AGf+fmL7yc6dTqdtZa3JkFlqVK0gmLsyGo1W5L9tgigUJGoklIuoQazcpzmngi2TaX9iYkJa8wXxncW6ra1N2nYgkUjg6tWr0e1264GivItGXJD5p2/ZuKxaDvBiSszKYVk84hhV1yw7tyx1mbnfeGuW6I4TLTjZLKhWvZZkLsFM4kllpWMp9bxok907/f39yhTtTP92nLqSZAKXF5DiOMTqy6VshSWIUoJEjYRyEjWVipPKsao+S729vY5aSiSTSanlg7dgiAuJzKUkLm7iuESxoqqALIofNjbROhQMBpXWAlmgLItdkVmZ2FjC4TAODw9L55xPSXeK+B2IlrJbbrnF8Le42IufF92MfFBvOByWClne2pKLtcOuK0l1L8tciuI1iZa5UouXI4hSg0SNBBI1pYEdt5IstZlfoFnqsd3ziQJFbGgoSzu2WnRUacVutxt37typvycKnaqqKqnQcblchj5OvDWJj6VhMSmycweDQRwYGJBm/vT09BiCo/kifjJxkO8mpFaWGlVKvCyDTLz+fMecObHUWFkdeVEXjUZN95DsviZBQxBqSNRIIFFTOvBxEOKP+vj4uDQGhA8A5p+ArRCf+MVFUsx2cRqgrGkaNjU16cfzer2oaZpl6X6rjbV64IvfaZqGe/fu1S0U/NzMnz/fVCFXZR2Suces6shMTEzk3L29p6fHJK54S4qYEi/GRYmiUBVblI21w4l1yErY2OlcLhMupV6DiiBKCRI1EkjUzB6sxozsBz+ZTGJbW5vJTcJXpm1paTEIGL7xoJ24DES5QJHVUeGP4TTLh1mVwuGwQTQEg0FdQHm9Xqyrq7MlagKBgJ4BJYoij8ejH5N3JwUCAaWry+1245IlS/S/RQGkqiMTjUal1hN+v0zBvjKLUjQaxQMHDhiaW4pWLVHAqkSBlTDOZG2yigNiolXW8sKp9UclXCgNnCCcQaJGAoma2WFqago7OzuldT9kLgXeasAWqWg0iq2trdLUbGa6zxQ3IS5csoVE1gbA6uk7mUxiZ2enYQESO1Lz7p9AIKCnZ4vuJdXGAkhlwcoej8eQzcXmSxQrVVVVtrp5s+OIlg4xI0olfFTz5CSA1iolngkvfnzMLcfS2fl9BwYGbIkuUfDyGVtiJeVsrVcq4SJWi6aYGoLIDIkaCSRqZgexFgwTNqrFi7dq8PtPTU1hb2+v9EnXbtwHLzjEhUQWU2In6yzTPnxNFH4x27t3b0ahwVuhdu7cqe8vfo53UbH3xCKCNTU10nM0NjYq09BZmrSsUjLvjpG1FmDWufHxcdMinU6ncd++ffpYxQBaOynxYvaTTBz7fD5dRGayrMjcTfxneYtPOp3GeDyOa9assWW9snKPyVxtlP1EENZUpKg5ePAgfvjDH9ZjGHp7ex19nkTN7CEuVLJFKBQKKSvQikKEFwdOn2SdZFzZTTfPJGzEWJLe3l5pKwdxW758uWk/j8eDO3fulO7Pi4R4PI779++3jLFxu92G+i6iJcjr9WIikZDGNcmEF5sD3jonZifxFqz58+frxxEDaGWCj7f08VlsPp/PEMskXrOqQrIIL5T464vH44bvnLm67BTok4k6th8/p2JMGNWpIQg1FSlq/v3f/x2/8Y1v4H333UeipgxQPYH7fD590ZHFuMhiGXIx0dutjcP3XspF/PCLH7+An3baaRlFjcfjweuuu87w2pYtW6TZTgAnez3xWTas7k6m84RCIWxubpbuW19fj6FQCFevXm2qbKwSl6J1jvW5Eu8BsSCiKM5kr4nuIV6IBQIBqYgTqwarSKfTUouPGAwu+3/VfZnpfmPxSjLhUqo1qCq1bhZRPlSkqOEhUVMeyOqpDAwMKC0xrFGjHXHhxESfKU6GNX0Uz8FbWHiXhCreRHS7ydwOqqBeK6HDjidrktnf36+fQ5UyrnJFWQkLr9cr7YslqzMju/5gMGgIBmdZYSqBxsawY8cOU8sKXkywqsGqYzBhbGehlQlvfh5kqf92LIi5ioBSEhGVXuGcKA9I1CDi66+/jtPT0/qWTqdJ1MwiKkuNuLiJT7zRaFRZJTjfP6KyH2zZosVcNuwzfHsG5kbhr9Xn8xmaJvJuh127dtkSNtddd51BCDFBI4obNp+qAGw7m9vttp2hxc45NDRk+g5U33koFLJM1QY46ULq6+uTuqPa2toM1jve9SQbmxj8rbo/+Zgaq/kT78VCpmOXmogop150ROVCogYRN23aJP2BIlFTeDLF1GQKloxGozg+Pi49dj6fVFU/2GJMDB+wKrpaVAurWAOFZXTZia1hcyBmgIlB13zgrB2305IlSzAQCCgtOnY2fjxtbW2m70JmnWOp41ZBwS6XS79HQqGQ7lbyer2Gbumyz7vdbkPafyYXJf+9sz5NsnHLREuh07FLUUTkoy4QQeQCiRokS02xsJv9VKxgyUxF17q7uy2DVq3S0vn9RKyCb1XCIRqN4t69e9Hv95vSz/m2AC0tLbaEyqFDh3BsbMxy/LIYFSYaREERiUQytpfghY0da1JdXZ1h/pubmw29wMRj8LE3ogWQD2SW1SNiwjEcDlsKVT7NfjYW91IUEVRbhygmJGokUEzN7JCpTg2zMMie8hELGzMwNTWFa9asUY5LtqDxC2woFLJcmFXxJuzcYvXcHTt2GD4fDof14Fw+lqa/vx9/+ctfSudlbGzMkN7Nx6SI1zE4OKgvTKoGnADy2ByxKrHb7TaI0kwxNeIWCoVw69atGUUOEycqCxmfRReLvdNGgc9Uk7lzpqamsL+/P+P3K4vrmQ0LSimKCKqCTBQLEjUSSNTMHlYVhVmTSXGBno3gyGQyqbtseGGTSqVw2bJlhh/sHTt26IuKzHqhsraoFh4xwFhWRl9sk+DxeNDn82FbW5u0i7asz5KVG4pfoO1YTZYuXaq0APGiVGadSyQS2N7eLh1PIBBATdOwo6NDGowsm8tDhw7pAcKsrgw7ZygUwnA4rM8Pf79YuXNUQcKi0BHbVsxWrIsTEVHofz+lKLKIuUNFipqZmRk8fPgwHj58GAEAb7nlFjx8+DBOTEzY+jyJmtJFfJrmf6DFBSOXH2jZ4js6OioNPGXuDFVas0xAWLVwEK+RNXIUWywwK0dTU5O+iKuOyx9TtDpYjdlKSIj7Ll++XCpKmDBl30d7e7teyTgejxvcbap5Y9fFt3Lg55JZvXgxygcd88LE5/MprWR8sLbozvH7/djY2CjtCya2S+js7NQz5WT3Vrb9slRjtisiCh1cXIruMGJuUZGi5oEHHpD+QF522WW2Pk+ipnQRAzdZ3yExRkJ0LWSDlasJ4GSdFiZkNE2zlRUkVvhtbm6WLn7JZBKHh4dxYmJCj+kQ67lYCSVWGE+s5MusX7J06Wg0in19fcqifHbbKfBbY2OjoZt6KpXCeDyut4Jg89HS0mI4flVVlWkcoVBIOQZmFbGysPFWFJXgEF1/vEgYGhrCcDiMK1euNLw3OjpqsCo67Scl3nNO7lunIqKQwcWlGLhMzD0qUtTkComa0ob/kRRrulgFgWZ7LvHJ3OVyYSgU0p/67S72fGYPb5ngm0UinqxeGwwG0e/34+rVq02uKFmDRn7xTSQS+sIsFm9j516wYIG0s3UqlcJQKIRerxfnzZtn2Od73/ue49o5TIzwMSb9/f0mq5ZqDtn5XC5Xxi7j7Lvm50dc6GVp3Ly1j1+Y+a2np0dpTeLvOTtiJF+Lf7bHKZQ1pdRSzIm5CYkaCSRqSh+ZyV3s0p0Pc7dM1AQCAYzH40phobLY8OnbY2NjphTsRCKBw8PDhoJxmqYZAnw9Hg+2tLRgQ0OD9Byjo6PY399vEHt87yQ2N6qsLXaeSCSCfX19hmPlsvHCxuPx4KpVq2yJwZUrV0pjdcSKwQCALS0thuwnOy4Z2UIcj8czVjLOtiO87P7NVljkIiIKFfdSSsUAibkJiRoJJGrKA6t6IfkSNCrhommaqUYNEzyyzwQCAdMCMzY2ZrBYeL1egzXC4/Fgf3+/brmxIx4CgYBpARYXTY/HY+gELqZQh8Nh3a2XSqVw3759WYsZFsC8Zs0a3Ldvn622B5ne1zRNn7dgMGjI/mLZT1NTU7aCZ0VrR6ZKxqKA6enpkQpIu/dXtsKCd3OJIoJ/3UpEUIYSUYmQqJFAoqb0kS0I2f5AqxYGWaCwrD+R1cLHCwVZ9dpEIiEt5c8HyPICxO7CrxoH/zcf38NvYsn/oaGhjGOwOnckEsHu7m7pfKmsWo2NjdImmnz6NwsQZtlhfKBuR0eHyV0kCga26Fu5M2XXxLeb4F8Xu5HbIRthkQ83Tz4ElQyyxhDFhkSNBBI1pY1ouueflrP5gZYtEMlkUhcbYisD0aoxMDAgreUSi8l7QvHnHh8fl1phlixZYoohUYmXxsZGkzioq6tTWnf4dGNxUW1sbMT29nZDqwFN06TursWLF2cUNNm4rjLFzohzPDY2hslk0jBmdl6/32/Zl4kt/mKck2zsbrdbd3GJ89bb2ysNypYhE1NO7ttcY3JycX1R3AxR6pCokUCipnSxchfIgoadLBAswwjRaEHRNE3PJOItOF6vFxOJhNRN5XK5DCX7+TGzxpiybtKZtqqqKltZVj6fT9lkcnBwUNko1Ofz6f2rMmV/Zdo8Hg+ecsopptdl15xJ/IhxNbybj8UZiVWY7XbQZou/zJ0ZDoexpaXFULlZFk/FKgkj2lv429vblanjdu7bbIVJroKIMpyIUodEjQQSNaULv2CwtG1R4PCuBzs/sPxTuhgAyjfVXLt2LU5MTGBnZ6e++POiKhwOGxZnfqFjP/qdnZ16pWKWQcULoUxCob6+XrfAyCw3t9xyi+m44iaKQZlrjVUntmoIKYoSO8G/brcbt23bZnK5NTY2WlYVlgmjvr4+kxji0/wTiYThHmGFBFnKt+z7Ec8jiifZvPMiKpFI2Fr4M/U0s3vfOrX05Nt1lc/sKYLIByRqJJCoKW34IMjOzk5DPRLetK9pGnZ2dtoyhYvZSLLFny00yWTStNCxfSORiOH1aDRqSBfma8Twi6Pb7ZYWlpOJB3a+Xbt2md4PBoOWlh/RmsW7okTLjExkqV7btWuXZQNOsQYNLxCCwSCuXbsWBwcHbbmrZNV82TY6OqpXqWaLtyz4l0935xfpaDRqsMywObUKGOctN6wGjtXCr2katra2SgUAHx9k577NNiYn15gYqhpMlCokaiSQqCkPVP2ZEN/JXFqzZo1t/76YzbR9+3blE6goAPhWCbFYTLciVFdXmypZi/EbTovasWBVdgy32y0NqmX/H41GTdlPCxcuNDRn5GNNZLE4LpfLICbEGBtm0QmFQtIUbFlMDhNImqbh0NCQ1FJSU1Nj+DuT641dh2gtkWWqxWIxHB8fN33HU1NThjR6JmzEc7OKxfyc+f1+jMfjSvdeOBzWW1kMDQ1JG6Z2dHRgPB7PeN8WW1hQ9hRRipCokUCipjzIp3/fKptKtVDYse7wlhrxfFaWDStX1IoVK/TPRqNR7O/vx4GBAenneRcLX5SOxQmJVorR0VGp+4qJJna94XDYJFRCoRDG43FTLI8qoHjr1q2G61i1alVGQScTgE1NTTgwMGAKyJa5e3hhyIQD785kjS2ZKGFNVWVjCQaDBredz+fDwcFBg3tHXPgDgYB+PNFKxsbKMr9k/bt++ctf4sTERNFdQMUWVAShgkSNBBI15YOTH3eV2Z23usRiMdy+fbvhx7qnp0d5fifWHRGrOjtWoiYYDGJHR4cuoGQLb1VVlR7wy66dBSazPkVswZQVmxM3tgDv2rUL3W43VldX43333WfYh4/3sbOJAb7863wHcbfbrQstFwCuB8BL3v6v1+XCQCCA7e3tuHr1alPNGqtrY3E3yWRSj71hMU9M5CSTSZNgVG1MKPJuJlXKPC8cefeWWD+I72vGPjN//vxZ7QIuUmxBRRBWkKiRQKKmvLDz1KgKkOSzmfx+Pw4ODkrjL2RF1bKx7vCfFRe8pUuXGqwcMmHDLBXMQmNVS0eMNeIXWz5FXXUN4oLb2Nion98qzoSd48orrzS9XlVVhfX19QbB8q1vfcuwz9atW6UWlo8BYAoAkdtSb7/u9Xr1eCaAk1aTvr4+ZdA0uw6fz4eNjY2GHl58vFRra6s0gFn8bvhWF+J3KxY3FONw2BYIBAzHZQ0/eUHDzq2KySl0WjVlPxGlDokaCSRqyo9M/n3Vj3EikdCtHGI9E77+De/GQTT/iDux7oiLHu9SsZMBJasBw9LLxbGxBZS5U3h3T29vryngWbZwiynYfO8rv9+PXq/X5Ba64YYbpGOvra3NeK3hcNhgiQqFQvgxADz+9saLGvbaxS4X7tu3z3ZxRNW89vf3WwYsq+KfeFEjFm7kxQx/f/X29mY8h9vtNsTyMKFTrAJ4VKeGKHVI1EggUVNe2PXvW5nNZQXaEN/JRuGfQO2U1ldZd/jPMpeO+NQua96YqZaNeD4+HmTBggV6RWNZB2r+GPPmzcu4iLOg4Egk4qjGTqaNT58Oh8P69QwNDGBKImh4YZMCwHefdZa02SfvsjqvqgpdFmNwu93SCs8AJ2OG+vr6THPCXEZ8oPHatWtNFp7u7m7dzdXS0mK0vnBjfPCf/xkjEjceEzTFhioKE6UMiRoJJGrKB6f+fZUASiQStp9A+adVMeXbyrqDaHzSZTVN2DkyuXNU8Sqqmifi8RobGzO6YzJVAr7jjjtw7dq1ej2YUChkEGBOqgHzG7N08JYzFqPyN4GAVMyI26eamjCdThusdlYuK6vxLF261PQab9niNzGLLJ1O46FDh6TiKBgM6nFJVmOcWbLENMbt27cX8F8SQVQGJGokkKgpD7L176tcVU6eQFmLA9n5ZdYdHtV5xHGx7Bp2jlAoJC381tfXZ1kThRcyVVVVGVPImVhTtX5IJBI4Pj5uivNQHc9Oyvro6KipBhCLcbrc77clal7ats3w3WdyWWUSNjLxwoRKU1MT7tmzxxQUzBp3aqGQbnn52JIl6FXMj5MxloqlhiBKGRI1EkjUlAd2/fsTExMGi4hoqZFZVPJ5frvFzEQrALNeZLLiqFxgbFyJRMJ2tV4WXByPx01CRSw0GA6H9Zo0MgFUV1endOXIzsuysngXUjgcxve73bZEzR9+8pN30tMjEZx0uSxdVhMAlq4odl1iteWmpiZDzA8vOk899VSp5eU5l8skotxv75dpjA3LlpGwIQibkKiRQKKmtLCyoLA+SjLS6TROTEzk5CrKZLnJd3VWn89nsGxomoZjY2O2XE9i4GlPT48uvILBoC3X0J49e/DAgQPKVgDif8PhsLTHFMBJd5fqPV40iJlBYuE6l43Ff9Llwujb2U+apuHFy5bZEkLrbYiaVCqFhw4d0gVcfX29LhJjsXcKLc6bNw8vfltI2bG8rLcxPibWRKvYgQMHcrrnnNzjBFFOkKiRQKKmdMjVGsK7qERLg+x19gM/W1keoguN9SsSLQN8/RJN0wzdv1nqsazeS39/v2XKtkwk8eKHT3eWWVd27dplEkt22j2wzev1GqxITNQgoik2xkosfMLlwra2Nj326BKbguESG2MMhUI4Njamz0NVVRVWVVXpVih2/3hdLluWF2YdsjtG3LvXkNZdVVWlrKLt5L6kTCaiEiFRI4FETemQj7oYfCqz2LCSFzj8D/hs1eNQLSx8l3BRSLDx8p2eeWHGW6A8Hg9u3rzZtsjgN+bqkPWY8vl8eOqppyo/5/RcLPuMfQcyN6HMrTMB79SpOXToEA4NDaHf77dtBVkvGcvWrVtN7jpmMeNf51tHOLG8nP+2CLS7/8zbVpl0Oo333ntv3grvFavmDFmHiEJCokYCiZrSIh8VTGVtCWSNMPn/L2TlVP6HXfyRZwGzosspGAyaXGi7d++WutDsVAm2I0QaGhqk7y1ZskTa48nuecRj7tmzR3clinV2RkdHdeuPrKKwKIyY1SQNma0mbjBW8WXzOjY2ZnD5+Hw+HBgYsIxtcmIdcrvd2LBsWUbLznNuN6affTbv/x4KcSw7kHWIKDQkaiSQqCk98tFrRpZdlOmHVRVYLKtBg2jvSdPOD3t7e7vJ7VNXV2d4So/H4xiNRnHBggVSd4TYwoEvfMcsDez/Vf2ZshEsqo2vySMKCU3TsKOjw1CgzufzYTAYxHvuucfROJiY+4SN+Jabb74ZW1tbMRKJ6K46Flx+4MABbGpqMlnMVLV51tsUNevf3j8UCuHHwdqt9vd1dcrWHrn+eyjEsTJBFYmJQkOiRgKJmtIkl67AqnYAvBhQ/bCK521paXGUcSUyPDysCxZVbRm2MAeDQZNY4F1QTGSNj4/bul5xcc7GVaQSRpm2Xbt2YSpl7ALucrl0gcOu2e/3Y2Njo+3MKZWAWrVqFX7i7TgXXjAwlxUTTl6vVxe4rF9UW1sbejwe9Hq9uHLlSsOxVXMWamy0FVNz2w9/iLFYDNesWYOrV6/GzyxebM6Wcrvx7+vqDLWRxPtJ7EnF/3tw6saZzY7b1DuKKCQkaiSQqCk9cnmalP2IynomZXqCFC0Bqv2i0aie8iuOjxWX83q9BmEjjok/vmhxES02mSond3d3GxbiHTt26O+LwuaWW25xLHT4Mv5O9uXjfsSg22AwmHW1YrfbjS0tLahpGra2tuKK5cvxke9/H69cvBjXgzGNm3fRMbEouv3sCre6ujpbdWeCwSD29/fjxMSELlbuvOMOg1ut9//7/wwZdmIncb5IIduY+5G39k1MTBT031a2FOOcxNyARI0EEjWlRS5Pdlbmbll8hJVJnD8vL2zEYndDQ0PKc/JNF3lxYnrqD4UMC5RsH9m1i9fLyvKLYxYzrJwIGVHEZFNFWEwNZ24nPvg5l41v/Llv3z5lfJHYkkI1Dyqrltis0uPxKAOaLxYypjo6OnBqakoa/+TxePR6NGIGX3NzsymQmV1DMBjUxTJ/jkL828qV2bQOEXMHEjUSSNSUDrn64DPFr4hP5eyH1U4DTHEhEgvIqRYLfnGUWTncbjeeccYZuH//foNFRmya2d3dbbrWZDJpuF52/Zqm6R3ImUuDXYvf78c77rhDKQyyfT1ToLJo8WKWCXGxc9qYMtM4vV6vLdebSqyxAGm3241jY2MYj8cNx1qyZAm6wRjQ7Hr7vDt37jQIOvHvHTt2GP5mwkYmfEQxJja+ZPek7N8GC0YvVnwLWWqIQkGiRgKJmtIhH9kSqhRSmbVGFAPiefkOzGKwKxNIbCFQ/XD39/dnXKj5eBIxhobfhoaGTPPE95RCRL1C79q1azGZTBrmKplMYl9fnzJ+RbWwezyejO6hQCCQ8TrZ/I6Pj+PExIR0zuxYkQKBgMl64fV6paKRXVMmC1NLS4u06CErkNje3o6JRMKRZUnsscXPp0zAeDwe7O3tlQriTHPMGqaq/t10dnbimjVrZj0TiWJqiEJCokYCiZrSohB1Lez8sFqJIVWFX3ERUZnY+/r6lAufx+PBhoYGw8IlBhCzLRKJ6FYOJ0/d7NpSR4/iXzc06BYFz9uF5TItzs3NzdjZ2SmNfWGCR4z5kG233norDg4Oosfj0bO42Fh7enpsu8UCgQD29/c7jgcSU8T5eBurBqChUAgHBgYyBmOrvt8dO3YYXuvp6THcYzLLDJsT/rVgMIg33nij9D60U88mmUzOas0Yyn4iCg2JGgkkaiqbXH9YVfE4oqhRWWrEeBZxwWPHaWpqMrzHL9iBQECPnZC1FojFYoaqw/x1MqvO39fV4XNCX6UUAH5ctvi7XLhixQpDTZy+vj4MhULY3t6uB+WqrstJ3E0sFsOhoSHHgcLBYBDvvPNO2/vb7eDNKjirLCKZOpuL24oVK0zp+jKL4J49e0zCx66I6unpKUmLCNWpIQoNiRoJJGoqm1x+WHlBJCuOxwsX1YISDodNriu2seBhFpcja1HAhNOhQ4fQ5/Oh3+/HoaEhy7o64oJ5RSDguIO1pml6LZe2tjbdZRUOh/HAgQPSeBiVKJNtXq8XNU3DRCKBp59+esbPejweU30dq3gfXiQ56Y4dCATwwIEDlgUNmVtRVaiQ/5sJvKqqKmxqajJZVJhoFi1dfMp7MBi0zDpj7qxSjF2hisJEISFRI4FETeWT7Q8rH3grWiU0TcNwOIwtLS1SCwnfP0hcqPgtEAjoTTplIoE1quzo6DBYCVimi+ja2LJli/H6nn0W33xb1KBks+pgHY1Gsbe313AdLD19//79GbuBZ7LYBINB7O3tNYgDj8eDjY2NuHz5coNIaW5uthSIKlFlp0Emf/0ulws9Hg/u2rXL4Bbkt/379+PU1BSuWrVK+n4gEDA192TjCYVCuiDWNM3g8gqHwwYrkcfjUbo+ZcJmbGyMsoyIOQWJGgkkaggrWOAtEy28Fcbn8+kuGZlrq7m52bSosVgJXuAMDQ0p3VyqRpUejwe3bNkiXeD6+vr0cfxNIGC78q1VlpCmaUoXkZOmli6XyzKOh80LE0TMYsSEIxMaVvEx/LbexrWz61+6dKmtOJ2mpibcu3evUrS5XC5DOj8TOsza5Xa70ev1GgK2WTDyY489hq2trfo8hEIhywDuO++809BFXRUMX0zIWkMUChI1EkjUECrs1r2JRCJ6KwWxMN+KFSsMgoYdg3dvhMNhwxO5GJArpv/a2e68806MRqO2exT9w6JFlsfbsWOHsoO309o1DQ0NuGzZMtOiLxN13d3d+nwyy5AsPuY5lws/KREkn1u40HaPJk3TcNOmTYbPZwqkdrvdeMcddyj3c7vd6HK5cOHChVJRyLKr2P3S0dGB0WgU+/v7DW4p8fh8ivyBAwcwHA7r++YjpiZfQoTiaohCQqJGAokaQoXsB1nPJBJiIVTBuhMTE8qKw2NjYxiJREwp3SzWQuZ6kAmbzZs3K4NK19sUNeu5z1j1hhLFiF1hw/eiqqqqkqYri9k+/MZaSDiJj3G73fh+IThatZ2fYfxut1tqxQmFQlJXo7jV1dVJ3XXMTcV6jPFCZGhoCDs7O6VWMhZIzFL389XNW3XfM5wKEcqAIgoJiRoJJGoIK8QO2/yPfTqdNhTeY5sYrGv11JtMJrG9vV1aZySVSpkWM1lKbyz2TsNLk9gAZzElmbZsunXb3ayEkdvttnUtz729H+szZecz6aqqjNfPAnWZqHS73bpIcZKSrtqnra1N2i1+YGBAmmrOAtTF1gpi3aJU6mTH+vb2dlPdIkS51UUUIuyY7Fi8EJF1vBcpxcwsojIgUSOBRA1hF9VTp2hh6O3tRUT7JnxWHVjc1yqdnG28G2Lnzp3Sff5uwQLH2U+5CBCrzyxdujRr4XS+y2XL6vIpIT3eiXXHagsGgzg0NIThcBg7OjqkgtbOJnNDBYNB/fvnxQO/sb5lMquMrMI0e72jo0OPt+EtLFZWF16IsA7qfEuGeDyOY2NjGI1GDVW1VRacUszMIsofEjUSSNQQThCfOsWgX/7pVmxhwC9a/AIge8IVzyMKFr5RpZ3aKdI4lLfdOX6/HwcGBhz3YbLKflK5sJiloqGhQVnsTiWY/r6mxpao+c1Xv2rr+tNVVY4Encvl0uvzJBIJRETs7e2VXp/qb5VoC4VCBotgS0uLSfTIUsB5141MdPNVsZkwktU5konvRCJhqj7NNyHl/58XWiohT5lZRL4hUSOBRA3hFNlTp8fjMRRM49PA+U7efAsEvsYN/4Qra1QpCg6xPo6tRRneyRg63+VC19vjZAu0ykIg20KhkKW7xcqSEwgEMJVKWVZaFptPAtiPD3q/Ylzs+j9dVYX3feEL6MnBlRaLxbCvr89W8LbL5cJ58+ZZzpPf79e/h+HhYdPcsvYZ7J5iJQXa29sNglgMVHfSpV4knU6bikIGAgGTpYml2VsdazYtNZRtNXcgUSOBRA2RDeITOit9z/9488JGtKYwgcM/4Y6Pj5tiJPjeVCwrhhdBY2Nj0t5Cmzdvli6iLCuK7cd6EDHsVunNJbbG7Xbjli1bHIkiuzE1fHzQsmXLHLdSsLOpLEz8/IsL/5133iktoNfT02O4B4aHh3UrjNg7iv3t9/vx0KFDeqaUKAxkhQNVtZaYkJJh1SJE3MLhsC1BU+iYGsq2mluQqJFAombukeuTnMyiIcvsWLt2LR46dEjaF2nHjh36IuP3+01dtcUx8n+L8TgsZmLhwoXo8Xiwr69PasGZP38+TkxMGLqP852dE4mE7eJ2mUSI3ffsiiD2/3bjY6qqqmw12cxmU2WA8WMV57GhoUE6t3wD0/b2dkMWVSgUksZUhUIhHB8fN1nzVFWmmXgS3T/BYNBWDEymIosAJxuCylyps539RNlWc4uKFTW33XYbRqNR9Pv92NHRgQ8++KDtz5KomVvk+iQnmvf5rsr8MdmPezqdzvi0azcmweqa0uk0TkxMGAr1RaNRXLVqlaHHlBhnwdwe6XQ6owUi01ZXVye1jFiJAFG02HlPFh8zAeqAXyfFAVWbVfFBfmMVifnx19XVGV4TLTnBYBDHxsZwYmLCVMFadu8MDg6a7kWPx2Oobi2KObfbLf1+eVHLkLk/rdo0sPOJVkSrf2/Mysgys0QhpIo1swNlW80dKlLU3Hvvvej1enHnzp34+OOP4zXXXIMLFy7EiYkJW58nUTO3yOVJLpvPZspgYv2f8vGDKxsfWzzE8fHjYqnDqkJvdje3222qpMs2n8+XF3GhL6JVVbYqCquK+jkVNPF43FKcNjU1SS1SW7ZsMc2npmk4NjZmEjb8Ym63karM1cS7OMVU80AgYLgOsYwAolmIxONxS+Epc62qrIz88aPRKLa2thpcaOzfUnt7u55ZlauwYRsJmsqjIkXNu9/9brziiisMr51++un41a9+1dbnSdTMPbJ9knNq5RHja6ye9PPxg5vL+PjF1Y67QSZorN6vq6uz7YZix8o2EDnfW01NjXROxOBwmTVD/BwLkhbFSHNzsyngVxRRfD8pMeBXdT+pLHC8NUgm4pkQkcVsyb5bXtiw6toqePEtxpjJXs/WVUTZVpVP3kVNsf2Sb7zxBrrdbj1Ik/HFL34Rzz33XOlnXn/9dZyenta3dDpNoqaIFCtTIdsnObvjFa0mmZ70xXs4W5zOp/jDPzAwgGvXrs3oMpItbPzfizK0XbDa6uvrbbl6nIwnX5sYvBsOh3FwcNC2687j8eD27dsNImDfvn0m94vMSiOmV/PHFP9mAeBM6IrzOTo6mrG0QDqdNsWOWcVc8Y1WMyG6zmT/zUXok6VmbpB3UVNbW4v/+q//mvPAsuW5556TKvDvfve7uGrVKulnxN4ubCNRM/sUO1OhkE9y/LWNjY1ldIG43W4cHh7O2/ntoPrhVxXxk22bN2+2FGuzaVEp9FZdXY0+nw/9fj/ec889BoHDX+cPfvADqXVDtDzJss8Q0RTILaZl29n4f1N8U1a28fFVfICxGA/Dd4dnaeSqc/b29jr6t6oKas6noKGYmsom76Lmtttuw5qaGvz4xz+OL730Us4DdAoTNQ899JDh9e985zt42mmnST9DlprSoZiZCrPxJMeefvkiZm632/DUzHfG5muVFBqrH36nosQqVuamm27KOqOqVLdgMCgVcm63G4eGhhARpTV4ROvR9u3bTd8L38eJj3dJpVK23IJ80LnYT0rTNGk8jdW/t4mJCWxvbze5q2RtIbL59yM+WLAt2wcMyn6aWxQkpubIkSN43nnnYSAQwL6+vpwG6JRs3E8iFFNTXIrxVDWb5+R/ZPlFgF98+Ndl2Si5Irqk+DEFg0FdSInxE04DhmUCyOPx4K5du3DFihVZi4hSE0Uy15bb7datLqJgnj9/vtSdJlpqpqamsLOzU9kHzE4WHR+vs2DBAlMQuhiALGbeye59sWGmLPYlG5dRISw1xbb+ErNLQQOFt23bhh6PB9/1rndhe3u7YSsk7373u/HKK680vNbc3EyBwmXEbPq/Z/tJjv+RHRwcNLgV+BYLst48+T4/3w+os7MTfT6fIQ5iamoK29vb0e12o8fjwfnz55sWG5/Ph3feeSdqmmZ6Uuc7cYuLLR/kWmoiJZfN5/NhKBTCAwcOIKI5CPa0007De+65xyAWxcBaJmz4z4pWGl6IqOKdWFYVfwxZh3hZZpXdAHkxk44JHFYI0O6/n0LG1FBF4blDwUTNs88+i11dXdjQ0IDf/OY38YYbbjBshYSldO/atQsff/xxvPbaa3HhwoX47LPP2vo8iZrSYLYyFYrxJMf/yMriG1hKayF+cFUibmhoSJqxkkgk9KDXaDRqqkw8MDCAiCetOmIJfbbxFhvRerNs2TLbQcCxWMxR8Tx2rkwus3zF+fDp4nwKfXt7u7RHksfj0QveDQ4OGl4fHx9HRGsrot/vx1AopLTYrFq1yiAs2Hj4VHGGLEDczj0s+/eTTCYxmUxK//1k6gJeyOwnovIpiKjZsWMH1tTU4Mc+9jE8duxYTgPMlttuuw1POeUU9Pl82NHRgQcPHrT9WRI1xWe2MxWK/SQ3m6mmYp0asWAgs7bEYjHs7e01LIp8GwfeGiC+LnbeXr58ecYUbzvCgl/0VfVvxK0QbRGsRI3Yy2t0dNQwh4cOHcLq6mrdIsPfX0zYVFdXG+pqqSwpQ0NDttoWiP92RCEi+/fmJJ6L//cjHpu/PtVDAl+nRrQk5atODTE3yLuoueCCC3DJkiV499135zy4YkGiprjMtUwFJwIuV/HFLzjxeNyUnuvxePTiZ/zr0WjUsFhrmmYIUhVjg+z2B7K7/a//9b+Urolctuuuuy7vwiYUCmF/f79l24yJiQndEiN+N8FgEA8dOmS6R8Q53blzp1Rg7tixwyQQe3t7TfcK/13ygciZCvFlIlt3rsqCxI6ZS0VhYu6Qd1HzV3/1V2VvGiRRUzzmWqaCEwGXDzeZOL+yVO1YLIZbt241LaD8IsiaJ4rCoq6uTl8U/X4/dnd3563X0q5du5RBpNlu+bLi8Blr7LirVq0y7JPJ+iYG3/L3vqzmjcfjwVNPPdUgQJjFTIxRCofDeusL/p7hRVFTU5NB3OTSpmOuPZgQpUNFVhTOFRI1xWMuZSo4FXD5EnyygEx+k9VtYv142GLHXAHifryFQNM0TCaTuHz58ryIDrfbrVtA8h1YbDempr6+XtpDqb29HQcHB03j5fezE3grionR0VGDoAmHw9jb22uwVq1YsQI1TTMV/AsEAtjQ0KAHorMMKl7c8KUF+O86lUrpsV6yf292m7zOpguZIBBJ1EghUVNc8hHfUuwYGTtkI+Dy9QQs6w+kskCwRTYcDutWmFgshv39/cpjhEIhTKVSeODAgZzERigUwm3btumiIxqN4te//vW8CxqZQOM3n8+HjY2NekCv1+tFr9erF57TNA17e3tNLiJZXJJoMUE0ClaW9SYTeCx4m//+3G43/vCHPzSIk3A4jP39/ZhMJnH//v0G0ebxeDAcDmMqlTL1mwI42V2bb6QpxtU4ebigtgTEbEOiRgKJmvKmnKw92YgvO0/AVsKNX0D5TYwvWbx4sb5g84t1MBjEffv2Kbs/s334AFm2Oalzw+q8MPcLszjw2+bNmy3Hka3IEY81MDBgmFM+u0e8Rj7Qmk9vZgJIVnMG0ShUxKJ6LpcLh4aG9HvFqvCey+XC0047DT0eDzY3NyubktbX10vdb3x3bfHecmIVzLelphweVIjiQ6JGAoma8mYuxOUMDAyYnoD5bs5WabRiijG/mMmEhWixaGho0P+ORqPY09NjKRKi0Sj+6Ec/yip+hS8EJ1oUtmzZgojWBdv4raamxrT4i24nt9uNmqZJu2irFuPe3l7TPLL4Fj4OKRgMos/n0y0qYt0Ztq/MFeZ2u7G1tRU1TcO9e/fqQkqcU6vUeJWIkW1iOrVTq6CVRVE1l1bCpJweVIjiQqJGAoma8qeSAxVl6b3hcFhaul4UORMTEzg2NqYvimLBP7fbjVdffbUyxoSvnCs+0au23t5ex32KxC0UCpl6DPHfYzwez3vqtsvlQrfbrQscqwVVNk+yoFtN07Cvr8/Ux4kdQ2Z9UV1XOBw27b9s2TLp/vz3pvpuPR4P9vX1Gf6d8Kn/snmXoXqoEPtXiUHLVsJkLjyoEPmBRI0EEjWVQSUGKvLXJLqFxNYKYv2RaDSKra2tuoDx+/0GSwh/nEwdrVnMBr+g7NmzR7qghsPhnFxDfOyKWFNHtCjINrGqcXV1ta3zMsHAx7hEo1FlUbydO3earr+pqUn/jsLhMI6NjeH4+Li0CWRTU5N0/sTMKrbxFZnzsfX09Oh9yXiB4TQuRmVV4TuN8zVw7AqTSn5QIfIHiRoJJGoqh0oKVJQ9rcqsNkzUiD/6vIWGVbIFAL01gngM1RO92+3GvXv3GixCQ0NDuHr1alP2j+gOCQQCypL+qo0t3qondL7S7K5du4zXAIDrAfCSt//rsnlOdu38PEejUayurjY1heSF1cqVK6XHY24nJiJbWlpMQoX/W5x7q1ikfFVDZmNbu3YtJpNJQ6dufj87AkIV/8Lfr9kIk0p8UCHyC4kaCSRqKoNK+wFUPQGLwk10SYhigHc9iQHAoghhwcKyRZpZUOLxuO1ie9lYbHw+nzQOQxQarAXA6aefjgCAHwPAFAAit6Xeft3OeVmGEOPAgQMGiw2rfCsr5Z9JeGRylf3zP/9zzi67W2+9Nav5Zq6hQllGcv13WUkPKkT+IVEjgURN+VOppmrxCVi2QIgCQ/zRzxRYGw6HTbVLVOKEdw3xtWMyWQ/sxL94PB5DDEYqldKzjhjpdBonJiYwnU7rgaZDQ0N4cVUVHgfA44KoYa/ZETas9xHfVoJv0hiNRnHnzp2m7CtN0zK67+xssnpBVhubcza3fJyU1fcgjlXTNBwfHy9oDEu2wiTXzD+i8iFRI4FETXkzV4IKZcJN9nQvE3HioiIuMN3d3YbXqqqqTP2c+C0QCOhiSmYdWLp0qS5+7LhLli5dikNDQ3p8By+2fD4fDg0NmeYiEongypUrsbG+HlMSQcMLmwnI7IoKBoOYSCQMmWKq4Fle0LDvIN8xL5k2r9eLbrcbd+3aZfgOVKJG5tJiHdpZnZpCZBtla6nhPyfGg/FuQsqEmtuQqJFAoqa8mQvpn6JwSyQSODY2ZhA1/I8+c88gZrbUBINBZf2STHVmwuGwMq3Yqpu0bNM0DcfGxvTKtrz1iNWwYdfDB96uV4gZcVvPnWvRokXSMSxZskQXYawBJSKa0tiXL19uEDTBYBBDoZCtysdVVVW4ffv2vNXZ0TQNV6xYIT0PX91Z/I6DwSC2t7frjTQLURcmWwuqVa+qfLV2ICoDEjUSSNSUP3Z/kMu1oBcv3ERrAvtxZ9Vv2etigKsspkYUHXV1dY5SpZcsWWL5vtO0a7fbjS0tLdJsIY/Hgz09PSbr1CU2Rc0lWQgGVpdH1iph27Zt2NnZaQi8dipU8hX0KwtCjsfjmEgklKJTVj04n+RiQbXqKs7uY+aqLGf3MpE7JGokkKiZG5S7RYcJsnQ6bYjriMfjhtRc9npzc7O+H2/F4Z9w+cWwvr4ex8fHs6oBI9a/sbM5qTZsta23KWr++8KF0nOyAnyZhILH48EdO3YYXr/hhhtysrjkS9SIWzAYxIGBAf26+LR+/vVsBIGTB4hc/r3ZiScjQUOQqJFAomZuUCmxNyw4lq9Uy5v1Wc+mM888E9vb29Hv9+vF+vgn33A4jFVVVej1etHn8+m1RFKpVEa3kRhvs2PHDv38+SyK5/F48LTTTpMekwkCF0DGmJrnPB5M/va3GI/HbQsJsd5NT08PplIpxynqhdg8Ho9STImWGTZ3zDLD0qx5S4fde96pUMkkgFjQt+p9UfBQJhQhQqJGAomauUO5Z0nx3Z1lwsPj8ehiJxaL4fDwsCHOhjVI5OuHsHgQtvCx11WLP1s0ZYuqpmnKAOPFixc7tkzs2rVL6ooSxc3HACyzn/6hvl5fPDNZolTvaZqm7L+UaYxOxIqd/b71rW8pzyneF16vV1qckXdb2rVO8g8G4v3EN/EcHx83HFMmUJwKJLLUEDJI1EggUTO3KOcfRzGA0ipeQmWJkgk5saifVSZPY2Ojbtn51re+JRU8MjcPe83j8WBLS4tSIIjnshN8CyCvU/NKXR3+fV0ddnZ2GhbV8fFx3LFjh/Q4W7ZsMfy9ZMkSRwHPvNjauXOnZX8mce4y9dVSiaBMMT2hUMjwvTNBIhMbmWLLeAHD4pz4v1nrBSZIVK4mJ5bTcn8YIQoHiRoJJGrmHuVsxpZV1xWf1O30LBIXA75Xj7ipquGqFlH2vvg5l8uF/f39eoaTU6GQUUjAyRibKxcvxj/85CeYOnpUz/LhF1Qxg0omFOxsVvVpQqEQxuNx21acurq6rOrdsGaa4nkCgYBUOEajUYMrUnafZLLejI2NKRukqtLhZW4uO2IlG7dxuSYEEM4hUSOBRM3copwtNYx4PK5cfGWiBtGekNuzZ4/peKyKrhh0yi9mt9xyi/RzMssDH7Scr7RmlajgW0PwKeGy/lfiNe3atcvS3WRlvXFSEM+OS85qn2AwaIix8nq92NjYiH6/H9va2kxWN7GXltPYMiYYxO/2xhtvNAibnp4eW9aUTP8es4njEfe329GeKD9I1EggUTN3qAQzNv/kqto0TcNkMqkvTLKFg69lw/ZhbgR+cefFQCwWw9bWVqWlhn89U0dvlaDJVeioisy1t7djMpk0CRqVpaOpqUlqOQmFQtjf349NTU2WgqaQm9frxfr6el3IRCIR3U3X2Niojy0UCpnGo2kaDg4OZvXvgI/psmtps/PvKpPgdmJ5kdV0EscsurVKOeuRsIZEjQQSNXODSsp+4uvUsI2vO+Pz+bC1tVVfwPgfcz71OhKJ6BkxfLxFb2+vIfCTzRXLWGHtA8SndRZf0draavi8qvox/2TPYjHa29vz6pris3/i8TiuWbMG/X6/qceU6FJRpZwvXbpUKVzyJWjcbrfy/Jqm4dDQEGqahqtXr9bn2efzmRqM8n+vWLFCF25+v98gbFQCRBQTfOdtgJMWq+3btxuOIdYuEgWKKEIKYTmV1bXh508Mmi6Hf/eEHBI1EkjUzA3KvU4Ng7UI4MUMX4NG5RZhi7ooGHw+n348ldiLRqM4Pj6uj4HvjyQuRv39/VJBJEsVb2lpMWTRMNHU0tLiSAQsXboUt23bpnyfPaV3dnZiPB7Xe0qJC/bw8LDS5SQTLKweTKagZ5fL5TheRpVFtnfvXlPArx0RKFvce3t7DfsMDAzocyL+e0mn0yZLF3N1WZ1Xdk+JQcRsv0wWIycWG1UlbVlH+3Kw0BJySNRIIFEzdyj3AELe2uT3+5WpusFg0NSkku/XxC/SPp8P29ralGJP7IzNXueDlZk4YQutLBBVFsvCFmX+e+EtJqK1wWoLBALS2BNe9PFzhiiPtejr6zMdQ1Z4r76+HlOplG45UxX2Y/+1k8WlCrAWx8L+29railNTU5a9vdgcMCsNE3h8s0628fMja1XQ2dmJbW1tUhehTLTxQcN8d3OW9q0Sv7xoU4ks8T6VPZSI8yKKahI05Q+JGgkkaohyQWyXIKu4unbtWkwmk5YZRnyLhUQiYSn2xMWHt9CoMl1Ey44ougYGBgz7MhEkO7ZdIaDamNAJh8MGN5wq1iKZTBp6Jsk2r9ertxhIp9PKDCdRZGUaa09Pj+0UcDZHmWKXxP3j8TiOjY3p36lMBPNimb82XhzJeknxr6vSzZmQmJiYwOrqakPcFoMFwldXV+u9qZy6j2WWmkwd7dl5Sv3hhngHEjUSSNQQ5YRTE7zKHeXkKVV8em5paTEtUvx+YnZJpsWI71fV0dFhWYNHFAmrVq0yLLCqWJTW1lZDKwlVrMXQ0JDlOevr67GtrQ2npqb072J4eNiREFG9FwgEbFumRPFgd86sGkSyIozs74GBAZPFD+CkQBQtT8zKwywy7e3tJksQb+3j233YsdSI71m5q2T7yQQ+b7VT3b9EaUOiRgKJGqJSsRI1Tmvz2A3oFIWVHbcB7wqJRqO4Z88eZc0cl8uFgUBAfz8YDJqEgmxxb2hoMBVyExe4np4eg6ioq6tTVk5OJpO6pWdwcFCZDSUTNHYFiChg+O3mm282WEHsxOyw/VksDC9oUqkUjo2NYTgcVs69bH7FmC7mupK5xcR7LptsxEz3oUxEi65Pfj4pcLi8IVEjgUQNUYnIYlisnlLtkG3RQjvWJdliJVvMGxsbcWxszGB1Ea0GMiFSVVWlBySLWVvi55lwspo7WYCu1WfcbjeefvrpGAqFDC0qsk1h1zQNW1tbpZ9vaGgwnVtmcQE4GVMVjUQwedtteE1DA35+5Urs+dnPMn4PmQSBXRGcTfaT1X0oC3AWY4Pa29tNbrVcmnwSxYNEjQQSNUSlIabeqsroOxE2uabe2hE2soBX5u5SPV1rmqYv2C6Xy9J9Ew6Hsa+vT1lfh211dXVKgcI+y6fQs2PIrCWLFi3SLR8+nw/r6+t1F1sikTBlILE4nKampoztGcLhMH7ta18zvFZfX2/ISGLXFg6Hpdd0sctlai/x3Nv9tGTXzR+Xj4XhXTe84LRjgXEilu3ch/y9JhM5TESLopQETflBokYCiRqi0kgmk/pCKmagyH7IrUztYvq2uEiJRfxUx3DiguIX0ng8ro+BHztLzWWvhcNhQ0wIv8hbCYNcN1UMD7/dcMMNhjT8pUuX6u0bZEHGjY2NmEgkcPXq1ab5EGvRiJ8NBoO4cOFCQ+YYy1AT5yJTI1Be2Mjmkd07TCiwtG9RwMjuIT7bTfzeZYHw/L3C7js77qqpqSlT+j5DFJTl1C6FOAmJGgkkaohKY2pqCtesWYPhcBg7OjpMQZR84TaroMipqSns6OiQBgXzrRrEgE4Rp8HCVoHImqaZYj7YIigrSigWpbPaAoGAo1gXK8uQKHZuvvlmZQ8tcXO73bh3716T4PH5fLhv3z6py6m+vt6UgaQ6h9vtxqaGBkxJBA0vbJ7zeDAaiUhr0bjdbmxvb9etMuw+EgUs/zcLImb7ivcQL1LE9Hv+HvJ4PNjR0SGtdSP2gFKJaVmrEbLUlB8kaiSQqCEqEfbkLHP78K9bZXnwGSqylgnsdbFhJH9+Bqt5A2BO6+YXtkxP9ul0GgcGBkxP2PzxrTJerDbWfkD2nir2pba21lL08J8XXUWZjr9ixQqDKAmHwzg6OmpyczEhJiu+KIo0Jph+9e1vS8WMuI1+97smCxjv0hJbD4jfvShoWV0ivh6Rx+PR451EtxATNmIlbVn6tt1O4Lyg8Xg8yn5YROlDokYCiRqCUCMTC7JFikfVVJC3+rCNt8ywp2/+3OJiJYup4FOT+QrFiUQiY8VbsSiharv11lsdB/X29fVhf39/xs/xrRxkcTmZei3J3vf5fNKMLK/Xi16vF//W5bIlav5W0UyTF0uZYrOsUqxldWrELCz2GVkKOEMl0MVz9/b2GgSNTKhT9lP5QKJGAokagrDGaZCw7AlZDF5mG+sXxfbV4x/eegvxgQfwpW3bcObAAcS33jLEX4gCy+/3Yzgc1gv5MXdUJtdTJBLB7u5updAQN1V8imxji6MqGFglrkQRNDo6agqmbWpqMlgYRGHW3d1teo0XTOttCBp8ez+ra/T7/RkLOKbTaUPwMD+X/f390nutvb0dDx06lFNwutX9KxNTVKem/CBRI4FEDUFkxmk6t+zpXGYR4d0JrMrvFYEA/qWpybC4vt7QgJ94WwyoWjbwqbmyDtWqTbWf2KmbLcKJRMJWXRix4J/dTRQ14XDYNHfhcBjHxsaUqfuya+LnxAWQMaZm4u39rI47MDCgtMyJLShEt6EoUmSF97ItI5Dp/u3t7ZXuRxWFs6cYbWhI1EggUUMQ1mSbzq0qdCcu2uypOZ1O4xWBgGVGzidcLt29JJ5HTCfOFCSsaZrBaqLKZPJ6vYbCeVZWGj7GxuVy6WLEbsE9Nh7Z/j6fz9CqgHU357tvd3d3G66psbHREL/E5sTr9TrKfmKbOCbmguQtaLIWFHz8jUzY8FY35oqUCcJ8WWoodia/FKthMIkaCSRqCEJNNlVfeWRNBcXid+xY6Wefxb80NVlaD14PBE66pgT4J0E+DsjuFgwGlVWBm5qasL+/HzVNs9WYUnbsvr4+ZQE82f6y9PRwOIzDw8N44MABad2Ybdu2mTKmXC6XSSCEQiG84YYbEN4WLmKdmqlFi6SChj9XS0uLfq5oNGooBCgGLPPF/zLFF/HH4IOQs+2sLVp/VEHBZKHJDae9ufIFiRoJJGoIQk6uP1SqpoLiEzvLoJo5cMBWnAc+8IDluKemprClpUW5cIquo7q6On1MorBhIiYWi+GePXv0xdntdhusFps3b9YXZJ/Ph1u2bEGAk9afwcFB7OzsRJ/Pp1tRPB6PcoEXY268Xi+Gw2Hs7OzENWvWYCwWkxYRZJvf7zdUFQ6HwwZXUGtrq+EcLjgZO3P1smX4f7/yFZPLSbaxGCCxHpKdDuOZxi8KmmwXSP7+5Runih3DWaYdxdLkRq4PQNlAokYCiRqCkJOLSVn8gRsYGDA1kBSL+L20bZs9UbN3r+W4+XRhq0VZXIBlWUQyt0koFMIDBw5I41kCgQC2trZiLBbDffv26W413nJklTrOb3xW1Pj4uKmwXX9/v7R436233ipt1omI2N/fn7GOTaatqqrKMLZwOGyw3Fht/L3U19cnFT5DQ0NZ3XdiTAe7f6PRKP7oRz/Sx8cLm9bWVn2uKOspd2bb1UeiRgKJGoJQk03wn53sJ03TTD2CPiUEB6u2Yz/9qfKJWlbQT7aAa5qGO3bsMLzPL2582rEYpNvS0qJfl+he45ttsn2mpqawubnZMA676eGsnQJ/fXzzz+XLl1uKImZZEtOZ2XXJqkzzn7cSXx6PB/ft24dtbW3KNgzi1tPTY7oOmfAZHh7GZDJp+75TCfCJiQl97pnFi51j586d+j3h8/kM80xkT76Cu+1AokYCiRqCyC+qbBg+eFRWe+bs97wH33w7UFgmZlhMzYrly01P6lNTUzg+Pq4LGlkhOrYQq1KneauG2FdKPAbbVyYIxAaJe/bsUS7ysvRuXlSEQiHDtYpF6OyIItUY2Xcj67nFgrdlGUv8HLCgYztjYZ/r7+9XChq+hkxraytOTEzYuudUrlLRahcIBJTzQVaa3CFLTY585zvfwXXr1uH8+fOxtrY2q2OQqCGI/COz8LDXZE/arG+Qnewn9kMpNi2MRqN6WwiWgSNaD5qbmw2tBmTp03zMBXvf7/dLqyCzBVF09/DHyHVjVi02T3aDoJkwEevk7Nmzx1CNVzxeOBzW3WuqwoQ7duxwVIwwEAgY5pzvhQVwMiZJVktGLMhohVVMBz9WWUVmO4tuMVKWywmKqckD119/Pd5yyy34pS99iUQNQZQ5TJxcEQjg6w0NBlHzyrJl0jo1iOaAUJbyPTg4aFp4+fTsaDQqFR98I0gmKphrQlUXhu3HW2hEMWGnto1s460IU1NTuGrVKkeflVVxZtYovg1GT0+P1NLl9XpNFiUngoYFgsu+D34fmVByGueishRYudnsdKsvVspyuUDZT3lm9+7dtkXN66+/jtPT0/qWTqdJ1BCEhGI8mernfOst/MNPfoLXNDTgeninCJyqK7iYurtz506DZWDnzp2GRY2vjSNbbDVNMzUDZSQSCfT7/Sa3C+tBFYudrIgr6zquWvit3FCrV6/W59pOEDQTZnwGFJsD9lk+AFrs5C5aUVRWrUwb7+phxfTEdH4+a0zc7HSAl6GK6ZCVEuDjqKzOVaxFu1ygOjV5xomo2bRpk/QfEIkagniHQv5IORFLToIOZa4UFpvB0oj5YOFQKGRISxbPYzXOoaEhU7YPmyuxGJ0YoMtvfME/VaNKJgjETtVOBMbevXulLjXRVRaNRnHFihUGccSuQwysZsfiU91FYch35lYV05MdN1tBo7LUqHpw8fFPmqYpg5PFY8+We6WcoIrCeYQsNQSRXwr1ZOpELGUTdCi6fLZs2WJazGXBrTK3h+o8Vosb74KKRCJ6w0+rujns/GJ6NWuPwOaDn7tdu3ZJ07FlC/dNN91kSgWPRqPY2dmpL+KyuXa5XHqml6quTEtLCyYSCYPAEwOlx8bGDIKGpfiLliJ+6+7udnRfZfpexDR2PtaKxUT5/X5cs2aN5eJL1YlLi7IQNSpLCr89/PDDhs84ETUiFFNDEHIK8WRqVyyxgmhOzq1qXMjHajA3jKx7t53z2Bm/3+9Hn8+HPp8PNU3Tu05n+l1j4+vu7ja0QhgcHNTPn0wmce/evUpLjVVXcr4+S0dHB05MTBieoGVZUDJX3qpVq6RuLD6zjRcxYqwRC+KWxfvwG3/dmawAYg0fVfYTX19HrHrMPivWuhHPS32kSoeyEDUvvvgiPvHEE5bba6+9ZvgMiRqCKAyFeDLNJJZEQWPHSiS+19PTI+0xZSUm2CIqa6zIsGNpamtrM4iLxsZG3T3Dx86Ilha3242Dg4OmBd/j8ejNK1XZSHa2W2+9VTrPKteQqkfX1NSU4TtibixWj0hM1V+zZg12dnbqc6bq2C7WumHXbWfOxXPw31dbWxsCnKxFMzg4aBBb/PlEl5fsvCrhTB2/i0NZiJpsIFFDEIWjEMW0rMSS03gelfVEDAwVA2ADgQDOnz9f/9vv9+OhQ4cwnU5jPB5Hj8eD1dXVeq0UtmDbiR0Qs6S8Xq+p+J84vjvuuMNQa4cXNo2NjVIrjKZp+LWvfc0kjpYtW2bLYiOzpPAik99Y4Tz+u4hGo9jW1iaNRWEWFNmcJRIJQxxOU1OTodghn6HGz4mVyI3H4zg+Pm4ax9TUFN5777268JDde7IYHvG+kqX6y4QNBQ/PHhUnaiYmJvDw4cP4rW99C6urq/Hw4cN4+PBhnJmZsX0MEjUEoaaQMQRWYslJ0KHdJ2pxCwaDhgwh9jTPx4QwS002T96q9G9VHRtZ4K5sjEwcsbo8mqY5ShffsWOHUtCw+WOizup7Z4UAZYLAznwdOnTIFGAsBlvL4qtk1j3m0rIrhO0KdVmFalUPK4/Ho2yYSRSGihM1l112mfQf7QMZGt7xkKghCDmFzPbIt1jiRZDoPpKJG1mQrdi+IBwOG6oLZ/PkLYtT4evBsM7RYgsJq7oqLHhXdAEtWbLEtK9VqrhKDIgLeUtLiyGbi+2Xj2BysWIxLy5E8aqysIyNjSlbc4gBymJrDjv3nkyc8vuL/bRI0MweFSdq8gGJGoIwU8i6HIUUS+K4Zam8MkEjWkOY1YbP0vH7/Y76A6ksNbxrhe8cze8bDAaV1he+wKDMksBvVhac0dFRTKfTesCwbP5YTIvqe8/lu8xG2Ioike/DxR+PBQKLfbiyGa8se42JL3Y8sSBiIfsdEe9AokYCiRqCMFOoOjX5EEtWrqlkMmkIGBV7JXk8HlMTSI/Hg1u3blUu/rwFxa6IEwWN2EqB9UASYzZU/abYMey6ivjN6/Ua2hTw1yP24crme89GnDgVF2JwskwgilY1/jqZ5Sabe09W8DBTjA1ZamYHEjUSSNQQhBw7cS1OC27lKpbsZsLwgauqBVG2OKo2vgFkJmQdyWULLkv35hfU3t5eU2fsuro6U9o0258PouW3pUuXWl4nf72iWMumiJqTYHKn4kIUpqIIYls0GsXR0VFThhgbS66CTZw7WYwNFeSbXUjUSCBRQxDZka1AyaXyaC6WHjHbaPv27bZTpO30B+Kvb82aNYZUZ35eNE1Dv9+PnZ2dyiKD4rll2Upr167FiYkJbG1tNX3G7/djY2OjKaaGWYx4a5ATC5QMp5Yap/fN+Pi4QUCwLKNMFirZWJzce1bZT1bnoOyn2YNEjQQSNQSRHcXqh5NNXITMhSAWYGObGHDL4lLEY1sJsKmpKWWKcTqdxl/+8pd6qjii2dLhdruxu7vbYJXhWw6wVGne+iNrSrlv3z69GKBYAFDmfirUdyGKCf5vmZgQs9s6OjqUFhFWEFAUb7laTWTiS/ye5s+fn3X2F5E7JGokkKghiOwpZNCv3fOqrAN8zRhVN2qfzycNHOY3l8ul14hhIi3TouW0HYQYB8LcXeL8jo+PS+vzqIKHY7EYDg8PYzKZlLqIcql6a1fUJpPJrF2OTPyoXIjRaBT7+/ulgk02f9m09ZAFRfPnYfMumx8SNIWFRI0EEjUEkRv5Ts+2iyodmF8A+W7Z0WgUDxw4oCyOxxes83g8uGXLFoPgaWxsxM7OThwaGjJYQ1j8Dr+IZdMOwu/3S4OBVQt/oftoZQrIjsfj0vPzqdTMqpSNRc+OpWTVqlX69+t0/pxQLPHOKEazyHKARI0EEjUEkTuFqDpshSrLJZFIGIJKWYE6mfuGfd7n8xmq9fL9gfigXZfLhStWrNCPLet1xOJcxHoobCFkFgVR0MRiMRwaGsJkMild7FULl2yxY6/xlipehA0MDGRckK0EUyKRQL/fb6jAzH8voouMf92JKHAa05JIJEzzznc4L7RFqlCxM4XKRKwESNRIIFFDELkx25YaWT0Sdt5AIKCLElWvIt4lwoQQW6iZ64evcSIrYMd3euYzkqLRqF6sTnR/8Nvg4KBhseIFFy9EnC5W4gLIL8iqhpOyBdlqIZdldonfi+yYuaZ+q7KOAAD7+voMn5O1uciWYouKYouqUoZEjQQSNQSRPbNtlpf9wMusNnzXZbvBq4lEQlo5Nh6PGxof8lsgEDC4O/hif0zYyKoKMzEgE1yqANpMTE1Nmfok8R2xeSuRnbggq+/Wql+U1feejUVPVSeGr+TLml+K4xYbkmZLsd0/xXZ/lSokaiSQqCGI7CjGE6TqqVlcLLu7u7OyHskWXZlokrk/ZMXYZBlWhahrIrP6sGN2d3ebhBYj04JsZV1xannhA7Zl+8fjcRweHpZem3geJob4tG5Wp6ZSF/tixa6VMiRqJJCoIYjskAkM9kQrswLk64lWfGpW/diLdWkyWQVU2S1892iVqNm+fbsp/kOW0cSsJTLLA2tJkA124k94a4YTrKwrThpDqjLQYrEY7t+/H6uqqhDgpGuOp6+vTyoi2T3Hml/OhcV+tmPXSh0SNRJI1BBE9vACQxbPIQaK5jv2wMos76R0vew4vCgJhUIZrTX8OdLptEkEDQwMGIKY+Y0t8vnM0Nm+fbvpHHYRxako9BKJhG3LAS+4eCsVL7z4LDO+wJ4oaO68806pJWYuLPZkqTFDokYCiRqCyA+z7Y5SnY93SXg8Huzt7bV0SaiOwwcP8xlRvFgRa9ww4cB/Vmb1ETd+sc93dV+nCyATp7K4GT5jjI/RsXL7WLnGenp69GtvbGw0fG833XSTYfwsGNgqLb5SF3uKqZFDokYCiRqCyB+z+eMrc3+JVoGOjg7LLtOq4zCGh4d14RIOhw09mGTBw2KjSk3TDHMQDAYNC/f27dulLQByQdYOwsl3YLd3Ff8eorV4zVTEjsX6qFofiNlN7BgdHR2666lSF3vKflJDokYCiRqCyC+zaSaXld9nAkWMUbFygamyW1gzRU3TcHh42GBx4K0Wd9xxh7TBoSoVWly482WpsdNR2s45eEuTKMzC4TD6fD70+/2YSCQMn7PrZhTdRbxrTHSbbdq0SXqM8fFxg6DJtNgXO4MpW4qdUp4NszXXJGokkKghiPxTzBiHfP+gTkxM6AX8EomEIW06FAphOBzGtWvX4tDQkKFcf39/v+E4Q0NDCABYVVWFO3bsMC3q+YipsQrGHRwcVPZ6ks2LKsU9lUphMpk0dELPdCxxnLIg5ng8jvF43OTSc7vdUguWk8W+HIUBTzkJstmcaxI1EkjUEER+qbSARtH8z2q/iDEn6XTaYCnh06f5OWlsbJSKhXxlP6n6QLE2Ak6sK/kWp6IVhY+pcbvdBkFTV1dnKqQoYnexJxfO7DGbc02iRgKJGoLIH5Ua0Che18DAgKnHEINPMRbnINuidZlgT8e8oOHHrmka+nw+yzgYvo+V+J4shobHjrXAKrBbtM6EQiFTjI3H45F2PbdLrvdmOVlLis1s/Q6QqJFAooYg8kOlPw07sUBlqnlTiPl57LHHsKWlRTqm/v5+bGxs1GvBiHEyfAsFWWD1wMCAIcaGVUN2UpNI5ZaYmprCzZs3Sy1C6XQah4aG0OPx4MKFC3NueZCtFbHc3VfFYDYstiRqJJCoIYj8MBd++J24Y8R9BwYGLJtEOol3EZmamsKOjg6D64tZbHhrh6yPlaZphvRssdXC2NiYoQEoCxbu6OiQuuCcBGSL4+YXPxbc3NHRgY2Njdje3p6Xeycbl1qlC/ZCUejYOhI1EkjUEET+qGQTfa6WGhaPI+uqzTfXlB0nkxiUFbjzeDy4Y8cOw9+7du0yuXpYh3K+Aais0SYfOOz1erGpqcnklhJdb5kWeVm2lqpxZT5EQy7Wg0p1rRYKstQUCRI1BEEwVKKMT8nOtKDZWfz484hWgLGxMZyYmHDc6NKq8J7H48G+vj5l8T++AWgqlcKJiQlDvR12/kQigV6vV2rt4YN+xR5TMlRCTDa+fCyG+RAllRYEXygopqaIkKghiLmDlSUpmUzimjVrTD+6fDE6vjaLzPVgx00RjUaxvb1d+b7H48H58+ebhAa/n53O2vx24403GgSNWDiQ7zYejUaxpaVFWm9nbGzMZOmRNey002NKVWlY3OwIpEzk0300F1oy5AJlPxUZEjUEMTfIFPOjaZoeDMvvIxaikzXTdFIPRayCy2cByVwxLJXZ7qIgVhQWN1UfK9nr4vlln6urqzP83d3d7eg7YdchigWnoiGTYO3s7Mw53ossNZmhOjVFhkQNQcwN7DxBWqVcq9KZxUJ0omuJ//Fmf1uZ52WuF7vme1WbAV6AqPo5+f1+7O7uVp6fFzQul0vaJkK0ZtnFynWWr+ykNWvWKAsG2ikmmItLpZJjzWRQReEiQqKGIOYOdhYmJ0/juTyVys6jCpq1s8DzQbdikLCVUOAtMJnOD/BO/I0oavjMKpUAzPSdWAUJWx0vF5eHne+wvb3dUUsGp8cv96zAYkGiRgKJGoKYW9gRLXbjJnKNH5C5XKwsN1bj4Fsk9PX1mYQCL0rE6ry8hScajSrPHwwGMR6Pm+Jo2MZXS7YTNyELFhZjbOxmP2VrSbEbB8VaZTgVJpQOXjhI1EggUUMQcw+ZaBGLyfHvy9KtGdkupipLDRMcMldSJotRNBrFAwcOGM7PBEJra6uhHo0s+4oPypWdX9M0jMfjhh5XsvftWh/4cauCp1kMUiFjXpxmrIk46Xfl1HVFqCFRI4FEDUHMLWQLH3sSl8XUyDKf7BzTrqCRZRuJloqWlhap+4OHLboyd4cYF8ILBNn+okuIPz8bJ1+nhllx2PjGx8dxYmLClgjgxy3uz79uJRqsAo57e3ttuXYKHQRMQcb5h0SNBBI1BDF3sHpi5lOVWUyImPETiUSU/Yd6e3uzdllNTU0Z6tLwAoc1unTirnBqVchUN4ednxc2oguKb7UwMTExa3EkmVLDPR6PtBqxbI4Kna5N6eD5hUSNBBI1BDE3sBPbwC/QYuZTOBzG6upqad2UbFxFsvcTiYTyPKz4XaZMnlyzSzIFtobDYb05pigMmZtuNuNIVHE5fDFAsXZOJusUb8EjS03pQqJGAokagpgb2MlCWb16tSlehO0/Pj6esb6Mx+PB3t7ejPESMisB3y7h0KFDyno48Xg855ormSw5KtcRX4gwU7dvK6uYnW7fTqxNYuZXT0+PZaCxKLpkgcl2M6/sQDE1hYFEjQQSNQQxd7CzUFq5CMTFqbe317AIOi2UJ54/U9pwNBo1NZx0agXJJcV4amoKOzs70e/3m4QJc9X5/X5cs2aNyWXGNtlnxXM7dV/ZaYwpXpNVKrkodHKxKlH2U+EgUSOBRA1BEAw7LoJMWUvifnZjR6amprC9vd2wsPJP9HxsSC5P/rkusnzHbvHzsnRuUSTyAcWqc2cj3KamppRxTVb9spiQlH3f+Yj/oTo1hYNEjQQSNQRBIDpzEcgybGQ4iW+RxYbwoklcyHOJ0cjVHWL386p4JTvNQZ2OMdv5yBS8m48KuHOtovBsQaJGAokagiCcWC8KFfApZkCJmyxoNZdsmlyvI9PnM8XUiH2kchEq+awVVOoxLiSQ3oFEjQQSNQRB2HURsOyjfAd88ufv6+uTtidobW1VxoRkuyDnmmKs+rwdkSimhKvObceSYkeQJpNJafA1E1kDAwMlH7xLriwjJGokkKghCAIx8xNwMpksWMCnleuJd0GxtOR8ZNMU0lLjpCN6rpYaOwt9Z2cnrlmzRt+Hn2++vo4oWksteJeCjo2QqJFAooYgCDsU+imZT0tWbdkG0YrMRkyNSiSKAcX5iKlxKkgTiYSePi8GN5e6xYPSw9+hokTN0aNH8TOf+QxGo1GcN28exmIxvP766/GNN95wdBwSNQRRXhQzpqCQ556amsLW1laphYb9t6OjI+dqvbk+7efyebufzYdwExE/OzAwIM3iYuMsRUHDKMdYoEJQUaLm5z//OV5++eU4MDCAzzzzDPb19WFDQwP+4z/+o6PjkKghiPKhkmMK+Do1/MYXkotGo8o+SfxxMhXey2UOc61zY+ezhWqzUEligFouVJiokfG9730Ply9f7ugzJGoIonyo5JgCsU4Nv+g66Xxt91y5WJxyFVVOGl1mO0YVlSAG7MYaVXqWVMWLmm984xt41llnWe7z+uuv4/T0tL6l02kSNQRRRlRqTAFfCE52XayxJJE9lWCpsRvP5LQiczkKoIoWNb///e9x0aJFuHPnTsv9Nm3aJA3AI1FDEOVDpsybcvuBrmQLVKlQCWK4EDFJ5ezSLQtRoxId/Pbwww8bPvPcc8/hihUr8LOf/WzG45OlhiAqA5kboVR/oO00kCzFcVcKlSIandzfdkVcOc9NWYiaF198EZ944gnL7bXXXtP3f+6553DVqlW4ceNGPH78uOPzUUwNQZQfKksNX5G3VH6gnQTHlpuFqVwoVbGbDU4skYWuyFxsykLUOGFychJXrlyJl1xyCb711ltZHYNEDUGUF5l+gMXuysX+gS7nJ2EZpezesxpbMpnEZDIpfa/Y4y4UTpp8lmO8UUWJGuZyOv/883FychJfeOEFfXMCiRqCKB/sCgRZD6Vi/kCX65OwSClbPEp5bMUgm2y6cssMqyhRs3v3bmXMjRNI1BBE+eBk4Sq1H+hyfBIWKUWrE7POyMaWTqdLvvVBoeArVHs8HkO9o3x3fS8WFSVq8gWJGoIoL+y4P0r1B7rUhFY2lJLVSRS5/Ng0TcNgMKj3mCqF73+2kPUSi8Vi2NPTYxA6+ewlVgxI1EggUUMQlUWp/kCXqtBCdB4nUyrXIrPO8L2l2KZpWknM82zBiz0+xoxtrOUG+95LzfpmFxI1EkjUEETlUKo/0KUqtBCzj0XJl9Up1+rEYsbb6OgoBoPBsreI5Qo/r+J31dvbayi8V66xSCRqJJCoIYjKoRR/oEtVaOUyvnxZavLVR0pmjSi2FalU4CtVy+aD1Ukq1Yw2K0jUSCBRQxCVRamlHJei0BJxYknKp9Upnx2/e3p6TGImGAwqO3HPBXhBIwYLW2VBlQskaiSQqCEIotCUmtCSYcf6UgirUy4iif+smLrs8XgwHo+XjEVstlEFC/NWLVkWVDlBokYCiRqCIIiTZIqTKZTVKRd3VjwelwoaMXi4nC0S2aByz4lZUNFotGwtWHbX7ypERJgjvPzyy1BbWwvT09OwaNGiYg+HIAiiKKTTaejq6oIjR47or8ViMRgZGYFIJKK/Nj09DTMzMxAOh03HmJychJqaGqitrXV8/oceegjOOecc/e/R0VE4++yzLT8zOTkJ69evN4wZAKCnpwe+/OUvw5EjRyAWi8HBgwcBALIeW7nCf1ey7zcajcKDDz5o+H7LCbvrt2sWx0QQBEEUGX7Bi8ViMDo6CrFYDI4cOQJdXV2QTqf1fWtra6WCBgAgHA5nJRrS6TRs3LjR8NrGjRsN55XBRIrH4zG8/uUvfxn27t0LsVgMGhoaoKamJuuxlTP8dxWJRKC7u9vw/j333FO2gsYJJGoIgiDmCJOTkwZBMzIyAmeffTaMjIwYhM3k5GRBzu9EUIm8/PLL8Kc//Qneeust02c//elPw759++D++++fc2JGRrbCsRIgUUMQBDFHqKmpgYaGBpOrKRKJ6MKGWTvyTS6Cin322WefVX72U5/6FMzMzOR93OVGLsKxEvBk3oUgCIKoBGpra+H++++XxslEIhE4ePBgwWJRmKACAKmg6urqUgqqXD47l5AJR36OmLA5ePCg0q1Y7lCgMEEQBDEr5BJ4XKig5VwppXFNT0/Dhg0b4NixY6agb2bBaWhoKEs3nd31m0QNQRAEQWRBKYqIUhJZ+YSynwiCIAiigMzMzMCxY8dM8Sp8XMuxY8dmNdanEBlr5QSJGoIgCILIgnA4bAp0fuihh0xxLZUav1KKkKghCIIgiCzhM8eOHDkC55xzjilQNxPT09PKNPrJyUmYnp7O97ArFhI1BEEQRFlTbFEgK3bX3d1tW9Bs2LAB1q9fb0q3TqfTsH79etiwYQMJG5uQqCEIgiDKllIQBbkUuyvFuJxyhkQNQRAEUbZkKwryZd3JtdgdxeXkmYK31iwhqEs3QRBE5cF3/o7FYjg6Omr4W+xMna8O5Ol0WnoecTzpdNrRNYDD7uVzAbvrN1lqCIIgiLLGabBuvlw++Ww7kUtcDvEOVHyPIAiCqAgeeughOOecc/S/R0dH4eyzz5buK7qNuru7YePGjVllLuWj2B0/HoaTcVQ6VHyPIAiCmDM4DdbNRyo2QH6K3c31JpT5hEQNQRAEUdZkKwpKweWTS/dywgyJGoIgCKJsyUUU5JKKnS/yGZdDkKghCIIgyphsRUGpuHxqa2vh/vvvh4MHD5osRJFIBA4ePFiWXbWLBQUKEwRBEGWN02DdyclJWL9+vSmGRhQ6Bw8epPowJYLd9dszi2MiCIIgiLxTW1urtGTIRAmz7gCA1LrT1dVFLp8yhSw1BEEQxJwjX6nYxOxAlhqCIAiCUODUukOUBxQoTBAEQRBERUCihiAIgiCIioBEDUEQBEEQFQGJGoIgCIIgKgISNQRBEARBVAQkagiCIAiCqAhI1BAEQRAEURGQqCEIgiAIoiIgUUMQBEEQREVQNqLmox/9KGiaBvPmzYOmpibYuHEjPP/888UeFkEQBEEQJULZiJrzzjsPfvrTn8KTTz4J9913HzzzzDPwiU98otjDIgiCIAiiRCjbhpb9/f1w0UUXwRtvvAFer9fWZ6ihJUEQBEGUHxXd0PKPf/wj3HPPPXD22WdbCpo33ngD3njjDf3vl19+eTaGRxAEQRBEESgb9xMAwHXXXQcLFy6EZcuWQSqVgr6+Psv9b7rpJr0Ta21tLUQikVkaKUEQBEEQs01RRc0NN9wAVVVVltsjjzyi7/+Vr3wFDh8+DL/4xS/A7XbDpZdeClbes6997WswPT2tb+l0ejYuiyAIgiCIIlDUmJqXXnoJXnrpJct9otEozJs3z/T65OQkRCIReOihh2DdunW2zkcxNQRBEARRfpRFTE1dXR3U1dVl9VmmxfiYGYIgCIIg5i5lESg8Pj4O4+Pj8N73vheWLFkCR44cgeuvvx5OPfVU21YagiAIgiAqm7IIFJ4/fz709PTA+9//fjjttNPgM5/5DLS2tsLBgwfB7/cXe3gEQRAEQZQAZWGpede73gW//OUviz0MgiAIgiBKmLKw1BAEQRAEQWSCRA1BEARBEBUBiRqCIAiCICoCEjUEQRAEQVQEJGoIgiAIgqgISNQQBEEQBFERkKghCIIgCKIiIFFDEARBEERFQKKGIAiCIMqI6elpmJyclL43OTkJ09PTszyi0oFEDUEQBEGUCdPT07BhwwZYv349pNNpw3vpdBrWr18PGzZsmLPChkQNQRAEQZQJMzMzcOzYMThy5Ah0dXXpwiadTkNXVxccOXIEjh07BjMzM0UeaXEgUUMQBEEQZUI4HIaRkRGIxWK6sHnooYd0QROLxWBkZATC4XCxh1oUqhARiz2I2eLll1+G2tpamJ6ehkWLFhV7OARBEASRFbxlhsEETSQSKeLICoPd9ZssNQRBEARRZkQiEeju7ja81t3dXZGCxgkkagiCIAiizEin07Bx40bDaxs3bjQFD881SNQQBEEQRBnBu55isRiMjo4aYmzmsrAhUUMQBEEQZcLk5KQpKPjss882BQ+r6thUOp5iD4AgCIIgCHvU1NRAQ0MDAIAhKDgSicDIyAh0dXVBQ0MD1NTUFHOYRYOynwiCIAiijJienoaZmRlp2vbk5CTU1NRAbW1tEUZWOOyu32SpIQiCIIgyora2Vila5mp9GgbF1BAEQRAEURGQqCEIgiAIoiIgUUMQBEEQREVAooYgCIIgiIqARA1BEARBEBUBiRqCIAiCICoCEjUEQRAEQVQEJGoIgiAIgqgISNQQBEEQBFERzKmKwqwjxMsvv1zkkRAEQRAEYRe2bmfq7DSnRM3MzAwAgN4AjCAIgiCI8mFmZsayr9Wcamh54sQJeP7556GmpgaqqqryeuyXX34ZIpEIpNNpapapgOYoMzRH9qB5ygzNUWZojjJTKnOEiDAzMwPBYBBcLnXkzJyy1LhcroI3+1q0aBH948gAzVFmaI7sQfOUGZqjzNAcZaYU5shO53EKFCYIgiAIoiIgUUMQBEEQREVAoiZP+P1+2LRpE/j9/mIPpWShOcoMzZE9aJ4yQ3OUGZqjzJTbHM2pQGGCIAiCICoXstQQBEEQBFERkKghCIIgCKIiIFFDEARBEERFQKKGIAiCIIiKgERNAfjoRz8KmqbBvHnzoKmpCTZu3AjPP/98sYdVMjz77LPw2c9+FpYvXw7z58+HU089FTZt2gRvvvlmsYdWcnz3u9+Fs88+GxYsWACLFy8u9nBKgh//+MewfPlymDdvHpx11lnwq1/9qthDKikefPBB+MhHPgLBYBCqqqpg//79xR5SyXHTTTfBmjVroKamBhoaGuCiiy6CJ598stjDKiluv/12WL16tV50b926dfDzn/+82MPKCImaAnDeeefBT3/6U3jyySfhvvvug2eeeQY+8YlPFHtYJcPvfvc7OHHiBNxxxx2QTCbhBz/4AWzfvh2+/vWvF3toJcebb74Jn/zkJ+HKK68s9lBKgp/85Cdw7bXXwje+8Q04fPgwvO9974MPfehDkEqlij20kuGVV16BtrY2+NGPflTsoZQsBw8ehKuuugri8TgMDg7CW2+9BR/84AfhlVdeKfbQSoZwOAybN2+GRx55BB555BE4//zz4cILL4RkMlnsoVlCKd2zQH9/P1x00UXwxhtvgNfrLfZwSpKbb74Zbr/9djhy5Eixh1KS3HXXXXDttdfC1NRUsYdSVN7znvdAR0cH3H777fprzc3NcNFFF8FNN91UxJGVJlVVVdDb2wsXXXRRsYdS0rz44ovQ0NAABw8ehHPPPbfYwylZli5dCjfffDN89rOfLfZQlJClpsD88Y9/hHvuuQfOPvtsEjQWTE9Pw9KlS4s9DKKEefPNN+E//uM/4IMf/KDh9Q9+8IPw0EMPFWlURCUwPT0NAEC/QQqOHz8O9957L7zyyiuwbt26Yg/HEhI1BeK6666DhQsXwrJlyyCVSkFfX1+xh1SyPPPMM7Bt2za44oorij0UooR56aWX4Pjx4xAIBAyvBwIB+M///M8ijYoodxARvvSlL8F73/teaG1tLfZwSorHHnsMqqurwe/3wxVXXAG9vb1wxhlnFHtYlpCosckNN9wAVVVVltsjjzyi7/+Vr3wFDh8+DL/4xS/A7XbDpZdeCpXu6XM6RwAAzz//PGzYsAE++clPwuc+97kijXx2yWaeiHeoqqoy/I2IptcIwi5XX301/Pa3v4V9+/YVeyglx2mnnQaPPvooxONxuPLKK+Gyyy6Dxx9/vNjDssRT7AGUC1dffTVccskllvtEo1H9/+vq6qCurg5WrVoFzc3NEIlEIB6Pl7zpLhecztHzzz8P5513Hqxbtw527NhR4NGVDk7niThJXV0duN1uk1Xm2LFjJusNQdjhC1/4AvT398ODDz4I4XC42MMpOXw+H6xYsQIAADo7O+Hhhx+GrVu3wh133FHkkakhUWMTJlKygVlo3njjjXwOqeRwMkfPPfccnHfeeXDWWWfB7t27weWaO0bDXO6luYzP54OzzjoLBgcH4WMf+5j++uDgIFx44YVFHBlRbiAifOELX4De3l4YGRmB5cuXF3tIZQEilvw6RqImz4yPj8P4+Di8973vhSVLlsCRI0fg+uuvh1NPPbWirTROeP7556Grqws0TYPvf//78OKLL+rvNTY2FnFkpUcqlYI//vGPkEql4Pjx4/Doo48CAMCKFSugurq6uIMrAl/60pdg48aN0NnZqVv4UqkUxWNx/PnPf4bf//73+t9Hjx6FRx99FJYuXQqaphVxZKXDVVddBXv37oW+vj6oqanRrX+1tbUwf/78Io+uNPj6178OH/rQhyASicDMzAzce++9MDIyAvfff3+xh2YNEnnlt7/9LZ533nm4dOlS9Pv9GI1G8YorrsDJycliD61k2L17NwKAdCOMXHbZZdJ5euCBB4o9tKJx22234SmnnII+nw87Ojrw4MGDxR5SSfHAAw9I75nLLrus2EMrGVS/P7t37y720EqGz3zmM/q/s/r6enz/+9+Pv/jFL4o9rIxQnRqCIAiCICqCuRPIQBAEQRBERUOihiAIgiCIioBEDUEQBEEQFQGJGoIgCIIgKgISNQRBEARBVAQkagiCIAiCqAhI1BAEQRAEURGQqCEIgiAIoiIgUUMQBEEQREVAooYgiLLk+PHjcPbZZ8PFF19seH16ehoikQh885vfLNLICIIoFtQmgSCIsuXpp5+GM888E3bs2AF/+7d/CwAAl156KfzmN7+Bhx9+GHw+X5FHSBDEbEKihiCIsuaHP/wh3HDDDZBIJODhhx+GT37ykzA+Pg5nnnlmsYdGEMQsQ6KGIIiyBhHh/PPPB7fbDY899hh84QtfINcTQcxRSNQQBFH2/O53v4Pm5mZ417veBb/+9a/B4/EUe0gEQRQBChQmCKLs+Zd/+RdYsGABHD16FCYnJ4s9HIIgigRZagiCKGsOHToE5557Lvz85z+H733ve3D8+HEYGhqCqqqqYg+NIIhZhiw1BEGULa+99hpcdtll8A//8A/wV3/1V3DnnXfCww8/DHfccUexh0YQRBEgUUMQRNny1a9+FU6cOAFbtmwBAABN0+D//J//A1/5ylfg2WefLe7gCIKYdcj9RBBEWXLw4EF4//vfDyMjI/De977X8N4FF1wAb731FrmhCGKOQaKGIAiCIIiKgNxPBEEQBEFUBCRqCIIgCIKoCEjUEARBEARREZCoIQiCIAiiIiBRQxAEQRBERUCihiAIgiCIioBEDUEQBEEQFQGJGoIgCIIgKgISNQRBEARBVAQkagiCIAiCqAhI1BAEQRAEURH8/z34ZhrSOIo7AAAAAElFTkSuQmCC", "text/plain": [ "
    " ] @@ -338,7 +429,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 250, "metadata": {}, "outputs": [], "source": [ @@ -354,12 +445,87 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 251, + "metadata": {}, + "outputs": [], + "source": [ + "# Create an array that will keep track of the outputs of our resampling loop. In this case, we just want to record the correlation coefficient of each new sample. \n", + "corr_coef_collector = np.zeros([number_runs, 1])\n", + "\n", + "# Let's also get the length of the subset\n", + "# When bootstrapping, the size of your resampled dataset should match the size of your original sample!\n", + "length_sub = len(subset)\n", + "length_sub = 100\n" + ] + }, + { + "cell_type": "code", + "execution_count": 252, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABPgElEQVR4nO3de1xUdf4/8NeIMFxnFBEGdAT8ekXFFEkhDe+XXVPTVivXcNd11zUpU7+aVorbNzH7eqm8rWWimav9Vk1LU4nUvGSixopKQIiJOUQZDgwiKLx/fxjn63BRQGCG4+v5eJzHY+ZzPnPO+3wGmBfnnDlHIyICIiIiIpVqZOsCiIiIiOoSww4RERGpGsMOERERqRrDDhEREakaww4RERGpGsMOERERqRrDDhEREalaY1sXYA9KSkpw9epVeHh4QKPR2LocIiIiqgIRQV5eHvz8/NCoUeX7bxh2AFy9ehVGo9HWZRAREVENZGZmomXLlpXOZ9gB4OHhAeDOYOl0OhtXQ7aUnw/4+d15fPUq4OZm23oeOnwDiKgacnNzYTQalc/xyjDsAMqhK51Ox7DzkHNw+L/HOh0/a+sd3wAiqoH7nYLCE5SJiIhI1Rh2iIiISNUYdoiIiEjVeM4OETUYxcXFuHXrlq3LIKJ64ujoCIe7z+WrIYYdIrJ7IoKsrCxcv37d1qUQUT1r0qQJDAbDA10Hj2GHiOxeadDx9vaGq6srL/5J9BAQEdy4cQPZ2dkAAF9f3xovi2GHiOxacXGxEnSaNWtm63KIqB65uLgAALKzs+Ht7V3jQ1o8QZmI7FrpOTqurq42roSIbKH0d/9Bztdj2CGiBoGHrogeTrXxu8+wQ0RERKrGsENERESqxrBDRET15tKlS9BoNEhMTLSL5diDrKwsDBo0CG5ubmjSpEmlbRqNBp988kmVlhkdHY1HHnmkTuptiBh2iIjqgEajuec0ceJEW5fYYEycOBGjRo2yajMajTCZTOjcubNtiqpFy5cvh8lkQmJiIlJTUyttM5lMGDZsWJWWOWvWLMTHx9dqnbGxsUrwamjsJuzExMRAo9Fg+vTpSpuIIDo6Gn5+fnBxcUHfvn1x/vx5q9cVFhYiKioKXl5ecHNzw4gRI3DlypV6rp6IyJrJZFKmFStWQKfTWbW9/fbbVv0b0pWhi4qKKmyvz21wcHCAwWBA48YN/woq6enpCAkJQdu2beHt7V1pm8FggFarrdIy3d3deamGu9hF2ElISMC6desQHBxs1b5kyRIsW7YMK1euREJCAgwGAwYNGoS8vDylz/Tp07Fz505s3boVR48ehcViwfDhw1FcXFzfm0FE9UUEyM+v/0mkyiUaDAZl0uv10Gg0yvObN2+iSZMm+Pjjj9G3b184Oztj8+bNFR56WLFiBQICAqzaNmzYgI4dO8LZ2RkdOnTA6tWr71lLSUkJ3nzzTbRp0wZarRatWrXCG2+8ocxPSkpC//794eLigmbNmuGvf/0rLBaLMr90z0pMTAz8/PzQrl075TBS2W2obn3FxcWYNGkSAgMD4eLigvbt21sFwejoaGzcuBG7du1S9oodOnSowsNYhw8fxqOPPgqtVgtfX1+8/PLLuH37tjK/b9++eOGFFzB79mx4enrCYDAgOjr6nmMHAB988AE6deqkLHfatGnKvMuXL2PkyJFwd3eHTqfD2LFj8dNPP1m9/tNPP0VISAicnZ3RunVrLFy4UKkrICAA27dvx6ZNm5Q9fhW1AeUPY125cgVPP/00PD094ebmhh49euCbb75Rxq3sz9K93pfS8dyxYwf69esHV1dXdO3aFV9//TUA4NChQ/jTn/4Es9msvA9VGTu7ITaWl5cnbdu2lbi4OImIiJAXX3xRRERKSkrEYDDI4sWLlb43b94UvV4va9euFRGR69evi6Ojo2zdulXp8+OPP0qjRo1k3759la7z5s2bYjablSkzM1MAiNlsrpuNpHoBoBYmV7nziSa/Pa6NZVY+URkWiyhvgMUiIiIFBQVy4cIFKSgoqLhffU6/1VRdGzZsEL1erzzPyMgQABIQECDbt2+Xixcvyo8//igLFiyQrl27Wr12+fLl4u/vrzxft26d+Pr6Kq/bvn27eHp6SmxsbKXrnz17tjRt2lRiY2Pl+++/lyNHjsh7770nIiL5+fni5+cno0ePlqSkJImPj5fAwECJjIxUXh8ZGSnu7u4yYcIEOXfunCQlJVW6Dferr/R13377rYiIFBUVyfz58+XkyZNy8eJF2bx5s7i6usq2bdtE5M5nxNixY2Xo0KFiMpnEZDJJYWFhueVcuXJFXF1dZerUqZKcnCw7d+4ULy8vWbBggbIdERERotPpJDo6WlJTU2Xjxo2i0WjkwIEDlY7d6tWrxdnZWVasWCEpKSly8uRJWb58uYjc+Zzq1q2b9O7dW06dOiUnTpyQ7t27S0REhPL6ffv2iU6nk9jYWElPT5cDBw5IQECAREdHi4hIdna2DB06VMaOHSsmk0muX79eYZvInb9xO3fuVMaldevW0qdPHzly5IikpaXJtm3b5Pjx4yIi5X6Wqvq+dOjQQT777DNJSUmRp556Svz9/eXWrVtSWFgoK1asEJ1Op7wPeXl5lY5bbarwb8BvzGZzlT6/bf7X9rnnnpPp06eLiFiFnfT0dAEgZ86cseo/YsQIee6550REJD4+XgDIr7/+atUnODhY5s+fX+k6FyxYUOEHD8NOw8awowIPWdhZsWKFVb+qhB2j0Shbtmyx6vP6669LWFhYhevOzc0VrVarhJuy1q1bJ02bNhXLXdu2Z88eadSokWRlZYnInbDj4+MjhYWF992G+9VXNqRUZOrUqTJmzBjleWRkpIwcOdKqT9nlzJs3T9q3by8lJSVKn1WrVom7u7sUFxeLyJ3PmN69e1stJzQ0VObMmVNpLX5+fvLKK69UOO/AgQPi4OAgly9fVtrOnz8vAOTkyZMiItKnTx9ZtGiR1es+/PBD8fX1VZ6PHDnSKlxW1nZ32PnnP/8pHh4ecu3atQprK/uzVNX35f333y+3LcnJySJS/ue4vtRG2LHpwc6tW7fizJkzSEhIKDcvKysLAODj42PV7uPjgx9++EHp4+TkhKZNm5brU/r6isydOxczZsxQnufm5sJoNNZ4O4ionrm6AncdZqnX9daiHj16VKv/zz//jMzMTEyaNAmTJ09W2m/fvg29Xl/ha5KTk1FYWIgBAwZUOr9r165wc3NT2h577DGUlJQgJSVF+RvcpUsXODk53XMbalIfAKxduxbvv/8+fvjhBxQUFKCoqKja3yRKTk5GWFiY1QXoHnvsMVgsFly5cgWtWrUCgHKnS/j6+ir3XiorOzsbV69evefYGY1Gq8+PoKAgNGnSBMnJyQgNDcXp06eRkJBgddiwuLgYN2/exI0bN2p8ZfDExER069YNnp6e9+1bnffl7vEpvRdVdnY2OnToUKM67YXNwk5mZiZefPFFHDhwAM7OzpX2K3vlRBG579UU79dHq9VW+SQvIrJDGg1w14dzQ+VWZhsaNWoEKXNe0N0n/ZaUlAAA3nvvPfTs2dOqX2X3DCq9t1Bl7vX38u72srVW1F6T+j7++GO89NJLWLp0KcLCwuDh4YG33npLOfekqirajtKxvLvd0dHRqo9Go1HqLqumY3d3e0lJCRYuXIjRo0eX63evz777uV9td6vO+3L3+Ny9DQ2dzcLO6dOnkZ2djZCQEKWtuLgYX331FVauXImUlBQAd/be3H2n0+zsbOU/DYPBgKKiIuTk5Fjt3cnOzkZ4eHg9bQkRUe1o3rw5srKyrD4s7z4B18fHBy1atMDFixcxfvz4Ki2zbdu2cHFxQXx8PP7yl7+Umx8UFISNGzciPz9fCS7Hjh1Do0aN0K5du2rVX5P6jhw5gvDwcEydOlVpS09Pt+rj5OR03y+dBAUFYfv27VZjd/z4cXh4eKBFixbV2o5SHh4eCAgIQHx8PPr161fhOi9fvozMzExl786FCxdgNpvRsWNHAED37t2RkpKCNm3a1KiGygQHB+P999/Hr7/+et+9OzV5XypSlffBXtns21gDBgxAUlISEhMTlalHjx4YP348EhMT0bp1axgMBsTFxSmvKSoqwuHDh5UgExISAkdHR6s+JpMJ586dY9ghoganb9+++Pnnn7FkyRKkp6dj1apV+Pzzz636REdHIyYmBm+//TZSU1ORlJSEDRs2YNmyZRUu09nZGXPmzMHs2bOxadMmpKen48SJE1i/fj0AYPz48XB2dkZkZCTOnTuHgwcPIioqChMmTCh3GkFVVLe+Nm3a4NSpU9i/fz9SU1Px2muvlTu1ISAgAGfPnkVKSgp++eWXCr/iPnXqVGRmZiIqKgrfffcddu3ahQULFmDGjBlo1KjmH3XR0dFYunQp3nnnHaSlpeHMmTN49913AQADBw5EcHAwxo8fjzNnzuDkyZN47rnnEBERoRzemz9/PjZt2oTo6GicP38eycnJ2LZtG1599dUa1wQAzzzzDAwGA0aNGoVjx47h4sWL2L59u/LtqYq2ozrvS0UCAgJgsVgQHx+PX375BTdu3HigbahXtXsa0YO5+wRlEZHFixeLXq+XHTt2SFJSkjzzzDPi6+srubm5Sp8pU6ZIy5Yt5YsvvpAzZ85I//79pWvXrnL79u0qr7eqJziRfQNPUG74qnqCcgNT2QnKFZ2ku2bNGjEajeLm5ibPPfecvPHGG1YnKIuIfPTRR/LII4+Ik5OTNG3aVB5//HHZsWNHpesvLi6W//mf/xF/f39xdHSUVq1aWZ00e/bsWenXr584OzuLp6enTJ482eqbNlU5Qbiq9ZV93c2bN2XixImi1+ulSZMm8ve//11efvllq5Nrs7OzZdCgQeLu7i4A5ODBgxWu/9ChQxIaGipOTk5iMBhkzpw5cuvWLWV+2c8YkYpPBC5r7dq10r59e3F0dBRfX1+JiopS5v3www8yYsQIcXNzEw8PD/nDH/6gnNhdat++fRIeHi4uLi6i0+nk0UcflXXr1t2zhvudoCwicunSJRkzZozodDpxdXWVHj16yDfffCMiFZ/sXp33RUQkJydHGe9SU6ZMkWbNmgkAq2+61aXaOEFZI1KNC0fUsb59++KRRx7BihUrANw57rlw4UL885//RE5ODnr27IlVq1ZZXTHz5s2b+O///m9s2bIFBQUFGDBgAFavXl2tE45zc3Oh1+thNpuh0+lqe7OontTOXbFdAeT/9tgNQN3+52JHv372IT8fcHe/89hiAdzccPPmTWRkZCAwMPCBznEgoobpXn8Dqvr5bVdhx1YYdtSBYUcFGHaIqIzaCDt2cQVlIiIiorrCsENERESqxrBDREREqsawQ0RERKrGsENERESqxrBDREREqsawQ0RERKrGsENE1IAdOnQIGo0G169fBwDExsaiSZMmNq2pvl26dAkajcbqPmK2XI49yMrKwqBBg+Dm5qb8PFTUptFo8Mknn1RpmdHR0dW+G729YNghIqojEydOhEajwZQpU8rNmzp1KjQaDSZOnFir6xw3bhxSU1NrdZlqNHHiRIwaNcqqzWg0wmQyWV2lv6Favnw5TCYTEhMTlZ+HitpMJhOGDRtWpWXOmjUL8fHxtVpnfYVzhh0iojpkNBqxdetWFBQUKG03b97Ev/71L7Rq1arW1+fi4gJvb+9aX25dKyoqqrC9opt+1hUHBwcYDAY0bty43tZZV9LT0xESEoK2bdsqPw8VtRkMBmi12iot093dHc2aNauzmusSww4RUR3q3r07WrVqhR07dihtO3bsgNFoRLdu3az6igiWLFmC1q1bw8XFBV27dsW///1vqz579+5Fu3bt4OLign79+uHSpUtW88v+p5yeno6RI0fCx8cH7u7uCA0NxRdffGH1moCAACxatAh//vOf4eHhgVatWmHdunX33K6SkhK8+eabaNOmDbRaLVq1aoU33nhDmZ+UlIT+/fvDxcUFzZo1w1//+ldYLBZlfumelZiYGPj5+aFdu3bKYaSPP/4Yffv2hbOzMzZv3gwA2LBhAzp27AhnZ2d06NABq1evrrS24uJiTJo0CYGBgXBxcUH79u3x9ttvK/Ojo6OxceNG7Nq1CxqNBhqNBocOHarwMNbhw4fx6KOPQqvVwtfXFy+//DJu376tzO/bty9eeOEFzJ49G56enjAYDIiOjr7n2AHABx98gE6dOinLnTZtmjLv8uXLGDlyJNzd3aHT6TB27Fj89NNPVq//9NNPERISAmdnZ7Ru3RoLFy5U6goICMD27duxadMmZe9hRW1A+cNYV65cwdNPPw1PT0+4ubmhR48e+Oabb5RxK3sY617vS+l47tixA/369YOrqyu6du2q3Jn90KFD+NOf/gSz2ay8D1UZuxqp7buTNkS867k6gHc9b/iqeNfzkpI7s+t7Kimp3uaU3i182bJlMmDAAKV9wIABsnz58nJ3tp43b5506NBB9u3bJ+np6bJhwwbRarVy6NAhERG5fPmyaLVaefHFF+W7776TzZs3i4+PjwCQnJwcESl/h/XExERZu3atnD17VlJTU+WVV14RZ2dn+eGHH5Q+/v7+4unpKatWrZK0tDSJiYmRRo0aSXJycqXbNnv2bGnatKnExsbK999/L0eOHJH33ntPRETy8/PFz89PRo8eLUlJSRIfHy+BgYFW2xoZGSnu7u4yYcIEOXfunCQlJSl33g4ICJDt27fLxYsX5ccff5R169aJr6+v0rZ9+3bx9PSU2NhYESl/x+6ioiKZP3++nDx5Ui5evCibN28WV1dX2bZtm4iI5OXlydixY2Xo0KFiMpnEZDJJYWFhueVcuXJFXF1dZerUqZKcnCw7d+4ULy8vq7t9R0REiE6nk+joaElNTZWNGzeKRqORAwcOVDp2q1evFmdnZ1mxYoWkpKTIyZMnZfny5SIiUlJSIt26dZPevXvLqVOn5MSJE9K9e3eJiIhQXr9v3z7R6XQSGxsr6enpcuDAAQkICJDo6GgRuXOX+KFDh8rYsWPFZDLJ9evXK2wTsb6Tel5enrRu3Vr69OkjR44ckbS0NNm2bZscP35cRMrfSb2q70uHDh3ks88+k5SUFHnqqafE399fbt26JYWFhbJixQrR6XTK+5CXl1duvGrjruf8aysMO2rBsKMCVQw7d3erz+m3kqqsNOz8/PPPotVqJSMjQy5duiTOzs7y888/W4Udi8Uizs7OygdLqUmTJskzzzwjIiJz586Vjh07SsldqWvOnDn3DDsVCQoKknfffVd57u/vL3/84x+V5yUlJeLt7S1r1qyp8PW5ubmi1WqVcFPWunXrpGnTpmK5a8D27NkjjRo1kqysLGVsfHx8pLCwUOlT+uG4YsUKq+UZjUbZsmWLVdvrr78uYWFhVq8rDSkVmTp1qowZM0Z5Xvre3K3scubNmyft27e3Gu9Vq1aJu7u7FBcXi8idsNO7d2+r5YSGhsqcOXMqrcXPz09eeeWVCucdOHBAHBwc5PLly0rb+fPnBYCcPHlSRET69OkjixYtsnrdhx9+KL6+vsrzskG6sra7w84///lP8fDwkGvXrlVYW9mwU9X35f333y+3LaVBuio/r7URdhr+gUkiIjvn5eWF3//+99i4cSNEBL///e/h5eVl1efChQu4efMmBg0aZNVeVFSkHO5KTk5Gr169oNFolPlhYWH3XHd+fj4WLlyIzz77DFevXsXt27dRUFCAy5cvW/ULDg5WHms0GhgMBmRnZ1e4zOTkZBQWFmLAgAGVzu/atSvc3NyUtsceewwlJSVISUmBj48PAKBLly5wcnIq9/oePXooj3/++WdkZmZi0qRJmDx5stJ++/Zt6PX6Srd77dq1eP/99/HDDz+goKAARUVF1f4mUXJyMsLCwqzG+7HHHoPFYsGVK1eUc67uHjsA8PX1rXTssrOzcfXq1XuOndFohNFoVNqCgoLQpEkTJCcnIzQ0FKdPn0ZCQoLVYcPi4mLcvHkTN27cgKura7W2s1RiYiK6desGT0/P+/atzvty9/j4+voCuDMOHTp0qFGdNcGwQ0QNjqsrcNfpH/W63pr685//rJyXsWrVqnLzS0pKAAB79uxBixYtrOaVnkB65x/x6vnv//5v7N+/H//7v/+LNm3awMXFBU899VS5E4IdHR2tnms0GqWmslxcXO65ThGxCghll1vq7jB0t7vbS2t477330LNnT6t+Dg4OFb7+448/xksvvYSlS5ciLCwMHh4eeOutt5RzT6qqou0ofQ/ubq+Psbu7vaSkBAsXLsTo0aPL9XN2dr7n8u/lfrXdrTrvy93jc/c21CeGHSJqcDQaoJLPSbs1dOhQJWAMGTKk3PygoCBotVpcvnwZERERFS4jKCio3DVRTpw4cc/1HjlyBBMnTsSTTz4JALBYLOVOaq6utm3bwsXFBfHx8fjLX/5SYZ0bN25Efn6+ElyOHTuGRo0aoV27dtVal4+PD1q0aIGLFy9i/PjxVXrNkSNHEB4ejqlTpypt6enpVn2cnJxQXFx8z+UEBQVh+/btVkHj+PHj8PDwKBdIq8rDwwMBAQGIj49Hv379Klzn5cuXkZmZqezduXDhAsxmMzp27AjgzknvKSkpaNOmTY1qqExwcDDef/99/Prrr/fdu1OT96UiVXkfagO/jUVEVA8cHByQnJyM5OTkCvdIeHh4YNasWXjppZewceNGpKen49tvv8WqVauwceNGAMCUKVOQnp6OGTNmICUlBVu2bEFsbOw919umTRvs2LEDiYmJ+M9//oNnn332gf+rdnZ2xpw5czB79mxs2rQJ6enpOHHiBNavXw8AGD9+PJydnREZGYlz587h4MGDiIqKwoQJE5RDWNURHR2NmJgYvP3220hNTUVSUhI2bNiAZcuWVbrNp06dwv79+5GamorXXnsNCQkJVn0CAgJw9uxZpKSk4JdffqnwK+5Tp05FZmYmoqKi8N1332HXrl1YsGABZsyYgUaNav7xGR0djaVLl+Kdd95BWloazpw5g3fffRcAMHDgQAQHB2P8+PE4c+YMTp48ieeeew4RERHK4b358+dj06ZNiI6Oxvnz55GcnIxt27bh1VdfrXFNAPDMM8/AYDBg1KhROHbsGC5evIjt27cr356qaDuq875UJCAgABaLBfHx8fjll19w48aNB9qGyjDsEBHVE51OB51OV+n8119/HfPnz0dMTAw6duyIIUOG4NNPP0VgYCAAoFWrVti+fTs+/fRTdO3aFWvXrsWiRYvuuc7ly5ejadOmCA8PxxNPPIEhQ4age/fuD7wtr732GmbOnIn58+ejY8eOGDdunHKeiqurK/bv349ff/0VoaGheOqppzBgwACsXLmyRuv6y1/+gvfffx+xsbHo0qULIiIiEBsbq4xLWVOmTMHo0aMxbtw49OzZE9euXbPaywMAkydPRvv27dGjRw80b94cx44dK7ecFi1aYO/evTh58iS6du2KKVOmYNKkSQ8cKiIjI7FixQqsXr0anTp1wvDhw5GWlgbg/74K3rRpUzz++OMYOHAgWrdujW3btimvHzJkCD777DPExcUhNDQUvXr1wrJly+Dv7/9AdTk5OeHAgQPw9vbG7373O3Tp0gWLFy+u9HBhdd+XioSHh2PKlCkYN24cmjdvjiVLljzQNlRGIzU5CKwyubm50Ov1MJvN9/xDRPatsnMEqscVQP5vj90A1M1/GaX461dGfj7g7n7nscUCuLnh5s2byMjIQGBg4AOdj0BEDdO9/gZU9fObe3aIiIhI1Rh2iIiISNUYdoiIiEjVGHaIiIhI1Rh2iKhB4MncRA+n2vjdZ9ghIrtWevXVurr+BhHZt9Lf/bJXqq4OXkGZiOyag4MDmjRpYnUNl9q5zAAR2TMRwY0bN5CdnY0mTZpUer2fqmDYISK7ZzAYAKDSmysSkXo1adJE+RtQUww7RGT3NBoNfH194e3tXeFl/YlInRwdHR9oj04phh0iajAcHBxq5Q8fET1ceIIyERERqRrDDhEREakaww4RERGpGsMOERERqZpNw86aNWsQHBwMnU4HnU6HsLAwfP7558r8iRMnQqPRWE29evWyWkZhYSGioqLg5eUFNzc3jBgxAleuXKnvTSEiIiI7ZdOw07JlSyxevBinTp3CqVOn0L9/f4wcORLnz59X+gwdOhQmk0mZ9u7da7WM6dOnY+fOndi6dSuOHj0Ki8WC4cOHo7i4uL43h4iIiOyQTb96/sQTT1g9f+ONN7BmzRqcOHECnTp1AgBotdpKLyZkNpuxfv16fPjhhxg4cCAAYPPmzTAajfjiiy8wZMiQCl9XWFiIwsJC5Xlubm5tbA4RERHZIbs5Z6e4uBhbt25Ffn4+wsLClPZDhw7B29sb7dq1w+TJk62uoHr69GncunULgwcPVtr8/PzQuXNnHD9+vNJ1xcTEQK/XK5PRaKybjSIiIiKbs3nYSUpKgru7O7RaLaZMmYKdO3ciKCgIADBs2DB89NFH+PLLL7F06VIkJCSgf//+yl6ZrKwsODk5oWnTplbL9PHxQVZWVqXrnDt3LsxmszJlZmbW3QYSERGRTdn8Csrt27dHYmIirl+/ju3btyMyMhKHDx9GUFAQxo0bp/Tr3LkzevToAX9/f+zZswejR4+udJkics8bBWq1Wmi12lrdDiIiIrJPNt+z4+TkhDZt2qBHjx6IiYlB165d8fbbb1fY19fXF/7+/khLSwNw5+aARUVFyMnJseqXnZ0NHx+fOq+diIiI7J/Nw05ZImJ18vDdrl27hszMTPj6+gIAQkJC4OjoiLi4OKWPyWTCuXPnEB4eXi/1EhERkX2z6WGsefPmYdiwYTAajcjLy8PWrVtx6NAh7Nu3DxaLBdHR0RgzZgx8fX1x6dIlzJs3D15eXnjyyScBAHq9HpMmTcLMmTPRrFkzeHp6YtasWejSpYvy7SwiIiJ6uNk07Pz000+YMGECTCYT9Ho9goODsW/fPgwaNAgFBQVISkrCpk2bcP36dfj6+qJfv37Ytm0bPDw8lGUsX74cjRs3xtixY1FQUIABAwYgNjaWd0YmIiIiAIBGRMTWRdhabm4u9Ho9zGYzdDqdrcuhGrrXSelV5wog/7fHbgBu1MIyK8dfvzLy8wF39zuPLRbAzc229RCRXavq57fdnbNDREREVJsYdoiIiEjVGHaIiIhI1Rh2iIiISNUYdoiIiEjVGHaIiIhI1Rh2iIiISNUYdoiIiEjVGHaIiIhI1Rh2iIiISNUYdoiIiEjVGHaIiIhI1Rh2iIiISNUYdoiIiEjVGHaIiIhI1Rh2iIiISNUYdoiIiEjVGHaIiIhI1Rh2iIiISNUYdoiIiEjVGHaIiIhI1Rh2iIiISNUYdoiIiEjVGHaIiIhI1Rh2iIiISNUYdoiIiEjVGHaIiIhI1Rh2iIiISNUYdoiIiEjVGHaIiIhI1Rh2iIiISNUYdoiIiEjVbBp21qxZg+DgYOh0Ouh0OoSFheHzzz9X5osIoqOj4efnBxcXF/Tt2xfnz5+3WkZhYSGioqLg5eUFNzc3jBgxAleuXKnvTSEiIiI7ZdOw07JlSyxevBinTp3CqVOn0L9/f4wcOVIJNEuWLMGyZcuwcuVKJCQkwGAwYNCgQcjLy1OWMX36dOzcuRNbt27F0aNHYbFYMHz4cBQXF9tqs4iIiMiOaEREbF3E3Tw9PfHWW2/hz3/+M/z8/DB9+nTMmTMHwJ29OD4+PnjzzTfxt7/9DWazGc2bN8eHH36IcePGAQCuXr0Ko9GIvXv3YsiQIVVaZ25uLvR6PcxmM3Q6XZ1tG9UtjUZTC0txBZD/22M3ADdqYZmVs7NfP9vLzwfc3e88tlgANzfb1kNEdq2qn992c85OcXExtm7divz8fISFhSEjIwNZWVkYPHiw0ker1SIiIgLHjx8HAJw+fRq3bt2y6uPn54fOnTsrfSpSWFiI3Nxcq4mIiIjUyeZhJykpCe7u7tBqtZgyZQp27tyJoKAgZGVlAQB8fHys+vv4+CjzsrKy4OTkhKZNm1bapyIxMTHQ6/XKZDQaa3mriIiIyF7YPOy0b98eiYmJOHHiBP7+978jMjISFy5cUOaXPTQhIvc9XHG/PnPnzoXZbFamzMzMB9sIIiIisls2DztOTk5o06YNevTogZiYGHTt2hVvv/02DAYDAJTbQ5Odna3s7TEYDCgqKkJOTk6lfSqi1WqVb4CVTkRERKRONg87ZYkICgsLERgYCIPBgLi4OGVeUVERDh8+jPDwcABASEgIHB0drfqYTCacO3dO6UNEREQPt8a2XPm8efMwbNgwGI1G5OXlYevWrTh06BD27dsHjUaD6dOnY9GiRWjbti3atm2LRYsWwdXVFc8++ywAQK/XY9KkSZg5cyaaNWsGT09PzJo1C126dMHAgQNtuWlERERkJ2wadn766SdMmDABJpMJer0ewcHB2LdvHwYNGgQAmD17NgoKCjB16lTk5OSgZ8+eOHDgADw8PJRlLF++HI0bN8bYsWNRUFCAAQMGIDY2Fg4ODrbaLCIiIrIjdnedHVvgdXbUgdfZUQFeZ4eIqqHBXWeHiIiIqC4w7BAREZGqMewQERGRqjHsEBERkaox7BAREZGqMewQERGRqjHsEBERkaox7BAREZGqMewQERGRqjHsEBERkaox7BAREZGqMewQERGRqjHsEBERkaox7BAREZGqMewQERGRqjHsEBERkaox7BAREZGqMewQERGRqjHsEBERkaox7BAREZGqMewQERGRqjHsEBERkaox7BAREZGqMewQERGRqjHsEBERkaox7BAREZGqMewQERGRqjHsEBERkaox7BAREZGqMewQERGRqjHsEBERkaox7BAREZGqMewQERGRqtk07MTExCA0NBQeHh7w9vbGqFGjkJKSYtVn4sSJ0Gg0VlOvXr2s+hQWFiIqKgpeXl5wc3PDiBEjcOXKlfrcFCIiIrJTNg07hw8fxvPPP48TJ04gLi4Ot2/fxuDBg5Gfn2/Vb+jQoTCZTMq0d+9eq/nTp0/Hzp07sXXrVhw9ehQWiwXDhw9HcXFxfW4OERER2aHGtlz5vn37rJ5v2LAB3t7eOH36NB5//HGlXavVwmAwVLgMs9mM9evX48MPP8TAgQMBAJs3b4bRaMQXX3yBIUOG1N0GEBERkd2zq3N2zGYzAMDT09Oq/dChQ/D29ka7du0wefJkZGdnK/NOnz6NW7duYfDgwUqbn58fOnfujOPHj1e4nsLCQuTm5lpNREREpE52E3ZEBDNmzEDv3r3RuXNnpX3YsGH46KOP8OWXX2Lp0qVISEhA//79UVhYCADIysqCk5MTmjZtarU8Hx8fZGVlVbiumJgY6PV6ZTIajXW3YURERGRTNj2Mdbdp06bh7NmzOHr0qFX7uHHjlMedO3dGjx494O/vjz179mD06NGVLk9EoNFoKpw3d+5czJgxQ3mem5vLwENERKRSdrFnJyoqCrt378bBgwfRsmXLe/b19fWFv78/0tLSAAAGgwFFRUXIycmx6pednQ0fH58Kl6HVaqHT6awmIiIiUiebhh0RwbRp07Bjxw58+eWXCAwMvO9rrl27hszMTPj6+gIAQkJC4OjoiLi4OKWPyWTCuXPnEB4eXme1ExERUcNg08NYzz//PLZs2YJdu3bBw8NDOcdGr9fDxcUFFosF0dHRGDNmDHx9fXHp0iXMmzcPXl5eePLJJ5W+kyZNwsyZM9GsWTN4enpi1qxZ6NKli/LtLCIiInp42TTsrFmzBgDQt29fq/YNGzZg4sSJcHBwQFJSEjZt2oTr16/D19cX/fr1w7Zt2+Dh4aH0X758ORo3boyxY8eioKAAAwYMQGxsLBwcHOpzc4iIiMgOaUREbF2EreXm5kKv18NsNvP8nQasshPSq8cVQOlFLd0A3KiFZVaOv35l5OcD7u53HlssgJubbeshIrtW1c9vuzhBmYiIiKiuMOwQERGRqjHsEBERkaox7BAREZGqMewQERGRqjHsEBERkaox7BAREZGqMewQERGRqjHsEBERkarVKOy0bt0a165dK9d+/fp1tG7d+oGLIiIiIqotNQo7ly5dQnFxcbn2wsJC/Pjjjw9cFBEREVFtqdaNQHfv3q083r9/P/R6vfK8uLgY8fHxCAgIqLXiiIiIiB5UtcLOqFGjANy54WJkZKTVPEdHRwQEBGDp0qW1VhwRERHRg6pW2CkpKQEABAYGIiEhAV5eXnVSFBEREVFtqVbYKZWRkVHbdRARERHViRqFHQCIj49HfHw8srOzlT0+pT744IMHLoyIiIioNtQo7CxcuBD/+Mc/0KNHD/j6+kKj0dR2XWRjfE+JiEgtahR21q5di9jYWEyYMKG26yEiIiKqVTW6zk5RURHCw8NruxYiIiKiWlejsPOXv/wFW7Zsqe1aiIiIiGpdjQ5j3bx5E+vWrcMXX3yB4OBgODo6Ws1ftmxZrRRHRERE9KBqFHbOnj2LRx55BABw7tw5q3k8sZWIiIjsSY3CzsGDB2u7DiIiIqI6UaNzdoiIiIgaihrt2enXr989D1d9+eWXNS6IiIiIqDbVKOyUnq9T6tatW0hMTMS5c+fK3SCUiIiIyJZqFHaWL19eYXt0dDQsFssDFURERERUm2r1nJ0//vGPvC8WERER2ZVaDTtff/01nJ2da3ORRERERA+kRoexRo8ebfVcRGAymXDq1Cm89tprtVIYERERUW2oUdjR6/VWzxs1aoT27dvjH//4BwYPHlwrhRERERHVhhqFnQ0bNtR2HURERER1okZhp9Tp06eRnJwMjUaDoKAgdOvWrbbqIiIiIqoVNTpBOTs7G/3790doaCheeOEFTJs2DSEhIRgwYAB+/vnnKi8nJiYGoaGh8PDwgLe3N0aNGoWUlBSrPiKC6Oho+Pn5wcXFBX379sX58+et+hQWFiIqKgpeXl5wc3PDiBEjcOXKlZpsGhEREalMjcJOVFQUcnNzcf78efz666/IycnBuXPnkJubixdeeKHKyzl8+DCef/55nDhxAnFxcbh9+zYGDx6M/Px8pc+SJUuwbNkyrFy5EgkJCTAYDBg0aBDy8vKUPtOnT8fOnTuxdetWHD16FBaLBcOHD0dxcXFNNo+IiIjURGpAp9PJyZMny7V/8803otfra7JIERHJzs4WAHL48GERESkpKRGDwSCLFy9W+ty8eVP0er2sXbtWRESuX78ujo6OsnXrVqXPjz/+KI0aNZJ9+/ZVab1ms1kAiNlsrnHtagPgIZ1cBZDfJtc6Xx+VYbGI8gZYLLauhojsXFU/v2u0Z6ekpASOjo7l2h0dHVFSUlKTRQIAzGYzAMDT0xMAkJGRgaysLKtveGm1WkREROD48eMA7pw3dOvWLas+fn5+6Ny5s9KnrMLCQuTm5lpNREREpE41Cjv9+/fHiy++iKtXryptP/74I1566SUMGDCgRoWICGbMmIHevXujc+fOAICsrCwAgI+Pj1VfHx8fZV5WVhacnJzQtGnTSvuUFRMTA71er0xGo7FGNRMREZH9q1HYWblyJfLy8hAQEID/+q//Qps2bRAYGIi8vDy8++67NSpk2rRpOHv2LP71r3+Vm1f2Dusics+7rt+vz9y5c2E2m5UpMzOzRjUTERGR/avRV8+NRiPOnDmDuLg4fPfddxARBAUFYeDAgTUqIioqCrt378ZXX32Fli1bKu0GgwHAnb03vr6+Snt2drayt8dgMKCoqAg5OTlWe3eys7MRHh5e4fq0Wi20Wm2NaiUiIqKGpVp7dr788ksEBQUp57gMGjQIUVFReOGFFxAaGopOnTrhyJEjVV6eiGDatGnYsWMHvvzySwQGBlrNDwwMhMFgQFxcnNJWVFSEw4cPK0EmJCQEjo6OVn1MJhPOnTtXadghIiKih0e19uysWLECkydPhk6nKzdPr9fjb3/7G5YtW4Y+ffpUaXnPP/88tmzZgl27dsHDw0M5x0av18PFxQUajQbTp0/HokWL0LZtW7Rt2xaLFi2Cq6srnn32WaXvpEmTMHPmTDRr1gyenp6YNWsWunTpUuM9TURERKQi1fmKV6tWreTChQuVzk9OThaj0Vjl5aGSr+Nu2LBB6VNSUiILFiwQg8EgWq1WHn/8cUlKSrJaTkFBgUybNk08PT3FxcVFhg8fLpcvX65yHfzqeXmVvTfqn/jVc5viV8+JqBqq+vmtERGpSigCAGdnZ5w7dw5t2rSpcP7333+PLl26oKCgoKqLtAu5ubnQ6/Uwm80V7rV6GN3vBHD1cgVQelFLNwA36nRt1fj1ezjk5wPu7nceWyyAm5tt6yEiu1bVz+9qnbPTokULJCUlVTr/7NmzVicSExEREdlatcLO7373O8yfPx83b94sN6+goAALFizA8OHDa604IiIiogdVrcNYP/30E7p37w4HBwdMmzYN7du3h0ajQXJyMlatWoXi4mKcOXOm3EUA7R0PY5XHw1gAD2PZAA9jEVE1VPXzu1rfxvLx8cHx48fx97//HXPnzlX+UGs0GgwZMgSrV69ucEGHiIiI1K3aFxX09/fH3r17kZOTg++//x4igrZt25a7XQMR3V9D3IPGvVFE1NDU6ArKANC0aVOEhobWZi1EREREta5G98YiIiIiaigYdoiIiEjVGHaIiIhI1Rh2iIiISNUYdoiIiEjVGHaIiIhI1Rh2iIiISNUYdoiIiEjVGHaIiIhI1Rh2iIiISNUYdoiIiEjVGHaIiIhI1Rh2iIiISNUYdoiIiEjVGHaIiIhI1Rh2iIiISNUYdoiIiEjVGHaIiIhI1Rh2iIiISNUYdoiIiEjVGHaIiIhI1Rh2iIiISNUYdoiIiEjVGHaIiIhI1Rh2iIiISNUYdoiIiEjVGHaIiIhI1Wwadr766is88cQT8PPzg0ajwSeffGI1f+LEidBoNFZTr169rPoUFhYiKioKXl5ecHNzw4gRI3DlypV63AoiIiKyZzYNO/n5+ejatStWrlxZaZ+hQ4fCZDIp0969e63mT58+HTt37sTWrVtx9OhRWCwWDB8+HMXFxXVdPhERETUAjW258mHDhmHYsGH37KPVamEwGCqcZzabsX79enz44YcYOHAgAGDz5s0wGo344osvMGTIkApfV1hYiMLCQuV5bm5uDbeAiIiI7J3dn7Nz6NAheHt7o127dpg8eTKys7OVeadPn8atW7cwePBgpc3Pzw+dO3fG8ePHK11mTEwM9Hq9MhmNxjrdBiIiIrIduw47w4YNw0cffYQvv/wSS5cuRUJCAvr376/slcnKyoKTkxOaNm1q9TofHx9kZWVVuty5c+fCbDYrU2ZmZp1uBxEREdmOTQ9j3c+4ceOUx507d0aPHj3g7++PPXv2YPTo0ZW+TkSg0Wgqna/VaqHVamu1ViIiIrJPdr1npyxfX1/4+/sjLS0NAGAwGFBUVIScnByrftnZ2fDx8bFFiURERGRnGlTYuXbtGjIzM+Hr6wsACAkJgaOjI+Li4pQ+JpMJ586dQ3h4uK3KJCIiIjti08NYFosF33//vfI8IyMDiYmJ8PT0hKenJ6KjozFmzBj4+vri0qVLmDdvHry8vPDkk08CAPR6PSZNmoSZM2eiWbNm8PT0xKxZs9ClSxfl21lERET0cLNp2Dl16hT69eunPJ8xYwYAIDIyEmvWrEFSUhI2bdqE69evw9fXF/369cO2bdvg4eGhvGb58uVo3Lgxxo4di4KCAgwYMACxsbFwcHCo9+0hIiIi+6MREbF1EbaWm5sLvV4Ps9kMnU5n63Lswr1O8FY3VwD5vz12A3DDhrXYpzr9k5GfD7i733lssQBubnW3LiJq8Kr6+d2gztkhIiIiqi6GHSIiIlI1hh0iIiJSNYYdIiIiUjWGHSIiIlI1hh0iIiJSNYYdIiIiUjWGHSIiIlI1hh0iIiJSNYYdIiIiUjWGHSIiIlI1hh0iIiJSNYYdIiIiUjWGHSIiIlI1hh0iIiJSNYYdIiIiUjWGHSIiIlI1hh0iIiJSNYYdIiIiUjWGHSIiIlI1hh0iIiJSNYYdIiIiUjWGHSIiIlI1hh0iIiJSNYYdIiIiUjWGHSIiIlI1hh0iIiJSNYYdIiIiUjWGHSIiIlI1hh0iIiJSNYYdIiIiUjWGHSIiIlI1hh0iIiJSNZuGna+++gpPPPEE/Pz8oNFo8Mknn1jNFxFER0fDz88PLi4u6Nu3L86fP2/Vp7CwEFFRUfDy8oKbmxtGjBiBK1eu1ONWEBERkT2zadjJz89H165dsXLlygrnL1myBMuWLcPKlSuRkJAAg8GAQYMGIS8vT+kzffp07Ny5E1u3bsXRo0dhsVgwfPhwFBcX19dmEBERkR3TiIjYuggA0Gg02LlzJ0aNGgXgzl4dPz8/TJ8+HXPmzAFwZy+Oj48P3nzzTfztb3+D2WxG8+bN8eGHH2LcuHEAgKtXr8JoNGLv3r0YMmRIhesqLCxEYWGh8jw3NxdGoxFmsxk6na5uN7SB0Gg0ti7BRlwB5P/22A3ADRvWYp/q9E9Gfj7g7n7nscUCuLnV3bqIqMHLzc2FXq+/7+e33Z6zk5GRgaysLAwePFhp02q1iIiIwPHjxwEAp0+fxq1bt6z6+Pn5oXPnzkqfisTExECv1yuT0Wiss+3QaDQNciIiIlILuw07WVlZAAAfHx+rdh8fH2VeVlYWnJyc0LRp00r7VGTu3Lkwm83KlJmZWcvVExERkb1obOsC7qfsXgYRue+eh/v10Wq10Gq1tVIfERER2Te73bNjMBgAoNwemuzsbGVvj8FgQFFREXJycirtQ0RERA83uw07gYGBMBgMiIuLU9qKiopw+PBhhIeHAwBCQkLg6Oho1cdkMuHcuXNKHyIiInq42fQwlsViwffff688z8jIQGJiIjw9PdGqVStMnz4dixYtQtu2bdG2bVssWrQIrq6uePbZZwEAer0ekyZNwsyZM9GsWTN4enpi1qxZ6NKlCwYOHGirzSIiIiI7YtOwc+rUKfTr1095PmPGDABAZGQkYmNjMXv2bBQUFGDq1KnIyclBz549ceDAAXh4eCivWb58ORo3boyxY8eioKAAAwYMQGxsLBwcHOp9e4iIiMj+2M11dmypqt/Trwl+jbuh4XV27ofX2SEie9Hgr7NDREREVBsYdoiIiEjVGHaIiIhI1Rh2iIiISNUYdoiIiEjVGHaIiIhI1Rh2iIiISNUYdoiIiEjVGHaIiIhI1Rh2iIiISNUYdoiIiEjVGHaIiIhI1Rh2iIiISNUYdoiIiEjVGHaIiIhI1Rh2iIiISNUYdoiIiEjVGHaIiIhI1Rh2iIiISNUYdoiIiEjVGHaIiIhI1Rh2iIiISNUYdoiIiEjVGHaIiIhI1Rh2iIiISNUYdoiIiEjVGHaIiIhI1Rh2iIiISNUYdoiIiEjVGHaIiIhI1RrbugAialg0Gk2dLdsVQP5vj93c3XGjlpYrIrW0JCJqiLhnh4iIiFTNrsNOdHQ0NBqN1WQwGJT5IoLo6Gj4+fnBxcUFffv2xfnz521YMREREdkbuw47ANCpUyeYTCZlSkpKUuYtWbIEy5Ytw8qVK5GQkACDwYBBgwYhLy/PhhUTERGRPbH7sNO4cWMYDAZlat68OYA7e3VWrFiBV155BaNHj0bnzp2xceNG3LhxA1u2bLFx1URERGQv7D7spKWlwc/PD4GBgXj66adx8eJFAEBGRgaysrIwePBgpa9Wq0VERASOHz9+z2UWFhYiNzfXaiIiIiJ1suuw07NnT2zatAn79+/He++9h6ysLISHh+PatWvIysoCAPj4+Fi9xsfHR5lXmZiYGOj1emUyGo11tg1ERERkW3YddoYNG4YxY8agS5cuGDhwIPbs2QMA2Lhxo9Kn7NdgReS+X42dO3cuzGazMmVmZtZ+8URERGQX7DrslOXm5oYuXbogLS1N+VZW2b042dnZ5fb2lKXVaqHT6awmIiIiUqcGFXYKCwuRnJwMX19fBAYGwmAwIC4uTplfVFSEw4cPIzw83IZVEhERkT2x6ysoz5o1C0888QRatWqF7Oxs/M///A9yc3MRGRkJjUaD6dOnY9GiRWjbti3atm2LRYsWwdXVFc8++6ytSyciIiI7Yddh58qVK3jmmWfwyy+/oHnz5ujVqxdOnDgBf39/AMDs2bNRUFCAqVOnIicnBz179sSBAwfg4eFh48qJiIjIXmiEN41Bbm4u9Ho9zGZzrZ+/U5f3EaK6YHV3JqDW7s5EVVFXo88/c0TqVNXP7wZ1zg4RERFRdTHsEBERkaox7BAREZGqMewQERGRqjHsEBERkaox7BAREZGqMewQERGRqjHsEBERkaox7BAREZGqMewQERGRqjHsEBERkaox7BAREZGqMewQERGRqjHsEBERkaox7BAREZGqMewQERGRqjHsEBERkaox7BAREZGqMewQERGRqjHsEBERkao1tnUBRER1TaPR2LqEahMRW5dApBrcs0NERESqxrBDREREqsawQ0RERKrGsENERESqxrBDREREqsawQ0RERKrGsENERESqxrBDREREqsawQ0RERKrGsENERESqxttFEBHZId7igqj2cM8OERERqZpqws7q1asRGBgIZ2dnhISE4MiRI7YuiYiIiOyAKsLOtm3bMH36dLzyyiv49ttv0adPHwwbNgyXL1+2dWlERERkYxpRwUHWnj17onv37lizZo3S1rFjR4waNQoxMTH3fX1ubi70ej3MZjN0Ol2t1tYQj7s/3FwB5P/22A3ADRvW8vDh6FN9U8FH4EOtqp/fDf4E5aKiIpw+fRovv/yyVfvgwYNx/PjxCl9TWFiIwsJC5bnZbAZwZ9DoYScAcu96TPWJo0/1jf+Q1o/Sz9naVvq5fb/Q2uDDzi+//ILi4mL4+PhYtfv4+CArK6vC18TExGDhwoXl2o1GY53USA1JAQC9rYt4aHH0idRJr6/b3+y8vLx7rqPBh51SZdO5iFSa2OfOnYsZM2Yoz0tKSvDrr7+iWbNmtZbyc3NzYTQakZmZWeuHxh5mHNe6wXGtGxzXusFxrRsNcVxFBHl5efDz87tnvwYfdry8vODg4FBuL052dna5vT2ltFottFqtVVuTJk3qpD6dTtdgfmgaEo5r3eC41g2Oa93guNaNhjauVdlr1OC/jeXk5ISQkBDExcVZtcfFxSE8PNxGVREREZG9aPB7dgBgxowZmDBhAnr06IGwsDCsW7cOly9fxpQpU2xdGhEREdmYKsLOuHHjcO3aNfzjH/+AyWRC586dsXfvXvj7+9usJq1WiwULFpQ7XEYPhuNaNziudYPjWjc4rnVDzeOqiuvsEBEREVWmwZ+zQ0RERHQvDDtERESkagw7REREpGoMO0RERKRqDDu15I033kB4eDhcXV2rfIFCEUF0dDT8/Pzg4uKCvn374vz583VbaAOUk5ODCRMmQK/XQ6/XY8KECbh+/fo9X/PTTz9h4sSJ8PPzg6urK4YOHYq0tLT6KbiBqMm4WiwWTJs2DS1btoSLiws6duxodQNeqtm4ajSaCqe33nqrfopuAGoyrgCQnJyMESNGQK/Xw8PDA7169cLly5frvuAGoibjOnHixHI/q7169aqfgmuIYaeWFBUV4Q9/+AP+/ve/V/k1S5YswbJly7By5UokJCTAYDBg0KBByMvLq8NKG55nn30WiYmJ2LdvH/bt24fExERMmDCh0v4iglGjRuHixYvYtWsXvv32W/j7+2PgwIHIz8+v9HUPm+qOKwC89NJL2LdvHzZv3ozk5GS89NJLiIqKwq5du+qpavtXk3E1mUxW0wcffACNRoMxY8bUU9X2rybjmp6ejt69e6NDhw44dOgQ/vOf/+C1116Ds7NzPVVt/2oyrgAwdOhQq5/ZvXv31kO1D0CoVm3YsEH0ev19+5WUlIjBYJDFixcrbTdv3hS9Xi9r166twwoblgsXLggAOXHihNL29ddfCwD57rvvKnxNSkqKAJBz584pbbdv3xZPT09577336rzmhqAm4yoi0qlTJ/nHP/5h1da9e3d59dVX66zWhqSm41rWyJEjpX///nVRYoNU03EdN26c/PGPf6yPEhukmo5rZGSkjBw5sh4qrD3cs2MjGRkZyMrKwuDBg5U2rVaLiIgIHD9+3IaV2Zevv/4aer0ePXv2VNp69eoFvV5f6TgVFhYCgNV/bw4ODnBycsLRo0frtuAGoibjCgC9e/fG7t278eOPP0JEcPDgQaSmpmLIkCH1Ubbdq+m43u2nn37Cnj17MGnSpLoqs8GpybiWlJRgz549aNeuHYYMGQJvb2/07NkTn3zyST1Vbf8e5Of10KFD8Pb2Rrt27TB58mRkZ2fXdbkPhGHHRkpvXFr2ZqU+Pj7lbmr6MMvKyoK3t3e5dm9v70rHqUOHDvD398fcuXORk5ODoqIiLF68GFlZWTCZTHVdcoNQk3EFgHfeeQdBQUFo2bIlnJycMHToUKxevRq9e/euy3IbjJqO6902btwIDw8PjB49urbLa7BqMq7Z2dmwWCxYvHgxhg4digMHDuDJJ5/E6NGjcfjw4bouuUGo6c/rsGHD8NFHH+HLL7/E0qVLkZCQgP79+yv/aNojhp17iI6OrvTEwdLp1KlTD7QOjUZj9VxEyrWpUXXGtqLxuNc4OTo6Yvv27UhNTYWnpydcXV1x6NAhDBs2DA4ODnW6XbZWl+MK3Ak7J06cwO7du3H69GksXboUU6dOxRdffFFn22QP6npc7/bBBx9g/PjxD8V5JXU5riUlJQCAkSNH4qWXXsIjjzyCl19+GcOHD8fatWvrbqPsQF3/vI4bNw6///3v0blzZzzxxBP4/PPPkZqaij179tTZNj0oVdwbq65MmzYNTz/99D37BAQE1GjZBoMBwJ1k7evrq7RnZ2eX29ujRlUd27Nnz+Knn34qN+/nn3++5ziFhIQgMTERZrMZRUVFaN68OXr27IkePXo8cO32rC7HtaCgAPPmzcPOnTvx+9//HgAQHByMxMRE/O///i8GDhz44Btgp+r657XUkSNHkJKSgm3bttW41oakLsfVy8sLjRs3RlBQkFV7x44dVX84u75+Xkv5+vrC39/frr/xyrBzD15eXvDy8qqTZQcGBsJgMCAuLg7dunUDcOcbXYcPH8abb75ZJ+u0J1Ud27CwMJjNZpw8eRKPPvooAOCbb76B2WxGeHj4fV+v1+sBAGlpaTh16hRef/31ByvcztXluN66dQu3bt1Co0bWO4QdHByU/6LVqr5+XtevX4+QkBB07dr1gWtuCOpyXJ2cnBAaGoqUlBSr9tTUVJveJLo+1NfPa6lr164hMzPT6h93u2PDk6NV5YcffpBvv/1WFi5cKO7u7vLtt9/Kt99+K3l5eUqf9u3by44dO5TnixcvFr1eLzt27JCkpCR55plnxNfXV3Jzc22xCXZr6NChEhwcLF9//bV8/fXX0qVLFxk+fLhVn7Jj+/HHH8vBgwclPT1dPvnkE/H395fRo0fXd+l2rSbjGhERIZ06dZKDBw/KxYsXZcOGDeLs7CyrV6+u7/LtVk3GVUTEbDaLq6urrFmzpj7LbTBqMq47duwQR0dHWbdunaSlpcm7774rDg4OcuTIkfou325Vd1zz8vJk5syZcvz4ccnIyJCDBw9KWFiYtGjRwq4/uxh2aklkZKQAKDcdPHhQ6QNANmzYoDwvKSmRBQsWiMFgEK1WK48//rgkJSXVf/F27tq1azJ+/Hjx8PAQDw8PGT9+vOTk5Fj1KTu2b7/9trRs2VIcHR2lVatW8uqrr0phYWH9Fm7najKuJpNJJk6cKH5+fuLs7Czt27eXpUuXSklJSf0Wb8dqMq4iIv/85z/FxcVFrl+/Xn/FNiA1Hdf169dLmzZtxNnZWbp27SqffPJJ/RXdAFR3XG/cuCGDBw+W5s2bK39fIyMj5fLly/VffDVoRERstFOJiIiIqM7x21hERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RUazQaDT755BO7WY6t3bhxA2PGjIFOp4NGo8H169crbAsICMCKFSuqtMzY2Fg0adKkTusmUhuGHaIGKisrC1FRUWjdujW0Wi2MRiOeeOIJxMfH27q0KouOjsYjjzxSrt1kMmHYsGH1X1At27hxI44cOYLjx4/DZDJBr9dX2JaQkIC//vWvVVrmuHHjkJqaWqt1Hjp0SAleRGrEu54TNUCXLl3CY489hiZNmmDJkiUIDg7GrVu3sH//fjz//PP47rvvarTcW7duwdHRscrtdcVgMNTbuupSeno6OnbsiM6dO9+zrXnz5lVepouLC1xcXGq1TiLVs/XNuYio+oYNGyYtWrQQi8VSbt7dN/H74YcfZMSIEeLm5iYeHh7yhz/8QbKyspT5CxYskK5du8r69eslMDBQNBqNlJSUCABZs2aNjBgxQlxdXWX+/PkiIrJ7927p3r27aLVaCQwMlOjoaLl165ayPACyc+dO5fns2bOlbdu24uLiIoGBgfLqq69KUVGRiIhs2LCh3I1zS282WHY5Z8+elX79+omzs7N4enrK5MmTJS8vT5kfGRkpI0eOlLfeeksMBoN4enrK1KlTlXVVZteuXRISEiJarVaaNWsmTz75pDLv119/lQkTJkiTJk3ExcVFhg4dKqmpqVavP3bsmPTp00ecnZ2lZcuWEhUVpbwnERERVtsWERFRYZuIiL+/vyxfvtzqPZw8ebJ4e3uLVquVTp06yaeffqqMm16vt6qjKu/Le++9J6NGjRIXFxdp06aN7Nq1S0REMjIyyr0PkZGR9xw3ooaGYYeogbl27ZpoNBpZtGjRPfuVlJRIt27dpHfv3nLq1Ck5ceKEdO/eXfmAFbkTdtzc3GTIkCFy5swZ+c9//qOEHW9vb1m/fr2kp6fLpUuXZN++faLT6SQ2NlbS09PlwIEDEhAQINHR0cryyoaU119/XY4dOyYZGRmye/du8fHxkTfffFNE7tw9eebMmdKpUycxmUxiMpnkxo0b5ZaTn58vfn5+Mnr0aElKSpL4+HgJDAy0+kCOjIwUnU4nU6ZMkeTkZPn000/F1dVV1q1bV+n4fPbZZ+Lg4CDz58+XCxcuSGJiorzxxhvK/BEjRkjHjh3lq6++ksTERBkyZIi0adNGCVBnz54Vd3d3Wb58uaSmpsqxY8ekW7duMnHiROV9mjx5soSFhYnJZJJr165V2CZiHXaKi4ulV69e0qlTJzlw4ICkp6fLp59+Knv37hWR8mGnqu9Ly5YtZcuWLZKWliYvvPCCuLu7y7Vr1+T27duyfft2ASApKSliMpl453VSHYYdogbmm2++EQCyY8eOe/Y7cOCAODg4yOXLl5W28+fPCwA5efKkiNwJO46OjpKdnW31WgAyffp0q7Y+ffqUC1gffvih+Pr6Wr3u7rBT1pIlSyQkJER5Xrpnqay7l7Nu3Tpp2rSp1V6sPXv2SKNGjZS9VJGRkeLv7y+3b99W+vzhD3+QcePGVVpLWFiYjB8/vsJ5qampAkCOHTumtP3yyy/i4uIiH3/8sYiITJgwQf76179ave7IkSPSqFEjKSgoEBGRF1980SpcVtZ2d9jZv3+/NGrUSFJSUiqsrWzYqer78uqrryrPLRaLaDQa+fzzz0VE5ODBgwLAaq8gkZrwnB2iBkZEANz5xtK9JCcnw2g0wmg0Km1BQUFo0qQJkpOTERoaCgDw9/ev8JyRHj16WD0/ffo0EhIS8MYbbyhtxcXFuHnzJm7cuAFXV9dyy/j3v/+NFStW4Pvvv4fFYsHt27eh0+mqvrG/bUfXrl3h5uamtD322GMoKSlBSkoKfHx8AACdOnWCg4OD0sfX1xdJSUmVLjcxMRGTJ0+udJ2NGzdGz549lbZmzZqhffv2SE5OBnBnPL7//nt89NFHSh8RQUlJCTIyMtCxY8dqbefddbVs2RLt2rWrUv+qvi/BwcHKfDc3N3h4eCA7O7tGNRI1NAw7RA1M27ZtodFokJycjFGjRlXaT0QqDERl2+8OEXcr215SUoKFCxdi9OjR5fo6OzuXaztx4gSefvppLFy4EEOGDIFer8fWrVuxdOnSSmuuznYA1oGv7AnUGo0GJSUllS73Xif5lgbKe9VSUlKCv/3tb3jhhRfK9WvVqlWly76f6p58XNX3pbrjQ6QmDDtEDYynpyeGDBmCVatW4YUXXigXSq5fv44mTZogKCgIly9fRmZmprJ358KFCzCbzTXa69C9e3ekpKSgTZs2Vep/7Ngx+Pv745VXXlHafvjhB6s+Tk5OKC4uvudygoKCsHHjRuTn5yvbeuzYMTRq1KjKez8qEhwcjPj4ePzpT3+qcJ23b9/GN998g/DwcADAtWvXkJqaqoxd9+7dcf78+SqPR3XqunLlClJTU6u0fdV9Xyri5OQEAPd9L4gaKl5nh6gBWr16NYqLi/Hoo49i+/btSEtLQ3JyMt555x2EhYUBAAYOHIjg4GCMHz8eZ86cwcmTJ/Hcc88hIiKi3CGqqpg/fz42bdqE6OhonD9/HsnJydi2bRteffXVCvu3adMGly9fxtatW5Geno533nkHO3futOoTEBCAjIwMJCYm4pdffkFhYWG55YwfPx7Ozs6IjIzEuXPncPDgQURFRWHChAnKIayaWLBgAf71r39hwYIFSE5ORlJSEpYsWQLgzt6zkSNHYvLkyTh69Cj+85//4I9//CNatGiBkSNHAgDmzJmDr7/+Gs8//zwSExORlpaG3bt3IyoqqsY1AUBERAQef/xxjBkzBnFxccjIyMDnn3+Offv2Vdi/uu9LRfz9/aHRaPDZZ5/h559/hsVieaBtILI3DDtEDVBgYCDOnDmDfv36YebMmejcuTMGDRqE+Ph4rFmzBsD/XYW4adOmePzxxzFw4EC0bt0a27Ztq9E6hwwZgs8++wxxcXEIDQ1Fr169sGzZMvj7+1fYf+TIkXjppZcwbdo0PPLIIzh+/Dhee+01qz5jxozB0KFD0a9fPzRv3hz/+te/yi3H1dUV+/fvx6+//orQ0FA89dRTGDBgAFauXFmj7SjVt29f/L//9/+we/duPPLII+jfvz+++eYbZf6GDRsQEhKC4cOHIywsDCKCvXv3KoeDgoODcfjwYaSlpaFPnz7o1q0bXnvtNfj6+j5QXQCwfft2hIaG4plnnkFQUBBmz55d6V6X6r4vFWnRogUWLlyIl19+GT4+Ppg2bdoDbwORPdFIZQeniYiIiFSAe3aIiIhI1Rh2iIiISNUYdoiIiEjVGHaIiIhI1Rh2iIiISNUYdoiIiEjVGHaIiIhI1Rh2iIiISNUYdoiIiEjVGHaIiIhI1Rh2iIiISNX+P1Uf37DDp+snAAAAAElFTkSuQmCC", + "text/plain": [ + "array([[ 1.08149552, -0.75473902],\n", + " [-0.15064708, -0.88421426],\n", + " [ 0.03331803, 0.51951422],\n", + " [ 0.58669726, 0.51967288],\n", + " [ 0.42511267, 0.47888931],\n", + " [-0.05371048, 0.15998988],\n", + " [ 0.13428352, 0.24026582],\n", + " [-0.13976786, 0.57151718],\n", + " [-0.74081486, 0.22763649],\n", + " [ 0.02037839, -0.36898269]])" + ] + }, + "execution_count": 252, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "subset " + ] + }, + { + "cell_type": "code", + "execution_count": 253, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 1.08149552, -0.75473902],\n", + " [-0.15064708, -0.88421426],\n", + " [ 0.03331803, 0.51951422],\n", + " [ 0.58669726, 0.51967288],\n", + " [ 0.42511267, 0.47888931],\n", + " [-0.05371048, 0.15998988],\n", + " [ 0.13428352, 0.24026582],\n", + " [-0.13976786, 0.57151718],\n", + " [-0.74081486, 0.22763649],\n", + " [ 0.02037839, -0.36898269]])" + ] + }, + "execution_count": 253, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "nsubset=10\n", + "\n", + "subset" + ] + }, + { + "cell_type": "code", + "execution_count": 254, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABICklEQVR4nO3de3xMd/4/8NckcptcJoLciCRWqLikLlkSNOIWWkVpqapGV7VWxSq+VKvE2tLqurR1W7QJ7Vq6RauoS9NSFZegqSCCiIZKGnWZSERC5v37w+b8TG6SmDGT4/V8PKYP8zmfOfN+z+HMq+ecmdGIiICIiIhIpWwsXQARERGROTHsEBERkaox7BAREZGqMewQERGRqjHsEBERkaox7BAREZGqMewQERGRqtWxdAHWwGAw4NKlS3B1dYVGo7F0OURERFQFIoIbN27A19cXNjYVH79h2AFw6dIl+Pn5WboMIiIiqoELFy6gUaNGFS5n2AHg6uoK4O6L5ebmZuFqiKxMfj7yff8EX2QDAC5dApydLVwTERGA3Nxc+Pn5Ke/jFWHYAZRTV25ubgw7RKXZ2sIWGgB3/224uTHsEJF1ud8lKLxAmYiIiFSNYYeIiIhUjWGHiIiIVI3X7BBRrVFcXIzbt29bugwiekjs7Oxga2v7wOth2CEiqyciyM7OxvXr1y1dChE9ZO7u7vD29n6g78Fj2CEiq1cSdDw9PaHVavnln0SPABHBzZs3kZOTAwDw8fGp8boYdojIqhUXFytBp169epYuh4geIicnJwBATk4OPD09a3xKixcoE5FVK7lGR6vVWrgSIrKEkn/7D3K9HsMOEdUKPHVF9Ggyxb99hh0iIiJSNYYdIiIiUjWGHSIiemjOnz8PjUaD5ORkq1iPNcjOzkavXr3g7OwMd3f3Csc0Gg2++uqrKq0zNjYWjz/+uFnqrY0YdoiIzECj0VR6GzlypKVLrDVGjhyJgQMHGo35+fkhKysLrVq1skxRJrRw4UJkZWUhOTkZp0+frnAsKysLffv2rdI6J0+ejISEBJPWGR8frwSv2oYfPSciMoOsrCzlz+vXr8eMGTOQlpamjJV8pLbE7du3YWdn99DqexBFRUWwt7cvM/4we7C1tYW3t/dDeS5zS09PR/v27REUFFTpWHX6dXFxgYuLi0nrrM14ZIeIah8RID//4d9Eqlyit7e3ctPpdNBoNMr9W7duwd3dHV988QW6desGR0dHfP755+Weeli0aBECAgKMxuLi4tCiRQs4Ojrisccew9KlSyutxWAw4P3330fTpk3h4OCAxo0b491331WWp6SkoHv37nByckK9evXw6quvIi8vT1lecmRl7ty58PX1RbNmzZTTSKV7qG59xcXFGDVqFAIDA+Hk5ITmzZvjww8/VJbHxsZi9erV+Prrr5WjYrt37y73NNaePXvw5z//GQ4ODvDx8cGbb76JO3fuKMu7deuG8ePHY8qUKfDw8IC3tzdiY2Mrfe0A4NNPP0XLli2V9Y4bN05ZlpmZiQEDBsDFxQVubm4YMmQIfv/9d6PHf/PNN2jfvj0cHR3RpEkTzJo1S6krICAAGzZswJo1a5QjfuWNAWVPY128eBHPP/88PDw84OzsjA4dOuDgwYPK61b671Jl26Xk9dy4cSMiIyOh1WoREhKC/fv3AwB2796Nl19+GXq9XtkOVXntrIZY0Jw5c6RDhw7i4uIiDRo0kAEDBsipU6eM5kRHRwsAo1vHjh2N5ty6dUvGjRsn9erVE61WK08//bRcuHChynXo9XoBIHq93iR9EalKXp7kQSt33+lFAG2Zf5PmvPn7+8u3334rSUlJyu3Ijz/KPQU9vFteXo1ewri4ONHpdMr9jIwMASABAQGyYcMGOXfunPz2228yc+ZMCQkJMXrswoULxd/fX7m/YsUK8fHxUR63YcMG8fDwkPj4+Aqff8qUKVK3bl2Jj4+Xs2fPyt69e2XlypUiIpKfny++vr4yaNAgSUlJkYSEBAkMDJTo6Gjl8dHR0eLi4iIjRoyQ48ePS0pKSoU93K++ksf9/PPPIiJSVFQkM2bMkEOHDsm5c+fk888/F61WK+vXrxcRkRs3bsiQIUOkT58+kpWVJVlZWVJYWFhmPRcvXhStVitjx46V1NRU2bRpk9SvX19mzpyp9BERESFubm4SGxsrp0+fltWrV4tGo5GdO3dW+NotXbpUHB0dZdGiRZKWliaHDh2ShQsXioiIwWCQtm3bSpcuXeTw4cNy4MABadeunURERCiP3759u7i5uUl8fLykp6fLzp07JSAgQGJjY0VEJCcnR/r06SNDhgyRrKwsuX79erljIiIAZNOmTcrr0qRJE+natavs3btXzpw5I+vXr5fExEQRkTJ/l6q6XR577DHZsmWLpKWlybPPPiv+/v5y+/ZtKSwslEWLFombm5uyHW7cuFHh62ZKBQUFcvLkSSkoKCizrKrv3xYNO1FRURIXFyfHjx+X5ORkeeqpp6Rx48aSd88OJTo62ugveVZWlly5csVoPWPGjJGGDRvKrl275OjRoxIZGSkhISFy586dKtXBsENUCYYds4WdRYsWGc2rStjx8/OTtWvXGs2ZPXu2hIWFlfvcubm54uDgoISb0lasWCF169Y12u9u3bpVbGxsJDs7W0Tu7oe9vLyksLDwvj3cr77SIaU8Y8eOlcGDByv3o6OjZcCAAUZzSq/nrbfekubNm4vBYFDmLFmyRFxcXKS4uFhE7oadLl26GK0nNDRUpk6dWmEtvr6+8vbbb5e7bOfOnWJrayuZmZnK2IkTJwSAHDp0SEREunbtKnPmzDF63GeffSY+Pj7K/QEDBhiFy4rG7g07//rXv8TV1bXM+2GJ0n+XqrpdVq1aVaaX1NRUESn79/hhMUXYseg1O9u3bze6HxcXB09PTxw5cgRPPPGEMu7g4FDhuUq9Xo9PPvkEn332GXr27AkA+Pzzz+Hn54fvvvsOUVFR5muAiCzC4OiIoz/+WOX57dq1M80Tm/hbnDt06FCt+ZcvX8aFCxcwatQojB49Whm/c+cOdDpduY9JTU1FYWEhevToUeHykJAQODs7K2OdO3eGwWBAWloavLy8AACtW7cu9zqde3uoSX0AsHz5cqxatQq//vorCgoKUFRUVO1PEqWmpiIsLMzoC+g6d+6MvLw8XLx4EY0bNwYAtGnTxuhxPj4+ym8vlZaTk4NLly5V+tr5+fnBz89PGQsODoa7uztSU1MRGhqKI0eOICkpyei0YXFxMW7duoWbN2/W+JvBk5OT0bZtW3h4eNx3bnW2y72vT8lvUeXk5OCxxx6rUZ3WwqouUNbr9QBQZuPt3r0bnp6ecHd3R0REBN599114enoCAI4cOYLbt2+jd+/eynxfX1+0atUKiYmJ5YadwsJCFBYWKvdzc3PN0Q4RmYtGA0OpC3wrdc8buTVxLlWXjY0NpNR1Qfd+Rb7BYAAArFy5Eh07djSaV9FvBpW+ELo0EanwG2rvHS9da3njNanviy++wBtvvIH58+cjLCwMrq6u+OCDD5RrT6qqvD5KXst7x0tfQK3RaJS6S6vpa3fvuMFgwKxZszBo0KAy8xwdHStdf2XuV9u9qrNd7n197u2htrOasCMimDhxIrp06WL0UcK+ffviueeeg7+/PzIyMvDOO++ge/fuOHLkCBwcHJCdnQ17e3vUrVvXaH1eXl7Izs4u97nmzp2LWbNmmbUfIqLqatCgAbKzs43eLO+9ANfLywsNGzbEuXPnMHz48CqtMygoCE5OTkhISMArr7xSZnlwcDBWr16N/Px8Jbjs27cPNjY2aNasWbXqr0l9e/fuRXh4OMaOHauMpaenG82xt7dHcXFxpesJDg7Ghg0bjF67xMREuLq6omHDhtXqo4SrqysCAgKQkJCAyMjIcp8zMzMTFy5cUI7unDx5Enq9Hi1atABw96hiWloamjZtWqMaKtKmTRusWrUKV69eve/RnZpsl/JUZTtYK6sJO+PGjcOxY8fw008/GY0PHTpU+XOrVq3QoUMH+Pv7Y+vWreUm5RKV/d/KtGnTMHHiROV+bm6u0WFIIiJL6NatGy5fvox58+bh2Wefxfbt2/Htt9/Czc1NmRMbG4vx48fDzc0Nffv2RWFhIQ4fPoxr164Z7ddKODo6YurUqZgyZQrs7e3RuXNnXL58GSdOnMCoUaMwfPhwzJw5E9HR0YiNjcXly5cRExODESNGKKewqqO69TVt2hRr1qzBjh07EBgYiM8++wxJSUkIDAxU5gQEBGDHjh1IS0tDvXr1yj0lNnbsWCxatAgxMTEYN24c0tLSMHPmTEycOBE2NjX/4HFsbCzGjBkDT09P9O3bFzdu3MC+ffsQExODnj17ok2bNhg+fDgWLVqEO3fuYOzYsYiIiFBO782YMQP9+vWDn58fnnvuOdjY2ODYsWNISUnBP/7xjxrXNWzYMMyZM0f5lJyPjw9+/vln+Pr6IiwsrNw+qrNdyhMQEIC8vDwkJCQgJCQEWq221vxAr1V89DwmJgabN2/GDz/8gEaNGlU618fHB/7+/jhz5gyAux/vLCoqwrVr14zm5eTkVPgP1cHBAW5ubkY3IiJLa9GiBZYuXYolS5YgJCQEhw4dwuTJk43mvPLKK1i1ahXi4+PRunVrREREID4+3igclPbOO+9g0qRJmDFjBlq0aIGhQ4cq16lotVrs2LEDV69eRWhoKJ599ln06NEDixcvrlEP1a1vzJgxGDRoEIYOHYqOHTviypUrRkd5AGD06NFo3rw5OnTogAYNGmDfvn1l1tOwYUNs27YNhw4dQkhICMaMGYNRo0Zh+vTpNeqjRHR0NBYtWoSlS5eiZcuW6Nevn/L+U/JR8Lp16+KJJ55Az5490aRJE6xfv155fFRUFLZs2YJdu3YhNDQUnTp1woIFC+Dv7/9Addnb22Pnzp3w9PTEk08+idatW+O9996r8HRhTf7elBYeHo4xY8Zg6NChaNCgAebNm/dAPTxMGil9gvghEhHExMRg06ZN2L17t9GXJ1XkypUraNiwIVasWIGXXnoJer0eDRo0wOeff44hQ4YAuPtlXo0aNcK2bduqdIFybm4udDod9Ho9gw9Rafn5yHfxhAvy/zfgDODmQ3t6f39/LF++HPXr16/xOqp7ITARWY9bt24hIyMDgYGBZa5zqur7t0VPY73++utYu3Ytvv76a7i6uirX2Oh0Ojg5OSEvLw+xsbEYPHgwfHx8cP78ebz11luoX78+nnnmGWXuqFGjMGnSJNSrVw8eHh6YPHkyWrdurXw6i8haVXSq1ZpoAeSgdhyqJiIqj0XDzrJlywDcPU99r7i4OIwcORK2trZISUnBmjVrcP36dfj4+CAyMhLr16+Hq6urMn/hwoWoU6cOhgwZgoKCAvTo0QPx8fEVHs4jIiKiR4dFw879zqA5OTlhx44d912Po6MjPv74Y3z88cemKo2IiIhUwiouUCYiIiIyF4YdIiIiUjWGHSIiIlI1hh0iIiJSNYYdIiIiUjWGHSKiWmz37t3QaDS4fv06ACA+Ph7u7u4WrelhO3/+PDQajdHviFlyPdYgOzsbvXr1grOzs/L3obyxkm+BrorY2Nhq/xq9tWDYISIyk5EjR0Kj0WDMmDFllo0dOxYajQYjR4406XMOHToUp0+fNuk61WjkyJEYOHCg0Zifnx+ysrKMfoy6tlq4cCGysrKQnJys/H0obywrKwt9+/at0jonT56MhIQEk9b5sMI5ww4RkRn5+flh3bp1KCgoUMZu3bqF//znP2jcuLHJn8/JyQmenp4mX6+5FRUVlTt++/bth1aDra0tvL29UaeO1fxGdo2lp6ejffv2CAoKUv4+lDfm7e0NBweHKq3TxcUF9erVM1vN5sSwQ0RkRu3atUPjxo2xceNGZWzjxo3w8/ND27ZtjeaKCObNm4cmTZrAyckJISEh+PLLL43mbNu2Dc2aNYOTkxMiIyNx/vx5o+Wl/085PT0dAwYMgJeXF1xcXBAaGorvvvvO6DEBAQGYM2cO/vKXv8DV1RWNGzfGihUrKu3LYDDg/fffR9OmTeHg4IDGjRvj3XffVZanpKSge/fucHJyQr169fDqq68iLy9PWV5yZGXu3Lnw9fVFs2bNlNNIX3zxBbp16wZHR0d8/vnnAO5+s36LFi3g6OiIxx57DEuXLq2wtuLiYowaNQqBgYFwcnJC8+bN8eGHHyrLY2NjsXr1anz99dfQaDTQaDTYvXt3uaex9uzZgz//+c9wcHCAj48P3nzzTdy5c0dZ3q1bN4wfPx5TpkyBh4cHvL29ERsbW+lrBwCffvopWrZsqax33LhxyrLMzEwMGDAALi4ucHNzw5AhQ/D7778bPf6bb75B+/bt4ejoiCZNmmDWrFlKXQEBAdiwYQPWrFmjHD0sbwwoexrr4sWLeP755+Hh4QFnZ2d06NABBw8eVF630qexKtsuJa/nxo0bERkZCa1Wi5CQEOzfvx/A3VOwL7/8MvR6vbIdqvLa1UTtj69E9MgRAW7dqvr/q+Xn339OVWi1QE1+zuzll19GXFwchg8fDuDuG91f/vIX7N6922je9OnTsXHjRixbtgxBQUH48ccf8eKLL6JBgwaIiIjAhQsXMGjQIIwZMwZ//etfcfjwYUyaNKnS587Ly8OTTz6Jf/zjH3B0dMTq1avx9NNPIy0tzejI0vz58zF79my89dZb+PLLL/HXv/4VTzzxBB577LFy1ztt2jSsXLkSCxcuRJcuXZCVlYVTp04BAG7evIk+ffqgU6dOSEpKQk5ODl555RWMGzcO8fHxyjoSEhLg5uaGXbt2GX2j/tSpUzF//nzExcXBwcEBK1euxMyZM7F48WK0bdsWP//8M0aPHg1nZ2dER0eXqc1gMKBRo0b44osvUL9+fSQmJuLVV1+Fj48PhgwZgsmTJyM1NRW5ubmIi4sDAHh4eODSpUtG6/ntt9/w5JNPYuTIkVizZg1OnTqF0aNHw9HR0ehNefXq1Zg4cSIOHjyI/fv3Y+TIkejcuTN69epV7mu3bNkyTJw4Ee+99x769u0LvV6v/JK7iGDgwIFwdnbGnj17cOfOHYwdOxZDhw5V/r7s2LEDL774Ij766CN07doV6enpePXVVwEAM2fORFJSEl566SW4ubnhww8/hJOTE4qKisqMlfd3JSIiAg0bNsTmzZvh7e2No0ePwmAwlNtHVbfL22+/jX/+858ICgrC22+/jWHDhuHs2bMIDw/HokWLMGPGDKSlpQG4e/TILIREr9cLANHr9ZYuhR4xAKz+pgUkD1q5GzFEAO1DfX5/f3/59ttvJSkpSbn9+OORe+p5eLe8vOpt3+joaBkwYIBcvnxZHBwcJCMjQ86fPy+Ojo5y+fJlGTBggERHR4uISF5enjg6OkpiYqLROkaNGiXDhg0TEZFp06ZJixYtxGAwKMunTp0qAOTatWsiIhIXFyc6na7SuoKDg+Xjjz9W7vv7+8uLL76o3DcYDOLp6SnLli0r9/G5ubni4OAgK1euLHf5ihUrpG7dupJ3zwu2detWsbGxkezsbOW18fLyksLCQmVORkaGAJBFixYZrc/Pz0/Wrl1rNDZ79mwJCwszetzPP/9cYc9jx46VwYMHK/dLts29Sq/nrbfekubNmxu93kuWLBEXFxcpLi4WEZGIiAjp0qWL0XpCQ0Nl6tSpFdbi6+srb7/9drnLdu7cKba2tpKZmamMnThxQgDIoUOHRESka9euMmfOHKPHffbZZ+Lj46Pcv/fvVmVjAGTTpk0iIvKvf/1LXF1d5cqVK+XWNnPmTAkJCVHuV3W7rFq1qkwvqampIlK1v68FBQVy8uRJKSgoKLOsqu/fPLJDRGRm9evXx1NPPYXVq1dDRPDUU0+hfv36RnNOnjyJW7dulTkaUFRUpJzuSk1NRadOnaC55/BSWFhYpc+dn5+PWbNmYcuWLbh06RLu3LmDgoICZGZmGs1r06aN8meNRgNvb2/k5OSUu87U1FQUFhaiR48eFS4PCQmBs7OzMta5c2cYDAakpaXBy8sLANC6dWvY29uXeXyHDh2UP1++fBkXLlzAqFGjMHr0aGX8zp070Ol0Ffa9fPlyrFq1Cr/++isKCgpQVFRU7U8SpaamIiwszOj17ty5M/Ly8nDx4kXlyNi9rx0A+Pj4VPja5eTk4NKlS5W+dn5+fvDz81PGgoOD4e7ujtTUVISGhuLIkSNISkoyOm1YXFyMW7du4ebNm9BqtdXqs0RycjLatm0LDw+P+86tzna59/Xx8fEBcPd1qOiooTkw7BBRrePoaMCPPx6t8vx27dqZ5Hlr+B4CAPjLX/6iXJexZMmSMstLThVs3boVDRs2NFpWcgGp3OfHk8vzf//3f9ixYwf++c9/omnTpnBycsKzzz5b5oJgOzs7o/sajabC0xflnQK5l4gYBYTS6y1xbxi6173jJTWsXLkSHTt2NJpna2tb7uO/+OILvPHGG5g/fz7CwsLg6uqKDz74QLn2pKrK66NkG9w7/jBeu3vHDQYDZs2ahUGDBpWZ5+joWOn6K3O/2u5Vne1y7+tzbw8PE8MOEdU6Gg3g5FT1nWUF76kPVZ8+fZSAERUVVWZ5cHAwHBwckJmZiYiIiHLXERwcXOY7UQ4cOFDp8+7duxcjR47EM888A+DudRmlL2qurqCgIDg5OSEhIQGvvPJKuXWuXr0a+fn5SnDZt28fbGxs0KxZs2o9l5eXFxo2bIhz584p1zzdz969exEeHo6xY8cqY+np6UZz7O3tUVxcXOl6goODsWHDBqOgkZiYCFdX1zKBtKpcXV0REBCAhIQEREZGlvucmZmZuHDhgnJ05+TJk9Dr9WjRogWAu+E9LS0NTZs2rVENFWnTpg1WrVqFq1ev3vfoTk22S3mqsh1MgZ/GIiJ6CGxtbZGamorU1NRyj0i4urpi8uTJeOONN7B69Wqkp6fj559/xpIlS7B69WoAwJgxY5Ceno6JEyciLS0Na9euNbrgtzxNmzbFxo0bkZycjF9++QUvvPDCA/9ftaOjI6ZOnYopU6ZgzZo1SE9Px4EDB/DJJ58AAIYPHw5HR0dER0fj+PHj+OGHHxATE4MRI0Yop7CqIzY2FnPnzsWHH36I06dPIyUlBXFxcViwYEGFPR8+fBg7duzA6dOn8c477yApKcloTkBAAI4dO4a0tDT88ccf5X7EfezYsbhw4QJiYmJw6tQpfP3115g5cyYmTpwIG5uav33GxsZi/vz5+Oijj3DmzBkcPXoUH3/8MQCgZ8+eaNOmDYYPH46jR4/i0KFDeOmllxAREaGc3psxYwbWrFmD2NhYnDhxAqmpqVi/fj2mT59e45oAYNiwYfD29sbAgQOxb98+nDt3Dhs2bFA+PVVeH9XZLuUJCAhAXl4eEhIS8Mcff+DmzZsP1ENFGHaIiB4SNzc3uLm5Vbh89uzZmDFjBubOnYsWLVogKioK33zzDQIDAwEAjRs3xoYNG/DNN98gJCQEy5cvx5w5cyp9zoULF6Ju3boIDw/H008/jaioKJOc1nvnnXcwadIkzJgxAy1atMDQoUOV61S0Wi127NiBq1evIjQ0FM8++yx69OiBxYsX1+i5XnnlFaxatQrx8fFo3bo1IiIiEB8fr7wupY0ZMwaDBg3C0KFD0bFjR1y5csXoKA8AjB49Gs2bN0eHDh3QoEED5dNQ92rYsCG2bduGQ4cOISQkBGPGjMGoUaMeOFRER0dj0aJFWLp0KVq2bIl+/frhzJkzAP7/R8Hr1q2LJ554Aj179kSTJk2wfv165fFRUVHYsmULdu3ahdDQUHTq1AkLFiyAv7//A9Vlb2+PnTt3wtPTE08++SRat26N9957r8LThdXdLuUJDw/HmDFjMHToUDRo0ADz5s17oB4qopGanARWmdzcXOh0Ouj1+kp3RESmVtF1DdZECyAHWrig5PPbzgDM839f5fH398fy5cvLXNBbHfde8EpEtcutW7eQkZGBwMDAMtckVfX9m0d2iIiISNUYdoiIiEjVGHaIiIhI1Rh2iIiISNUYdojIqolIjb5Mj4jUwRT//hl2iMiqXblypcy3/RLRo6Pku3dKf1N1dfAblInIquXn52Pz5s0YNmwY3N3da7SOW7dumbYoIjI7EcHNmzeRk5MDd3f3Cr/vpyoYdojI6sXFxQEA+vfvD3t7+2p/P1FGRoY5yiKih8Dd3R3e3t4PtA5+qSD4pYJkOfxSwWrWotWifv361X7dTp06ZaaKiMic7OzsKj2iU9X3bx7ZIaJa4+bNm8jMzKz24x7kl6CJqPbjBcpERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoMO0RERKRqDDtERESkagw7REREpGoWDTtz585FaGgoXF1d4enpiYEDByItLc1ojoggNjYWvr6+cHJyQrdu3XDixAmjOYWFhYiJiUH9+vXh7OyM/v374+LFiw+zFSIiIrJSFg07e/bsweuvv44DBw5g165duHPnDnr37o38/Hxlzrx587BgwQIsXrwYSUlJ8Pb2Rq9evXDjxg1lzoQJE7Bp0yasW7cOP/30E/Ly8tCvXz8UFxdboi0iIiKyIhoREUsXUeLy5cvw9PTEnj178MQTT0BE4OvriwkTJmDq1KkA7h7F8fLywvvvv4/XXnsNer0eDRo0wGeffYahQ4cCAC5dugQ/Pz9s27YNUVFRZZ6nsLAQhYWFyv3c3Fz4+flBr9fDzc3t4TRLBECj0Vi6hPvSAsiBFi4o+Z8QZwA3LVhR9VnRbo6ITCg3Nxc6ne6+799Wdc2OXq8HAHh4eAAAMjIykJ2djd69eytzHBwcEBERgcTERADAkSNHcPv2baM5vr6+aNWqlTKntLlz50Kn0yk3Pz8/c7VEREREFmY1YUdEMHHiRHTp0gWtWrUCAGRnZwMAvLy8jOZ6eXkpy7Kzs2Fvb4+6detWOKe0adOmQa/XK7cLFy6Yuh0iIiKyEnUsXUCJcePG4dixY/jpp5/KLCt9qF9E7nv4v7I5Dg4OcHBwqHmxREREVGtYxZGdmJgYbN68GT/88AMaNWqkjHt7ewNAmSM0OTk5ytEeb29vFBUV4dq1axXOISIiokeXRcOOiGDcuHHYuHEjvv/+ewQGBhotDwwMhLe3N3bt2qWMFRUVYc+ePQgPDwcAtG/fHnZ2dkZzsrKycPz4cWUOERERPbosehrr9ddfx9q1a/H111/D1dVVOYKj0+ng5OQEjUaDCRMmYM6cOQgKCkJQUBDmzJkDrVaLF154QZk7atQoTJo0CfXq1YOHhwcmT56M1q1bo2fPnpZsj4iIiKyARcPOsmXLAADdunUzGo+Li8PIkSMBAFOmTEFBQQHGjh2La9euoWPHjti5cydcXV2V+QsXLkSdOnUwZMgQFBQUoEePHoiPj4etre3DaoWIiIislFV9z46lVPVz+kSmxu/ZeTi4myNSp1r5PTtEREREpsawQ0RERKrGsENERESqxrBDREREqsawQ0RERKrGsENERESqxrBDREREqsawQ0RERKrGsENERESqxrBDREREqsawQ0RERKrGsENERESqxrBDREREqsawQ0RERKrGsENERESqxrBDREREqsawQ0RERKrGsENERESqxrBDREREqsawQ0RERKrGsENERESqxrBDREREqsawQ0RERKrGsENERESqxrBDREREqsawQ0RERKrGsENERESqxrBDREREqsawQ0RERKrGsENERESqxrBDREREqsawQ0RERKrGsENERESqxrBDREREqlbH0gUQmYpGo7F0CUREZIV4ZIeIiIhUjWGHiIiIVI1hh4iIiFSNYYeIiIhUjWGHiIiIVI1hh4iIiFSNYYeIiIhUjWGHiIiIVI1hh4iIiFSNYYeIiIhUjWGHiIiIVI1hh4iIiFSNYYeIiIhUjWGHiIiIVI1hh4iIiFSNYYeIiIhUjWGHiIiIVI1hh4iIiFSNYYeIiIhUjWGHiIiIVI1hh4iIiFSNYYeIiIhUjWGHiIiIVM2iYefHH3/E008/DV9fX2g0Gnz11VdGy0eOHAmNRmN069Spk9GcwsJCxMTEoH79+nB2dkb//v1x8eLFh9gFERERWTOLhp38/HyEhIRg8eLFFc7p06cPsrKylNu2bduMlk+YMAGbNm3CunXr8NNPPyEvLw/9+vVDcXGxucsnIiKiWqCOJZ+8b9++6Nu3b6VzHBwc4O3tXe4yvV6PTz75BJ999hl69uwJAPj888/h5+eH7777DlFRUSavmYiIiGoXq79mZ/fu3fD09ESzZs0wevRo5OTkKMuOHDmC27dvo3fv3sqYr68vWrVqhcTExArXWVhYiNzcXKMbERERqZNVh52+ffvi3//+N77//nvMnz8fSUlJ6N69OwoLCwEA2dnZsLe3R926dY0e5+Xlhezs7ArXO3fuXOh0OuXm5+dn1j6IiIjIcix6Gut+hg4dqvy5VatW6NChA/z9/bF161YMGjSowseJCDQaTYXLp02bhokTJyr3c3NzGXiIiIhUyqqP7JTm4+MDf39/nDlzBgDg7e2NoqIiXLt2zWheTk4OvLy8KlyPg4MD3NzcjG5ERESkTrUq7Fy5cgUXLlyAj48PAKB9+/aws7PDrl27lDlZWVk4fvw4wsPDLVUmEVmZ0l9hURtuRGQ6Fj2NlZeXh7Nnzyr3MzIykJycDA8PD3h4eCA2NhaDBw+Gj48Pzp8/j7feegv169fHM888AwDQ6XQYNWoUJk2ahHr16sHDwwOTJ09G69atlU9nERER0aPNomHn8OHDiIyMVO6XXEcTHR2NZcuWISUlBWvWrMH169fh4+ODyMhIrF+/Hq6urspjFi5ciDp16mDIkCEoKChAjx49EB8fD1tb24feDxEREVkfjYhIdR/UpEkTJCUloV69ekbj169fR7t27XDu3DmTFfgw5ObmQqfTQa/X8/qdWoyH/s1DCyAHWrgg/38jzgBuWrCiR0MNds1Ej5yqvn/X6Jqd8+fPl/sNxYWFhfjtt99qskoiIiIis6jWaazNmzcrf96xYwd0Op1yv7i4GAkJCQgICDBZcUREREQPqlphZ+DAgQDuni6Ijo42WmZnZ4eAgADMnz/fZMURERERPahqhR2DwQAACAwMRFJSEurXr2+WooiIiIhMpUafxsrIyDB1HURERERmUeOPnickJCAhIQE5OTnKEZ8Sn3766QMXRkRERGQKNQo7s2bNwt///nd06NABPj4+/MgvERERWa0ahZ3ly5cjPj4eI0aMMHU9RERERCZVo+/ZKSoq4m9PERERUa1Qo7DzyiuvYO3ataauhYiIiMjkanQa69atW1ixYgW+++47tGnTBnZ2dkbLFyxYYJLiiIiIiB5UjcLOsWPH8PjjjwMAjh8/brSMFysTERGRNalR2Pnhhx9MXQcRERGRWdTomh0iIiKi2qJGR3YiIyMrPV31/fff17ggIiIiIlOqUdgpuV6nxO3bt5GcnIzjx4+X+YFQIiIiIkuqUdhZuHBhueOxsbHIy8t7oIKIiIiITMmk1+y8+OKL/F0sIiIisiomDTv79++Ho6OjKVdJRERE9EBqdBpr0KBBRvdFBFlZWTh8+DDeeecdkxRGREREZAo1Cjs6nc7ovo2NDZo3b46///3v6N27t0kKIyIiIjKFGoWduLg4U9dBREREZBY1Cjsljhw5gtTUVGg0GgQHB6Nt27amqouIiIjIJGoUdnJycvD8889j9+7dcHd3h4hAr9cjMjIS69atQ4MGDUxdJxEREVGN1OjTWDExMcjNzcWJEydw9epVXLt2DcePH0dubi7Gjx9v6hqJiIiIaqxGR3a2b9+O7777Di1atFDGgoODsWTJEl6gTERERFalRkd2DAYD7Ozsyozb2dnBYDA8cFFEREREplKjsNO9e3f87W9/w6VLl5Sx3377DW+88QZ69OhhsuKIiIiIHlSNws7ixYtx48YNBAQE4E9/+hOaNm2KwMBA3LhxAx9//LGpayQiIiKqsRpds+Pn54ejR49i165dOHXqFEQEwcHB6Nmzp6nrIyIiInog1Tqy8/333yM4OBi5ubkAgF69eiEmJgbjx49HaGgoWrZsib1795qlUCIiIqKaqFbYWbRoEUaPHg03N7cyy3Q6HV577TUsWLDAZMURERERPahqhZ1ffvkFffr0qXB57969ceTIkQcuioiIiMhUqhV2fv/993I/cl6iTp06uHz58gMXRURERGQq1Qo7DRs2REpKSoXLjx07Bh8fnwcuioiIiMhUqhV2nnzyScyYMQO3bt0qs6ygoAAzZ85Ev379TFYcERER0YPSiIhUdfLvv/+Odu3awdbWFuPGjUPz5s2h0WiQmpqKJUuWoLi4GEePHoWXl5c5aza53Nxc6HQ66PX6ci++ptpBo9FYugRV0gLIgRYuyP/fiDOAmxas6NFQjV0z0SOrqu/f1fqeHS8vLyQmJuKvf/0rpk2bpvxj1Gg0iIqKwtKlS2td0CEiIiJ1q/aXCvr7+2Pbtm24du0azp49CxFBUFAQ6tata476iIiIiB5Ijb5BGQDq1q2L0NBQU9ZCREREZHI1+m0sIiIiotqCYYeIiIhUjWGHiIiIVI1hh4iIiFSNYYeIiIhUjWGHiIiIVI1hh4iIiFSNYYeIiIhUjWGHiIiIVI1hh4iIiFSNYYeIiIhUjWGHiIiIVI1hh4iIiFSNYYeIiIhUjWGHiIiIVI1hh4iIiFSNYYeIiIhUjWGHiIiIVI1hh4iIiFTNomHnxx9/xNNPPw1fX19oNBp89dVXRstFBLGxsfD19YWTkxO6deuGEydOGM0pLCxETEwM6tevD2dnZ/Tv3x8XL158iF0QERGRNbNo2MnPz0dISAgWL15c7vJ58+ZhwYIFWLx4MZKSkuDt7Y1evXrhxo0bypwJEyZg06ZNWLduHX766Sfk5eWhX79+KC4uflhtEBERkTUTKwFANm3apNw3GAzi7e0t7733njJ269Yt0el0snz5chERuX79utjZ2cm6deuUOb/99pvY2NjI9u3bq/zcer1eAIher3/wRshiAPBmhpsWkDxoBZD/3bQWr+lRuBHR/VX1/dtqr9nJyMhAdnY2evfurYw5ODggIiICiYmJAIAjR47g9u3bRnN8fX3RqlUrZU55CgsLkZuba3QjIiIidbLasJOdnQ0A8PLyMhr38vJSlmVnZ8Pe3h5169atcE555s6dC51Op9z8/PxMXD0RERFZC6sNOyU0Go3RfREpM1ba/eZMmzYNer1euV24cMEktRIREZH1sdqw4+3tDQBljtDk5OQoR3u8vb1RVFSEa9euVTinPA4ODnBzczO6ERERkTpZbdgJDAyEt7c3du3apYwVFRVhz549CA8PBwC0b98ednZ2RnOysrJw/PhxZQ4RERE92upY8snz8vJw9uxZ5X5GRgaSk5Ph4eGBxo0bY8KECZgzZw6CgoIQFBSEOXPmQKvV4oUXXgAA6HQ6jBo1CpMmTUK9evXg4eGByZMno3Xr1ujZs6el2iIiIiIrYtGwc/jwYURGRir3J06cCACIjo5GfHw8pkyZgoKCAowdOxbXrl1Dx44dsXPnTri6uiqPWbhwIerUqYMhQ4agoKAAPXr0QHx8PGxtbR96P0RERGR9NCIili7C0nJzc6HT6aDX63n9Ti12vwvXqWa0AHKghQvy/zfiDOCmBSt6NHDXTHR/VX3/ttprdoiIiIhMgWGHiIiIVI1hh4iIiFSNYYeIiIhUjWGHiIiIVI1hh4iIiFSNYYeIiIhUjWGHiIiIVI1hh4iIiFSNYYeIiIhUjWGHiIiIVI1hh4iIiFSNYYeIiIhUjWGHiIiIVI1hh4iIiFSNYYeIiIhUjWGHiIiIVI1hh4iIiFSNYYeIiIhUjWGHiIiIVI1hh4iIiFSNYYeIiIhUjWGHiIiIVI1hh4iIiFSNYYeIiIhUjWGHiIiIVI1hh4iIiFSNYYeIiIhUjWGHiIiIVI1hh4iIiFSNYYeIiIhUjWGHiIiIVK2OpQsgIqKyNBqNpUuoNhGxdAlE5eKRHSIiIlI1hh0iIiJSNYYdIiIiUjWGHSIiIlI1hh0iIiJSNYYdIiIiUjWGHSIiIlI1fs8Olas2fscHERFReXhkh4iIiFSNYYeIiIhUjWGHiIiIVI1hh4iIiFSNYYeIiIhUjWGHiIiIVI1hh4iIiFSNYYeIiIhUjWGHiIiIVI1hh4iIiFSNYYeIiIhUjWGHiIiIVI1hh4iIiFSNYYeIiIhUjWGHiIiIVI1hh4iIiFSNYYeIiIhUjWGHiIiIVM2qw05sbCw0Go3RzdvbW1kuIoiNjYWvry+cnJzQrVs3nDhxwoIVExERkbWx6rADAC1btkRWVpZyS0lJUZbNmzcPCxYswOLFi5GUlARvb2/06tULN27csGDFREREZE3qWLqA+6lTp47R0ZwSIoJFixbh7bffxqBBgwAAq1evhpeXF9auXYvXXnutwnUWFhaisLBQuZ+bm2v6womIiMgqWP2RnTNnzsDX1xeBgYF4/vnnce7cOQBARkYGsrOz0bt3b2Wug4MDIiIikJiYWOk6586dC51Op9z8/PzM2gMRERFZjlWHnY4dO2LNmjXYsWMHVq5ciezsbISHh+PKlSvIzs4GAHh5eRk9xsvLS1lWkWnTpkGv1yu3CxcumK0HIiIisiyrPo3Vt29f5c+tW7dGWFgY/vSnP2H16tXo1KkTAECj0Rg9RkTKjJXm4OAABwcH0xdMREREVseqj+yU5uzsjNatW+PMmTPKdTylj+Lk5OSUOdpDREREj65aFXYKCwuRmpoKHx8fBAYGwtvbG7t27VKWFxUVYc+ePQgPD7dglURERGRNrPo01uTJk/H000+jcePGyMnJwT/+8Q/k5uYiOjoaGo0GEyZMwJw5cxAUFISgoCDMmTMHWq0WL7zwgqVLJyIiIith1WHn4sWLGDZsGP744w80aNAAnTp1woEDB+Dv7w8AmDJlCgoKCjB27Fhcu3YNHTt2xM6dO+Hq6mrhyomIiMhaaERELF2EpeXm5kKn00Gv18PNzc3S5ViF+13kTY8OLYAcaOGC/P+NOAO4acGKyFrx7YQetqq+f9eqa3aIiIiIqothh4iIiFSNYYeIiIhUjWGHiIiIVI1hh4iIiFSNYYeIiIhUjWGHiIiIVI1hh4iIiFSNYYeIiIhUjWGHiIiIVI1hh4iIiFSNYYeIiIhUjWGHiIiIVI1hh4iIiFSNYYeIiIhUjWGHiIiIVI1hh4iIiFSNYYeIiIhUjWGHiIiIVI1hh4iIiFSNYYeIiIhUjWGHiIiIVI1hh4iIiFSNYYeIiIhUjWGHiIiIVI1hh4iIiFSNYYeIiIhUjWGHiIiIVI1hh4iIiFSNYYeIiIhUrY6lC1A7jUZj6RKIiIgeaTyyQ0RERKrGsENERESqxrBDREREqsawQ0RERKrGsENERESqxrBDREREqsawQ0RERKrGsENERESqxrBDREREqsawQ0RERKrGn4sgIiKTqI0/jyMili6BHgIe2SEiIiJVY9ghIiIiVWPYISIiIlVj2CEiIiJVY9ghIiIiVWPYISIiIlVj2CEiIiJVY9ghIiIiVWPYISIiIlVj2CEiIiJVY9ghIiIiVWPYISIiIlVj2CEiIiJV46+eExHRI4u/1P5o4JEdIiIiUjWGHSIiIlI11YSdpUuXIjAwEI6Ojmjfvj327t1r6ZKIiIjICqgi7Kxfvx4TJkzA22+/jZ9//hldu3ZF3759kZmZaenSiIiIyMI0ooIrnTp27Ih27dph2bJlyliLFi0wcOBAzJ07976Pz83NhU6ng16vh5ubm0lrq40XvxHdSwsgB1q4IP9/I84AblqwIiKqbcwVNar6/l3rP41VVFSEI0eO4M033zQa7927NxITE8t9TGFhIQoLC5X7er0ewN0XjYiMCYDc//33/48QEVWdud5fS9Z7vzBV68POH3/8geLiYnh5eRmNe3l5ITs7u9zHzJ07F7NmzSoz7ufnZ5YaiWqzAgC+KACgs3QpRFRL6XTm3X/cuHGj0ueo9WGnROnTRSJS4SmkadOmYeLEicp9g8GAq1evol69eg/ttFNubi78/Pxw4cIFk586s3bsnb2z90cHe2fv5uxdRHDjxg34+vpWOq/Wh5369evD1ta2zFGcnJycMkd7Sjg4OMDBwcFozN3d3VwlVsrNze2R+0dQgr2z90cNe2fvj5qH0XtVjhrV+k9j2dvbo3379ti1a5fR+K5duxAeHm6hqoiIiMha1PojOwAwceJEjBgxAh06dEBYWBhWrFiBzMxMjBkzxtKlERERkYWpIuwMHToUV65cwd///ndkZWWhVatW2LZtG/z9/S1dWoUcHBwwc+bMMqfTHgXsnb0/atg7e3/UWFvvqvieHSIiIqKK1PprdoiIiIgqw7BDREREqsawQ0RERKrGsENERESqxrBjJteuXcOIESOg0+mg0+kwYsQIXL9+vdLHaDSacm8ffPCBMic7OxsjRoyAt7c3nJ2d0a5dO3z55Zdm7qZ6zNU7AOzfvx/du3eHs7Mz3N3d0a1bNxQUFJixm+oxZ+/A3W8L7du3LzQaDb766ivzNFFD5uj96tWriImJQfPmzaHVatG4cWOMHz9e+T07a2Gu7V5YWIiYmBjUr18fzs7O6N+/Py5evGjmbqqnJr0DQGpqKvr37w+dTgdXV1d06tQJmZmZynK17uuA+/cOqHNfB1Std8AM+zohs+jTp4+0atVKEhMTJTExUVq1aiX9+vWr9DFZWVlGt08//VQ0Go2kp6crc3r27CmhoaFy8OBBSU9Pl9mzZ4uNjY0cPXrU3C1Vmbl6T0xMFDc3N5k7d64cP35cTp8+Lf/973/l1q1b5m6pyszVe4kFCxZI3759BYBs2rTJTF3UjDl6T0lJkUGDBsnmzZvl7NmzkpCQIEFBQTJ48OCH0VKVmWu7jxkzRho2bCi7du2So0ePSmRkpISEhMidO3fM3VKV1aT3s2fPioeHh/zf//2fHD16VNLT02XLli3y+++/K3PUuq+rSu9q3ddVpfcSpt7XMeyYwcmTJwWAHDhwQBnbv3+/AJBTp05VeT0DBgyQ7t27G405OzvLmjVrjMY8PDxk1apVD1a0iZiz944dO8r06dNNVqupmbN3EZHk5GRp1KiRZGVlWV3YMXfv9/riiy/E3t5ebt++XeN6TclcvV+/fl3s7Oxk3bp1ythvv/0mNjY2sn37dtMU/4Bq2vvQoUPlxRdfrHTdat3XVaV3te7rqtK7iHn2dTyNZQb79++HTqdDx44dlbFOnTpBp9MhMTGxSuv4/fffsXXrVowaNcpovEuXLli/fj2uXr0Kg8GAdevWobCwEN26dTNlCzVmrt5zcnJw8OBBeHp6Ijw8HF5eXoiIiMBPP/1k8h5qypzb/ebNmxg2bBgWL14Mb29vk9ZtCubsvTS9Xg83NzfUqWMd34lqrt6PHDmC27dvo3fv3sqYr68vWrVqVeX1mltNejcYDNi6dSuaNWuGqKgoeHp6omPHjmVOVahxX1eV3tW6r6vqdjfXvo5hxwyys7Ph6elZZtzT07PMD5ZWZPXq1XB1dcWgQYOMxtevX487d+6gXr16cHBwwGuvvYZNmzbhT3/6k0lqf1Dm6v3cuXMAgNjYWIwePRrbt29Hu3bt0KNHD5w5c8Y0xT8gc273N954A+Hh4RgwYIBJajU1c/Z+rytXrmD27Nl47bXXalyrqZmr9+zsbNjb26Nu3bpGc728vKq8XnOrSe85OTnIy8vDe++9hz59+mDnzp145plnMGjQIOzZs0eZp8Z9XVV6V+u+rqrb3Vz7OoadaoiNja3wosKS2+HDhwHcvfiwNBEpd7w8n376KYYPHw5HR0ej8enTp+PatWv47rvvcPjwYUycOBHPPfccUlJSHrzBSli6d4PBAAB47bXX8PLLL6Nt27ZYuHAhmjdvjk8//dQEHVbM0r1v3rwZ33//PRYtWmSSfqrD0r3fKzc3F0899RSCg4Mxc+bMmjdVRdbUe03XW1Pm7L3k3/KAAQPwxhtv4PHHH8ebb76Jfv36Yfny5co8Ne7rqtK7Wvd1VendnPs66zgOXEuMGzcOzz//fKVzAgICcOzYMfz+++9lll2+fBleXl73fZ69e/ciLS0N69evNxpPT0/H4sWLcfz4cbRs2RIAEBISgr1792LJkiVGOwpTs3TvPj4+AIDg4GCj8RYtWpR7Jb8pWbr377//Hunp6XB3dzcaHzx4MLp27Yrdu3ffd901ZeneS9y4cQN9+vSBi4sLNm3aBDs7u6o18AAs3bu3tzeKiopw7do1o6M7OTk5CA8Pr2IXNWPO3uvXr486deqU+2+55FSNWvd1Veldrfu6qvRu1n3dA1/1Q2WUXLx18OBBZezAgQNVvmAxOjpa2rdvX2b82LFjAkBOnjxpNN67d28ZPXr0gxduAubq3WAwiK+vb5mL9h5//HGZNm3agxduAubqPSsrS1JSUoxuAOTDDz+Uc+fOmbSHmjJX7yIier1eOnXqJBEREZKfn2+ymk3FXL2XXKC8fv16ZezSpUtWeYFydXsPCwsrc6HqwIEDZdiwYSKi7n3d/XpX877ufr2bc1/HsGMmffr0kTZt2sj+/ftl//790rp16zIfy2vevLls3LjRaEyv14tWq5Vly5aVWWdRUZE0bdpUunbtKgcPHpSzZ8/KP//5T9FoNLJ161az9lMd5uhdRGThwoXi5uYm//3vf+XMmTMyffp0cXR0lLNnz5qtl+oyV++lwco+jSVint5zc3OlY8eO0rp1azl79qzRR7Wt7ePX5tjuY8aMkUaNGsl3330nR48ele7du1vlR8+r2/vGjRvFzs5OVqxYIWfOnJGPP/5YbG1tZe/evSKi7n3d/XoXUe++riq9l2aqfR3DjplcuXJFhg8fLq6uruLq6irDhw+Xa9euGc0BIHFxcUZj//rXv8TJyUmuX79e7npPnz4tgwYNEk9PT9FqtdKmTZsyH8+0NHP1LiIyd+5cadSokWi1WgkLC6v0H4klmLP30uuwtrBjjt5/+OEHAVDuLSMjw3zNVJO5tntBQYGMGzdOPDw8xMnJSfr16yeZmZlm6qJmatr7J598Ik2bNhVHR0cJCQmRr776ymi5mvd19+tdRL37uqr0XnodptjXaf63MiIiIiJV4qexiIiISNUYdoiIiEjVGHaIiIhI1Rh2iIiISNUYdoiIiEjVGHaIiIhI1Rh2iIiISNUYdoiIiEjVGHaIyGQ0Gg2++uorq1mPpd28eRODBw+Gm5sbNBoNrl+/Xu5YQEBAlX/pOT4+vswPJRJR5Rh2iGqp7OxsxMTEoEmTJnBwcICfnx+efvppJCQkWLq0KouNjcXjjz9eZjwrKwt9+/Z9+AWZ2OrVq7F3714kJiYiKysLOp2u3LGkpCS8+uqrVVrn0KFDcfr0aZPWuXv3biV4EalRHUsXQETVd/78eXTu3Bnu7u6YN28e2rRpg9u3b2PHjh14/fXXcerUqRqt9/bt27Czs6vyuLl4e3s/tOcyp/T0dLRo0QKtWrWqdKxBgwZVXqeTkxOcnJxMWieR6j3wr2sR0UPXt29fadiwoeTl5ZVZdu+P8f3666/Sv39/cXZ2FldXV3nuueckOztbWT5z5kwJCQmRTz75RAIDA0Wj0YjBYBAAsmzZMunfv79otVqZMWOGiIhs3rxZ2rVrJw4ODhIYGCixsbFy+/ZtZX0o9aN9U6ZMkaCgIHFycpLAwECZPn26FBUViYhIXFxcmR/3LPnRwNLrOXbsmERGRoqjo6N4eHjI6NGj5caNG8ry6OhoGTBggHzwwQfi7e0tHh4eMnbsWOW5KvL1119L+/btxcHBQerVqyfPPPOMsuzq1asyYsQIcXd3FycnJ+nTp4+cPn3a6PH79u2Trl27iqOjozRq1EhiYmKUbRIREWHUW0RERLljIiL+/v6ycOFCo204evRo8fT0FAcHB2nZsqV88803yuum0+mM6qjKdlm5cqUMHDhQnJycpGnTpvL111+LiEhGRkaZ7RAdHV3p60ZU2zDsENUyV65cEY1GI3PmzKl0nsFgkLZt20qXLl3k8OHDcuDAAWnXrp3yBityN+w4OztLVFSUHD16VH755Rcl7Hh6esonn3wi6enpcv78edm+fbu4ublJfHy8pKeny86dOyUgIEBiY2OV9ZUOKbNnz5Z9+/ZJRkaGbN68Wby8vOT9998XEZGbN2/KpEmTpGXLlpKVlSVZWVly8+bNMuvJz88XX19fGTRokKSkpEhCQoIEBgYavSFHR0eLm5ubjBkzRlJTU+Wbb74RrVYrK1asqPD12bJli9ja2sqMGTPk5MmTkpycLO+++66yvH///tKiRQv58ccfJTk5WaKioqRp06ZKgDp27Ji4uLjIwoUL5fTp07Jv3z5p27atjBw5UtlOo0ePlrCwMMnKypIrV66UOyZiHHaKi4ulU6dO0rJlS9m5c6ekp6fLN998I9u2bRORsmGnqtulUaNGsnbtWjlz5oyMHz9eXFxc5MqVK3Lnzh3ZsGGDAJC0tDTJysqq8FfYiWorhh2iWubgwYMCQDZu3FjpvJ07d4qtra1kZmYqYydOnBAAcujQIRG5G3bs7OwkJyfH6LEAZMKECUZjXbt2LROwPvvsM/Hx8TF63L1hp7R58+ZJ+/btlfslR5ZKu3c9K1askLp16xodxdq6davY2NgoR6mio6PF399f7ty5o8x57rnnZOjQoRXWEhYWJsOHDy932enTpwWA7Nu3Txn7448/xMnJSb744gsRERkxYoS8+uqrRo/bu3ev2NjYSEFBgYiI/O1vfzMKlxWN3Rt2duzYITY2NpKWllZubaXDTlW3y/Tp05X7eXl5otFo5NtvvxURkR9++EEAGB0VJFITXrNDVMuICIC7n1iqTGpqKvz8/ODn56eMBQcHw93dHampqQgNDQUA+Pv7l3vNSIcOHYzuHzlyBElJSXj33XeVseLiYty6dQs3b96EVqsts44vv/wSixYtwtmzZ5GXl4c7d+7Azc2t6s3+r4+QkBA4OzsrY507d4bBYEBaWhq8vLwAAC1btoStra0yx8fHBykpKRWuNzk5GaNHj67wOevUqYOOHTsqY/Xq1UPz5s2RmpoK4O7rcfbsWfz73/9W5ogIDAYDMjIy0KJFi2r1eW9djRo1QrNmzao0v6rbpU2bNspyZ2dnuLq6Iicnp0Y1EtU2DDtEtUxQUBA0Gg1SU1MxcODACueJSLmBqPT4vSHiXqXHDQYDZs2ahUGDBpWZ6+joWGbswIEDeP755zFr1ixERUVBp9Nh3bp1mD9/foU1V6cPwDjwlb6AWqPRwGAwVLjeyi7yLQmUldViMBjw2muvYfz48WXmNW7cuMJ13091Lz6u6nap7utDpCYMO0S1jIeHB6KiorBkyRKMHz++TCi5fv063N3dERwcjMzMTFy4cEE5unPy5Eno9foaHXVo164d0tLS0LRp0yrN37dvH/z9/fH2228rY7/++qvRHHt7exQXF1e6nuDgYKxevRr5+flKr/v27YONjU2Vj36Up02bNkhISMDLL79c7nPeuXMHBw8eRHh4OADgypUrOH36tPLatWvXDidOnKjy61Gdui5evIjTp09Xqb/qbpfy2NvbA8B9twVRbcXv2SGqhZYuXYri4mL8+c9/xoYNG3DmzBmkpqbio48+QlhYGACgZ8+eaNOmDYYPH46jR4/i0KFDeOmllxAREVHmFFVVzJgxA2vWrEFsbCxOnDiB1NRUrF+/HtOnTy93ftOmTZGZmYl169YhPT0dH330ETZt2mQ0JyAgABkZGUhOTsYff/yBwsLCMusZPnw4HB0dER0djePHj+OHH35ATEwMRowYoZzCqomZM2fiP//5D2bOnInU1FSkpKRg3rx5AO4ePRswYABGjx6Nn376Cb/88gtefPFFNGzYEAMGDAAATJ06Ffv378frr7+O5ORknDlzBps3b0ZMTEyNawKAiIgIPPHEExg8eDB27dqFjIwMfPvtt9i+fXu586u7Xcrj7+8PjUaDLVu24PLly8jLy3ugHoisDcMOUS0UGBiIo0ePIjIyEpMmTUKrVq3Qq1cvJCQkYNmyZQD+/7cQ161bF0888QR69uyJJk2aYP369TV6zqioKGzZsgW7du1CaGgoOnXqhAULFsDf37/c+QMGDMAbb7yBcePG4fHHH0diYiLeeecdozmDBw9Gnz59EBkZiQYNGuA///lPmfVotVrs2LEDV69eRWhoKJ599ln06NEDixcvrlEfJbp164b//ve/2Lx5Mx5//HF0794dBw8eVJbHxcWhffv26NevH8LCwiAi2LZtm3I6qE2bNtizZw/OnDmDrl27om3btnjnnXfg4+PzQHUBwIYNGxAaGophw4YhODgYU6ZMqfCoS3W3S3kaNmyIWbNm4c0334SXlxfGjRv3wD0QWRONVHRymoiIiEgFeGSHiIiIVI1hh4iIiFSNYYeIiIhUjWGHiIiIVI1hh4iIiFSNYYeIiIhUjWGHiIiIVI1hh4iIiFSNYYeIiIhUjWGHiIiIVI1hh4iIiFTt/wFdvVbfa6c/lQAAAABJRU5ErkJggg==", "text/plain": [ "
    " ] @@ -369,17 +535,11 @@ } ], "source": [ - "# Create an array that will keep track of the outputs of our resampling loop. In this case, we just want to record the correlation coefficient of each new sample. \n", - "corr_coef_collector = np.zeros([number_runs, 1])\n", - "\n", - "# Let's also get the length of the subset\n", - "# When bootstrapping, the size of your resampled dataset should match the size of your original sample!\n", - "length_sub = len(subset)\n", - "\n", + "nsubset=500\n", "# Now, for each run\n", "for i in range(number_runs):\n", " # We want to draw length_sub samples WITH REPLACEMENT\n", - " new_pairs = rng.choice(subset, size=length_sub, replace=True)\n", + " new_pairs = rng.choice(correlated_data, size=nsubset, replace=True)\n", " # Calculate and store the correlation coefficient\n", " corr_coef_collector[i] = np.corrcoef(new_pairs[:, 0], new_pairs[:, 1])[0,1]\n", "\n", @@ -428,7 +588,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 255, "metadata": {}, "outputs": [], "source": [ @@ -454,12 +614,12 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 256, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmwAAAGwCAYAAAAUgTnsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABifElEQVR4nO3deVxU5f4H8M8Mm6I4LsgwxiSQhFqaC6lgJKYpdk2t7pWuRfrLLMs0UzPNumpdc2kxt2y5pmbmUi7VzTAqQBJcA800c6FgapDchlGTbZ7fHyPnMgzLDM5yZvi8X6954ZzznDPPGcYzX57tqxBCCBARERGRbCndXQEiIiIiqhsDNiIiIiKZY8BGREREJHMM2IiIiIhkjgEbERERkcwxYCMiIiKSOQZsRERERDLn6+4KeAOTyYQ//vgDQUFBUCgU7q4OERFVIYSA0WhEu3btoFSynYI8EwM2B/jjjz+g1WrdXQ0iIqpDQUEBwsLC3F0NogZhwOYAQUFBAMw3gxYtWri5NkREVFVxcTG0Wq10rybyRAzYHKCyG7RFixYM2IiIZIpDVsiTsTOfiIiISOYYsBERERHJHAM2IiIiIpljwEZEREQkcx4VsO3atQv33nsv2rVrB4VCge3bt9d7TEZGBnr27IkmTZogMjIS77zzjlWZLVu2oHPnzggICEDnzp2xbds2J9SeiIiIqGE8KmC7fPkybrvtNixfvtym8nl5ebjnnnsQHx+PnJwcvPDCC5g0aRK2bNkilcnOzkZSUhKSk5Nx6NAhJCcnY+TIkdi7d6+zLoOIiIjILgohhHB3JRpCoVBg27ZtGDFiRK1lnn/+eXz++ec4duyYtG38+PE4dOgQsrOzAQBJSUkoLi7GV199JZVJTExEq1atsGHDBpvqUlxcDJVKBYPBwGU9iIhkhvdo8gYe1cJmr+zsbAwaNMhi2+DBg3HgwAGUlZXVWSYrK6vW85aUlKC4uNjiQUREROQsXh2wFRYWQq1WW2xTq9UoLy/H2bNn6yxTWFhY63nnz58PlUolPZiWioiIiJzJqwM2wHpl68oe4KrbaypT14rYM2fOhMFgkB4FBQUOrDERkfczGAzQ6XQ17tPpdDAYDC6uEZG8eXVqqtDQUKuWsqKiIvj6+qJNmzZ1lqne6lZVQEAAAgICHF9hIqJGwGAwIDExEUVFRUhPT7fopSgoKEBCQgJCQkKQkpIClUrlxpoSyYdXt7DFxsYiNTXVYtvXX3+NmJgY+Pn51VkmLi7OZfUkImpMjEYjioqKcPr0aSQkJEi9FJXB2unTp1FUVASj0ejmmhLJh0cFbJcuXUJubi5yc3MBmJftyM3NRX5+PgBzV+UjjzwilR8/fjx+++03TJkyBceOHcMHH3yAVatWYdq0aVKZZ555Bl9//TUWLlyIn3/+GQsXLsQ333yDyZMnu/LSiIgajbCwMKSnpyMyMlIK2rKysqRgLTIyEunp6QgLC3N3VYnkQ3iQtLQ0AcDqMXr0aCGEEKNHjxb9+vWzOCY9PV10795d+Pv7i/DwcLFy5Uqr837yySciOjpa+Pn5iY4dO4otW7bYVS+DwSAACIPB0NBLIyJqdPLz80VkZKTF/TwyMlLk5+c79HV4jyZv4LHrsMkJ1/ghImqYrKws9O3bV3q+e/duhw9J4T2avIFHdYkSEZH3KCgoQHJyssW25ORkzrwnqgEDNiIicrmqEwwiIyOxe/duizFtDNqILDFgIyIil9LpdFYTDOLi4qwmItS2ThtRY+TV67AREZH8BAUFISQkBAAs1mHTarVIT0+X1mELCgpyZzWJZIWTDhyAA1qJiOxjMBhgNBprXLpDp9MhKCjIYYvm8h5N3oAtbERE5HKVuZhrwvXXiKxxDBsRERGRzDFgIyIiIpI5BmxEREREMseAjYiIiEjmGLARERERyRwDNiIiIiKZY8BGREREJHMM2IiIiIhkjgvnEsmUtBK8RgNkZgJ6PaDRAPHx0On1Dl0JnoiI5I0BG5EMGQwGJCYmolteHpYplfDV66V95RoN5plMyI2IQEpKCoM2IqJGgAEbURVyadUyGo3olpeHFWfOWO1T6vVYAWDCtXIM2IiIvB8DNqJr5NSqFabRYJnSPMS0+kBTJQATYK6jRuPUehARkTxw0gHRNVVbtZRVgjXgWqvWmTPolpcHo9Ho/MpkZsJXr6/1P6gSMAeUmZnOrwsREbkdW9iIrpFVq1a1gPG6yzUicunWJiJyJAZsRJWutWrVRglzSxsyM4GEBOfWxdagkF2iFuTUrU1E5EgM2IgqyalVKz4e5RoNlLV0i5oAmDQa+MbHO78uHoSTNYjIW3EMG1ElG1ur/vT1BSoqgPR0YMMG88+KCuh0OhgMBodURafXY6LJBMAcnFVV+XyiyQQdu0Qt1NetDZi7tcPYMklEHoYBG1Gla61a1QOkSiYAhX5+mPP00yjXaoH+/YFRo4D+/VGu1WJeTAwSExMdErQFBQUhNyICE9RqmKoFFyaNBhPUauRGRCAoKKjO8xgMBuh0OqcHmLLByRpE5KXYJUp0jU6vxzyTCStgDs6qfulXBnHrysuxrKjI6lhHd7epVCqkpKTAaDSaJzlUGTzvGx+PWTYMnm+U47nk1K1NRORADNiIrpFatWDuNqu6tIdJo8Gkigr868IFoKzMJbNIVSrV/wKpapMcwsLC6j2+UY7n4mQNIvJSCiGEcHclPF1xcTFUKhUMBgNatGjh7urQdahrSYg/t25F25Ej6z9JWprzZ5HaoqIC5Vpt/RMXCgoAHx9X186hpN9bSAgqNBoozp/3+msm2/EeTd6ALWxEVdTVqtW2vNy2k8ilu01Oy5Q4UdWu37eEQMD58zWWqzpZY5Zeb1MrJRGRXDBgI7KVp3W3NZLxXHV1/VZVplZjMmDTZA0iIrlhwEZkK09bG83TAswGqmspDwAQAExt2iAgPx+zioqY6YCIPBKX9SCykcetjWbDMiXl18bnebR6lvJQAPA5dw7IykJYWBiDNSLySAzYiGzkqLXRXMXjAsyGaiRdv0TUuHlcwPb2228jIiICTZo0Qc+ePZFZxwKYY8aMgUKhsHrccsstUpk1a9bUWObq1auuuBzyIJVro806cMA8yzAtDfj4YyAtDb4FBZh14ICs1jTztACzwRpJ1y8RNW4eNYZt06ZNmDx5Mt5++2307dsX7777LoYMGYKjR4/ixhtvtCq/ZMkSLFiwQHpeXl6O2267Df/4xz8syrVo0QLHjx+32NakSRPnXAR5tOtdG82VHLH4rkfwtLGFREQN4FEB25tvvomxY8fiscceAwC89dZb2LlzJ1auXIn58+dblbf4cgWwfft2XLhwAf/3f/9nUU6hUCA0NNS5lSdyA08KMBvKlgwVXMqDiDydx3SJlpaW4uDBgxg0aJDF9kGDBiErK8umc6xatQoDBw5E+/btLbZfunQJ7du3R1hYGIYOHYqcnJw6z1NSUoLi4mKLBxG5R6Pp+iWiRs1jWtjOnj2LiooKqNVqi+1qtRqFhYX1Hq/X6/HVV1/h448/ttjesWNHrFmzBl26dEFxcTGWLFmCvn374tChQ4iKiqrxXPPnz8fcuXMbfjFE5DCNpuvXDaQMEjW0TOp0Or6vRC7kMQFbJYVCYfFcCGG1rSZr1qxBy5YtMWLECIvtffr0QZ8+faTnffv2RY8ePbBs2TIsXbq0xnPNnDkTU6ZMkZ4XFxdDq9XacRW8ERI5UmPo+nW1ygwSRUVFSE9Pt7jHFRQUICEhASEhIbKaaEPkzTymSzQ4OBg+Pj5WrWlFRUVWrW7VCSHwwQcfIDk5Gf7+/nWWVSqVuP3223HixIlaywQEBKBFixYWD3tU3gj79euHgoICi30FBQXo168fEhMTYTAY7DovEZGjGI1GFBUV4fTp00hISJDuVZXB2unTp1FUVASj0ejmmhI1Dh4TsPn7+6Nnz55ITU212J6amoq4uLg6j83IyMDJkycxduzYel9HCIHc3FxonLgEAG+ERCR3YWFhSE9PR2RkpHSvysrKku5RkZGRSE9PZwsmkasID7Jx40bh5+cnVq1aJY4ePSomT54smjVrJn799VchhBAzZswQycnJVsc9/PDDonfv3jWec86cOSIlJUWcOnVK5OTkiP/7v/8Tvr6+Yu/evTbXy2AwCADCYDDYfEx+fr6IjIwUAERkZKTYvXu3xfP8/Hybz0VE5CxV71WVD0+7RzXkHk0kNx41hi0pKQnnzp3Dyy+/DL1ej1tvvRU7duyQZn3q9Xrk5+dbHGMwGLBlyxYsWbKkxnNevHgRjz/+OAoLC6FSqdC9e3fs2rULvXr1cuq1aLVapKenS3+t9u3bFwCkv1ptHRPHsXBE5ExarRbr1q2T7lEAsG7dOrvH7RLR9VEIIYS7K+HpiouLoVKpYDAY7B7PlpWVZXEj3L17d71dvJU4KJiInK3qUI1K9v5h6W7Xc48mkguPGcPmjQoKCpCcnGyxLTk52WoiQm04Fo6InKnqvSQyMhK7d++2GNNm672KiK4fAzY3ccSNkIOCichZdDqd1b0kLi7O6p6j0+ncXVWiRoEBmxs48kZYORau8ri+fftanNdTuiyISF6CgoIQEhJidS+pes8JCQlhBgkiF+EYNgewd3yEM8aeXc9YOCKimnjLpCaOYSNvwIDNARpyM3DkjdAbBgUTkXeSQ9DHgI28AbtE3USlUtU6tiwsLKxBwVp4eDi2bdtW41g4nU7HzAlE5FLXk9XFYDDUOiyE9zNqjBiwebCqY+HCw8PRqlUrTJ06FR9//LFF0LZv3z6muyIip6grsPrll19QWFho90x2pu8jssaAzYNVHRS8adMmGAwGnD59GqNGjZKCtpYtWyIpKYlLfBCRw9UXWD344INo3bo1wsPD7ZrJziWLiGrgzjQL3sKdaU8uXrwoCgoKhBDW6a62bdsmwsPDPTKVDBHJX0FBQY0p9arfi/bu3Wt3eitHpu9jairyBpx04AByGtDKCQhEBFQZ7K/RAJmZgF4PaDRAfDx0er3DBvtXX1Ny3bp1SE5OtlpeqCEz2R11P5PTPZqooRiwOYDcbgZc4sM7ueoLmDxfZVdlt7w8LFMq4avXS/vKNRpMNJmQGxHhsLR19QVW1xN4OeJ+Jrd7NFFDcAybl7nedFckT5VfwPNiYlCu1QL9+wOjRgH9+6Ncq8W8mBgOwiaJ0WhEt7w8rDhzBsoqwRoAKPV6rDhzBt3y8hw2BqwyQXxVlQniryerC+9nRP/DgM2LMO+f93L1FzB5tjCNBsuU5tt79Zt85fNlSqW5tdYBagus9u3b1+CsLryfEVliwOYlmPfPu7n6C5g8XGYmfPX6Wm/wSsDcTZqZed0vVVdglZSUBJVKZXd6K97PiKz5ursC5BiVS3wAqPHGWJnuinn/PNS1L+DaKGFuaUNmJpCQ4LJqkUzV8VlpULla1BRYVb3nVI5Z27x5s9VYNa1Wi4yMjBrHXvJ+RmSNAZuXUKlUSElJqTEFTF03RvIQLvoCJi9ha0vrdbbI2hpY3XzzzTUeX1u2F97PiKxxlqgDcAYSVXLaTM70dPNEg/qkpbGFjYCKCpRrtVDW0i1qAmDSaOBbUAD4+FzXS8khV2h9eI8mb8AWNiIHqW8phXnXs5RCfDzKNZr6v4Dj46/rGsg76PR6zDOZsALmz0bVz4zp2s+JJhNm6fW1tnLZSqVS1fp5vt5zE9H/cNIBkYM4cyanTq/HRJP5q9ZUbV/VL2Adu0QJ5q7K3IgITFCrYarW7WnSaDBBrUZuRATHgBF5ELawETlIfTM5TTDP5PRtwLgh6Qv42jmqBoSmKguh8guYAMsxYL7Vuud94+MxiwstE3kcjmFzAI6PIABOH2fGTAdEDcN7NHkDtrAROYqTZ3JajBWqFvBxrBARkXfjGDYiR3HRUgpERNT4MGAjcpRrMzmrTwqoZIJ5tig4k5OIiOzEgI3IQTiTk4iInIUBG5GDcCkFIiJyFk46IHIQLqVARETOwoCNyIE4k5OIiJyBXaJEREREMseAjYiIiEjmGLARERERyRwDNiIiIiKZY8BGREREJHMeF7C9/fbbiIiIQJMmTdCzZ09kZmbWWjY9PR0KhcLq8fPPP1uU27JlCzp37oyAgAB07twZ27Ztc/ZlEBEREdnMowK2TZs2YfLkyZg1axZycnIQHx+PIUOGID8/v87jjh8/Dr1eLz2ioqKkfdnZ2UhKSkJycjIOHTqE5ORkjBw5Env37nX25RARERHZRCGEEO6uhK169+6NHj16YOXKldK2Tp06YcSIEZg/f75V+fT0dPTv3x8XLlxAy5YtazxnUlISiouL8dVXX0nbEhMT0apVK2zYsKHGY0pKSlBSUiI9Ly4uhlarhcFgQIsWLRp4dURE5AzFxcVQqVS8R5NH85gWttLSUhw8eBCDBg2y2D5o0CBkZWXVeWz37t2h0WgwYMAApKWlWezLzs62OufgwYPrPOf8+fOlBVJVKhW0Wq2dV0NERERkO48J2M6ePYuKigqo1WqL7Wq1GoWFhTUeo9Fo8N5772HLli3YunUroqOjMWDAAOzatUsqU1hYaNc5AWDmzJkwGAzSo6Cg4DqujIiIiKhuHpeaSqFQWDwXQlhtqxQdHY3o6GjpeWxsLAoKCvD666/jzjvvbNA5ASAgIAABAQENqT4RERGR3TymhS04OBg+Pj5WLV9FRUVWLWR16dOnD06cOCE9Dw0Nve5zEhERETmTxwRs/v7+6NmzJ1JTUy22p6amIi4uzubz5OTkQKPRSM9jY2Otzvn111/bdU4iIiIiZ/KoLtEpU6YgOTkZMTExiI2NxXvvvYf8/HyMHz8egHls2e+//44PP/wQAPDWW28hPDwct9xyC0pLS/HRRx9hy5Yt2LJli3TOZ555BnfeeScWLlyI4cOH47PPPsM333yD77//3i3XSERERFSdRwVsSUlJOHfuHF5++WXo9Xrceuut2LFjB9q3bw8A0Ov1FmuylZaWYtq0afj999/RtGlT3HLLLfjyyy9xzz33SGXi4uKwceNGvPjii3jppZdw0003YdOmTejdu7fLr4+IiIioJh61DptccY0fIiL54j2avIHHjGEjIiIiaqwYsBERERHJHAM2IiIiIpnzqEkHRERUM4PBAKPRiDCNBsjMBPR6QKMB4uOh0+sRFBQElUrl7moSUQMxYCMi8nAGgwGJiYnolpeHZUolfPV6aV+5RoN5JhNyIyKQkpLCoI3IQzFgIyLycEajEd3y8rDizBmrfUq9HisATLhWjgEbkWdiwEZE5OHCNBosU5qHJFcfmKwEYALMLW9VsrwQkWfhpAMiIk+XmQlfvb7WG7oSMHeTZma6slZE5EAM2IiIPF2VMWsOKUdEssOAjYjI09na1ckuUSKPxYCNiMjTxcejXKOBqZbdJphniyI+3pW1IiIHYsBGROThdHo9JprM4Vr1oK3y+USTCTp2iRJ5LAZsREQeLigoCLkREZigVsNUrdvTpNFgglqN3IgIBAUFuamGRHS9uKwHEZGHU6lUSElJgdFoNC/dUSXTgW98PGYx0wGRx2PARkQ1Yqojz6JSqf73+0hIsNgXFhbm+goRkUMxYCMiK0x1REQkLwzYiMgKUx0REckLAzYissJUR0RE8sJZokRkjamOiIhkhQEbEVljqiMiIllhlyg5HGcXegGmOiIikhUGbORQnF3oJa6lOlLW0i1qgnlBVl+mOiIicgl2iZJDVZ1dqKzWXabU67HizBl0y8uD0Wh0Uw3JFkx1REQkLwzYyKHqm10ImGcXhrErTdaY6oiISF7YJUqOdW12YW2UMLe0ITPTajV2kg+mOiIikhcGbORYnF3oNZjqiIhIPtglSo7F2YVEREQOx4CNHOva7MLqA9UrmWCeLQrOLiQiIrIZAzZyKM4uJCIicjwGbORQnF1IRETkeJx0QA5V0+zCK6dO4XKLFmg7fDhe/uwzNCsuRmBODjMfEBER2UghhBDuroSnKy4uhkqlgsFgQIsWLdxdHVmpL/PBRGY+ICIn4z2avIHHdYm+/fbbiIiIQJMmTdCzZ09kZmbWWnbr1q24++670bZtW7Ro0QKxsbHYuXOnRZk1a9ZAoVBYPa5eversS2kUmPmAiIjo+nlUwLZp0yZMnjwZs2bNQk5ODuLj4zFkyBDk5+fXWH7Xrl24++67sWPHDhw8eBD9+/fHvffei5ycHItyLVq0gF6vt3g0adLEFZfk9Zj5gIiI6Pp5VJdo79690aNHD6xcuVLa1qlTJ4wYMQLz58+36Ry33HILkpKS8K9//QuAuYVt8uTJuHjxYoPrxeb2OqSnA/37118uLY2ZD9zIYDDAaDSaA+cqWQ04zpC8Ae/R5A08ZtJBaWkpDh48iBkzZlhsHzRoELKysmw6h8lkgtFoROvWrS22X7p0Ce3bt0dFRQW6deuGV155Bd27d6/1PCUlJSgpKZGeFxcX23EljQwzH8hefeMM53GcIRGR23lMl+jZs2dRUVEBtVptsV2tVqOwsNCmc7zxxhu4fPkyRo4cKW3r2LEj1qxZg88//xwbNmxAkyZN0LdvX5w4caLW88yfP19K26NSqaDVaht2UY0BMx/IHscZEhHJn8cEbJUUCoXFcyGE1baabNiwAXPmzMGmTZsQEhIibe/Tpw8efvhh3HbbbYiPj8fmzZtx8803Y9myZbWea+bMmTAYDNKjoKCg4Rfk7Zj5QPY4zpCISP4aHLCdPHkSO3fuxF9//QXAHDg5U3BwMHx8fKxa04qKiqxa3arbtGkTxo4di82bN2PgwIF1llUqlbj99tvrbGELCAhAixYtLB5UM2Y+8ACZmfDV62u9GSgBczdpHTOyiYjIuewO2M6dO4eBAwfi5ptvxj333AP9tS/axx57DFOnTnV4BSv5+/ujZ8+eSE1NtdiempqKuLi4Wo/bsGEDxowZg48//hh/+9vf6n0dIQRyc3OhYWuCQzDzgQfgOEMiItmze9LBs88+C19fX+Tn56NTp07S9qSkJDz77LN44403HFrBqqZMmYLk5GTExMQgNjYW7733HvLz8zF+/HgA5q7K33//HR9++CEAc7D2yCOPYMmSJejTp4/UOte0aVNp8PTcuXPRp08fREVFobi4GEuXLkVubi5WrFjhtOtoTGrKfFA5A9E3Ph6zOAPR/TjOkIhI9uwO2L7++mvs3LkTYWFhFtujoqLw22+/OaxiNUlKSsK5c+fw8ssvQ6/X49Zbb8WOHTvQvn17AIBer7dYk+3dd99FeXk5JkyYgAkTJkjbR48ejTVr1gAALl68iMcffxyFhYVQqVTo3r07du3ahV69ejn1WhqTyskZAKyW7qj+OSI3uDbOUFlLt6gJ5tZQX44zJCJyG7vXYQsKCsIPP/yAqKgoBAUF4dChQ4iMjMT+/fuRmJiIc+fOOauussU1fsiT6XQ6zIuJwYozZwBYjpOoHGc4Qa3GrAMHGGCTR+I9mryB3WPY7rzzTqnLETDP2jSZTHjttdfQ35YFUolIVjjOkIhI/uxuYTt69CgSEhLQs2dPfPfddxg2bBh++uknnD9/Hrt378ZNN93krLrKFv96I0/HTAfkzXiPJm/QoNRUhYWFWLlyJQ4ePAiTyYQePXpgwoQJjXZmJW8G3ouBDJHn4z2avIHdAVt+fj60Wm2Ni9Xm5+fjxhtvdFjlPAVvBt6pvpRNE5myicgj8B5N3sDuMWwRERH4888/rbafO3cOERERDqkUkRwwZRMREcmF3ct61JYK6tKlS2jSpIlDKkUkB/WlbDLBnLLJt5EOBSAiItexOWCbMmUKAPOs0JdeegmBgYHSvoqKCuzduxfdunVzeAWJ3OZayqbaKGFuaUNmptX6ckRERI5kc8CWk5MDwNzC9uOPP8Lf31/a5+/vj9tuuw3Tpk1zfA2J3IUpm4iISCZsDtjS0tIAAP/3f/+HJUuWcOAmeT+mbCIiIplo0LIeZIkzkLxURQXKtdr6UzYVFAA+Pq6uHRHZiPdo8gZ2TzoAgP379+OTTz5Bfn4+SktLLfZt3brVIRUjcjedXo95JhNWwByc1ZSyaaLJhFl6PVM2ERGRU9m9rMfGjRvRt29fHD16FNu2bUNZWRmOHj2K7777jmtRkVdhyiYiIpILu7tEu3btiieeeAITJkyQkr9HRETgiSeegEajwdy5c51VV9lic7v3YqYDIs/HezR5A7sDtmbNmuGnn35CeHg4goODkZaWhi5duuDYsWO46667oG+EM+Z4MyBvwOCUvJWt9+iKigqUlZW5sGbU2Pn5+cHHxjHQdo9ha926tbSy+w033IAjR46gS5cuuHjxIq5cuWLv6YhIBupLwzWPabjIiwkhUFhYiIsXL7q7KtQItWzZEqGhoTUmJajK7oAtPj4eqamp6NKlC0aOHIlnnnkG3333HVJTUzFgwIAGV5iI3KdqGq7qlHo9VgCYcK0cAzbyNpXBWkhICAIDA+v94iRyBCEErly5gqKiIgCApp4louwO2JYvX46rV68CAGbOnAk/Pz98//33uP/++/HSSy81oMpE5G5Mw0WNVUVFhRSstWnTxt3VoUamadOmAICioiKEhITU2T3aoC7RSkqlEtOnT8f06dMbUE0ikg2m4aJGqnLMWtV0i0SuVPnZKysrc2zABgAmkwknT55EUVERTCaTxb4777yzIackIndiGi5q5NgNSu5i62fP7oBtz549GDVqFH777TdUn2CqUChQUVFh7ylJxjhzsJFgGi4iIlmzO2AbP348YmJi8OWXX0Kj0fCvEi/GmYONSHw8yjWa+tNwxce7umZE5CTp6eno378/Lly4gJYtW7rsdceMGYOLFy9i+/btLntNb2B3poMTJ07g1VdfRadOndCyZUuoVCqLB3mPqjMHldW6wpR6PVacOYNueXnSMi/kuXR6PSZeG95gqravahouHbtEiWRjzJgxUCgUUCgU8PPzQ2RkJKZNm4bLly/bdHxcXBz0er1d391jxozBiBEjGlhjsyVLlmDNmjXXdY7GyO6ArXfv3jh58qQz6kIyU9/MQcA8czCM3WQej2m4iBrOYDBAp9PVuE+n08FgMDjttRMTE6HX63H69Gn8+9//xttvv41p06bZdKy/v79N6385mkqlcmmLnqsIIVBeXu6089sdsE2cOBFTp07FmjVrcPDgQRw+fNjiQV7k2szB2j4kSsDcTZqZ6cpakROoVCqkpKRg1oED8C0oANLSgI8/BtLS4FtQgFkHDrDrm6gGlUNH+vXrh4KCAot9BQUF6NevHxITE50WtAUEBCA0NBRarRajRo3CQw89JHU1lpSUYNKkSQgJCUGTJk1wxx13YP/+/dKx6enpUCgU0oLBa9asQcuWLbFz50506tQJzZs3lwJCAJgzZw7Wrl2Lzz77TGrZS09PR2lpKZ5++mloNBo0adIE4eHhmD9/fq11rt5Kl5CQgEmTJmH69Olo3bo1QkNDMWfOnDqvOz09Hb169UKzZs3QsmVL9O3bF7/99pu0f8GCBVCr1QgKCsLYsWMxY8YMdOvWzeI1J0+ebHHOESNGYMyYMdLzjz76CDExMQgKCkJoaChGjRolrZlW9f3buXMnYmJiEBAQgMzMTAghsGjRIkRGRqJp06a47bbb8Omnn9Z5PbawewzbAw88AAB49NFHpW0KhQJCCE468DacOdioWAxrqLZ0R1hYmOsrROQBjEYjioqKcPr0aSQkJCA9PR1arRYFBQVISEjA6dOnpXKu+IOnadOm0lIl06dPx5YtW7B27Vq0b98eixYtwuDBg3Hy5EmLJbqqunLlCl5//XWsW7cOSqUSDz/8MKZNm4b169dj2rRpOHbsGIqLi7F69WoA5qW+li5dis8//xybN2/GjTfeiIKCAqvgtT5r167FlClTsHfvXmRnZ2PMmDHo27cv7r77bquy5eXlGDFiBMaNG4cNGzagtLQU+/btk1oKN2/ejNmzZ2PFihWIj4/HunXrsHTpUkRGRtpVp9LSUrzyyiuIjo5GUVERnn32WYwZMwY7duywKDd9+nS8/vrriIyMRMuWLfHiiy9i69atWLlyJaKiorBr1y48/PDDaNu2Lfr162dXHaqyO2DLy8tr8IuRh+HMQSKiOoWFhSE9PV0KzhISErBu3TokJyfj9OnTiIyMRHp6ukv+6Nm3bx8+/vhjDBgwAJcvX8bKlSuxZs0aDBkyBADw/vvvIzU1FatWrcJzzz1X4znKysrwzjvv4KabbgIAPP3003j55ZcBAM2bN0fTpk1RUlKC0NBQ6Zj8/HxERUXhjjvugEKhQPv27e2ue9euXTF79mwAQFRUFJYvX45vv/22xoCtuLgYBoMBQ4cOlerZqVMnaf9bb72FRx99FI899hgA4N///je++eYbadF/W1VtmIqMjMTSpUvRq1cvXLp0Cc2bN5f2vfzyy1I9L1++jDfffBPfffcdYmNjpWO///57vPvuu64N2BryiyAPxZmDRET10mq1FkFb3759AUAK1rRardNe+7///S+aN2+O8vJylJWVYfjw4Vi2bBlOnTqFsrIyqS6AOdF4r169cOzYsVrPFxgYKAVBgDldUtVuwJqMGTMGd999N6Kjo5GYmIihQ4di0KBBdl1H165dLZ7X9bqtW7fGmDFjMHjwYNx9990YOHAgRo4cKaV2OnbsGMaPH29xTGxsLNLS0uyqU05ODubMmYPc3FycP39eWnc2Pz8fnTt3lsrFxMRI/z569CiuXr1qFWiWlpaie/fudr1+dTYFbJ9//jmGDBkCPz8/fP7553WWHTZs2HVViORDp9djnsmEFTAHZ1WDtqozB2fp9ewyI6JGTavVYt26dRYB0rp165warAFA//79sXLlSvj5+aFdu3bw8/MDAGncWfUJBZXDl2pTeXylyiFPdenRowfy8vLw1Vdf4ZtvvsHIkSMxcOBAu8Zt1fS61Rfmr2r16tWYNGkSUlJSsGnTJrz44otITU1Fnz59bHo9pVJpdV2VXcmAuaVs0KBBGDRoED766CO0bdsW+fn5GDx4MEpLSy2Oa9asmfTvyjp/+eWXuOGGGyzKBQQE2FS32tgUsI0YMQKFhYUICQmpczovx7B5F2nmIMyzQasu7WHSaDDx2jpsnDlIRI1dQUEBkpOTLbYlJyc7vYWtWbNm6NChg9X2Dh06wN/fH99//z1GjRoFwByQHDhwwGqwvT38/f1r/J5v0aIFkpKSkJSUhL///e9ITEzE+fPnax0r5wjdu3dH9+7dMXPmTMTGxuLjjz9Gnz590KlTJ+zZswePPPKIVHbPnj0Wx7Zt21YKagFzTtkjR46gf//+AICff/4ZZ8+exYIFC6Tf34EDB+qtU+fOnREQEID8/Pzr6v6siU0BW9Uot66Il7xL5cxBo9FoTvpdJdOBb3w8ZjHTARGRxQSDyMhIizFsVSciuFKzZs3w5JNP4rnnnkPr1q1x4403YtGiRbhy5QrGjh3b4POGh4dj586dOH78ONq0aQOVSoXly5dDo9GgW7duUCqV+OSTTxAaGuq0pTvy8vLw3nvvYdiwYWjXrh2OHz+OX375RQrQnnnmGYwePRoxMTG44447sH79evz0008Wkw7uuusuTJkyBV9++SVuuukmLF68WJotCwA33ngj/P39sWzZMowfPx5HjhzBK6+8Um/dgoKCMG3aNDz77LMwmUy44447UFxcjKysLDRv3hyjR49u8HU3KJcoNR6cOUjkHEz75h10Op1FsFYZnFWfiJCRkeHye+aCBQtgMpmQnJwMo9GImJgY7Ny5E61atWrwOceNG4f09HTExMTg0qVLSEtLQ/PmzbFw4UKcOHECPj4+uP3227Fjxw4olXavHGaTwMBA/Pzzz1i7di3OnTsHjUaDp59+Gk888QQAICkpCadOncLzzz+Pq1ev4oEHHsCTTz6JnTt3Sud49NFHcejQITzyyCPw9fXFs88+K7WuAeYWuDVr1uCFF17A0qVL0aNHD7z++us2Dft65ZVXEBISgvnz5+P06dNo2bIlevTogRdeeOG6rlsh6uucBrB06VKbTzhp0qTrqpAnKi4uhkqlgsFgQIsWLdxdHSKSufrSvk1k2jeHquseffXqVeTl5SEiIgJNmjSx+9yVv8uioiKrlrTKlreQkBD+Lt1szpw52L59O3Jzc91dFSu2fgZtamFbvHixxfM///wTV65ckZo7L168iMDAQISEhDg9YHv77bfx2muvQa/X45ZbbsFbb72F+DpmKWZkZGDKlCn46aef0K5dO0yfPt1q9siWLVvw0ksv4dSpU7jpppswb9483HfffU69DiJqvKqmfatOqddjBYAJcN3aXdRwVYeOVG9B02q1yMjIYGspOYRN7ZV5eXnSY968eejWrRuOHTuG8+fP4/z58zh27Bh69OhhU//u9di0aRMmT56MWbNmIScnB/Hx8RgyZAjy8/Nrrfc999yD+Ph45OTk4IUXXsCkSZOwZcsWqUx2djaSkpKQnJyMQ4cOITk5GSNHjsTevXudei1E1Hgx7Zt3UalUtXZ3hoWFMVgjh7CpS7Sqm266CZ9++qnVeiIHDx7E3//+d6curNu7d2/06NEDK1eulLZ16tQJI0aMqDENxvPPP4/PP//cYs2Z8ePH49ChQ8jOzgZg7usuLi7GV199JZVJTExEq1atsGHDBpvqxS5RIrJLejpQZbxMrdLSrMaOkv2c2SVKdL1s/QzaPSJQr9dbrFVSqaKiAmdqaN53lNLSUhw8eNBqMb5BgwYhKyurxmOys7Otyg8ePBgHDhyQrqG2MrWdEzDnZysuLrZ4EJG8SAm5KyrMAdKGDeafFRVOT8hdL6Z9IyI72R2wDRgwAOPGjcOBAwekRecOHDiAJ554AgMHDnR4BSudPXsWFRUVUKvVFtvVajUKCwtrPKawsLDG8uXl5Th79mydZWo7JwDMnz9fmj2pUqlcPl2biOpWORB8XkwMyrVac2vWqFFA//4o12oxLybGqQm568W0b0RkJ7sDtg8++AA33HADevXqhSZNmiAgIAC9e/eGRqPBf/7zH2fU0YK9qzbXVL76dnvPOXPmTBgMBulhb5JbInKuqoP6ldVaqZR6PVacOYNueXkwGo3uqeC1tG+1rWppgnm2KJj2jYiusWsdNiEErly5gk8//RS///47jh07BiEEOnXqhJtvvtlZdQQABAcHw8fHx6rlq6ioyKqFrFJoaGiN5X19fdGmTZs6y9R2TsCcXuJ6U0wQkfPUN6jfBPOgfl83tWAx7RsR2cuuFjYhBKKiovD7778jKioKw4YNw/Dhw50erAHmdBg9e/ZEamqqxfbU1FTExcXVeExsbKxV+a+//hoxMTFS3rLaytR2TiLyAJmZ8NXra73BKQHz2meZma6slURK+6ZWw1QtaDRpNJigVjPtGxFZsKuFTalUIioqCufOnUNUVJSz6lSrKVOmIDk5GTExMYiNjcV7772H/Px8aV21mTNn4vfff8eHH34IwDwjdPny5ZgyZQrGjRuH7OxsrFq1ymL25zPPPIM777wTCxcuxPDhw/HZZ5/hm2++wffff+/y6yMiB5H5oH6mfSMiuwk7/fe//xV33HGH+PHHH+091CFWrFgh2rdvL/z9/UWPHj1ERkaGtG/06NGiX79+FuXT09NF9+7dhb+/vwgPDxcrV660Oucnn3wioqOjhZ+fn+jYsaPYsmWLXXUyGAwCgDAYDA26JiJysLQ0IYD6H2lp7q4puUBd9+i//vpLHD16VPz1119uqJl7paWlCQDiwoULLn3d0aNHi+HDhzv1NQCIbdu2uf0ctrD1M2j3OmytWrXClStXUF5eDn9/fzRt2tRi//nz5x0VS3oMrsNGJDMVFSjXaqGspVvUBHPXo29BAeDj4+rakYt56zpsY8aMwdq1awEAvr6+0Gq1uP/++zF37lw0a9as3uNLS0tx/vx5qNXqOifaVX/NixcvYvv27Q2ut8FggBDCacnhAfMKEK1atbqu8eYKhQLbtm3DiBEjHFexGjg0NVVVb7311vXUi4jI6Tion9yiosKiexvx8U7/gyAxMRGrV69GWVkZMjMz8dhjj+Hy5csWC8zXxt/fH6GhoU6tX01c0dVf33WVlZVJY9k9htPb+hoBdokSycvFixdFnz59xHi1WpRpNBbdoGUajRivVos+ffqIixcvuruq5AIu6RLdskWIsDDLLvewMPN2J6mpa/Gxxx4ToaGhQgghrl69KiZOnCjatm0rAgICRN++fcW+ffukstW7RFevXi1UKpVISUkRHTt2FM2aNRODBw8Wf/zxhxBCiNmzZwsAFo+0tDRRUlIiJkyYIEJDQ0VAQIBo3769ePXVV22ud79+/cTEiRPFc889J1q1aiXUarWYPXt2vde/atUq0blzZ+Hv7y9CQ0PFhAkTpH2o0p2Zl5cnAIhNmzaJfv36iYCAAPHBBx/YdQ4hhNDpdGLkyJGiZcuWonXr1mLYsGEiLy+v3nrWx9bPoN0tbIA5q8H27dtx7NgxKBQKdO7cGcOGDYMPuxaISAY4qJ9cautW4O9/N4dpVf3+u3n7p58C99/vkqo0bdpUyuQzffp0bNmyBWvXrkX79u2xaNEiDB48GCdPnkTr1q1rPP7KlSt4/fXXsW7dOiiVSjz88MOYNm0a1q9fj2nTpuHYsWMoLi7G6tWrAQCtW7fG0qVL8fnnn2Pz5s248cYbUVBQYPf6pGvXrsWUKVOwd+9eZGdnY8yYMejbty/uvvvuGsuvXLkSU6ZMwYIFCzBkyBAYDAbs3r27ztd4/vnn8cYbb2D16tUICAiw6xxXrlxB//79ER8fj127dsHX1xf//ve/kZiYiMOHD8Pf39+u620QeyPBEydOiKioKBEYGCi6d+8uunXrJgIDA0V0dLQ4efJkgyNMT8YWNiIi+XJqC1t5uXXLWtWHQiGEVmsu52DVW6r27t0r2rRpI0aOHCkuXbok/Pz8xPr166X9paWlol27dmLRokVCiJpb2ABYfJevWLFCqNXqWl9TCCEmTpwo7rrrLmEymRpU7379+ok77rjDosztt98unn/++VrP0a5dOzFr1qxa96OGFra33nqrwedYtWqViI6OtrjGkpIS0bRpU7Fz585az2ELWz+Ddmc6mDRpEm666SYUFBTghx9+QE5ODvLz8xEREYFJkyY5NJgkIiKStcxMQKerfb8QQEGB09b8++9//4vmzZujSZMmiI2NxZ133olly5bh1KlTKCsrQ9++faWyfn5+6NWrF44dO1br+QIDA3HTTTdJzzUaDYqKiuqsw5gxY5Cbm4vo6GhMmjQJX3/9td3X0bVrV4vndb1uUVER/vjjDwwYMMCu14iJiWnwOQ4ePIiTJ08iKCgIzZs3R/PmzdG6dWtcvXoVp06dsqseDWV3l2hGRgb27Nlj0Zzapk0bLFiwwOKDQURE5PXcvOZf//79sXLlSvj5+aFdu3bSQHr9tdezN/Vi9YH4CoVCSulYmx49eiAvLw9fffUVvvnmG4wcORIDBw7Ep59+avN11PS6JlPNyduqr05hq6ozZ+09h8lkQs+ePbF+/XqrfW3btm1QfexldwtbQEBAjfn3Ll265Jo+XCIiIrmwNb2Zk9KgNWvWDB06dED79u0tgp4OHTrA39/fYhH4srIyHDhwAJ06dWrw6/n7+6OiosJqe4sWLZCUlIT3338fmzZtwpYtW5y2zFdQUBDCw8Px7bffuuwcPXr0wIkTJxASEoIOHTpYPFw1FtbugG3o0KF4/PHHsXfvXgghIITAnj17MH78eAwbNswZdSQiIpKn+HggLAyordVKoQC0WnM5F2rWrBmefPJJPPfcc0hJScHRo0cxbtw4XLlyBWPHjm3wecPDw3H48GEcP34cZ8+eRVlZGRYvXoyNGzfi559/xi+//IJPPvkEoaGhTl1nbc6cOXjjjTewdOlSnDhxAj/88AOWLVvmtHM89NBDCA4OxvDhw5GZmYm8vDxkZGTgmWeega6uLnEHsrtLdOnSpRg9ejRiY2OlaL68vBzDhg3DkiVLHF5BIiIi2fLxAZYsMc8GVSgsZ4pWBnFvveWWBZoXLFgAk8mE5ORkGI1GxMTEYOfOnWjVqlWDzzlu3Dikp6cjJiYGly5dQlpaGpo3b46FCxfixIkT8PHxwe23344dO3ZAqbS7Tchmo0ePxtWrV7F48WJMmzYNwcHB+Pvf/+60cwQGBmLXrl14/vnncf/998NoNOKGG27AgAEDXLZgvt2ZDiqdOHFCGrjYuXNndOjQwaEV8yTMdEBEJF8uyXSwdSvwzDOWExC0WnOw5qIlPcgzOS3TQaWoqCgpSLM1pQUREZFXuv9+YPhwl2c6oMajQe2VH374Ibp06YKmTZuiadOm6Nq1K9atW+fouhEREXkOHx8gIQH45z/NPxmskQPZ3cL25ptv4qWXXsLTTz+Nvn37QgiB3bt3Y/z48Th79iyeffZZZ9STiIiIqNGyO2BbtmwZVq5ciUceeUTaNnz4cNxyyy2YM2cOAzYiIiIiB7M7YNPr9YiLi7PaHhcXJy3UR/JhMBhgNBoRVi2fIuLjoWM+RSIiAKh3cVgiZ7H1s2d3wNahQwds3rwZL7zwgsX2TZs2ISoqyt7TkRMZDAYkJiaiW14elimV8K0SUJdrNJhnMiE3IgIpKSkM2oioUapcnurKlSsNXkGf6HpcuXIFgHW2h+rsDtjmzp2LpKQk7Nq1C3379oVCocD333+Pb7/9Fps3b25YbckpjEYjuuXlYcWZM1b7lHo9VgCYcK0cAzYiaox8fHzQsmVLKW9lYGAgVz4glxBC4MqVKygqKkLLli3hU88kFbsDtgceeAB79+7F4sWLsX37dggh0LlzZ+zbtw/du3dvcMXJ8cI0Giy7tnBh9enASgAmwNzy5qSUKUREniA0NBQA6k1yTuQMLVu2lD6DdWnwwrn0P7JdODc9Hejfv/5yaWnmKehERF7I1nt0RUUFysrKXFgzauz8/PzqbVmrZHcL244dO+Dj44PBgwdbbN+5cydMJhOGDBli7ynJWWydBMLJIkRE8PHxsfnLk8jV7F44d8aMGaioqLDaLoTAjBkzHFIpchBbuzrZJUpERCRrdgdsJ06cQOfOna22d+zYESdPnnRIpchB4uNRrtHAVMtuE8yzRREf78paERERkZ3sDthUKhVOnz5ttf3kyZNo1qyZQypFjqHT6zHRZA7Xqgdtlc8nmkzQsUuUiIhI1uwO2IYNG4bJkyfj1KlT0raTJ09i6tSpGDZsmEMrR9cnKCgIuRERmKBWw1St29Ok0WCCWo3ciAgEBQW5qYZERERkC7tniVYuxnrgwAGEhYUBAHQ6HeLj47F161a0bNnSGfWUNdnOEgUzHRARyfkeTWSrBi3rIYRAamoqDh06hKZNm6Jr16648847nVE/jyD3mwGDNiJqzOR+jyayBddhcwA53wzqS081kempiMjLyfkeTWQru9dhI8/C9FRERESejwGbl2N6KiIiIs9n8yxRnU7nzHqQs2Rmwlevr/UXrQTM3aSZma6sFZFDGAwG872posKcim3DBvPPigrodDoYDAZ3V5GIyCFsbmG79dZbsWzZMiQnJzuzPuRoTE/lcpzk4Rr1jc+cx/GZRORFbA7YXn31VUyYMAHbt2/He++9hzZt2jizXuQoTE/lUgwiXIfjM4moMbG5S/Spp57CoUOHcOHCBdxyyy34/PPPnVkvKxcuXEBycjJUKhVUKhWSk5Nx8eLFWsuXlZXh+eefR5cuXdCsWTO0a9cOjzzyCP744w+LcgkJCVAoFBaPBx980MlX40JMT+VSVYMIZbVWS6VejxVnzqBbXh6MRqObaug96hufCZjHZ4bxjxEi8gJ2ZTqIiIjAd999hxdffBEPPPAAunbtih49elg8nGXUqFHIzc1FSkoKUlJSkJubW2f37JUrV/DDDz/gpZdewg8//ICtW7fil19+qTEbw7hx46DX66XHu+++67TrcDWmp3ItBhEuxPGZRNSI2D1L9LfffsOWLVvQunVrDB8+HL6+zp9oeuzYMaSkpGDPnj3o3bs3AOD9999HbGwsjh8/jujoaKtjVCoVUlNTLbYtW7YMvXr1Qn5+Pm688UZpe2BgIEJDQ517EW4ipaeCOVCo2upjqrIOG9NTOci1IKI2Sphb2pCZCSQkuKxaXonjM4moEbEr2nr//fcxdepUDBw4EEeOHEHbtm2dVS8L2dnZUKlUUrAGAH369IFKpUJWVlaNAVtNDAYDFAqFVfqs9evX46OPPoJarcaQIUMwe/bsOgOYkpISlJSUSM+Li4vtuyAXUqlUSElJgdFoNC/dUWUQvG98PGZxELxjMYhwHY7PJKJGxOaALTExEfv27cPy5cvxyCOPOLNOVgoLCxESEmK1PSQkBIWFhTad4+rVq5gxYwZGjRplsdL1Qw89hIiICISGhuLIkSOYOXMmDh06ZNU6V9X8+fMxd+5c+y/EDo6caVg57g+AVatOZT5YchAGEa5zbXymspZuURPMrci+HJ9JRF7A5oCtoqIChw8fdugX/Jw5c+oNfPbv3w8AUCgUVvuEEDVur66srAwPPvggTCYT3n77bYt948aNk/596623IioqCjExMfjhhx9qHZM3c+ZMTJkyRXpeXFwMrVZbbz1sxZmGHoxBhMvo9HrMM5mwAub3ter7XXV85iy9nn+YEJHHszlgq6vFqaGefvrpemdkhoeH4/DhwzhTw9T9P//8E2q1us7jy8rKMHLkSOTl5eG7776rN49cjx494OfnhxMnTtQasAUEBCAgIKDO81wPLlfguRhEuA7HZxJRY+LW1FTBwcEIDg6ut1xsbCwMBgP27duHXr16AQD27t0Lg8GAuLi4Wo+rDNZOnDiBtLQ0m9aO++mnn1BWVgaNG7usmE7KczGIcB2OzySixkQhhBDuroQthgwZgj/++ENacuPxxx9H+/bt8cUXX0hlOnbsiPnz5+O+++5DeXk5HnjgAfzwww/473//a9ES17p1a/j7++PUqVNYv3497rnnHgQHB+Po0aOYOnUqmjZtiv3798PHx8emuhUXF0OlUsFgMNTbgmeT9HSgf//6y6WlcaahDDHTAZG8OPweTeQGHpP8ff369Zg0aRIGDRoEABg2bBiWL19uUeb48eNS7kCdTict7tutWzeLcmlpaUhISIC/vz++/fZbLFmyBJcuXYJWq8Xf/vY3zJ492+ZgzSk409CjcZIHERE5mscEbK1bt8ZHH31UZ5mqjYXh4eGor/FQq9UiIyPDIfVzKM40JCIioirsynRALsJ0UkRERFQFAzYZYjopIiIiqooBmwxJMw3VapiqdXuaNBpMUKs505CIiKgR8ZgxbI0JlysgIiKiqhiwyRRnGhIREVEldokSERERyRwDNiIiIiKZY8BGREREJHMM2IiIiIhkjgEbERERkcwxYCMiIiKSOQZsRERERDLHgI2IiIhI5hiwEREREckcMx0QyZTBYIDRaERYtfRkiI+HjunJiIgaFQZsRDJkMBiQmJiIbnl5WKZUwlevl/aVazSYZzIhNyICKSkpDNqIiBoBBmxEMmQ0GtEtLw8rzpyx2qfU67ECwIRr5RiwERF5PwZsRDIUptFgmdI8xLT6QFMlABNgbnnTaFxdNZdgdzARkSUGbERylJlp0Q1anRLmljZkZgIJCU6pgruCJnYHExFZY8BGJEd1BGsNKmcndwZN7A4mIrLGgI1Ijmzt6nRSl6g7g6bG3h1MRFQTrsNGJEfx8SjXaGCqZbcJ5pYuxMc75eXrC5oAc9AU5oyg6Vp3cG03JyVgbvHLzHT8axMRyRQDNiIZ0un1mGgyh2vVg7bK5xNNJuic1CXq1qDJzd3BVDuDwQCdTgdUVADp6cCGDeafFRXQ6XQwGAzuriKR12KXKJEMBQUFITciAhNgbslSVglOTBoNJl4bQxYUFOScCrgzaHJzdzDVjJNBiNyLARuRDKlUKqSkpMBoNJrHalWZpekbH49Zzl7awp1B07XuYGUtLXwmmINWXyd1B1PNOBmEyL0YsBHJlEql+t8XX7WlO8LCwpz74m4MmnR6PeaZTFhx7XWqvn7V7uBZer3z3weScDIIkXtxDBsRWXHnGDqpO1ithqnal79Jo8EEtdq53cFUM04GIXIrtrARkRV3jqFze3cw1YyTQYjcigFbI8J0P2QrdwdNbu0OpppxMgiRWymEEMLdlfB0xcXFUKlUMBgMaNGihburU6P6ZnhN5AwvIqpLRQXKtdr6xzUWFAA+Pq6uXZ084R5NVB+OYWskqs7wUlbrslDq9Vhx5gy65eXBaDS6qYbywzWniP7H7WsDEjVy7BJtJDjDyz5cc4rIktvXBiRq5BiwNRbXZnjVRglzSxsyM63GDDVGXHOKyJK7xzUSNXYe0yV64cIFJCcnS4ORk5OTcfHixTqPGTNmDBQKhcWjT58+FmVKSkowceJEBAcHo1mzZhg2bJi5G8zbcIaXXdyaS5O8lqd3s6tUKvOkDx8f8x92//yn+aePD8LCwhisETmRx7SwjRo1CjqdDikpKQCAxx9/HMnJyfjiiy/qPC4xMRGrV6+Wnvv7+1vsnzx5Mr744gts3LgRbdq0wdSpUzF06FAcPHgQPjIbOHtdOMPLPmyRJAdjNzsRXQ+PCNiOHTuGlJQU7NmzB7179wYAvP/++4iNjcXx48cRHR1d67EBAQEIDQ2tcZ/BYMCqVauwbt06DBw4EADw0UcfQavV4ptvvsHgwYNrPK6kpAQlJSXS8+Li4oZemusw3Y992CLpFt689Ay72YnoenhEl2h2djZUKpUUrAFAnz59oFKpkJWVVeex6enpCAkJwc0334xx48ahqKhI2nfw4EGUlZVh0KBB0rZ27drh1ltvrfO88+fPl7pmVSoVtFrtdVyda3CGl53YIulylS1Q82JiUK7VAv37A6NGAf37o1yrxbyYGCQmJsq+27A27GYnouvhEQFbYWEhQkJCrLaHhISgsLCw1uOGDBmC9evX47vvvsMbb7yB/fv346677pJaxwoLC+Hv749WrVpZHKdWq+s878yZM2EwGKRHQUFBA6/MdZjux07XWiSrB7eVTDB3Y4Etkg7j9UvPMLUTEV0Ht3aJzpkzB3Pnzq2zzP79+wEACoXCap8QosbtlZKSkqR/33rrrYiJiUH79u3x5Zdf4v7776/1uPrOGxAQgICAgDrrLTec4WUfJiB3Pa9feobd7ER0HdwasD399NN48MEH6ywTHh6Ow4cP40wN4z7+/PNPqNVqm19Po9Ggffv2OHHiBAAgNDQUpaWluHDhgkUrW1FREeLi4mw+r6dguh/bcc0pN/D2iR7sZiei6+DWgC04OBjBwcH1louNjYXBYMC+ffvQq1cvAMDevXthMBjsCqzOnTuHgoICaK7dEHv27Ak/Pz+kpqZi5MiRAAC9Xo8jR45g0aJFDbgi8hZskXQDb2+B4sQfIroOHjGGrVOnTkhMTMS4ceOwZ88e7NmzB+PGjcPQoUMtZoh27NgR27ZtAwBcunQJ06ZNQ3Z2Nn799Vekp6fj3nvvRXBwMO677z4A5i/lsWPHYurUqfj222+Rk5ODhx9+GF26dJFmjVLjxTWnXMzLW6A48YeIrodHLOsBAOvXr8ekSZOkGZ3Dhg3D8uXLLcocP35cmkHm4+ODH3/8ER9++CEuXrwIjUaD/v37Y9OmTRbdWIsXL4avry9GjhyJv/76CwMGDMCaNWu8aw02Ik/g5S1Q7GYnouuhEEIId1fC0xUXF0OlUsFgMKBFixburg6RR9LpdJgXEyOtU1bTRI8JajVmHTjgsWMuvXmdOTnjPZq8gce0sBGRd2sMLVCc+ENEDcWAjYhkgRM9iIhqx4CNiGSDLVBERDXziFmiRERERI0ZAzYiIiIimWPARkRERCRzDNiIiIiIZI4BGxEREZHMMWAjIiIikjku60EkE1wFn4iIasOAjUgGDAYDEhMT0S0vD8uUSvhWWeW/XKPBvGur/KekpDBoIyJqhBiwEcmA0WhEt7w8KY9mVUq9HisATLhWjgEbEVHjw4CNSAbCNBosU5qHlFYfWKqEOfn5MqXSnLKJiIgaHU46IJKDzEz46vW1/odUAuZu0sxMV9aKiIhkggEbkRxUGbPmkHJERORVGLARyYGtXZ3sEiUiapQYsBHJQXw8yjUamGrZbYJ5tiji411ZKyIikgkGbEQyoNPrMdFkDteqB22VzyeaTNCxS5SIqFFiwCZjBoMBOp2uxn06nQ4Gg8HFNSJnCQoKQm5EBCao1TBV6/Y0aTSYoFYjNyICQUFBbqohERG5E5f1kKnKhVSLioqQnp4OrVYr7SsoKEBCQgJCQkK4kKqXUKlUSElJgdFoNC/dUSXTgW98PGYx0wERUaPGgE2mjEYjioqKcPr0aSQkJEhBW2Wwdvr0aakcv8S9g0ql+t/vMiHBYl9YWJjrK0RERLLBLlGZCgsLQ3p6OiIjI6WgLSsrSwrWIiMjkZ6ezi9yIiKiRkAhhBDuroSnKy4uhkqlgsFgQIsWLRx67uotagCkYK1qNykREdXMmfdoIldhC5vMabVarFu3zmLbunXrGKwRERE1IgzYZK6goADJyckW25KTk1FQUOCmGhEREZGrMWCTsardoZGRkdi9e7fFmDYGbURERI0DAzaZ0ul0VhMM4uLirCYi1LZOGxEREXkPBmxuVNfCuMXFxWjTpo3VBAOtVisFbSEhIVxIlYiIqBHgOmxuUt/CuPfeey9at26NL774wmqCgVarRUZGBhdSJSIiaiTYwuYm1RfGrRyPVnXc2vnz52udgh4WFsZgjYiIqJFgwOYmXBiXiIiIbMWFcx3gehZl5MK4RETOxYVzyRt4TAvbhQsXkJycLOVbTE5OxsWLF+s8RqFQ1Ph47bXXpDIJCQlW+x988EEnX83/cGFcIiIiqo/HBGyjRo1Cbm4uUlJSkJKSgtzcXKsFZavT6/UWjw8++AAKhQIPPPCARblx48ZZlHv33XedeSkWuDAuERER1ccjZokeO3YMKSkp2LNnD3r37g0AeP/99xEbG4vjx48jOjq6xuNCQ0Mtnn/22Wfo378/IiMjLbYHBgZala1LSUkJSkpKpOfFxcU2H1tV9YVx161bh+TkZGlMG7tFiYiICPCQFrbs7GyoVCopWAOAPn36QKVSISsry6ZznDlzBl9++SXGjh1rtW/9+vUIDg7GLbfcgmnTpsFoNNZ5rvnz50tdsyqVqkFBFRfGJSIiIlt5RAtbYWEhQkJCrLaHhISgsLDQpnOsXbsWQUFBuP/++y22P/TQQ4iIiEBoaCiOHDmCmTNn4tChQ0hNTa31XDNnzsSUKVOk58XFxXYHbUFBQdI11bQwbkJCAhfGJSIiIgBuDtjmzJmDuXPn1llm//79AMwTCKoTQtS4vSYffPABHnroITRp0sRi+7hx46R/33rrrYiKikJMTAx++OEH9OjRo8ZzBQQEICAgwKbXrY1KpUJKSgqMRqPV0h1cGJeIiIiqcmvA9vTTT9c7IzM8PByHDx/GmTNnrPb9+eefUKvV9b5OZmYmjh8/jk2bNtVbtkePHvDz88OJEydqDdgcpbJLtSZcf42IiIgquTVgCw4ORnBwcL3lYmNjYTAYsG/fPvTq1QsAsHfvXhgMBsTFxdV7/KpVq9CzZ0/cdttt9Zb96aefUFZWBo1GU/8FEBEREbmAR0w66NSpExITEzFu3Djs2bMHe/bswbhx4zB06FCLGaIdO3bEtm3bLI4tLi7GJ598gscee8zqvKdOncLLL7+MAwcO4Ndff8WOHTvwj3/8A927d0ffvn2dfl1E5P0MBoN58lBFBZCeDmzYYP5ZUQGdTgeDweDuKhKRB/CISQeAeSbnpEmTMGjQIADAsGHDsHz5cosyx48ft7r5bdy4EUII/POf/7Q6p7+/P7799lssWbIEly5dglarxd/+9jfMnj0bPj4+zrsYImoUDAYDEhMT0S0vD8uUSvjq9dK+co0G80wm5EZEICUlheNViahOTE3lAEx7QkQ10el0mBcTgxXXxuBW7dIwXfs5Qa3GrAMHOG7ViXiPJm/gMS1sRESeJkyjwTKlOUyrPv5ECXPQtkyphC/HzBJRPTxiDBsRkUfKzISvXl/rjVYJmLtJMzNdWSsi8kBsYSMihzMYDOY1BjUaczCi1wMaDRAfD51e33jWGKwyZs0h5Yio0WLARkQOxYH2Vdja1ckuUSKqBwM2InIoo9GIbnl50kD7qpR6PVYAmHCtnBwDNoe2DsbHo1yjgbKWblETAJNGA9/4eEdeAhF5IQZsRORQnjzQ3tGtgzq9HvNMJqyA+bprmiU60WTCLL2es0SJqE6cdEBEjuXBA+2rtg4qq40rU+r1WHHmDLrl5cFoNNp0vqCgIORGRGCCWg1TtQDVpNFgglqN3IgIBAUFOewaiMg7sYWNiBzLgwfaO7p1UKVSISUlBUaj0XxMlS5W3/h4zGpMEzCI6LowYCMix/LkgfbXWgdro4S5pQ2ZmUBCgk2nVKlU/wvIqh3DblAishW7RInIsa4NtDfVstsE83gwyHGgvQe3DhKRd2PARkQOpdPrMdFkDteqB21VB9rr5Bj0eHLrIBF5NQZsRORQHj3Q3pNbB4nIq3EMGxE5lCcPtOcyHEQkVwzYiMjhPHWgvdQ6CPNs0KpLe5g0Gky8tg6bLFsHicirMWAjIrrGk1sHici7MWAjIqrCU1sHici7cdIBERERkcwxYGsEDAYDdDpdjft0Oh0MBoOLa0RERET2YMDm5SqTWffr1w8FBQUW+woKCtCvXz8kJiYyaCMiIpIxBmxezmg0oqioCKdPn0ZCQoIUtBUUFCAhIQGnT59GUVGRzcmsiYiIyPUYsHm5sLAwpKenIzIyUgrasrKypGAtMjIS6enpHExNREQkYwohhHB3JTxdcXExVCoVDAYDWrRo4e7q1Khqi1qlymBNq9W6sWYkdwaDAUajEWHVlrlAfDx0XOaCPIAn3KOJ6sNlPRoJrVaLdevWoW/fvtK2devWMVijOlWOgeyWl4dlSiV8qywkW67RYN61hWRTUlJcHrQxkCSixoQBWyNRUFCA5ORki23JyclsYaM6GY1GdMvLw4ozZ6z2KfV6rAAw4Vo5VwZHcg4kiYicgWPYGoGq3aGRkZHYvXu3xZi26rNHiSqFaTRYpjTfJqrfLCqfL1Mqza1cLlQ1kKyaPgq4FkieOYNueXmcTENEXoMBm5fT6XRWEwzi4uKsJiLUtk4bNXKZmfDV62u9USgBc+tWZqYrayXbQJKIyFkYsHm5oKAghISEWE0w0Gq1UtAWEhLCZNZUs2qtV9ddzlFkGkgSETkLx7B5uarJrKsv3aHVapGRkcHB2VQ7W1uoXN2SJddA0o2kSRg1LNGj0+n4/5zIw7GFrRFQqVS1rrMWFhbGmzjVLj4e5RoNTLXsNsE8yB/x8a6slXwDSTdhRhMi78eAjYhqpdPrMdFkDteqB22VzyeaTNC5uiVLroGkmzCjCZH3Y8BGRLUKCgpCbkQEJqjVMFVrrTJpNJigViM3IsLlYyBlG0i6CTOaEHk/jmEjolpVHQPpW22BWt/4eMxy0wK1UiAJ82zQqkt7mDQaTLy2DltjmkxTOZGoMkirXCSbGU2IvIPHpKaaN28evvzyS+Tm5sLf3x8XL16s9xghBObOnYv33nsPFy5cQO/evbFixQrccsstUpmSkhJMmzYNGzZswF9//YUBAwbg7bfftusvUaY9IXI9ZjqoWVZWlkVGk927dyMuLs6NNXI/3qPJG3hMl2hpaSn+8Y9/4Mknn7T5mEWLFuHNN9/E8uXLsX//foSGhuLuu++2GMcxefJkbNu2DRs3bsT333+PS5cuYejQoaioqHDGZRCRg0iTaXx8gIQE4J//NP/08Wm0k2lqy2jCxbGJvIDwMKtXrxYqlareciaTSYSGhooFCxZI265evSpUKpV45513hBBCXLx4Ufj5+YmNGzdKZX7//XehVCpFSkqKzXUyGAwCgDAYDLZfCBGRA+Xn54vIyEgBQERGRordu3dbPM/Pz3d3Fd2G92jyBh7TwmavvLw8FBYWYtCgQdK2gIAA9OvXD1lZWQCAgwcPoqyszKJMu3btcOutt0plalJSUoLi4mKLBxGRuzCjCZH389qArbCwEACgVqsttqvVamlfYWEh/P390apVq1rL1GT+/PlQqVTSg4N5icidmNGEyPu5NWCbM2cOFApFnY8DBw5c12soFAqL50IIq23V1Vdm5syZMBgM0oPjQ4jInSpn82ZkZFj9AVmZ0SQlJaVRjusj8hZuXdbj6aefxoMPPlhnmfDw8AadOzQ0FIC5FU1TZf2ooqIiqdUtNDQUpaWluHDhgkUrW1FRUZ2zqgICAhAQENCgehEROUNli39NuP4akedza8AWHByM4OBgp5w7IiICoaGhSE1NRffu3QGYZ5pmZGRg4cKFAICePXvCz88PqampGDlyJABAr9fjyJEjWLRokVPqRURERGQvj1k4Nz8/H+fPn0d+fj4qKiqQm5sLAOjQoQOaN28OAOjYsSPmz5+P++67DwqFApMnT8arr76KqKgoREVF4dVXX0VgYCBGjRoFwPwX6dixYzF16lS0adMGrVu3xrRp09ClSxcMHDjQXZdKREREZMFjArZ//etfWLt2rfS8stUsLS0NCQkJAIDjx49bJDeePn06/vrrLzz11FPSwrlff/21xcDbxYsXw9fXFyNHjpQWzl2zZg18fHxcc2FERERE9fCYTAdyxlW0iYjki/do8gZeu6wHERERkbdgwEZEREQkcwzYiIiIiGSOARsRERGRzDFgIyIiIpI5j1nWQ84qJ9oyCTwRkfxU3pu5KAJ5MgZsDmA0GgGASeCJiGTMaDQynyp5LK7D5gAmkwl//PEHgoKC6k0sX1xcDK1Wi4KCAq4H5EB8X52H761z8H11nurvrRACRqMR7dq1g1LJkUDkmdjC5gBKpdLu5MotWrTgTdoJ+L46D99b5+D76jxV31u2rJGn458aRERERDLHgI2IiIhI5hiwuVhAQABmz56NgIAAd1fFq/B9dR6+t87B99V5+N6SN+KkAyIiIiKZYwsbERERkcwxYCMiIiKSOQZsRERERDLHgI2IiIhI5hiwOdm8efMQFxeHwMBAtGzZ0qZjhBCYM2cO2rVrh6ZNmyIhIQE//fSTcyvqgS5cuIDk5GSoVCqoVCokJyfj4sWLdR4zZswYKBQKi0efPn1cU2EZe/vttxEREYEmTZqgZ8+eyMzMrLN8RkYGevbsiSZNmiAyMhLvvPOOi2rqWex5X9PT060+mwqFAj///LMLayx/u3btwr333ot27dpBoVBg+/bt9R7Dzyt5AwZsTlZaWop//OMfePLJJ20+ZtGiRXjzzTexfPly7N+/H6Ghobj77rulnKVkNmrUKOTm5iIlJQUpKSnIzc1FcnJyvcclJiZCr9dLjx07drigtvK1adMmTJ48GbNmzUJOTg7i4+MxZMgQ5Ofn11g+Ly8P99xzD+Lj45GTk4MXXngBkyZNwpYtW1xcc3mz932tdPz4cYvPZ1RUlItq7BkuX76M2267DcuXL7epPD+v5DUEucTq1auFSqWqt5zJZBKhoaFiwYIF0rarV68KlUol3nnnHSfW0LMcPXpUABB79uyRtmVnZwsA4ueff671uNGjR4vhw4e7oIaeo1evXmL8+PEW2zp27ChmzJhRY/np06eLjh07Wmx74oknRJ8+fZxWR09k7/ualpYmAIgLFy64oHbeAYDYtm1bnWX4eSVvwRY2mcnLy0NhYSEGDRokbQsICEC/fv2QlZXlxprJS3Z2NlQqFXr37i1t69OnD1QqVb3vU3p6OkJCQnDzzTdj3LhxKCoqcnZ1Zau0tBQHDx60+LwBwKBBg2p9H7Ozs63KDx48GAcOHEBZWZnT6upJGvK+VurevTs0Gg0GDBiAtLQ0Z1azUeDnlbwFAzaZKSwsBACo1WqL7Wq1WtpH5vcpJCTEantISEid79OQIUOwfv16fPfdd3jjjTewf/9+3HXXXSgpKXFmdWXr7NmzqKiosOvzVlhYWGP58vJynD171ml19SQNeV81Gg3ee+89bNmyBVu3bkV0dDQGDBiAXbt2uaLKXoufV/IWvu6ugCeaM2cO5s6dW2eZ/fv3IyYmpsGvoVAoLJ4LIay2eSNb31vA+j0C6n+fkpKSpH/feuutiImJQfv27fHll1/i/vvvb2CtPZ+9n7eayte0vbGz532Njo5GdHS09Dw2NhYFBQV4/fXXceeddzq1nt6On1fyBgzYGuDpp5/Ggw8+WGeZ8PDwBp07NDQUgPmvQo1GI20vKiqy+ivRG9n63h4+fBhnzpyx2vfnn3/a9T5pNBq0b98eJ06csLuu3iA4OBg+Pj5WrT51fd5CQ0NrLO/r64s2bdo4ra6epCHva0369OmDjz76yNHVa1T4eSVvwYCtAYKDgxEcHOyUc0dERCA0NBSpqano3r07APN4mIyMDCxcuNAprykntr63sbGxMBgM2LdvH3r16gUA2Lt3LwwGA+Li4mx+vXPnzqGgoMAiOG5M/P390bNnT6SmpuK+++6TtqempmL48OE1HhMbG4svvvjCYtvXX3+NmJgY+Pn5ObW+nqIh72tNcnJyGu1n01H4eSWv4c4ZD43Bb7/9JnJycsTcuXNF8+bNRU5OjsjJyRFGo1EqEx0dLbZu3So9X7BggVCpVGLr1q3ixx9/FP/85z+FRqMRxcXF7rgE2UpMTBRdu3YV2dnZIjs7W3Tp0kUMHTrUokzV99ZoNIqpU6eKrKwskZeXJ9LS0kRsbKy44YYbGvV7u3HjRuHn5ydWrVoljh49KiZPniyaNWsmfv31VyGEEDNmzBDJyclS+dOnT4vAwEDx7LPPiqNHj4pVq1YJPz8/8emnn7rrEmTJ3vd18eLFYtu2beKXX34RR44cETNmzBAAxJYtW9x1CbJkNBql+ygA8eabb4qcnBzx22+/CSH4eSXvxYDNyUaPHi0AWD3S0tKkMgDE6tWrpecmk0nMnj1bhIaGioCAAHHnnXeKH3/80fWVl7lz586Jhx56SAQFBYmgoCDx0EMPWS2JUPW9vXLlihg0aJBo27at8PPzEzfeeKMYPXq0yM/Pd33lZWbFihWiffv2wt/fX/To0UNkZGRI+0aPHi369etnUT49PV10795d+Pv7i/DwcLFy5UoX19gz2PO+Lly4UNx0002iSZMmolWrVuKOO+4QX375pRtqLW+Vy59Uf4wePVoIwc8reS+FENdGXxIRERGRLHFZDyIiIiKZY8BGREREJHMM2IiIiIhkjgEbERERkcwxYCMiIiKSOQZsRERERDLHgI2IiIhI5hiwEREREckcAzYisktCQgImT54sPQ8PD8dbb73ltvoQETUGDNiIXKSiogJxcXF44IEHLLYbDAZotVq8+OKLbqrZ9dm/fz8ef/xxh55zzJgxGDFihEPPSUTkyRiwEbmIj48P1q5di5SUFKxfv17aPnHiRLRu3Rr/+te/3Fg7S0IIlJeX21S2bdu2CAwMdHKNiIgaNwZsRC4UFRWF+fPnY+LEifjjjz/w2WefYePGjVi7di38/f1rPa6kpATTp0+HVqtFQEAAoqKisGrVKml/RkYGevXqhYCAAGg0GsyYMcMi4CopKcGkSZMQEhKCJk2a4I477sD+/ful/enp6VAoFNi5cydiYmIQEBCAzMxMXL58GY888giaN28OjUaDN954w6pu1btEFQoF/vOf/+C+++5DYGAgoqKi8Pnnn0v7KyoqMHbsWERERKBp06aIjo7GkiVLpP1z5szB2rVr8dlnn0GhUEChUCA9PR0A8PvvvyMpKQmtWrVCmzZtMHz4cPz666/2/AqIiDyTm5PPEzU6JpNJJCQkiAEDBoiQkBDxyiuv1HvMyJEjhVarFVu3bhWnTp0S33zzjdi4caMQQgidTicCAwPFU089JY4dOya2bdsmgoODxezZs6XjJ02aJNq1ayd27NghfvrpJzF69GjRqlUrce7cOSGEEGlpaQKA6Nq1q/j666/FyZMnxdmzZ8WTTz4pwsLCxNdffy0OHz4shg4dKpo3by6eeeYZ6dzt27cXixcvlp4DEGFhYeLjjz8WJ06cEJMmTRLNmzeXXqu0tFT861//Evv27ROnT58WH330kQgMDBSbNm0SQghhNBrFyJEjRWJiotDr9UKv14uSkhJx+fJlERUVJR599FFx+PBhcfToUTFq1CgRHR0tSkpKrvO3QkQkbwzYiNzg2LFjAoDo0qWLKCsrq7Ps8ePHBQCRmppa4/4XXnhBREdHC5PJJG1bsWKFaN68uaioqBCXLl0Sfn5+Yv369dL+0tJS0a5dO7Fo0SIhxP8Ctu3bt0tljEaj8Pf3lwJDIYQ4d+6caNq0ab0B24svvig9v3TpklAoFOKrr76q9Rqfeuop8cADD0jPR48eLYYPH25RZtWqVVbXWVJSIpo2bSp27txZ67mJiLyBrztb94gaqw8++ACBgYHIy8uDTqdDeHh4rWVzc3Ph4+ODfv361bj/2LFjiI2NhUKhkLb17dsXly5dgk6nw8WLF1FWVoa+fftK+/38/NCrVy8cO3bM4lwxMTHSv0+dOoXS0lLExsZK21q3bo3o6Oh6r69r167Sv5s1a4agoCAUFRVJ29555x385z//wW+//Ya//voLpaWl6NatW53nPHjwIE6ePImgoCCL7VevXsWpU6fqrRMRkSdjwEbkYtnZ2Vi8eDG++uorLFq0CGPHjsU333xjEXBV1bRp0zrPJ4SwOlYIAcA8nqzqv+s7rlmzZlbnaAg/Pz+L5wqFAiaTCQCwefNmPPvss3jjjTcQGxuLoKAgvPbaa9i7d2+d5zSZTOjZs6fFhI1Kbdu2bXBdiYg8AScdELnQX3/9hdGjR+OJJ57AwIED8Z///Af79+/Hu+++W+sxXbp0gclkQkZGRo37O3fujKysLIsAKysrC0FBQbjhhhvQoUMH+Pv74/vvv5f2l5WV4cCBA+jUqVOtr9uhQwf4+flhz5490rYLFy7gl19+seeSrWRmZiIuLg5PPfUUunfvjg4dOli1kPn7+6OiosJiW48ePXDixAmEhISgQ4cOFg+VSnVddSIikjsGbEQuNGPGDJhMJixcuBAAcOONN+KNN97Ac889V+tsx/DwcIwePRqPPvootm/fjry8PKSnp2Pz5s0AgKeeegoFBQWYOHEifv75Z3z22WeYPXs2pkyZAqVSiWbNmuHJJ5/Ec889h5SUFBw9ehTjxo3DlStXMHbs2Frr2rx5c4wdOxbPPfccvv32Wxw5cgRjxoyBUnl9t40OHTrgwIED2LlzJ3755Re89NJLFjNWK6/58OHDOH78OM6ePYuysjI89NBDCA4OxvDhw5GZmYm8vDxkZGTgmWeegU6nu646ERHJHQM2IhfJyMjAihUrsGbNGouux3HjxiEuLg5jx46ttRty5cqV+Pvf/46nnnoKHTt2xLhx43D58mUAwA033IAdO3Zg3759uO222zB+/HiMHTvWYiHeBQsW4IEHHkBycjJ69OiBkydPYufOnWjVqlWddX7ttddw5513YtiwYRg4cCDuuOMO9OzZ87reh/Hjx+P+++9HUlISevfujXPnzuGpp56yKDNu3DhER0cjJiYGbdu2xe7duxEYGIhdu3bhxhtvxP33349OnTrh0UcfxV9//YUWLVpcV52IiOROIa5noAoREREROR1b2IiIiIhkjgEbERERkcwxYCMiIiKSOQZsRERERDLHgI2IiIhI5hiwEREREckcAzYiIiIimWPARkRERCRzDNiIiIiIZI4BGxEREZHMMWAjIiIikrn/B4GQ7tj0R6abAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmIAAAGwCAYAAAAKSAlfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgfklEQVR4nO3de1xUdf4/8NcMl0F0HFQExhgV0lCzUiQViMAyxdZVy10pW9JfRmuZ16w0a9X6lpdqTY2s3bytmdrmJXczlAqQFK9BrnnJC8VMDZImw3jjNp/fHyMTw3AbmPu8no/HPHTO+ZwznzMcj28+l/dHIoQQICIiIiKHkzq7AkRERETeioEYERERkZMwECMiIiJyEgZiRERERE7CQIyIiIjISRiIERERETkJAzEiIiIiJ/F1dgU8gcFgwC+//AK5XA6JROLs6hAReQUhBPR6Pbp06QKplO0K5J4YiNnAL7/8ApVK5exqEBF5JbVajfDwcGdXg6hFGIjZgFwuB2B8GLRv397JtSEi8g5lZWVQqVSmZzCRO2IgZgM13ZHt27dnIEZE5GAcEkLujJ3qRERERE7CQIyIiIjISRiIERERETkJAzEiIiIiJ2EgRkREROQkDMSIiIiInISBGBEREZGTuFUgtnfvXvzxj39Ely5dIJFIsGPHjiaPycnJwYABAxAQEIDIyEi8//77FmW2bt2KPn36QCaToU+fPti+fbsdak9ERERkzq0CsatXr+Kuu+7Cu+++26zyhYWFePDBB5GQkID8/Hy89NJLmDZtGrZu3Woqk5eXh5SUFKSmpuK7775Damoqxo0bh4MHD9rrMoiIiIgAABIhhHB2JVpCIpFg+/btGDNmTINlXnzxRezcuRMnT540bZs8eTK+++475OXlAQBSUlJQVlaGL774wlQmOTkZHTp0wKZNm5pVl7KyMigUCuh0OmbWJyK3pNPpoNfr612zUaPRQC6XQ6FQOKFmDeOzlzyBW7WIWSsvLw/Dhg0z2zZ8+HAcOXIElZWVjZbZv39/g+ctLy9HWVmZ2YuIyF3pdDokJycjMTERarXabJ9arUZiYiKSk5Oh0+mcVEMiz+XRgVhxcTFCQ0PNtoWGhqKqqgoXL15stExxcXGD5120aBEUCoXppVKpbF95IiIH0ev1KCkpwfnz55GUlGQKxtRqNZKSknD+/HmUlJRAr9c7uaZEnsejAzHAcjHYmp7Y2tvrK9PYIrJz586FTqczver+BklE5E7Cw8ORnZ2NyMhIUzC2f/9+UxAWGRmJ7Ozserstiah1fJ1dAXsKCwuzaNkqKSmBr68vOnXq1GiZuq1ktclkMshkMttXmIjISVQqFbKzs03BV3x8PACYgjC2/BPZh0e3iMXGxiIzM9Ns2549exATEwM/P79Gy8TFxTmsnkRErkClUmHDhg1m2zZs2MAgjMiO3CoQu3LlCgoKClBQUADAmJ6ioKAARUVFAIxdho8//rip/OTJk/HTTz9h1qxZOHnyJNasWYPVq1dj9uzZpjLTp0/Hnj17sGTJEpw6dQpLlizBl19+iRkzZjjy0oiInE6tViM1NdVsW2pqKodfENmTcCNZWVkCgMVrwoQJQgghJkyYIBITE82Oyc7OFv379xf+/v6ie/fuYtWqVRbn/fe//y2ioqKEn5+f6NWrl9i6datV9dLpdAKA0Ol0Lb00IiKnKioqEpGRkQKAiIyMFPv27TN7X1RU5OwqWuCzlzyB2+YRcyXMZUNE7kyj0SAxMdFsYL5KpTKbNRkZGYmcnByXGrDPZy95Ao8erE9ERE2Ty+UICQkBALOB+bUH8IeEhEAulzuzmkQeiS1iNsDfyojI3TGzPpFzsEXMydzx4UdEnqcmQXV9XKk7ksjTuNWsSU/DZUWIiIi8GwMxJ+KyIkRERN6NgZgTcVkRIiIi78bB+jbQ2gGjtVvAanBZESKixnGwPnkCtoi5AC4rQkRE5J0YiLkALitCRETknRiIOVndzNX79u0zGzPGYIyIiMhzMRBzIo1GYzEwPy4uzmIAv0ajcXZViYiIyA6Y0NWJuKwIERGRd+OsSRtozcwdZtb3HqaftVIJ5OYCWi2gVAIJCdBotfxZkxk+G5rGWZPkCdgi5mRcVsQ71Kyi0K+wECulUvhqtaZ9VUolXjcYUBARgYyMDK//z5V+v19KSkos0tjUjCsNCQnh/ULkAThGjMgB9Ho9+hUWIv3CBUhrBWEAINVqkX7hAvoVFnIVBQLAVTeIvAkDMSIHCFcqsVJq/OdW9x9dzfuVUqmx25K8HlfdIPIeDMSIHCE3F75abYP/4KSAsbsyN9eRtSIXVjNppyYYi4+PNwvCmPCZyDMwECNyhDrdka0uR16Bq24QeT4GYkSO0NwuR3ZNUi1cdYPI8zEQI3KEhARUKZUwNLDbAOPsSSQkOLJW5MK46gaRd2AgRuQAGq0WUw3GMKxuMFbzfqrBAA27JglcdYPImzAQI3IAuVyOgogITAkNhaFO96NBqcSU0FAURERwFQUC8PuqG3UH5tcewM9VN4g8AzPr2wCzO1NzMLM+WYOZ9ZvGZy95AgZiNuAuDwM+2InIk7jLs5eoMeya9BI1S6YkJiZaDPJVq9VITExEcnIydDqdk2pIRETkfRiIeQkumUJEROR6GIh5CS6ZQkRE5Ho4RswG3GmcQu0WsBpcMoWI3JE7PXuJGsIWMS/DJVOIiIhcBwMxL8MlU4iIiFwHAzEvwiVTiIiIXAsDMS/BJVOIqCV0Ol2DzwWNRsOUN0St5HaB2HvvvYeIiAgEBARgwIAByM3NbbDsxIkTIZFILF633367qcy6devqLXPjxg1HXI7DcMkUIrIW8w8S2Z9bBWJbtmzBjBkzMG/ePOTn5yMhIQEjRoxAUVFRveWXL18OrVZreqnVanTs2BF//vOfzcq1b9/erJxWq0VAQIAjLslhFAoFMjIykJOTYzEwX6VSIScnBxkZGcysT2QHplal6mogOxvYtMn4Z3W1S7cqMf8gkf25VfqKQYMGITo6GqtWrTJt6927N8aMGYNFixY1efyOHTvw8MMPo7CwEN26dQNgbBGbMWMGSktLW1wvTqEmoobUtCr1KyzESqkUvlqtaV+VUompBgMKIiJc9hehumNLN2zYgNTUVLNhDs6adc1nL3kCt2kRq6iowNGjRzFs2DCz7cOGDcP+/fubdY7Vq1dj6NChpiCsxpUrV9CtWzeEh4dj5MiRyM/Pb/Q85eXlKCsrM3sREdVHr9ejX2Eh0i9cgLRWEAYAUq0W6RcuoF9hocu2KtUevnD+/HnEx8e7RBBG5CncJhC7ePEiqqurERoaarY9NDQUxcXFTR6v1WrxxRdf4MknnzTb3qtXL6xbtw47d+7Epk2bEBAQgPj4eJw5c6bBcy1atAgKhcL04oOIqPnctZuupcKVSqyUGh+1dR+4Ne9XSqUIVyodWi9rMP8gkf34OrsC1pJIJGbvhRAW2+qzbt06BAUFYcyYMWbbBw8ejMGDB5vex8fHIzo6GitXrsSKFSvqPdfcuXMxa9Ys0/uysjI+kIiaoaluutddvJuuRXJzza6zLimMLWPIzQWSkhxWLWs0lH+QLWJErec2LWLBwcHw8fGxaP0qKSmxaCWrSwiBNWvWIDU1Ff7+/o2WlUqluPvuuxttEZPJZGjfvr3Zi4ia5u7ddC3SSBDWonIOxvyDRPblNoGYv78/BgwYgMzMTLPtmZmZiIuLa/TYnJwcnD17FpMmTWryc4QQKCgogNKFuwmI3JUndNNZrbnX4oLXzPyDRPbnNoEYAMyaNQsffvgh1qxZg5MnT2LmzJkoKirC5MmTARi7DB9//HGL41avXo1Bgwahb9++FvsWLlyI3bt34/z58ygoKMCkSZNQUFBgOicR2dDNbrqGHjxSwNiN10h+QLeTkIAqpRKGBnYbYOyWRUKCI2vVLMw/SGR/bjVGLCUlBZcuXcKrr74KrVaLvn37YteuXaZZkFqt1iKnmE6nw9atW7F8+fJ6z1laWoqnnnoKxcXFUCgU6N+/P/bu3YuBAwfa/XrIPeh0Ouj1emMrTW6usQvp5n+cGq0Wcrncc8Yz2Zubd9O1hEarxesGA9JhDLpqB6E1wdlUgwHztFqEh4c7voKNqMk/qNfrLepWk3+Q9z9R67hVHjFXZY9cNqb//Ot5MGs0Gj78HMTdc0C5nOxsYMiQpstlZbnswHVr8R6yH+YRI0/gVi1i3qLmwV1SUmIxK6lm4GxISAgf3A5Qe3B5XVKtFukAptwsx59FM9zsppM20D1pAGBQKuHrgt10LVW7Vcm3Tquqb0IC5rFVlcirudUYMW/BZUVch1cOLrcjjVaLqQZjh1zdMVO1u+k0HtQ1CRiDsfDwcMDHx9jS9+ijxj99fBAeHs4gjMiLMRBzQeHh4Razkvbv328xe8nVxpN4JG8cXG5HcrkcBRERmBIaCkOd4NWgVGJKaCgKIiI4+JuIvAa7Jl1UzaykmuArPj4eALisiKN54eBye2I3HRGROQZiLqxmWZGaIAzgsiIO58Y5oFxVzdJgACwG5LOVl4i8DbsmXVhDy4owk7UDuXEOKCIicn0MxFwUlxVxDd46uJyIiByDgZgL4rIiroODy4mIyJ44RswF1SwrAqDeZUVq8ojxP3/74+ByIiKyJ2bWtwFm1icicjxm1idPwBYxF2U2s6wOd59ZxrUbiYiIjBiIkUM1te7e61x3j4iIvAgDMXIort1IRET0OwZi5FBNrd1ogHHtRl8mSCUiIi/A9BXkWFy7kYiIyISBGDkW124kIiIyYSBGjsW1G4mIiEwYiJFjce1GIiIiEwZi5FBcu5GIiOh3DMTIobh2IxER0e+YvoIcims3EhER/Y6BGDmc2fJNSUlm+9x9+SYiIiJrMBAjagTXxSQiIntiIEat5qnBCtfFJCIie2MgRq3iycEK18UkIiJ7YyBGreLJwQrXxSQiIntj+gpqlaaCFcAYrIS7Y7DCdTGJiMjOGIhR63hysMJ1MclJdDodNBoNUF0NZGcDmzYZ/6yuhkajgU6nc3YVichG2DVJrePJwQrXxSQn8ORxl0RkiYEYtY4nBys318WUNtDiZ4BxNQBfrotJNuTJ4y6JyBK7Jql1PHgRb66LSc7g0eMuicgCAzFqFU8OVrguJjmFJ4+7JCILbheIvffee4iIiEBAQAAGDBiA3EYeRtnZ2ZBIJBavU6dOmZXbunUr+vTpA5lMhj59+mD79u32vgyP4cnBSs26mPOOHIGvWg1kZQEffwxkZcFXrca8I0c4Todsz5PHXRKRBbcaI7ZlyxbMmDED7733HuLj4/HBBx9gxIgROHHiBLp27drgcadPn0b79u1N7zt37mz6e15eHlJSUvDaa6/hoYcewvbt2zFu3Dh88803GDRokF2vxxN4+iLeXBeTHM6Tx10SkQWJEEI4uxLNNWjQIERHR2PVqlWmbb1798aYMWOwaNEii/LZ2dkYMmQILl++jKCgoHrPmZKSgrKyMnzxxRembcnJyejQoQM2bdpU7zHl5eUoLy83vS8rK4NKpYJOpzML+IiIrFZdjSqVqulJImo14OPj6Nq5lLKyMigUCj57ya25TddkRUUFjh49imHDhpltHzZsGPbv39/osf3794dSqcT999+PrKwss315eXkW5xw+fHij51y0aJGppUShUEClUll5NURE9fPkcZdEZMltArGLFy+iuroaoaGhZttDQ0NRXFxc7zFKpRL/+Mc/sHXrVmzbtg1RUVG4//77sXfvXlOZ4uJiq84JAHPnzoVOpzO91Gp1K66MiOh3njzukogsudUYMQCQSCRm74UQFttqREVFISoqyvQ+NjYWarUab731Fu69994WnRMAZDIZZDJZS6pPRNQoTx93SUTm3CYQCw4Oho+Pj0VLVUlJiUWLVmMGDx6Mjz76yPQ+LCys1eckIrIlThIh8h5u0zXp7++PAQMGIDMz02x7ZmYm4uLimn2e/Px8KGs198fGxlqcc8+ePVadk4iIiKgl3KZFDABmzZqF1NRUxMTEIDY2Fv/4xz9QVFSEyZMnAzCO3fr555/xr3/9CwDwzjvvoHv37rj99ttRUVGBjz76CFu3bsXWrVtN55w+fTruvfdeLFmyBKNHj8Znn32GL7/8Et98841TrpGIiIi8h1sFYikpKbh06RJeffVVaLVa9O3bF7t27UK3bt0AAFqtFkVFRabyFRUVmD17Nn7++We0adMGt99+Oz7//HM8+OCDpjJxcXHYvHkzXn75Zbzyyiu49dZbsWXLFuYQIyIiIrtzqzxiroq5bIiIHI/PXvIEbjNGjIiIiMjTMBAjIiIichIGYkREREROwkCMiIiIyEncatYk2Z5Op4Ner0d4nQzeSEiAhhm8iYiI7IqBmBfT6XRITk5Gv8JCrJRK4VtrEeEqpRKvGwwoiIhARkYGgzEiIiI7YCDmxfR6PfoVFiL9wgWLfVKtFukAptwsx0CMiIjI9hiIebFwpRIrpcZhgnUHC0oBGABjS1mtJaGIiIjIdjhY35vl5sJXq23wJpACxu7K3FxH1oqIiMhrsEXMm9UaE9bachz0T0REZD0GYt6suV2OTZTjoH8iIqKWYSDmzRISUKVUQtpA96QBgEGphG9CQqOn4aB/IiKiluEYMS+m0Wox1WAAYAy6aqt5P9VggKaJrsmmBv0DxkH/4Rz0T0REZIaBmBeTy+UoiIjAlNBQGOoESQalElNCQ1EQEQG5XN74iTjon4iIqEXYNenFFAoFMjIyoNfrjSkqag2y901IwLzmDrJv7qD/rVuNf3IAP5HX4sQeInMSIYRwdiXcXVlZGRQKBXQ6Hdq3b+/s6jhedjYwZEizi1cplZjKAfxEXqepiT3WPhe8/tlLHoEtYtR6TQz6FwAktd5zAD+Rd+LEHiJLHCNGrdbYoP+6QRjAAfxE3ooTe4gsMRCjVmts0H/dIKwGB/ATeSFO7CGywK5JarV6B/1v3Qq8+27TBzd3oD8RuT8bruZB5CnYIkY2oVAoEB4eDvj4AElJwNixzTuQXRBE3sNGq3kQeRIGYmQfNwfw1x0zVsMA4ywpNJG1n4g8CJ8LRBYYiJFd2CprPxF5Dj4XiCwxECO7sFnWfiLyGHwuEFliQlcbYFLB+jGDNhHVZcvnAp+95AkYiNkAHwZERI7HZy95AnZNEhERETkJAzEiIiIiJ2EgRkREROQkDMSIiIiInISBGBEREZGTMBAjIiIichK3C8Tee+89REREICAgAAMGDEBubm6DZbdt24YHHngAnTt3Rvv27REbG4vdu3eblVm3bh0kEonF68aNG/a+FCIiIvJybhWIbdmyBTNmzMC8efOQn5+PhIQEjBgxAkVFRfWW37t3Lx544AHs2rULR48exZAhQ/DHP/4R+fn5ZuXat28PrVZr9goICHDEJREREZEXc6uEroMGDUJ0dDRWrVpl2ta7d2+MGTMGixYtatY5br/9dqSkpOBvf/sbAGOL2IwZM1BaWtrsepSXl6O8vNz0vqysDCqVikkFiYgciAldyRO4TYtYRUUFjh49imHDhpltHzZsGPbv39+scxgMBuj1enTs2NFs+5UrV9CtWzeEh4dj5MiRFi1mdS1atAgKhcL0UqlU1l0MEREREVoRiJ09exa7d+/G9evXAQD2bli7ePEiqqurERoaarY9NDQUxcXFzTrH22+/jatXr2LcuHGmbb169cK6deuwc+dObNq0CQEBAYiPj8eZM2caPM/cuXOh0+lML7Va3bKLIiKPoNPpoNFogOpqIDsb2LTJ+Gd1NTQaDXQ6nbOrSEQuytfaAy5duoSUlBR8/fXXkEgkOHPmDCIjI/Hkk08iKCgIb7/9tj3qaSKRSMzeCyEsttVn06ZNWLBgAT777DOEhISYtg8ePBiDBw82vY+Pj0d0dDRWrlyJFStW1HsumUwGmUzWwisgIk+i0+mQnJyMfoWFWCmVwlerNe2rUirxusGAgogIZGRkcJF7IrJgdYvYzJkz4evri6KiIgQGBpq2p6SkICMjw6aVqy04OBg+Pj4WrV8lJSUWrWR1bdmyBZMmTcInn3yCoUOHNlpWKpXi7rvvbrRFjIiohl6vR7/CQqRfuABprSAMAKRaLdIvXEC/wkLo9Xon1ZCIXJnVgdiePXuwZMkShIeHm23v2bMnfvrpJ5tVrC5/f38MGDAAmZmZZtszMzMRFxfX4HGbNm3CxIkT8fHHH+MPf/hDk58jhEBBQQGUSmWr60xEni9cqcRKqfFRWveBWvN+pVSKcD5TiKgeVndNXr161awlrMbFixft3l03a9YspKamIiYmBrGxsfjHP/6BoqIiTJ48GYBx7NbPP/+Mf/3rXwCMQdjjjz+O5cuXY/DgwabWtDZt2pi6CBYuXIjBgwejZ8+eKCsrw4oVK1BQUID09HS7XgsReYjcXLPuyLqkMLaMITcXSEpyWLWIyD1Y3SJ27733mgIdwDhmy2Aw4M0338SQIUNsWrm6UlJS8M477+DVV19Fv379sHfvXuzatQvdunUDAGi1WrOcYh988AGqqqowZcoUKJVK02v69OmmMqWlpXjqqafQu3dvDBs2DD///DP27t2LgQMH2vVaGsOBv0RupJEgrEXliMirWJ1H7MSJE0hKSsKAAQPw9ddfY9SoUfj+++/x22+/Yd++fbj11lvtVVeXZctcNk0N/J3Kgb9EriU7G2jOL6FZWWwRszHmESNPYHWLWJ8+fXDs2DEMHDgQDzzwAK5evYqHH34Y+fn5XhmE2RoH/hK5mYQEVCmVMDSw2wDjL1FISHBkrYjITVg9RqyoqAgqlQoLFy6sd1/Xrl1tUjFv1dTAXwOMA399OfCXyCVotFq8bjAgHcZ/n7X/3dYEZ1MNBszTai0mORERWd0iFhERgV9//dVi+6VLlxAREWGTSnm1mwN/G/rBSAFjd2Uji50TkePI5XIURERgSmgoDHV+QTIolZgSGoqCiAjI5XIn1ZCIXJnVLWINJVC9cuUKF8q2BQ78JXJ5Op0Oer0e4UolFPn5+OrJJ3G1fXv4jh6NXz/7DG3LyhB4663wTUjAPK0Wcrnc6jGdtT8DubnGf/M3uzg1LTwnEbmeZgdis2bNAmCcJfnKK6+YpbCorq7GwYMH0a9fP5tX0Os0t8uRXZNETlHfhJpAAIEwjgX7W+0JNT4+LeqOZLZ+Iu/R7ECsZiFsIQT+97//wd/f37TP398fd911F2bPnm37GnqbmwN/pQ10Txpg7O7w5cBfIqeoPaGmLqlWi3QAU26Wa2mQ5IjPICLX0OxALCsrCwDw//7f/8Py5cs5VdhOOPCXyLU5YkINJ+0QeQ+rB+uvXbuWQZgdceAvkYtzxIQaTtoh8hpWD9YHgMOHD+Pf//43ioqKUFFRYbZv27ZtNqmYt1IoFMjIyIBerzf+tltrkG5rBv4SkY04YkINJ+0QeQ2rW8Q2b96M+Ph4nDhxAtu3b0dlZSVOnDiBr7/+msGBjSgUCmO3o4+PMRP3o48a/7w58JffM5ETOWJCDSftEHkNqwOxN954A8uWLcN///tf+Pv7Y/ny5Th58iTGjRvHZK5E5PkckUmf2fqJvIbVXZPnzp3DH/7wBwCATCbD1atXIZFIMHPmTNx33331ZtwnIvIUjphQw0k7tlVdXY3KykpnV4O8hJ+fH3x8fJpd3upArGPHjqZ1Dm+55RYcP34cd9xxB0pLS3Ht2jVrT0dE5FZME2pgnLlYe01Yg1KJqTdzfLVmQo0jPsMbCCFQXFyM0tJSZ1eFvExQUBDCwsLqTYBfl9WBWEJCAjIzM3HHHXdg3LhxmD59Or7++mtkZmbi/vvvb1GFiYjchSMm1HDSjm3UBGEhISEIDAxs1n+KRK0hhMC1a9dQUlICAFA2YxynRAghrPmQ3377DTdu3ECXLl1gMBjw1ltv4ZtvvkGPHj3wyiuvoEOHDi2rvRsrKyuDQqGATqdjag8iIgdp7NlbXV2NH374ASEhIejUqZOTakje6tKlSygpKcFtt93WZDel1YEYWWIgRkTkeI09e2/cuIHCwkJ0794dbdq0cVINyVtdv34dP/74IyIiIppch7tFecQMBgPOnj2LkpISGAzm83ruvffelpySiIjI5tgdSc5gzX1ndSB24MABjB8/Hj/99BPqNqZJJBJUV1dbe0oiIiIir2R1HrHJkycjJiYGx48fx2+//YbLly+bXr/99ps96khERETNkJ2dDYlE4vCZohMnTsSYMWMc+pmewuoWsTNnzuDTTz9Fjx497FEfIrIRnU4HvV6P8Dqz7pCQAA1n3RG5pIkTJ2L9+vUAAF9fX6hUKjz88MNYuHAh2rZt2+TxcXFx0Gq1Vv3bnjhxIkpLS7Fjx46WVhvLly+36CWj5rE6EBs0aBDOnj3LQIzcircFJTqdDsnJyehXWIiVUqlxgeibqpRKvH4zD1VGRoZHXTeRrZieGfUkzNVoNHZ9ZiQnJ2Pt2rWorKxEbm4unnzySVy9ehWrVq1q8lh/f3+EhYXZpV6N8dTniBAC1dXV8PVt0ZD6ZrG6a3Lq1Kl47rnnsG7dOhw9ehTHjh0zexG5mpqg5PWYGFSpVMCQIcD48cCQIahSqfB6TAySk5Oh0+mcXVWb0ev16FdYiPQLF8ySgQKAVKtF+oUL6FdYaErOTES/q3lmJCYmQq1Wm+1Tq9VITEy06zNDJpMhLCwMKpUK48ePx2OPPWZqrSovL8e0adMQEhKCgIAA3HPPPTh8+LDp2Lpdk+vWrUNQUBB2796N3r17o127dkhOTob25nNhwYIFWL9+PT777DNIJBJIJBJkZ2ejoqICzz77LJRKJQICAtC9e3csWrSowTrX7ZpMSkrCtGnT8MILL6Bjx44ICwvDggULGr3u7OxsDBw4EG3btkVQUBDi4+Px008/mfYvXrwYoaGhkMvlmDRpEubMmYN+/fqZfeaMGTPMzjlmzBhMnDjR9P6jjz5CTEwM5HI5wsLCMH78eFPOr9rf3+7duxETEwOZTIbc3FwIIbB06VJERkaiTZs2uOuuu/Dpp582ej3NZXWIN3bsWADAE088YdomkUgghOBgfXJJtYOSuqRaLdIBTLlZzlN+qwtXKrHi5t/r/rYlhXGZnOUSCfy5aDSRBb1ej5KSEpw/fx5JSUnIzs6GSqWCWq1GUlISzp8/byrniGdGmzZtTEs0vfDCC9i6dSvWr1+Pbt26YenSpRg+fDjOnj2Ljh071nv8tWvX8NZbb2HDhg2QSqX4y1/+gtmzZ2Pjxo2YPXs2Tp48ibKyMqxduxaAcQWdFStWYOfOnfjkk0/QtWtXqNVqi6C0KevXr8esWbNw8OBB5OXlYeLEiYiPj8cDDzxgUbaqqgpjxoxBWloaNm3ahIqKChw6dMg0+/CTTz7B/PnzkZ6ejoSEBGzYsAErVqxAZGSkVXWqqKjAa6+9hqioKJSUlGDmzJmYOHEidu3aZVbuhRdewFtvvYXIyEgEBQXh5ZdfxrZt27Bq1Sr07NkTe/fuxV/+8hd07twZiYmJVtXBgrDSjz/+2OjLG+l0OgFA6HQ6Z1eF6lNVJSqVSlENCFHPqxoQlUqlEFVVzq6pzej/8596r7XuS/+f/zi7qkQt1tiz9/r16+LEiRPi+vXrLTp3UVGRiIyMFABEZGSk2Ldvn9n7oqKi1la/XhMmTBCjR482vT948KDo1KmTGDdunLhy5Yrw8/MTGzduNO2vqKgQXbp0EUuXLhVCCJGVlSUAiMuXLwshhFi7dq0AIM6ePWs6Jj09XYSGhjb4mUIIMXXqVHHfffcJg8HQononJiaKe+65x6zM3XffLV588cV6j7906ZIAILKzs+vdHxsbKyZPnmy2bdCgQeKuu+4y+8zp06eblRk9erSYMGFCg/U+dOiQACD0er0Q4vfvb8eOHaYyV65cEQEBAWL//v1mx06aNEk8+uij9Z7XmvvP6haxbt26tS7yI3K03FyzMVJ1SWFsGUNuLpCU5LBq2VP5jz+inQ3LEXkblUqF7OxsUwtYfHw8ACAyMtLUQmYv//3vf9GuXTtUVVWhsrISo0ePxsqVK3Hu3DlUVlaa6gIYF5geOHAgTp482eD5AgMDceutt5reK5VKs+64+kycOBEPPPAAoqKikJycjJEjR2LYsGFWXcedd95p9r6xz+3YsSMmTpyI4cOH44EHHsDQoUMxbtw40xJBJ0+exOTJk82OiY2NRVZWllV1ys/Px4IFC1BQUIDffvvNlAu1qKgIffr0MZWLiYkx/f3EiRO4ceOGRUteRUUF+vfvb9Xn16dZgdjOnTsxYsQI+Pn5YefOnY2WHTVqVKsrRWRTjQRhLSrnBjr17m3TckTeSKVSYcOGDWaBz4YNG+wahAHAkCFDsGrVKvj5+aFLly7w8/MDANO4rrrJQsXNoUENqTm+Rs1wosZER0ejsLAQX3zxBb788kuMGzcOQ4cOtWpcVH2fWzcJfG1r167FtGnTkJGRgS1btuDll19GZmYmBg8e3KzPk0qlFtdV06ULAFevXsWwYcMwbNgwfPTRR+jcuTOKioowfPhwVFRUmB1Xe4ZqTZ0///xz3HLLLWblZDJZs+rWmGYFYmPGjEFxcTFCQkIazRPCMWLkkpo7DorjpYioFrVajdTUVLNtqampdm8Ra9u2bb2ZCXr06AF/f3988803GD9+PABjoHHkyBGLQerW8Pf3r/f/7vbt2yMlJQUpKSn405/+hOTkZPz2228NjkWzhf79+6N///6YO3cuYmNj8fHHH2Pw4MHo3bs3Dhw4gMcff9xU9sCBA2bHdu7c2RSsAsb1Ro8fP44hQ4YAAE6dOoWLFy9i8eLFpp/fkSNHmqxTnz59IJPJUFRU1PrxYPVo1qxJg8GAkJAQ098bejEII5eUkIAqpRIN/R5mgDGlAxISHFkru7rUSDdFS8oReZvaA/MjIyOxb98+REZGmgbwWztw3Rbatm2Lp59+Gs8//zwyMjJw4sQJpKWl4dq1a5g0aVKLz9u9e3ccO3YMp0+fxsWLF1FZWYlly5Zh8+bNOHXqFH744Qf8+9//RlhYGIKCgmx3QbUUFhZi7ty5yMvLw08//YQ9e/bghx9+QO+brfbTp0/HmjVrsGbNGvzwww+YP38+vv/+e7Nz3Hffffj888/x+eef49SpU3jmmWfMEtt27doV/v7+WLlyJc6fP4+dO3fitddea7Jucrkcs2fPxsyZM7F+/XqcO3cO+fn5SE9PN+V8aw37JcYgchEarRavGwxIhzHoqv3bR01wNtVgwDyttt6cQe5I1r27TcsReRONRmMWhNW0gNUeM5aUlIScnByHPzMWL14Mg8GA1NRU6PV6xMTEYPfu3ejQoUOLz5mWlobs7GzExMTgypUryMrKQrt27bBkyRKcOXMGPj4+uPvuu7Fr1y5IpVZnvWqWwMBAnDp1CuvXr8elS5egVCrx7LPP4q9//SsAICUlBefOncOLL76IGzduYOzYsXj66aexe/du0zmeeOIJfPfdd3j88cfh6+uLmTNnmlrDAGOL2bp16/DSSy9hxYoViI6OxltvvdWsIVWvvfYaQkJCsGjRIpw/fx5BQUGIjo7GSy+91Oprl4imOooBrFixoqkiJtOmTWtVhdxRWVkZFAoFdDod2rdv7+zqUB1NJTed6onJTaurUXnLLfC5cKHeZm8DgKqwMPhrNICPj6NrR2QTjT17b9y4gcLCQkRERCAgIMCq89Y8M0pKSiy6IWtaykJCQjzrmeGGFixYgB07dqCgoMDZVbFgzf3XrBaxZcuWmb3/9ddfce3aNVMTZWlpKQIDAxESEuKVgRi5NoVCgYyMDOj1evjWyazvm5CAeR6YWV+j1eJ1oNFWwOlCeFQrIJGt1H5m1P33oVKpkJOT43HPDHKeZgVihYWFpr9//PHHeO+997B69WpERUUBAE6fPo20tDRTEyI1zduW3HE2hULx+/dZJ0WFJwYicrkcBRERmAJgpVRqll3fUKsVUC6XO6+SRC7M7JlRhyc+M8iJmsw0VkdkZKT49ttvLbYfOXJEdO/e3drTWS09PV10795dyGQyER0dLfbu3dto+ezsbBEdHS1kMpmIiIgQq1atsijz6aefit69ewt/f3/Ru3dvsW3bNqvqZG1C19LSUjF48GAxOTTUmEi0VoLNSqVSTA4NFYMHDxalpaVW1YOottLSUqFWq42JarOyhPj4Y+OfVVVCrVbz/iK3Z8+ErkStYc39Z/WoO61Wa5aXo0Z1dTUu1LOEjC1t2bIFM2bMwLx585Cfn4+EhASMGDECRUVF9ZYvLCzEgw8+iISEBOTn5+Oll17CtGnTsHXrVlOZvLw8pKSkIDU1Fd999x1SU1Mxbtw4HDx40G7XwXUAyd7Y4kpE5B6aNVi/tj/+8Y8oKirC6tWrMWDAAEgkEhw5cgRpaWlQqVRNJnxtjUGDBiE6OtpsBfrevXtjzJgx9S5G+uKLL2Lnzp1mGYcnT56M7777Dnl5eQCMMzHKysrwxRdfmMokJyejQ4cO2LRpU731KC8vR3l5uel9WVkZVCpV8wfrV1ejSqWCVKttcCC1QamEr1rNgdRkNa+cnEBeyV6D9Ylay5r7z+oWsTVr1uCWW27BwIEDERAQAJlMhkGDBkGpVOLDDz9scaWbUlFRgaNHj1ossTBs2DDs37+/3mPy8vIsyg8fPhxHjhwxteo1VKahcwLAokWLTOMHFAqF9Yn9bi6509CXLwWM/3nm5lp3XiKwxZWIyJ1YlUdMCIFr167h008/xc8//4yTJ09CCIHevXvjtttus1cdAQAXL15EdXU1QkNDzbaHhoaiuLi43mOKi4vrLV9VVYWLFy9CqVQ2WKahcwLA3LlzMWvWLNP7mhaxZvPCJXfIccKVSqy8meunbrAvhbHFdaVUapxBSk7D7mMiAloQiPXs2RPff/89evbsiZ49e9qrXg2ydo2t+srX3W7tOWUyWevWl+KSO2RPXrjIubtpqvv4dXYfE3kNq7ompVIpevbsiUuXLtmrPg0KDg6Gj4+PRUtVSUmJRYtWjbCwsHrL+/r6olOnTo2WaeicNuGFS+6QA7HF1eWx+5iIalg9Rmzp0qV4/vnncfz4cXvUp0H+/v4YMGAAMjMzzbZnZmYiLi6u3mNiY2Mtyu/ZswcxMTGmVeEbKtPQOW1Bo9Vi6s3V3OsGY7WX3NHwP0pqCba4urymuo8BY/dxOH9GZKXs7GxIJBKzNRYdYeLEiRgzZoxdP0MikWDHjh1OP4fNWZsbIygoSPj7+wupVCoCAgJEhw4dzF72tHnzZuHn5ydWr14tTpw4IWbMmCHatm0rfvzxRyGEEHPmzBGpqamm8ufPnxeBgYFi5syZ4sSJE2L16tXCz89PfPrpp6Yy+/btEz4+PmLx4sXi5MmTYvHixcLX11ccOHCg2fViHjFyKVVVolKpFNW17qvar+qb95moqnJ2Tb1XVla9PxuLV1aWs2vq0jwxj9iECRMEAAFA+Pr6ioiICPHcc8+JK1euNOv48vJyodVqhcFgsOozR48e3cIaG5WWlorLly+36hxN0Wq14saNG606BwCxfft221SoEdbcf1Yv+v3OO+/YNhK0QkpKCi5duoRXX30VWq0Wffv2xa5du9CtWzcAxhxntXOKRUREYNeuXZg5cybS09PRpUsXrFixAmPHjjWViYuLw+bNm/Hyyy/jlVdewa233ootW7Zg0KBBdrsOb1xyhxzHkYucc8B5Czm5+5g/NytUV1t8R/ZOK5ScnIy1a9eisrISubm5ePLJJ3H16lWz1E0N8ff3R1hYmF3rVx9H3C9NXVdlZaWpt8ut2D0s9ALWtogR2ZOjWlzZstsKTmwR86Sfm91bxLZuFSI83PxnEh5u3G4n9bVOPfnkkyIsLEwIIcSNGzfE1KlTRefOnYVMJhPx8fHi0KFDprJZWVkCgKl1au3atUKhUIiMjAzRq1cv0bZtWzF8+HDxyy+/CCGEmD9/vqkFruaVlZUlysvLxZQpU0RYWJiQyWSiW7du4o033mh2vRMTE8XUqVPF888/Lzp06CBCQ0PF/Pnzm7z+1atXiz59+gh/f38RFhYmpkyZYtqHWq1ZhYWFAoDYsmWLSExMFDKZTKxZs8aqcwghhEajEePGjRNBQUGiY8eOYtSoUaKwsLDJejbFri1igDGL/o4dO3Dy5ElIJBL06dMHo0aNgg+TjxI5naNaXGsPOK9LqtUiHcCUm+XYulLHzQk7TSZ1tsOEHf7cmmnbNuBPfzKGX7X9/LNx+6efAg8/7JCqtGnTxpT78oUXXsDWrVuxfv16dOvWDUuXLsXw4cNx9uxZdOzYsd7jr127hrfeegsbNmyAVCrFX/7yF8yePRsbN27E7NmzcfLkSZSVlWHt2rUAgI4dO2LFihXYuXMnPvnkE3Tt2hVqtRpqtdqqeq9fvx6zZs3CwYMHkZeXh4kTJyI+Ph4PPPBAveVXrVqFWbNmYfHixRgxYgR0Oh327dvX6Ge8+OKLePvtt7F27VrIZDKrznHt2jUMGTIECQkJ2Lt3L3x9ffF///d/SE5OxrFjx+Dv72/V9baYtVHemTNnRM+ePUVgYKDo37+/6NevnwgMDBRRUVHi7NmzLYoc3R1bxMgrcSxai6nVajE5NFRU3/ye6n5v1YCYHBpqXCvU1jzo52a3FrGqKsuWsNoviUQIlcou31HdlqWDBw+KTp06iXHjxokrV64IPz8/sXHjRtP+iooK0aVLF7F06VIhRP0tYgDM/n9OT08XoaGhDX6mEEJMnTpV3Hfffc0ea1Zfi9g999xjVubuu+8WL774YoPn6NKli5g3b16D+1FPi9g777zT4nOsXr1aREVFmV1jeXm5aNOmjdi9e3eD52gOu641OW3aNNx6661Qq9X49ttvkZ+fj6KiIkRERGDatGk2DRKJyIVxhYgWk8vlKIiIwJTQUBjqzIw0KJWYEhqKgogIyOVy2384f25Ny80FNJqG9wsBqNV2+47++9//ol27dggICEBsbCzuvfderFy5EufOnUNlZSXi4+NNZf38/DBw4ECzpfzqCgwMxK233mp6r1QqUVJS0mgdJk6ciIKCAkRFRWHatGnYs2eP1ddx5513mr1v7HNLSkrwyy+/4P7777fqM2JiYlp8jqNHj+Ls2bOQy+Vo164d2rVrh44dO+LGjRs4d+6cVfVoDau7JnNycnDgwAGzJtBOnTph8eLFZjcHEXk45itrMadO2OHPrWlO/o6GDBmCVatWwc/PD126dDENQNfe/Dxrk5DXHcAukUhMyc0bEh0djcLCQnzxxRf48ssvMW7cOAwdOhSffvpps6+jvs81GOrPoNmmTZtmn7e2tm3btvgcBoMBAwYMwMaNGy32de7cuUX1aQmrW8RkMlm9SQavXLniuP5UInI+5itrFYVCYZy16uNjXOHg0UeNf/r4IDw83H7js/hza5qTv6O2bduiR48e6Natm1kw06NHD/j7++Obb74xbausrMSRI0fQu3fvFn+ev78/qqurLba3b98eKSkp+Oc//4ktW7Zg69at+O2331r8OY2Ry+Xo3r07vvrqK4edIzo6GmfOnEFISAh69Ohh9nLk+EirA7GRI0fiqaeewsGDByGEgBACBw4cwOTJkzFq1Ch71JGIXBFXiHBP/Lk1LSEBCA8HGmplkkgAlcrh31Hbtm3x9NNP4/nnn0dGRgZOnDiBtLQ0XLt2DZMmTWrxebt3745jx47h9OnTuHjxIiorK7Fs2TJs3rwZp06dwg8//IB///vfCAsLQ1BQkO0uqI4FCxbg7bffxooVK3DmzBl8++23WLlypd3O8dhjjyE4OBijR49Gbm4uCgsLkZOTg+nTp0PTWNe0jVkdiK1YsQK33norYmNjERAQgICAAMTHx6NHjx5Yvny5PepIRC6IK0S4J/7cmsHHB6j5/6xuMFbz/p137J5PrD6LFy/G2LFjkZqaiujoaJw9exa7d+9Ghw4dWnzOtLQ0REVFISYmBp07d8a+ffvQrl07LFmyBDExMbj77rvx448/YteuXZBKrQ4bmm3ChAl455138N577+H222/HyJEjcebMGbudIzAwEHv37kXXrl3x8MMPo3fv3njiiSdw/fp1tG/f3haX1CwS0VRHcQPOnDljGhzYp08f9OjRw6YVcydlZWVQKBTQ6XQO/eEROVNTC1dP5cLVLsmTfm6NPXtv3LiBwsJCREREICAgoGUfsG0bMH26+cB9lcoYhDkodQW5J2vuvxYHYgBMg/0aGyToDRiIkbdihnb35Ck/N7sHYoBTMuuT+7Pm/mtRQtd//etfePPNN03Nfbfddhuef/55pKamtuR0ROSmFArF7/9hJyWZ7Wvt8klkP/y5WaFmMgWRnVgdiP3973/HK6+8gmeffRbx8fEQQmDfvn2YPHkyLl68iJkzZ9qjnkREREQex+pAbOXKlVi1ahUef/xx07bRo0fj9ttvx4IFCxiIERERETWT1dMftFot4uLiLLbHxcWZks0RERG5glYMgyZqMWvuO6sDsR49euCTTz6x2L5lyxb07NnT2tMRERHZXE0i1GvXrjm5JuSNau67uqsL1MfqrsmFCxciJSUFe/fuRXx8PCQSCb755ht89dVX9QZoREREjubj44OgoCDT2oaBgYFeP8Of7E8IgWvXrqGkpARBQUHwacYMW6sDsbFjx+LgwYNYtmwZduzYASEE+vTpg0OHDqF///4tqjgREZGthYWFAUCTC1wT2VpQUJDp/mtKq/KIkRHziBEROV5zn73V1dWorKx0YM3Im/n5+TWrJayG1S1iu3btgo+PD4YPH262fffu3TAYDBgxYoS1pyQiIrIbHx8fq/5jJHIkqwfrz5kzp95V2oUQmDNnjk0qRUREROQNrA7Ezpw5gz59+lhs79WrF86ePWuTShERERF5A6sDMYVCgfPnz1tsP3v2LNq2bWuTShERERF5A6sDsVGjRmHGjBk4d+6cadvZs2fx3HPPYdSoUTatHBEREZEnszoQe/PNN9G2bVv06tULERERiIiIQO/evdGpUye89dZb9qgjERERkUeyetakQqHA/v37kZmZie+++w5t2rTBnXfeiXvvvdce9SMiIiLyWMwjZgPMI0ZE5Hh89pInsLprkoiIiIhsg4EYERERkZM0OxDTaDT2rAcRERGR12l2INa3b19s2LDBnnUhIiIi8irNDsTeeOMNTJkyBWPHjsWlS5fsWSciIiIir9DsQOyZZ57Bd999h8uXL+P222/Hzp077VkvInISnU5nHIpQXQ1kZwObNhn/rK6GRqOBTqdzdhWJiDyGVXnEIiIi8PXXX+Pdd9/F2LFj0bt3b/j6mp/i22+/tWkFichxdDodkpOT0a+wECulUvhqtaZ9VUolXjcYUBARgYyMDCgUCifWlIjIM1g9a/Knn37C1q1b0bFjR4wePdriZS+XL19GamoqFAoFFAoFUlNTUVpa2mD5yspKvPjii7jjjjvQtm1bdOnSBY8//jh++eUXs3JJSUmQSCRmr0ceecRu10HkyvR6PfoVFiL9wgVIawVhACDVapF+4QL6FRZCr9c7qYZERJ7Fqhaxf/7zn3juuecwdOhQHD9+HJ07d7ZXvSyMHz8eGo0GGRkZAICnnnoKqamp+M9//lNv+WvXruHbb7/FK6+8grvuuguXL1/GjBkzMGrUKBw5csSsbFpaGl599VXT+zZt2tjvQohcWLhSiZVS4+9ndX9LkwIwAMaWMqXS0VUjIvJIzQ7EkpOTcejQIbz77rt4/PHH7VknCydPnkRGRgYOHDiAQYMGATAGhbGxsTh9+jSioqIsjlEoFMjMzDTbtnLlSgwcOBBFRUXo2rWraXtgYCDCwsKaXZ/y8nKUl5eb3peVlVl7SUSuKTfXrDuyLimMLWPIzQWSkhxWLSIiT9Xsrsnq6mocO3bM4UEYAOTl5UGhUJiCMAAYPHiwad3L5tLpdJBIJAgKCjLbvnHjRgQHB+P222/H7Nmzm+x2WbRokamLVKFQQKVSWXU9RC6rkSCsReWIiKhRzW4Rq9u65EjFxcUICQmx2B4SEoLi4uJmnePGjRuYM2cOxo8fb7Ym2WOPPYaIiAiEhYXh+PHjmDt3Lr777rtGr3fu3LmYNWuW6X1ZWRmDMfIMze1yZNckEZFNWDVGzNYWLFiAhQsXNlrm8OHDAACJRGKxTwhR7/a6Kisr8cgjj8BgMOC9994z25eWlmb6e9++fdGzZ0/ExMTg22+/RXR0dL3nk8lkkMlkTX4ukdtJSECVUgmpVltvc7kBgEGphG9CgqNrRkTkkZwaiD377LNNzlDs3r07jh07hgsXLljs+/XXXxEaGtro8ZWVlRg3bhwKCwvx9ddfm7WG1Sc6Ohp+fn44c+ZMg4EYkafSaLV43WBAOoxBV+1gzHDzz6kGA+ZptQgPD3d8BYmIPIxTA7Hg4GAEBwc3WS42NhY6nQ6HDh3CwIEDAQAHDx6ETqdDXFxcg8fVBGFnzpxBVlYWOnXq1ORnff/996isrISSXS/kheRyOQoiIjAFxtmRtVNYGJRKTL2ZR0wulzuvkkREHkQihBDOrkRzjBgxAr/88gs++OADAMb0Fd26dTNLX9GrVy8sWrQIDz30EKqqqjB27Fh8++23+O9//2vWctaxY0f4+/vj3Llz2LhxIx588EEEBwfjxIkTeO6559CmTRscPnwYPj4+zapbWVkZFAoFdDpdky1uRK5Op9NBr9cjXKk0zo7Uao1jwhISoNFqIZfLmcyVXAKfveQJnNoiZo2NGzdi2rRpGDZsGABg1KhRePfdd83KnD592rT8ikajMS3D1K9fP7NyWVlZSEpKgr+/P7766issX74cV65cgUqlwh/+8AfMnz+/2UGYp+B/vlSjZjYwAIsUFeyOJCKyLbdpEXNl7v5bWVPL2kzlsjZE5ILc/dlLBLhRixjZT+1lbeqSarVIBzDlZjkGYkRERLbDQIy4rA0REZGTWL3oN3mgm8vaNHQzSAFjd2VuriNrRURE5PEYiBGXtSEiInISBmLEZW2IiIichIEYmZa1MTSw2wDj7ElwWRsiIiKbYiBG0Gi1mGowhmF1g7Hay9po2DVJRERkUwzE6PdlbUJDYajT/WhQKjElNJTL2hAREdkB01cQFAoFMjIyoNfrjSkqamXW901IwDxm1iciIrILBmIEgMvaEBEROQO7JomIiIichIEYERERkZOwa5KIvIJOp4Ner0d4nXGQSEiAhuMgichJGIgRkcfT6XRITk5Gv8JC47qptVKxVCmVeN1gQEFEBDIyMhiMEZFDMRAjIo+n1+vRr7AQ6RcuWOyTarVIBzDlZjkGYkTkSAzEiMjjhSuVWCk1DomtOzBWCmPi4pVSqTF9CwFgVy6RozAQIyLPl5tr1h1ZlxTGljHk5lqkb/FG7MolchwGYkQ2whYEF9bc5bm4jBcAduUSORIDMSIbYAuCi2tulyO7JgGwK5fIkZhHjMgGarcgSOu0qki1WqRfuIB+hYXQ6/VOqqGXS0hAlVJpsah9DQOMATMSEhxZK9d1syu3of8gpIDxl43cXEfWisgjMRAjsoGmWhAAYwtCOFsQnEKj1WKqwRiG1Q3Gat5PNRigYdekEbtyiRyGgRiRLbAFwaXJ5XIURERgSmgoDHWCYYNSiSmhoSiIiIBcLndSDV0Mu3KJHIZjxIhsgS0ILk2hUCAjIwN6vd44rqnWZArfhATM42QKcze7cqUN/HJhgDGA9WVXLlGrMRAjsgUbtSBw5qX9KBSK37+7OikqwsPDHV8hF6bRavG6wYB0GIOu2sFY7a7ceVotvzuiVmIgRmQLNmhB4MxLchWmrlwYxzbWnoBiUCox9ea9yK5cotZjIEZkAydOn8byykqsQstbEJi7iVwFu3KJHIeBGFEr6XQ6TJw4ERGlpSiVStHRYD4vr1QqxdNSKc6rVI22IDB3E7kSduUSOQZnTRK1kl6vx4CiImyqqkJQnSDMACDIYEBQUBDWr1/feAsCZ14SEXkdtogRtVJzWrLS/fzgGxXV+Ik485KIyOuwRYyotWzVksXcTUREXoeBGFFr2aoli8vwEBF5HQZiRK1lo5YsjVaLZ6uqADS8DM+zVVVchoeIyIO4TSB2+fJlpKammmbypKamorS0tNFjJk6cCIlEYvYaPHiwWZny8nJMnToVwcHBaNu2LUaNGgWNRmPHKyGPY6OWLIPBgI3Xr+NtiQQSqfk/TYlUirclEmy8fh0GQ0OfRERE7sZtArHx48ejoKAAGRkZyMjIQEFBAVJTU5s8Ljk5GVqt1vTatWuX2f4ZM2Zg+/bt2Lx5M7755htcuXIFI0eORHV1tb0uhTyMrRaUlkqleKxNGzwnBESdYEsYDHhOCDzWpg2kUrf5Z0tERE1wi1mTJ0+eREZGBg4cOIBBgwYBAP75z38iNjYWp0+fRlQjs9FkMhnCwsLq3afT6bB69Wps2LABQ4cOBQB89NFHUKlU+PLLLzF8+PB6jysvL0d5ebnpfVlZWUsvjTyArbKQhyuVeNfX+E+yodmX7/r6Mo8YEZEHcYtfrfPy8qBQKExBGAAMHjwYCoUC+/fvb/TY7OxshISE4LbbbkNaWhpKSkpM+44ePYrKykoMGzbMtK1Lly7o27dvo+ddtGiRqYtUoVBApVK14urI3dVkIZ935Ah81WogKwv4+GMgKwu+ajXmHTnSvGWJmEeMiMjruEWLWHFxMUJCQiy2h4SEoLi4uMHjRowYgT//+c/o1q0bCgsL8corr+C+++7D0aNHIZPJUFxcDH9/f3To0MHsuNDQ0EbPO3fuXMyaNcv0vqysjMGYl7NJFnLmESMi8jpODcQWLFiAhQsXNlrm8OHDAACJRGKxTwhR7/YaKSkppr/37dsXMTEx6NatGz7//HM8/PDDDR7X1HllMhlkMlmj9SayGvOIERF5HacGYs8++yweeeSRRst0794dx44dw4V6FkL+9ddfERoa2uzPUyqV6NatG86cOQMACAsLQ0VFBS5fvmzWKlZSUoK4uLhmn5fIJm7OvpQ20D1pgHHMmS/ziBEReQynBmLBwcEIDg5uslxsbCx0Oh0OHTqEgQMHAgAOHjwInU5nVcB06dIlqNVqKG+2KAwYMAB+fn7IzMzEuHHjAABarRbHjx/H0qVLW3BFRC2n0WrxusGAdBiDrtrBWO3Zl/O0Wi66TETkIdxisH7v3r2RnJyMtLQ0HDhwAAcOHEBaWhpGjhxpNmOyV69e2L59OwDgypUrmD17NvLy8vDjjz8iOzsbf/zjHxEcHIyHHnoIgHFcz6RJk/Dcc8/hq6++Qn5+Pv7yl7/gjjvuMM2ipPrpdDpjvrXqaiA7G9i0yfhndTU0Gg10Op2zq+h2TLMvQ0NhqNP9aFAqMSU0tFmzL4mIyH24xWB9ANi4cSOmTZtmmuE4atQovPvuu2ZlTp8+bQoAfHx88L///Q//+te/UFpaCqVSiSFDhmDLli1m/5EtW7YMvr6+GDduHK5fv477778f69atg4+Pj+Muzs3odDokJyejX2EhVkqlxpl8N1UplXj9ZrqGZs0UJJOa2Zd6vd6YoiI31zgw/2Z35DytFnK5nN8pEZEHkQghhLMr4e7KysqgUCig0+nQvn17Z1fH7jQaDV6PiUH6zXF79XWhTQkNxbwjR9iFRkR2423PXvJMbtMiRq4jXKnEypvZ3RtKPLpSKmXiUSIioia4xRgxcjFMPErUKhxjSUQ12CJG1mPiUaIW4xhLIqqNgRhZj4lHiVpMr9ejX2GhaYxlbVKtFukAptwsx0CMyPOxa5KsdzPxqKGB3QYYf7MHE48SWWhqjCVgHGMZzl9kiLwCAzGymkarxVSDMQyrG4zVTjyqYdckkSWOsSSiWhiIkdWYeJSoFTjGkohq4RgxshoTjxK1AsdYElEtTOhqA0wqSETNVl2NKpWq6cXd1WqAK3w0is9e8gTsmnRTpjxE9WAeIiLXxTGWRFQbAzE3VJOHKDExEWq12myfWq1GYmIikpOTGYwRuSCOsSSi2jhGzA3p9XqUlJTg/PnzSEpKQnZ2NlQqFdRqNZKSknD+/HlTOY7TInItHGNJRLVxjJgNOGOcQu2gKzIyEhs2bEBqaqrpfU1wRkTkqThGjDwBAzEbcNbDoG4LGAAGYUTkNRiIkSfgGDE3plKpsGHDBrNtGzZsYBBGRETkJhiIuTG1Wo3U1FSzbampqRYD+ImIiMg1MRBzU3XHiO3btw+RkZGmAfwMxoiIiFwfAzE3pNFozIKw7OxsxMXFITs72ywYayjPGBEREbkGpq9wQ3K5HCEhIQBgNjBfpVIhOzsbSUlJCAkJYR4iIiIiF8dZkzbgjJk7Op0Oer0e4eHhFvs0Gg3zEBGRx+OsSfIEbBFzUwqFosFAq77gjIiIiFwPx4gREREROQkDMS/ChcKJiIhcCwMxL8GFwomIiFwPAzEvUXeh8JpgrHY+spKSEuj1eifXlIiIyHswEPMS4eHhFnnG9u/fb5GPjAP9W8/UBVxdDWRnA5s2Gf+srmYXMNWL9wyR92L6ChtwpynUXCjcvmq6gPsVFmKlVApfrda0r0qpxFSDAQUREcjIyGB6EQLAe6Y13OnZS9QQtoh5GS4Ubl96vR79CguRfuECpLX+QwUAqVaL9AsX0K+wkF3AZMJ7hsi7MRDzMo5eKNzbulzClUqslBr/WdX9x1XzfqVUinCl0qH1Ituz1b3Ne4bIuzGhqxepu1D4hg0bkJqaahozZuvuyaa6XF73xC6X3Fyz66xLCmMrB3JzgaQkh1WLbMum9zbvGSKvxhYxL+GMhcK9pcvFrGXkq6+ad1Aj//GS67Ppvd3ce4H3DJFHYouYl3DGQuFNdbkYYOxy8XXjLpfGWkYa5cbXTDa+t5t7L/CeIfJIbtMidvnyZaSmpprWWExNTUVpaWmjx0gkknpfb775pqlMUlKSxf5HHnnEzlfjeAqFAhkZGcjJybHoflSpVMjJybF9F+HNLpeGbjIpYAxccnNt95kO1ljLSH0MMHZdISHB/pUj+7HlvZ2QgCqlEoYGdvOeIfJsbhOIjR8/HgUFBcjIyEBGRgYKCgosBp3XpdVqzV5r1qyBRCLB2LFjzcqlpaWZlfvggw/seSlOo1AoGswTFh4ebvtxWl7Q5dJYy0hdNf/RTjUYoHHjaybY9N7WaLWYajDeHXWDMd4zRJ7PLbomT548iYyMDBw4cACDBg0CAPzzn/9EbGwsTp8+jaioqHqPCwsLM3v/2WefYciQIYiMjDTbHhgYaFG2MeXl5SgvLze9Lysra/axXsUbulyaGGhdm6FWTihbdgGTE9jw3pbL5SiIiMAUGLsza7es8p4h8nxu0SKWl5cHhUJhCsIAYPDgwVAoFNi/f3+zznHhwgV8/vnnmDRpksW+jRs3Ijg4GLfffjtmz57d5ADbRYsWmbpIFQoFc3A1xBu6XJrbSvHyy/BVqzHvyBHPmiXqrWx4b9cMG5h35Ah81WogKwv4+GMgK4v3DJEXcItArLi42DTQvLaQkBAUFxc36xzr16+HXC7Hww8/bLb9sccew6ZNm5CdnY1XXnkFW7dutShT19y5c6HT6Uwve+Xgcnde0eXS3JaR++8HfHwa7QL2tpxr7szW97Zp2ICPjzFFxaOPGv9s4p4hIvfn1K7JBQsWYOHChY2WOXz4MADjwPu6hBD1bq/PmjVr8NhjjyEgIMBse1pamunvffv2Rc+ePRETE4Nvv/0W0dHR9Z5LJpNBJpM163O9mVd0udxsGZE2MHDbAOO1+jbRMuKVOdfcmFfc20TkEE4NxJ599tkmZyh2794dx44dw4ULFyz2/frrrwgNDW3yc3Jzc3H69Gls2bKlybLR0dHw8/PDmTNnGgzEqHlqulz0er1xGn9urrEr72ZgMk+rhVwud+vAQqPV4nWDAekwBl21g7HaLSPztNpGF1SvPfuyLqlWi3QAU26Wc8XvS6fTQa/XG7O/1/o5IyEBGg/4OdflDfc2ETmGUwOx4OBgBAcHN1kuNjYWOp0Ohw4dwsCBAwEABw8ehE6nQ1xcXJPHr169GgMGDMBdd93VZNnvv/8elZWVULrzAHIXUjOODoBFVvDGAhN3YauWEXfOueatrXmefm8TkWO4xazJ3r17Izk5GWlpaabUEk899RRGjhxpNmOyV69eWLRoER566CHTtrKyMvz73//G22+/bXHec+fOYePGjXjwwQcRHByMEydO4LnnnkP//v0RHx9v/wsjt2ezlhE3XubG3VvziIicyS0CMcA4s3HatGkYNmwYAGDUqFF49913zcqcPn3aYkDz5s2bIYTAo48+anFOf39/fPXVV1i+fDmuXLkClUqFP/zhD5g/fz58fHzsdzHkUWzSMuLGOdfcuTWPiMjZJEII4exKuLuysjIoFArodDq0b9/e2dUhd5SdDQwZ0nS5rCyXaxFz67qTW+OzlzyBW6SvIPJ47pxzzY1b84iInI2BGJELcOuca96wggIRkZ0wECNyAabZl6GhMNQJWAxKJaaEhrpuXip3bs0jInIytxmsT+TJ3Dkvla1yqREReSMGYkQuwl3zUjHLPBFRyzEQI6JWcefWPCIiZ2MgRkSt5q6teUREzsbB+kREREROwkCMiIiIyEkYiBERERE5CQMxIiIiIidhIEZERETkJAzEiIiIiJyEgRgRERGRkzAQIyIiInISBmJERERETsJAjIiIiMhJGIgREREROQkDMSIiIiInYSBGRERE5CQMxIiIiIichIEYERERkZMwECMiIiJyEgZiRERERE7CQIyIiIjISRiIERERETkJAzEiIjen0+mg0Wjq3afRaKDT6RxcIyJqLgZiRERuTKfTITk5GYmJiVCr1Wb71Go1EhMTkZyczGCMyEUxECMicmN6vR4lJSU4f/48kpKSTMGYWq1GUlISzp8/j5KSEuj1eifXlIjqw0CMiMiNhYeHIzs7G5GRkaZgbP/+/aYgLDIyEtnZ2QgPD3d2VYmoHhIhhHB2JdxdWVkZFAoFdDod2rdv7+zqEJEXqt0CVqMmCFOpVE6smf3w2UuegC1iREQeQKVSYcOGDWbbNmzY4LFBGJGncJtA7PXXX0dcXBwCAwMRFBTUrGOEEFiwYAG6dOmCNm3aICkpCd9//71ZmfLyckydOhXBwcFo27YtRo0a1eDsIyIiV6VWq5Gammq2LTU11WIAPxG5FrcJxCoqKvDnP/8ZTz/9dLOPWbp0Kf7+97/j3XffxeHDhxEWFoYHHnjAbNDqjBkzsH37dmzevBnffPMNrly5gpEjR6K6utoel0FEZHO1uyUjIyOxb98+szFjDMaIXJhwM2vXrhUKhaLJcgaDQYSFhYnFixebtt24cUMoFArx/vvvCyGEKC0tFX5+fmLz5s2mMj///LOQSqUiIyOjwXPfuHFD6HQ600utVgsAQqfTtfzCiIhaQK1Wi8jISAFAREZGiqKiIiGEEEVFRWbb1Wq1k2tqezqdjs9ecntu0yJmrcLCQhQXF2PYsGGmbTKZDImJidi/fz8A4OjRo6isrDQr06VLF/Tt29dUpj6LFi2CQqEwvTgGg4icRS6XIyQkxGJgvkqlMs2mDAkJgVwud3JNiag+vs6ugL0UFxcDAEJDQ822h4aG4qeffjKV8ff3R4cOHSzK1Bxfn7lz52LWrFmm92VlZQzGiMgpFAoFMjIyoNfrLVJUqFQq5OTkQC6XQ6FQOKmGRNQYp7aILViwABKJpNHXkSNHWvUZEonE7L0QwmJbXU2VkclkaN++vdmLiMhZFApFg3nCwsPDGYQRuTCntog9++yzeOSRRxot07179xadOywsDICx1UupVJq2l5SUmFrJwsLCUFFRgcuXL5u1ipWUlCAuLq5Fn0tERETUXE4NxIKDgxEcHGyXc0dERCAsLAyZmZno378/AOPMy5ycHCxZsgQAMGDAAPj5+SEzMxPjxo0DAGi1Whw/fhxLly61S72IiIiIarjNGLGioiL89ttvKCoqQnV1NQoKCgAAPXr0QLt27QAAvXr1wqJFi/DQQw9BIpFgxowZeOONN9CzZ0/07NkTb7zxBgIDAzF+/HgAxub8SZMm4bnnnkOnTp3QsWNHzJ49G3fccQeGDh3qrEslIiIiL+E2gdjf/vY3rF+/3vS+ppUrKysLSUlJAIDTp09Dp9OZyrzwwgu4fv06nnnmGVy+fBmDBg3Cnj17zGYPLVu2DL6+vhg3bhyuX7+O+++/H+vWrYOPj49jLoyIiIi8FteatAGud0ZE5Hh89pIn8Ng8YkRERESujoEYERERkZMwECMiIiJyEgZiRERERE7iNrMmXVnNfIeysjIn14SIyHvUPHM554zcGQMxG9Dr9QDA9SaJiJxAr9dzGSdyW0xfYQMGgwG//PIL5HJ5k+tYAr8vEq5Wqznl2ob4vdoHv1f74PfaekII6PV6dOnSBVIpR9qQe2KLmA1IpdIGF9xtDBcMtw9+r/bB79U++L22DlvCyN3xVwgiIiIiJ2EgRkREROQkDMScQCaTYf78+ZDJZM6uikfh92of/F7tg98rEQEcrE9ERETkNGwRIyIiInISBmJERERETsJAjIiIiMhJGIgREREROQkDMQd5/fXXERcXh8DAQAQFBTXrGCEEFixYgC5duqBNmzZISkrC999/b9+KupnLly8jNTUVCoUCCoUCqampKC0tbfSYiRMnQiKRmL0GDx7smAq7qPfeew8REREICAjAgAEDkJub22j5nJwcDBgwAAEBAYiMjMT777/voJq6F2u+1+zsbIv7UiKR4NSpUw6sMRE5GgMxB6moqMCf//xnPP30080+ZunSpfj73/+Od999F4cPH0ZYWBgeeOAB09qWBIwfPx4FBQXIyMhARkYGCgoKkJqa2uRxycnJ0Gq1pteuXbscUFvXtGXLFsyYMQPz5s1Dfn4+EhISMGLECBQVFdVbvrCwEA8++CASEhKQn5+Pl156CdOmTcPWrVsdXHPXZu33WuP06dNm92bPnj0dVGMicgpBDrV27VqhUCiaLGcwGERYWJhYvHixaduNGzeEQqEQ77//vh1r6D5OnDghAIgDBw6YtuXl5QkA4tSpUw0eN2HCBDF69GgH1NA9DBw4UEyePNlsW69evcScOXPqLf/CCy+IXr16mW3761//KgYPHmy3Oroja7/XrKwsAUBcvnzZAbUjIlfBFjEXVVhYiOLiYgwbNsy0TSaTITExEfv373dizVxHXl4eFAoFBg0aZNo2ePBgKBSKJr+j7OxshISE4LbbbkNaWhpKSkrsXV2XVFFRgaNHj5rdZwAwbNiwBr/DvLw8i/LDhw/HkSNHUFlZabe6upOWfK81+vfvD6VSifvvvx9ZWVn2rCYRuQAGYi6quLgYABAaGmq2PTQ01LTP2xUXFyMkJMRie0hISKPf0YgRI7Bx40Z8/fXXePvtt3H48GHcd999KC8vt2d1XdLFixdRXV1t1X1WXFxcb/mqqipcvHjRbnV1Jy35XpVKJf7xj39g69at2LZtG6KionD//fdj7969jqgyETmJr7Mr4M4WLFiAhQsXNlrm8OHDiImJafFnSCQSs/dCCIttnqa53ytg+f0ATX9HKSkppr/37dsXMTEx6NatGz7//HM8/PDDLay1e7P2PquvfH3bvZ0132tUVBSioqJM72NjY6FWq/HWW2/h3nvvtWs9ich5GIi1wrPPPotHHnmk0TLdu3dv0bnDwsIAGFsflEqlaXtJSYnFb9meprnf67Fjx3DhwgWLfb/++qtV35FSqUS3bt1w5swZq+vq7oKDg+Hj42PRStPYfRYWFlZveV9fX3Tq1MludXUnLfle6zN48GB89NFHtq4eEbkQBmKtEBwcjODgYLucOyIiAmFhYcjMzET//v0BGMed5OTkYMmSJXb5TFfR3O81NjYWOp0Ohw4dwsCBAwEABw8ehE6nQ1xcXLM/79KlS1Cr1WYBr7fw9/fHgAEDkJmZiYceesi0PTMzE6NHj673mNjYWPznP/8x27Znzx7ExMTAz8/PrvV1Fy35XuuTn5/vlfclkVdx6lQBL/LTTz+J/Px8sXDhQtGuXTuRn58v8vPzhV6vN5WJiooS27ZtM71fvHixUCgUYtu2beJ///ufePTRR4VSqRRlZWXOuASXlJycLO68806Rl5cn8vLyxB133CFGjhxpVqb296rX68Vzzz0n9u/fLwoLC0VWVpaIjY0Vt9xyi9d+r5s3bxZ+fn5i9erV4sSJE2LGjBmibdu24scffxRCCDFnzhyRmppqKn/+/HkRGBgoZs6cKU6cOCFWr14t/Pz8xKeffuqsS3BJ1n6vy5YtE9u3bxc//PCDOH78uJgzZ44AILZu3eqsSyAiB2Ag5iATJkwQACxeWVlZpjIAxNq1a03vDQaDmD9/vggLCxMymUzce++94n//+5/jK+/CLl26JB577DEhl8uFXC4Xjz32mMX0/9rf67Vr18SwYcNE586dhZ+fn+jatauYMGGCKCoqcnzlXUh6erro1q2b8Pf3F9HR0SInJ8e0b8KECSIxMdGsfHZ2tujfv7/w9/cX3bt3F6tWrXJwjd2DNd/rkiVLxK233ioCAgJEhw4dxD333CM+//xzJ9SaiBxJIsTNUbZERERE5FBMX0FERETkJAzEiIiIiJyEgRgRERGRkzAQIyIiInISBmJERERETsJAjIiIiMhJGIgREREROQkDMSIiIiInYSBGRPVKSkrCjBkzTO+7d++Od955x2n1ISLyRAzEiGysuroacXFxGDt2rNl2nU4HlUqFl19+2Uk1a53Dhw/jqaeesuk5J06ciDFjxtj0nERE7oSBGJGN+fj4YP369cjIyMDGjRtN26dOnYqOHTvib3/7mxNrZ04IgaqqqmaV7dy5MwIDA+1cIyIi78JAjMgOevbsiUWLFmHq1Kn45Zdf8Nlnn2Hz5s1Yv349/P39GzyuvLwcL7zwAlQqFWQyGXr27InVq1eb9ufk5GDgwIGQyWRQKpWYM2eOWSBVXl6OadOmISQkBAEBAbjnnntw+PBh0/7s7GxIJBLs3r0bMTExkMlkyM3NxdWrV/H444+jXbt2UCqVePvtty3qVrdrUiKR4MMPP8RDDz2EwMBA9OzZEzt37jTtr66uxqRJkxAREYE2bdogKioKy5cvN+1fsGAB1q9fj88++wwSiQQSiQTZ2dkAgJ9//hkpKSno0KEDOnXqhNGjR+PHH3+05kdAROQenLzoOJHHMhgMIikpSdx///0iJCREvPbaa00eM27cOKFSqcS2bdvEuXPnxJdffik2b94shBBCo9GIwMBA8cwzz4iTJ0+K7du3i+DgYDF//nzT8dOmTRNdunQRu3btEt9//72YMGGC6NChg7h06ZIQQoisrCwBQNx5551iz5494uzZs+LixYvi6aefFuHh4WLPnj3i2LFjYuTIkaJdu3Zi+vTppnN369ZNLFu2zPQegAgPDxcff/yxOHPmjJg2bZpo166d6bMqKirE3/72N3Ho0CFx/vx58dFHH4nAwECxZcsWIYQQer1ejBs3TiQnJwutViu0Wq0oLy8XV69eFT179hRPPPGEOHbsmDhx4oQYP368iIqKEuXl5a38qRARuRYGYkR2dPLkSQFA3HHHHaKysrLRsqdPnxYARGZmZr37X3rpJREVFSUMBoNpW3p6umjXrp2orq4WV65cEX5+fmLjxo2m/RUVFaJLly5i6dKlQojfA7EdO3aYyuj1euHv728K+IQQ4tKlS6JNmzZNBmIvv/yy6f2VK1eERCIRX3zxRYPX+Mwzz4ixY8ea3k+YMEGMHj3arMzq1astrrO8vFy0adNG7N69u8FzExG5I19ntsYRebo1a9YgMDAQhYWF0Gg06N69e4NlCwoK4OPjg8TExHr3nzx5ErGxsZBIJKZt8fHxuHLlCjQaDUpLS1FZWYn4+HjTfj8/PwwcOBAnT540O1dMTIzp7+fOnUNFRQViY2NN2zp27IioqKgmr+/OO+80/b1t27aQy+UoKSkxbXv//ffx4Ycf4qeffsL169dRUVGBfv36NXrOo0eP4uzZs5DL5Wbbb9y4gXPnzjVZJyIid8JAjMhO8vLysGzZMnzxxRdYunQpJk2ahC+//NIskKqtTZs2jZ5PCGFxrBACgHG8Vu2/N3Vc27ZtLc7REn5+fmbvJRIJDAYDAOCTTz7BzJkz8fbbbyM2NhZyuRxvvvkmDh482Og5DQYDBgwYYDbRoUbnzp1bXFciIlfEwfpEdnD9+nVMmDABf/3rXzF06FB8+OGHOHz4MD744IMGj7njjjtgMBiQk5NT7/4+ffpg//79ZoHT/v37IZfLccstt6BHjx7w9/fHN998Y9pfWVmJI0eOoHfv3g1+bo8ePeDn54cDBw6Ytl2+fBk//PCDNZdsITc3F3FxcXjmmWfQv39/9OjRw6JFy9/fH9XV1WbboqOjcebMGYSEhKBHjx5mL4VC0ao6ERG5GgZiRHYwZ84cGAwGLFmyBADQtWtXvP3223j++ecbnP3XvXt3TJgwAU888QR27NiBwsJCZGdn45NPPgEAPPPMM1Cr1Zg6dSpOnTqFzz77DPPnz8esWbMglUrRtm1bPP3003j++eeRkZGBEydOIC0tDdeuXcOkSZMarGu7du0wadIkPP/88/jqq69w/PhxTJw4EVJp6x4PPXr0wJEjR7B792788MMPeOWVV8xmcNZc87Fjx3D69GlcvHgRlZWVeOyxxxAcHIzRo0cjNzcXhYWFyMnJwfTp06HRaFpVJyIiV8NAjMjGcnJykJ6ejnXr1pl1AaalpSEuLg6TJk1qsDtw1apV+NOf/oRnnnkGvXr1QlpaGq5evQoAuOWWW7Br1y4cOnQId911FyZPnoxJkyaZJYhdvHgxxo4di9TUVERHR+Ps2bPYvXs3OnTo0Gid33zzTdx7770YNWoUhg4dinvuuQcDBgxo1fcwefJkPPzww0hJScGgQYNw6dIlPPPMM2Zl0tLSEBUVhZiYGHTu3Bn79u1DYGAg9u7di65du+Lhhx9G79698cQTT+D69eto3759q+pERORqJKI1A0SIiIiIqMXYIkZERETkJAzEiIiIiJyEgRgRERGRkzAQIyIiInISBmJERERETsJAjIiIiMhJGIgREREROQkDMSIiIiInYSBGRERE5CQMxIiIiIichIEYERERkZP8f8nodQcsNK1uAAAAAElFTkSuQmCC", "text/plain": [ "
    " ] @@ -489,14 +649,14 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 257, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "We estimate the value of pi to be: 3.04.\n" + "We estimate the value of pi to be: 3.28.\n" ] } ], @@ -539,29 +699,253 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 258, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "http://geodesy.unr.edu/gps_timeseries/tenv/IGS14/P395.tenv\n", + "P395 06JAN25 2006.0671 53760 1359 3 -123.9 3347.67917 4987420.31375 53.03678 0.0083 0.00069 0.00105 0.00327 -0.04832 0.01695 -0.31816\n" + ] + }, + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    station ID (SSSS)date (yymmmdd)decimal yearmodified Julian dayGPS weekday of GPS weeklongitude (degrees) of reference meridiandelta e (m)delta n (m)delta v (m)antenna height (m)sigma e (m)sigma n (m)sigma v (m)correlation encorrelation evcorrelation nv
    0P39506JAN252006.067153760.01359.03.0-123.93347.679174.987420e+0653.036780.00830.000690.001050.00327-0.048320.01695-0.31816
    1P39506JAN262006.069853761.01359.04.0-123.93347.680864.987420e+0653.030030.00830.000690.001040.00321-0.046480.00271-0.30970
    2P39506JAN272006.072653762.01359.05.0-123.93347.680724.987420e+0653.039060.00830.000690.001050.00326-0.023670.00817-0.31941
    3P39506JAN282006.075353763.01359.06.0-123.93347.679384.987420e+0653.043820.00830.000690.001050.00324-0.036810.00908-0.30515
    4P39506JAN292006.078053764.01360.00.0-123.93347.680424.987420e+0653.035130.00830.000680.001050.00328-0.048150.00619-0.33029
    \n", + "
    " + ], + "text/plain": [ + " station ID (SSSS) date (yymmmdd) decimal year modified Julian day \\\n", + "0 P395 06JAN25 2006.0671 53760.0 \n", + "1 P395 06JAN26 2006.0698 53761.0 \n", + "2 P395 06JAN27 2006.0726 53762.0 \n", + "3 P395 06JAN28 2006.0753 53763.0 \n", + "4 P395 06JAN29 2006.0780 53764.0 \n", + "\n", + " GPS week day of GPS week longitude (degrees) of reference meridian \\\n", + "0 1359.0 3.0 -123.9 \n", + "1 1359.0 4.0 -123.9 \n", + "2 1359.0 5.0 -123.9 \n", + "3 1359.0 6.0 -123.9 \n", + "4 1360.0 0.0 -123.9 \n", + "\n", + " delta e (m) delta n (m) delta v (m) antenna height (m) sigma e (m) \\\n", + "0 3347.67917 4.987420e+06 53.03678 0.0083 0.00069 \n", + "1 3347.68086 4.987420e+06 53.03003 0.0083 0.00069 \n", + "2 3347.68072 4.987420e+06 53.03906 0.0083 0.00069 \n", + "3 3347.67938 4.987420e+06 53.04382 0.0083 0.00069 \n", + "4 3347.68042 4.987420e+06 53.03513 0.0083 0.00068 \n", + "\n", + " sigma n (m) sigma v (m) correlation en correlation ev correlation nv \n", + "0 0.00105 0.00327 -0.04832 0.01695 -0.31816 \n", + "1 0.00104 0.00321 -0.04648 0.00271 -0.30970 \n", + "2 0.00105 0.00326 -0.02367 0.00817 -0.31941 \n", + "3 0.00105 0.00324 -0.03681 0.00908 -0.30515 \n", + "4 0.00105 0.00328 -0.04815 0.00619 -0.33029 " + ] + }, + "execution_count": 258, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# The station designation\n", "sta=\"P395\"\n", - "file_url=\"http://geodesy.unr.edu/gps_timeseries/tenv/IGS14/\"+ sta + \".tenv\"\n", - "r = requests.get(file_url).text.splitlines() # download, read text, split lines into a list\n", - "ue=[];un=[];uv=[];se=[];sn=[];sv=[];date=[];date_year=[];df=[]\n", - "for iday in r: # this loops through the days of data\n", - " crap=iday.split()\n", - " if len(crap)<10:\n", - " continue\n", - " date.append((crap[1]))\n", - " date_year.append(float(crap[2]))\n", - " ue.append(float(crap[7])*1000)\n", - " un.append(float(crap[8])*1000)\n", - " uv.append(float(crap[9])*1000)" + "\n", + "print(\"http://geodesy.unr.edu/gps_timeseries/tenv/IGS14/\" + sta + \".tenv\")\n", + "zip_file_url=\"http://geodesy.unr.edu/gps_timeseries/tenv/IGS14/\"+ sta + \".tenv\"\n", + "r = requests.get(zip_file_url)\n", + "\n", + "\n", + "# create a list of strings with itemized list above\n", + "ll = ['station ID (SSSS)','date (yymmmdd)',\n", + "'decimal year','modified Julian day','GPS week','day of GPS week',\n", + "'longitude (degrees) of reference meridian','delta e (m)',\n", + "'delta n (m)','delta v (m)','antenna height (m)',\n", + "'sigma e (m)','sigma n (m)','sigma v (m)',\n", + "'correlation en','correlation ev','correlation nv']\n", + " \n", + "\n", + "# transform r.content into a pandas dataframe\n", + "# first split r.content with \\n separator\n", + "# Decode the content if it's in bytes\n", + "content_str = r.content.decode('utf-8')\n", + "\n", + "# Split the content by the newline character\n", + "lines = content_str.split('\\n')\n", + "\n", + "# Now `lines` is a list of strings, each representing a line from the content\n", + "print(lines[0])\n", + "\n", + "# then transform lines into a pandas dataframe\n", + "df = pd.DataFrame([x.split() for x in lines])\n", + "# assign column names to df a\n", + "df.columns = ll\n", + "\n", + "#convert columns to numeric\n", + "df = df.apply(pd.to_numeric, errors='ignore')\n", + "\n", + "df.dropna()\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 259, + "metadata": {}, + "outputs": [], + "source": [ + "# remove first value for delta e, delta n, delta v to make relative position with respect to the first time. Add these as new columns\n", + "df['new delta e (m)'] = df['delta e (m)'] - df['delta e (m)'].values[0]\n", + "df['new delta n (m)'] = df['delta n (m)'] - df['delta n (m)'].values[0]\n", + "df['new delta v (m)'] = df['delta v (m)'] - df['delta v (m)'].values[0]" ] }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 260, "metadata": {}, "outputs": [ { @@ -585,120 +969,214 @@ " \n", " \n", " \n", - " date_year\n", - " east\n", - " north\n", - " up\n", + " station ID (SSSS)\n", + " date (yymmmdd)\n", + " decimal year\n", + " modified Julian day\n", + " GPS week\n", + " day of GPS week\n", + " longitude (degrees) of reference meridian\n", + " delta e (m)\n", + " delta n (m)\n", + " delta v (m)\n", + " antenna height (m)\n", + " sigma e (m)\n", + " sigma n (m)\n", + " sigma v (m)\n", + " correlation en\n", + " correlation ev\n", + " correlation nv\n", + " new delta e (m)\n", + " new delta n (m)\n", + " new delta v (m)\n", " \n", " \n", " \n", " \n", - " count\n", - " 6799.000000\n", - " 6.799000e+03\n", - " 6.799000e+03\n", - " 6799.000000\n", - " \n", - " \n", - " mean\n", - " 2015.400365\n", - " 3.347623e+06\n", - " 4.987420e+09\n", - " 53038.873887\n", - " \n", - " \n", - " std\n", - " 5.394198\n", - " 3.484142e+01\n", - " 1.870622e+01\n", - " 5.637131\n", + " 0\n", + " P395\n", + " 06JAN25\n", + " 2006.0671\n", + " 53760.0\n", + " 1359.0\n", + " 3.0\n", + " -123.9\n", + " 3347.67917\n", + " 4.987420e+06\n", + " 53.03678\n", + " 0.0083\n", + " 0.00069\n", + " 0.00105\n", + " 0.00327\n", + " -0.04832\n", + " 0.01695\n", + " -0.31816\n", + " 0.00000\n", + " 0.00000\n", + " 0.00000\n", " \n", " \n", - " min\n", - " 2006.067100\n", - " 3.347558e+06\n", - " 4.987420e+09\n", - " 52997.270000\n", + " 1\n", + " P395\n", + " 06JAN26\n", + " 2006.0698\n", + " 53761.0\n", + " 1359.0\n", + " 4.0\n", + " -123.9\n", + " 3347.68086\n", + " 4.987420e+06\n", + " 53.03003\n", + " 0.0083\n", + " 0.00069\n", + " 0.00104\n", + " 0.00321\n", + " -0.04648\n", + " 0.00271\n", + " -0.30970\n", + " 0.00169\n", + " -0.00067\n", + " -0.00675\n", " \n", " \n", - " 25%\n", - " 2010.739250\n", - " 3.347592e+06\n", - " 4.987420e+09\n", - " 53035.100000\n", + " 2\n", + " P395\n", + " 06JAN27\n", + " 2006.0726\n", + " 53762.0\n", + " 1359.0\n", + " 5.0\n", + " -123.9\n", + " 3347.68072\n", + " 4.987420e+06\n", + " 53.03906\n", + " 0.0083\n", + " 0.00069\n", + " 0.00105\n", + " 0.00326\n", + " -0.02367\n", + " 0.00817\n", + " -0.31941\n", + " 0.00155\n", + " 0.00101\n", + " 0.00228\n", " \n", " \n", - " 50%\n", - " 2015.392200\n", - " 3.347626e+06\n", - " 4.987420e+09\n", - " 53038.670000\n", + " 3\n", + " P395\n", + " 06JAN28\n", + " 2006.0753\n", + " 53763.0\n", + " 1359.0\n", + " 6.0\n", + " -123.9\n", + " 3347.67938\n", + " 4.987420e+06\n", + " 53.04382\n", + " 0.0083\n", + " 0.00069\n", + " 0.00105\n", + " 0.00324\n", + " -0.03681\n", + " 0.00908\n", + " -0.30515\n", + " 0.00021\n", + " -0.00150\n", + " 0.00704\n", " \n", " \n", - " 75%\n", - " 2020.067050\n", - " 3.347653e+06\n", - " 4.987420e+09\n", - " 53042.450000\n", - " \n", - " \n", - " max\n", - " 2024.742000\n", - " 3.347683e+06\n", - " 4.987420e+09\n", - " 53065.440000\n", + " 4\n", + " P395\n", + " 06JAN29\n", + " 2006.0780\n", + " 53764.0\n", + " 1360.0\n", + " 0.0\n", + " -123.9\n", + " 3347.68042\n", + " 4.987420e+06\n", + " 53.03513\n", + " 0.0083\n", + " 0.00068\n", + " 0.00105\n", + " 0.00328\n", + " -0.04815\n", + " 0.00619\n", + " -0.33029\n", + " 0.00125\n", + " -0.00162\n", + " -0.00165\n", " \n", " \n", "\n", "
  • " ], "text/plain": [ - " date_year east north up\n", - "count 6799.000000 6.799000e+03 6.799000e+03 6799.000000\n", - "mean 2015.400365 3.347623e+06 4.987420e+09 53038.873887\n", - "std 5.394198 3.484142e+01 1.870622e+01 5.637131\n", - "min 2006.067100 3.347558e+06 4.987420e+09 52997.270000\n", - "25% 2010.739250 3.347592e+06 4.987420e+09 53035.100000\n", - "50% 2015.392200 3.347626e+06 4.987420e+09 53038.670000\n", - "75% 2020.067050 3.347653e+06 4.987420e+09 53042.450000\n", - "max 2024.742000 3.347683e+06 4.987420e+09 53065.440000" + " station ID (SSSS) date (yymmmdd) decimal year modified Julian day \\\n", + "0 P395 06JAN25 2006.0671 53760.0 \n", + "1 P395 06JAN26 2006.0698 53761.0 \n", + "2 P395 06JAN27 2006.0726 53762.0 \n", + "3 P395 06JAN28 2006.0753 53763.0 \n", + "4 P395 06JAN29 2006.0780 53764.0 \n", + "\n", + " GPS week day of GPS week longitude (degrees) of reference meridian \\\n", + "0 1359.0 3.0 -123.9 \n", + "1 1359.0 4.0 -123.9 \n", + "2 1359.0 5.0 -123.9 \n", + "3 1359.0 6.0 -123.9 \n", + "4 1360.0 0.0 -123.9 \n", + "\n", + " delta e (m) delta n (m) delta v (m) antenna height (m) sigma e (m) \\\n", + "0 3347.67917 4.987420e+06 53.03678 0.0083 0.00069 \n", + "1 3347.68086 4.987420e+06 53.03003 0.0083 0.00069 \n", + "2 3347.68072 4.987420e+06 53.03906 0.0083 0.00069 \n", + "3 3347.67938 4.987420e+06 53.04382 0.0083 0.00069 \n", + "4 3347.68042 4.987420e+06 53.03513 0.0083 0.00068 \n", + "\n", + " sigma n (m) sigma v (m) correlation en correlation ev correlation nv \\\n", + "0 0.00105 0.00327 -0.04832 0.01695 -0.31816 \n", + "1 0.00104 0.00321 -0.04648 0.00271 -0.30970 \n", + "2 0.00105 0.00326 -0.02367 0.00817 -0.31941 \n", + "3 0.00105 0.00324 -0.03681 0.00908 -0.30515 \n", + "4 0.00105 0.00328 -0.04815 0.00619 -0.33029 \n", + "\n", + " new delta e (m) new delta n (m) new delta v (m) \n", + "0 0.00000 0.00000 0.00000 \n", + "1 0.00169 -0.00067 -0.00675 \n", + "2 0.00155 0.00101 0.00228 \n", + "3 0.00021 -0.00150 0.00704 \n", + "4 0.00125 -0.00162 -0.00165 " ] }, - "execution_count": 31, + "execution_count": 260, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "# We now make a data frame\n", - "crap={'station':sta,'date':date,'date_year':date_year,'east':ue,'north':un,'up':uv}\n", - "if len(df)==0:\n", - " df = pd.DataFrame(crap, columns = ['station', 'date','date_year','east','north','up'])\n", - "else:\n", - " df=pd.concat([df,pd.DataFrame(crap, columns = ['station', 'date','date_year','east','north','up'])])\n", - "df.describe()" + "df.head()" ] }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 261, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "Text(0.5, 0, 'Time (years)')" + "[]" ] }, - "execution_count": 32, + "execution_count": 261, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7IAAAK2CAYAAABzZqBWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3RURR/G8e+m9wQSSCOE0EF6772D2F5QQcTeUARUFBVpgthRVERFkSaoiKL0XqSH3msoIRBKSAJpm2TfPyILS3pI2cDzOSfHvXPnzszdcUN+O3NnDCaTyYSIiIiIiIhIMWFT1A0QERERERERyQ0FsiIiIiIiIlKsKJAVERERERGRYkWBrIiIiIiIiBQrCmRFRERERESkWFEgKyIiIiIiIsWKAlkREREREREpVhTIioiIiIiISLGiQFZERERERESKFQWyIiIiIiIiUqwokC1izz//PBUqVMDZ2ZlSpUpx3333cfDgwSyvmTRpErVq1cLDwwMPDw+aNm3KokWLsqzDYDAwYcIEc1pYWBgGgyHDn99++y1X93DlyhUGDBiAv78/Tk5OVKtWjYULF+aqDBERERERkZxSIFsI2rRpw9SpUzM8V79+fX766ScOHDjAkiVLMJlMdOrUiZSUlEzLK1OmDOPHj2fbtm1s27aNdu3acd9997Fv3750ef/88082b95MQECARXpQUBAREREWP6NGjcLV1ZWuXbvm+N6SkpLo2LEjYWFh/P777xw6dIjvv/+ewMDAHJchIiIiIiKSG3ZF3YC73XPPPWd+Xa5cOd5//31q165NWFgYFSpUyPCae++91+J47NixTJo0iU2bNnHPPfeY08PDw3n55ZdZsmQJ3bt3t7jG1tYWPz8/i7R58+bx8MMP4+bmZlHGkCFDWLp0KTY2NrRo0YIvvviCcuXKAfDjjz9y+fJlNmzYgL29PQDBwcG5fyNERERERERySCOyVuTatWv89NNPhISEEBQUlKNrUlJSmD17NteuXaNp06bm9NTUVPr168cbb7xhEdxmJjQ0lJ07d/L000+b0+Li4mjbti1ubm6sXbuW9evX4+bmRpcuXUhKSgJg/vz5NG3alAEDBuDr60uNGjUYN25cliPKIiIiIiIit0Mjslbgm2++YejQoVy7do2qVauybNkyHBwcsrxmz549NG3alISEBNzc3Jg3bx7Vq1c3n//www+xs7Nj4MCBOWrDlClTqFatGs2aNTOnzZ49GxsbG3744QcMBgMAP/30E15eXqxevZpOnTpx/PhxVq5cSd++fVm4cCFHjhxhwIABJCcn89577+Xh3RAREREREcmaRmQLwLhx43BzczP/rFu3jhdeeCFd2nV9+/Zlx44drFmzhkqVKtG7d28SEhKyrKNKlSrs3LmTTZs28eKLL9K/f3/2798PpI2ufvHFF0ydOtUcgGYlPj6eWbNmWYzGXi/n6NGjuLu7m9tdsmRJEhISOHbsGJA28lu6dGm+++476tevzyOPPMI777zDpEmTcvu2iYiIiIiI5IjBZDKZiroRd5rLly9z+fJl83Hfvn156KGHePDBB81pgYGBODs7p7s2KSmJEiVK8MMPP/Doo4/muM4OHTpQoUIFJk+ezIQJExgyZAg2Nje+p0hJScHGxoagoCDCwsIsrp0+fTpPP/004eHhlCpVypz+4osvsn37dmbOnJmuvlKlSuHp6Unr1q2xt7dn+fLl5nOLFi2iW7duJCYmZjuyLCIiIiIikluaWlwASpYsScmSJc3Hzs7OlC5dmooVK+boepPJRGJiYq7qvPmafv360aFDB4vznTt3pl+/fjz55JPprp0yZQo9e/a0CGIB6tWrx5w5cyhdujQeHh4Z1tu8eXNmzZpFamqqOXA+fPgw/v7+CmJFRERERKRAaGpxETp+/DgffPABoaGhnDp1io0bN9K7d2+cnZ3p1q2bOV/79u356quvzMdvv/0269atIywsjD179vDOO++wevVq+vbtC4C3tzc1atSw+LG3t8fPz48qVapYtOHo0aOsXbuWZ555Jl37+vbti4+PD/fddx/r1q3jxIkTrFmzhldffZUzZ84AaaO2ly5d4tVXX+Xw4cMsWLCAcePGMWDAgIJ4y0RERERERDQiW5ScnJxYt24dEyZMICoqCl9fX1q1asWGDRsoXbq0Od+xY8e4ePGi+fj8+fP069ePiIgIPD09qVWrFosXL6Zjx465bsOPP/5IYGAgnTp1SnfOxcWFtWvX8uabb/Lggw8SGxtLYGAg7du3N4/QBgUFsXTpUgYPHkytWrUIDAzk1Vdf5c0338zDOyIiIiIiIpI9PSMrIiIiIiIixYqmFouIiIiIiEixokBWREREREREihU9I5uPUlNTOXv2LO7u7jnav1VERERERETSmEwmYmNjCQgIsNhKNCMKZPPR2bNnCQoKKupmiIiIiIiIFFunT5+mTJkyWeZRIJuP3N3dgbQ3PrN9V6XgGY1Gli5dSqdOnbC3ty/q5sgt1D/WS31j3dQ/1k39Y93UP9ZLfWPdCrt/YmJiCAoKMsdVWVEgm4+uTyf28PBQIFuEjEYjLi4ueHh46BeiFVL/WC/1jXVT/1g39Y91U/9YL/WNdSuq/snJY5pa7ElERERERESKFQWyIiIiIiIiUqwokBUREREREZFiRYHsXSg5JZXUVFNRN0NERERERCRPFMjeZRKTU2j36Roem7IZk8nE+//s59dtp4u6WSIiIiIiIjmmVYvvIofPx9Ln+81cvJrIqctxDPl1F/N2hAPQu4Hl/rcmk4mxCw4Q4OXMUy1CiqK5IiIiIiIiGVIge5eIupZEp8/XWqRdD2IBImMSKO3hZD7edzaGH9afAFAgKyIiIiIiVkWB7F3g711neeWXHVnmaTRuBQCzn2uCq4MdsYnGwmiaiIiIiIhIrukZ2btAdkHszR75bhP3frWeuMQUc5rJZCLqWhITVxzhTFRcQTRRREREREQkxzQiKxl6Zto28+tXftlBVFwS/x69xLyd4ax8rU221xtTUolLSsHT2f6222IymUg1ga2N4bbLEhERERGR4k+B7F2geUVv/j16Kc/X/7M7wvz6+IVrlHtrATUCPfjjxeY42NmwNewyScmpNK/oY85Xc+QSEoyp/Pp8UwK8nDgfk0CwtyunL8fxwDcbAAgb350NRy+y/EAkb3atgqOdLUfOxxJU0oWl+88z8JcdtK5cCldHW3afiWbZ4NY4O9jm/Y0QEREREZE7ggLZu8CXj9Sl/vvLMz3/81ON6P/jllyVuTc8hp5free1TlV49r/R2zVvtKGUuyPfrjlOgjEVgN6TN2ZaxtrDF3j8v3p//PdEhnnWHL5gfv3p0kO826N6rtopIiIiIiJ3njviGdnw8HAee+wxvL29cXFxoU6dOoSGhprPGwyGDH8+/vhjc542bdqkO//II48Uxe3kO283xyzPt65cKk/lHjwXaw5iAT5ecojq7y3hyxVHcnT947kMnn9Yf4KjkVdzdY2IiIiIiNx5in0gGxUVRfPmzbG3t2fRokXs37+fTz/9FC8vL3OeiIgIi58ff/wRg8HAQw89ZFHWs88+a5Fv8uTJhXw3hePgmC7m1+2qls63cm+eglxQluw7V+B1iIiIiIiIdSv2U4s//PBDgoKC+Omnn8xp5cqVs8jj5+dncfzXX3/Rtm1bypcvb5Hu4uKSLu+dxtfDESd7W+a91IxpG0/yZpeqFuebVfDms951aPLBiiJqYdY+XnKIAW0rYjKZiIlPxtPl9heTEhERERGR4qXYB7Lz58+nc+fO9OrVizVr1hAYGMhLL73Es88+m2H+8+fPs2DBAn7++ed052bOnMmMGTPw9fWla9eujBgxAnd390zrTkxMJDEx0XwcExMDgNFoxGi0rn1YP/1fTcYtOsQXvWthNBqp4e/GRw/eA6S196f+9Zm64SSje1bD28WWB+sG8MeOs0Xc6oyVe2uB+bWHkx3/Dm2Nk/2NRaCuv/fW1geSRv1jvdQ31k39Y93UP9ZN/WO91DfWrbD7Jzf1GEwmk6kA21LgnJycABgyZAi9evViy5YtDBo0iMmTJ/P444+ny//RRx8xfvx4zp49a74W4PvvvyckJAQ/Pz/27t3LsGHDqFixIsuWLcu07pEjRzJq1Kh06bNmzcLFxSUf7i5/mUxgyMUONqkmWHDKhuVn8zYDvX+lFH4+UvCrDHcPSqFTmcL93/h4DJyLN9C0tClX76mIiIiIiGQsLi6OPn36EB0djYeHR5Z5i30g6+DgQIMGDdiwYYM5beDAgWzdupWNG9OvmFu1alU6duzIxIkTsyw3NDSUBg0aEBoaSr169TLMk9GIbFBQEBcvXsz2jS9OflgfxodLDlukbRjamhUHL7Dq0AVWHrqQ4XVHxnRi3ZGLPDVtu0X6Z71qMuS3Peny96jph5uTHYv2niM6PplfnmlIFV83vlh5jJ83nsqyja0r+zCpTx3ORieQkJjEsR0b6NixI/b2+Tv1eNWhC6w7cpHpm08DMPuZhtQPLpGvddzpjEYjy5YtK5D+kdujvrFu6h/rpv6xbuof66W+sW6F3T8xMTH4+PjkKJAt9lOL/f39qV7dckuWatWqMXfu3HR5161bx6FDh5gzZ0625darVw97e3uOHDmSaSDr6OiIo2P6FYHt7e3vqA/ii20r0bxSKXp+9S8ASwe3IqCkG/2audGvWQgmk4mklFQc7Wyp9M5CjClp343Y29vTuqofXWv4USPQkwFtK5rLPB2VyLdrjhFvTDGnfdW3PgAfPFgLw03DnKPuq5ltILvm8EX6Tw1la1gUAGMbgJ2dHQYbW+xs829Ns+dm7LA4fuSHrZz4oBvnYxL5c2c4jzcNxsWh2H+sCsWd9jm5k6hvrJv6x7qpf6yb+sd6qW+sW2H1T27qKParFjdv3pxDhw5ZpB0+fJjg4OB0eadMmUL9+vWpXbt2tuXu27cPo9GIv79/vrW1OKtVxosH6wXSu0EZKvtaPjdsMBhwtEubQvxdvwbY2hj44MGaANjaGJj0WH2LIBbg1Q6V2D2yE/a2aQGrh5OdRXm32vlex2zbeD2IBZhz3IZnpm+n9cerSbgpWL5V1LUkIqLj06VvPHaJR77byJHzsQDEJSUzfdPJDMsIGbaQJh+sYPyig1R/b0m27RQRERERkdtT7IeOBg8eTLNmzRg3bhy9e/dmy5YtfPfdd3z33XcW+WJiYvjtt9/49NNP05Vx7NgxZs6cSbdu3fDx8WH//v289tpr1K1bl+bNmxfWrVi9z3rXyTZP26qlOTC6Cw522X9HYm9rw28vNOPDRQd5p3u1LPN6uTgw57kmPPzdphy1dfdlG7h8CYCZm0/RpHxJ7gnwJDklFTtbG1YdjOSH9cf592hankblSvJimwq0rVqaxOQUHv0+rZ6Bs3fyWe/adP1iXY7qhbSg18XBjktXE9Pt4WsymXj5lx0EeDrxTvfqmZQgIiIiIiJZKfaBbMOGDZk3bx7Dhg1j9OjRhISEMGHCBPr27WuRb/bs2ZhMJh599NF0ZTg4OLBixQq++OILrl69SlBQEN27d2fEiBHY2hb8YkV3mpwEsdfVCfLil+ea5Chv4/LerBvalpOX4ijl7kjnCWtzdN2Yf/bjbG/LqJ73MHTubr54pA6vzt5pkWdL2GXOzU+gbdXSPPD1jeetL11NzFUQC7BgdwSbjl9m7vYzBHu7sPr1NuZR5r3hMSz4b7/dt7tVy3D0WUREREREslbsA1mAHj160KNHjyzzPPfcczz33HMZngsKCmLNmjUF0TTJZ0ElXQgqmbYi9P7RnXM8lTfemMLQubsB0gWx1526HMeov/exPyLGnBYZm5hh3qy88ftu8+uTl+IIGbaQNzpXISXVxKK958zn/t4dQc/aAbkuH2D/2RiW7T/P863LW2w9BGmjvgqQRUREROROdkcEsnJ3cnGwY/fITmw8donnp4cCMLB9Jb5ccSTPZf70b1iO8z7eNJhpGzN+bvZWHy85lC5t4C87sgxkT1y8RnhUPC0q+aQ71+3LtFHi5NRUXutUxZz+4eKDTFp9DABfD0f6NyvHS20qEhmbQGoq+Hk6pStLRERERKS4KfaLPcndzcPJnpt3kHqpTYUCr7NNlVJ8+1h9Rt9Xgxda3159P64/kem5tp+s5rEpm9l95opF+rdrjmX4GjAHsQDnYxL5aPEhdp2+QqOxK2jywYos6xMRERERKS4UyEqx1yjEG4By3i442dviX8CjjlOfbESXGn4AvNW1KuMeqJnnskb/s595O84QdS3JIj305GXz65Hz95nPn7h4jfGLDprPGVNMfLP6KAApqRlvCf3KLze2DBr9z37ORMXlub0iIiIiItZAU4ul2Cvp6sCu9zrh7JD2rOispxsyYe5qXn2oNe0+W1/g9Xes7su4hQcI8XFlT3h0rq8fPGeX+fXBMV1wtLPhoUkbzWnbT12h7phlmV7/0eJDRMcbmbzmeIbnT122DFwjYxMpU8Il1+0UEREREbEWGpGVO4Kni715teQyJZxpF2AiqIQLYeO7Z5jfyyX/NnQu5e7I9uEd+XNAc5xvWnjpo4dq5bqsqsMXc/zitVxfl1kQm5EHv9nA+EUHefKnLZmO4oqIiIiIWDONyMpd44MHazLsjz3Y2hjYMbwj83ed5ZOlhwgq4UKAlzOpJhN/bA8HoKqfO7+90JSaI5cCEOztgq+7E8+2Kp9h2deD6N0jO/HuvL3cXzeQphW8zSsl38rVwZZrSSkZnmv/acGvoH392drxiw7gbG/LofOxJBhTsbc1YGdjg52tgS41/OhRK2+rKouIiIiIFCQFsnLHW/9mW/aGx9D5Hl8ebVTWnH5fnUDuqxNoPt5xKsocyH7Vpy7uTvaEvtuBpJRU/D2dc1SXva0NH/7vxkhs91r+5n1jb7b5nQ7UGJGzrYPy4o3OVTJcKflW36/LfPGnf3ZHsHBPBN/0rQ9AckoqdraaxCEiIiIiRU9/lcodr0wJF7rU8Mt2b9W6ZUuw5Z32HBvXjYql3QHwdnPMcRCbka/71OPEB93YNKw93q4OADja2eDmaMfjTYPzXG52Hm4YlC/lLNxzjsV7Iwg9eZmaI5cybWNYvpQrIiIiInI7FMiK3KS0uxO2NlkHvLllMBjw83Ti71da8L/6ZfjjpWYA2Nlk//HrXss/T3Xa5+PI6QsztvPQpI3EG1N47699RMcb861sEREREZG8UCArUkgCvJz5pFdt7gnwBKBP47RR05aVfAgb350FA1tY5K8d5MVHD9XitxeaMrB9JYtz055qlOWCVS4Otqx+vY35ODex+Rudq2R5vvaopUzRfrQiIiIiUoT0jKxIEalY2p1t73bAyzktIPV0vhGYPlg3kM8ergNAw3IlaViuJM+1Ko+DrY15Yant73bk02WHOHslgXk7wqlX1ouv+tTD1saAva0N5XxcWTyoJSsORPJ0ixCc7G1576+9TNt4MtM2/fxUI1pXLkVScipfrDiSab4x/+zn6RYh+fAuiIiIiIjknkZkRYqQj5ujeQGlQK8bz+K+nsGoqJujnTmIBbCxMfBG56p8/nAdwsZ354+XmhPg5Yyvh5M5T1U/Dwa0rYjTf9sCjep5T5btaVXJB4Anm5fLtu0ZLWKVnaTkVN75cx87L+Xv9O38kJScSq9vNzB2wX6L9OSUVBbuiSAyNqGIWiYiIiIit1IgK2IlDAYDYeO7c+KDbgR45X2Bqezq+KpP3QzPvdaxsnlBLC8Xh2zLGjBre673oZ21+SS/hobz02Fb3vlzX66uLWgrDpxna1gU3687wbPTtnHyUtp+vj9vPMlLM7fzwNcbiriFIiIiInKdphaLWJnsVle+XT1qBdD5Hj9Gzt9Hy0ql6HyPLxHRCfh7Olnka1nJh3VHLmZZ1s8bwnjqvynGqakmnpi6FT8PRy5fS6KUuyO9GgRRu4wXtjYGEpNTGPn3jdHOX0PD+TU0nGWDWxFvTKFmoGeB33tWklJSza+X7T/Psv3nOTimC0v2ngMg/Ep8UTVNRERERG6hQFbkLmRva8PYB2qajzMaAf75yUacj02g6QcrMy1n9D/7CSnlStsqpdkdHs3awxcszv+y5TQP1A1k9aFIouIyXu244+drgbTAefrTjfNyOwCYTCaOX7xGiLcrNvm08nTV4YvzpRwRERERyV+aWiwiGbKxMeDn4US9sl7UCPTgwOguPNakbLp8T/60FSDTacbzdoRnGsTebN2Ri5hMuZuqPPT3Xbw1dzdR15L4ZvUx2n+6hvu+/jdXZYiIiIhI8aMRWRHJlMFg4PcX0va9tbEx8P79NakV6MXQubst8h08F8OQX3fedn0fLTnEax0rmxfAykpkTAK/bjsDwOytp83pe8KjSUpOtVgY62b/7D6Lh5M9rSqXwpiSat5zd8WByGzrfPP33fRrGkyNQM9M85hMJlJSTZyLSeD133bxdIvydKzum23ZIiIiIpJzCmRFJEu3TtP1dku/EFSXCevypa5Jq49x+WoSH/6vVrpzi/ZEmLcWiktK4UBETKblVH53EWHju6dLX3fkAi/P2gHAj0804IUZ2xl7fw3uqxPI/F1ns23fnG2nmbPtdIZlJyWnUvndRUDaCtPV/T3YEnaZTccvZ5hfRERERPJOgayI5EqdIK8CLX/OttPpAtmYBCMvztyeq3LKvbWA6U83omWlUua0flO2mF8/NXUbAG/8vpu4pJRcl/3PKy3MI7PfrjnG+EUHzeevJiazJexyrsoUERERkZzTM7Iikivebo6sfr1Nnq8PKuHMgOpZB44bjl5k0OwdRF1LAiA2ITlPdfWbsoUtJy6z50w0qw9lPnV4xPzcbwXUY+J6HvjmX175ZYdFECsiIiIiBU8jsiKSa8HeLnm+dkLvWpzZ/S+PNCzD7K1nMszT54fNAPy58yxlSjjzfOsKea6v9+SNebqudeVStKjow9iFBzLNs+PUFXacupLHlomIiIhIXt0RI7Lh4eE89thjeHt74+LiQp06dQgNDTWff+KJJzAYDBY/TZo0sSgjMTGRV155BR8fH1xdXenZsydnzmT8R7bI3S43+722q1ra/PqLR+pQq0zadNwxPavz0UO1KF/KlQ1vtaNv4/QrIgOciYpn+J97c1TX0sGtctyurHzXrz4/P9WIZ1uV59i4bvlSpoiIiIjkn2IfyEZFRdG8eXPs7e1ZtGgR+/fv59NPP8XLy8siX5cuXYiIiDD/LFy40OL8oEGDmDdvHrNnz2b9+vVcvXqVHj16kJKSu2fnRO4W3Wv55yjf292qAeDr4ci9tQIszvVuGMTK19oQ4OXMqJ733HabKvu633YZACVcbyxoZZtPe9KKiIiISP4p9lOLP/zwQ4KCgvjpp5/MaeXKlUuXz9HRET8/vwzLiI6OZsqUKUyfPp0OHToAMGPGDIKCgli+fDmdO3cukLaLFGef9a7Ni60r0GPi+nTndr7XkTqjlwFQpoSzxaq9mX03lJMtdzIy5v4aONvbUsrdEYASLvY52rc2I80relOptDsNgktYpK9/sy0tPlyVpzIBYhOMuDvZ5/l6EREREbFU7APZ+fPn07lzZ3r16sWaNWsIDAzkpZde4tlnn7XIt3r1akqXLo2XlxetW7dm7NixlC6dNuUxNDQUo9FIp06dzPkDAgKoUaMGGzZsyDSQTUxMJDEx0XwcE5O2HYjRaMRozNsf0nL7rr/36oOCZQNUKe1Cq0rerD1yyZw+74UmuNob+PmJ+tgYDNiSitGYaj6fVf/UCfJk5+nobOue/Fhdnp+Rto0Oqanc999Ir9FoZMuwtlQavjTTa39/vjH/m7w5XfprHSryfKsQDAYDycmWi0t5O9tm2yaAta+34kqcEW83B7p8+a95kaqtxy/SspJPjsrIyslLcQR6ObE/IpbPlh/lrS6VqeqXP6PQoM+OtVP/WDf1j3VT/1gv9Y11K+z+yU09BpPJZCrAthQ4JycnAIYMGUKvXr3YsmULgwYNYvLkyTz++OMAzJkzBzc3N4KDgzlx4gTDhw8nOTmZ0NBQHB0dmTVrFk8++aRFUArQqVMnQkJCmDx5coZ1jxw5klGjRqVLnzVrFi4ueV8MR6Q4SUyBg1cMzD5uQxlXEwOqp2Z/USYi42Hszsy/X3uuagrVvUyYgMGb0vJ1Ckyle1nLOl/deKOMJyqn8PdJG8q5m+hSJpXSzvDJbltOXzNQ0tFEbBKUdoahtbN+jOBsHKSkgp0NjN91o/x63qm42EH7wFRKOlpec3M7PmyUzJVE8Mvjr4btFw38fCR9QN20dCr3lDBR2dOEY87ibRERERGrFBcXR58+fYiOjsbDwyPLvMU+kHVwcKBBgwZs2LDBnDZw4EC2bt3Kxo0Zr1YaERFBcHAws2fP5sEHH8w0kO3YsSMVKlTg22+/zbCcjEZkg4KCuHjxYrZvvBQco9HIsmXL6NixI/b2ms5ZWJKSU7GzMWCTzTOl2fXP9dHUMl5OODvYciTyGgA1AjyY92KTdPmebBbM212rZFjGz0/Up1kF73R1REQn8NOGk/RtHISvuyN2NoZcTW1ONKaw5shFmpb3xt0p88A7s5Hhfk3K8miDMlTydctxnVmNMl/3ZufKPNOiXI7LvJU+O9ZN/WPd1D/WTf1jvdQ31q2w+ycmJgYfH58cBbLFfmqxv78/1atXt0irVq0ac+fOzfKa4OBgjhw5AoCfnx9JSUlERUVRosSNZ+MiIyNp1qxZpuU4Ojri6OiYLt3e3l4fRCugfihcuX2rM+ufdlVLs/JgJL+/2Bw/TydqjFjC1cRkPniwlkX+8Q/WZObmUzzXukK6cj7tVZvDkbG0quKb4QrLZX3sGdGzRu4afEvbu9cuk22+Mffdw/C/0u9RO33TKaZvOmXx7PCtTCYT+87GUKGUG072OQuyP1xymEcbB+Pl4mCRHhmTQPiVeOqWLZHJlZb02bFu6h/rpv6xbuof66W+sW6F1T+5qaPYr1rcvHlzDh06ZJF2+PBhgoODM73m0qVLnD59Gn//tFVX69evj729PcuWLTPniYiIYO/evVkGsiKS/354vAH7R3fGzzPtsYE9Izux671O1Pxv257rHmlUlr9faYG/p3O6Mh6qX4ZhXavlapuggtC3cea/hwCORl7l7JV4ft4QRosPV3Li4jXzuXk7wukxcT39f9xCRHRCjuusN2ZZurRG41bwwDcb+Gf3WZqPX8n/Jm1g7eELOb8REREREStT7EdkBw8eTLNmzRg3bhy9e/dmy5YtfPfdd3z33XcAXL16lZEjR/LQQw/h7+9PWFgYb7/9Nj4+PjzwwAMAeHp68vTTT/Paa6/h7e1NyZIlef3116lZs6Z5FWMRKRw2NgZcHG78ajIYDHi6FM9vaLObZt3hszUWx20/WQ3AE83KMXVDGABbwi7zw7oTOa4z9aaHRZ6fvo34mxbaenlW2gJZ4VfiefzHLelGhFNSb/9Jk12nr/DtmmO82aUq5Xxcb7s8ERERkYxYRSCbmJiY4RTdnGjYsCHz5s1j2LBhjB49mpCQECZMmEDfvn0BsLW1Zc+ePUybNo0rV67g7+9P27ZtmTNnDu7uN1b7/Pzzz7Gzs6N3797Ex8fTvn17pk6diq2tVk8Rkbx7vVNlPll6OFfXXA9ir/vx35wHstd9veooS/adzzLPlbgkvFwc+H7tcS5dS+KP7WcIdrShW65rS3M+JoH7vv4XgBMXr7F4UKs8liQiIiKStSIJZJcsWcIvv/zCunXrOHXqFKmpqbi4uFCvXj06derEk08+SUBAQI7L69GjBz169MjwnLOzM0uWLMm2DCcnJyZOnMjEiRNzXK+ISHZeaF2ByWuOE5uYTNcafizae+62y3R1sOVaUtarLH+85FCW5wHqjF7Gofe7MHbhAXNaZGzOnzgxmUwW07f/3nXW/PrguVjafbqaLvf48e/Ri1T2dedI5FWmPtkQg8HAwYgYGpQriW02o9YiIiIiGSnUQPbPP//kzTffJDo6mm7duvHGG28QGBiIs7Mzly9fZu/evSxfvpwxY8bwxBNPMGbMGEqVKlWYTRQRyVd2tjbsGXVjL+pz0Qk0+WBFnsqqV9aL315oxszNJ3kvg0Wkriv31oIcl/nKf9ONb/bmH3tpUt4HX08nypRw5kxUPPO2n2Fol6r4//fs8h/bwxm78ACT+9WnZqAnfX/YTOjJKItyjl+4xjerjwGw60za/sB1Rls+w/tpr9o8VD/7hbNEREREblaogey4ceP45JNP6N69OzY26b/17927NwDh4eF88cUXTJs2jddee60wmygiUqD8PJ3wdLYnOj73G4t3reGPrY2B3g2CWLLvHJevGTkQEXNb7Vm6P/304z92nOWPHWfTpf+5My2ttLsjkbFpW4/1+nYjw3tUTxfE5tRrv+1SICsiIiK5VqiB7JYtW3KULzAwkI8++qiAWyMiUjRS87ioUujJKJ4FnOxtmflM2p66YRevcTY6ntLujnT4bG0+tjJz14PY68b8s79Q6hURERG5rthvvyMiUtyMfbAmABVKpa3qW9LVgWPjurF4UEvG3HePOV+HaqUtrmt/yzFAOR9XmlXwyXAbooxU9nXD0c66fvUfPHd7o8oiIiJy9ymyVYtNJhO///47q1atIjIyktTUVIvzf/zxRxG1TESkYPWsHUCzCt54uzqw/uhFqvp5YGtjoKqfB1X9PBj+3/OvdjY2rBvalpYfrQLggbqBmZbp6pj9r/N3ulXj2VblMZlMPDc9lGX/TSuuEejB3vCCCyYHtq9Ej1r+dPo84xHjx37YwqZh7bCzta4AW0RERKxXkf3V8Oqrr9KvXz9OnDiBm5sbnp6eFj8iIncyHzdHDAYDLSuVopS75fZjtcuk/Q7s1aAMQSVdOPFBN46P65ZtoPftY/UyTA8b352w8d15tlV5IG1v3lfbVzKf//2FZun2lM2rt7pWTZc2pGNlKvu6Z5A7zcWriVR8ZxEzN58E4ExUHCbT7e9pKyIiIneuIhuRnTFjBn/88QfduuV1x0IRkTvT7OeaEnbpGlX90oI/g8GAIQe71HSp4c+ekZ2oOXJptnlrBHqyaVh7PJ3tcbJP2y/77a5VmLP+IMdi87Ylzrvdq/FMy/I817I8k9cex9XRljaVb0yHfrFNBSb9t4pxRt6Zt5cNRy+xYE8EAF1r+PH5w3UwmeCrVUfoVN2P2kFeeWpbVtYcvsDUf0/wSa/aeLvlbU9zERERKVxFFsh6enpSvnz5oqpeRMRqOTvYUs3fI0/XujvZc/j9rtjbGlhxIJJKvm6Z5vX7byud655sFozvlX107NyFXeFXefT7TeZzbauUYtWhC1nW/USzcgDY2Bh4sU2FdOff7FKViqXceO23XZmWcT2IBVi09xwNyp0iNsHI16uO8fWqYxwc0wVHOxuL/WtzymQyMXjOTv7ceRYHWxuG31udRxsG0f/HtIUI67+/3GJkOi4pGReHIvtnUkRERLJQZFOLR44cyahRo4iPjy+qJoiI3JEc/gv0OlT3JdjbNdfX29va0LSCNw3LlQBg9nNNmPRYfTpW9830mmM5mPoMac/5PtIwiLEP1GDxoJbZ5v9zRzjfrT1uPq46fDGv/LKD8zEJObgTSxHRCeYthJJSUhn+514qvrPIIk9Sctp6DWMX7Kf6e0vYcSpv2wqJiIhIwSqyQLZXr15ERUVRunRpatasSb169Sx+RESkaE17qjHLh7SiSXlvnOxt+f7xBng62wMw+qbVlQFsbXI2QmpjY2D8Q7Xo2ziYqn4e9Kjln2X+PeHRxCWlWKT9szuCxuNWcOpS7p6lvZaYnG2eKetPAPD9urT/frzkUI7LFxERkcJTZHOmnnjiCUJDQ3nsscfw9fXN0zQxEREpOM4OtlQsbblI0+JBLdl9JppO1X2p4uvOr9vOMLxHtTzXMea+GvyzOyL7jBlo9fEqHm8azOj7amSa53xMAn/tDCfRmMqnyw5nW+aHiw/SveaN4HrDsUtM3xhGv6blMJlMpJpyHrSLiIhIwSmyQHbBggUsWbKEFi1aFFUTREQkl/w9nc171jYu703j8t63VV4JVwfCxnen3FsL8nT9tI0nOXslnqg4I5P61uN0VDz3BHgwafUxgkq68HoWz+NmptXHqyyOh/+1Dwc7G8b8c4BGISX58YmG5nORsQm4OdrpWVoREZFCVmT/8gYFBeHhkbfFTERERK5bfiASgEbjVhRYHW/O3QPAyoORlHtrAZ2q+zL2gZo0GrsCDyc7HmlUlq41/KhbtkSBtUFERERuKLJnZD/99FOGDh1KWFhYUTVBRESsxPUVj33cHHF1sM0wT0lXh0JsUdaW7j9P9y/XARCTkMx3a4/zwDcbWH/kYrq8O09f4fK1pMJuooiIyB2tyEZkH3vsMeLi4qhQoQIuLi7Y29tbnL98+XIRtUxERArbiHur80zLEMqUcOF/kzaw7aTlasHf9atPaQ8n7v/633ypb3iP6mw4epHjF69x4uK1PJURGZuYLu2xKZsJG9+dK3FJzN56mtWHItl0/DINgkvw+4vN0uW/eDURkwlKuWe8f+2R87EcibxKt5pZL4olIiJytymyQHbChAlFVbWIiFgZg8FAmRIuAEx4pA6j/t7PMy1CWH/0IhVLu9HpHr98q2vPyE64O9nzdIsQ4pKS2X7yCo3LlyTemEKtkUtvu/yXZ21Pt4DVtpNRHLtwlfI+rubFDaOuJdHg/eUAfPy/WtxfNxB7Wxum/nuCf3ZH8OOTDen4+VoAZj3TmIbBnrfdNhERkTtFkQWy/fv3L6qqRUTEipUp4cL3jzcASLeY1Lvdq/H+ggPprnm4QRBztp3OtMyetQOYvyttD1k3xxv/9Lk42NGikg+Qtn9ufshsFeb2n65hzH330K9pOQDqjllmPvfG77tZtPccPz7RkJF/7wfg+Wmh5vObjl9SICsiInKTIl9mMTIyksjISFJTUy3Sa9WqVUQtEhERa/VMy/L0rB3A2egEJq0+yuCOlalU2h1bGwNDu1Th4LlY+v6w2eKaNW+04fD5q+ZANqfbvX3Vpy7JKSbmbD3N/ogYouONAAxsX4kvVxzJU/uH/7WP79edYO3QtunOrTwYyd7waPPxxuOXzK+/XHmUV9qWz1OdIiIid6IiC2RDQ0Pp378/Bw4cSLehvcFgICUlpYhaJiIi1qy0hxOlPZyY3K+BRbq3myPNKzqyd1Rn7GwMONjacDUpGQ8newK9nOle05+6Zb1yXE/3mv4YDAburxuIyWQiMTkVJ3tbLl9LynMgC3Dqclym2w31mLg+0+vGLz5ETRMkJadyy7ISmUpOSWXZ/vM0KFcy0+dwb9eJi9dYe/gCjzQKwtEu44W6RERE8luRBbJPPvkklStXZsqUKfj6+ub4G3IREZGs3Dx12MMpLeKzs7Xh6771clzG4A6VLf5dMhgMONmnBWklXR0Y/2BN3vpjj/m8j5sjTSt48/d/o74FYcq/J/FxtGXQpuW0rlwKD2d7+jYuS4PgEiSlpGa4l+2P/55g3MKDBHu7sOaN9KPAt+PS1UT+PXaJgb/sACAm3sgr7Svlax0iIiKZKbJA9sSJE/zxxx9UrFixqJogIiJi4a8BzVl1KJIX2mQ9jfeRRmWpUNqN2AQjbauUNge9Xz5Sh+5frmd/REyBtO9iYlo9aw5fALAInMfcdw+PNCpr8azvvB1p509eisv3tvT5fjOHzseaj7eEabcBEREpPEUWyLZv355du3YpkBUREatRO8iL2kFeOcrbsFzJdGkGg4FfX2hKjRFL8rll2Rv+1z5+WH+Cy9eSqO7vweznmnDgpoA6wZhiHlXODzcHsQDrbtlDNz4pBQc7G2xtNONKRETyX5EFsj/88AP9+/dn79691KhRI90+sj179sxxWeHh4bz55pssWrSI+Ph485Tl+vXrYzQaeffdd1m4cCHHjx/H09OTDh06MH78eAICAsxltGnThjVr1liU+/DDDzN79uzbu1EREbmruDnaETa+O9HxRqasO87u8Gi+69eAxOQUPllyiJ83niywuq+PvG4+cZmQYQstzlUdvti8erOLgy2h73bk0rVE5m0Px8vFnjIlXLgSn0TjEG8CvJxvqx2xCUYajl1OZV935r/c4rbKEhERyUiRBbIbNmxg/fr1LFq0KN253Cz2FBUVRfPmzWnbti2LFi2idOnSHDt2DC8vLwDi4uLYvn07w4cPp3bt2kRFRTFo0CB69uzJtm3bLMp69tlnGT16tPnY2fn2/iEXEZG7l6ezPUM6VTEfO9jZ8E736haBrLujHbGJyQCULenCqcv5PwX4ZtdXbo5LSqHae4szzRc2vnueyn/sh8081aIcJhMkGFPZfSY6+4tERETyoMgC2YEDB9KvXz+GDx+Or69vnsv58MMPCQoK4qeffjKnlStXzvza09OTZcuWWVwzceJEGjVqxKlTpyhbtqw53cXFBT8/vzy3RUREJCsOdjYM6lCJCcuPMP/l5oSejGLU3/t5pGEQA9pW5PXfdvFYk2DsbW14YUZo9gUWkNRUEzaZTAk+cj6Wd/7cm+G59Ucvsv7oRd7sUtWc9u2aYzQKKUm9siUKpK0iInJ3KrJA9tKlSwwePPi2gliA+fPn07lzZ3r16sWaNWsIDAzkpZde4tlnn830mujoaAwGg3nU9rqZM2cyY8YMfH196dq1KyNGjMDd3T3TchITE0lMTDQfx8SkPYtkNBoxGo23dV+Sd9ffe/WBdVL/WC/1TeEY0DqEAa1DAKha2oUm5bwI8XHF1sbAjKcaZHmtp4OJ6KSCf+Z06d6ztK9W2nxsMplINaVt59Px87XZXv/h4oPm1+MXpb0+MLIDdjctRHWn0efHuql/rJf6xroVdv/kph6D6dZNXAtJ//79admyJc8888xtlePk5ATAkCFD6NWrF1u2bGHQoEFMnjyZxx9/PF3+hIQEWrRoQdWqVZkxY4Y5/fvvvyckJAQ/Pz/27t3LsGHDqFixYrrR3JuNHDmSUaNGpUufNWsWLi4ut3VfIiJydxu21Za4ZAOlnExU9DBxX3Aqznbw6saC/w460MXE0No3HvGZdsSGXZcMJJvyHkT3r5RCPZ8i+ZNDRESKibi4OPr06UN0dDQeHh5Z5i2yQHbs2LFMmDCB7t27U7NmzXSLPQ0cODBH5Tg4ONCgQQM2bNhgce3WrVvZuHGjRV6j0UivXr04deoUq1evzvLNCQ0NpUGDBoSGhlKvXsZ7D2Y0IhsUFMTFixezfeOl4BiNRpYtW0bHjh3T/X8lRU/9Y73UN9bl1OU4Fu09T59GQbg72Zn7Z3NyMLO2hhd183Lt7a5VeLJZcFE3o8Do82Pd1D/WS31j3Qq7f2JiYvDx8clRIFukqxa7ubmxZs2adKsFGwyGHAey/v7+VK9e3SKtWrVqzJ071yLNaDTSu3dvTpw4wcqVK7N9Y+rVq4e9vT1HjhzJNJB1dHTE0dExXbq9vb0+iFZA/WDd1D/WS31jHSr4evKyr2e69FE972Hsg7U5G53AoXMxNCxXkpojl2ZZVsXSbhyNvMqgDpW4v04gbT5ZXUCtzty4RYd4rvWdv+WePj/WTf1jvdQ31q2w+ic3dRRZIHvixIl8Kad58+YcOnTIIu3w4cMEB9/41vd6EHvkyBFWrVqFt7d3tuXu27cPo9GIv79/vrRTREQkvxgMBgK9nAn8b5uco2O7cvziNcqWdCEpJZU/Qs8wac0xfD2ceKtLVar4ubP5xGU6VvfF/g5+TlVERO4exf5fs8GDB7Np0ybGjRvH0aNHmTVrFt999x0DBgwAIDk5mf/9739s27aNmTNnkpKSwrlz5zh37hxJSUkAHDt2jNGjR7Nt2zbCwsJYuHAhvXr1om7dujRv3rwob09ERCRbdrY2VPZ1x8neFg8ne55oHsLmtzsw/+UWNKvog7ebI91q+puD2JH3Vsfb1YGJj9bFwyl/vtPe8Fa7bPMcjbwKQEqqnpUVEZHbU6gjsuPHj2fgwIE5Wghp8+bNXLx4ke7ds97LrmHDhsybN49hw4YxevRoQkJCmDBhAn379gXgzJkzzJ8/H4A6depYXLtq1SratGmDg4MDK1as4IsvvuDq1asEBQXRvXt3RowYga2tbd5uVkRExEo90TyE/s3KYTAYuLd2ACaTiQV7Ihj6+27ikrLex72qnzsHz8VS3d8DR3sbdpy6QqNyJfH3dCLA04mz0QkA/DmgOXY2BnpMXG++tsNnNx4l+vetduYRZRERkdwq1EB2//79lC1bll69etGzZ08aNGhAqVKlgLSR0/3797N+/XpmzJhBREQE06ZNy1G5PXr0oEePHhmeK1euHNmtZxUUFJTuOV0REZE7mcFgsHjdo1YA3Wv6M2PzKar7e/DNqqOsOBiZ7roFA1tiTEnF0c4Gg8FAaqoJgyGtjE961abPD5sBCPF2xdPFnqdbhDBlffrHiab+e4J3uluucWEymSzaJSIikplCDWSnTZvG7t27+frrr+nbty/R0dHY2tri6OhIXFwcAHXr1uW5556jf//+GS6kJCIiIgXDYDDQr0naGhNTnmgIpAWX5d9eiMkETzYvh62NAVubG7OVbGxuBJ7NKvqwcVg7Uk3g6ZK2YEc574xnYSWnmlhx4DytKpfC3taGn/49wYTlR5j2VCNqB3kV0B2KiMidotAXe6pVqxaTJ0/m22+/Zffu3YSFhREfH4+Pjw916tTBx8ensJskIiIimTAYDOwd2ZnkFJM5OM2Kv2fOpgv/9G8YP/0bBsDQLlX4aHHawo2Df93Jytfa5LW5IiJylyiyVYsNBgO1a9emdu3aRdUEERERyQFXx7z/uZCTVZKvB7EAicbUPNclIiJ3j2K/arGIiIhYr/vqBOYqv1Y0FhGRnFAgKyIiIgXG2cGWHx5vkOP8yakakRURkewpkBUREZEC1aG6b44XcLp1o4HE5BT2hkebdyDI6YhtSqqJv3aGc/pyXG6aKiIixUSRPSMrIiIid48PH6rJI99t4pV2lXi6RQgAaw5foP+PWyzylSnhzAeLDvDzhjAcbG2ISUg2X1/O25Wnpm7l3R7VebRR2QzrSU01ERGTwMQVR5i99TQAYePT9qSPiI5n5qZTPNYkGD9Pp4K6VRERKQRFFsg+9dRTfPHFF7i7u1ukX7t2jVdeeYUff/yxiFomIiIi+a2qnwc7hne02Ce2deVSdLnHj8X7zpnTdp2JZteZaAASblr46c25e8yvh/2xh4joBKr7u9Olhr9FPYPm7GT+rrMWaeXeWsDzrcqz4dgl9oRHs+bwBf5+pQUmk4k1hy+w8fglHmscTJkSzhnuYxt1LYnoeCPlfFxv700QEZF8U2RTi3/++Wfi4+PTpcfHxzNt2rQiaJGIiIgUpIyCxG/71c/VM7TXfbniCC/M2E6CMYXUm6Yb3xrEXjd57XH2hKcFyHvCo5my/gQhwxbyxE9bmbzmOC0/WsXktccZPGcn5d5aQKOxyzkXnQBA3THLaPPJan4PPZPrdoqISMEo9BHZmJgYTCYTJpOJ2NhYnJxuTO1JSUlh4cKFlC5durCbJSIiIkWkQ3VfVrzWmvafrsn1tVWHLwbg1faVmLjySI6vG/PP/nRp4xcdNL+OjE3k2zXHGHFvdXPa67/twtvVgZgEIz+uP8H3/RtQ2l1TlEVEikKhB7JeXl4YDAYMBgOVK1dOd95gMDBq1KjCbpaIiIgUofK3OW33ixU5D2JzauqGMKZuCLNIe3LqVvPrRmNXmJ+//Wd3BBP22NKoVSL+JezzvS0iImKp0APZVatWYTKZaNeuHXPnzqVkyZLmcw4ODgQHBxMQEFDYzRIREZEilNG04+Kg3FsLbjoy0PTDNebgVkRECk6hB7KtW7cG4MSJE5QtW7bY/sMlIiIi+atd1dKsPBhZ1M24bRdiE/llyynaVS1NhVJuODvYZpk/KTmVnzeEUc7HlY7VfQuplSIixVuRrVp84MABTp8+TYsWLQD4+uuv+f7776levTpff/01JUqUKKqmiYiISBH4tFdtOk1YS4PgEnz+cB2c7NMCwCtxSXyx4gg//RuWp3JrBnqaF3oqDA3HLgfgs2WH8XZ1IHR4xwzzpaSaiIk3UnfMMnPajuEdKeHqUCjtFBEpzops1eI33niDmJgYAPbs2cOQIUPo1q0bx48fZ8iQIUXVLBERESkiJVwd2PpOByY9Vt8cxAJ4uTgwvHt1fnm2CcsGt8pxeS4Otsx9sRl/v9KCWmU8C6LJ2bp0LYlLVxMBMKakbSd04uI12ny8igpvL7QIYgFemBHKsQtXC72dIiLFTZEFsidOnKB69bSVAOfOncu9997LuHHj+Oabb1i0aFFRNUtERESskI2NgaYVvKnk686ywa1wyWa6LsDuEZ2oH5w2w+v7xxvwZpeqPNm8XI7qC/C0XI34jc5V2Duqc67bDfD89FDe/XMPld5ZxF87w2n7yWrCLsVlmHfzicu0/3QNl64mcvLSNXP6xauJtPtkNRMLYFErEZHiqMimFjs4OBAXl/ZLfPny5Tz++OMAlCxZ0jxSKyIiInKrSr7u7B/dBYDL15JYd+QCr87eaZHHwc4GO9sb39f7ejjxYpsKADzfqgKnLsfx5E9buJaUYnGdu6MdSwa3wt/TiV1nolm4J4LdZ67wRLNyuDraYWdjIPm/fWsfbRTEL1tOZ9vebSej2HYyCiBdOzNT//206cmb326Pr4cTP64/wfGL1/h02WE+XXaYWc82plkFH3P+xOQUHO2yD+5FRO4URRbItmjRgiFDhtC8eXO2bNnCnDlzADh8+DBlypQpqmaJiIhIMVLS1YH76gQSE2/E08UBW4OBEfP38lWfeple4+fphJ+nEztHdOLfoxepE+TFI99t4uC5WLrV9CfAyxmAOkFe1Anysrj2ra5VeX/BAXrWDuCDB2sxtHNVFuyJwMnOwI/Ld7H/Sv5Odvtu7XGG96hOislkkd7n+83mIPf30DMM/X0XYx+oyaONyuZr/SIi1qrIAtmvvvqKl156id9//51JkyYRGBgIwKJFi+jSpUtRNUtERESKoX5Ny5lfd6vpl6NdEextbWhTpTQA059uzPID5+lZO+stAJ9uEUL7ar4El3QB0p7rfaxJMEajEfvwHby6MX8D2SnrT1A7yIvJa46nO3f/1/+ycVh7Xv9tFwDD/tiDMSWVx296L0RE7lRFFsiWLVuWf/75J136559/XgStERERkTtFXrb2K+XumKPRTIPBQIiPa6bnX+9YiU+W5e9zrAN/2ZFhekR0Ah8sOmCR9t5f+ywC2aTkVBzs8h5cm0ymbN/PuKRkklNNeDjZ57keEZHcKrLFnm4WHx9PTEyMxY+IiIhIcfN8qxAOjO7C/XWyHtm9la+HI+uGtmVwh8q5ui6jkdrUVBN7zkTz7p97qPzuIgbN3sHWsMv8uSOcHaeiSP5v9eSMLN57ji+WH2HPmWgiouNpPn4lE1ccYdfpK+w6fSXDa+qNWUatkUuJS0o2p+08fYXftmX//LCISF4V2YjstWvXePPNN/n111+5dOlSuvMpKSkZXCUiIiJi3ZwdbBn7QE2SU038szsiy7yPNirLvbX9zQs3vdS2Ap8vP3xb9X+/7jgfLDpoPv5z51n+3HnWfGwwwMExXZi1+RTL9p/nh/4NcHGwIzImgRdmhALw+fLDPFg3kLPRCeYFpgD2jeqMq+ONPx+TU1JJMKYFxj9vOMm6Ixe4v24gQ3/fDcAbv+9m+tONaFmp1G3dk4jIrYpsRHbo0KGsXLmSb775BkdHR3744QdGjRpFQEAA06ZNy1VZ4eHhPPbYY3h7e+Pi4kKdOnUIDQ01nzeZTIwcOZKAgACcnZ1p06YN+/btsygjMTGRV155BR8fH1xdXenZsydnzpzJl3sVERGRu4urox0TH63L292qpjs34eE6hL7bgW/61mNUz3ssVh+2t7UhbHx3nmoekmG5DzcIyrbum4PYjJhM8ML0UEb9vZ8Nxy4xa/Mpvlt7jEbjVljk+2NHeLprI2PT9sTdGnaZd+bt4XJckvnch4sPsuHYJXMQe12/KVuIiI7Ptt0iIrlRZCOyf//9N9OmTaNNmzY89dRTtGzZkooVKxIcHMzMmTPp27dvjsqJioqiefPmtG3blkWLFlG6dGmOHTuGl5eXOc9HH33EZ599xtSpU6lcuTLvv/8+HTt25NChQ7i7uwMwaNAg/v77b2bPno23tzevvfYaPXr0IDQ0FFtbLWcvIiIiuWMwGHiuVQWeah7Cv8cuYUxOpZKvG8Heac/Ydqvpn+m1791bnSORsaw7ctEi/bXOlUlITuGvm0ZY82LVoQvm18cvXmPW5lM5um7IrzuZ1Lc+vb7dCMDMHF7X9IOVfPBgTXrU8mfwnF2cvhzHkE6VaV25FE72+jtLRHKvyALZy5cvExKS9m2jh4cHly9fBtK25XnxxRdzXM6HH35IUFAQP/30kzmtXLly5tcmk4kJEybwzjvv8OCDDwLw888/4+vry6xZs3j++eeJjo5mypQpTJ8+nQ4dOgAwY8YMgoKCWL58OZ07520DdBERERE7WxtaV8791NrJ/erzx/ZwVh2MZMXBSADcHe2pGeh524HszXIaxALsOHWFJh+syD5jBob9sYdhf+wxHz8/PZSX21bk9c5V8lSeiNzdiiyQLV++PGFhYQQHB1O9enV+/fVXGjVqxN9//20xmpqd+fPn07lzZ3r16sWaNWsIDAzkpZde4tlnnwXgxIkTnDt3jk6dOpmvcXR0pHXr1mzYsIHnn3+e0NBQjEajRZ6AgABq1KjBhg0bMg1kExMTSUxMNB9fX6TKaDRiNBpz83ZIPrr+3qsPrJP6x3qpb6yb+se6FUT/2Bvg4foB9KrrT4+vN1DK3RFbUni0QSCpqamMW3TInLdMCWfORBW/6bs//nuCV9uVL/B69PmxXuob61bY/ZObegwm0y07bBeSzz//HFtbWwYOHMiqVavo3r07KSkpJCcn89lnn/Hqq6/mqBwnJycAhgwZQq9evdiyZQuDBg1i8uTJPP7442zYsIHmzZsTHh5OQMCNFQSfe+45Tp48yZIlS5g1axZPPvmkRVAK0KlTJ0JCQpg8eXKGdY8cOZJRo0alS581axYuLi45fStEREREsnT9r7Wbd8K5mAC/HrfhwXKp+DrDoE1FNj6RZ572JkY30AKfIpImLi6OPn36EB0djYeHR5Z5i+w33uDBg82v27Zty8GDB9m2bRsVKlSgdu3aOS4nNTWVBg0aMG7cOADq1q3Lvn37mDRpEo8//rg53617oOVkX7Ts8gwbNowhQ4aYj2NiYggKCqJTp07ZvvFScIxGI8uWLaNjx47Y22tPO2uj/rFe6hvrpv6xbkXVP4/f9PqnM5vZdSYagCNjOvHzxpO8v/CQRf65zzfmocmbMy2vd/1Afg1Nv8hTQakTUoquXesSl5RisRpyftPnx3qpb6xbYfdPbrZhtZqv7sqWLUvZstlvRH4rf39/qlevbpFWrVo15s6dC4Cfnx8A586dw9//xqIKkZGR+Pr6mvMkJSURFRVFiRIlLPI0a9Ys07odHR1xdHRMl25vb68PohVQP1g39Y/1Ut9YN/WPdSvK/vmhf0N+3XaaXvXLYG9vzxPNy+Pi6EDTCt5cvpZIOW9XvN0c+fGJBjw1dVuGZbz/QC3aVPXlpZnb89SG51uVZ/La4wzpWBlPZ3tGzN+XYb5AL2fCr8Sz5vBFxiw8zPRNJ2le0Zufn2xEqgkc7ApmYw19fqyX+sa6FVb/5KaOQt9+p1u3bkRHR5uPx44dy5UrV8zHly5dSheYZqV58+YcOmT5bePhw4cJDg4GICQkBD8/P5YtW2Y+n5SUxJo1a8xBav369bG3t7fIExERwd69e7MMZEVERESsRSl3Rwa0rUhpj7THruxsbejTuCwhPq7UDy6Jt1val+/tqvoSNr57uuuXD2mNg50N3Wr6Eza+O78824R/XmnB8iGtebJ5uQzrtLlp4trjTYMZ1q0aYeO7M7B9Jfo3K8fBMV14pKHllkFr3mjDl4/WNR9P33QSgH+PXqLiO4uo/O4iFu7Jev/dvEpMTiUpObVAyhaRwlXoI7JLliyxeBb1ww8/5NFHHzUv8JScnJwuMM3K4MGDadasGePGjaN3795s2bKF7777ju+++w5Im1I8aNAgxo0bR6VKlahUqRLjxo3DxcWFPn36AODp6cnTTz/Na6+9hre3NyVLluT111+nZs2a5lWMRURERO4kPWsHMH9X2urHh9/vmm4UtGkFb/PrEffeg7O9Ld+sPoaXiz1X4tIWZDn+QXc2H79EmZIuBHo5p6vDyd6W8Q/VIjYxmQW7I/B2dSDY2xWbbB7vemnmdt6/vwaPNQnO8LwxJZWDEbGsPhTJww2DzMF7ZlJSTey9bODVUcsp4WLPxmHtuXg1kQRjChVLu2d5rYhYp0IPZG9dW+p215pq2LAh8+bNY9iwYYwePZqQkBAmTJhgsQ/t0KFDiY+P56WXXiIqKorGjRuzdOlS8x6ykLb4lJ2dHb179yY+Pp727dszdepU7SErIiIid6T37q3O1rDL9Kjln6OpvK93qsKD9cqQnJpKlwnrzOmNy3tncVWasffXoIKPKw/UKwOkjR5n590/9/Joo7LY2hi4eDURDyd7czsfn7KFjccvAfDpssN81acuL8/awcRH63Jv7bTFPVNSTXy/7ji+Ho58vPgQZ6PT/qaLijNSdfhicz0j7q3OnzvC+bpvPcqU0GKdIsWF1Twjezt69OhBjx49Mj1vMBgYOXIkI0eOzDSPk5MTEydOZOLEiQXQQhERERHr4uPmyIa32mW7+OV1NjYGKpZ2A2DWM43x9cx6FPRmXi4ODOl0Y79YJ/ucDRTExBu5mphMy49WAfDr801pEFzCHMRe9/KsHQC88ssO6gWXINDLmaX7zjF+0cFs6xj1937zf79/vEGO2iUiRa/QA1mDwZDuF2ZOf4GKiIiISP7J699gzSr63HbdL7WpwDerj2WZp+6YZbStUsp83HvyxmzLbT5+ZZ7aEx2fNl06JztbiEjRK5KpxU888YR5td+EhAReeOEFXF1dAdLt5SoiIiIid56Srg45yrfq0IUCbkmaLScuU+XdRSSnmqhU2o0G5UrwXo97CmwFZRG5PYUeyPbv39/i+LHHHkuX5+b9X0VERETkzlOmRPrFoYpa4n8rGh88F8vBc7HM2HSKJ5qVo9M9vlyJM9Khmi8OdjaciYrj+7XHeapFCMHervnaBpPJREqqCTtbBdAiWSn0QPann34q7CpFRERExMp0qu7Hy20rUi/Yi793ReBkb8vwHtVo8/FqImOtZ4be1A1hTN0QZj6uXcaTo5FXuZaUwqpDF1g7tG26a64vZppqAlub3E1TfmFGKCsORLJhWDtKuTlqmrNIJu6IxZ5EREREpHixsTHweue0BaDaVfU1p696vQ33jFhS4PW3rlyKNYdzP21515lo8+tTl+NYvPccXWr4MTf0DBVLu/HzxjD2n43B0d6WhKQUFgxskePRVZPJxJJ95wFoNHYFTzQrh8EAl64mMeHhOtjkMigWuZMpkBURERERq+HqaMfh97tS+d1F2eZtHFKSzScuZ5nn0UZl+WXLKfNxswrejLj3Hqr4ufPMz1tZfiDyttr7wozQLM+fjoonxCdn04+3n7picXzzSHAVP3cCvJx4oG6Z3DZR5I6kyfciIiIiYlUc7GyY9WzjLPN83acec55vapF26P0uFsfTn27EBw/WZO7zaWXVK+vFrGebUMXPHYB3u1fn+dbl87Hl6dllMIp6+VoS83ac4d6J6/lu7THWHL7A16uOEpeUnGk5Hy85xOA5u6g5cglfrjjCsD92szUs6yBe5E6mEVkRERERsTrNKvjQpkopVv+3avGc55owY/MpjpyP5e9XWmD/33TdxYNaMuKvfbzeuQqOdraMub8Gw//cC0CT8t4A1Crjyej6yfzvXst9Ysv5uDKsazVealOR2AQj8UkpdPx8Lf2bBvPzxpP5ch9Df9/NL881AeCzpYf4cuVRi/N7wqMzuixTsQnJfLbsMAC/bDnN9uEdc7wCtMidRIGsiIiIiFilyf3qM33jSdpUKUXF0u40Lu+dbp/Xqn4eFiOz/ZoE80jDIHOge52nA+nSzOec7fF0tgcgbHx3AEbdV4OUVBMTVx5hwvIjeb6HjccvsfvMFar6eaQLYvNDvymbWTCwZb6XK2LtFMiKiIiIiFVytLPlmZaWU39zsopvZgFrbtnaGHi1fSXqli1BVT93Eo2ptPp4Va7L6fnVv7zx38JW+W3f2Zj//hvN4r3neLFNBVwcCv5PfGNKKimpJpzsbQu8LpGMKJAVEREREcmEwWCgdeVS5uMtb7dn7vZwPlx8EIDS7o452i7o4yWHCqyNAN2/XA+k7YX7drdqBVoXQMfP1nA+JpEd73VUMCtFQoGsiIiIiEgOlfZw4sU2FSjn7YKjvQ3tqvpS7q0F+VrHT080pLKfO83Hr8z1tfv/G6EtSCaTibBLcQAcPh9LrTJeBV6nyK0UyIqIiIiI5FLXmv7m1/2aBDN900kerBdIUnIq/+yOyFOZns72bHmnPY52aSOcHz1UCycHWwb+siPHZVxfyfjvXWe5EpdE+VJuNK/ok6f2ZCY51WR+bUwxZZFTpOAokBURERERuQ2j77uHge0rUcrdkdRUU44D2YHtK9G3cVl+Dz1Dj1r+lHZ3MgexAL0bBqXluymQrR3kxa7TVyzKiY4zml8nJqdy7MJVXrnpmmdahGBna0PH6qWpH1wyL7doIfmm4DUpORWAC7GJ+Lg55OgZZpH8oH1kRURERERug8FgoJS7IwA2N+0b++Wjdel8j69F3gOjb+x127O2P74eTgxoW5Fgb1ecHbJ+1vSLR+ow78Vm/PREQ4v02qOXWhy3/3SNxfEP60/w7ZpjPDRpI7EJRm51+Hws83acwWTK2ejqyoOR5tePfr+JJuNW0HDscj5cXLDPAYvcTCOyIiIiIiIFoEIpVz7uVZv6wac4fTmeAW0r4uxgy8ExXYiKS8Lf0zlH5Wx4qx0Hz8XQtkppDAYDbauWZu6LzXho0oZct6nmyKXmLYau6/T5WgBcHezodI8fr/26i8TkFL7qUy/d9Wei4hgwa7tF2rmYBAC+XXOMt7pWzXWbRPJCgayIiIiISD6a/3JzzkTFc0+AJwDPtapgcd7J3jbHQSxAgJczAV6W+ct5u+S5fQ9N2sBrHStjMBioF+xlTg89FUX1AA/mbj8DQGLyNj54sCYOdja88dsuutcKwMfVIdvy952NxtPZnjIlsm9jRHQC8cl5vhW5iymQFRERERHJR7XKeBX4Sr6Ot7HlTejJKPr8sBmA+sElzOkXY5NYuu+8+XjZ/vMs23+ezvf4smTfeZbcdC4zc0PP8NpvuwAoW9KFuS82w8vFPsO9fSNjE2j1yVrAjod65vl25C6lQFZEREREpJhxyCAwzIvQk1Hm13O3n2Hu9vR5chLAXvftmmPm16cux9Fw7HLz8ZPNy/FSm4p4ONsxbO4elh/Iebkit1IgKyIiIiJSzDjY2dDlHj8W7ztX1E2xcCTyaqbnfvo3jJ/+DSu8xsgdTasWi4iIiIgUQ9/2q58ubUjHygTe9DztjKcb80LrCvSo5Z8urzXZePxSUTdBihmNyIqIiIiIFFM/PdGQd//cS/iVeAD6NyvHwPaVLPK0qOQDwD+7FxR6+3Lq8Z9CaV25FC+1qUCZki4EeDpx7MI1XvllBwPbVaRrzfwPxL9edZQEYwqvdaqS72VLwSv2I7IjR47EYDBY/Pj5+ZnP33ru+s/HH39sztOmTZt05x955JGiuB0RERERkRxrW7U064a2pbq/B7XKeOLhlPk41bLBrXiyebl8qffbx9KPBt+uNYcv8PB3m2g+fiVfrTxKh8/WcCAihhdnbmfN4Qskp6TmW11Jyal8vOQQE1ceJSI6Pt/KlcJT7ANZgHvuuYeIiAjzz549e8znbk6PiIjgxx9/xGAw8NBDD1mU8eyzz1rkmzx5cmHfhoiIiIhIrtnYGPjnlRb8+VJzDAZDpvkq+boz4t572PJO+9uus0wJZ0580I11Q9sC0L2WP5Nvmur8wYM1LfJXKOWaq/I/XXbY4rj/j1uo+M4iaoxYkmVAm5ScSlJy2vkDETF8s/ooxy5cJepakkW+5NQbZVxLTMlV28Q63BFTi+3s7CxGYW92a/pff/1F27ZtKV++vEW6i4tLpmWIiIiIiFgzG5vMA9hblXZ34sF6gfyxPTzdOVcHW77uW4+ricm0rFiK2qOXZliGh5M9BoOBoJIuHBjdBSd7GwwGA4M6VKJsSRe61fRn2B83Bpcm92tAh8/W5P7GbnE1MZlftp6mX5Ngc1pKqglbGwMpqSZafrSSxORUKvu6s+XEZQA+WnwIgNB3O+Dt5khySipX4ozm6xOMCmSLozsikD1y5AgBAQE4OjrSuHFjxo0bly5QBTh//jwLFizg559/Tndu5syZzJgxA19fX7p27cqIESNwd3fPst7ExEQSExPNxzExMQAYjUaMRmNml0kBu/7eqw+sk/rHeqlvrJv6x7qpf6yb+ie9NpW8+WN7OK4OtgxoW56Nxy6z7uglJvWtQ9PyN/aWfbhBGeZsOwOAr7sj52PT/vb1cDSY3087AyT/Nwo6oHXIf1emsm9EB2ISjFy6mkRwCcd0bRjQpjwXYxOYE3o2V23/c/sZHqkfAMAz07ez5vBFFg9sjpujLedj0tp3PYi92b0T1/P+fdV5aprlHkM9Jq7nve5VCfFxpUVF71y15U5X2J+d3NRjMJlMpgJsS4FbtGgRcXFxVK5cmfPnz/P+++9z8OBB9u3bh7e35f+IH330EePHj+fs2bM4OTmZ07///ntCQkLw8/Nj7969DBs2jIoVK7Js2bIs6x45ciSjRo1Klz5r1ixcXFzy5wZFRERERPKZyQSHYwwEuphws087jk8Bl1uGuVJNcDEBYo0Q4g6nr4IJKJf1eE+GXt1oWfgXTZMB+OeUDcvCc/fE4xdNk7lqhHe2pZXpZmfi1RopjN15e+N0w2on46c/44tMXFwcffr0ITo6Gg8PjyzzFvtA9lbXrl2jQoUKDB06lCFDhlicq1q1Kh07dmTixIlZlhEaGkqDBg0IDQ2lXr16mebLaEQ2KCiIixcvZvvGS8ExGo0sW7aMjh07Ym9vX9TNkVuof6yX+sa6qX+sm/rHuql/rEOl4ZbTlI+M6YTRaGTx0mVMPuGFv6cT1fzcmbT2RLZlHRnTiX+PXeKJqaH52sbGISWY0LsWJV0csLEx8Pt/06//Vy8wX+spLgr7sxMTE4OPj0+OAtk7YmrxzVxdXalZsyZHjhyxSF+3bh2HDh1izpw52ZZRr1497O3tOXLkSJaBrKOjI46O6adJ2Nvb65ekFVA/WDf1j/VS31g39Y91U/9YN/VP0VoyqBUfLT5IbGIyo3reY+4LWwP8PaAp9vb2fL78SDalQKvKpbC3t2f90fTTh2/X5hNRNP0w7VneGoEe7A1Pe3TQz8uFsiVdqFDKLd/rLA4K67OTmzruiFWLb5aYmMiBAwfw97fca2rKlCnUr1+f2rVrZ1vGvn37MBqN6coQEREREZG8qeLnzpQnGvLr802p5m852nZ9C8ym5W88Glg7yMv8OsDTCQe7tNBl7eELNB+/kh/WZz9yezuuB7EAT/60lfafriG/J7MmGFN49889NPtgBTtPX7E4993aYyzYHZGv9d1Jiv2I7Ouvv869995L2bJliYyM5P333ycmJob+/fub88TExPDbb7/x6aefprv+2LFjzJw5k27duuHj48P+/ft57bXXqFu3Ls2bNy/MWxERERERuas1reDN1CcbEnbxGg/UK8Pe8GhWHIjktU6V+ffoRZ6bnjaVOPxK0ez9Ourv/Tzfujz+ns4ALNgdwdawywzvUR3bHKwcnZScypmoOOKSUkhMTmHejnBmbDoFwJM/bWHHe50AaDxuuXnhqu61uhfQ3RRvxT6QPXPmDI8++igXL16kVKlSNGnShE2bNhEcfGNJ7tmzZ2MymXj00UfTXe/g4MCKFSv44osvuHr1KkFBQXTv3p0RI0Zga2tbmLciIiIiInLXa1OlNFRJe928og/NK/oA4Gifu7/NFw9qyd7wGKLjjYz5Z3++tG3qhjBmbDrJ0XHdABgwK20F5HrBJfDzcGL/2Wh+3niSwR0r07N2AF+uOMJnyw7z7WP1qFe2BI3Grci07Kg4I8kpqYz8e585iAVITTVx8nIcz07bxgutK/C/+mXy5V6Ku2IfyM6ePTvbPM899xzPPfdchueCgoJYs+b297QSEREREZGC0/K/gPZmLSr6sP7oRYu0Va+3ISU1lYql3anqlzaFOTbByIRbnr+tHeTFzGcaU2PEkly1IznVxIGIGF6dvcOcFhmTwMBfbhwP/GUHzva2fLbsMAAvzNhO3bJe2Zb9waKD5hHa6/ZHxPDZssMcjbzK67/tUiD7nzvuGVkREREREbnz2NgYGNa1qkXatKcaUdr9xuKr/ZoEE+LjSsXSlvsDtalS2vz6vjoBhI3vzl8DmuPmmLdxva5frOPw+avm4/cXHEiX59lp2yyOd5y6km25UzJ47rfHxPWsPBhpPr58Lcn8Oik5lXPRCTlp8h1HgayIiIiIiBQLXWvcWIz156caYWNjYN2bbdnydnvmvtiM0ffdk+F1DrY3wp5hXatZnFs3tC2znmlcMA0uAPXGLONCbNrU417fbqDJByvYfzYmm6vuPMV+arGIiIiIiNwdPF1ubM/i5+EEgKOdLaU9bCn933FGqvm707dxWfw9nfDztMwXVNKFoJIu7BrRib3h0TQOKUlkbCLXEpNZuv+8+fqnpm7LqOgi8cbvu+hW059dZ6IBmLv9DNUDqmd7XXJKKnvPxlAjwAM72+I9pqlAVkREREREigVPZ3uaVfDmXHQCIT6uOb7OYDAw9oGa2ZZ9fWGpAK+0VYkr+aZNUTampOaxxQVj+8koVh+6YD6Oikubbnw1MRlXB1sMhvQrKJ+PSWD03/tZsCeCJ5uXY8S9GY9eFxcKZEVEREREpNiY+UxjUk3kaLub/GJva4O7kx2xCcmFVmdWYm5pxx/bw6kR4Mnof/Zzb+0AJj5a96a8Rvr9sNk8egvw079hvNy2It5ujhRXxXs8WURERERE7ioGg6FQg9jrNr/dPk/XHR/XjedalQegaw0/mlf0BqBTdV9zHk9n+3TXfftYPba8056qfu7pzmVk9H9bDP2966xF+oi/9lkEsdddX1G5uNKIrIiIiIiISDZcHOzY9m4Hhv6+m/I+rrzRpQofLDzI1A1hjLi3OhdiE/lm9bF019nYGHi7WzXe7pa2yFRKqokrcUm4ONhR7b3FAGx7twO2BgPbTkaxeO85Xu9cGReHtFBt8aBWlHtrQa7aej3/F4/UYcOxixnmORMVn6syrY0CWRERERERkRzwcXPkxycamo9H9ryHIZ0q4+GUNqL6RucqDJi1nYV7zgEw5v4a6cqwtTGYp/SGje9uca5RSEkahZRMd42TvQ0Jxtw/p/vq7J2Znrt5G5/iSIGsiIiIiIhIHl0PYiFt2vM3fevnex3r32xHg/eX52uZyammfC2vsOkZWRERERERESvm4+bIoldbUiPQw5z2w+MNCBvfHUe7vIV03z+e/wF3YdKIrIiIiIiIiJWr5u/BP6+0JDE5BTsbG/OCV4fe78rz07exZN/5bMt4qnkIm09c4vcXmuHsYFvQTS5QCmRFRERERESKCUe79AFoTldxfu/e6vndnCKjqcUiIiIiIiLFmK1N9mFd7wZlCqElhUeBrIiIiIiISDH2Quu0fWofrBuYaR5n++I9lfhWCmRFRERERESKsXsCPNk7qjOf9q7NnpGdMsxjb3tnhX56RlZERERERKSYc3NMC+3cnezZ+V5HrsQZ2XLiMkPn7gagYmm3omxevlMgKyIiIiIicgfxcnHAy8WBcj6ueLrYs+n4Jf5X/856RlaBrIiIiIiIyB2q8z1+dL7Hr6ibke/urInSIiIiIiIicsdTICsiIiIiIiLFigJZERERERERKVYUyIqIiIiIiEixokBWREREREREihWtWpyPTCYTADExMUXckrub0WgkLi6OmJgY7O3ti7o5cgv1j/VS31g39Y91U/9YN/WP9VLfWLfC7p/rcdT1uCorCmTzUWxsLABBQUFF3BIREREREZHiKTY2Fk9PzyzzGEw5CXclR1JTUzl79izu7u4YDIaibs5dKyYmhqCgIE6fPo2Hh0dRN0duof6xXuob66b+sW7qH+um/rFe6hvrVtj9YzKZiI2NJSAgABubrJ+C1YhsPrKxsaFMmTJF3Qz5j4eHh34hWjH1j/VS31g39Y91U/9YN/WP9VLfWLfC7J/sRmKv02JPIiIiIiIiUqwokBUREREREZFiRYGs3HEcHR0ZMWIEjo6ORd0UyYD6x3qpb6yb+se6qX+sm/rHeqlvrJs1948WexIREREREZFiRSOyIiIiIiIiUqwokBUREREREZFiRYGsiIiIiIiIFCsKZEVERERERKRYUSArIiIiIiIixYoCWRERERERESlWFMiKiIiIiIhIsaJAVkRERERERIoVBbIiIiIiIiJSrCiQFRERERERkWJFgayIiIiIiIgUKwpkRUREREREpFhRICsiIiIiIiLFigJZERERERERKVYUyIqIiIiIiEixokDWSphMJrp27YrBYODPP//MMm9sbCyDBg0iODgYZ2dnmjVrxtatWy3yXL16lZdffpkyZcrg7OxMtWrVmDRpkvl8WFgYBoMhw5/ffvstXZ2JiYnUqVMHg8HAzp07zem7du3i0UcfJSgoyFzPF198kev7P3/+PE888QQBAQG4uLjQpUsXjhw5kutyRERERETkzqdAthC0adOGqVOnZplnwoQJGAyGHJX3zDPPsGzZMqZPn86ePXvo1KkTHTp0IDw83Jxn8ODBLF68mBkzZnDgwAEGDx7MK6+8wl9//QVAUFAQERERFj+jRo3C1dWVrl27pqtz6NChBAQEpEsPDQ2lVKlSzJgxg3379vHOO+8wbNgwvvrqqxzdC6QF8ffffz/Hjx/nr7/+YseOHQQHB9OhQweuXbuW43JEREREROTuoEDWCuzatYvPPvuMH3/8Mdu88fHxzJ07l48++ohWrVpRsWJFRo4cSUhIiMWI68aNG+nfvz9t2rShXLlyPPfcc9SuXZtt27YBYGtri5+fn8XPvHnzePjhh3Fzc7Ooc9GiRSxdupRPPvkkXXueeuopvvzyS1q3bk358uV57LHHePLJJ/njjz8s8m3YsIFWrVrh7OxMUFAQAwcONAepR44cYdOmTUyaNImGDRtSpUoVvvnmG65evcovv/yS6/dTRERERETubApki1hcXByPPvooX331FX5+ftnmT05OJiUlBScnJ4t0Z2dn1q9fbz5u0aIF8+fPJzw8HJPJxKpVqzh8+DCdO3fOsNzQ0FB27tzJ008/bZF+/vx5nn32WaZPn46Li0uO7ik6OpqSJUuaj/fs2UPnzp158MEH2b17N3PmzGH9+vW8/PLLQNq0ZcDinmxtbXFwcLC4JxEREREREVAgW+QGDx5Ms2bNuO+++3KU393dnaZNmzJmzBjOnj1LSkoKM2bMYPPmzURERJjzffnll1SvXp0yZcrg4OBAly5d+Oabb2jRokWG5U6ZMoVq1arRrFkzc5rJZOKJJ57ghRdeoEGDBjlq38aNG/n11195/vnnzWkff/wxffr0YdCgQVSqVIlmzZrx5ZdfMm3aNBISEqhatSrBwcEMGzaMqKgokpKSGD9+POfOnbO4JxEREREREVAgWyDGjRuHm5ub+WfdunW88MIL6dLmz5/PypUrmTBhQq7Knz59OiaTicDAQBwdHfnyyy/p06cPtra25jxffvklmzZtYv78+YSGhvLpp5/y0ksvsXz58nTlxcfHM2vWrHSjsRMnTiQmJoZhw4blqF379u3jvvvu47333qNjx47m9NDQUKZOnWpx/507dyY1NZUTJ05gb2/P3LlzOXz4MCVLlsTFxYXVq1fTtWtXi3sSEREREREBMJhMJlNRN+JOc/nyZS5fvmw+7tu3Lw899BAPPvigOS0wMJBhw4bx5ZdfYmNz4/uElJQUbGxsaNmyJatXr86ynmvXrhETE4O/vz8PP/wwV69eZcGCBcTHx+Pp6cm8efPo3r27Of8zzzzDmTNnWLx4sUU506dP5+mnnyY8PJxSpUqZ0++//37+/vtvi0WoUlJSsLW1pW/fvvz888/m9P3799O2bVueeeYZxo4da1F+tWrV6NixIwMHDkx3D2XLlsXBwcF8HB0dTVJSEqVKlaJx48Y0aNCAr7/+Osv3QURERERE7i52Rd2AO1HJkiUtnhF1dnamdOnSVKxY0SLfW2+9xTPPPGORVrNmTT7//HPuvffebOtxdXXF1dWVqKgolixZwkcffQSA0WjEaDRaBMiQ9txpampqunKmTJlCz549LYJYSBvVff/9983HZ8+epXPnzsyZM4fGjRub0/ft20e7du3o379/uiAWoF69euzbty/d/WfE09MTSFsAatu2bYwZMybba0RERERE5O6iQLYIXV8t+FZly5YlJCTEfNy+fXseeOAB8+JIS5YswWQyUaVKFY4ePcobb7xBlSpVePLJJwHw8PCgdevWvPHGGzg7OxMcHMyaNWuYNm0an332mUVdR48eZe3atSxcuDDDdtzs+mrGFSpUoEyZMkBaENu2bVs6derEkCFDOHfuHJAWNF8PjN98802aNGnCgAEDePbZZ3F1deXAgQMsW7aMiRMnAvDbb79RqlQpypYty549e3j11Ve5//776dSpU+7fWBERERERuaMpkC0Gjh07xsWLF83H0dHRDBs2jDNnzlCyZEkeeughxo4di729vTnP7NmzGTZsGH379uXy5csEBwczduxYXnjhBYuyf/zxRwIDA/McMP72229cuHCBmTNnMnPmTHN6cHAwYWFhANSqVYs1a9bwzjvv0LJlS0wmExUqVODhhx8254+IiGDIkCGcP38ef39/Hn/8cYYPH56nNomIiIiIyJ1Nz8iKiIiIiIhIsVLsVy2eNGkStWrVwsPDAw8PD5o2bcqiRYuAtGdF33zzTWrWrImrqysBAQE8/vjjnD171qKMxMREXnnlFXx8fHB1daVnz56cOXOmKG5HREREREREslHsA9kyZcowfvx4tm3bxrZt22jXrh333Xcf+/btIy4uju3btzN8+HC2b9/OH3/8weHDh+nZs6dFGYMGDWLevHnMnj2b9evXc/XqVXr06EFKSkoR3ZWIiIiIiIhk5o6cWlyyZEk+/vjjdPuiAmzdupVGjRpx8uRJypYtS3R0NKVKlWL69OnmZzbPnj1LUFAQCxcupHPnzjmuNzU1lbNnz+Lu7m6xZY2IiIiIiIhkzWQyERsbS0BAQLodWG51Ry32lJKSwm+//ca1a9do2rRphnmio6MxGAx4eXkBEBoaitFotFjsKCAggBo1arBhw4YsA9nExEQSExPNx+Hh4VSvXj1/bkZEREREROQudPr0afMuKZm5IwLZPXv20LRpUxISEnBzc2PevHkZBpQJCQm89dZb9OnTBw8PDwDOnTuHg4MDJUqUsMjr6+tr3komMx988AGjRo1Kl/7DDz/g4uJyG3ckIiIiIiJyd4mLi+OZZ57B3d0927x3RCBbpUoVdu7cyZUrV5g7dy79+/dnzZo1FsGs0WjkkUceITU1lW+++SbbMk0mU7bTg4cNG8aQIUPMxzExMQQFBXH//febA2UpfEajkWXLltGxY0eLLYnEOqh/rJf6xrqpf6yb+se6qX+sl/rGuhV2/8TExPDMM8/k6DHNOyKQdXBwoGLFigA0aNCArVu38sUXXzB58mQgrQN69+7NiRMnWLlypUWQ6efnR1JSElFRURajspGRkTRr1izLeh0dHXF0dEyXbm9vrw+iFVA/WDf1j/VS31g39Y91U/9YN/WP9VLfWLfC6p/c1FHsVy3OiMlkMj+7ej2IPXLkCMuXL8fb29sib/369bG3t2fZsmXmtIiICPbu3ZttICsiIiIiIiKFr9iPyL799tt07dqVoKAgYmNjmT17NqtXr2bx4sUkJyfzv//9j+3bt/PPP/+QkpJifu61ZMmSODg44OnpydNPP81rr72Gt7c3JUuW5PXXX6dmzZp06NChiO9OREREREREblXsA9nz58/Tr18/IiIi8PT0pFatWixevJiOHTsSFhbG/PnzAahTp47FdatWraJNmzYAfP7559jZ2dG7d2/i4+Np3749U6dOxdbWtpDvRkRERERERLJT7APZKVOmZHquXLly5GSbXCcnJyZOnMjEiRPzs2lW56+d4Zy+HMfL7SoVdVNERERERETyrNgHspJzr87eCcCe8GjGPlCTEi4O2NpkvyKYiIiIiIiINVEgexdasu88S/adB6BGoAdzX2yGo52mUYuIiIiISPFwR65aLDm3NzyGb1cfL+pmiIiIiIiI5JgCWWHH6SgAvll9lErvLOTjJQdz9GyxiIiIiIhIUVAgexeIjE3glV92ZHo+7OI1AD5afAhjiomvVx0jZNhCJiw/XFhNFBERERERyTEFsneB9/7cx9+7zmZ6PuxSHHFJyenSJyw/wrwdZzh9OS5P9V6JS8rRyO7VxGR2nr7C1cT0bRAREREREbmVFnu6Cyzedy7bPNM3nswwffCcXQCEje+eqzp3nr7C/V//S/ea/nzdt16WeZ+aupUtJy4D8O9b7Qj0cs5VXSIiIiIicnfRiKwA8NmyrKcR5/aZ2e/Xpi0gtWBPBF+tPMK1/0ZbNxy7yO4zV8z5kpJTzUEswPydmY8ci4iIiIiIgAJZ+U9icmqW51NS87740ydLD/PYlM1ExibQ5/vN9PzqX/afjQFg2sYwi7wfLj5oMc15yb5ztPxoJdvCLvN76BlOXcrbNGcREREREblzaGrxXaBTdV+W7j9/W2VcS0zB0yXv33vsOHWFRXtuTHHu9uU6wsZ3Nwe0N6v+3hIAZj7TmOenhwLwv283ms/ndpqziIiIiIjcWTQiexd4sF7gbZfx0LcbWHUoMsuR2ZRUE1+vOkroyShMpM83Yv4+i+OeX61n4/FLmZbX94fNGaY/8/M2xi86mMOWi4iIiIjInUaB7F2gsq/7bZdxNPIqT/60lVlbTmV4Pik5lYcnb+TjJYd4aNIGcvJI7e4z0UREJ+S6LcsPnOfbNceIjjfy1cojvP/Pfu17KyIiIiJyF9HU4rtA+VJu+VbWkr3n6NckmFUHI/l02SE+6VWbqn4eVH53Ub7VkVO1Ry01v64e4ME9AZ5U8bv9oF1ERERERKybRmQlV9YfvQjAk1O3sjc8hpdmbs8w36K92W/5k5+G/LqLzhPW5mnKsclkYtGeCE5cvJZt3rCL17h0NTEvTbxtpy/H8cL0UEJPXs4+s4iIiIjIHUyB7F1i3kvNCCrpzJznmmSZb/R992S7mFK/KTeeXT1+IfvgrzB9u+ZYrq/ZcuIyL87cTttPVpvTjCmpPPrdJkb9feO53vMxCbT5ZDX131+eH03NtUFzdrJ43zkemrQx+8wiIiIiIncwBbJ3ibplS7BuaDsal/fOMt/jTctlW9a6IxctjmdsOnk7TQOgUbmShL7b4bbLAcx71mbk7JV4Dp6zXCn54LnYdPnWHr7AxuOX+OnfMK7EJTFr8yl2nLpiPp+YnJIvbc2Nk5ey/9Lg7JV4fg89Q1I22ymJiIiIiBRnekZWMtS3cVlmbs54Yadbvfvn3tuuz9bGgLuT/W2XAxCWxV6zzcavBGDjsHaUdHUgNCzKYqGoBGMKTva2XEu6EajWGb0sXTlV3l1Mp+q+jL6vBn6eTvnS7uwZ0qUcPBfD67/tYm94DG91rcrXq44Sm5DM+ZgEBrStWEjtEhEREREpXApkxeyTXrXNrw03xUxfPFKHV2fvLNC6bW0MONjZsOr1NqSaTLT/dE2ey9oTHoPHf69NJhOHzsdSsZQbdrY3JiCMmr+f7aeiiIy1fN51/ZGLdKjuizEHI5pL95/nTFQ8C19tme7c9lNRGEgbCS8IW05cZvPxS3y67LA57ebng1cfilQgKyIiIiJ3LE0tvstVuWlrHjubG9HrzbvZ3Ffn9vehzY7Nf3WH+LhSoZQb5bxd8lzW8Pn7za9/WHeCLhPWMeyPPXy18og5ffG+c+mCWIB5O8M5duEqC/dE5Kiu/REx6dISjCk8+M0GHvhmA/FJKVyITeTLFUc4l4ethjLTe/JGiyD2VlvDojCmaHqxiIiIiNyZFMjehSb1rWd+vWRwK/Prm0dhk1MKd19W21tmzdoY0k+jzUijciUzTI9Ogpdm7WTswgMA/BZ6hk+WZh74XbdgdwTtP13DioOROaofICXV8r1afejGtXFJyQyYuZ3Plh2myQcraPbBCs5eic9x2QBnouIY9sceLuZyteR7J67PVX4RERERkeJCgexdqGtNf358ogHLh7S2SK8bdGMa7MONggBoXbkUkDa9OC++f7xBjvLdGrj6uDumy9O9lj/da/qzfXhHc9pb3apStmT60dv3Qu1YdiDnwejt+HvXWXacigJg2f7zvDDjxpZEcUkpbAm7sV3O2egEmo1fyfxdZ2k+fiV7zkRnW/7ov/fzy5acPa98s4PnYvlm9VEgbRXmX7ee5uSlayzee47e327M1xFiEREREZHCpGdk71LtqvqaX299pwNX4pIoe9N03nplS7D+zbaUdk9byOi+OoHExBsZ/te+dGVlJsTHlbZVSuUor42NZSD7aa/atPxoVbo0J3tbAF5oXYGriUbqlS2Bl4s9p4pwa9VBc3YCMP7Bmrz1xx6Lc7few3UDf9kBwOM/bubldpXoUcsfX4/0i0ZNWX+CpfvP57ltHy0+xFPNQ/ht2+l0fdfkgxV81rs2D9QNxHDLFwlhF68xb0c4TzUPwdMlfxbhEhERERHJLwpkhVLujpTKYAS0TAnLkc5HG5UlIjqBb1an7dU65r57qFXGi/u+/heAV9pV5LVOVTgaeRV/TydcHXP+v5ftLYFUUEkXtrzdnkbjVpjTHO1uTCB4q2tV82tT4c6CztStQWxORMUZGfPPfsYu2M/xDyz37w2/Es+Yf/ZncmXO1Rq1NNPteIb8ugtbGwM1Az2Zs+00z7Ysj4+bI12/WEe8MYVjF67yVZ96GV4rIiIiIlJUFMhKjtnZ2jC0S1WGdqlqkT7h4Tr8vessz7UqD0DF0m6ZluFga0NSBosQ2dpk/0zsraOG15mwkkj2NqSa0lZYvvkev197PF/Kzm5P2eF/7iUl1cS1pBQORsTy81ONiDembT8UejIqX9ogIiIiIpKf9Iys3Lb76wYy5YmGme4DW9UvbWXkHrX82T+6c4Z5bp1aDGnB3XX9mgRnWv+b/wXWTzQrl8MWW6d7v1rP8v+mEf+4/gRTN4QVSr0xCcnmfXPXHL5A6Mkb87RvXchKRERERMQaaERWCty0pxuxaM85HqgXiJ2tDR8+VJM351pOw7111WKA1JvmDA/tUiXT8ltWKsWuEZ3wcLIrtOCvIOwNj+GZadtoVK6kxQJRhe2hSRvNrzPaoii3Vh+KZMm+84y4t7r5GWcRERERkduhEVkpcKXdnejfrBwe/43Y/q9+ECPurW6RJ6MRWT8PJ2oEelC3rBdu2Txv6+lsn+nU4/z0RufMA+r8UpRBbEF44qet/LLlFFWHLy7qpoiIiIjIHUKBrBQ6WxsDTzYPYUjHyua0jPaNtbExMH9AC/54sVmhBKk5cX/dQBa92pKDY7oUdVMKTafP12Sb52hkLO/9tTfbLX2SM3g+WkREREQktxTISpEZ2L6S+fWtqxZfZ2NjyFUQm92iUbXLeLJ/dGfmvdSM4+O65XqE1dHOhmr+HlY1RbZ2kFeBln/4/FWuJiZnmefBbzYwbeNJXpoZapG+/shFi+Odp68wfdMp/gqzwaigVkRERETySIGsFKng//au7VknIF/Km/tis3RpCwe2NL+OS0rBxcGOumVLYGNj4OkWIbkq38Eu9x+ZEx90I2x89+wz5lKglzOh73Zg7gtNzWm1ynhyfFw3XmhdIV/r6vrF2izPxySkBbrbT12xSH9symaL4/99u5HRCw6yMsKGaZtO5bk9B8/F8MzPW9l/NibPZYiIiIhI8aVAVorUwoEtWTyoJc0r+uRLeXWCvLi/tr9FmrebA+V9XAHoWN3X4lxmI6stKvqwb1Rn5jzXBCf7Gx8TB9vsPzJTn2xocXx9RLlV5VLmtG8fq59tOdl5sU0FvN0csbO1MQfkH/2vFjY2Bt7MYnGsvDh9OZ6p/54g/Eo8ANcSkzHd5ga+ByJi83ztI99tYvmBSB75bmP2mUVERETkjqNAVoqUq6MdVf088rVMwy3Ti21tDMx+vgmf9qptMZ05K6XcHXF1tKNxeW9Wv97WnJ5VINuykg9/v9yCNlVKZ3j+s961ebFNBVa93iZH02oHtqvI133qZXr+5lWdh/eozqH3u5jfS4PBkOWWRXkx8u/93P/1v5y+HMc9I5bw1NStt1XezXHwvB1n+HDxwRwHx1fijMCNkWARERERubto+x2549QK9GDejrPmYzsbA14ujjxUv0yG+Qd1qMTRyKtsDbvM+Zi07Wau700L4OfpxAcP1sTV0S7D1ZWBHE0d9nFzNJdb2t0RXw9HapfxYul/e8emu48yXlkGvN6ujhbHjnaWo8tj7q9B7wZB3PvV+mzbllMXYhP5bdtpAFYdupBl3rP/jd5mJjbRaH49eM4uAJpV8KZlpVKZXSIiIiIiAmhEVu5AjzQoQxv/GwFgZsHndYM6VOarPvUwcCOfn6eTRZ5HG5WlZ+38eY4X0kai/32zHZP71Wf78I683LZiujzebg4Wbf/nlRYW57vW8Mu2npplPLM87+5k+V1WKXdHnmqe9XPDtjY3fm3EJ6WQlJw+2D4fk0Cz8SuzLMfDyZ5pG8O4EpdkTou4ZdXjS1cTuZbNQlP5JSXVcjT44LkYFu2JKJS6RURERCR3FMjKHcfO1obWNwWyOV3z2MvFvmAalAk7WxsMBgMlXR14vXMVpvRvYHG+btkSFqs5h/z3nC/Aq+0rZRugZ+aHxxtgb5t2bdPy3ub09lVLs/WdDrzVtWpmlwLw+fLD5te1Ry2l3aer0+XZfjIq23b8tSuC9/7ax/++vfGca6IxhR2nohgwczv7z8ZQ//3l1B61NMtybudZ3b93neXeievZdzaaph+sMK+6nJySSpcJ63hx5nY2H7/Eoj0RTFp9jKhrSZy6FJfn+kREREQkfxT7QHbSpEnUqlULDw8PPDw8aNq0KYsWLTKfN5lMjBw5koCAAJydnWnTpg379u2zKCMxMZFXXnkFHx8fXF1d6dmzJ2fOnCnsW5F85HjT/9n2OVigCWDio3WpEeiRLqAsLMaUGwHZ9S11bhr8tNha6HogmhPDbgpMv3y0Lh2q+7JscGtG3FudF9vcWN34+sJXuVmZOSkllTNRllOIh/2xh5dmbc9xGUcjr5pfHzofywPfbGDBngi6fbkOgOTUrAPVob/vznFdN0swpvDKLzvYEx5N9y/XExmbyMI957gQm0jDscvN+QbN2cmLM7fz4eKD1B2zjFYfrzJPr85KZEwCL84IZcPRi9nmFREREZHcKfaBbJkyZRg/fjzbtm1j27ZttGvXjvvuu88crH700Ud89tlnfPXVV2zduhU/Pz86duxIbOyNFVMHDRrEvHnzmD17NuvXr+fq1av06NGDlJSUorotuU2u9vDJ/2rydZ96Od7ztZKvO/+80pL21Xyzz0zaNFyAjAZGq/q5A9Ahh2VB2uiou6Md9YNL8NeA5v+VfaPwm1/b5TA4B3i+dQUeaRhExdJudPpv1eZyPq482TwEZ4cb782gDjcWwmpTpZTFfeTGL1tOkddB0hmZbMmTnMWzwr+FnuGZn7dl+jzxhmMXaTR2OTM3n7RIqzUy45Hev3aGExV34/ndW6c7A4z+e3+m7bluxPx9LNp7jj4/bM42r4iIiIjkTrFf7Onee++1OB47diyTJk1i06ZNVK9enQkTJvDOO+/w4IMPAvDzzz/j6+vLrFmzeP7554mOjmbKlClMnz6dDh06ADBjxgyCgoJYvnw5nTt3LvR7kvxxX21/7O0LbrrwjKcb88GiAwzpWDnduWlPN+KfXRE8VC/jBaYy4uliz6a321sE3jc/t2lnMSKbu++gxj9UC5PJZN4K6Loqvu50qFYaT2cHKvneCFq/eLgu83efpW2VUrT4cFWu6ioIicmpWQbvyw+cp9I7i/j2sXp0qeHPhdhETly8hrO9LX2+Twsk35m3Fy9nB7rX8mfInF0kZRL4Oubgi4/YxGQOn4+lsm/6QH/3mSsEeDlnu9iViIiIiORdsQ9kb5aSksJvv/3GtWvXaNq0KSdOnODcuXN06tTJnMfR0ZHWrVuzYcMGnn/+eUJDQzEajRZ5AgICqFGjBhs2bMgykE1MTCQxMdF8HBMTA4DRaMRoNGZ2mRSw6+99QfdBeW8nvn+sboZ1lXCypV/jMrluh4MNpKYkk/rfZIDgEjcWnUpJubHokQ2p+XZ/k/rUSddOF3t4pH5AjrYJKgxX4xNxsMl+mPeFGdvZ8157Wny4isQMFqEaMGs7nap1wi6LqdmrDmS8ivStnpu2jWFdq3Dk/FWea1kOg8HAztNX6PXdFmwMUPumhbaKy++DwvrsSN6of6yb+se6qX+sl/rGuhV2/+SmnjsikN2zZw9NmzYlISEBNzc35s2bR/Xq1dmwYQMAvr6W0zt9fX05eTJtmuG5c+dwcHCgRIkS6fKcO3cuy3o/+OADRo0alS596dKluLi43M4tST5YtmxZUTchXwyuAR4OsHDhQq5/ZM8f28fCS3sLqQVF/2ti0dLllLDYbSjzNg34bhmJyZmP3k74ZRFJ8TZktgzYymy2Fbou7FIcz8/YAcDsDYfxcTJR0gHAhlQTRF+5Yq4jre9u3zUjJKZCScfs896OO+Wzc6dS/1g39Y91U/9YL/WNdSus/omLy/mimkX/F2o+qFKlCjt37uTKlSvMnTuX/v37s2bNGvP5W6dTZjTF8lY5yTNs2DCGDBliPo6JiSEoKIhOnTrh4eGRhzuR/GA0Glm2bBkdO3Ys0KnFRcGj8iUOnovl6ebB2f7/mV922xxiyr8ns89YgJq3ak0577RVm09HxcHGzPfGXXsu62nXX+/P2TPTuXHmmoEz1yz7w9bZDWKvAdCtW7d8qafS8LTneje92RpvN8toNjXVxLqjF6nu72F+fju37uTPzp1A/WPd1D/WTf1jvdQ31q2w++f6DNecuCMCWQcHBypWTNuHs0GDBmzdupUvvviCN998E0gbdfX39zfnj4yMNI/S+vn5kZSURFRUlMWobGRkJM2aNcuyXkdHRxwd0//BaG9vrw+iFbgT+6FtNT/aVst+/9j89Frnqjg72PPVqqOFWu/NZm4JZ2TPe1h9KJInftpaZO3IjSOR18yv95+7Zl6JOj8cu5SAXwk3i7S5oWd47bddeDjZsXvk7T3bfyd+du4k6h/rpv6xbuof66W+sW6F1T+5qaPYr1qcEZPJRGJiIiEhIfj5+VkMhSclJbFmzRpzkFq/fn3s7e0t8kRERLB3795sA1mRu4GLgx2vd67C/XUCzGn1ynrlqozZzzW5rTZM3RBGubcWFJsg9lb3ff1vurR5O87wzM9buZqYnMEVOZOcksqLM0KZtPoYr/22C4CYhLyXJyIiIlJcFPsR2bfffpuuXbsSFBREbGwss2fPZvXq1SxevBiDwcCgQYMYN24clSpVolKlSowbNw4XFxf69OkDgKenJ08//TSvvfYa3t7elCxZktdff52aNWuaVzEWEZjwSF1KuDrg5mhH0wre5tWAc6JJee8CbFnxkJicgqPdjWnNg+ekBZ7frTnGkE5Vsrw2MjaBfj9sMR9fn8S86tAFFu09x6K9WT/PLyIiInKnKfaB7Pnz5+nXrx8RERF4enpSq1YtFi9eTMeOHQEYOnQo8fHxvPTSS0RFRdG4cWOWLl2Ku/uNbTM+//xz7Ozs6N27N/Hx8bRv356pU6dia5v/z9KJFGcj7r0HgD1nonN8zS/PWo7G2hggNY/7zBZnCUmpFoHsdZfjkrK99ovlRzh0/sbe18cuXmP+rrM42t2Rk2pEREREslUkgeyhQ4f45ZdfWLduHWFhYcTFxVGqVCnq1q1L586deeihhzJ89jQjU6ZMyfK8wWBg5MiRjBw5MtM8Tk5OTJw4kYkTJ+bmNkTuWlltX3OzB+oG0rRC2mhsCRd7ouKMtKjozdojlwqyebnSspIP645cLPB6ElNSgPTPfZhyENRHx1suRT/8z+xXrE5MTiHsYhyl3R1xsLPB1bHYf28pIiIiYlaoX+fv2LGDjh07Urt2bdauXUvDhg0ZNGgQY8aM4bHHHsNkMvHOO+8QEBDAhx9+aLFHq4hYj5zuL5t6U5T254DmDGxfiY8eqllQzcpQ3Wye5534aN1CaceGo2nB+6TVx3jgmxvPzGYVx+4+c4UG7y/nn90Rua7viR+30nnCWuqOWUb997WlgYiIiNxZCvUr+vvvv5833niDOXPmULJkyUzzbdy4kc8//5xPP/2Ut99+uxBbKCI54eKQ/ldHVT93Dp6LtUi7eQpxsLcrQzpWxmg00i0ohVMpJdh7NudLrOfWt4/Vw8ZgoGN1X0KGZbyPa5sqpfByceCdbtUYu/BApmW1q1qalQcjAagd5MWu01dy3Z5Bc3Zyf91APlx8MEf545NS6PlV+kWicmrj8Ruj3gnGnH3xcDtiEoxMXnOMnrUDqeLnnv0FIiIiIrehUAPZI0eO4ODgkG2+pk2b0rRpU5KSsn92TEQKX8XSbrzZpSq+Ho7UK1sCO1sDI/7al0Egm/F4Y+cyJrp1a2LeF/V2PN40mAFtK9J43AoA/n65Bd5uDgR4OZvz3BPgwb4MgmY7m7RJKc+2Kp9lIPtC6wrmQNbmNrbvnRt6Jl2ayQRL9p3jXHQC/ZuVAyApOZXqIxbnuZ4rGTx3m5ScikMBPlP7wcID/LLlNF+vOkbY+O4FVo+IiIgIFHIgm5Mg9nbyi0jhebFNBYvjJuW9WfFfsHedKZsHQGuV8WR3LhaOyoi9rQ2+Hk7sGN6RyNjEDEcDpz3ViPrvL0+X7ueZ/bP4lX3dsr2PnLq+RY4lE89PDwWgfnAJagR6cupyXI6enc3Mrgze01+2nDIHyvkpMjaBTccvs+PUlRzlN5lMGAy38W2AiIiICEW8avGWLVtYvXo1kZGRpKZaTn377LPPiqhVIpIXTzQvh5uTHU3Le9Pmk9UApGYzo/V2wpkGwSVwcbQzB9QlXB0o4Zrxl1/ebjcC1p+fakRySipzt5/h9Sy2vXm9U2XiklJ4rEkwJy/FmdNvXXF5+tON+HPHWeZuTxttfbxpMNM2nszTPYVdukaAlzM/rDuep+uv6//jlnRpO09foT8wZ+sp3py7h+61/Pm0V232nY2hTpAXtjYGUnOxnPRP/57g9OV4fvz3RKZ5DkTEsPbwBZ5sHoKDnQ0TVxxh5uZTzBvQDH9P50yvExEREclOkQWy48aN491336VKlSr4+vpafEOvb+tFih97WxsebVTWIi2zqcW50am6L0v3n0+X/stzTf7P3n3HN1G/cQD/JE033bt0AWW3rLL3KGUjoIC4AQcqiCAqqAiiDGWJ4EKQIT8Elb3bsgtlFUrLLqO0hQ66d5sm+f2RZl/2Ls/79eJFc7ncfZNL7u75jucLWxvNu8quntgeabnl6NvcGywWC4Na+8k8/16/pvj9tCSAbOzhiLEdgwAIA0wRe7l99mnugz7NfRDT1g8ctnC72gSyNXWSaH/69msav05be649wZKxkfh8VyoA4FBKNipr6nDy7jN8OqQl0vMrcCbtGWa2ELaa3nhSgmBPJ7g5KmZaBoBvDtxSuq+ckmr4uzlg2JqzAACeQIAP+odjZdw9AMCPcWn4/qV2Bn6HhBBCCHmemC2QXbNmDf7880+89dZb5ioCIcTI1IWxHYLdxd1gf389StzFVtr6NzqjsrYOb/15GZfSCwEIuyRrE8QCEAelynw+pBXySmuw59oTAIANW7J96dbDQa19xeWQNqStv/jvt3qGYfP5dLzSLQTbL2ao3O/uq080Kr8htP5adtztybvPAAC/nX6Asuo6AMAXVzjId3+EVfH3EejmgHNzBypULvLUtNwOXXMGyV/HiB9ffVws8/yJu3mYvv0q/Fwd8Gq3EHg1sseV9EL0beGj9XElhBBCyPPJbIEsm81Gr169zLV7QogJqBtb+unQVnB3ssOIdgFo4eeCM58OwJz/ruPSI2GgKIqfnOw4eLlrsDiArOMZZsyqNDabhdUTO0gCWangrYm3M75/MRJ2HDZCPJ3VbuvLEa0xPDIAHYLd0TXMEx/vTDZ4eQ1JFMSKrIq/DwB4WlKNubtSsezFSBy9kYM2ga4I9XJGNZencnvFlVwkPS4SP46/Ldui/qysRjyl0MaER2jq44yHzyqweGwEXu0Waoi3RAghhJAGzmxV37NmzcLPP/9srt0TQoxo+oBw2HPY+GxoK5XrNbLnYNbgFmjhJ0zQFOLlhH/e6yF+3tNJMuZ1bMfG4r+9XdQnadKXfNKoiV1CMLZjEKJCPdS+1taGja5NPGHHYcu01FqjnVcy0WTeYbz/v6vot/wUAGHiKHVe/PW8zOOqWuXB78Nnwq7b6lqvCSGEEEJEzNYiO2fOHIwYMQLNmjVDmzZtYGsrOw5r9+7dZioZIURfc4a0xMzo5jp3E900uQuWHr6NFePbi5dJd28N9XTSu4zKxM/ui7yyGoT7NlK6zpyYFlgRew9D2vopXUfE0c7GkMXDxjc7Y+qWKwbdpjYEAgG+O6R8qiJlOixSP9WSui7LhBBCCCEiZgtkZ8yYgZMnT2LAgAHw8vKiBE+ENDD6jHUc0NIXA1r6KizvHe6NhPv5CkmlDCnc1wXhvopT+EibPrA53u7TFPY6zMv69zvdMemPC7oWDy4Otvg4ujl+jE/TeRv6+J+OrabSSa2UqZMKZOt4fHBovCwhhBBClDBbILt161bs2rULI0aMMFcRCCFWZsuUriiurJWZTsdcHGy1b2n1d3VAj2ZeWPNyB8zckYyoUA+ZsaSaYLMAbzO+/6/23jDatkXdj9PzKzBqbQLGdw7G16PaGG1/hBBCCLFeZqvu9vT0RLNmzcy1e0KIFbJhsywiiNWVZ/08ty90aIz0ZSOw6/2eal/j4sDBo6XD4e4kHH7RKsC1wXbBfVJchWdlNfgx/h7Kaurw57lHuJ9Xpvd2Cytq8d3BW7iXq/+2CCGEEGIZzBbILly4EAsWLEBlZaW5ikAIISbFNK/ung96om2gK3o282J8zYJRbcFisXBh3iCkLIxBI3uOTCB7/JN+WpfDu5Edlo2L1Pp1ptBlcTz2Jj8VPx73y3kVa2vmi92p2JDwCDGrz+i9LUIIIYRYBrN1Lf7pp5/w4MED+Pn5ISwsTCHZ09WrV81UMkIIMQ4/VweFZR1DPHDooz4AgBZfHUGt1FhST2c7jKvP1uxgayPuzsyxkeQUaObTCAem94YAAsz+5zru55WrLEOXMA/8/Gon+DSyh4OtjcVPDVRaXQeBQKBXHoVrmbLdt58UV4HPFyDYiEnDCCGEEGJcZgtkx4wZY65dE0KISW2e3AUbEx5hiZpWUA8nW+SW1ogff/tCBNhsxQDuxU5B+PdKFga09AEARAa5AQB2vNsdq+PuqUzINKi1H3xdhAH1mI6NUVPHw+e7UrV+T6bUbclxHJ7ZB9nF1Zi8+RJquHwcntlHo0C0pIor85nW8fjotewEAODOt0PFlQO6BMsCgQCHU3MQ0Vg4vy4hhBBCTMdsgeyCBQvMtWtCCDGp/i190Z8hC7O8d/o0lZnaZngk8xy0zvYcHJjRW2G5dyN7LB4bKQ5kbW1Y4PJkuzPLj6+d2CVEaSB7ak5/DF1zBtVc9RmHNbH97W54ZcNFAMD8kW3QyN5GoyA6r6wGnb+Ll1nW54eTSF+mPlngb6cfyDyu5Ermsy2oqEVjd0csPnQLf5x9BAAY2S4Aayd1RGFFLer4Avi62CsNcI/eyMGH24W9hzQpCyGEEEIMxyLmNigvL0dpaanMP0IIed5M7d1E/LeqAEqdGQPDYWvDwv7pisFumwBXhWWXvhwk8zjt2xikLxuBMG9nmbl85b3VM0yrcvEEAsTP7ov1r0dhau8mmNhFv2mUhv54Btczi1Wu8+sp2UC2Tiqw59cH9aIgFgAOpmTjk3+uI+q7eHRbchw/HLurdNvaZpw2hpN38/DlnlRUSwXohBBCyPPAbIHso0ePMGLECDg7O8PNzQ0eHh7w8PCAu7s7PDw8zFUsQggxGxaLJQ4OvxzRWuftfBLTErcWDUVruaD1x4kd0L++O7I0XxcH7PuwFwCgvads66t0C+6nQ1rKPLdwdFukLR6mcbn4AuE8vTFtJS3Npz/tr/Hr5d3JKcMLP5/Dufv5Gr+m62JJy+5Xe28gr6xaYZ3d156I//711AO0+fooKmrqFNazsTH//OeTN13G/y5mYGPCI/UrE0IIIQ2I2boWv/rqqwCAP//8E35+fnol8iCEkIZiwag2mNavGfzdFBNDacPWRraeMtjTEWPqE0cxaR/sjotz++P8KdkuvF7OkumOPhwQjr8SHyOnVBL8ye9HFT7DtEGN3R01fr0yr264iNe7h+LzYa3QyJ4DgUCAG09KkV1SpbBunVQZTt97hq6Lj6vdfmUtDzN3JGPDm51llnPkxi/X1vGR9LgInULdYc/Rfp5hVQQCAT7+JwXcQjaGMzyfWUgzABBCCHm+mC2QTUlJQVJSElq2bKl+ZUIIeU6wWCy9g1gmbA0qCz2d7SCfW6pXuBdmDAwXt+4y5J7SGFMRbPTZoJS/LjyGk50NXBw4+P3MQ5RVK7ag6iP+di5ySqrRyIGDRvbCS6cNWzaI//bgLfx14THGRwVhuYou2bpIelyEQ6k5UNaRam/yEyx7sZ1B90kIIYRYMrMFsl26dEFmZiYFsoQQYkSD2/gh7lYu3pYaf6sNFouFT2Ik52mmLMrq9A73Ri2Pj17h3ozbN5Tfzzw02LaYdF96HI62Nrj97VDU8fioqpUEy1weH39deAwA+Dcpy+CBbBlD12Zp1Vy+QuZlPl+A/5KyUMcXIK+sGtMHhIOjRQs6IYQQYsnMFshu2LAB06ZNw5MnTxAREaEwj2y7dlSzTAgh+vrl1U548KwcLf1cDLK9yb2a4NuDtxjH2rbyd8GdnDIAgD2HjZr6OXHnDW+FtoFuSrc5qWsw7uWWW0TyJHWquDxkFFRi+E9nUS4VXM7597rMenU8Pl76LRFNvZ2xamIHhe0s2HcDmUVV2PBGZ3x/7A5O332GfdN7Ke2SPH/vDbVlyyqqkpmSaG/yE3y2K0X82NfFAa900y/BFiGEEGIpzBbIPnv2DA8ePMDkyZPFy1gslrhGmcejDIyEEKIvWxs2WvkrZirW1eSeYYgK9UArf8XAeHKvMPF0OtINrdLjbJksHSesuDyUko24WznYm/xU/NzwSH8cTs0xQMkNp+/ykwrL9kmVGQAGrDyFzMIqJGcWMwayWxKFrbdXM4rw+2lhS/L7267iz7e6MO4zq0hxvK+8tzZdwvFP+osfy2d0/mJPKgWyhBBCGgyzBbJTpkxBx44d8ffff1OyJ0IIsRJsNgsdgt0Zn7PjSLqt8gXArvd7oLSqTuMxvyPaBWBEuwBM6BKMQynZmD24BbZdyLC4QFYTmYWSwJPPFyjtkr1g/03x3yfu5AEQJnZKySqBDZsFr0Z2CHCTTYglEAhQUF6D/ddlg+cHzyoMVXxCCCHE4pktkH38+DH279+P8PBwcxWBEEKIAXw0qDkuPizA8MgAzNop7GJrZ8NGVKinTtvr2cwbPZsJx9PyBZIsw96N7NE6wAVn0zSfbscS1NTx4WjH3GX45lPFedP3XHuC2f9IuiqnLxsh8/yl9CK89ucVxu1Vc3lwsBXuSzFHNCGEENJwmC3rw8CBA3H9+nX1KxJCCLFoswe3wM73esCeY4PfXouCv6sDNk1m7iKrLenW38tfDsLWKV3xcAnTBDSWq6ZOdqiMQKA6xJQOYgFhIilpyoJYAMgvr1G57WsZRait4yM1q4RxOiRCCCHEWpitRXbUqFGYNWsWUlNTERkZqZDsafTo0WYqGSGEEF0NjfDH0Ah/g22vf0sfrJ3UEa0DXMVDUFgs4TRA2sRh3o3skF9eq7C8R1MvJD4sYHzN0Lb+OHpT/27NZdV1eJRfARs2C+2C3FFapd3UQJW1mueMeFZWgyAPYcInps7MY385L/7786Gt8H7/ZlqVhRBCCLEUZgtkp02bBgBYtGiRwnOU7IkQQgggvB6Mah+osPzEJ/0RfzsX93LL8M+VLLXbOfPZAKyMvYeNCY9klo/uEIiVE9rjyz2pOHn3mcxzv70ehbC5h/R7AwD6/CBJDrX7g54YJxVMSgv2dGRcHqtFMD32l/P4OLo5Po5ugaQM1Vmg1xy/p3cg+yi/Amvi7+GDAeFowZAZO6+0Gu/+lYRXuoZgQpdgvfZFCCGESDNb12I+n6/0HwWxhBBCVAnzdsbbfZriuzGRGNEuQOW64zo1hpMdB3OHtcLbvZvgr6ldxc8Nau2LQHdHdGkiGc87sXMwVk8UzgN75tMBBi23siAWECaIeu8vxW7Dn/6XwrC2cj/Gp4HPF+DGE8Xxt9KqucIuy0+LqzDm53NIyy3Taj8AMGXzZexNforxvyUyPr/2xH0kZxbjs10pqK3jM65DCCGE6IJmRieEEGK17DhsdAn1ULnOq/VTztjasPHVyDbo09wH9xcPQ+rCGPi6CDMqSw9b/f6ldhjbMQgAEOLlhEdLhyskXDKWYzdzDbKdyZsva7SeQCBAz2UnkJxZjMGrz2i9n0f5wkzJJVVcAEB6fgVm/5OMa/WtwdKZlcf9ek7r7RNCCCHKmDSQ3bFjh8brZmZm4tw5uugRQghRrVYqGdL8kW2QOG+gTEsqm2F6N44NGy4OtgrLmTBNDzewlS/juvYcy6gfPn3vmfqVAIUpfKSV19ThnyuZKKpQHFsMALml1TKPP95xDf1XnMLuq08w9pfzmPPvdXGAC0BtCzEhhBCiDZNecX/99Ve0atUK33//PW7fvq3wfElJCQ4fPoxXXnkFUVFRKCwsNGXxCCGEWCEvZ3vx31N7N0GAmyM8G9mJl2mSFKpfCx8AgLOSaXIAYOag5uK/x0cFYfbgFgrreDjZKSyzZDN3JCt9buH+m/jsvxRM3XIZhRW1OJjyVCYD8wW5JFl7k2WD4v+S1I9dJoQQQnRl0mRPp0+fxsGDB7F27Vp88cUXcHZ2hp+fHxwcHFBUVIScnBz4+Phg8uTJuHHjBnx9mWu8CSGEEJHRHQLx4Fk5eod7i5c52UoCUvnpb5hENHZD7Ky+8Kvvasxk1uAWyC+vwfWsYgxs7YvBbfwQ0dgVv5x8gCuPhV1pd33QE72WndDj3eimlb8L7uRoP8ZVlQP1rbVXM4rR6ds48fKNb3bGoNZ+8HS2rqCdEEJIw2LyrMUjR47EyJEjUVBQgISEBKSnp6Oqqgre3t7o2LEjOnbsCDbbMrpmEUIIsXy2Nmx8NrSVzDI2W9Id2MVesy7ETFl35S0eGynzeGArP2y7kCF+3NidOfOwsR2c0RvhXx7RezvvbL2CP97oDACoUZKcaeqWK0hbPAwculYTQggxI7Ndhby8vPDCCy9g5syZmDt3Lt5++21ERUVpHcQuXboUXbp0gYuLC3x9fTFmzBjcvXtXZp3y8nJMnz4dQUFBcHR0ROvWrfHrr7/KrFNTU4MZM2bA29sbzs7OGD16NLKyqFsUIYRYqzUvd8Ang1sgMsjNqPv5cEA4AOClKGGCqG/HRBhtX339mYNLjo3m185PGLpEi8TdysWglafUTjs0YMUpTPrjgsb7VIbHF+C30w+Q9Fj1VEGEEEKIPKuvTj19+jQ+/PBDXLhwAXFxcairq0NMTAwqKirE68yaNQtHjx7Ftm3bcPv2bcyaNQszZszAvn37xOt8/PHH2LNnD3bs2IGEhASUl5dj5MiRNBUQIYRYqRc6NMYMqXGtxhIV6oGUhTFY/lI7AMDr3UNx85shOPRRb5Wvk+4KrakXQvWfwkZ6/DCTB88qVD4PAFlFVTrte9bOZJnHu69mYdmRO3jxV+XTEhFCCCFMrD6QPXr0KN566y20bdsW7du3x6ZNm5CRkYGkpCTxOomJiXjzzTfRv39/hIWF4d1330X79u1x5Ypwvr6SkhJs3LgRK1euRHR0NDp27Iht27YhNTUV8fHx5nprhBBCrISrg61MdmNnew7aBrohZWGM0tf00iGQZUigLDZSyXy6MW38sO/DXmjlL+w6PaiVn9b7NZQ9154gLbcM/1zOhEAgwP1n5eLn+i0/ift5hh3nSwghpOEy+RhZYyspKQEAeHpKJrfv3bs39u/fjylTpiAwMBCnTp3CvXv3sGbNGgBAUlISuFwuYmIkNxyBgYGIiIjA+fPnMWTIEMZ91dTUoKamRvy4tFQ4tQCXywWXy2V8DTE+0WdPx8Ay0fGxXHRsDM/RBjj1SR/Y2rDR64fTMs9x6+rEfwd7OCJTg1ZOZbXPXC4X349ti4Mp2TLLgz0c8fOk9gCAPdO6obKWB1dH5ZmZTWHk2gTU1PFRVcuVSSn9uKASo9Ym4Pr8QWCxWNiQkA4uj4/3+zU1eBmeFFfhl1MPMblnKMJ9Gxlkm/T7sWx0fCwXHRvLZurjo81+GlQgKxAIMHv2bPTu3RsREZIxSj/99BPeeecdBAUFgcPhgM1mY8OGDejdW9jtKycnB3Z2dvDw8JDZnp+fH3JycpTub+nSpfjmm28UlsfGxsLJyclA74roKi4uTv1KxGzo+FguOjbG0cadjVvFklC04PFdAMKgsqqqEoCkufWbTnVYcFXxEq2sRfbw4cP1fwlf08OXjyv5LIwNLJN6TsLP0Qa5VSqad41IlERq17mb8HMEpMPzKi4fK7cfRXM3Ab6/KHwvboV34G7PsCE9rEixQWYFCweSs7CsKw98AcA20MdBvx/LRsfHctGxsWymOj6VlZUar9ugAtnp06cjJSUFCQkJMst/+uknXLhwAfv370doaCjOnDmDDz74AAEBAYiOjla6PYFAINNVTN68efMwe/Zs8ePS0lIEBwcjJiYGrq6u+r8hohMul4u4uDgMHjwYtraaZSslpkPHx3LRsTGuMzU3cOuqcEqbbVM6o0uoB0r33EC4byO4Odriq323AADzR7TCK91DsOBqrMzrA9zsAdTJbxYAMHz4cABAULsSZJdUY0hbP3B5fNgqSQLFC8rG7H9TDfTOdFMocEbKE8VW6CuVXhgd3Rq4mAgA8GjeCcMi/A2yTz5fgJJqLrIunAIAVPFYiOjeHy/+dhGvdgvGx4PCtd5mYUUt3tl2FaMj/eBTfJt+PxaKzm+Wi46NZTP18RH1cNWE2QJZHo+HzZs34/jx48jLywOfL5vA4sQJ7ebhmzFjBvbv348zZ84gKChIvLyqqgpffPEF9uzZgxEjRgAA2rVrh+TkZKxYsQLR0dHw9/dHbW0tioqKZFpl8/Ly0LNnT6X7tLe3h729YjWxra0t/RAtAB0Hy0bHx3LRsTGOecPboKCCi5e7BKN3C+E41dUvdwIgrDjt0sQbTX2cxcHnwRm9MXKtpGJ2z/s9cPF0PDydbVFYIdv1SnS8opp4Sy1TXpYXOgYjvbAaPx1PM8h704WyhFFJGcUYsS5R/PijnSmYmV+FWVLZljMKKhHk4Qg2m4Vz9/ORXlCBV7uFqt3nW5su4dTdZzLLfj79CMVVXPx86iE+Hdpa6/ex4VwaUrJKkZJVijU96Pdj6ej4WC46NpbNVMdHm32YLZCdOXMmNm/ejBEjRiAiIkJly6cqAoEAM2bMwJ49e3Dq1Ck0adJE5nnReFX5aX1sbGzEwXNUVBRsbW0RFxeHCRMmAACys7Nx48YN/PDDDzqVixBCCJHm3cgemyd3ZXyOxWKhpb/sPLYRjd1gx2Gjtr4rrpezMNvwmTn9ALYN3t+WhLNp+fhwQDOty2LDZmH24BYY3T4A0avOaP16U1tzPA2vdgvBhUeFqOby8Nl/KQCAP9/qjCmbhYkbWwe4olOIsDI68UEB0gsqMKlrCHJKqrH+zEMUV9UqBLEAAIHiImWuZxZja+JjfDa0JfxcHQAA1Vz9M0kTQgjRntkC2R07duCff/4Rd4fS1Ycffojt27dj3759cHFxEY9pdXNzg6OjI1xdXdGvXz98+umncHR0RGhoKE6fPo2tW7di1apV4nWnTp2KTz75BF5eXvD09MScOXMQGRmpsusxIYQQYkx8vmKUZc9hw9aWg7+mdkM1lwcHW92TN4X7umDrlK4oqqzF0Ah/tPzqqD7FxadDWuKlqCB0W3Jcr+0w6cqwTVEQCwCr4+7hr6ndAEA8x21Lfxd8e/AWrmUUK93urWxJN7aiilp4OCufnuiFn88BAAoqasSVEhwb84w1JoSQ553Zpt+xs7NDeLj2Y1Hk/frrrygpKUH//v0REBAg/rdz507xOjt27ECXLl3w6quvok2bNli2bBkWL16MadOmiddZvXo1xowZgwkTJqBXr15wcnLCgQMHYGNj3uyOhBBCnl88germQn2CWJG+LXzwQofGsOfYYO2kjhge6Q+OjpmPWvq5wM/VAe/3176VWF9n0/IVlj0pqlIZxALAnRzJlD9f77/JuM6Ze89w82mJ+PH9PMm0QafvMbTyEkIIMTqztch+8sknWLNmDdatW6dzt2JA2LVYHX9/f2zatEnlOg4ODli7di3Wrl2rc1kIIYQQQ9LgEmdQo9oHYlT7QLSefxR1fB4AIH3ZCITNPaTR6+04wvrxvs198OupB0Yrp6a0DciTM4vA4wtQx+ejpo4PVwdbZBRU4o0/L8msl1VUhRN3cjGwlR8ePqswZJEJIYRoyKSB7Lhx42QenzhxAkeOHEHbtm0VBvbu3r3blEUjhBBCSL06vm7jPkWJqmp55hk3yuMLcDZN0kKaWaT5NA4AkFlYhWZfSKYrOvFJPyTcV2zpBYTdmm8vGqpbQTVw8WEBfFzs0dTHMPPcEkJIQ2PSQNbNzU3m8dixY025e0IIIcSq2LBZ4DGMkzU2Lk92n4Pb+CHuVq7a14nKKt0S+tnQlvjh6F3DFlCJsb+cQ0qWpAvwksN39NrewJWnVT6vbaCsqft5ZZi4XjjON33ZCKPsgxBCrJ1JA1l13XsJIYQQIvHX1K6YvfM6vhsTYdZyvNI1RBzIju3YGM/KahhbKrn1Lbndm3phWIQ/Wvi54IP+4WoD2R5NvZD4sEDvckoHsaYQs1o24/OsRBvMTIzFwFa+qOMLsHZSR7g5aj9dxd2ccvUrEULIc85syZ4GDhyI4uJiheWlpaUYOHCg6QtECCGEWJiezbxx4YtBiG7jZ9L9ujjI1nP3b+kj/ruZjzO2vd2N8XUOHGHyKRs2C7++FiUz9yuT7e90w9C2/vj+xXZmD9YNgQ9hS/SJO3k4c+8Z5u+9oXL9Oh4fJVWSOYHLqrn47fQDxN9W3/pNCCHPO7MFsqdOnUJtba3C8urqapw9e9YMJSKEEEIIAGyd0hWRjd2w493uACCTlFFVgsbuTT212k/PZt747fUohHg5ga1H4kdLtf/6U5RVc2WWVdTUiRNV9lx2Au2/iUXS40IAwDcHbmHZkTvYc+2JeP0Vx+7imwPM2ZQJIeR5ZvKsxSkpKeK/b926JZ73FQB4PB6OHj2Kxo0bm7pYhBBCCKnXMcQDB2b0VrnOmA6BSLifj7f7NMWyI3fQNtBVaZC7dUpXhcy/8vgMKZrHdAjE3uSnmhfcAr355yVczSjGe32bYmKXYAxceRoj2wVg3SudkFdWAwB48ddEpC8bIZOoSmTdyfsAgKFt/fHzqQeo4/ExoXMwauv/N6dH+RVIfVKCUe0C9JqBghBCdGHyQLZDhw5gsVhgsViMXYgdHR1pChxCCCHEQolaTldP7AAeXwA2i4WoUA+0DnBV+pq+LXwwrmNj7JZqaZQ3uI0fvtp7A20CXPHliNbYeTkT80e2wf1n5bjxpNTg78NUrtbPY/v7mYeo4gqnNDqYko11r8iul1FQidzSGqXbESV/AoDzD4Tjifu39IGvi4NhC6yFAStOARAm9xoeGWC2chBCnk8mD2QfPXoEgUCApk2b4tKlS/DxkYy7sbOzg6+vL2xs9J/gnRBCCCGGJ2p4Y7FY4NgIH3QJU9+leHznYJWBrJ+rA64viIGznQ04Nmz0CvcGAKx/vTM2JjzCwFa+eHXDRb3K3j7IDddNnBBKmnQ26Ds5ssF53+Untd5eWXUdfF2A+Fu54AsEiGnrr3cZdZH0uAjDIwNwJb0Q1zKKMbV3E7C1nMOXEEK0ZfJANjQ0FFwuF2+88QY8PT0RGhpq6iIQQgghREe6hic9mnlhRGQADqVmK12HKcNvoLsj5o9sA0AyDdDnQ1vBu5EdPv0vRWF9Vab1a4bT955hx+VM7QpvIH9fyhD/PfRH/fOBHLj+FCfu5ImzNcfN6ovmfi5K17+fV44/zz3CB/2bIcjDSe/9i4imXXrpt0QAgJ+bA1r7u8DHxR7uTnYG2w8hhEgzS7InW1tb7Nu3zxy7JoQQQogenOx07zX186ud8GYPYQV2Mx9nrV//xxudkb5sBN7v3wzjOwfDRstWPxYLeCkqCAAQ0Vh5V2hr8WN8msyUQ+oC+5d+O4/tFzPw2oaLOHU3D3U8vtb7vJNTim8P3kJRhSRhp/z45n+vZGLw6jPotuS41tsnhBBNmS1r8ZgxY7B3715z7Z4QQgghWvh8aCt0b+qJ8XomGJo7rDWWv9QOO97toXeZokI9tFqfxWKhc5gnzn42ALve76n3/kUmdTVv0iWRwgrF2SBuPS3FxYcFKKvmorhSmEE5vaASb226jN/PPAQAJD0uxPkHivMCMxn641lsTHiEr6SmFpKeQggAzqYJt1VTx0dabplO74UQQtQxeddikfDwcHz77bc4f/48oqKi4OwsWzP70UcfmalkhBBCCJH3fv9meL9/M72342hno3cwLLJ2Ukf8cvI+xncOxp/nHmH3VeVjcAFJoqpgT9261dqwWeJutNJ03Z6hMTVQD/9JeRfmX07ex7R+zfDir8IuwdfmD4a7ky2+2nsD4b6NMLlXE/G6jwsq8L+Lkq7R0l3E9yU/xZqXOzLuY/DqM0hfNkLbt0IIIWqZLZDdsGED3N3dkZSUhKSkJJnnWCwWBbKEEEIIUcnP1QHfvBABAHijR5jaQFZZR+QpvZrgz3OP1O7PxYEjbtWUxmcIbvUR3doP8bdztX6dAMJ5ajcmPMLQCH+E+zRSuX5FLU+mFbewshb3csvEAevYjo1x4WEBBrbyw0u/JeJZmfKsyqXVip+LMndzyhB/OxdTezeBgy0l+CSE6MZsgeyjR+ovGIQQQgghmugQ7I7Tn/ZHv+WnlK4T5s08LtfFQfF26JvRbfFmzzCMXpcgHof651td8MG2q8gprZZZVzqhUedQd1x5XKz9G5Ayf2RrnQLZxwWVaLvgGABgVdw93Pl2qNrXdFkcL/6bzxegsn6KIAB4feMlpD4pwRs9QlUGsQDQbmGs2n3x+QLcyysTJ7qqquVhzpCWal9nDMWVteDyBPBxsTfL/gkh+jNbICtNUJ8kgCbTJoQQQoiuQr2ccXvRULT++qjCcx1D3BHuy9xCKT190Pv9m6FPuDe6N/UCAPz9TndcTi9Ez2besOOwcW7uQCRnFqNTiDuazDsMALDnsHHliwGIi4vD6Ur9AyO2ivshHxd7tUGlyKi1CVrtly8QzgkrkvpEGMBvTXys1XaYfL3vhsJ2kjOL9d6uPIFAgMcFlQj1clJ6XykQCNBhURwA4NaiIXCys4jbYUKIlsyW7AkAtm7disjISDg6OsLR0RHt2rXDX3/9Zc4iEUIIIcSKOcplVZ47rBXmj2yDHe92V1h38+QuWDiqDXo398axj/vi86GtMHNQc/QM9xbPg+psz0H/lr6w4whvmWzYLESFeoDFYmFS1xA08XbGiHYBcHO0hROHeZyqtkTz8zI5+9kAjbeTlleu1X75AoHWmaA1sedaFmMwLIBhu2QDwOr4NPRfcQqf70oRN5TceFKCDQnpECVpLqupE6+vaaUAIcTymK0KatWqVZg/fz6mT5+OXr16QSAQ4Ny5c5g2bRry8/Mxa9YscxWNEEIIIQ3Eu32aioNSef1b+gL1PVtb+rugpb/yOViZLB0XCYFAABaLBS5XOEZ0eIQ/Dt+QdAse0NIHLf1d8dvpBxptM8jDEQFujkqfN+aY0v+SsnAoRfk8v7qatfM64/KqWp7CMh5fNpjOK63G/utPMT4qGG5OivMMy/vpeBoA4J8rWWjs7oSZ0c0xsr5lemwYC6MAlEiNczZG4E4IMQ2zBbJr167Fr7/+ijfeeEO87IUXXkDbtm2xcOFCCmQJIYQQojdlQayhyHdfjWnji13v90C4jwvAAlzsOWCzWTKB7MfRzfFjfBrj9t7p09So5VVlY4Jp85dczSiWefz76Qf46Xga/pnWA20D3fC4oEI85vlyeiF+f72zVttfHX8PM6Obix/vSbfBl1VcFFVKElxxeYZvFTaXE3dysf1iBpa92A7ejWjsL2n4zNa1ODs7Gz17Ks7h1rNnT2RnG742kBBCCCHE2FgsFqJCPeHmZAs3R1txIB03qy8AYEyHQHw4IFzp66u5iq2UznYNN7Pv/fruzzsvZ2DpkTuoqOVh/t4buJpRJJO46+SdZwbZX+clJzF63Tnx4wErTuF3DVvLTaGay8P6Mw9wP0/7+XenbL6C+Nt5+PbgLSOUjBDLY7ZANjw8HP/884/C8p07d6J58+YMryCEEEIIsU7N/Vxw85shWD2xA2xtlN9+VXP5Mo+n9m6Cc3MHYkqvJjj0UW9jF9PkoledxqZzj/D5rlTxsqsZxRj3y3mZ9dhGvGNdeuQOVhy7i9c3XgSXx1f/AiNad+I+lhy+g+hVZ3TeBo37Jc8Ls3Ut/uabbzBx4kScOXMGvXr1AovFQkJCAo4fP84Y4BJCCCGEaKKlnwvu5pahZzMvcxdFhrM9823XqgntMfsf4TjS6jphi+zBGb1x5EY2PugfDmd7Dr4e1cZk5TS1bw6ob0Gs5vLB5wu07ip+Jb1Qo/XWnbwPADh+Ow9DI/y12ochJT0u0nsbgobTW5oQlczWIvviiy/i4sWL8Pb2xt69e7F79254e3vj0qVLGDt2rLmKRQghhBArt3VqV3w6pCXWTupo7qIoNX+kMDA9/Wl/jOsUBJf6ILdPuDcAIKKxGz4d0kpp8KutK19FY+Ob2o0xtTSDVp1Gnx9OYGtiujgjscifCY8wd1eKwmte+i1Rq32UVEnGz1bW1mHpkdt6B5f/JWUh6bFmATXNRKm/iw8L8GP8PdSZuXWdGJ9ZJ86KiorCtm3bzFkEQgghhDQwfq4OKsehWoKpvZtgau8m4senPxuAR/kViAr1UPvav6Z2xesbLzE+F93aD/G3cxWWezeyx6DWfroX2AI8yq8AAHy97ya+3ncTi15oCweODYZE+GORgcaFfr4rFUPbBuCVDRfwtLgKRZVc/H76IdKXjQAAcatwalYJ7uSU4qWoIKXz1QJA0uNCzPlX2Nou2gYxronrLwAQngcmdQ0xc2nUK66sRWUtD4HuyrOVE2Y0AzQhhBBCiJl5OtvB09lOo3X7NPfBhM5B+OdKFgDh3LX8+gbKt/s0wcm7eeDxmfuXrhzfHjeeluDFTkHiaWmMZUyHQPRv6Yu/L2Xg4iPNWiS18fW+mwCAzxhaYvXRflGswrJqLg8rjt3F3uSnODKzD0atE352ge6O6FXfis4kPb9Sr7KUVnPh6qB+2iFpxpif1xqlF1SYuwga6bAoDgCQ9FU0vCjbtFZM3rWYzWbDxsZG5T8Oh+JrQgghhBBlXu0WCgDo0dRLZi5UDyc7HJzRG+OjghA/ux+m9m6Cf6f1ED//YlQQFoxqi4jGbniwZDjjtt/rp/sUQLvel8xI4WzPwZiOjbHj3e74a2pXnbdpCd748xI2JDxCfnkNuiyOFy9fGXtXZl5aeZp0FV4Vdw/bL2ZAIBDgdnapzPJ2C2Mxb3eqilcTZWysrJ/27WztM1U/70weMe7Zs0fpc+fPn8fatWsVxj0QQgghhBCJ9sHuuPxlNDyd7dD666NAfSscmwW09HfF8vHtAUjG4jKxYUic1NjdEfOGtUbf5j64n1eOBftvalWuTiHu4r8D3BwACKckctGyVdHSXFLSonw1oxjtF8Uq7TYsHUvdyy3D76cf4qNB4Qj1cgYA3M4uxU/HhXMK/xh/D0VSQbFo+d+XMrB0XKQh3sZzhW1lgWwdn8b0asvkgewLL7ygsOzOnTuYN28eDhw4gFdffRXffvutqYtFCCGEEGJVfFyE3RClW55UjddkkvRVNEqquBi48jQAwN5W2FmvV7g3eoV7I6OwEhsTHqncRvtgd1zPLMa2qd3AYrGw4Y3OiL2Vg7f7SFp2Ixu7oWOIOxq7O2JyrzC8+Kt2SZisCb++WzebzUJeqWQqnJjVwil1bj4twdGPhfMKP3hWLn4+zwqmzbmcXoiP/r6GBaPaorG7I1r4N4I9xzLnOdY2w7W5KRsOQJQzax/ep0+fYsGCBdiyZQuGDBmC5ORkREREmLNIhBBCCCFWRfp+3dZGu5t3r0b2MuPy+HI303ypXnJRoR7iDL4uDhyUVdcBAPa83xM1dXw42gkDmug2fohuI5tYyobNwp4PemlVNmsiSgLF5wswcm1C/fvtiaVH7iiseydH0oV0+vZrGm0/t7QaZ9PyAQCxN3OwcHRbONnZIL5+uqBGBspurc7kTZdRXlOHaduSxMvufTcMVVweFu6/iXGdGqNPcx+TlEUdK4tjUUeBrNbMEsiWlJRgyZIlWLt2LTp06IDjx4+jT58+5igKIYQQQohVk+4iHOLppNM2OoW442pGMV6KCpJZ/m7fpth77QleigrC693D0Hf5SQDCuXqv1Ae1bDZLHMRqanAbP8TdUsyuLO+FDoHwdbHHH2dVtwqbW8L9fPRt4YO8shrcqh/n2unbOKXrl9fU4Y7UeFh1ui05LvPYxcEWWUWVuPioEKfu5mHdK53Ez114WIiNCY8wpVeY1i306tTUz3MsbdY/yfB0ssOea0+w59oTi8nObG1jZKlFVnsmD2R/+OEHfP/99/D398fff//N2NWYEEIIIYRoT9fAZcuUrriWUYyezbxklge4OeLKV4MVxtO+0LExYtr6oUuYp077W/NyB7T5+hjjcyPaBWBwaz8UVdbite6h2J/8VKd9mFJuaTVuPi3BiJ8kmaBL61usmUQsYH7vmkovqBC3jh9Myca6V2Sf//bgLVTV1uH9/uGMY6F1seHsQ3B5isHWoZRsDGhpGa2w0qytazG1yGrP5IHs3Llz4ejoiPDwcGzZsgVbtmxhXG/37t0mLhkhhBBCiPX5/fXOmLrlMhaOaqvzNlwcbNG3BXMwwhQIsQC827eZzvtzspO9BX2hQyAWjY4Aiw2F6Wa0aanq09wbb/QIwztbr+hcNlX6t/TBqbvPFJZ/+p9hpwBS50lRldp1VsTeA8eGjWn9dD9OItklVfju0G2lz59k+EzMzcoaZCnZrQ5MHsi+8cYbBu/mQAghhBDyvOrRzAupC4cYrOVNE4a45W7h1wj3coXJjta83FHpelwtsrl+OaI1Wvm7arTu/JFt8Gq3EABAq/lHNXrN691DGQNZU8sprZZ5POff64zrLTtyB43dHdG1iSf8XB0Unq+t4yPuVi7yy2vwUlQQnJWMta2oUd66zKS4shYpWSXoHe5ttpZRa+taTHGs9kweyG7evNnUuySEEEIIadBMGcQCQNtAzYJFVZp6SwJZVVS1yJ6fOxDrzzzE5vPpACAOYhu7O+JJsepWS+9GdnCwFY7tHR7pj8OpOUrK6YzpA8Nhz7HReiywqfyXlKX0uRl/X4O7ky2Sv45ReG7RwZvYdiGj/u9buL94mLjBqaSSi+N3cjGgpS+EbfCaG/PzOaQXVGLx2AgMaesPTyc7sNksLDtyBzeflmDTW13AsWFrtU1NSLdqWsP0O9Ll5VMkqzXDf4MIIYQQQkiDdPyTftj0Vhd0CvHQe1vTB4YDAF7uEqxyPaZxmSKB7o6YMTAcIZ5OmFG/PQCY3CtMZr1Xugbhqw6yrYoBbo7iv78bIztP651vh4r/3vFed4zrFIQR7QLQWsPWXktTLDU/LQAUlNdg24XH4iAWEFYYHLspDOYzCyvRflEsZv9zHVO2XNZ6f+kFlQCAb/bfQufv4vH+/4RZjn87/QBn0/Ixcm2CQoZsQ5DepDWMkZWOXWmIrPbMOv0OIYQQQgixHs18GqGZTyODbCuisRtuLRoCR1vVrZydQtxlHoum/hHNo+vVyB5nPhsgs85r3UNxJ6dM3FLZ2t8Vrs+Af97tiju5Fait46NrE0miKk9nO4zpEIi99YmlHGxtsO/DXqjj8+HrIumS6+Fsh/NzB2LcL+cVuvdauvhbuXC256BHMy+8vfUKrmUUK6xz82kphkYE4M9zkizR1zKK8dqGixrv506OJBtzLU/YLfzYzVz0q894LVynDE2/OIwTn/TDD0fvIMJATWtcnqQbug1L2OL54Fk5mno3ssjAVroVlsbIas/qW2SXLl2KLl26wMXFBb6+vhgzZgzu3r2rsN7t27cxevRouLm5wcXFBd27d0dGhqQWqqamBjNmzIC3tzecnZ0xevRoZGUp76ZBCCGEEEL042THUZs7pWOIB36a1BGTuobg0peDcPrTAZg5qDl2Teup9DUOtjZYMb499k/vhXnDWmF8VGPhtoLd8UaPMLzdp6nCa0QtxK91F46bbR/sjqhQxazMge6OmNI7TNO3aDHe3noFk/64gD/OPGQMYgFJB2L58aXaBO1DfzzLuPxxfSuttIErT+PozVysSDVM25p0N3Q2m4U1x9MQveoMFh9WnqjKnKRDV4pjtWf1gezp06fx4Ycf4sKFC4iLi0NdXR1iYmJQUVEhXufBgwfo3bs3WrVqhVOnTuH69euYP38+HBwkNWwff/wx9uzZgx07diAhIQHl5eUYOXIkeDzF+bIIIYQQQojpjG4fiKXjIuHr4gBPZzvMGtwCIV7q58xtF+SO9/o102gMcbivC+58O1ShmzGTKb2aYPPkLrj8ZbRG5VfF3ckW6ctGYMlY9fs1BJVBHYuFG09KsCHBsuftFanj8bHowC3xnMR1Ut3QWSwWfoxPAwBsTHiE1KwSs5RRFdmuxRTJasvquxYfPSqbZW7Tpk3w9fVFUlIS+vbtCwD48ssvMXz4cPzwww/i9Zo2ldTElZSUYOPGjfjrr78QHS08IW3btg3BwcGIj4/HkCFDTPBOCCGEEEKIOTmo6eYswrFho39LXwDCFlzpsaZMTs7pDw6bhT4/nFR4blhEAADglW4hWBl7FwUVtVqW2nBYACatv2C2/Wtr97Un+PPcI/x57hHSl41AnVSGa/m6i2nbknBu7kATl1A1vkyyJzMWxEpZfSArr6REWNvi6SnsCsLn83Ho0CF89tlnGDJkCK5du4YmTZpg3rx5GDNmDAAgKSkJXC4XMTGSbG6BgYGIiIjA+fPnlQayNTU1qKmpET8uLRWOCeByueByuYyvIcYn+uzpGFgmOj6Wi46NZaPjY9no+Fg2Yx6fr4e3RLiPM2xYLIR6OeJgSg7+SXoCAOgQ7AafRvYIcrNjfO3YDgH4PCZcXK6d73bFzstZuJVdhnMPCgxeVnXWHE8z+T5FdDk2T4sk3ZW5XC52JWWKH9fVyfaqrKipA5fLBY8vMHmWb2W4XEkZuXV1Fnn+MPW5TZv9sAQNaGSxQCDACy+8gKKiIpw9K+yfn5OTg4CAADg5OeG7777DgAEDcPToUXzxxRc4efIk+vXrh+3bt2Py5MkyQSkAxMTEoEmTJvj9998Z97dw4UJ88803Csu3b98OJyf13V0IIYQQQkjDUsEFzuWy0NlHAA87QHq46ZJkG+RWSRb82L0OTEOEt6axkZSvegTg913qcPwpG7FPrH6kIABgTQ/t5qoFgGNZLBzOtBG/fmaipI3upSY8/PdItoW9qw8fd0tYmNueBycLaM6r5QGfXhIW5KUmPPTxbzBhmc4qKyvxyiuvoKSkBK6uqrOEW8AhNJzp06cjJSUFCQkJ4mX8+i4GL7zwAmbNmgUA6NChA86fP4/ffvsN/fr1U7o9gUCgMgHBvHnzMHv2bPHj0tJSBAcHIyYmRu0HT4yHy+UiLi4OgwcPhq2trbmLQ+TQ8bFcdGwsGx0fy0bHx7KZ+viMV7J8TVoCUCVpRRwxYjjjeif+S0VSfjYAYFzHQOy+9lTm+fOf9YOPiz3GQZiI6VlZDdwcbTFotfAeuJE9B+U12geG5qTLsUk/9RCHM+8DAIYPH46ZibHi51wDmgKPHsusf+mZMOiv8o3AS/VJvcypoqYOuHQCANCmTVsMt4AyyTP1b0fUw1UTDSaQnTFjBvbv348zZ84gKChIvNzb2xscDgdt2rSRWb9169bigNff3x+1tbUoKiqCh4dkXrS8vDz07Kk8I569vT3s7e0Vltva2tJFzALQcbBsdHwsFx0by0bHx7LR8bFs5j4+AkgaSI5+3Ed5WaQaUlZN7Ijmfq74/ugd8TJnB3vxa4O9bBHs5QIA8G5kj/zyGgxs5Yv912WDX2Pwd3XApK4hWB1/T+9t2dhwkFdRB18Xe9jasFFazcX8vTcwpkNj9GnuDY6NYsszhyNpcc0ule2S+uf5x/Kri9XyYRG/Uw5fcpxZbLZFlEkZU/12tNmH1fdFEAgEmD59Onbv3o0TJ06gSZMmMs/b2dmhS5cuClPy3Lt3D6GhoQCAqKgo2NraIi4uTvx8dnY2bty4oTKQJYQQQgghRFPSyX1a+SvvvTe0rT8AoLG7IwCgQ7C7zPMcG+Yeg4c+6o1VE9pjybhIcIw8DvTWoiE4+/kAzIxubpDttVwQh17LTmDC74kAgDXxadiX/BSTN19Gq/lHsffaE5Wv77tcMZGWMrV1fJnH5hppKTuPrFmKYNWsvkX2ww8/xPbt27Fv3z64uLggJycHAODm5gZHR+GP/9NPP8XEiRPRt29f8RjZAwcO4NSpU+J1p06dik8++QReXl7w9PTEnDlzEBkZKc5iTAghhBBCiD40DVaGRvjj73e6o6W/sKW1RzMvfDa0JX44KmyYURbI+rk6YFwnYc/E1IVDwGYD/17Jwld7b+hfeDlOdsYJI65lFOPtLZdlsvjW8QX4eGcyxnRsjK2J6bicXoTVE9obZH88vgAv/noeXs522PhWF4NsU1M0/Y5+rL5F9tdff0VJSQn69++PgIAA8b+dO3eK1xk7dix+++03/PDDD4iMjMSGDRuwa9cu9O7dW7zO6tWrMWbMGEyYMAG9evWCk5MTDhw4ABsbzdKwE0IIIYQQokr3psJZNVzsVQeBLBYLPZp5wdNZku24Xwsf8d+2bPW38I52NrDn2OC17qHiZX1b+OCHF9tpW2yDWv96FHa82x3JXw9Wuk787TycuJOnsPxpcRW+3ncTB64/xaHUbIOU525OGZIzi3H8Th4EAgF4fAGKDDQFEo8vwJPiKuUraBnIFlbUotCM0zNZGqtvkdW0K8CUKVMwZcoUpc87ODhg7dq1WLt2raGKRgghhBBCiNj8kW3QxLsRRkQGaP1aDydJUMvWsttwU29nPMyvwJReYejf0hdjOjZG6pMSZBZW4uOdyVqXRd6fb3XGlM1XZJYtHhuBq4+LMbJdAFwdbXHyTh5e7hqMIA/dZ/boueyE+O+iilr8cvK+TtupqKnDjksZiGnrDy5P0s340qNCTKyfR/fox31Udv/WxAf/S8Kxm7lY/3oUYuq7iwPAs7IarDuRhiER/ipeLaumjodO3wqHQd5fPIxxzPDzxuoDWUIIIYQQQqyBi4Mt3u/fTKfXBro7YuX49nB11D7hzp4PeyE9vwLt68fa2nHYiAr1QFSoB5Izi7H5fLpW27u1aIjM44Gt/GQeT+oajFe7heLVbpLW4KhQD8hbNi4Sc3enarVvkZSsElTU8tSvyOD3Mw8BADsuZ+KrEa3Fy0VBLADM2nkdC0e1QYcQd9hzdOuheexmLgDgj7MPZQLZOf9ex+l7z7AlUZKQ6uLDQrzbV/l3o6Bc0hJbxeXBRYtAtqC8Bi/+eh5jOwYZbEyzJaBQnhBCCCGEECvwYlQQBrfxU7+iHDdHW3EQqw8vZzukLR6mcnzsjIHhWDI2UqPtvdxV9+lmdqtJ/qSJ5MxipV2Ub2eXYuL6C5inQ6BdpSLA/uXUfZy+90xh+fE7eXh7y2Wk5ZbJLBf1Pj1+O1e8THp60LJqrtoequvPPER6QaVBsktbEgpkCSGEEEIIIWp1CvWArZqWwAA3R5lAS52DH/bQt1h62XQuXeXzu69qFzCfvvcMrb8+ilVxkqBROs4UJexiEn87D2/8eUn8+LP/rmPw6jOo5vJw+l6+1PaEG4y7lYvIhbFYuP+myjLVyGVpbigokCWEEEIIIYSopcmUPsoyKivT0t8FLd0sO9BKelyo8brz6zNE/3Q8TbxMAKCay8M9udZWJtkl1eK//7mShft55dif/BTxUi2yuaXVWB13D+9sFY5L3pL4GDz+85f1mAJZQgghhBBCCKOl4yTdhDVJMhXk4aj1Pt5rZdmB7Iu/JqKipk6jdZkao5MeF6HV/KOIWX1Gp/1/titF5nH0qjNYIxUoA7KBsyrlGr4Pa0CBLCGEEEIIIYTRJKlxrJ0ZEjaJbJnSFV+NaI0eTb203oexE/B+NyZC7218uUf1WNk6Hh8TfkvE44JKvff19b4bSM+v0Oo1v556oPS50iqu+O/Fh27rXC5LQ4EsIYQQQgghz6lp/ZrBw8kW7/Ztigmdg2See6dPEwBA/Ox++HZMBF6XmpNWXr8WPni7T1OtxsdKe7dPmE6v08TIdtpPdyRvb/JTcWsmU3KlS+mFuJSueRdkVbYmPsakPy6oX1Gaio+9qFKS8fjvSxk6lsry0PQ7hBBCCCGEPKf83Rxw5avBsGGzwOcL8HF0C+SUVuNaRjGm9AoDAIT7NkK4byOjluPTmBaY3Lspeiw9ofDc272bYEPCI5237e5kh4tfDEK3JcfVrjt7cAuZRE3SCsprUM3loefSE5jcKwwfDWoOJzsblFbX4dz9fMbX6Ep6rKwm+CrGyKrKMm3NGua7IoQQQgghhGjEpn7sK5vNQqC7IwLdHdEpRHk3YmMJcHPE/97uhlc3XAQAuDpwMDO6Bd7oEYpZg1ug1/cnUFzJlXmNl7MdCipqmTYnw8/VAXY2bNTyVI/H/WhQc6WBbL/lp8R//37moXg+WktQpyKQ7RTqITPN0AvrEvDvtJ6w41h351zrLj0hhBBCCCGkwejaxBPtg90xqWswri+IwdTeTWBrw4azPQftgtwV1n+/fzOFZX+80Zlx2wKozuwb4ukEAOgSZvog3tB4fAGWHr6NuFu54PFlg/frWSWYuztFySutBwWyhBBCCCGEEItga8PGvg97Yem4dgrjbd/vJxu0jmofCHtbG4VtDG7jx7htdVPUrJzQHgCweXJXbHqrizbFtgg3npSI/z5w/Sl+P/MQ72y9Ai5P8X1rOz+uJaJAlhBCCCGEEGLx7G0locvYjo3x1YjWeKlTkIpXyBqnZN2uYZ4IcHNAuyA3AICzPQcDWvnqV1gzGLk2AQBQW8fHk+Iq8XKumu7U1orGyBJCCCGEEEIsXnOphFOrJ3bQ+vXv9W2K/5KyFJbveLc7+AIBOMaeB0iJxu6OMoGnPv448xCLD99G1yae4mVPDbRtS0MtsoQQQgghhBCL5+JgiytfRSN1YYxOr1c2MxCbzWIMYm8vGooRkfpP3aPOkY/7GGxbiw8L54m99EgyFdA/VxSDdwAoqeIyLrcWFMgSQgghhBBCrIJ3I3u4ONjKLNM0+y6Hrbjex9HNla7vaGeDda90xIJRbfBSlOZdmJWJaOzKuNyWoVzy4mb11Xv/8ubvvWHwbZoSBbKEEEIIIYQQq/XftB4KyzqHKmYeDvN2lnl8/esYfBzdQuW2WSwWJvdqgrd6hulVRkCYyEqev6uDePojVVwdbdWuo62mPs7qV7JgFMgSQgghhBBCrFa7IHecnzsQvcO98edbwql3QrycGNed2ruJ+G83J82DwzYBrujT3BueznY6l3PxmEi4OnDw5fDW4mW/vNYJHA0CWRs2C6PaB4ofN7LnYFiEPz4f2krn8kS3Zs7ubC0o2RMhhBBCCCHEqgW6O2Lb293Ejz/oH47dV5/g1W4hMuvxBaqn4FGGzWbhr6nC7YfNPaTx6658FY3XNlzEwFa+aBPoiuSvY8Bms+Dn5oCKmjp0CtFszloOmwVnO8lUQ1fnD4atDQt1fAG+P3pHuzcDYeKs1gHMXZ2tBQWyhBBCCCGEkAYl3LcR7n43FPYc2Xlm+WrmkjU070b2OPqxZHwru771dbRU66ombNgsvNO3KU7fe4apvZuIxwXb2rDQtYmnTHIndW58MwSN7K0/DKSuxYQQQgghhJAGRz6IBYCOGraAqrJ1SleN1ots7Kb3vkQ4bDaa+TRC4rxBeLtPU5nndr7bXaNtjI8Kwv7pvRpEEAtQiywhhBBCCCHkOTG6fSD4AgE6BLvrvI2+LXzg5mgrM31NmwBX3MoulVlvSu8wrbfdK9wL5+4XKCxXlRCKpWxeITkt/FzQLshd6zJZKmqRJYQQQgghhDwX2GwWxnUKQlOfRnpt579pPTCuY2Pser8nPhvaEpsnd1Hcl4YBprQJnYOx4Y3OCss1yWysTjWXp/c2LAkFsoQQQgghhBCiheZ+Llg1sQOiQj3wQf9w+Lo6KKyjSyDrbMfBoNa+DNtS/bqtU7oiyMMRc4cpz2JcXdewAlnqWkwIIYQQQgghBqZNK+pXI1ojJasEA1r5MnYVVtd9uG8LHyR8PhAAsOwIcxbjOhMnujI2CmQJIYQQQgghxMC0aZGVT+BkDG/2CDP6PkyJuhYTQgghhBBCiIH5uNjr/Fo/V+FrQ72ccOWraK1e+9trUWjl76KwPNDdUefyWCIKZAkhhBBCCCFET2/0CBX/PaFzEDqFuOu8rX/f64kP+jfDf9N6wruRdgHx0Ah/HJjRGy39FIPZhoS6FhNCCCGEEEKInhaMaouJXYLR2t8VbD2zDId4OeGzocoTN6lja8PG0Y/7YP6+G9h2IQMHZ/TWqzyWiAJZQgghhBBCCNGTDZuFtoFu5i6GGIvFwndjIvHViDZwsLUxd3EMjroWE0IIIYQQQkgD1RCDWIACWUIIIYQQQgghVoYCWUIIIYQQQgghVoUCWUIIIYQQQgghVoUCWUIIIYQQQgghVoWyFhuQQCAAAJSWlpq5JM83LpeLyspKlJaWwtbW1tzFIXLo+FguOjaWjY6PZaPjY9no+FguOjaWzdTHRxRHieIqVSiQNaCysjIAQHBwsJlLQgghhBBCCCHWqaysDG5uqqcyYgk0CXeJRvh8Pp4+fQoXFxewWPpNgkx0V1paiuDgYGRmZsLV1dXcxSFy6PhYLjo2lo2Oj2Wj42PZ6PhYLjo2ls3Ux0cgEKCsrAyBgYFgs1WPgqUWWQNis9kICgoydzFIPVdXVzohWjA6PpaLjo1lo+Nj2ej4WDY6PpaLjo1lM+XxUdcSK0LJngghhBBCCCGEWBUKZAkhhBBCCCGEWBUKZEmDY29vjwULFsDe3t7cRSEM6PhYLjo2lo2Oj2Wj42PZ6PhYLjo2ls2Sjw8leyKEEEIIIYQQYlWoRZYQQgghhBBCiFWhQJYQQgghhBBCiFWhQJYQQgghhBBCiFWhQJYQQgghhBBCiFWhQJYQQgghhBBCiFWhQJYQQgghhBBCiFWhQJYQQgghhBBCiFWhQJYQQgghhBBCiFWhQJYQQgghhBBCiFWhQJYQQgghhBBCiFWhQJYQQgghhBBCiFWhQJYQQgghhBBCiFWhQJYQQgghhBBCiFWhQJYQQgghhBBCiFWhQJYQQgghhBBCiFWhQJYQQgghhBBCiFWhQJYQQgghhBBCiFWhQJYQQgghhBBCiFWhQJYQQgghhBBCiFWhQJYQQgghhBBCiFWhQJYQQgghhBBCiFWhQJYQQgghhBBCiFWhQJYQQgghhBBCiFWhQJYQQgghhBBCiFWhQJYQQgghhBBCiFWhQJYQQgghhBBCiFWhQJYQQgghhBBCiFWhQJYQQgghhBBCiFWhQJYQQgghhBBCiFXhmLsADQmfz8fTp0/h4uICFotl7uIQQgghhBBCiNUQCAQoKytDYGAg2GzVba4UyBrQ06dPERwcbO5iEEIIIYQQQojVyszMRFBQkMp1KJA1IBcXFwDCD97V1dXMpXl+cblcxMbGIiYmBra2tuYuDpFDx8dy0bGxbHR8LBsdH8tGx8dy0bGxbKY+PqWlpQgODhbHVapQIGtAou7Erq6uFMiaEZfLhZOTE1xdXemEaIHo+FguOjaWjY6PZaPjY9no+FguOjaWzVzHR5NhmpTsiRBCCCGEEEKIVaFAlhBCCCGEEEKIVaFAlhBCCCGEEEKIVaFAlhBCCCGEEGLRuDw+HjwrN3cxiAWhQJYQQgghhBBi0aZuuYJBK09j//Wn5i4KsRAUyBJCCCGEEEIs2pl7zwAAm889MnNJiKWgQJYYTV5ZNU7eyQOfLzB3UQghhBBCCCENCAWyxGj6Lz+FyZsvY9/1J+YuCiGEEEIIaQCoeYSIUCBLjKaylgcAOHnnmZlLQgghhBBCCGlIKJAlRscXUN0ZIYQQQgjRH91WEhEKZInR0QmHEEIIIYQQYkgUyBKjE9BoBkIIIYQQYgAslrlLQCwFBbLE6Ph8c5eAEEIIIYQ0BNTTj4hQIEuMjlpkCSGEEEKIoSzYdwNvb7ksnuKxjsdHSlYx6njUevI8MWsgu3DhQrBYLJl//v7+Ms+3atUKzs7O8PDwQHR0NC5evCizjZqaGsyYMQPe3t5wdnbG6NGjkZWVpbCvQ4cOoVu3bnB0dIS3tzfGjRsn83xGRgZGjRoFZ2dneHt746OPPkJtba1x3vhzhmrOCCGEEEKIIQgAbEl8jPjbeUh9UgIA+O7QbYxedw6LDt4yb+GISZm9RbZt27bIzs4W/0tNTRU/16JFC6xbtw6pqalISEhAWFgYYmJi8OyZZDqXjz/+GHv27MGOHTuQkJCA8vJyjBw5EjweT7zOrl278Prrr2Py5Mm4fv06zp07h1deeUX8PI/Hw4gRI1BRUYGEhATs2LEDu3btwieffGKaD6GB41MgSwgxsjP3nuFuTpm5i0EIIcSE6urHr20+nw4A2Jr42IylIabGMXsBOByZVlhp0sEmAKxatQobN25ESkoKBg0ahJKSEmzcuBF//fUXoqOjAQDbtm1DcHAw4uPjMWTIENTV1WHmzJlYvnw5pk6dKt5Wy5YtxX/Hxsbi1q1byMzMRGBgIABg5cqVeOutt7B48WK4uroa+m0/ZyiSJYQYz73cMrzx5yUAQPqyEWYuDSGEEKOirn6kntkD2bS0NAQGBsLe3h7dunXDkiVL0LRpU4X1amtrsX79eri5uaF9+/YAgKSkJHC5XMTExIjXCwwMREREBM6fP48hQ4bg6tWrePLkCdhsNjp27IicnBx06NABK1asQNu2bQEAiYmJiIiIEAexADBkyBDU1NQgKSkJAwYMYCx7TU0NampqxI9LS0sBAFwuF1wuV/8Pp4Go4/FN+nmI9kXHwDLR8bFc1nps7jwtFv9tbWXXhrUen+cFHR/LRsdHvYKKWny+6wbGRzXGkLZ+JtuvtsdGIBXI1tXxFF5Hx9iwTP3b0WY/Zg1ku3Xrhq1bt6JFixbIzc3Fd999h549e+LmzZvw8vICABw8eBAvv/wyKisrERAQgLi4OHh7ewMAcnJyYGdnBw8PD5nt+vn5IScnBwDw8OFDAMLxtqtWrUJYWBhWrlyJfv364d69e/D09EROTg78/GR/sB4eHrCzsxNvh8nSpUvxzTffKCyPjY2Fk5OT7h9MgyH8euXl5eHw4cMm33tcXJzadQQCSuNuLpocH2Ie1nZsrhWwANgAgPhcc+AxG6lFLMyO4MHB7FW2hmVtx+d5Q8fHstHxUW77fTYuPmPjdFo+1vSoM/n+lR2bq/ks7H/MBiC8YSsqLhH/nZh4Hjk3AOmQxhz3nM8DU/12KisrNV7XrJf3YcOGif+OjIxEjx490KxZM2zZsgWzZ88GAAwYMADJycnIz8/HH3/8gQkTJuDixYvw9fVVul2BQABWfXTCr+87/+WXX+LFF18EAGzatAlBQUH4999/8d577wGAeH1l22Eyb948cTkBYYtscHAwYmJiqDsygJmJsQAAbx8fDB8eZbL9crlcxMXFYfDgwbC1tVW63q6rT7A8Ng0bXu+EiMZ0vExF0+NDTM9qj01qDjbfSwEADB8+HAAwc77w/FPo2QZv9w4zV8kMymqPz3OCjo9lo+Oj3p6/rgLP8gFIzqWmoO7YiM7nIm5ubsisEPaC7N69B6JCPcT3nIBpy/48MPVvR9TDVRMWVU/t7OyMyMhIpKWlySwLDw9HeHg4unfvjubNm2Pjxo2YN28e/P39UVtbi6KiIplW2by8PPTs2RMAEBAQAABo06aN+Hl7e3s0bdoUGRkZAAB/f3+FbMhFRUXgcrkKLbXS7O3tYW9vr7Dc1tb2uT1JXnpUiMvphXi/XzPJQhbbLJ+HuuMwd89NAMCsf1Nw6lPm7uNENw+elePsvWd4pVso7DjMOeWe59+JpbO2Y2PDsRH/rVBuM51/jMnajo82qmp5sOewwWZbb1eZhnx8GgI6PspJN95Y4n2bmNTpgcPhKLyGjq9xmOq3o80+zJ61WFpNTQ1u374tDj6ZCAQC8bjUqKgo2NrayjR1Z2dn48aNG+JANioqCvb29rh79654HS6Xi/T0dISGhgIAevTogRs3biA7O1u8TmxsLOzt7REVZbqWxIZgwu+JWH7sLvZceyJeJrDwQfk8Cy+fNRq08jQWHriFP84+NHdRyHOABesNeohEfnkNWn99FC+vv2DuohBCLJj0VLE0POz5ZtYW2Tlz5mDUqFEICQlBXl4evvvuO5SWluLNN99ERUUFFi9ejNGjRyMgIAAFBQX45ZdfkJWVhfHjxwMQdi2YOnUqPvnkE3h5ecHT0xNz5sxBZGSkOIuxq6srpk2bhgULFiA4OBihoaFYvnw5AIi3ExMTgzZt2uD111/H8uXLUVhYiDlz5uCdd96hLsI6epRfIf6b4sTnV9LjInMXgTwHBCoyo6t6jliWI6nCyuRL6YVmLgnRlLohWIToi6kxRHoZ3WM+38wayGZlZWHSpEnIz8+Hj48PunfvjgsXLiA0NBTV1dW4c+cOtmzZgvz8fHh5eaFLly44e/asONswAKxevRocDgcTJkxAVVUVBg0ahM2bN8PGRtLVbPny5eBwOHj99ddRVVWFbt264cSJE+LuyDY2Njh06BA++OAD9OrVC46OjnjllVewYsUKk38mDRGfzjLPLTr2hBDSMOWX12DkTwl4oWMg5g1rbe7iED0JBJZZ7ffgWYXCMrq3ICJmDWR37Nih9DkHBwfs3r1b7TYcHBywdu1arF27Vuk6tra2WLFihcrANCQkBAcPHlS7P6I9Ot8Qop/Sai7sbNhwsLVRvzIhhJjAxoRHyCmtxu+nH1p0IHv63jOcvJOHOYPDzV0Ui3U3pwyvbbyIZ2U16lc2MaYWWb7Uopk7kvHHG51lnq+t4+Pcg3x0DfOEs71FpQMiBmZRY2RJw0Q1Zw1fXmk1+Hym7j9mKEwDU15Th3YLY9FxEXPae4FAgB/j72Ff8hPG5wkxtGouD0dv5KC0muZqfJ5Zy/n9zT8vYfP5dPx1IcPcRbFYn+9KscggVhnp+40nxVUYtS5B5vmVsXcxedNlvPdXkqmLphM+X4CHz8otPqeMJaJAlhiFdAcVS/9Z0nlDP/G3ctF1yXF8vDNZ4TmqxNDf3RxhGvoqLo/x+asZRfgxPg0zdySbsFTkebbsyB1M25aEqZsvG3S7dLawLtY2NPZpSbW5i2CxeAwV0ZbsYb5sd2P58m+/JKy0SLifb7Iy6WPe7lQMXHkam86lm7soVocCWWJ81nV+JFpae/I+AGD/9admLsnzqaC81txFIEZQW8dH7M0clFRaXqvnf0lZAIDL6ZTMjVgPK57RSSuGatUrq+ZaRAuhLhUmbKkX1UmnOLZQO69kAgB+jL9n5pJYHwpkidFRq9zziw69/ugzfD6tjr+Hd/9Kwut/XlS/solZws0tMT9riwutrby62HI+HT2WnsDDZ+VavY4pzVPkwli8v+2q7HoCAS48LDBxN2Ttj5x08NtmwTF8d/CWActjPKbKAJ5bWo1qJb28rA0FssToKJBt2FSddi0zByIhlm/3VWGrZ0pWiZlLooh+1cQaPQ/TBC3YfxM5pdVYsP+mVq9Tdpt29GaOzONT957h5fUX0GvZCV2LaBLSLbK1dXxsSHhkxtJYlvt55ei25DgGrz5t7qIYBAWyxCikT4p00/P8ojoM/Ul/hNQSpr1d9d1gLZ1AIMAfZx7izL1nAGSzcloaY30N6ettXawtLnxeuhYDxhvzevqu8PxUa+Hdda31UJviN3WsvnIis7DK+DszAQpkidHRzcnzi469YdHnyUz6c3laLHtxfvCsAnfqE2ZZssQHBVh8+Dbe+PMSAMuutKCeFsQaPQ8tsiLanj5UrZ9XZt4kWboctoIK8+eO6PRtHMLmHsLtbM2vP6b4hlrytUUXFMgSo7CmViQLL55Voxte/VHvBu30XHYC1zOLZZZlW0G20pxSSRmvZhQ9py2yFvymiQKWlbV7WVppr6QX4vjtXHMXA4Dqa8ujZxUqniXKFNYH08PWnNX4NcasbNmY8AiT1l/Ao/xK8TJrSISlDgWyxOjo1uT5seeabDdOui81LKbx5s9TK4Om9lyTnVPXGj4he46N+O9xv5y36NwCllsyQpRjW9C5MrOwEi/9loipW67gSnqhWctSXlOnstXQ3L93yzlqmimvqUN2ieV12/324C0kPizArquS+7T/XbT+uZUpkCVGZ8k3ZMSwZu28jsraOvFjOvL6k26lYvopxcol47B2T4ur9M6maI0tezZyA/j4Ftwka42fLzE8C4oLZZRUcfH2lss4IDclnCWVd69UZZs5p7EqqeQiYsExletI/9zN8RlaW2Vt5+/i0GOpYjIsPl+A2Js5KoNcU7/T1CeWl0xQWxTIEqP49dQD8d98C++58KS4Cn9SRjudyV9jpmy+LHlA97sGJV0p9N3BWxi25iz+tZJkRpq4nV2KnstOYOiPZ/TaTkP42llyrGjJZSPWp6SSa9AujutOpCH+dh5m/H1NZrm5w6EdlzKw9PBtCAQCrIyTzBdqY4Q7celhPXU8Pi4+LGCsIFwVd1erbVmzbRceY+H+m0aviKvmMn+X9yY/wbt/JaH39yeNun9tNIRzOQWyxGBq65h/vJb2O6mp4yl05Vl08FaDmVPL3C48lHy2DeUCaE7Sn2BVreQ7uiHhkVZJJKzB4dRsAEB6QaWaNbUjXaN/Ob0Qr264gLTcMoPuQ1/yFULm7sly/n4+5u1ORXlNncJz9KsmgGECw8zCSrRfFIvXNhpuvuTCCi7jcnO37M3dnYrfzzxE0mPZFlhjd3keve4cJq6/gDc2XlJ4bkviY/UbkPrB55Zafr4BZb7aewObz6cj8UGBUbZfx+PjdRXf47Np+QAkGaWLK2tNdt954SHze24IvWsokCVqXXxYgO5LjiPuluqkBMqSFljaD+Xz/1Lw0m+JCsu5DWDQu6W5l6vdpOymMuff65jwW6LRpigwlk//u27uIhiVoW7nlJ1yqrk8jP8tEefuF+DtrVcMtDfDkC+zub+Zr2y4iL8vZWBNvKTl6MaTEtzPK7O4czqxXm9tEgZX0hWgxqLP9DvKKup1UVotG2jLDyswtFv1FZ6XdByLK/1rP5xq+qEshv50iquYKzrUufCwAD8cvcP4XcgtrcaAlafEwSoT6fNmcWUtOiyKQ9S3cTLrGKtOY9IfFxiXZxYZttLYHCiQJWq9suEickqr8Y6aGz+ukqDA0u559iY/ZVxuZTGNxVB13i2p4uKGBY7B+C8pC5fSC5Esl93WEkn/fuJv55mvIFbkfxcVWxlq6/ho902s+HF2sflaFvYlP8G6E2k4eiMbNXU81NTxMG1bksw65qxkSckqFv/9uL51vLiyFiPXJiB61RmjnSu12WxNnWYtGQKBANO3X8W83Sm6Feo5VFLJxbzdqbisLvAxwF33AyNkxFUWF+pa3D3XstDiqyMy41oNSd9AduflDIWGBHX3XUdvZGPD2YcabV+0rawGEPQAup9bX15/Ab+ceoC/LiheX7otOa7VvKwpWcL7oopa2fNYjZJuyfpS9n2oMWAFjblwzF0AYvk0/dErq6W3lu6llpxcxZqNXJuA9GUjzF0MRpbaspSeX4FHBRXwdLLDooO3zF0c0zFQdbT8T5kFIKOwUqYm3Zxdd2fuSBb//XbvJmjh56Kwjjm/mqPXnZOUo/7/HBN0KdT0Pc/bnYK/L2UifnY/hPs2UrluVlEVDqYIu6wveiECtsYYkNjALD1yGzsuZ+LvSxkWe+5WRdlpRNeuxbN2CnvCfLwzGWM6Nta1WErp07X4wbNyfL4rFQBw6YtB4uU1dXxU1fLgaGfD+Lpp265qvA9Rq91bmy6rWdM4DN1KqW8lYXq+bpUv0ntVltuirKYOZdVcuDjYarzdJYdvIz2/Ar+9FgW2lpUiooDamtEZnRiMspuQe7nl+HrfDdMWhsF/SVn4+eR9pc/XWWAgy+ML8NeFx7iT07DGQvIFwMGUbGQWNowaXkO6nlmM/itOYfKmy3jh53MK42BVJUWx1MBcU7rer+jyrs0RyAoEAsz5V7Z7+O5rT1BRyzQOVVK+zMJKjVsgDU30MVnSnKF/X8oEAPx++oGaNWXP61b+8zCZhxreqKv6Rmw+9wiz/0k2S88CZd9Vy/kGy9KnRfZZWY347w+3S4LT5MxitP76KD6SS3ili3m7UxF3Kxf380w7VKiofh5WQ/9uLWFIkXxGbWlqe0LIWX/mIWJv5SIpQ3n2a1sb5d8xXQNzS0GBLDGJrZokFDCiipo6zPn3OpYfU56hzxJObvL+S8rE/L03MPRHzSfUtgYX81iY9W8q+vxgOdn7jOlRfgW+3JOqUeAuH+jIU9Ud2phf4QfPyvHwmXFvZIyb80Sg4pFpJGcW4z+5mvjCilqsir2nsC6XJylhnx9OYtTaBKOXj5mwHObIkxN3KxcTf09U2qXx36QsfPC/JJVBvnSxzZ1AS54lXnMyCipx6ZH6G+mMgkqF77K0hQduYffVJzhxx/TDIQzdImtsNgYqF9M0PvtVBEza2HTOtDM77LycgY7fxmF13D2Dn6t5as4D606k4WCK7OdWyVDZqI2DKU+xT8mwNmXS8yuw7cJjjcdnc1Wsp6onSlm1fu/N3CiQJQZjyV2INbkJtMRkT5Y+x9exmzm4mlGsdj356Y3SSs13Q2GOVsuJvyfifxczxIlNlOHzBahgyBIrTVXPAWO9t2ouD4NWnsbAlactMru3Lt8mc8Q0yqZlKFNzzAHzJU6TtMia3jtbr+Dio0LM252qdJ3DqTn453KmRtuzpDj2jzMPEbHgGFItrGvflC2adR/tu/wknhSrHxNYVq1bYh19SMeF0pWHRs6pZBVSs0p0Ooebug7gyz3CXnxrjqcZ/LqmqgIp6XERVsTew/Ttsi3Z/7uQodc+5benypTNV1BeU4f+K07hq703sCFBw7HMTMvqP7uGPKSi4b4zYnKWdJOQXQlsPJcurqnXpKvUlceFGLL6DI7dNH1WPmWkz7eW1m30fl453vsrSf2KgMI4T3OeeKQ/U/mL89xdKRjz8zmDV2rk1Xf/UpfYZOqWy3haonosoqqx3MZq4JGe9kc+46Y8Lo+PL/ak4kj9VDrGVFlbh6E/nsGSw7dVrsdiWdb5yZoIIMxWbIpspcoOUWF9F0OA+ftXomEWUktqkV18+DaquDzMlUpClV9eg4tKpskwFUN3HzX3R15cKflurIq/j+QCy4tmP9tlukRko9YloL1U0jtNmXpogTEDZ2EvmLuM3/VnZczXX6bhH8YkPWzih6Pq5/plsvTwbfRcdgIF5TUqg3cL7aigMQpkicGY64IlEAgQfytXpnZ42XUOlh29hw1nNe8OM2vnddzNLVMbnBWU1xg9qCyvqUNpNVemNnnL+XSlUxyZw7oTaTq/1pwnTtmbWdmC7LicieTMYqVzrhnbybvP1K6jskXWSL0ipJORqOsOufNyJrZfzMD7/9M8mYiItjdLu68+wZ2cMmSrCf4B9V2Jy2vqjN4rwxpvGE7cycPItQlYHa/Y/VleNZeHlKxig58fpTf31R7V+RaWHr4t04Ir/ZnLdymsqeMhu0TzTKOGkFdWLTMm7ebTUjwuED7uufQEJq6/gFN3rTs7ufQ4fn0qD/JKq7H9YobKbp05JdUKLYzS3fLZcne5m+4xJz96nuiSqZapFddUOS4MfVVbfuwufjpxH9GrTouXxd7MwcrYuzLfnbs5wrnGFx24hR/jJfc7f114jPt5knnI3/hTdU8rdY7eUKz01bRyTtqtp6UYvOo0YusbY34/8xDZJdX489wjxvnAGwoKZInBmKvi9djNXLy99Qp6LTuh8Nw1FYPfdXH+fj6ivovXqpuIJmJv5ohr4vl8ASIWHEO7hbEyqdgXHriFqVssZ+5LbTMt7kuWTF2g7f08ny8wWJChyY2VIecM1ER+eY3G3b1UBZLGql+RDgDqpC701VyewvjFXBNktxWXy0BN0CVVXEQsOIYBK04ZZHvPq8mbLmP0unPYfkm3bnjKM99Lnlc15i+npBq/n3mIvy9liG/mZLYj97Me8VMCeiw9gZtPTde9t+vi4+gv9z375aSw9aW2/hx3+p76Ci1LtltqmhpdfqG7r2Zhx6UMvPRbIr7Yk4pvD0p6XKTlluHbg7dQUF6Dh8/K0X3pcQyU+zylA2mOfCRrYgKBQGWCPmtxnyE/gqlyXMgPTTKkgnJhb6l3/0rC2hP3MUMqOZYoUP+TYXxw9KozAIRzy57R8/eqTQZpedLnzMWHbyMtrxzvyjXGFFaYvnu/KVEg+5wQCAQKtZqXHhUio8BwNWrm6vqqqvXM0F0tf63v7nHIgN0ms4oq8e5fSZi4XjhhdbVU4hJTTHmhMy2j0Zk7ksWt5vJjlX6Mv4c915gTh+SX16DpF4fR/MsjBhmfqcnX1JQVBnml1ej8XTx6MlTEMFE9RtZQpZIorKjFZ/9JElDV8vhISMvHg2flaDX/KHp/fxJbzqcbZF/atlhquj4LLKWfTVUtDyfuCHs6ZBVVQSAQYP2ZB0YJJkyZVGNXUhZO6pBoJ/GB7r0REuvPxfqOJ5NXw+Xh+O1cPCuvUbmedK+cjfU3v9Kt/PKVWKKuhYdN0A1eG+bujstEIBDgwbNyjaapk5mjWcv3UlPHw+x/rmPu7lRk1AcS8VI9kUb8lICNCY/w+a4U8XL54RjSc9qbe2jgzB3JCP/yiMbBjkAgQI4GPUwk6+taMsugSWXk/y4a9nwibY+KuYE1+Wgva5AYTReaHldN1vtbx4pFa0GB7HPizU2X0ebrY3haf6G/nV2KCb8nou9y688aq+pmlscXiG9SLZV8C5Y23TgB4HFBBfZcyzL5PLi6zH23YN9NPC2ukomBkzOL8WN8GmbtvI7zD/Lx9b4bqKytQ3FlLR4XVMh09b5qgBZ26ZtZSxgzJ7r5lx4HqAqPr2L6HSP0i5i/7wbib0sCopN38vDaxosYtFLSLWvB/puSMuhRBG2/UZquz2Ixfza1dXy0/vqoeJ5IADh3vwBLDt/Bm3p2F2PyzlbTVJDkl9fgk3+vY/Lmy1pX/kz644Le+zf0t/BhfgWmbrmCT/5hzuhdxxfgp+NpePHX8+JlonOn9HFX9nsXLc4oqMTflzJMnvhP/rtpafkQAGE3xUErT+Pr/cxdu4sqahk/N23PSequeaJW6+TMYpmK6q/2pmLS+gvg8QVy2VvN259f1INAk+6ndTw+Fh28he5Lj2PnZcsKPozxlSyr5qL70uP4eMc11HB5SC5gmSU5mD40napKW5r+bizvTGF6HHMXgJiGqDZwz7Un+HBAuMGy4aZmleBSeiEm9wxT+4OauysFb/QIQ5tAV4PsW0TVuLrT955ZdTctTQKtfstPAQC4dQJM6BJs5BJJ6JIBMv52Lu7lliJYaq7vokpJAPfKHxcBAC4OHPx8UnGOSOnxK9o6eiMbsbdy8cXw1uJl2y9moEuYp87bNARtswnW1PHFY3fkyd8D3skpRaC7I1y1mFxdXlqu7L6+O6Q6sZIuwXR2SZXSjL4qaViZIhAw34i1nH9EYdlTE4+ZNAbprvGl1Vw42Jp2XKCxArGzafmMy6XHr4mIWmeli6Ju2o3o1adRW8dHRU0d3u7TVKMy8fkCvLnpEnxdHLBsbBuNXqN2mxZ0d1pTx4M9xwbLjtwBAGy7kAFne8Vbx47fxqGVvwuOftxXZrk276Way2Mc1sF02PLLa8UttqJyAcI5OKXHzGtTWVlVy0N5TR1Kqrj4Mf4e3uvbDBGNZe9XSqu5aGTHAVvNBZDPF+BeHvN5mkl6fgWGrjkjPg8uOXwHE7uEaPx6a3QwJRvPymqwN/kpOoW4YdM9G1zadAWHPuqr17VeG/qeqlS16Ooj6XGxRutZQmW8uVEg+5wyVB3lqHXCaW0cbW3UjkfdcTkTOy5nIn3ZCAPt3XiSHhchKtTDJPtSdaHXZgzgpfRCEweyun2LMgqrEOwnecy0lYxC5mBC1Txp6ojGofi5OoiXKbsxNiWOljUCM3ckK31uz7Un6N/CB8GeTvj55H3xvMn6/OY0/QrmlVXD18VBp5vwHkuF3aqn9m6i8Wtq6/hI0nDieGUfMdM9gPT3+vjtXPi42KNdkLvG5bIEAqUPVFM1H6up/Xzyvl6vFwUz0jd6yu75CsqFlWmiIOpsWr7GgeztnFLxecRQgawlTWXX8qujcJSrCPn9NPN0IHfqK9iky6/NfXar+Ue1Ktt2hi6nAoHstHXaXEO7Lz2OkioubG1Y4PIEOJiSjR5NvWTWabdQmPH3r6ld0ae5j9JtvbnpklbXl9Xx93SrzDMRbZMP8fkC7L72BB2C3RHu24hxHenT8n9XhQHhzaeaB/+GwBcI1M7drsxgqWRRhnY7u1TpczV1PKTnV6KFXyMVvUw0/95bYxJCadS1+DljrJryi48K8K+KydGNyRg/wo93MidzMsbHJ9/CJb0PS6qZl6fP5y594tFmkvrjd/JQJNcFVyAQYMnh2xqP05Tuym2O8VPn7ucbLKunvPl7b4gTcIiCWJED15/is/+ua53IStPyibarz9tRlQVzyeHb+Py/FPE5bO6uFOzVcIJ5jg1b43JJB71Tt1zB6HXnNHuhEun5FSpvSoxB+jyvyTmkqpYHgUCg07GLvZmjcVfcG09KMHpdAs7fV3+DL//91cXea08wUKoLvLLv8s4rmTLnD23ObdI9/dVdX5U9/7RYdniJtuf9fy5n6pVp/caTEry/LQn3cpmDiCotuqfX1PFkWshNHZTLH7tha84qrLMqPg27ryrer4iCNenWwEQln+uUzarn29W3ktQSu5drY9/1J5jz73VErzotzsqtSmWNeSrRrjwuwn863rumGXiqKlXqeHzx1GNvbLyEIT+ewRt/XhLPtytva+Jjk5XN3CiQfc6Izo36nCIzCyuRJzeuM91I4wTMxZTXkOuZxeK/q7k8zNwhCaLVXcwMMWZUV9oEoIqvlfpbi9f9fSkDo39OkFl240kp1p95KDNOU57Mjb10IhCpghjrxkH+t/Lqhov46bjkRm+dni1Pmprx9zX8cyUL/yZlavU6Tcde59e3aulz4xp7i3k8ex2Pj/VnHmLnlUxk1rfW79aiS5c2x5app4FonFtNnTDpkKZTGQgEAvRfcQrD1pxFSaXhx37dySnFqrh7KK+pkxkLK1sZpvq9p+WWofXXR/Hpf7rNZSnK9qmJtzZdQkpWCV7ZcFGnfWnr453JMo9VfZWlzx9Odrp1xVb3NVO2/wS5wF6bU9G1jCJ8tisFL6/XfWzzqHUJOHIjBzGrz+i8DZEz93R/L8qUVGmWPwDQ7Hry6+lHmK1kvLWm9KlkZmrdPHdft4oIS21NS84oFv8tGv6kij5fk25NdB8eFKfkmiNSYSHT1gxceRrtFsYir7QaF+sTTJ1Ny1cahG9NTNd421ZeZ0KBLNFOSSUXfX44ia5Ljsssv55lnOkLSqu5iF51GmFzD2ETQwp0wDipHEQ/7MraOpn5woztYEq2zM28qgy1ADDuF0lyE1Nfz2z0CWSl/n6s5Vx0mYVVMgkhymrUBwgnpLK3Sg+9EY1z2pf8BK9vNHxyH0DYpV7eTyfu406OsJXuxhPTttY9K1Od+VWacNojza5yY34+hw1nmbsc6kv6d6BunCMTATQPsJm+1h/9fQ0pWcVYevgOpm65gve3qZ5rWuTNTZJWG+mMuoYy9Mez+Ol4Gsb+fA6t5h/F2uOKY0V/P6041lza+jPCY6ZrqwQAHFQxJY40dQnNjH1DpWmljKOtbqOulFUaPHhWjvKaOi16X2j+QVyTChh0ZcjPXb7SyBAVhFyeAIUVtRptS93YVXlVtTxsOZ+u9Zyo+vSk+XqfYqVrvlxGbiuPLTSaq1b6XKvP16Sxu6PuL1ZDm+ulMYnGgx/XMBO9Nh+nNeeRASiQfS5Id8UU3RBKn+qfFlfh5J08jS4SjwtN2/K65Vy6eIqEbw7cYlzHWDWSAoEAbb4+huhVZ1R22xIIBDiSmo0HDPOsyXtcUKFycnf5mlqmmtuyai5SsorN3vVI0yy7TKSP2fy9il1j1B3S74/eUbuPA9efYtmROwibe0hmOh3pGxB3J2ESpJk7khVaRfh8Ab7ck4p/GAJRQxj641mDTCekLc3T+gsw/KezWgVg3x26LdN1WZNxVZp8j2uluq7qUoHC16LbrLKx39Lzo2rSbbCOx5eZcmPdScUgUx/SlTmiLm4r4+4prLdFTRczG6kbf11vzuU/MmWbUTeuvtbI2YJF7+9uThnOpim/edO1RZapzud6ZjEGrTyNAStOaTxeU9PDkJpVgkUHma+L8spr6gw277Iq8j11DLXHTt/GKVSgM+5fy+2ujL2LBftvYjhDF2RV9Ln8ajMNV3ZJlcp5aC2pQTY9v0J8XyBfgZvNkERPek5ofe5ntK280JRAYEmj1YWMMSexsiEF1oKSPT0HpG8mmS5kovkrPZ3tEOzphPkjWiPQ3RFTNl/Gmz3DZNaVHutlivTw8rV65TV1aCSXMVHhwmmAAE8gECDpsaTb7qGUbHSXS/oACKci+eB/V8VjiNKXjUBJFRe5pdVo4eeCW09L8W9SJmYMbI6ckmoM/+ksvBvZ4cpXg5XuV53I+mQTv73WSWb5v0lZWD6+vcbvUVppNRdsFkvhs1VFn7l0z+fqd+GRacVk+Mh4fIHMxObSpFtlhkcGKN1H3O1c/O9iBv53McNoSbQ07aJqSKq+Yzml1TiTzUKn0mqsO/lInLxFG1W1kuC8tIoLN0fVGZOVFaeayxNn25VO8qVLxdW+a0/xanfNMoCeUFHjrc34Yvm3deRGjsav1YSq7442p0CWTPd63cqiGLwwb0jdsVNVyWcIfAGwKvYuflLTFdrBVrc6fqYbwmM3hcf9WVmNxp+vphUK2y6orqQoqeSi/aJYTO3dBBsTHiGysRsOzOgts46xK0QNuXlNWse0HfIiqpQqM+C52CDfYwFw4WEBXl5/Ad2aeGLnez0YVzN3Ho1DKdnYc+0JPh/aEoPru6YzJRfssfQE0peNwE/H02DHYWNav2Y6d6eWp80Ybm2cu5+Pd//SrPeNqajrpacLa+9aTIHsc0D6vK7qAllYUYvCilq89FsiRrYLwJ2cMszbnSqzzue7JI/n71U+JtFQ5K9JEQuO4faioXBUUWN+/I7+3SQEYD45SreC8PkCTJZL+HAnpxRDfxTW7O77sBde+FmYKOZ+Xjk8ne0ASMYSAoo3o+qmNpF24LrugaS0ai5PnInx4ZLhRqvdlFbL128fou9FXlk14y2zqpYH6ed+OHpX6UT1xZW6tzhr6kmR8aZ6aRfkhhSGLv+/nn6AQ6nZ+Oe9HvBqZC/z3IT1l5BdYoNdy3UfK8fUlVoVZUeqzddHceWrwcgrq5ZJxKNLq+HOK5kYFumv0bqaTqdwL7cMPo3skfKkBNnFVXi5q2ygLF9MQ98sLDnM3Cvh+6N3MLiNH+NzTKQTnunaIqvpKUMYZMjuIyEtH7Y2LHRr6oUAN+N1EQSE709dEKuPcb9dxJxIyeNqLg+XHkkya6v6fKV7Z6iaUk4b7RcJz+sbE4TDcpim3VM2Lt1QFuy/ide6h8q0/BuTJomFpBlj+hJtWlyVEQD4X31W5ouPlGdnr1Mxr7gpfLhdOBtA/G3J9yhBSY+VnJJqrKrvNfKWXCOJPkfhUIph7oXkqevNYg4af7esPDjVBgWyz4HcUkktpmh8mbpaS+lWFWV0GaumLaZSPnhWjojGbkrXib2t2RgCVQQC2ZrOvy48xvyRbWTGAvdbcVLhdaIgFpBt2VHWFXFlrB6ZORk+HIFAoHWNtHQWXy6fD3u2aeecZCLdGs6EzWJha2I6vt53E13CFKdJUnVzIv/chYfMNwlMmxAIBLiaUYRmPo3g7mSnsoyamP73Vb23oYx0wH7ijuQmg8sT4MGzCvx88gEGtvLFyri7WDauHVr6u8jMv2gIJVVceNXWwclO+aVG2bHiC4BRaxMUujbz+AKlN0qqGOLmUlrM6jNgsSTfk8eFlfh8aCsAwkqQkWsTVLxafweUjEv99dQDHNGit4R0V21VrdGq3MuVHVbBdEg3JjxSaNEuqeTitY3CxE9pi4fh70vG7eWj6RhZfVo9bhdLPs8P/3cVV6TOZarOS0fVtNjX1vFxL7cMbQNdwWKxIBAIsPOK7sMepv2VhGflNehsgmnmbmeXylyzjalUy2liDH0X87igQmlvIGNYe9w0yQK1IfpNy7uvIsuvtbcKmsoqhuEjzzsaI/sckJ6PT9MLuSZrmWQiZoagTPomo6yaq5hUwBBdiyFQ6HLV4qsjMo8zlcx1qo0Hzww75tjc3YwMRd24TBYkCTMupysGvaq+AvEaVnQwfZbHb+fhxV8TEW2g+eMM8R1SRjqQnbL5isLztTweXtt4EdcyivHy+kSjlGHk2gS0+fqYynVUHSum78G0bUlKb5RUMcb4QOmy/3rqgXh6hP9dzECWEVrbuTw+tqaxxS01yqQXaJ64plZqYKeqOYq1kZZXrjD05Fu5sZz388rEnxcgDNRuPjVu4jNlU6nI23Qu3SD7k0/MUqwic7V0hmWmusgP/peEkWsTxGXTtdJB5OjNHCQ9LsJfarona4upGtUk9wr1tO1RZKiypWaV4JsDNzH2l/OMPWGM5ZKGc2lbAunztvyMC9LDEfYla56RHgBe7BSkX8EaoAZyK6gRnQJZLpeLzMxM3L17F4WF1vMjel5Jf6H1HSduqCxzGu+PYRmvvitNRU0dIhfGYrPc/KGGKBdfYL73pzGG8kl379F4M1Z4xlOXnEBdi64mmHocxN4StppIdw+3VOpu0KTjuqJKrkbJynSlap5RbdNpyLf+acoYY4vkVWvQk0Uf+69nIymfjYUH1Sc7U+dZWQ0GrzpttFbQz3elqpyW7c0/L8sEHfoGZppgyhZraCmFym+rflWTQVoZgUAgroDbdF7YTVib6aekjf/tPHKkel5UGvg7+/ZWxUoz6UqktNwypBox0NO2C7M+179TdyXf2VHrhJUM+iRBlCYQCMT3Og3RK3/IVkZKHwdtK9RGtVee64I0fBoHsuXl5fj999/Rv39/uLm5ISwsDG3atIGPjw9CQ0Pxzjvv4PJl1RNEE/MTnRjVnerNnREXEGZnW8MwnURdfQuCMTOtCbsWmyLDo+6vZUq2JB+MFJTX4N8rmRpnSraAw66RUjXdRHVpsZPHnE1Z+wNmrEQUqjwuqFDbAil/rP+9ovv0K+qoulk21Xfu6A3jjKNiYs8xTmenIgPORfvZf9fF2Y4NIZ5hrGVR/TjzrCLFFuInxVX4Wuo3ZsrumIYkP/1XZgVLaRf97Wpa0kWkrwtJj4tksvXyeALsvJyBpwy9FbJLqrA1MV0mUJV3Ob1IoXXc2KSvpYNXn8GodQkoqqjVuIeYNjhaB7K6l8GYn6MAwOFUxe7mPL4Ac3el6DVdliXS55tgZ6TzLbEOGh391atXIywsDH/88QcGDhyI3bt3Izk5GXfv3kViYiIWLFiAuro6DB48GEOHDkVammGnGSD6kT6tazquVVmrhykDHWUTVatrWTFEEfPLa/BIRWuCJtSNeQIMnzpf/sZg6pYr+PS/FCxSMnURAHFCKm0YO7toQ/LrKd1aYfQxfM1ZDbqZy65gzFwsqqYZMtU5RdMu5YZgrJvM748ZbnzUDQN342VqiRON11c2F7GmcyKaiyZBzg9HFfMc9F2he7I0kQfPynHsZg6mbUuSydb7tKQan+9KZZw/tsfSE/h6302M/UX1OV26S7cpiDpkSF+fcsuqcS2z2OD70rbVXZ9YuqLGeJWU8hWR6fkVEAgEOJjyFDsuZ2LOv9eNtm+z0ONCYKyKQ2tmCY1RpqJRsqfz58/j5MmTiIyMZHy+a9eumDJlCn777Tds3LgRp0+fRvPmzQ1aUKI76a+z6Nyo7iuuzdyRhlReU4dbT0vh6WyLmVJjhqSJaneVJTUy1O9XmwzCTO5q0GKsbWImdW5JTY90Jb0QyfU3CruvPsGyF9upfb0mnx2PL1A77rGhMtacxYZWUctT2yIr32uNKaOpoajq3WB5M/XpgSVMYKTLtEWmpusUM9pgQTh20BzTTOlr3u4UnH9QgMMf9YGzimnJjHNOYGHQSt3H4atL2qbJPMiGJDoXSZ8HWGAZ5bNTyJmhws8n7+vV88qY1wP599F/xSk0dneUqRTUK1mkhanUoOfSVyNaM96X2XPMn6DS0miTJ8HaaXQl+/fff5UGsdLs7e3xwQcf4O2339Zo5wsXLgSLxZL55+/vL/N8q1at4OzsDA8PD0RHR+PiRdkugzU1NZgxYwa8vb3h7OyM0aNHIyuLuTa8pqYGHTp0AIvFQnJyssxzGRkZGDVqFJydneHt7Y2PPvoItbWWPw5OE9I1M8kZxZi7K8WstXm3s0sRNvcQfoxXbF14eX0iJvyeiOhVZ7Sas1FaiYlrm/Vh6HFh0l2RXl5/Qfx3rYaDozUJKszRVVYbqrrVmYKl1ITW1Kk+TgUVsnMyGvPmVtVH0lASlAHCygFNf2vmxmEbP5DNLa3GqHUJmPTHBfUrW5i/L2XiEYx8/QAAXTZJREFUcUElDqYwZ4cWiW6t+VRHmioy0DhLSyEJZCXLBBDARYt5y41h+bG7elV8swDklVZjwu/GSZYn70lxFQqkvhtrjTiVlKkVVqi/b+vf0odxuaquxUvGqo9diHUze3t827ZtkZ2dLf6XmiqZp7RFixZYt24dUlNTkZCQgLCwMMTExODZM8m8jx9//DH27NmDHTt2ICEhAeXl5Rg5ciR4PMWbuM8++wyBgYEKy3k8HkaMGIGKigokJCRgx44d2LVrFz755BPjvGkTkz5R38ou1XqeR0MbtkY4Rc2P8Ypd0G88Ud/d7buDt5FfXsPYLffojWycvmfa2mZLJd8F+1pGEerU3GSLvisCgWLWZhFLb5Q01U0Fk0f5FWgy7zA2nH1otjKISE+7xcSUXW1/OaX8hstSAn9D+HxXisnmy9SXKT53fYdnWAJ1Q1mMMc7z6E31w1KsiaiCVL710xRzlqujz++guIqLrkuOy8wVTIyHraQJ3M5GeShja2P+75ils/YrsNaBbHV1NZYvX47hw4ejc+fO6NSpk8w/bXE4HPj7+4v/+fhIalxeeeUVREdHo2nTpmjbti1WrVqF0tJSpKSkAABKSkqwceNGrFy5EtHR0ejYsSO2bduG1NRUxMfHy+znyJEjiI2NxYoVKxTKEBsbi1u3bmHbtm3o2LEjoqOjsXLlSvzxxx8oLTXudACmYMrU96ZwN7cMnyppUVY1FvR5N/aX8/jhmGZdkd7ZegUj1yYwdk+19O61GYXG6VJzJDVb7VQHA1acAqB/t/SGZtsF5UluGtLZ6fS9Z7idbXnXDOl5hE1J2Y2nNVHVRT+rqBIrlczrKD0/NxGS71qsSR4JY3uqRw8eQ2d8JsoNj/SHrZKAVVWLrKGHb1m7yb3CsGlyF3MXw6C07tcxZcoUxMXF4aWXXkLXrl31/pKkpaUhMDAQ9vb26NatG5YsWYKmTZsqrFdbW4v169fDzc0N7du3BwAkJSWBy+UiJiZGvF5gYCAiIiJw/vx5DBkyBACQm5uLd955B3v37oWTk5PCthMTExERESHTWjtkyBDU1NQgKSkJAwYMYCx7TU0NamokrR6ioJfL5YLLtZzurZacwn3j2Qd4oX0A3BxttXrdybvPMGOA4vfEWlpDuFwu3ttmnCyd2y88wvgo5nnV1p95iE8Hhyt9bS2XCzu2ZKqH74/cwkcDmsHeVjIGpdaCEz0ZazjA/ZwSvP+/qzLL5H/jFXLjAC3pHGAIS8a0xRd7dZ++RPR5pBdU4HFBJfq1EFZa1tY2rM/p1Q26Z8wOdHPQ68ZamSmbr+DmgmiZGz5TVHAKBJZ77dFUflk1uFwu6nh8cORupGdsv6rkVcCPceYdv1hZrbpHhinV1fHA5XJxMPmp1DIulmtYsUq0N29oCyw9arjkcObmaMsGS8BcccBWshwAeDzLvV8xhy+GtkCZ3KwPfD5f7f2K6HlT3ddosx+tA9lDhw7h8OHD6NWrl7YvVdCtWzds3boVLVq0QG5uLr777jv07NkTN2/ehJeXFwDg4MGDePnll1FZWYmAgADExcXB29sbAJCTkwM7Ozt4eHjIbNfPzw85OcKaPoFAgLfeegvTpk1D586dkZ6erlCOnJwc+PnJjnPx8PCAnZ2deDtMli5dim+++UZheWxsLGPAbC4FBTYwdYdQO7YAS7rwMOei6q/Yt4fuYM/5W3inleiGR/Ov5C8HEiHfqaCgrBKW3/kVWLvjME7cNc74oC/23oJzbgqUfZYHDx0WZ6gVNjZI1os9FgsHjmTZ+rPpuJ32EC81kdyQCs+B5h3bpMzCLUcBGD7xw97Y0wrbPXz4sPhvngD49qrs70zyvGV+Vtpyzr2OKG82kvJ1G5Fy+PBhZFcCy64LP4+ZbevQ1BW4XwIY6zNqxBGgvM7yzwciLZwqUVfDQl614cu86K9jOPmUjaktefB3AiorjH9duHv7FozxezSln048wIO0e4h9wsasCB4aO0ueu/tU+WeY/jgD5hy91enbOFjKtfDSpUsovSfAZ4mS3/nyXedgAaPbGqxnj27D2n970rIys3DuVAaYrhWnThxnXA4AKddT0JA+B30x3ZdkP32Kw4c1y7QfFxdnhFIpqqzUvGed1ncPjRs3houLi7YvYzRs2DDx35GRkejRoweaNWuGLVu2YPbs2QCAAQMGIDk5Gfn5+fjjjz8wYcIEXLx4Eb6+vkq3KxAIxC3Fa9euRWlpKebNm6eyLEwty9LbYTJv3jxxOQFhi2xwcDBiYmLg6uqqcn+mtC37MlBaZLL9/f12FzTxdoaXsx3mXIxVu/6NIjaGDx8qTO6UGK92fZH4J4oXwUotb1ovzu2PbstOafUaQ2jSpiNwM1X9ijoaPnw4ZiYyf/blvu3wchdhi+0fCY8ASMYqD44ZjEb2HMxMlJysrhfb4c/hA8WPS6u4wOWTxim4nrY/MM4Fq0ePblh3S3Z6kaB2vTD731R8NqQ5eoZ5ouiC7GcyfPhwAFB6HKzN8OHDcenAbSTl6zbGftiwYWjxteR71Si0LYb3CMWyo3cBPDZQKSX6NvdC6pNSoM56WnybNW2C91r7YtIGw8/JvvOh8LdxtNAL/7zUzSTfy13pDeMG8lCm8H38kMJBpxB3bJ3cGfYcNr66dgJQ0uLjG9AYyDPd3MXyqnmWEcQCQJeuXdAn3FvmO3cqm4JYY2rfsRNwt+FM0RMSEoxxo9uiyi8DXL4AyRklOFTfNX3EsCGYe/k44+vat2+P/z1QnBP+ecV0XxIQGIjhw1XPasHlchEXF4fBgwfD1la7HpS60GZYp9ZnkpUrV+Lzzz/H48eGv/FwdnZGZGSkzDy0zs7OCA8PR/fu3bFx40ZwOBxs3LgRAODv74/a2loUFckGaXl5eeIW1hMnTuDChQuwt7cHh8NBeLiwW2Xnzp3x5ptvircj3/JaVFQELper0FIrzd7eHq6urjL/AMDW1tai/plapzAv+Ls7a7VvW1tbbL5g+iRUfu7O6lcygln/Gi+IBaDys9+fko3/rmVj0OoE/HBMNuGWDccWNhzZ1/IFst9pDsf03ylzs2f4PF/8/SIeF1biw7+vg22jeMNurt+fsdja2sJGRVINddg2svWmHBsb2NraYuM5w19LAGD9G11QVGk9QSwA2NjYwM7I35nbOWXYetE489w+D65mFCPlSZnwt62id/a+6+YLYi2NjQ2nQZ0LrYGAZZyKgu5NPTFvWCujbFsVjg0btra2eKt3M7zTNxyOUhmvXZwclL+OpuaRwXRfwmazNY4lLDF20fqb3rlzZ1RXV6Np06ZwcXGBp6enzD991NTU4Pbt2wgICFC6jkAgEI9LjYqKgq2trUxTd3Z2Nm7cuIGePXsCAH766Sdcv34dycnJSE5OFjer79y5E4sXLwYA9OjRAzdu3EB2tuTCExsbC3t7e0RFRen1niyBqae3kE7wMbCV8pZzeYkPCoxRHCLncnoR5u1OZU6KJABuPpWdT1R6LJ1AIGhwycM0oS4XAE/JZ2KN82eqok/yHvnPiAXjZs51sLXOGxhjZxOu5vLx7UFKiqcP0RFSl9GYEHORn6GgV7iXQbZbU8fHxC7BBtmWdlRfez4b2pL5VSbsmNDSzzC9VU0turXm9+mWSOuuxZMmTcKTJ0+wZMkS+Pn56ZXsac6cORg1ahRCQkKQl5eH7777DqWlpXjzzTdRUVGBxYsXY/To0QgICEBBQQF++eUXZGVlYfz48QAANzc3TJ06FZ988gm8vLzg6emJOXPmIDIyEtHR0QCAkJAQmX02atQIANCsWTMEBQm7V8bExKBNmzZ4/fXXsXz5chQWFmLOnDl45513LKqLsK5MHXiwlPytdH2W7P+mtmJ8e7POq2tJBBDgNblkNaKsnetOpGHTuXRsfKthZbzThLocYsp+YisomYkYU/bXjQmPzFASy+bhbGfuIhA1RKcDZRVYRFZDmmLLWkhXsvi62KO5rwvO3VfeWPDViNbYeTkTM6Obo5W/K6JXnWZc71pGsUVkApbPYGwJGdItoAhaG9MhEKPbK05Lak20DmTPnz+PxMREceZgfWRlZWHSpEnIz8+Hj48PunfvjgsXLiA0NBTV1dW4c+cOtmzZgvz8fHh5eaFLly44e/Ys2rZtK97G6tWrweFwMGHCBFRVVWHQoEHYvHkzbBi6+iljY2ODQ4cO4YMPPkCvXr3g6OiIV155hXGqHmtk6muI9EmuVs28pYCkfOY6ObprmTHZGkzedEmn1wkEQKlcRjvR8VkRK8yA+P2RO2q3E+LpZLRpcMxB3XdTPmOxyC0LnIpFF6IMw2l5ZTpvI+6W7BQwLBZL5fyyz4MBLX1w8q5kXnQWgGY+jahyzdLVnw5q66w/K7MpUBhrejVcSSZfZ3uO2kAvurUf3u6jOBMEE3PMDtHMR3YY2Kzo5rjwsACTugpbhy1hwgprrK/pGe5tERUT+tA6kG3VqhWqqqoMsvMdO3Yofc7BwQG7d+9Wuw0HBwesXbsWa9eu1WifYWFhjLWDISEhOHjwoEbbsDaq5sEzBukTSg1X8wu9uWptrfw3zEj65lhegJsDspVM8cF0BHgCAS5LzZ8q0OC25LOhLTF9u3GmFzIHdV+RgSsVa68vPGw4XeV/f104xEI+bb82Zu5IVlhWWGGc6ZJ+fkX7Oc3NYdPkrgibe0hh+diOjSmQtWCFFbVYE5+mfkUCQL/zBtFN7+Y+WDupI1bE3sW6Vzpi77UnKtd3tJNt/Nn1fk989t91PHhWobCuOW6Z3ugRJvPY19UBJ+f0Fz9mSZXqnT5N8MfZRwrLn3ftgtzMXQSj0HqM7LJly/DJJ5/g1KlTKCgoQGlpqcw/YnlSn5SoX8mApGt3/NyUD8KXdzYt3xjFUappfQ1fQwxkVVE2qTjAXJnAFwgw/rdEqXVUb//L4a0xsp11d1WRp0sXwunbryElq1jj9buEeahfyUxE400NWddkzN/diHbK8yxYMtEwEBs2C3+80dnMpSHKzPj7GlbHN5w5Oo3tm/26zz9NtNcuyA1NvJ0xqn0gTn86AG0D3cBmaLLs0VQ4braFXyP4ucreq0WFeuCnSR0Zt6/qHsJYpOfAZiJ9PXkxKkjpemc+HWCoIikQQIAjM/ugT3Nvo+1DH+tfb5jXFK2/jUOHDkViYiIGDRoEX19feHh4wMPDA+7u7grzuRIyf2RrjdYrrTZ+dtHWAZLxzqsntseRmX0APH81dqq6/DLFKfLBy8VHhQxrSWhTeWEtxv1yXuvX1NTxUK1hj4TpA8Kx490eKteZ1q+Z1mUwtOcx0ZcpSX+8wZ6O5isIUYl+BtopMFLPCyIxPNJf/He4byOF55m6Fm+e0gWHP+qDYx/3Zdymsi7Edhw2olsrn9HD3MJ9JO9f/m3b2Ci/35vYWbskVv5ywb9AILzP3Dqlq1bbMRV/hnuzpt7mmbnDkLTuWnzypGXOH0nMJ3ZWX0xaf4HxYuXr4gA2S33m5HYLjTunYeysvgjxdEKr+UcBAD6NHGAvSsv+fMWxKg1i6CJLdMPXokv/0Ah/teOOGtmbPwuvIUcpXEk33dzW1kL6833eKtgMbdf7PfHir9pXQBFijbqEeeJwqnAaSXuGKWdsGAJZe44N2gQqT2jK9BqRyMZuiL+dq/R5c+KoaDHmqLjOsrVs2pNvJRadvlksFvxdHZBTyjyES15z30ZIyyvXbud62vNBTzzKr0DnMP1mm7EEWgey/fr1M0Y5iBVr4eciHF+hOJQCQH1XYzNXYbdQkRb9gYlPIJaspEr/lnFj3n7HzuqLmNVnjLgHw6mo5alfCUDHEHdENBaOXQnzckJ6QSWCPR2RWSibi8ASEssYchz7/utPDbathkJ6/LklJC+R9lJUEP5Lspz5Z9/sEYoticrnII4K9YCLA4fGZ1oIZQnxLNnisRGIu5WLUypyTliKAKnWNnuGbri6nE9UJQGa0CXIZN3rX1LRVVgk0F2zHiyqh7Ro9yH98monjFybIH4sfX3UZuiMOTIudwzxQMeQhtGLVqeO7tXV1bh06RIOHjyI/fv3y/wjzydVP0QLux9TkFVkmORlBPBztccgI81J9vc73dHCzwWeOkxP0pyhq5WlaB/kLv5729vd8H7/Zvj3vZ4I9XKSWW+8lt2eiKLtb3fDpsmWNX2UdBdi6XoCSxu7/8OL7XB+7kBzFwMA0D7YHd+8EIFG9sx18d6NhOeILhbY2tDEyrrydWviiY8GNcelLwcpPKeqdUte2wXHDFksjQxpK+n+OrV3E61fPywiAB8OCDdkkWT0a+GjkI1XVzZSzYlMx0U6KLXnsPHtC20V1lHcpvLjG+BmuqEPmnzPhrb1x0eDmmOz3PldPhhX1dNFm3PuS1FB4gpoEV2reZnGL2uqlb91zl1rSFoHskePHkVISAi6d++O0aNHY8yYMeJ/Y8eONUYZiRVQdcKztBsyQLblwxLLZ63Ozx0EJzutO3popEczYWIKXVL/NzXQzYIxSNfiBnk44fOhreDv5oBvRsveaAR7Osm/1CS6N2UOBiZ1DcZbPcMMtp+3ezfBmpc7GGx7AODqIPtddLSzESc4MTfvRvYAgJOf9Bcvkx2DbFknJjabpXGrh7H9+qowK/VfU7vKVFJ9OqQlJnQOEo831ybQMpU3e4SauwgqBXnIHuNNk7tg9uAW8Kn/vkqTr2wzNXWVmo62ki62Drbat9uwWYCTnfGGdPi62OO41O9fH/1b+oj/dmKo4JFubDg8sw9el8sCzMQQP5/BbfQfS6vJPRqbzcLswS3Qv6VxKtKVWT2ReSpSbT46Nku3+5p3+zbFxre6GPQ6bI20/mVPnz4d48ePR3Z2Nvh8vsw/Hk+zrnSk4RCdYKwtGPRyllyUpS9UB2f0NkdxlGof7G7uImjFFPPL6VIDqcF0xmajrBbXUhLK/P1Od8blb/QIw9cj22D7O90Msp+pfZrghQ6NDbItEekEbwDAYbMVgpvxGnRb08eCUW0Yl5/9TJg9U3o8l6Ucc0vWv6WPOKDuGOKBuNmS4U6j2wfih5fai5PdcFQkdjEXB1vzj3VXpW8LH5nHoopJ+Zat5K8Hm31+WPkWMVV0+W2xWCy9un3a2bDRK1x5xZkhu5Ta2rARUl/ZOSJSMWu79G+hiZdmFbuGGKf/48QOem9Dn3lO5V+palO67GVsR6nrh0yPGsnWPhoYzpjJeEwH4ewO0weE6zRNpgOHjcbujlg4ui32fNBT69c3FFoHsnl5eZg9ezb8/Cw3YxkxHdGJ2Bx9/HXx++tRWDCqjUyCA1cHW/Hf6m4yvBlqpQ0pRK7Vbe9zfHJSZuV45hpQVQzVfcsYlGUCNvX8z8oou4lgsYS14D2beSvNeqkNjraZNqSsndQRzgwtJ/JF59iwZCpb3uoZhu/GRqjcdoinE3a+yxzMa8JLyTlDft5GQPa7YK55tS2VKLFKn+Y+Cs8lfRWN+Nn9FHotuNhLzu2W0qWcxQI8nGzVr2gkLVXkiwCAjwY212g77k52Mi2elkifAAgQtpTptQmWcE7rxWrOMYZy9OM+OPPpALRkqOyd1DUEXs52mNQ1ROOurIa4rTPEvaG+W3i5i2RYjqptaVPUV7qFiP/2cxWe4we0krQGS29rdkxL/DVVtsLXxZ6DVRM6IHHeQAyLDMCnQ1pqvvN60leIhjLeVRda3zm89NJLOHXqlBGKQqyR6Hz4+dBWACy/29SQtv6Y3Et2rMxr3UPRp7k3vhsTobZF0RC1i6q81j1E5rG+F2JT0rUxtqWfC+bEtAAgrMFWx9dV++l9dBkfZSrK4lVVCcocbNnYoUdwZQjStfUt/V2w/KV2em3PXc3NvbIufq38XTCqfaBGrTMcNkvmN9W9qSdjhk8AcHMUlmfLlK7w0GFctog2Pwvp84+F1GOYXTMfZ+x4tztOzemPHyd2YLzGeDWyZ5xy5JMhLdAmwBXfvtAW/VsoBsDG7DaqzIh2gWZtyRzbSXWvB6YpOpQxdyDr7qj6nCH929OlG7QNW78W2Ve7hcDdyQ6vdjPNfZGTHQchSt6np7MdLn0ZjaXjIk1SFkPSNxgWDUtSp4m3Zrk0Ln05CJ2kAsf903vj+xcjZYJRdUVeNKYt2GyWeKzxB/21n16P6jqFtB7Mtm7dOowfPx5nz55FZGQkbG1lTyQfffSRwQpHLNPMQc2x5ngaAMnN7OA2frg2f7Dam1Fz+G6M6tpQZ3uOuLYsU8Ucq4Bxu86uebkDRrYLxJLDd2SWT+gchH+uWE62UGV0uakZ16kxVrzUHmw2C9MHNkc1lyeeIslQJnYO1ilBlLmFeDnBzdGWMZM0m8VCdzOM9ZS+cBq6ldtWTSVGiKcT7uSUKSw/oMVwAPlEO6qCxW1TuyHE0wluTra4l6u4X01pcg82J6YFdl7JxHSpxDI0Z6/Q0Ah/8Xd9TEftup77ujjgcP184UwM9RF3beKJS2rm1xZpZM8x6w2oPsmm+rf0kcngK13BM7CVL07cydNpu4vHRmBIW39sOPsIv51+oHb9z4a2ROzNXCwdFwlXRw4C3Byx/NhdxnV3vNsdFx4W4KWoYHy+K1WrcrFZLL3Gib5vAXN/SzPF0B95LBbw22udMG3bVZ23oU+xWSwo7fIr7/Xuofj24C212/R1ka3s8XN1wMQuso0QnUI8kFlYJXP+H9DSByfrfz/SvUVE5To4o7dMFmR1BGbv3G8ZtG6R3b59O44dO4Zdu3Zh7dq1WL16tfjfjz/+aIQiElNYoWF3zZ7NvDBrcAvxY+kfqYezHeNJYlAr83RD/2liO5yc0x+vdde8NlRdlxtjnjg6h3kyXmgWvRCBX+qTmzQ0IyIDZD5z+fdviAZpFks4DjF1YQz+mmp5E5WreosdlIyRVpbEZlLXYPHzu97viSMz++C9fk31LKGEdHAlP1efPr0Heocrjh8SiWnjhy+Ht0YzJZmn1QXA0uTLrCqg8Haxg1t9xZx+vQvVv3r6wOY4+9lAmd4G2gQ7+rayvNu3qdKx51+NaI19H/YSP979QU+Vx8vQTBn0iX4/2mKa7kQVc3YbZzp3uMglRdP0/Sx6oS26NfHEr692wo86JmqbMTAcr3YLhXcje3w+VLF7pT9DD5wP+odj74e94GzPwXdjIlVmFu7e1AsfR7fQKYgTntKUv250+0Dx343dHXFyTn/x43EdG6vtPWTpHa4MVb6hEYpjdrUrhz5jZFlwlWq5V7UlOw5bZhojfSwaHYEZA8MRN0syhn/Dm6qHN0Q0dkPKwhiN9zE+SvPz1bAIf43XtTZaB7JfffUVFi1ahJKSEqSnp+PRo0fifw8fPjRGGYkJaDJPFxNNunx8r2eXQ0B9t0MmQ9v6aV37rGoCcHNxsLXB8MgAi8zAKU2XWzP574+6x7oQbcLFwRYuDuq/R2snddR7n/IMlSJ/zcsd4Olsx3hBPDd3IJaOa4f0ZSOQtngYokI90DrAFfOGtTbIvgHjtRKqOszr3+iMd/o2Vftd0OWroqpiSnp6CX3eNVO5tk1VnyBL08/aEN07O4W4y1SWfSJVWfl2n6YySec6hXhgyxTLqxDSRks/F1z/WvGG0RwtVsYmn9HUhs1CmFz3U/nf1vZ3uiHIwxEb3uisctsBbo7Y+V4PDIsMkMk1oQ3p3xlTwHJgRm/8oaYcSul5OFW1yJ6fO1Cmu/LO97qjibczolv7gc0C5g5vpXb7Q9padnBhiKFNhqqM1ke/5j54vXsolmlQ4bdpchd0a6J82i5Ny+LmZItPYlrKDHmQ/i4pS0Sn6nckn/wzTO7+VjRUomOI7HoAMLJdoMKyhkLrQLa2thYTJ04EW4/EHKTh0ORH7aZmHIsm+DoMGNPlJKzqRkaUYU5X6m441dXS73rf+hM/pS8bIfNY/hDJf/y6Xr9+0KPyZFT7QPGYXUPRtkukiGhKBdF8mS90aIykr6LRtf5CO7KdpKa7sbvqG0JDUPUzlN7jn29pd+OprLy2Uhd7XbrpqZuKQdU4ZEOw57AZs1X2ZlgmT5s6gy5h+if6aOrTCJsnd8Hhj/qglVy2Z3k2bBYufTEIG9/UMcCQw9TqJmKMqhNPZ2Fru3xFhqkqMk3ZHtu3hbdMQMphsxUqeOXfdlSoJxI+H4houalTXq/v3aTqRl9b6uoOfFzsMbiNn/j8FqlFpmJ5g9XMcT6wlezzNiqyFge6O8ok5AvyEAa1f7wRhVuLhip0P2UiPWWOJWKqPJeeyu7rkYoZ2e00aM2347Bx/esYfBytWWIxfbIni5ISfjsmAi93DZH5rstPNQUArfxdsfO9HgrLPxoYjmXjInHm0wF6lEWyc216EonYq3nN6U8H4N9pPWTmpn8eaP1Jvvnmm9i5c6cxykKskKYtZvqOUeQLhGNFjU1VILtglPoJxFXR9x6pfbA7vlUz3tec1E1j8hlDtzH574/C5OU6fGaHPuqNCZ2DxbXlutREvmfgsU2qMhCreo+vdw/Fz690wvFP+kmtL3nBwtFt0cTbWaeMh7rQNJPyQC2HEyj72f0jdUPRJtBV68qkqb2bMCYBip/dD9vf7qZxIKvLT7exuyNSFsZo1AuACVNWY2XCffULyEVBc/+WvmgT6Iro1r54v38z8XytTHxdHTRKDNQ5VH2QbeqOMMpa4jXN5ipPvmuuMt6N7EQFMCnpgNRGLuEZoPn3e1BrP5ya0x/b3mbuURDRWHUFCBP5a4Cy4G7Hu93xXt+mSltnmRIFygdAP01sh95+fHRVUvHz51tdZOYlZqnJWsx0PmSxWIyzH7zbV3aIR8LnAyw+maOfqwNeigrCpK6S8Z/Sx0t6uUhjubmmmYJQew4bbk62mDmoOeYNU99ybciOEtLl2Ty5q9qEb6PaB2LHu90xM7oFXu4aYrD53HUJZG05qj8IHxd7dAnzZDwvW/hXTS9af5I8Hg8//PAD+vXrhxkzZmD27Nky/4j1mSKXxXdoW3/8N02xRoqJpj8OTbcnTfqCwhcIsGxcO5ybO1Dr7WhDVY28rZbjoOSpC/qtPbeL/DgY+VbRns0UW6HUdbnVpyb28Ed9EDurL3ppMZ5P1HpmjG7cbQO1v8nj2LAxol0A/JS0WHk3ssfJOf1VjhEzJFXdXbvXZ4bUdrwgwPzbmNwrTGFKAVVd8Zi+K7Y2bIxlaA0P922Eniq+F3M1uLnShLKMyJoI922EaSZKFiN/VFksFj4f2grDGOaj1EbivIGI0qC1OLukWnnZjHBeVFYfo+vvXpNp2Y7M7KP2+iU95tJQ5H8Xro4cxZ4vWtzlhnk7K70J//117Vvo5Xe96S3mcYTBnk6YN7y10soTpq6aLfwaya3DxvimfPxvqvKxitItjiwWS+U1qE6LnmJfDJcM8eje1FPcgisv0M0BqyZoP8WcsawY315mDL5oqhmA+f7P1oaF6NZ+CutIT9HGEj/HUvo5SGOaTkhT6r7Zomu+srGxTrY26N7Uy+DDDkS9rJhsVjJVmLKcGfKcGbatTTZya6P1HUdqaio6duwINpuNGzdu4Nq1a+J/ycnJRigiMaZgT0d8PUq2e0iXJp6ICvXA6PaBcLS1wRGprI/yNxWa/rSb+miW1lzau32bIqa+JnlyrzCw2SyF2j5luvrwtd4fAKjqMa9Nt7P1r0cpLGNB85p7TcyJaWH2rkntgiTdvOQ/ngmdZRMRyH9+g1v7GjUZhrM9R6HFLZihKxEAvN+/GQ5Ml4zFMnRN+WvdQnFgem+dWiwsiaou/o3dHXFu7kAkzR+s9XY1vUcYGuGPLVO6atU7o6OGF39pugTjmoqfrfmcu3OHtTLY+GpTc3EQZpPVpzIKME6CPdEwDvkKFBsjDpnyc3VQW7Gha64Klerf4jej22Jav2ZoG+imc4usOroksRrUWrb3hq7nXung+oeX2uHj6OYKU+1Jc1VyLf7hJWEQKQrGKrl1Sreh61zfzZTcD7UPckPC5wP1mu7LWDZP7oLe4d74/kVJBTVzIMvG7MGKQ3Okg1Ftej58NaI1XuxkwN+F3K5/eLE9PhvaEv+ZaOjWp0Na4s0eoWgdoPy83r+lr0yFysrx7XFwRm+NKzalr3lbp3TFN6PbykwX1NBofVd98uRJY5SDWID42X1x/kEBJnUNAYvFwk8qkt54N7JHfnmNRmO9dCUqQ3JmsUbd06Q1d9XtAsORupH5cEAzsMDCupP368uj+XZi2vrjz7c6Y8rmK+Jl0weGo1WAK9788xIA4LfXonAruxQ/iaYyqt++l7MdCipq1e5j+sDmmLL5suaFMjKmi/M7fZrgj7OPACh+fj4uzBfrsR0bY8+1J4yvYfLhgGb4+aT6KRsA4XyThz76f3t3HtfEmf8B/BOuABEChFsuAcEDREXK4Yki4IVurVptLbSetWpbtf2tu3W1W49uW7W79lLrYu2Fdmu31rpeW7W6om5R16tatdYbD6RgRQFlfn9gQgJJSEKOCXzer5evlslk5sl8M5l55nme79MDMhcn9HlrJ4DaOVlfyoxtcHH1dndGaUXDqW9Mocx+G6GQ4djlco3XfNwtf9Py2fhk7DlzE+/t1H6cnkuPws5TN9A9ygcrdv+iczuNtUAY+qCpvrw03Tec6iQSCXrH+OG/Bk51AgBp0bVjBHVlPdbGHNmztbVeZ3UMMLobsKE39p9PSMHMdYdxRU/rpi4W6Q3ycJu6ij+jfwyWbPsJQG0voM3Hiy1QCO2UX+P6n9uE3n7opWV+Wm3UD4Ouw22O5Ha65KolfVL/em+Y2h15+ba7jmgbduTsKEH1AwHeRiR5VK/Idg3zavAgtT5PN2eU32tYSZW7OWvkctCX48PYiuz6KWn4+tBlzNQxFESA6d3bLa1PrH+DnAO6esFortOQ+vdc/UHV+NgHeHxAb2S8XTcFzfieTcu6X/+Uqv+33N0ZU/ro7tFk7lPS0N5T6rsdkhCsGnv8j8mpeOyDQoTp6eIc11qOz8YnI8jLDW18ZQb/RtkrZmxqAfS1XqhfyKP9PfBUaoRBffe/mpKGl7Jiseh3Tc9IrI/rw24d9afNaJSJPz7qD+QzOwRqdGWsf5Pxz+e6620tqT9OMDctAj2ifdElzAtDEoKRHReIGf1jMLRzsEYyC3vrYXzgD/2wY1Yf+Hk07F43Rm0i+PpJIHS11Kh362ysNad2fGg7ZBuR/bFjsFwj219ShI/Wm4ddL5ue1EGXeTl146xDfdyQ0d4fE63QfTQt2heTeuneT0qkAt9O74kZGW3RVVGDscm1N4H1k7oYMz5IWyINXSJ8G25XX+Uq1Me4CnNGB/0ZzOsnZKp/rqtnVjWUuTI8qyf00ic1SoG9s/uZdNNiiVZP5efXdQZP79cWn09IwZMpYVgyqmFXSmUFp39780/fpixbYr0HpKYke+oa5mXQgwCNm3ctbxj9SGiTuy8a2nqvXpZOZkwMo/6x8tIiTJ427stn09Arxg+fTUgx+D3BXuq9exo/joaenkFyNywfm6gxXl9J2zVPn65h3nh1aFyDzLTKpHa2mBu8KXR1LVZfru1BnK7oxPsICFe4468Pp3Ja+LumTSumf2/ipn7c1O+dukX4YNdLfbD1Rf09e9KifZs0Z7Q9Mah2MHnyZFy8eNGgDa5duxaffvppkwpF5vXnoXE6p0sw9V4r1Mcdz6VHq1qaLEGho3uNJRPbOGo8KdS8wat/k9EhyBObpvdEWpTmxUdXdmIHiQSODhJ8NaW7xhQvf328C1Y+1U31w2XLOQZN4e/pqvMHU/2IuRo4XlD94zd2X6k8VpZoyNCWBv+N4dof3GR2CGiQzEMb9bF084fF48PcJL1jZczpgZ7vlfKBgaODBLkxNfjT4PY4Mi8Tn9e7kXx7VGdkdggwaMy7MTflxnYnHN41BJN7R2GN2u/ahF61rboZjWQm1aZhy5xmeWRSJ+yb3Q8/vJKh90m4vm3qWtaYib0i8cGTDYcq6GLN27b6D5rUhzooP6q+0KZGKTB/WDzcXRqeA7te6oMtL/RCtwjzZchVle1h4ZaMTNCYnsaU1jCDY6q2aW1vmdIn2qCMr/oY2j1yaOfaceORD3+3LXHNcXKQmJxhuFOIF9Y88wjaN5I9W92CYXWVHmcdU5uYKqtjIB5p46Oa/kSZtGt8zzb4XZfWWK5lKJExts/ojTmDO+DFDPNmy7c0bUc5MdxHsyKr9ppyTnP14WzavnpDO7fGydeyMSa5YTKpptIsc+Pfe1slSdK323CFTGtCsZbKoDsoPz8/xMXFIS0tDTk5OejWrRuCg4Ph6uqK0tJSnDhxAnv27EFBQQFat26NFStWWLrcZARXZ0f0jvFD92gF/nOmBMO7huDLg5dM2pa1TuqM9v46x38+lx6NN7ec0vt+U4upfgMrCILGB9Z2j+PgIGlw0/uFjpt8Q4+dMb2VjP2ccjdnlN01T3dZQ6h/ZldnB52vqVPvyuXm7IiKqgeN7keztcOwsrk6O+BedQ16GJEMStfcb5kdA/FYYgg8pE5Y/LC7ZGOsfX009mZVW0U+1McdK0yd01EPbcei/lyX6pwcHRokZOrbLgB7f99XZ2IsY2ibDkaZLGPXS32w/uBltA/yxMC/7da5DfXzOMTbDZdK72KQga2r6pwdHZBt4cnszVWPyc9LQpvZmzS2aeoYWQ9XZ8QGWuZBqfJc8Pd0xbycjli99xcApk+/Y0iLdmObdnCQmDSeW522ZFXadpvVMQDfTO2BNg/H4Zk41FMv5bQn+mx+oafe142hnszG6B5cBlr+ZCJW7v5ZNQ2Ru4sTlo7q3OTthitkGNfDsOEVYqLtAeQLGW1xvqRC6/q/z26HSb2iNLqT6/rqmaui1rBrsbHnuH226LYkBp3tr732Gk6fPo1evXrhgw8+QEpKCsLCwuDv74/Y2Fg89dRT+Pnnn/Hhhx+isLAQ8fHm6A5A5vbemES8PaozXhvWUfVEUdsch5ZSv3VHl8Rwb3yYm9SkhDttPEy7Mkvqt8gK2l+r/bv2vx3qPTWOU3sKrd7yauinMfXpuLaxPPW7hu6b3c+kbZuq+kHdZ5HWuzDpOh5uLo7Y/EJtxmF3qYEXMxO+Kv+e2QeLRyTgGSNuIHR9JZX3a9P6GTYvnr5tWYqPzAUZ7QN0JjkxN2O+xurHYu3EFDyXHoUnUsJ1v0GHYC+3JnfPnN43Wm8SNYlEguGJIejQaBbqugPw7bSeWDsxxWxZaSPN3GXMXPUY9d9IZbIS9dha67uni7KFcLiOpEraKl4JIfpbFetfJ3TRGCOrZX3Jw/0bk8Cvfu8Abb8p2np8SCQSxIfIVa9ZIqGYg4Ok0SzQ7QLNl/xO/bw35IGEKV3/A+WumDO4g8bQFGsaYOEHWsbSdpRdnR3hpdZTr3434/pjoq3dA81eqqXNebocczP4sZW/vz9mz56N//3vfygpKcHBgwfxn//8B6dOnUJpaSn+8Y9/IDMz05JlpSaSuztjWJfWcHdxwtdTe2DO4A54RcuE1paSGqUwKCtj/ZY7baY3UmHwNUOmcWcHB70XO+XvzPN6JvWun8rfEKb+rmubx7V+ghtj5qY0h8r7da2phsRVqV2gJ2ICPPDumK4I8JTqnI6gKZfA1l5uGJ4YYtR8brqSsZgSM31JRCxBIpHgw9xuGlknxUK91S45UoGXstqZNM+eOczIjDVL1uohapVWubszkiMVZsuG/dm4bqohDKZ231Rn6s2kVM85rS2hUt92urt9zxti+WtRwcQUrJuUiieTtT8kqV/xilC4N3pHqe3YPddH/zADbS24yt8W9R4of328M94d03CcaUb7AHz9XHeNGQUAzQpcG18ZnkgOazAOWJu/Pt4FjyeFYtN087WQ5qVFWDR5VX3qoRNpvqQmE9uoI13hDfB0xeIRCfjgyUSbz5VrraE75va7LrX3c8Z0r2+pTLpT8PLyQkJCAlJSUhAdHW3zLyoZr7WXG8b1aGP1k9yQk3KOAZXrFzPa4sAf++H7l9KxZGQCepsxK9uk3pEY3CkIca09tc7HVZ+7i5POhFrqN+iGXlz1XavSHz6tVyaGMubUm2TAGM7GfDezt8YNev05iOurvF83DVKDCesNKHynEC/s/0MGHtWRfl95Ye+p1j1Y19QG5qDrt86YblBvPtYJ0/u1NWuSFWPcNCAjtrXZ+hJirmRHayemwLeVFE+mhOH/ss0zF602ilZSfDOtO3JTw7FsTBeN114Z1B7uLo5ax9sdezUL84fFma0c+lqGlVM1bfjfFdUyfS1Zed3bwP9h8pxgC815KJM64ZE22pO7AQ3HRuc//YjR8z+3dhfwTJr+3gRaW2Qf7vpedV1Fdmjn1jq7oyeEekEmdcKjD+dJ7h3jp1FxfLp7BBb8Lt6g+7NAuSteH97JgF4G+vmrzTHq7+Fqkfm4ddHXe6qx9e3dJ+OSbbLf+sdZvWV/eGKIQUMiLDUtzCuD2mNkt5AGOUzUi2xQTwobXZsm9GyDj555BAUTDU941lLZ56MKsltPpYbjXvUDvWNcDeluJJFI4O9Re7MTpnDH14evNPIOw80eUDdxeUyAByb2ioSflgnvNbohG/SDaNgvoqKVC36r1D53XYi3O354JcPg+Wg1yvVw9+0CPXCy+LZB768v0q+VxtjFYQ9vonRRr1TW//zm6GaorICM7BYKFycHxLeWW7TVWdd9WZS/4V3NRjQyLYSlaZsL1hIXa2Mqh83lUWhypAI/vJJhlX1F+3vg1aENK6VtAzxwdF4WHB0kWLpdc7x2K6kTBsUH4ZV/HtNYbupNvUQi0fl7ouzNcuFW3Xi5yb2jUH73PnrFaB/SsnZSKt7feQbP6pkOw5LUK4LpsX5o4yvD7we0gwTAp/svaH1P/WP3csIDeGrpbSHo+H8l5Z7vGpATQD0j+ILfxaN/hwD0jPEz+ibd3KROjjgyL1OV2NCaU8moJ8oypPePJTJ1m4sxLdkZ7QMsOg2iob6Z2kPv3Ki6hPq447uZvSFzlmDfru1mK4+uaXuaOq+1tTg5Opi1gaY54/Q7ZFXOjg4Gz6NlDHNNdaHNHwa2xwQTWzO9ZcZ3H10xthsSw73x6XjtT1l9W0kh1ZIBeGLvSC1z8tUdF+UP+JfPpqFLmJfR5TKF3M0ZB/7YD0fm1Q07WDisI9rJazCue0STt68Mu4ODBI92DUHbAPOO9XqtXuuVrougenKg957oiqnp0UgV6VQKnZuYUMYi7OPewm7oGyfsLXNpkNXVmG7/hlJmyfZQ69Xi6uyIPw3p0GA+SqU2vjK88ViCzaaNUE/mppwz2dPVWW8vIcHAKlFjWduVD/oay1w8slsIZmTWtba7uThiQHwQWkmdNB4WWvKaqI+nq7Oqp1dTx6sbQyZ1wtJRCVg6KgEeWhLV2ZP6rYjmWtcS/jiwPZ7tE4X4ELnJSbYi/VppnU9YDHhpEj9WZKlZUL9or85rWip8vdS7L2lfrCFI7oY3HuuE942YTy820ANfPpuG7gZl060rhb+HK374Ywa+nd5D7ztkUidMtcDDBF38PVw1MuCOSGyNZzvUGNyqbEtjU8LxwZN1sVO/MYvyk2H9lDQUTEyBl3vdRXhgfBBmZcWK9ol/QqgX1k1Kxd7f91Uts/Z43fps/ZTc1Hv+r6YYNt2J2Kh/3oz2/sgw41ytymmo/jiwtmeLTytx3qBqo94Spj5VlquzI1Y/naT1PY8nhTX6/fl2eg/NCqqersVvjUhAW/9WGnOwKt87NiUcbzyWoDWjeH1i6Dprza7FQO24QuXYwsaoH5+XsmKx0gLZ2E2lKz+A+jVlz//VDqt6KtX4pHjmNKFXpEWHUZibrYexkPmJ/06SWhRTs+rW1A3FRPcoBTbpn53HLAztxjXSil1JHRwk6Bhcl/xF15ysTfkxN3YSeEuyxs2aeiuHerKaBzWC3vE9lpjSwlweeZjNevGIBFz+9a5Gpm1bsPXNxdiUcOw9W9Igy3djuoR54+vnumPou//Bc+lRFiqdpuyQmsZXeujLZ1Mx/P1Cvet8mKu9gmaqPwxsXzvH+MOHI2KoUBnK0UGCv+d1w2f7L+APA9trvNYn1h8D4wOx6WixatmJP2dpnQNXXaCnq8Zvcu22/LD1xDWNZcpKdPsgT2yb0VvjtW0v9sLmY8V40ohM3mI47NZM9mQs9d9nS/QSs7QQb3eEeBs2pzWZTsRfYXrI5Irs9evXcerUKUgkEsTExMDf3/hJ6InqCzQxyUeojxsKfzZzYZoBQai9kSouv4fMDnWtLk1pAXs8KQzHLpehVwsZv+GuNuZWvVXlfmM1VTHcSTZC1zQk1mbre4UB8UHYPqN3g+lMDJEQ6oWf5g9otEtoU72UFYtjl35Fpsdlg9+TGO6DrI4B2HJcs9Jkzq+mtrH/6i38Yu2ZoE2Itxt6tvVD33baW6hTIxUaFdm6Sqye7PZavtxvPpaAXQu3ayTD03cOhCtkmNTbuAcl1p7WRBtrdi02nu2PD4mfrXsLUeOMrsiWl5fjueeeQ0FBAR48qE1K4OjoiFGjRuHdd9+FXG7bJ/tkGb/r0hpfHbqMKWZOwuHi5ICq+4a3MOgye0B73K8RMCLReq2fmnPOivOiKEDAv2f2RnH5Pc1svk34bXZxcsAbj2mfDsfa1JOeWEr3KF8MiAtETL3xtw8aqcjaaoyaPRJD5vtof9OzXVu6EgvUthpVV1dj0ybDK7IAMC+nI36tqEZeWoRqmULmguu3K81cQu3s4TRY/XQSThXfRo9GhnN0NKHngrZvttzdGafmD8CJK+UY+LfdAMzfeimGc0rM9djWXm64+Zv4MrjrYw/nkthp9KTTs14bXxnO3byjMUsDiZPRV9/x48dj//792LhxI3799VeUlZVh48aN+OGHHzBhwgRLlJFEYMnIBBya09/s2fHMNf2Pt8wFS0Z2RqqtEh/Y6AJjyL2KTOrUYEoaQ+4vPFydMKl3pGosa08RZEZU+mJyKrI7BmLJqM4W35eDgwTvP5mIF/trTmfS2Bjfln7PYcxNl4jvd+1ekNwNayelYkB83TQu+U8noWuYFz6f0PSpHVp76e9FYw83331i/TGpd1SjlT9TpgrRN82Wxu7MfBKI4ZwSQ2Val2Wju6JfO3+sm5Rq66Jo9c6YLpjeNxpH52Wibzt/LB0ljofH9s7QFtZ/Pd8T383srRqGQ+JldC3i22+/xZYtW9CjR11CmaysLKxcuRLZ2dlmLRyJh0QigbcFssqJoftTc6br8MYb0LLQPtATswe0x7gebfDPQ5et2trdmKQIHyRF2OYCk/90Et7efhpvPtZJ73ot/bvdJ9YPn+y7AD8PKW400vrXso+U9XUMlmP9lO5m2VbtXKXHkJsaofX15nYeKFtq1JNBafuIW1/shS9+uKh3KiFdOQzMQcR1SFEIU7hjVZ55x4eb0+BOwcDDS8zfH5ZTvVs7WZarsyMiLTgnPZmP0RVZhUKhtfuwXC6Ht7dlJjam5qu53OKI9XPoGqOkaCXF/j/0g5uLIzrN26pavm5SKn6rrMbyXT/jzYfdh/09XDGxl3US2diD9Fh/pOuYPkSdmJM9WcMfBrZHbIAHMjoEIHXRd3rXbaybNolXgKer3oyvzS2yq59Owrs7zmiMWZ3UOwoF/72IkYmtAZwHUDsH+R8H6Z62pz6zdy0269ZMt3FaDwxetqfB8tcfjbdBaails/Vcy2R+RldkX3nlFcyYMQNr1qxBUFBtV6Xi4mK89NJLmDNnjtkLSM1bTTO5gRVbq8P/ZbfDp/vP44WMGJ3rBHg27BKo7EajK9kJGU5c3wjrc3dxwlgdrXT1sSLbfDW3seLhClmDHAFtfGU4NT8bDkINNm06b/C21HMrmLviKZZuvXGt5ZBI6ioN/h5SbHq+p0aLNpG1iOOsIHMyuiL7/vvv48yZMwgPD0dYWBgA4MKFC5BKpbhx4waWL1+uWvfgwYPmKyk1S+q3OJMezj9oj2x1qxbpJ9O6/Nk+UXi2D1tRbaqZ3cBbkrfMtvPYkuW0lNNA6uSI6mrTExeKeaoacyqc3U/k2YyJyJ4YXZEdNmyYBYpBLZbaTc7vB9jPpNr12epmbXrftqisrsFAtUQuJA4t5P7dIOunpOHrQ5cxqFMwRi5vOK+p1MlRy7uoOeB5YJiWMkaWlVjTtZSHQpYklp4KZD5GV2Tnzp1riXJQC6X+u2zPPzC2ur7IpE6Yl9PRRnsnfXjTUadrmLcq4+s/n+uOl//xP/x07TdM7h2FiXbcE4Max/NAN0seG/u9mhJZjvp5IdZpE8k45pn7hMhE/h5S/FZ539bFIDK75jY20Fw6h3ph47SeuHDrDqL9PRp/A9m1zI4B+Gz/BUT6ah8GQbXM3bXY043d9Ynqs+P2EtLB4Iqsg4OD1hYzT09PxMbG4uWXX8ajjz5q1sJR8xfg6Yo5QzrAs5E5OcVObMmeyPb4ldDNxcmBldgWYs6gDugc4oX0do1n+m7JzHWDveB3cThw7hYGiWi4iQTsYk5EluFg6IpfffUV1q9f3+Df22+/jcTERDz55JP44osvjNr5vHnzIJFINP4FBgZqvN6uXTvIZDJ4e3sjIyMD+/fv19hGZWUlpk2bBl9fX8hkMuTk5ODSpUuq13/55ReMGzcObdq0gZubG6KiojB37lxUVVVpbOfChQsYMmQIZDIZfH19MX369AbrkPkJEJAe64/EcPuYdFrXxZgXaapvdHJtMrxu4ZyWjFouNxdHjEwKhZ8Hs9TqY64W2SeSw/HXx7vAydHg2zuL4/XRPJ7pEQEA6MuHQiaz5yFspJ3BzWBDhw7V+Vpubi46dOiAt956CyNGjDCqAB07dsT27dtVfzs61iX9iImJwTvvvIPIyEjcvXsXS5cuRWZmJs6cOQM/Pz8AwAsvvIBvvvkGBQUFUCgUmDlzJgYPHoyioiI4Ojri5MmTqKmpwfLlyxEdHY1jx45hwoQJuHPnDt566y0AwIMHDzBo0CD4+flhz549KCkpQW5uLgRBwLJly4z6PEREAPBkchjigj3RLtDT1kUhIpHj7TU1Ji3KFwf+2A++Mj4UIlIyW3/OzMxMvPLKK8YXwMlJoxVW3ZgxYzT+XrJkCVatWoUjR46gX79+KCsrw6pVq/Dxxx8jIyMDAPDJJ58gNDQU27dvR1ZWFrKzs5Gdna3aRmRkJE6dOoX3339fVZHdunUrTpw4gYsXLyI4OBgAsHjxYuTl5WHBggXw9OSNqKVImsvlm4+cqR6JRIIuYWyNJaLGNeeGogXD4vGHr45iet9oWxfF7vl7NJz/nUwT5Olm6yKQGZitInv37l24uhp/gp0+fRrBwcGQSqVITk7GwoULERnZMItlVVUVVqxYAblcjoSE2snIi4qKUF1djczMTNV6wcHBiIuLw969e5GVlaV1n2VlZfDxqevKWlhYiLi4OFUlFgCysrJQWVmJoqIipKena91OZWUlKisrVX+Xl5cDAKqrq1FdXW3EUWi5BKHG7MdKuT1LxOD+/brEVOrbf1BTo3W5PXgkwhsHfilFx2APq5TdkvGhpmFsxI3xETdj46N+PVH//+ZmRNcg9I3xgaKV1KbfXZ4/4mXN2Pz7xR6orK6BuzO/C4ay9rljzH7MVpFduXIlunTpYtR7kpOTsWbNGsTExODatWuYP38+0tLScPz4cSgUCgDAxo0b8fjjj6OiogJBQUHYtm0bfH19AQDFxcVwcXGBt7dmq0dAQACKi4u17vPs2bNYtmwZFi9erFpWXFyMgIAAjfW8vb3h4uKiczsAsGjRIrz66qsNlm/duhXu7u6GHYQWq/arV1JSgk2bNllkD9u2bTP7Nk+VSQDUdn9XL3fxVQcoh5xb6vNYylBfILBGgiS/UquW3RLxIfNgbMSN8RE3Q+Nz8TdAeS20t+uGPeP5I17WjM1pq+2p+bBWfCoqKgxe1+CK7IwZM7QuLysrww8//ICzZ89i9+7dBu8YAAYMGKD6//j4eKSmpiIqKgofffSRan/p6ek4fPgwbt68iZUrV2LkyJHYv38//P11D3YXBEHrgO4rV64gOzsbI0aMwPjx4zVe07a+ru0ozZ49W+O4lJeXIzQ0FJmZmeyO3IjnC7cCABQKBQYOTDLrtqurq7Ft2zb0798fzs7mnYLA62wJ3jtRBAAYOHCgavmmssPAresNltuLkVbclyXjQ03D2Igb4yNuxsbn9PXf8NbRvQDs87phb3j+iBdjI27Wjo+yh6shDK7IHjp0SOtyT09PZGdnY8qUKQgPDzd4x9rIZDLEx8fj9OnTGsuio6MRHR2NlJQUtG3bFqtWrcLs2bMRGBiIqqoqlJaWarTKXr9+HWlpaRrbvnLlCtLT05GamooVK1ZovBYYGNggG3JpaSmqq6sbtNSqk0qlkEobDrp3dnbmiWggicTBYsfKEnFwcqo7ZdS3LZE4aF1OuvE8ES/GRtwYH3EzND7tg70wNiUcvq2kjKcV8fwRL8ZG3KwVH2P2YXBFdseOHSYVxhiVlZX48ccf0bNnT53rCIKgGpeamJgIZ2dnbNu2DSNH1rYpXb16FceOHcMbb7yhes/ly5eRnp6OxMRE5Ofnw8FBMy19amoqFixYgKtXryIoqHbuta1bt0IqlSIxMdHcH5OIiIhaOIlEgteGxdm6GEREdstsY2RNMWvWLAwZMgRhYWG4fv065s+fj/LycuTm5uLOnTtYsGABcnJyEBQUhJKSErz33nu4dOmSaoofuVyOcePGYebMmVAoFPDx8cGsWbMQHx+vymJ85coV9OnTB2FhYXjrrbdw48YN1f6V2ZIzMzPRoUMHjB07Fm+++SZu3bqFWbNmYcKECewiTAaZ3CcKm48XY1jn4MZXJiIiIiKiJrFpRfbSpUsYPXo0bt68CT8/P6SkpGDfvn0IDw/HvXv3cPLkSXz00Ue4efMmFAoFkpKSsHv3bnTs2FG1jaVLl8LJyQkjR47E3bt30a9fP6xevVo1H+3WrVtx5swZnDlzBiEhIRr7F4TaOVMcHR3x7bffYsqUKejevTvc3NwwZswY1fQ8RI3pHOqFo/My0Upq01OKiIiIiKhFsOldd0FBgc7XXF1dsX79+ka34erqimXLlmHZsmVaX8/Ly0NeXl6j2wkLC8PGjRsbXY9aNkcH3cm/PFw5roOIiIiIyBrYfERkhKQIH/Rs64tIX5mti0JERERE1GKxIktkBEcHCT4el2zrYhARERERtWgOja9CREREREREJB6syBIREREREZFdYUWWiIiIiIiI7AorskRERERERGRXWJElIiIiIiIiu8KKLBEREREREdkVVmSJiIiIiIjIrrAiS0RERERERHaFFVkiIiIiIiKyK6zIEhERERERkV1hRZaIiIiIiIjsCiuyREREREREZFdYkSUiIiIiIiK7woosERERERER2RVWZImIiIiIiMiusCJLREREREREdoUVWSIiIiIiIrIrrMiSTUkkti4BERERERHZG1ZkyaYEwdYlICIiIiIie8OKLBEREREREdkVVmSJiIiIiIjIrrAiS0RERERERHaFFVkiIiIiIiKyK6zIEhERERERkV1hRZZsitPvEBERERGRsViRJZvi9DtERERERGQsVmSJiIiIiIjIrrAiSzbFrsVERERERGQsVmTJpti1mIiIiIiIjMWKLBEREREREdkVVmTJpti1mIiIiIiIjMWKLNkUuxYTEREREZGxWJElIiIiIiIiu8KKLNkUuxYTEREREZGxWJElIiIiIiIiu2LTiuy8efMgkUg0/gUGBmq83q5dO8hkMnh7eyMjIwP79+/X2EZlZSWmTZsGX19fyGQy5OTk4NKlSxrrlJaWYuzYsZDL5ZDL5Rg7dix+/fVXjXUuXLiAIUOGQCaTwdfXF9OnT0dVVZXFPjsRERERERGZxuYtsh07dsTVq1dV/44ePap6LSYmBu+88w6OHj2KPXv2ICIiApmZmbhx44ZqnRdeeAFfffUVCgoKsGfPHvz2228YPHgwHjx4oFpnzJgxOHz4MDZv3ozNmzfj8OHDGDt2rOr1Bw8eYNCgQbhz5w727NmDgoICfPnll5g5c6Z1DgIREREREREZzMnmBXBy0miFVTdmzBiNv5csWYJVq1bhyJEj6NevH8rKyrBq1Sp8/PHHyMjIAAB88sknCA0Nxfbt25GVlYUff/wRmzdvxr59+5CcnAwAWLlyJVJTU3Hq1CnExsZi69atOHHiBC5evIjg4GAAwOLFi5GXl4cFCxbA09PTgkeAiIiIiIiIjGHziuzp06cRHBwMqVSK5ORkLFy4EJGRkQ3Wq6qqwooVKyCXy5GQkAAAKCoqQnV1NTIzM1XrBQcHIy4uDnv37kVWVhYKCwshl8tVlVgASElJgVwux969exEbG4vCwkLExcWpKrEAkJWVhcrKShQVFSE9PV1r2SsrK1FZWan6u7y8HABQXV2N6urqph2YFqKmpsbsx0q5PcZAnBgf8WJsxI3xETfGR9wYH/FibMTN2vExZj82rcgmJydjzZo1iImJwbVr1zB//nykpaXh+PHjUCgUAICNGzfi8ccfR0VFBYKCgrBt2zb4+voCAIqLi+Hi4gJvb2+N7QYEBKC4uFi1jr+/f4N9+/v7a6wTEBCg8bq3tzdcXFxU62izaNEivPrqqw2Wb926Fe7u7kYciZao9qtXUlKCTZs2WWQP27Zts8h2yTwYH/FibMSN8RE3xkfcGB/xYmzEzVrxqaioMHhdm1ZkBwwYoPr/+Ph4pKamIioqCh999BFmzJgBAEhPT8fhw4dx8+ZNrFy5EiNHjsT+/fu1Vk6VBEGARG1eF4mWOV5MWae+2bNnq8oJ1LbIhoaGIjMzk92RG/F84VYAgK+vLwYO7GbWbVdXV2Pbtm3o378/nJ2dzbptajrGR7wYG3FjfMSN8RE3xke8GBtxs3Z8lD1cDWHzrsXqZDIZ4uPjcfr0aY1l0dHRiI6ORkpKCtq2bYtVq1Zh9uzZCAwMRFVVFUpLSzVaZa9fv460tDQAQGBgIK5du9ZgXzdu3FC1wgYGBjbIhlxaWorq6uoGLbXqpFIppFJpg+XOzs48EQ0kkUgsdqwYB3FjfMSLsRE3xkfcGB9xY3zEi7ERN2vFx5h92DxrsbrKykr8+OOPCAoK0rmOIAiqcamJiYlwdnbWaOq+evUqjh07pqrIpqamoqysDAcOHFCts3//fpSVlWmsc+zYMVy9elW1ztatWyGVSpGYmGjWz0hERERERERNY9MW2VmzZmHIkCEICwvD9evXMX/+fJSXlyM3Nxd37tzBggULkJOTg6CgIJSUlOC9997DpUuXMGLECACAXC7HuHHjMHPmTCgUCvj4+GDWrFmIj49XZTFu3749srOzMWHCBCxfvhwAMHHiRAwePBixsbEAgMzMTHTo0AFjx47Fm2++iVu3bmHWrFmYMGECuwgTERERERGJjE0rspcuXcLo0aNx8+ZN+Pn5ISUlBfv27UN4eDju3buHkydP4qOPPsLNmzehUCiQlJSE3bt3o2PHjqptLF26FE5OThg5ciTu3r2Lfv36YfXq1XB0dFSt8+mnn2L69Omq7MY5OTl45513VK87Ojri22+/xZQpU9C9e3e4ublhzJgxeOutt6x3MIiIiIiIiMggNq3IFhQU6HzN1dUV69evb3Qbrq6uWLZsGZYtW6ZzHR8fH3zyySd6txMWFoaNGzc2uj8yr0fa+Ni6CEREREREZGdEleyJWo5dL/XB9z/dwMikUFsXhYiIiIiI7AwrsmQT4QoZxqbKbF0MIiIiIiKyQ6LKWkxERERERETUGFZkiYiIiIiIyK6wIktERERERER2hRVZIiIiIiIisiusyBIREREREZFdYdZiMxIEAQBQXl5u45K0bNXV1aioqEB5eTmcnZ1tXRyqh/ERL8ZG3BgfcWN8xI3xES/GRtysHR9lPUpZr9KHFVkzun37NgAgNJRzoxIREREREZni9u3bkMvleteRCIZUd8kgNTU1uHLlCjw8PCCRSGxdnBarvLwcoaGhuHjxIjw9PW1dHKqH8REvxkbcGB9xY3zEjfERL8ZG3KwdH0EQcPv2bQQHB8PBQf8oWLbImpGDgwNCQkJsXQx6yNPTkz+IIsb4iBdjI26Mj7gxPuLG+IgXYyNu1oxPYy2xSkz2RERERERERHaFFVkiIiIiIiKyK6zIUrMjlUoxd+5cSKVSWxeFtGB8xIuxETfGR9wYH3FjfMSLsRE3MceHyZ6IiIiIiIjIrrBFloiIiIiIiOwKK7JERERERERkV1iRJSIiIiIiIrvCiiwRERERERHZFVZkySYWLVqEpKQkeHh4wN/fH8OGDcOpU6c01hEEAfPmzUNwcDDc3NzQp08fHD9+XGOdyspKTJs2Db6+vpDJZMjJycGlS5dUr+/cuRMSiUTrv//+9786y5eXl9dg/ZSUFPMeBBEzV3xWrFiBPn36wNPTExKJBL/++muDfZWWlmLs2LGQy+WQy+UYO3as1vWM3XdzZq34/PLLLxg3bhzatGkDNzc3REVFYe7cuaiqqtJbPp4/1jt/IiIiGhzr3//+93rL15LPH2vFhtce05gjPrdu3cK0adMQGxsLd3d3hIWFYfr06SgrK9PYDq89xrNWfHjtMY01zx/RXHsEIhvIysoS8vPzhWPHjgmHDx8WBg0aJISFhQm//fabap3XX39d8PDwEL788kvh6NGjwqhRo4SgoCChvLxctc7kyZOF1q1bC9u2bRMOHjwopKenCwkJCcL9+/cFQRCEyspK4erVqxr/xo8fL0RERAg1NTU6y5ebmytkZ2drvK+kpMRyB0RkzBWfpUuXCosWLRIWLVokABBKS0sb7Cs7O1uIi4sT9u7dK+zdu1eIi4sTBg8erLd8huy7ObNWfP71r38JeXl5wpYtW4SzZ88KX3/9teDv7y/MnDlTb/l4/ljv/AkPDxf+/Oc/axzr27dv6y1fSz5/rBUbXntMY474HD16VHj00UeFDRs2CGfOnBH+/e9/C23bthWGDx+usS9ee4xnrfjw2mMaa54/Yrn2sCJLonD9+nUBgLBr1y5BEAShpqZGCAwMFF5//XXVOvfu3RPkcrnwwQcfCIIgCL/++qvg7OwsFBQUqNa5fPmy4ODgIGzevFnrfqqqqgR/f3/hz3/+s97y5ObmCkOHDm3ip2o+TImPuh07dmi92Ttx4oQAQNi3b59qWWFhoQBAOHnypNayGLvvlsBS8dHmjTfeENq0aaN3HZ4/miwZn/DwcGHp0qUGl4XnjyZrnTu89pimqfFRWrduneDi4iJUV1cLgsBrj7lYKj7a8NpjPEvGRyzXHnYtJlFQdlnw8fEBAJw7dw7FxcXIzMxUrSOVStG7d2/s3bsXAFBUVITq6mqNdYKDgxEXF6dap74NGzbg5s2byMvLa7RMO3fuhL+/P2JiYjBhwgRcv37d1I9n90yJjyEKCwshl8uRnJysWpaSkgK5XK5zO+bad3Niqfjo2pdyP/rw/Klj6fj85S9/gUKhQOfOnbFgwQK93e94/miy1rnDa49pzBWfsrIyeHp6wsnJCQCvPeZiqfjoWofXHuNYOj5iuPbo/sYQWYkgCJgxYwZ69OiBuLg4AEBxcTEAICAgQGPdgIAAnD9/XrWOi4sLvL29G6yjfH99q1atQlZWFkJDQ/WWacCAARgxYgTCw8Nx7tw5zJkzB3379kVRURGkUqlJn9NemRofQxQXF8Pf37/Bcn9/f50xNNe+mwtLxqe+s2fPYtmyZVi8eLHe9Xj+1LF0fJ5//nl07doV3t7eOHDgAGbPno1z587hww8/1Lo+z5861jx3eO0xnrniU1JSgtdeew2TJk1SLeO1p+ksGZ/6eO0xnqXjI5ZrDyuyZHNTp07FkSNHsGfPngavSSQSjb8FQWiwrD5d61y6dAlbtmzBunXrGi3TqFGjVP8fFxeHbt26ITw8HN9++y0effTRRt/fnJg7Po1tw9DtmGPfzYGl46N05coVZGdnY8SIERg/frzedXn+1LF0fF588UXV/3fq1Ane3t547LHHVE/KdeH5Y71zh9ce05gjPuXl5Rg0aBA6dOiAuXPn6t2Gvu2Ysu/mztLxUeK1xzSWjo9Yrj3sWkw2NW3aNGzYsAE7duxASEiIanlgYCAANHgyev36ddXTnMDAQFRVVaG0tFTnOury8/OhUCiQk5NjdDmDgoIQHh6O06dPG/1ee9aU+BgiMDAQ165da7D8xo0bOrdjrn03B5aOj9KVK1eQnp6O1NRUrFixwuj38/yxbHzUKTN0njlzRuvrPH9qWTM2vPYYzxzxuX37NrKzs9GqVSt89dVXcHZ21tgOrz2ms3R8lHjtMY214qPOVtceVmTJJgRBwNSpU7F+/Xp89913aNOmjcbrbdq0QWBgILZt26ZaVlVVhV27diEtLQ0AkJiYCGdnZ411rl69imPHjqnWUd9ffn4+nnrqqUZPRm1KSkpw8eJFBAUFGf1ee2SO+BgiNTUVZWVlOHDggGrZ/v37UVZWpnM75tq3PbNWfADg8uXL6NOnD7p27Yr8/Hw4OBh/2eD5Y7n41Hfo0CEA0HmsW/r5Y+3Y8NpjHHPFp7y8HJmZmXBxccGGDRvg6uqqsR1ee0xjrfgAvPaYwprxqc9m1x6T00QRNcGzzz4ryOVyYefOnRqpuysqKlTrvP7664JcLhfWr18vHD16VBg9erTW6XdCQkKE7du3CwcPHhT69u2rMf2O0vbt2wUAwokTJ7SWJzY2Vli/fr0gCIJw+/ZtYebMmcLevXuFc+fOCTt27BBSU1OF1q1bt5gU++aKz9WrV4VDhw4JK1euFAAI33//vXDo0CGNdPjZ2dlCp06dhMLCQqGwsFCIj49vMAWCenwM3XdzZq34XL58WYiOjhb69u0rXLp0SWNf6nj+aLJWfPbu3SssWbJEOHTokPDzzz8La9euFYKDg4WcnByN8vD8qWPN3zZB4LXHWOaIT3l5uZCcnCzEx8cLZ86c0diO+r0Brz3Gs1Z8eO0xjbXiI6ZrDyuyZBMAtP7Lz89XrVNTUyPMnTtXCAwMFKRSqdCrVy/h6NGjGtu5e/euMHXqVMHHx0dwc3MTBg8eLFy4cKHB/kaPHi2kpaXpLY9y3xUVFUJmZqbg5+cnODs7C2FhYUJubq7W7TZX5orP3LlzG91OSUmJ8MQTTwgeHh6Ch4eH8MQTTzSYysKUfTdn1opPfn6+zn3VLw/PnzrWik9RUZGQnJwsyOVywdXVVYiNjRXmzp0r3Llzp0F5eP7UsuZvmyDw2mMsc8RHOSWStn/nzp1Trcdrj/GsFR9ee0xjrfiI6dojebgjIiIiIiIiIrvAMbJERERERERkV1iRJSIiIiIiIrvCiiwRERERERHZFVZkiYiIiIiIyK6wIktERERERER2hRVZIiIiIiIisiusyBIREREREZFdYUWWiIjIwubNm4fOnTvbbP9z5szBxIkTbbZ/Q73zzjvIycmxdTGIiMgOSARBEGxdCCIiInslkUj0vp6bm4t33nkHlZWVUCgUVipVnWvXrqFt27Y4cuQIIiIirL5/Y1RWViIiIgJffPEFevToYeviEBGRiDnZugBERET27OrVq6r/X7t2Lf70pz/h1KlTqmVubm5o1aoVWrVqZYviYdWqVUhNTbV5JfbBgweQSCRwcNDdGUwqlWLMmDFYtmwZK7JERKQXuxYTERE1QWBgoOqfXC6HRCJpsKx+1+K8vDwMGzYMCxcuREBAALy8vPDqq6/i/v37eOmll+Dj44OQkBD8/e9/19jX5cuXMWrUKHh7e0OhUGDo0KH45Zdf9JavoKBAo7vumjVroFAoUFlZqbHe8OHD8dRTT6n+/uabb5CYmAhXV1dERkaqyqe0ZMkSxMfHQyaTITQ0FFOmTMFvv/2men316tXw8vLCxo0b0aFDB0ilUpw/fx47d+7EI488AplMBi8vL3Tv3h3nz59XvS8nJwf//Oc/cffuXYOOPxERtUysyBIREdnAd999hytXruD777/HkiVLMG/ePAwePBje3t7Yv38/Jk+ejMmTJ+PixYsAgIqKCqSnp6NVq1b4/vvvsWfPHrRq1QrZ2dmoqqrSuo/S0lIcO3YM3bp1Uy0bMWIEHjx4gA0bNqiW3bx5Exs3bsTTTz8NANiyZQuefPJJTJ8+HSdOnMDy5cuxevVqLFiwQPUeBwcH/O1vf8OxY8fw0Ucf4bvvvsPLL7+ssf+KigosWrQIH374IY4fPw4fHx8MGzYMvXv3xpEjR1BYWIiJEydqdM/u1q0bqqurceDAgaYfZCIiar4EIiIiMov8/HxBLpc3WD537lwhISFB9Xdubq4QHh4uPHjwQLUsNjZW6Nmzp+rv+/fvCzKZTPj8888FQRCEVatWCbGxsUJNTY1qncrKSsHNzU3YsmWL1vIcOnRIACBcuHBBY/mzzz4rDBgwQPX322+/LURGRqq23bNnT2HhwoUa7/n444+FoKAgnZ993bp1gkKhUP2dn58vABAOHz6sWlZSUiIAEHbu3KlzO4IgCN7e3sLq1av1rkNERC0bx8gSERHZQMeOHTXGiwYEBCAuLk71t6OjIxQKBa5fvw4AKCoqwpkzZ+Dh4aGxnXv37uHs2bNa96Hsnuvq6qqxfMKECUhKSsLly5fRunVr5OfnIy8vT9UyWlRUhP/+978aLbAPHjzAvXv3UFFRAXd3d+zYsQMLFy7EiRMnUF5ejvv37+PevXu4c+cOZDIZAMDFxQWdOnVSbcPHxwd5eXnIyspC//79kZGRgZEjRyIoKEijfG5ubqioqDDsQBIRUYvErsVEREQ24OzsrPG3RCLRuqympgYAUFNTg8TERBw+fFjj308//YQxY8Zo3Yevry+A2i7G6rp06YKEhASsWbMGBw8exNGjR5GXl6d6vaamBq+++qrGfo4ePYrTp0/D1dUV58+fx8CBAxEXF4cvv/wSRUVFePfddwEA1dXVqu24ubk1yOqcn5+PwsJCpKWlYe3atYiJicG+ffs01rl16xb8/PwaO4RERNSCsUWWiIjIDnTt2hVr166Fv78/PD09DXpPVFQUPD09ceLECcTExGi8Nn78eCxduhSXL19GRkYGQkNDNfZ16tQpREdHa93uDz/8gPv372Px4sWqVuV169YZ/Fm6dOmCLl26YPbs2UhNTcVnn32GlJQUAMDZs2dx7949dOnSxeDtERFRy8MWWSIiIjvwxBNPwNfXF0OHDsXu3btx7tw57Nq1C88//zwuXbqk9T0ODg7IyMjAnj17tG7v8uXLWLlyJZ555hmN1/70pz9hzZo1mDdvHo4fP44ff/wRa9euxSuvvAKgtoJ8//59LFu2DD///DM+/vhjfPDBB41+hnPnzmH27NkoLCzE+fPnsXXrVvz0009o3769ap3du3cjMjISUVFRxhweIiJqYViRJSIisgPu7u74/vvvERYWhkcffRTt27fHM888g7t37+ptoZ04cSIKCgpUXZSVPD09MXz4cLRq1QrDhg3TeC0rKwsbN27Etm3bkJSUhJSUFCxZsgTh4eEAgM6dO2PJkiX4y1/+gri4OHz66adYtGiRQZ/h5MmTGD58OGJiYjBx4kRMnToVkyZNUq3z+eefY8KECUYcGSIiaokkgiAIti4EERERWYYgCEhJScELL7yA0aNHa7zWv39/tG/fHn/7299sVDpNx44dQ79+/fDTTz9BLpfbujhERCRibJElIiJqxiQSCVasWIH79++rlt26dQsFBQX47rvv8Nxzz9mwdJquXLmCNWvWsBJLRESNYossERFRCxMREYHS0lLMmTMHs2bNsnVxiIiIjMaKLBEREREREdkVdi0mIiIiIiIiu8KKLBEREREREdkVVmSJiIiIiIjIrrAiS0RERERERHaFFVkiIiIiIiKyK6zIEhERERERkV1hRZaIiIiIiIjsCiuyREREREREZFdYkSUiIiIiIiK78v/Y6YIvayy/IAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGdCAYAAAD60sxaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABVW0lEQVR4nO3deVyU1f4H8M+wDYswqAiIguCGImouyeJuiphm/mzRTG6WcW1RM1stvdKKWtlyrWzxtlq2GGWluJRLxuaG4gJuuOIIKM4gyjrP7w9iZJyFGZhn1s/79ZrXa+Y85zznnGjky3nOIhEEQQARERGRE3GxdgOIiIiILI0BEBERETkdBkBERETkdBgAERERkdNhAEREREROhwEQEREROR0GQEREROR0GAARERGR03GzdgOsQaVSoaioCL6+vpBIJNZuDhERERlBEASUl5cjJCQELi4tG8NxygCoqKgIoaGh1m4GERERNcPZs2fRsWPHFt3DKQMgX19fAPX/Af38/KzcGiIiIjKGUqlEaGio+vd4SzhlANTw2MvPz48BEBERkZ0xx/QVToImIiIip8MAiIiIiJwOAyAiIiJyOgyAiIiIyOkwACIiIiKnwwCIiIiInA4DICIiInI6DICIiIjI6TAAIiIiIqfDAIiIiIicDgMgIiIicjoMgIiIiMjpMAASyS+557E1v9jazSAiIiIdnPI0eLGdv3IdT6zJBQAM6RqAf8V1QkKvYOs2ioiIiNQ4AiSCS1er1O93Hi/Fv7/aY8XWEBER0c0YAIlgz+kynenllTWY/mk21uScsXCLiIiIqDEGQGamuF6Dl349rPPaJztOYufxUjz/U56FW0VERESNMQAys5/2ntN7TVlZa8GWEBERkT4MgMzskx0ndaarVAIEQbBwa4iIiEgXBkBmdOVaNYoUlTqvdX5hPWpUDICIiIhsgUUCoA8++AARERHw9PTEgAED8NdffxnMv337dgwYMACenp7o3LkzVq5cqZVn7dq1iIqKglQqRVRUFNLS0sRqvtGu19QZvP5NNic/ExER2QLRA6DvvvsO8+bNw4svvoh9+/Zh6NChGDduHM6c0R0MFBYW4vbbb8fQoUOxb98+vPDCC5g7dy7Wrl2rzpOZmYkpU6YgKSkJ+/fvR1JSEu69915kZ2eL3R2DTHnCte9MGc5eviZeY4iIiEgviSDyxJSYmBj0798fH374oTqtZ8+emDRpElJTU7XyP/fcc1i3bh2OHDmiTnvkkUewf/9+ZGZmAgCmTJkCpVKJDRs2qPMkJiaidevW+Pbbb5tsk1KphEwmg0KhgJ+fX0u6p+Hs5WsYumyrSWVOLRlvtvqJiIgcmTl/f4s6AlRdXY09e/YgISFBIz0hIQEZGRk6y2RmZmrlHzt2LHbv3o2amhqDefTds6qqCkqlUuMlhlrO8SEiIrILogZApaWlqKurQ1BQkEZ6UFAQ5HK5zjJyuVxn/traWpSWlhrMo++eqampkMlk6ldoaGhzu2RQnUrV4ntcr67DV1mnUXTlujrtapXu5fOCIODYxXJU17a8XiIiImdikUnQEolE47MgCFppTeW/Od2Uey5YsAAKhUL9Onv2rEntN1bngFYml+n1n3SoVAKUlTUQBAFvbCzAop8PYuKKnQCAx1fvRfTijfjX/3Lwbc4ZKK7Vj4I9/cN+RCxYjzFv78CDn+eYtR9ERESOTtTDUAMCAuDq6qo1MlNcXKw1gtMgODhYZ343Nze0bdvWYB5995RKpZBKpc3thtFcXPQHdfpUVNfhlpc3QVlZixnx4fg84xQAoPRqNcKf/12db8fREuw4WoIVfx6Hn5c7jly48Rjv7+OXWtx2IiIiZyLqCJCHhwcGDBiAzZs3a6Rv3rwZ8fHxOsvExcVp5d+0aRMGDhwId3d3g3n03dPWNewQ3RD8GHL+ynWN4IeIiIhMJ+oIEADMnz8fSUlJGDhwIOLi4vDxxx/jzJkzeOSRRwDUP546f/48vvzySwD1K75WrFiB+fPnIzk5GZmZmVi1apXG6q4nnngCw4YNw9KlS3HnnXfil19+wZYtW7Bz506xu2OzrlbVopVU9B8nERGRQxD9N+aUKVNw6dIlvPzyy7hw4QKio6Oxfv16dOrUCQBw4cIFjT2BIiIisH79ejz55JN4//33ERISgvfeew933XWXOk98fDzWrFmDhQsXYtGiRejSpQu+++47xMTEiN0dm/XxjpOYP6a7tZtBRERkF0TfB8gWibUPEACNeTuW9EBcJ7x0Z7RV6iYiIrIEu9kHiAADi93MXI+FKiIiInIADIBE9PPjg5HzwmiL1PVnfrFF6iEiInIEnDUroltC/S1W1xmeK0ZERGQ0jgCZ2eqHY9A5wAff/TtWnbbm37F4656+WNMoTQyHi5RQVtaIWgcREZEj4CRoM0+CbsqoN7fhZGmFqHXwgFUiInJEnARtx36dM0T0OrYfLRG9DiIiInvGAMjCfCywWWHmCR6NQUREZAgDICvo4O+l8Xl0T91nmAGAl7ur3mu7XhRnhdmSDfkY8cZW9cGrREREjoYBkBX8dtNjsE8fGIjdC0cjvktbrbyLJkRppZ1aMh6Fqbejna/uA15Xbj/R7LapVAJWbj+BU5eu4ZucM00XICIiskMMgKygleeNx2BPjq4/viKglRRStxs/jg/v74/7Y8Jwz8COuKt/R617NLXx4cc7TuCPIxdNapcgCLht+Xb158sVVSaVJyIishcMgKzA3fXGf/ae7X115hnXuz1e+7/ecHd1wRt394HMy92kOl5fn4+ZX+zG9eo6o8tcq65DYaMVaj/sOWdSnURERPaCAZCVLBzfExP7huC2RvN/pg4KAwD0C/PXyOviIkGwn6fO+3z+4K0G6zlWXG50m1Q37Yhw5VoN7v0oEzu4qoyIiBwMAyAreXhoZ7x3Xz+4utx4lDW2VzC2zB+mc8PE9v66A6Bh3doZrGfiir/x7pZjeq/XqQSk7TuHs5evIV+uHSzlFF7Gv/6XY7AOIiIie8OjMGxM10Ddj8RSJ/fGop8P4cHB4RrpLi5NH4L69pajeGJ0N/XnC4rrEAQgxN8L32SfxqJfDgEAhnYLaH7DiYiI7AhHgOxEe5kXPn1gIAZ31Q5SPv3XQKPvk3v2CuJS/0T8kj9xsuQq/jpWqr7W+P3NGm8YLggCfsk9jwIdI0ZERET2gAGQAxgdFYSTr99uMM/uU5dRU6fCpPf/VqeNems7KmtVRtWx53QZ6lT1QdDWgmI8sSYXY9/Z0fxGExERWREfgTkIFxcJurTzwYkS3eeM3b0yE9EdtM9NMXaC890rM9E5wAeb5w/HwfPKFrWViIjI2jgC5EAGRbQxeL2lgcvJ0grkFF5u0T2IiIhsAQMgB/LC7T1Fr+O+T7JQcJFzf4iIyL4xAHIgvp7umDWss+j1/H7ggvp9xnH9E6dVKgGPf7MXb2zMF71NREREpmAA5GAaJipbyqEi/Y/V9pwpw+8HLuD9rfVnkx08r8Btb20z+YgOIiIic2MA5GDqBPMEQJFBuvcjupmb6419iARBwPq8Czh7+RoAoLJG8xiOCf/diRMlFZj5xW7c9WEGFNdrNJbXExERWQoDIAejMsMI0If398eXMwcZlferrNPq978euIDHVu/F0GVbAQCGYps9p8vQ96VNePybvS1qKxERUXMwAHIwIf5eLb5HeVUtgvScPXazk42W3ecUXtK4tnjdIfX7sopqneXX58lRepWnzhMRkWUxAHIwD8SH44G4Tvh3CyZDK6/XNKvc5sOac3sanywvV1bqLffa70eaVR8REVFzcSNEB+Pp7oqX7oyGIAgY2Kk1UjfkawQiYth5rBRDugXgovLGSI6yUjOIGv/eX3rLF5frD46IiIjEwBEgByWRSJDQKxjr5w41uWztP/OIfpszBO6uTR+2On1VNs6VXdNI65OySeOzoalJV6vq9F8kIiISAQMgB+fSjJ9wVU39+WDRHWRYelcfo8oMWbrV9Ir+kX+BR2sQEZFlMQBycC6SpkdwbubudqPMHX1DzNkcnapqVVwOT0REFsUAyMGZGgDdEuqPpNhO6s/uri5YNCFK9B2mJ3+YYZYl/ERERMbgJGgH59Io/tk4bxi6tPNB5slLuCXUH71vmqdz36AwpE7urXWPmUMicL26Dh/tOClaO/eduYLNRy4iISoIkmaMWhEREZmCAZCDk0gk+OvZkaiqVaFrYCsAwNBu7TTydPD3wt/PjzJ4HzcjJkO31Kyv9gAAAlp5wM/LHa9OikZ8lwDR6yUiIufDR2BOILSNtzr4aWz2yK5oL/PE1qdHNHkPd1cXrH44RoTWaSu9Wo2TJRWY9km2ReojIiLnwwDIiT09NhKZC26Dh5tx/xsM7hqAPQtHi9wqTQfPKyxaHxEROQcGQGSS5qwqa4n//nkMa3LOaB2sSkRE1BKcA0Qm8fd2x/Du7VCrUuHv45eaLtBCGw9dxMZDF3GytAIv3N5T9PqIiMg5cASITCKRSPDFQ4Ow+uFYi9b7Z36xResjIiLHxgCIzK6Nj4e1m0BERGQQAyBqtpXTByDIT4oZ8eHqtPen9cfuF0fDV+qGyCBfDOveTqvcqB6BJtd1vPgqrlyrbklziYiI1BgAUbMlRgcj+4XRiO3cRp0WLPOEi4sEeS+NxcYnh+HjpAEaZb6fFYd3p96CxF7BeH9af5Pqe/qHA2ZpNxERESdBU4s1Xhnm6qK5SszT3RWnlozHmpwzcHN1waCI+mBp5T+B0ePfGF/PliMXW95YIiIicASIzCDE30v9vpVUd0w9dVAY7h7Q0aj7NX6kRkREJAZRA6CysjIkJSVBJpNBJpMhKSkJV65cMVhGEASkpKQgJCQEXl5eGDFiBA4dOqS+fvnyZcyZMweRkZHw9vZGWFgY5s6dC4WCG+ZZS3QHGdr5StE1sJXOHacNGdpN+6iLxOhgczXNbOp4UCsRkUMRNQCaNm0acnNzkZ6ejvT0dOTm5iIpKclgmWXLlmH58uVYsWIFdu3aheDgYIwZMwbl5eUAgKKiIhQVFeHNN99EXl4ePv/8c6Snp2PmzJlidoWasOvF0dgyf7jJ5e4bFKaVJjQz1vjfzkJ8v/ts8wobcLy4HH1SNuLdLccA1AfpPLmeiMi+SQShub9uDDty5AiioqKQlZWFmJj6M6SysrIQFxeH/Px8REZGapURBAEhISGYN28ennvuOQBAVVUVgoKCsHTpUsyaNUtnXT/88AOmT5+OiooKuLk1Pa1JqVRCJpNBoVDAz8+vBb0kcwh//neNzwdfGovoxRt15v3m4RjEd9UeNTpeXI7Ry3cAAE4tGW/W9s38fBf++GcfolNLxuPBz3JwQVGJ3+YMgZsrnyITEVmKOX9/i/avd2ZmJmQymTr4AYDY2FjIZDJkZGToLFNYWAi5XI6EhAR1mlQqxfDhw/WWAaD+D2FM8EO259nE+mD4qTHdcfjlsXrnEQHAntNlOtOLy6vU79MPXjBvAxs5c+kathaUIF9ejkNFStHqISIicYkWAMnlcgQGau/3EhgYCLlcrrcMAAQFBWmkBwUF6S1z6dIlvPLKK3pHh4D6USSlUqnxItvx2IiuyHnhNsy5rRu8PeqDn4XjdR978euBIp3pjccxH/l6r1nb13iIdNgbW9XvLXwsGhERmZHJAVBKSgokEonB1+7duwHUH5twM0EQdKY3dvN1fWWUSiXGjx+PqKgoLF68WO/9UlNT1ROxZTIZQkNDjekqWVCgn6fG54eHdtaZ7+jFq1BW1mDs2zsw9eNMFJZWAABOllzVyHetulachhIRkUMw+ZnR7NmzMXXqVIN5wsPDceDAAVy8qL1vS0lJidYIT4Pg4PrVP3K5HO3bt1enFxcXa5UpLy9HYmIiWrVqhbS0NLi7u+ttz4IFCzB//nz1Z6VSySDIjq3OOoOCi/WT4ke+uQ1v3N0Hi345pJEn6j8b8evsIejdUSZaOyTgEBARkb0yOQAKCAhAQID2JNSbxcXFQaFQICcnB4MGDQIAZGdnQ6FQID4+XmeZiIgIBAcHY/PmzejXrx8AoLq6Gtu3b8fSpUvV+ZRKJcaOHQupVIp169bB09NT5/0aSKVSSKVSY7tINq66VqXx+Zkfde8QfceKnWafEN0YH4EREdkv0eYA9ezZE4mJiUhOTkZWVhaysrKQnJyMCRMmaKwA69GjB9LS0gDUP/qaN28eXn/9daSlpeHgwYOYMWMGvL29MW3aNAD1Iz8JCQmoqKjAqlWroFQqIZfLIZfLUVdXJ1Z3yAo+/ddAhLXxxmczbtVIX7n9hNnqyD17Bd/tOgORFkMSEZGNEnXZ1OrVqzF37lz1qq6JEydixYoVGnkKCgo0NjF89tlncf36dTz22GMoKytDTEwMNm3aBF9fXwDAnj17kJ2dDQDo2rWrxr0KCwsRHh4uYo/IkkZHBWF0lPbj0us1LQ90V2efxpELSnyddQYA0F7mpfPgViIickyiBkBt2rTB119/bTDPzX95SyQSpKSkICUlRWf+ESNG8K91MpqysgZ+ntrzw15MO6jxOXVDvskBEHeHJiKyX9zFjRya8nqNUfmOXNDcGqFxcFN05brOMn8dK9GZvumQHK/8dpgBEhGRDWMARA7ttwPamyJW1Rp+hHbkghK3vLQJH20/gcqaOuTLy3Xme3PTUew+dVkjrbpWhX9/tQerdhYibd/55jeciIhExQCIHNqSDfkan1UqAZeuVhss88SafSivqkXqhnz0WJRuMO/uRjtTP/fjAXRfuEH9+aKyshktJiIiS+DZEeQ0Xvr1ED77+1ST+Y5evNpkngaKfx6xXa6oxnc3HcTKuWpERLaLI0BkF1ZOH9DiezQV/Pz3j2Mm3/PDbSdQUVWLNbvOaF1j/ENEZLsYAJFd6ODvJXodb20+2qxySzbkY1l6gVY64x8iItvFAIjsQkt2Xc44XtrkxOcGW/OLTb7/V1mndaZzBIiIyHYxACK7EOhn3FEmT9zWTStt2qfZWPTzQR25tT34+S6D14ebsFdQHSMgIiKbxQCI7EKgr+Hz3hrMiA/Xmf797nNmaccXDw0yOq+xexAREZHlMQAih9LaxwOT+3VAZJCvtZsCFUeAiIhsFpfBk8NomCi9fMotEAQBEQvWW7U9N59aT0REtoMjQOQQXF0kSHssXv1Z0pJZ02ZSxQCIiMhmMQAiu/Hu1Fv0Xjv26jgE+hk3T6ilHhocYVQ+jgAREdkuBkBkN+68pYPeay4uzRvx2TJ/uNF5P06q34yxczsfo/LLvLVPoSciItvAAIjs3txRXZtdtmtgK4S2MW6TxYRewQDqH7cZ45ts7d2hiYjINjAAIrv18JAI7F+cgPkJkS26T7fApleMHX55rPq9u6v+r03uf8a0qC1ERGQZDIDIrqRO7q1+39rHAzIv0x8zhbXxNrmMm8uNr8r43u3RRcdjsDY+HvD39lB/7hfmb/T9a+pU2HemDLV1nDdERGQJDIDIrtw3KEz9vm9Hf4N5R/UI1Jke0MpDZzoAdA9qhaV39Yavp+YOEY2fenl5uGLL/OGYPfLGo7c5o7ritzlDAACJ/zwqO27kqfLXqmux6OeD+L8PMpC6Id+oMkRE1DIMgMjubH16BD5OGoAh3QIM5tMVAPl4uMLLw1VvmU1PDseUW8M0jrz48qFBcLvpsZdEIsHsUV0R0EqK2M5t8FRCJEL+2Yco/ZAcAFBeVdtkX4rLKxH1n41Ys+ssAGDVzsImyxARUctxI0SyOxEBPogIaHollq6tgMLa+sDLXfN/e11Tml/7v96ICvHDHX1CEKrnkZmnuysyF4yCm4FJ0XJFJYJl+pfnb8iTa6U9v/YAltzVR28ZIiJqOY4AkVPp4O+lNQLUsbX2KjCZlzseG9FVb/DTwN3VxeCmi7Gpf2BpummPtdbsOov3tx43qQwREZmGARA5LF2TnUf1CMSjw7sAACb3r99XaH5CJO7q3xFfz4wxS71rH43X+PzhthPYe6ZMZ159gc4bGwvM0hYiItKNj8DIYQ3pGoBFE6LQI9gXEgB/nyjFvQM7ws3VBQdfGguff0aCZF7ueOvevmart1Nb7cBr8gcZOLVkvFZ6cXmV2eolIiLjMQAihyWRSDBzyI1jK+K73pg03Uoq3v/6Xu76J1k3VtHEJOnzV66jg78XqmtVuKisbPJxHBERGY+PwIjMzFNPAFR6tQpr95xDZU0dvt91Fr0WbzR4n4VpeQCA+z/NwtBlW/H82gM4fanC7O0lInJGHAEiMjN9R2VM+SgTJ0oqcLBIgc/+PtXkfRTXawAAu07Vzx9as+ss1uw6i90LRyOgldRs7SUickYcASKykBMl9aM3xgQ/ACAAOHJBqZU+55t9JtctCILJZYiIHBkDICIbpVIJGPfuX1rpmScvmXSf//xyELct345r1U1vzEhE5CwYABHZqOs1dQav/7T3HHYeKzWYR6US8GXmaZwsqcCv+4vM2TwiIrvGOUBEIhjVIxB/5he36B5HDZwlNuKNrTh16RoA6Fxe3+DXAzeCHj4FIyK6gSNARCL44P7+eGZspNFL4k3VEPw0pUBern6/+3T9ZOqLykrOCSIip8cAiEgEnu6ueHxkV2QtuM2q7WgcgP245xzCn/8dMa//gXf/OIbaOpUVW0ZEZF0MgIhEJPN2Ny6fl3H5jFGnErDjaAkU12pQUa17HtE7W46h64sb8PnfPH2eiJwT5wAR2YCpg0Lx0faTzSr7+vojuHtAR7yz5Shu790epeVVSPn1sFFlU349jIm3dEAbH49m1U1EZK8YABHZgHsGhCIhKgh3fZhpctmPd5zExzvqg6f1eXKTy1+uqGIAREROh4/AiGyAh6sLBnRqg01PDsP4Pu0tXLvunauJiBwZAyAiGyD5JwbpHuSLthyNISISHQMgIhtQq7qxLN3DlV9LIiKx8V9aIpE9PrKL+v0dfUMwMrKdVp6wNt7q9x5ulv1all2rtmh9RES2gAEQkcieGdsDeSkJ+O99/bBkcm+08tRe8t74BHk3PSNAg7u2FaV996w0feI1EZG94yowIgvw9XTHHX1DAGhOOU6K7YTwAB/NzDp2aV44viemx3ZCj0XpIraSiMh5cASIyIpemRSNmUMiNNKS4sK18j08tDM8RTpWg4jIGTEAIrKwhpGgxvN+GmvnK9Vb9pmxkQCAjq29mlV3j2BfnekVVbXNuh8Rkb0SNQAqKytDUlISZDIZZDIZkpKScOXKFYNlBEFASkoKQkJC4OXlhREjRuDQoUN6844bNw4SiQQ///yz+TtAJILRPQOxbvZg/D53iN48T9zWTWf64yO7Yv9/ErDzuVEm1TkovA2kbi5Y8+9YndeHv7HVpPsREdk7UQOgadOmITc3F+np6UhPT0dubi6SkpIMllm2bBmWL1+OFStWYNeuXQgODsaYMWNQXl6ulfedd96BRMJN3Mi+SCQS9OnoD18dk6EbPDQ4Qu+1hvPFfpujP4BqLLytN75/JA4Fr46Dv7cHpseGaeUpvVqNOd/uQ9GV60bdk4jI3kkEQceMSzM4cuQIoqKikJWVhZiYGABAVlYW4uLikJ+fj8jISK0ygiAgJCQE8+bNw3PPPQcAqKqqQlBQEJYuXYpZs2ap8+7fvx8TJkzArl270L59e6SlpWHSpElGtU2pVEImk0GhUMDPz6/lnSUSyUfbT6Bja2+9u0OrVAI6v7De4D2mx4bh1Um91Z8ra+oMTqbe9OQwXFRW4tbwNibNO8o+eQl/5Bdj/pjunK9ERKIw5+9v0VaBZWZmQiaTqYMfAIiNjYVMJkNGRobOAKiwsBByuRwJCQnqNKlUiuHDhyMjI0MdAF27dg333XcfVqxYgeDg4CbbUlVVhaqqKvVnpVLZkq4RWcys4V0MXndxaXoEdOH4KI3P0ib2GUp4eweA+rlK/72vX5P3bzDl4ywAQCupG+bqeYRHRGQrRHsEJpfLERgYqJUeGBgIuVz3gY0N6UFBQRrpQUFBGmWefPJJxMfH48477zSqLampqep5SDKZDKGhocZ2g8ju3TwaY+xj41/3FzWZZ+X2E+j24npknChVpy3ffNS0BhIRWYHJAVBKSgokEonB1+7duwHo/odWEIQm/wG++XrjMuvWrcOff/6Jd955x+g2L1iwAAqFQv06e/as0WWJbN2Efx6Pje0V1ETOG7bMH27UHKKq2jqD15dsyEdNnYBpn2RrpCsra3Cy5KrR7SEisjSTH4HNnj0bU6dONZgnPDwcBw4cwMWLF7WulZSUaI3wNGh4nCWXy9G+/Y05D8XFxeoyf/75J06cOAF/f3+NsnfddReGDh2Kbdu2ad1XKpVCKtW/tJjInr1xd19MuqUDhnQLMHqjxK6BrYzKN/mDDPw+d6jJbYpP/RNXq2qx6clh6B6ke+k9EZE1mRwABQQEICAgoMl8cXFxUCgUyMnJwaBBgwAA2dnZUCgUiI+P11kmIiICwcHB2Lx5M/r1q597UF1dje3bt2Pp0qUAgOeffx4PP/ywRrnevXvj7bffxh133GFqd4jsnpeHK0ZH6f6jYmi3pr+rhhwqUkJxrUa98sxYV//ZV2jH0RIGQERkk0SbA9SzZ08kJiYiOTkZWVlZyMrKQnJyMiZMmKAxAbpHjx5IS0sDUP/oa968eXj99deRlpaGgwcPYsaMGfD29sa0adMA1I8SRUdHa7wAICwsDBER+pcOEzmDtY/GqzdaBICnE7QXG5hq9rd7m122TiXKIlMiohYT9Syw1atXY+7cuepVXRMnTsSKFSs08hQUFEChUKg/P/vss7h+/Toee+wxlJWVISYmBps2bYKvL/+KJGrKgE6tMaBTa7x4e0+cv3INfUP9Deb/5fHBuPP9vw3m+etYqcHrhtSJs8sGEVGLibYPkC3jPkBEN4Q//3uTeV6dFI3psZ000oquXEf8kj8Nlovt3AZr/h3XovYRETUw5+9vngVGRE1asiFf4/PTP+xvMvgBgKyTl3G1qhYqPgojIhvDAIiImnS1qhYHz9c/ql6fdwE/7jlndNnoxRvxwGc5YjWNiKhZRJ0DRESOY8J/d2Jot4BmzQn661gpBEHAvrNX0CWglcmryoiIzI0BEBEZrSUToueuycWv+4vQSuqGA4sTjDrGg4hILHwERkQW0XC0xtWqWvzrf3wkRkTWxQCIyMltf2YE3ri7j0Xr3Hm8+SNJRETmwACIyMl1auuDewZa/oDg3w7Ujwj9vO88sk9esnj9ROTcGAARkZY+HWUm5c9LScBtPQJNKrN801EcuaDEvO9yMeXjLJPKEhG1FAMgIgIAfHB/f0yPDcOSyb2x+uEYk8r6erpj1YxbsfnJYUaXOVlagXHv/qWVfuVaNc5cuqb+LAgCUjccwVoTlt4TETWFq8CICABwe+/2uL13+xbdw8215X9T3fLyZgBAxvOjIFdW4uus0/hp73kAwF0DOrb4/kREAAMgIjIjV0nzl7ZXVNXCy91V/fmb7DNYsfW4OZpFRKSFj8CISKff5w5Rv+8X5o9Obb2bLOPSgn9Rbn1tC379Z2I0AAY/RCQqBkBEpFOvEBk+f/BWTO7XAV88NAjbnxnZZBmXFowAXauuw3t/HGt2eSIiU/ARGBHpNSIyECMib6zu+uKhQThyQQkvd1csXndIK3/jAKiNjwf+fGo4/jpWijnf7jOqvhMlFQavH7tYjm5Bvka2nohIP44AEZHRhndvh0eGd8ED8eFY+2g8+nSUYe2jcTrzxndpC39vD9zRN8Rs9R84pzDbvYjIuTEAIqJmGdCpNdbNHoIBndqo0wQI6vcLx0ep33+bHGuWOutUQtOZiIiMwACIiMxGaBSf+EhvrOiK69LWLPd/du0BCILuIOjKtWqs3XMOFVW1Jt2zTiUgdf0R/HHkojmaSER2ggEQEZlNK88b0wo93DT/eQmReQIAPkoagG+STdtosbGpH2fhguK6Vnryl7vx1A/78WJankn3W7f/PD7acRIzv9jd7DYRkf3hJGgiMhs/T3d88q+BcHORQOrmqnEtY8Ft6veVNXXNriO78DLiUv/E1zNjMKRbgDp916kyAMC6/UV4Z2o/o+5VW6fCR9tPNrstRGS/GAARkVmNiQpqMo+HGXaMnr4qG9Ed/PDVQzFo7eOhTnd1MX4p/heZp5EvL29xW4jI/vARGBFZnIuLBH6eLf/76+B5Jd7cVKB5bxP2ItpxtKTFbSAi+8QAiIisYsezTW+saIzV2Wc0Voep9EyS1qUF+zYSkZ1jAEREVuHv7YHPZtwKAEid3LtF9+rywnr1+5q65i+VV3GZPZHTYABERFYzskcgjr02DvcNCjPrfY8Xl+PKteom8908ALT/3BV8suMk3tiYb9b2EJHt4SRoIrIqdzNMiL7Z6OU7AABv3dMXn2ecwr/iOuGOviHwdNdcmSa56RmYsrIWr60/AgC4Z0AowgN8zN42IrINHAEiIof11A/7kXdegWd+PIAei9Kb3EnatVFAVFFt2oaKRGRfGAARkU2YNbyz6HWU3fRY7OZHYNNXZavfq1SiN4eIrIgBEBHZhOcTe2DHMyPxwf39EdDKA98kx2DfojFmrePmgKeqVn+UY8pqMiKyP5wDREQ2QSKRIKytN8LaemNcdLDW/BxzaPwIbPepy9h5vFRv3lOXKtA31N/sbSAi28ARICKyOWIEPwCw8fCNA08f/HyXwbxPrMnFvjNlorSDiKyPARAR2Y3oDn4tKl9Xd+ORV3ll05Oc53+/v0X1EZHtYgBERHYhrnNbjIwMbNE9wgN8UF2rwq/7i4zKX1ha0aL6iMh2MQAiIpv225whuHtAR7w95RaEtvZu0b1S1h3CxztOYM63+8zUOiKyVwyAiMimRXeQ4c17+iJY5om7BnTE9Njm7xp96tI1rM4+Y8bWEZG9YgBERHbD1UWCVyf1xrfJsQhoJW3WPS4oKs3cKiKyRwyAiMjuxHVpi3WzB1u7GURkxxgAEZFdCvH3wv7/JOD4a+M00lPuiMJ9g0Kt1CoishfcCJGI7JbM2x0AcGrJeJSUV8HX0w2e7q547ffDVm4ZEdk6BkBE5BDa+d6YE9Tc+UFE5Dz4CIyIHM4D8eGY3K8D3p/W39pNISIbxREgInI4nu6uWD7lln/eD8TML3Zbt0FEZHM4AkREDm1UD8O7R/t7u8NXqv9vwZ3HSlFVW2fuZhGRlYkaAJWVlSEpKQkymQwymQxJSUm4cuWKwTKCICAlJQUhISHw8vLCiBEjcOjQIa18mZmZGDVqFHx8fODv748RI0bg+vXrIvWEiOyVRCLRu2T+038NRO5/EpD30lgM7tpWZ57pq7IxeMlWMZtIRFYgagA0bdo05ObmIj09Henp6cjNzUVSUpLBMsuWLcPy5cuxYsUK7Nq1C8HBwRgzZgzKy8vVeTIzM5GYmIiEhATk5ORg165dmD17NlxcOKBFRNr6dPTH8dfGYVqM5i7SjQ+df2litPr96J6ao0alV6tEbR8RWZ5EEARBjBsfOXIEUVFRyMrKQkxMDAAgKysLcXFxyM/PR2RkpFYZQRAQEhKCefPm4bnnngMAVFVVISgoCEuXLsWsWbMAALGxsRgzZgxeeeWVZrVNqVRCJpNBoVDAz69lp0sTkX2JXrwRV6vqT4LfMn8Yugb6qq8VyMvh6gK8veUYfj9wQaPcqSXjLdpOItJmzt/fog2ZZGZmQiaTqYMfoD5wkclkyMjI0FmmsLAQcrkcCQkJ6jSpVIrhw4eryxQXFyM7OxuBgYGIj49HUFAQhg8fjp07d4rVFSJyIE/c1g0A4Ct10wh+ACAy2BddA33h2nho6CbVtSpR20dEliFaACSXyxEYqD35MDAwEHK5XG8ZAAgKCtJIDwoKUl87efIkACAlJQXJyclIT09H//79cdttt+HYsWM671tVVQWlUqnxIiLn9PDQCGx6chhyFyfozePqojsAWrIhH90XbsDB8wqxmkdEFmJyAJSSkgKJRGLwtXt3/ZJTiY6/ogRB0Jne2M3XG5dRqer/+po1axYefPBB9OvXD2+//TYiIyPxv//9T+f9UlNT1ROxZTIZQkO5TT6Rs5JIJOge5Ks3yAEAFx3/Ri1Lz8fK7Sfq328sEK19RGQZJu8DNHv2bEydOtVgnvDwcBw4cAAXL17UulZSUqI1wtMgODgYQP1IUPv27dXpxcXF6jIN6VFRURple/bsiTNnzui874IFCzB//nz1Z6VSySCIiPRy1fGn4QfbTqjf16n4GIzI3pkcAAUEBCAgIKDJfHFxcVAoFMjJycGgQYMAANnZ2VAoFIiPj9dZJiIiAsHBwdi8eTP69esHAKiursb27duxdOlSAPXBVUhICAoKNP8CO3r0KMaNG6d1T6B+HpFUyq3xicg4ukaAGquo4r5ARPZOtDlAPXv2RGJiIpKTk5GVlYWsrCwkJydjwoQJGivAevTogbS0NAD1Q9Pz5s3D66+/jrS0NBw8eBAzZsyAt7c3pk2bps7zzDPP4L333sOPP/6I48ePY9GiRcjPz8fMmTPF6g4ROZGGQ1b1EWXpLBFZlKhHYaxevRpz585Vr+qaOHEiVqxYoZGnoKAACsWNCYXPPvssrl+/jsceewxlZWWIiYnBpk2b4Ot7Y7XGvHnzUFlZiSeffBKXL19G3759sXnzZnTp0kXM7hCRk3hkWBd8tP2k3uu1dXwERmTvRNsHyJZxHyAiMkQQBEQsWK/3evegVtj05HALtoiIADvZB4iIyF41tVKVewER2T8GQEREOjw/rofeawyAiOwfAyAiIh0MbBOEGpXTzRwgcjgMgIiIdGi8FP7/+nWwYkuISAwMgIiIdLi9d/2mq/3D/DF/THeNaw1nhWWeuIRzZdf03uPHPefwn18OQsURIyKbI+oyeCIiexXi74W8lAR4e7ihpLxK41rH1l5YsuHG0RjRHfzw0OAITO7fUSPf0z/sBwDEdwnA2F5BTU6uJiLL4QgQEZEevp7ucHWRoG0rD4303afL1MEPABw8r8T87/dr5LlcUa1+/8eRi7jz/b/x+Dd7xW0wERmNARARURPcXV0wIz68yXwNj7qOF19F/1c2q9N/2HMOB84p8PuBCxr5iMh6GAARERkheVjnJvOM/+9OCIKAr7NO681zqrQC/V/djDc25muknyy5irJGo0ZEJC7OASIiMkIHfy94ubvieo3+g1CPXFBCeb0WhjbYH/HmNgDA+1tPoEBejqIrlXh0RBfM+XYfAODUkvFmbTcR6cYRICIiI/lIXZvMU6tSGX1Y6pYjxTh8QakOfgCgsLSima0jIlNwBIiIyEg+UjeUXjX8mGrAq1taVMe16lpU1tTB073pYIuImo8jQERERkq5o5fodYx/byd6LErH8eKrotdF5MwYABERGalrYCuL1TV6+XaL1UXkjBgAERHZqI93nMCoN7eh0sDEayJqHgZAREQ26vX1+ThZWoF7P8q0dlOIHA4DICIiG3fgnMLaTSByOAyAiIiM5O/trvF54fieVmoJEbUUAyAiIiP5errj/pgwAEDG86Pw8NCmd4c2l/e3HteZfuSCEm9vPopr1bUWawuRI5AIhrYsdVBKpRIymQwKhQJ+fn7Wbg4R2bEH/peD7UdLLFJX/zB//PTYYPXn2joVur64AQAwc0gEFk2Iskg7iKzFnL+/OQJERNQCnz94K2aP7GqRuvaeuaLxOefUZfX7fWfKLNIGIkfBAIiIqAUkEgm8PPTv2vz5g7eKUu/5K9cx7ZNs9eeqWpUo9RA5KgZAREQtND2mk95rIyIDsfXpEWarS6Wqn7UweMmfGumHipRmq4PIGTAAIiJqIZm3O04tGY87bwnReT0iwAf7FyeYpa4HP9+F8Od/13lt+eajAICKqlpsLShGNUeFiPRiAEREZCbvTu2n95rMyx25/xmjlZ7/SiL6hvoDABJ7BTdZh6EJ1+/9cQwA8O+vduPBz3bhrU0FTd6PyFkxACIishB/bw+tNFcXCdY+Eoe/nh2JUT0DW1zHR9tP4O/jlwAA3+ScafH9iBwVAyAiIjPKeeE2jOqhP5A5tWQ81s2+sZTdRSKBm6sLQtt4A402JclLScDdAzqaXH/qhnz1+/LKWuw5fdlAbiLnxQCIiMiMAv08seqBgVgyuTfSHovXmae9zEv93kVyI318n/YIa+ON+waFwtfTHW/e07fF7bnvk2ycKLmKT/86yUNViRpxs3YDiIgcjUQiwdRBYXqvt/OVYuX0AfD2cIVEciMC8pG6YfszIzTSWqq6VoXb3toOAFBer8H8hEiz3ZvInnEEiIjIChKjgzGsezutdHMGPzd770/dx2kQOSMGQEREROR0GAAREdkwc26iSEQ3MAAiIrJhEQE+uDW8tbWbQeRwGAAREdm4fmGGA6Bx0U1voNigTiVg0yE5ipWVBvPV1KlwruyaRlplTR2Wpefz4FVyCAyAiIhs3LzR3fReiwjwwYpp/Y2+15pdZ/Dvr/Zg0Ot/4GpVrdb1S1erUFhagfs/ycaQpVux81ip+toH207gg20n8H8fZAAAjheXo6qWS+vJPjEAIiKycd4e+ncsmTe6G1xdjF859mLaQfX76MUbEf787xpBzIBXt2Dkm9uQc6p+A8Xpq7LxddZpAMBRebk634a8Cxi9fIfGifRE9oQBEBGRHVj7aJxW2n8mROGOPvUHsDbeXdpUd3+YibFv78DZy9d0Xl/4c33Q1HiF/qOr9wIA9pwuw5lLussR2TIGQEREdmBApzaI7uCn/vzlQ4Pw0JAIuPwz+tOno3+z7513XoGCi+V47J+gRh99WxQNe2Nrs+smshbuBE1EZCe+eHAQlqbno3uQL4Z2CzD7/fPOK/Re23P6Mtbnyc1eJ5G1cASIiMhOtG0lxbK7++LhoZ117hg9a3hn0eq+68NMg9cvXa0SrW4iMTAAIiJyEA/EhVut7gGvbsGE//6Fb7LPWK0NRKZgAERE5CBC/L3w3n39rFb/wfNKvJCWhz2nuU8Q2T4GQEREDqRvR5n6/YhI7cNWLeGuDzOsUi+RKUQNgMrKypCUlASZTAaZTIakpCRcuXLFYBlBEJCSkoKQkBB4eXlhxIgROHTokEYeuVyOpKQkBAcHw8fHB/3798ePP/4oYk+IiOxDWBtvjO/dHvcNCsOb9/S1dnOIbJaoAdC0adOQm5uL9PR0pKenIzc3F0lJSQbLLFu2DMuXL8eKFSuwa9cuBAcHY8yYMSgvv7EBV1JSEgoKCrBu3Trk5eVh8uTJmDJlCvbt2ydmd4iIbJ5EIsH79/dH6uTeCGglRUSAj7WbRGSTJIIgCGLc+MiRI4iKikJWVhZiYmIAAFlZWYiLi0N+fj4iIyO1ygiCgJCQEMybNw/PPfccAKCqqgpBQUFYunQpZs2aBQBo1aoVPvzwQ41gqm3btli2bBlmzpzZZNuUSiVkMhkUCgX8/PyazE9EZM9UKgGdX1hv0TpPLRlv0frIOZjz97doI0CZmZmQyWTq4AcAYmNjIZPJkJGh+/lwYWEh5HI5EhIS1GlSqRTDhw/XKDNkyBB89913uHz5MlQqFdasWYOqqiqMGDFC532rqqqgVCo1XkREzsLFhKMyiJyFaAGQXC5HYGCgVnpgYCDkct2baTWkBwUFaaQHBQVplPnuu+9QW1uLtm3bQiqVYtasWUhLS0OXLl103jc1NVU9D0kmkyE0NLS53SIioiaYcjo9kbWYHAClpKRAIpEYfO3evRsAdG7UJQiCzvTGbr5+c5mFCxeirKwMW7Zswe7duzF//nzcc889yMvL03m/BQsWQKFQqF9nz541tdtERHbtv/8sj3/znr4Y2i0APh6ueDqhuyh11dSJMrOCyKxMPgpj9uzZmDp1qsE84eHhOHDgAC5evKh1raSkRGuEp0FwcP1fDXK5HO3bt1enFxcXq8ucOHECK1aswMGDB9GrVy8AQN++ffHXX3/h/fffx8qVK7XuK5VKIZVKjesgEZEDuqNvCMb2CoaHmwvuHtBRnT6hTwhGvLlNI29EgA8KSysM3q9jay+M7hmEzzNOaV2rqq2DsrIGfp7u5mg6kShMHgEKCAhAjx49DL48PT0RFxcHhUKBnJwcddns7GwoFArEx8frvHdERASCg4OxefNmdVp1dTW2b9+uLnPtWv2pwy4umk13dXWFSqUytTtERE7Dw037n/xwHavENjwxFMO7G95D6NERXZAysReC/Ty1rv11rBR9UjbxlHiyaaLNAerZsycSExORnJyMrKwsZGVlITk5GRMmTNBYAdajRw+kpaUBqH/0NW/ePLz++utIS0vDwYMHMWPGDHh7e2PatGnq/F27dsWsWbOQk5ODEydO4K233sLmzZsxadIksbpDROQUlt3dB57urvjioUE49to4vfkm3dIBALDm37HqtCA/zZH2YW9shUrFx2Fkm0TdB2j16tXo3bs3EhISkJCQgD59+uCrr77SyFNQUACF4sYJxM8++yzmzZuHxx57DAMHDsT58+exadMm+Pr6AgDc3d2xfv16tGvXDnfccQf69OmDL7/8El988QVuv/12MbtDROTw7h14Y5GIu6v2r4jRPYOw9tF4+EjrZ1A0HkG6qNQ+ELXbwg0MgsgmibYPkC3jPkBERDf0XJSO6zV1ALT37xn37l84cuHG1iG69vcJf/53g/fPeeE2BOp4VKZPVW0dpG6uRucn52EX+wAREZF96BWi/xfJ5w/eiu5BrQyW79yufhSoW6DufMeKrxrdlsNFSkQuTMcrvx02ugxRczAAIiJycgtu7wmgfmLzzYL8PPHYiK4Gy/8+Zyi2zB+m8fissfs/zdb4vHbPOdz62hacvqS90uz29/4CAKzaWYgf95xDeWWNUX0gMhUDICIiJzegU2vkv5KI5xJ76LyeGB2MfmH+mDWss87rXh6u6Broi/F92uu83tiOoyV46of9KCmvwvA3tuFEyY3RoQJ5uUbep3/Yj94pm7D71GUTekNkHJP3ASIiIsfj6a5/zo2nuyvSHhvc5D1C/L30XqupU6Gypg5f3LRv0G1vbccH9/dHYWkF3thYoLPs3SszebYYmR0DICIiEt2Y5dtx6tI1DOzUWuvaGxsLmtx4kcjc+AiMiIhEd+qfTRF3ny7Tusbgh6yBARARERE5HQZARERE5HQYABERkc2b8+0+5J1TNJ2RyEgMgIiIyOb9ur8Id6zYiS2HL1q7KeQgGAAREZHdePjL3TxbjMyCARAREZnN+rlDMbhrW3i4iffrpfML6/Fn/kVsLSjGsGVbkVPIjRLJdDwMlYehEhGZnUol4L0/j+GdLcdEr8vDzQVHXx1nVN5iZSVe+f0IkmI7YVBEG5FbRubGw1CJiMimubhIMDIy0CJ1VdeqjM77Qloeft1fhHs/yhSxRWQPGAAREZEo+ob6W7S+oxfL8fQP+/H0D/txUVmpM8/JRpsu/nWsBJU1dZZqHtkYHoVBRESi8fN0g7Ky1uRycZ3bIvPkJaPzf7/rLJ5de0D9+XzZdXz771itfCdLbgRASaty4OPhikMvJ5rcPrJ/HAEiIiLRPDG6e7PKfTlzkEn5Gwc/AHBErjSqXEU1R4CcFQMgIiISTXhbb6PzBrSSqt9LAOx4ZmSz63WVSIzO+8Pus82uh+wXH4EREZFo9E2EDm3jhbOXr2ukjYkKhCAAvp5ucHN1QVhbb/QN9cf+s1dMrlfSKABSqQQUXCxH9yBfnXmf+fEAegT7oXdHmcn1kP1iAERERKJxcdEeibk/Jgyjo4Lw4Ge7MCiijXofn+HdA5EYHayR95fHB2NrfjEe/HyXSfW6Nnq+MfvbvVifJzeY/44VOzGqRyA+nN4fUjdXk+oi+8QAiIiIRBXe1hunLl1D344yPDQkAglRwfDycMWhl8bC28MVqRvyUacSMLZXkM7yI3sEYuO8YXB1AUYv32FUnS7/jAClrDvUZPDT4M/8Yvy87zym3BpmXMfIrjEAIiIiUX3771j8tPc87hsUhjY+Hup0H2n9r6AXbu/Z5D0ig+sfX8V3aYuME02vDrugqMSPe87h84xTJrW16Iru5fPkeDgJmoiIRNVe5oXHR3bVCH6a64H4cKPzPv3DfpPv/+4f4u9cTbaBARAREdmNhKggpM8biocGR1i7KWTnGAAREZHdkEgk6BHsh9E9LXPMBjkuBkBERGR34rq0hYerOL/CVmefxo6jJaLcm2wHAyAiIrI7EokEc2/rKsq9X0w7iH/9L6fZ5X87UISf9503Y4tIDFwFRkREdunhoZ1xqaIan/19ytpNUausqcPsb/YBAEZEtoO/d8snfpM4OAJERER2ydPdFYvv6IXEXsFNZ7aQmjqV+v01njNm0xgAERGRXXNzNf7cLwDoH+aP5ff2FaUtQqP3JhxHRlbAAIiIiOzac4k9ENBKipiINkblT53cB5P7d0QHfy+zt0VQNZ2HbAPnABERkV0LbeONXS/ehr+OlSK7UP/k5Rnx4Zg5JAKhbepPqBcEQW9eADhZchUA0LldK6PbUtfEPcl2MAAiIiK7J5FI0FTokTKxl0n3HPXWdgDAE7d1w5NjuhtVplZ1YwhIxVjIpvERGBEROYSmRnS08huZ790/jmFD3gWj8jaKf6BiBGTTGAAREZFDMBRu6FopFtu5LQDAV+oGqZvhX4ePrt6LjBOlTbah8SOwn/aex3ojAyeyPD4CIyIix9AoAhrdMxBbjhQj4/lRcJFIEOQn1cqeMrEXuga2wh19QnCi9Coe/GyXwdvnFF5GfJcAAPX7/Xi6u2rlqau70Yi3txwFAOx8biQ6tvZuTo9IRBwBIiIih+AjvfE3/acP3IpTS8YjxN8LwTJPSHSsSZd5uePxkV0R1tYbXQKanuj8zpb6k+LX511Aj0Xp+PzvQq08n2Vop11UVpnSDbIQjgAREZFDuDW8NabHhqGzEcHMzUzZs+fxb/YCAFJ+PYzC0gqMiQrGkG71I0O6dqWu41wgm8QAiIiIHIJEIsGrk3o3s6zxeV0lEtT+M9fni8zT+CLzNE4tGa83f+OVYWQ7GAAREZHTM3YB2f6zV+DqIkHtTaM6py9V6D2TjFsD2SbOASIiIqdnbJBy5/t/o6pWe0Rn+Bvb8HnGKZ1lHlu9F6nrj2iln718DSu3n0B5ZY0pTSUz4QgQERE5PcHoXYFMp7heg492nITieg2W3NVHnX77e3+hvLIWJ4qv4o17xDmbjPTjCBARETk9S8xTXrPrLCprbpwQX15ZCwDIPHlJ/MpJi6gBUFlZGZKSkiCTySCTyZCUlIQrV64YLPPTTz9h7NixCAgIgEQiQW5urlaeqqoqzJkzBwEBAfDx8cHEiRNx7tw5cTpBREQOz9VCR7f3WJSOA+euoKKqVp3GVWLWIWoANG3aNOTm5iI9PR3p6enIzc1FUlKSwTIVFRUYPHgwlixZojfPvHnzkJaWhjVr1mDnzp24evUqJkyYgLq6Or1liIiI9AltY/6T4fWZuOJv9Fq8Uf35gqLSYnXTDaLNATpy5AjS09ORlZWFmJgYAMAnn3yCuLg4FBQUIDIyUme5hgDp1KlTOq8rFAqsWrUKX331FUaPHg0A+PrrrxEaGootW7Zg7Nix5u8MERE5NIlEgocGR+B/OjY3JMck2ghQZmYmZDKZOvgBgNjYWMhkMmRkZDT7vnv27EFNTQ0SEhLUaSEhIYiOjtZ736qqKiiVSo0XERGRMaYMDLV2E0gEoo0AyeVyBAYGaqUHBgZCLpe36L4eHh5o3bq1RnpQUJDe+6ampuKll15qdp1EROT4Am86L6xhc0O5ohLf7T5rjSaRiEweAUpJSYFEIjH42r17NwDoPHtFEASd6S1l6L4LFiyAQqFQv86e5f/IRESkaUZ8uNXqFrhbosWZPAI0e/ZsTJ061WCe8PBwHDhwABcvXtS6VlJSgqCgIFOrVQsODkZ1dTXKyso0RoGKi4sRHx+vs4xUKoVUqn0SMBERUQNPd1eMiGyHbQUlGunBMk/R6848eQlxndvirU1HERHgg7sGdDS6bGVNHbJOXkJs57Y6T6gn3UweAQoICECPHj0Mvjw9PREXFweFQoGcnBx12ezsbCgUCr2BijEGDBgAd3d3bN68WZ124cIFHDx4sEX3JSIi+vewzgCAcdHBGul5KQm6spvNtE+y8UtuEVZsPY6nfthvUtmFPx/EjM924dkfD4jUOsck2iTonj17IjExEcnJycjKykJWVhaSk5MxYcIEjRVgPXr0QFpamvrz5cuXkZubi8OHDwMACgoKkJubq57fI5PJMHPmTDz11FP4448/sG/fPkyfPh29e/dWrwojIiJqjvguAdi9cDTen9ZfI93X0x2tvd2Nvk9AKw+T6573Xa7JZQDgxz31++Ct21/UrPLOStR9gFavXo3evXsjISEBCQkJ6NOnD7766iuNPAUFBVAoFOrP69atQ79+/TB+fP3ks6lTp6Jfv35YuXKlOs/bb7+NSZMm4d5778XgwYPh7e2NX3/9Fa6uHPojIqKWCWglhYuL9pzSLfOHG32PmUM6t6gNf+ZrTyEh85IITjjzSqlUQiaTQaFQwM/Pz9rNISIiOxH+/O9G5Tvx+u3Yd6YMz609gBMlFc2qa+H4nnh4aNOBVOM2Naxcc1Tm/P3Ns8CIiIia6akx3TEmSnthj6uLBAPD2+D3uUPxbXJss+796u9HtFaHCYKAOd/uQ+I7O3BBcb1Z96V6DICIiIiaSSUYPkfM090VcV3aYteLozGgU2u9+fQpuVqlfv/4N3sRsWA9ft1fhHx5OeJS/2xWm6keAyAiIqJm6t3RD31CZU3ma+crxdpHTV+p3Pig1N8PXNC6fry43OR7Uj3RdoImIiJyNEmxnXC8+CpSJvZCwcVyjIwMxOCuAViXW4SjF8vh6iLB3Qb28Jl6ayjW7DJ+M97aOgHzv89FpzY+Oq9P/kDzCKji8koE+oq/b5EjYABERERkpFcmRavfRwb7AgCkbq5InzcMAKBSCTpXkDXw8tBcrezn6QZlZa3e/Llnr+Cnvef1Xr+57KDX/kDBq4mQunFVdFP4CIyIiMhMDAU/AHDzums3V8O/hrcfLTF4XZdPdpw0uYwzYgBERERkITev6po5JMJg/uZsbph+qPkHjjsTBkBEREQW0i/sxkqwboGt8OjwLvjl8cF681fXqkyu4+B5ZbPa5mwYABEREVnIxL4hmNg3BL6ebnj//v5wcZGgb6i/2espq6jGvSsz8b0JE66dDSdBExERWYiLiwTv3ddP9Hr6vVJ/YHjOqcu499ZQ0euzRxwBIiIicmDF5ZXWboJNYgBERERkZeFtvUW796DX/jApf2VNHdIPXkB5ZY1ILbINfARGRERkZVufHgG5shJSN1fkni3Du1uOYf85hVXa8uBnu5B58hKGdW+Hd6fcgie+y8U9Azrijr4hVmmPWDgCREREZGUSiQTtZV5o4+OBUT2CrBb81NSpkHnyEgBgx9ESvL3lKHYcLcGcb/dZpT1iYgBERETk4PLlSmScKMWY5duRU3hZZ57aOhW25hdrpH2ZedoSzbMKPgIjIiKyIzPiwzGqRyD+9b8co8skvvOX+v29H2Vi69MjUFFVi4gAHxw4p4CLBJjycZbBexwqUsDf2wMd/L2a3XZbwgCIiIjIjqRM7AWVSmg6owEj39xmcpnx7+0EAJxaMr5FddsKPgIjIiKyMV7uhg8zvfnMsZiINmI2xyExACIiIrIxqx4YqDN9yeTeOtOjO8jEbI5DYgBERERkYyKDfdXvHx3RRf1+XO/2OvOPiw4WvU2OhnOAiIiIbIyb643xiWHd2mH+mO6oqlWhlVT713afjjIMDG+Dnx8fjEnv/23JZto1BkBEREQ2xt31xhwfVxcJ3F1d4O6q+6HNQ4MjAAC9LfQYbEPeBRQpKnHwvAJv3tMXrjfNR7IXDICIiIhsjJvLjWBHT9yDLu18cKKkAsO6t/snnwQ5L94Glap+Q8PZ3+wVZUPFR1fvVb8f37s9RkcFmb0OS2AAREREZGMajwBJJLpHWDbOG4brNXXw9XRXpwX6eqrf/zJ7CMKf/128RgKoqK4V9f5iYgBERERkYxoHPb465v0A9fOEfPUND1mISmjZfkTWxACIiIjIBr00sRdKyqvQLci36cxWoiv++Sb7DL7ffRarHhiItq2klm+UkRgAERER2aAH4sOt3YQm6dqQ+oW0PADA21uO4tVJuvctsgXcB4iIiMhBffIv3Rsqmsv6vAtYu+cchH+GgrL/OUkeAK5V1Ylad0sxACIiInJQY0ReofVnfjGe+mE//jpWimvVtRoHqv6077yodbcUAyAiIiIn983DMXr3EerSzqfJ8gXyciz+5ZC5myUqBkBEREQObFpMmMHrri4SxHcNwLrZgzXSpwwMRRsfD/z4SHyTdagEAT/sOdeidloaAyAiIiIH9uqd0fjzqeH4bc4QtPHxwPB/Nk5s0HCQqkQiwa4XR8PDzQXvTr0FS+/ug10vjkZrH48m67DHxfBcBUZEROTAXFwk6NyuFQBgz8LRkEgkGhsk3tHnxgGr7XylOPrqOPXnhmMuJvfvgJ/26p/Ts2RDvrmbLTqOABERETmJhg0Wtz09AgGtPPDwkAjMMGK5fXcb3ououTgCRERE5GTCA3ywe+EYo/PPiA+3y1EeQzgCRERERAZ5urtauwlmxwCIiIiImtRe5tl0JjvCAIiIiIia9MMjcer3HyUNaDL/W/f0FbM5LcY5QERERNSkjq29cWrJeNTWqeBmxCn0kcG2PXGaI0BERERktIbg558V8jpNvTUUvUL8LNSi5mEARERERCZzNRABLbmrj3rJva1iAEREREQmMxQA2QNRA6CysjIkJSVBJpNBJpMhKSkJV65cMVjmp59+wtixYxEQEACJRILc3FyN65cvX8acOXMQGRkJb29vhIWFYe7cuVAoFOJ1hIiIiDS42vgIT1NEDYCmTZuG3NxcpKenIz09Hbm5uUhKSjJYpqKiAoMHD8aSJUt0Xi8qKkJRURHefPNN5OXl4fPPP0d6ejpmzpwpRheIiIhIB30jQG52MjIk2iqwI0eOID09HVlZWYiJiQEAfPLJJ4iLi0NBQQEiIyN1lmsIkE6dOqXzenR0NNauXav+3KVLF7z22muYPn06amtr4ebGhW1ERERi0xcAuRuxQswWiNbKzMxMyGQydfADALGxsZDJZMjIyDBrXQqFAn5+fnqDn6qqKiiVSo0XERERNd8jw7tYuwktIloAJJfLERgYqJUeGBgIuVxutnouXbqEV155BbNmzdKbJzU1VT0PSSaTITQ01Gz1ExEROaPkoZ3x25wh1m5Gs5kcAKWkpEAikRh87d69GwB0LoETBMFsS+OUSiXGjx+PqKgoLF68WG++BQsWQKFQqF9nz541S/1ERETOysVFgugOMgztFqCR3qG1l5VaZBqTJ8zMnj0bU6dONZgnPDwcBw4cwMWLF7WulZSUICgoyNRqtZSXlyMxMRGtWrVCWloa3N3d9eaVSqWQSqUtrpOIiIg0vTPlFox6azsU12sA2M8cIJMDoICAAAQEBDSZLy4uDgqFAjk5ORg0aBAAIDs7GwqFAvHx8aa3tBGlUomxY8dCKpVi3bp18PR0rAPaiIiI7EXbVlLsWTgaXV/cAACwk/hHvDlAPXv2RGJiIpKTk5GVlYWsrCwkJydjwoQJGivAevTogbS0NPXny5cvIzc3F4cPHwYAFBQUIDc3Vz1vqLy8HAkJCaioqMCqVaugVCohl8shl8tRV1cnVneIiIhIDzdXF3h7uAIAhnRtZ+XWGEfUNeOrV6/G3LlzkZCQAACYOHEiVqxYoZGnoKBAYxPDdevW4cEHH1R/bnjctnjxYqSkpGDPnj3Izs4GAHTt2lXjXoWFhQgPDxejK0RERGTApieHYWtBCe4Z0NHaTTGKRBAEwdqNsDSlUgmZTKZePk9ERES2z5y/v+3kSR0RERGR+TAAIiIiIqfDAIiIiIicDgMgIiIicjoMgIiIiMjpMAAiIiIip8MAiIiIiJwOAyAiIiJyOgyAiIiIyOkwACIiIiKnwwCIiIiInA4DICIiInI6DICIiIjI6bhZuwHWIAgCgPpTZYmIiMg+NPzebvg93hJOGQCVl5cDAEJDQ63cEiIiIjJVeXk5ZDJZi+4hEcwRRtkZlUqFoqIi+Pr6QiKRWLs5olAqlQgNDcXZs2fh5+dn7eZYhLP12dn6Czhfn9lfx+dsfW5pfwVBQHl5OUJCQuDi0rJZPE45AuTi4oKOHTtauxkW4efn5xRfqsacrc/O1l/A+frM/jo+Z+tzS/rb0pGfBpwETURERE6HARARERE5HQZADkoqlWLx4sWQSqXWborFOFufna2/gPP1mf11fM7WZ1vqr1NOgiYiIiLnxhEgIiIicjoMgIiIiMjpMAAiIiIip8MAiIiIiJwOAyArS01Nxa233gpfX18EBgZi0qRJKCgo0MgjCAJSUlIQEhICLy8vjBgxAocOHdLIU1VVhTlz5iAgIAA+Pj6YOHEizp07p76+bds2SCQSna9du3bpbd+MGTO08sfGxlq9vx9//DFGjBgBPz8/SCQSXLlyRauusrIyJCUlQSaTQSaTISkpSWc+U+u21T6fOnUKM2fOREREBLy8vNClSxcsXrwY1dXVBttnzz/j8PBwrbY///zzBttnzz9jR/oeX758GXPmzEFkZCS8vb0RFhaGuXPnQqFQaNzHFr7HluqvrXyHLdlnwIrfY4GsauzYscJnn30mHDx4UMjNzRXGjx8vhIWFCVevXlXnWbJkieDr6yusXbtWyMvLE6ZMmSK0b99eUCqV6jyPPPKI0KFDB2Hz5s3C3r17hZEjRwp9+/YVamtrBUEQhKqqKuHChQsar4cfflgIDw8XVCqV3vY98MADQmJioka5S5cuWb2/b7/9tpCamiqkpqYKAISysjKtuhITE4Xo6GghIyNDyMjIEKKjo4UJEyYYbJ8xddtqnzds2CDMmDFD2Lhxo3DixAnhl19+EQIDA4WnnnrKYPvs+WfcqVMn4eWXX9Zoe3l5ucH22fPP2JG+x3l5ecLkyZOFdevWCcePHxf++OMPoVu3bsJdd92lUZctfI8t1V9b+Q5bss+CYL3vMQMgG1NcXCwAELZv3y4IgiCoVCohODhYWLJkiTpPZWWlIJPJhJUrVwqCIAhXrlwR3N3dhTVr1qjznD9/XnBxcRHS09N11lNdXS0EBgYKL7/8ssH2PPDAA8Kdd97Zwl7p15z+NrZ161advygOHz4sABCysrLUaZmZmQIAIT8/X2dbTK27ucTqsy7Lli0TIiIiDOax15+xINT/w/n2228b3RZH+xk7yve4wffffy94eHgINTU1giDY7vdYrP7qYgvfYUEQt8/W+h7zEZiNaRgabNOmDQCgsLAQcrkcCQkJ6jxSqRTDhw9HRkYGAGDPnj2oqanRyBMSEoLo6Gh1nputW7cOpaWlmDFjRpNt2rZtGwIDA9G9e3ckJyejuLi4ud3T0pz+GiMzMxMymQwxMTHqtNjYWMhkMr33MVfdTRGrz/rqaqjHEHv8GTdYunQp2rZti1tuuQWvvfaawccFjvYzdrTvsUKhgJ+fH9zc6o+ptNXvsVj91ZfH2t/hhnYA4vXZGt9jpzwM1VYJgoD58+djyJAhiI6OBgDI5XIAQFBQkEbeoKAgnD59Wp3Hw8MDrVu31srTUP5mq1atwtixYxEaGmqwTePGjcM999yDTp06obCwEIsWLcKoUaOwZ8+eFu/k2dz+GkMulyMwMFArPTAwUO9/E3PVbYiYfb7ZiRMn8N///hdvvfWWwXz2+jMGgCeeeAL9+/dH69atkZOTgwULFqCwsBCffvqpzvyO9jN2pO/xpUuX8Morr2DWrFnqNFv8HovZ35vZwncYEL/P1voeMwCyIbNnz8aBAwewc+dOrWsSiUTjsyAIWmk305fn3Llz2LhxI77//vsm2zRlyhT1++joaAwcOBCdOnXC77//jsmTJzdZ3hBz97epexh7H3PUrY/YfW5QVFSExMRE3HPPPXj44YcN5rXnn/GTTz6pft+nTx+0bt0ad999t/qvSX0c4WfsSN9jpVKJ8ePHIyoqCosXLzZ4D0P3aU7dphK7vw1s5TsMiN9na32P+QjMRsyZMwfr1q3D1q1b0bFjR3V6cHAwAGj9tVNcXKyOfoODg1FdXY2ysjK9eRr77LPP0LZtW0ycONHkdrZv3x6dOnXCsWPHTC7bWEv6a4zg4GBcvHhRK72kpETvfcxVtz5i97lBUVERRo4cibi4OHz88ccml7eXn7EuDStfjh8/rvO6o/yMAcf5HpeXlyMxMRGtWrVCWloa3N3dNe5jS99jsfvbwFa+w4Dl+tyYxb7HRs8WIlGoVCrh8ccfF0JCQoSjR4/qvB4cHCwsXbpUnVZVVaVzEvR3332nzlNUVKRzErRKpRIiIiKaXFWgT2lpqSCVSoUvvviiWeXN0d/GmpoEnZ2drU7LysoyavKksXUby1J9FgRBOHfunNCtWzdh6tSp6hWAprKXn7Euv/76qwBAOH36tN622fvPuOF+jvA9VigUQmxsrDB8+HChoqJC6z628j22VH8FwTa+w4Jg2T7fzFLfYwZAVvboo48KMplM2LZtm8YSwGvXrqnzLFmyRJDJZMJPP/0k5OXlCffdd5/OZfAdO3YUtmzZIuzdu1cYNWqUxjL4Blu2bBEACIcPH9bZnsjISOGnn34SBEEQysvLhaeeekrIyMgQCgsLha1btwpxcXFChw4dmr2c1Fz9vXDhgrBv3z7hk08+EQAIO3bsEPbt26ex9DMxMVHo06ePkJmZKWRmZgq9e/fWWj7buL/G1m2rfT5//rzQtWtXYdSoUcK5c+c06tLXZ3v+GWdkZAjLly8X9u3bJ5w8eVL47rvvhJCQEGHixIl6+2ts3bba5waO8D1WKpVCTEyM0Lt3b+H48eMa92n875YtfI8t1V9b+Q5bss/W/B4zALIyADpfn332mTqPSqUSFi9eLAQHBwtSqVQYNmyYkJeXp3Gf69evC7NnzxbatGkjeHl5CRMmTBDOnDmjVd99990nxMfHG2xPQ93Xrl0TEhIShHbt2gnu7u5CWFiY8MADD+i8r6X7u3jx4ibvc+nSJeH+++8XfH19BV9fX+H+++/X+ou6OXXbap8/++wzvXXp67M9/4z37NkjxMTECDKZTPD09BQiIyOFxYsXa/2V6Ug/4waO8D1uGOXS9SosLFTns4XvsaX6ayvfYUv22ZrfY8k/NyYiIiJyGpwETURERE6HARARERE5HQZARERE5HQYABEREZHTYQBERERETocBEBERETkdBkBERETkdBgAERERkdNhAEREREROhwEQEREROR0GQEREROR0GAARERGR0/l/OfFyfNzISpsAAAAASUVORK5CYII=", "text/plain": [ - "
    " + "
    " ] }, "metadata": {}, @@ -706,12 +1184,7 @@ } ], "source": [ - "# Plot the GPS time series\n", - "fig,ax=plt.subplots(3,1,figsize=(11,8),sharex=True)\n", - "ax[0].plot(df['date_year'][df['station']==sta],df['east'][df['station']==sta]);ax[0].grid(True);ax[0].set_ylabel('Easting (mm)')\n", - "ax[1].plot(df['date_year'][df['station']==sta],df['north'][df['station']==sta]);ax[1].grid(True);ax[1].set_ylabel('Northing (mm)')\n", - "ax[2].plot(df['date_year'][df['station']==sta],df['up'][df['station']==sta]);ax[2].grid(True);ax[2].set_ylabel('Up (mm)')\n", - "ax[2].set_xlabel('Time (years)')" + "plt.plot(df['decimal year'], df['new delta e (m)'], label='East displacement')" ] }, { @@ -745,15 +1218,483 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 262, + "metadata": {}, + "outputs": [], + "source": [ + "# remove nans with dropna for the specific delta e column and replace df with the new dataframe\n", + "df = df.dropna(subset=['delta e (m)'])" + ] + }, + { + "cell_type": "code", + "execution_count": 263, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    station ID (SSSS)date (yymmmdd)decimal yearmodified Julian dayGPS weekday of GPS weeklongitude (degrees) of reference meridiandelta e (m)delta n (m)delta v (m)antenna height (m)sigma e (m)sigma n (m)sigma v (m)correlation encorrelation evcorrelation nvnew delta e (m)new delta n (m)new delta v (m)
    0P39506JAN252006.067153760.01359.03.0-123.93347.679174.987420e+0653.036780.00830.000690.001050.00327-0.048320.01695-0.318160.000000.000000.00000
    1P39506JAN262006.069853761.01359.04.0-123.93347.680864.987420e+0653.030030.00830.000690.001040.00321-0.046480.00271-0.309700.00169-0.00067-0.00675
    2P39506JAN272006.072653762.01359.05.0-123.93347.680724.987420e+0653.039060.00830.000690.001050.00326-0.023670.00817-0.319410.001550.001010.00228
    3P39506JAN282006.075353763.01359.06.0-123.93347.679384.987420e+0653.043820.00830.000690.001050.00324-0.036810.00908-0.305150.00021-0.001500.00704
    4P39506JAN292006.078053764.01360.00.0-123.93347.680424.987420e+0653.035130.00830.000680.001050.00328-0.048150.00619-0.330290.00125-0.00162-0.00165
    \n", + "
    " + ], + "text/plain": [ + " station ID (SSSS) date (yymmmdd) decimal year modified Julian day \\\n", + "0 P395 06JAN25 2006.0671 53760.0 \n", + "1 P395 06JAN26 2006.0698 53761.0 \n", + "2 P395 06JAN27 2006.0726 53762.0 \n", + "3 P395 06JAN28 2006.0753 53763.0 \n", + "4 P395 06JAN29 2006.0780 53764.0 \n", + "\n", + " GPS week day of GPS week longitude (degrees) of reference meridian \\\n", + "0 1359.0 3.0 -123.9 \n", + "1 1359.0 4.0 -123.9 \n", + "2 1359.0 5.0 -123.9 \n", + "3 1359.0 6.0 -123.9 \n", + "4 1360.0 0.0 -123.9 \n", + "\n", + " delta e (m) delta n (m) delta v (m) antenna height (m) sigma e (m) \\\n", + "0 3347.67917 4.987420e+06 53.03678 0.0083 0.00069 \n", + "1 3347.68086 4.987420e+06 53.03003 0.0083 0.00069 \n", + "2 3347.68072 4.987420e+06 53.03906 0.0083 0.00069 \n", + "3 3347.67938 4.987420e+06 53.04382 0.0083 0.00069 \n", + "4 3347.68042 4.987420e+06 53.03513 0.0083 0.00068 \n", + "\n", + " sigma n (m) sigma v (m) correlation en correlation ev correlation nv \\\n", + "0 0.00105 0.00327 -0.04832 0.01695 -0.31816 \n", + "1 0.00104 0.00321 -0.04648 0.00271 -0.30970 \n", + "2 0.00105 0.00326 -0.02367 0.00817 -0.31941 \n", + "3 0.00105 0.00324 -0.03681 0.00908 -0.30515 \n", + "4 0.00105 0.00328 -0.04815 0.00619 -0.33029 \n", + "\n", + " new delta e (m) new delta n (m) new delta v (m) \n", + "0 0.00000 0.00000 0.00000 \n", + "1 0.00169 -0.00067 -0.00675 \n", + "2 0.00155 0.00101 0.00228 \n", + "3 0.00021 -0.00150 0.00704 \n", + "4 0.00125 -0.00162 -0.00165 " + ] + }, + "execution_count": 263, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 264, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 264, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGdCAYAAAD60sxaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABVW0lEQVR4nO3deVyU1f4H8M+wDYswqAiIguCGImouyeJuiphm/mzRTG6WcW1RM1stvdKKWtlyrWzxtlq2GGWluJRLxuaG4gJuuOIIKM4gyjrP7w9iZJyFGZhn1s/79ZrXa+Y85zznnGjky3nOIhEEQQARERGRE3GxdgOIiIiILI0BEBERETkdBkBERETkdBgAERERkdNhAEREREROhwEQEREROR0GQEREROR0GAARERGR03GzdgOsQaVSoaioCL6+vpBIJNZuDhERERlBEASUl5cjJCQELi4tG8NxygCoqKgIoaGh1m4GERERNcPZs2fRsWPHFt3DKQMgX19fAPX/Af38/KzcGiIiIjKGUqlEaGio+vd4SzhlANTw2MvPz48BEBERkZ0xx/QVToImIiIip8MAiIiIiJwOAyAiIiJyOgyAiIiIyOkwACIiIiKnwwCIiIiInA4DICIiInI6DICIiIjI6TAAIiIiIqfDAIiIiIicDgMgIiIicjoMgIiIiMjpMAASyS+557E1v9jazSAiIiIdnPI0eLGdv3IdT6zJBQAM6RqAf8V1QkKvYOs2ioiIiNQ4AiSCS1er1O93Hi/Fv7/aY8XWEBER0c0YAIlgz+kynenllTWY/mk21uScsXCLiIiIqDEGQGamuF6Dl349rPPaJztOYufxUjz/U56FW0VERESNMQAys5/2ntN7TVlZa8GWEBERkT4MgMzskx0ndaarVAIEQbBwa4iIiEgXBkBmdOVaNYoUlTqvdX5hPWpUDICIiIhsgUUCoA8++AARERHw9PTEgAED8NdffxnMv337dgwYMACenp7o3LkzVq5cqZVn7dq1iIqKglQqRVRUFNLS0sRqvtGu19QZvP5NNic/ExER2QLRA6DvvvsO8+bNw4svvoh9+/Zh6NChGDduHM6c0R0MFBYW4vbbb8fQoUOxb98+vPDCC5g7dy7Wrl2rzpOZmYkpU6YgKSkJ+/fvR1JSEu69915kZ2eL3R2DTHnCte9MGc5eviZeY4iIiEgviSDyxJSYmBj0798fH374oTqtZ8+emDRpElJTU7XyP/fcc1i3bh2OHDmiTnvkkUewf/9+ZGZmAgCmTJkCpVKJDRs2qPMkJiaidevW+Pbbb5tsk1KphEwmg0KhgJ+fX0u6p+Hs5WsYumyrSWVOLRlvtvqJiIgcmTl/f4s6AlRdXY09e/YgISFBIz0hIQEZGRk6y2RmZmrlHzt2LHbv3o2amhqDefTds6qqCkqlUuMlhlrO8SEiIrILogZApaWlqKurQ1BQkEZ6UFAQ5HK5zjJyuVxn/traWpSWlhrMo++eqampkMlk6ldoaGhzu2RQnUrV4ntcr67DV1mnUXTlujrtapXu5fOCIODYxXJU17a8XiIiImdikUnQEolE47MgCFppTeW/Od2Uey5YsAAKhUL9Onv2rEntN1bngFYml+n1n3SoVAKUlTUQBAFvbCzAop8PYuKKnQCAx1fvRfTijfjX/3Lwbc4ZKK7Vj4I9/cN+RCxYjzFv78CDn+eYtR9ERESOTtTDUAMCAuDq6qo1MlNcXKw1gtMgODhYZ343Nze0bdvWYB5995RKpZBKpc3thtFcXPQHdfpUVNfhlpc3QVlZixnx4fg84xQAoPRqNcKf/12db8fREuw4WoIVfx6Hn5c7jly48Rjv7+OXWtx2IiIiZyLqCJCHhwcGDBiAzZs3a6Rv3rwZ8fHxOsvExcVp5d+0aRMGDhwId3d3g3n03dPWNewQ3RD8GHL+ynWN4IeIiIhMJ+oIEADMnz8fSUlJGDhwIOLi4vDxxx/jzJkzeOSRRwDUP546f/48vvzySwD1K75WrFiB+fPnIzk5GZmZmVi1apXG6q4nnngCw4YNw9KlS3HnnXfil19+wZYtW7Bz506xu2OzrlbVopVU9B8nERGRQxD9N+aUKVNw6dIlvPzyy7hw4QKio6Oxfv16dOrUCQBw4cIFjT2BIiIisH79ejz55JN4//33ERISgvfeew933XWXOk98fDzWrFmDhQsXYtGiRejSpQu+++47xMTEiN0dm/XxjpOYP6a7tZtBRERkF0TfB8gWibUPEACNeTuW9EBcJ7x0Z7RV6iYiIrIEu9kHiAADi93MXI+FKiIiInIADIBE9PPjg5HzwmiL1PVnfrFF6iEiInIEnDUroltC/S1W1xmeK0ZERGQ0jgCZ2eqHY9A5wAff/TtWnbbm37F4656+WNMoTQyHi5RQVtaIWgcREZEj4CRoM0+CbsqoN7fhZGmFqHXwgFUiInJEnARtx36dM0T0OrYfLRG9DiIiInvGAMjCfCywWWHmCR6NQUREZAgDICvo4O+l8Xl0T91nmAGAl7ur3mu7XhRnhdmSDfkY8cZW9cGrREREjoYBkBX8dtNjsE8fGIjdC0cjvktbrbyLJkRppZ1aMh6Fqbejna/uA15Xbj/R7LapVAJWbj+BU5eu4ZucM00XICIiskMMgKygleeNx2BPjq4/viKglRRStxs/jg/v74/7Y8Jwz8COuKt/R617NLXx4cc7TuCPIxdNapcgCLht+Xb158sVVSaVJyIishcMgKzA3fXGf/ae7X115hnXuz1e+7/ecHd1wRt394HMy92kOl5fn4+ZX+zG9eo6o8tcq65DYaMVaj/sOWdSnURERPaCAZCVLBzfExP7huC2RvN/pg4KAwD0C/PXyOviIkGwn6fO+3z+4K0G6zlWXG50m1Q37Yhw5VoN7v0oEzu4qoyIiBwMAyAreXhoZ7x3Xz+4utx4lDW2VzC2zB+mc8PE9v66A6Bh3doZrGfiir/x7pZjeq/XqQSk7TuHs5evIV+uHSzlFF7Gv/6XY7AOIiIie8OjMGxM10Ddj8RSJ/fGop8P4cHB4RrpLi5NH4L69pajeGJ0N/XnC4rrEAQgxN8L32SfxqJfDgEAhnYLaH7DiYiI7AhHgOxEe5kXPn1gIAZ31Q5SPv3XQKPvk3v2CuJS/0T8kj9xsuQq/jpWqr7W+P3NGm8YLggCfsk9jwIdI0ZERET2gAGQAxgdFYSTr99uMM/uU5dRU6fCpPf/VqeNems7KmtVRtWx53QZ6lT1QdDWgmI8sSYXY9/Z0fxGExERWREfgTkIFxcJurTzwYkS3eeM3b0yE9EdtM9NMXaC890rM9E5wAeb5w/HwfPKFrWViIjI2jgC5EAGRbQxeL2lgcvJ0grkFF5u0T2IiIhsAQMgB/LC7T1Fr+O+T7JQcJFzf4iIyL4xAHIgvp7umDWss+j1/H7ggvp9xnH9E6dVKgGPf7MXb2zMF71NREREpmAA5GAaJipbyqEi/Y/V9pwpw+8HLuD9rfVnkx08r8Btb20z+YgOIiIic2MA5GDqBPMEQJFBuvcjupmb6419iARBwPq8Czh7+RoAoLJG8xiOCf/diRMlFZj5xW7c9WEGFNdrNJbXExERWQoDIAejMsMI0If398eXMwcZlferrNPq978euIDHVu/F0GVbAQCGYps9p8vQ96VNePybvS1qKxERUXMwAHIwIf5eLb5HeVUtgvScPXazk42W3ecUXtK4tnjdIfX7sopqneXX58lRepWnzhMRkWUxAHIwD8SH44G4Tvh3CyZDK6/XNKvc5sOac3sanywvV1bqLffa70eaVR8REVFzcSNEB+Pp7oqX7oyGIAgY2Kk1UjfkawQiYth5rBRDugXgovLGSI6yUjOIGv/eX3rLF5frD46IiIjEwBEgByWRSJDQKxjr5w41uWztP/OIfpszBO6uTR+2On1VNs6VXdNI65OySeOzoalJV6vq9F8kIiISAQMgB+fSjJ9wVU39+WDRHWRYelcfo8oMWbrV9Ir+kX+BR2sQEZFlMQBycC6SpkdwbubudqPMHX1DzNkcnapqVVwOT0REFsUAyMGZGgDdEuqPpNhO6s/uri5YNCFK9B2mJ3+YYZYl/ERERMbgJGgH59Io/tk4bxi6tPNB5slLuCXUH71vmqdz36AwpE7urXWPmUMicL26Dh/tOClaO/eduYLNRy4iISoIkmaMWhEREZmCAZCDk0gk+OvZkaiqVaFrYCsAwNBu7TTydPD3wt/PjzJ4HzcjJkO31Kyv9gAAAlp5wM/LHa9OikZ8lwDR6yUiIufDR2BOILSNtzr4aWz2yK5oL/PE1qdHNHkPd1cXrH44RoTWaSu9Wo2TJRWY9km2ReojIiLnwwDIiT09NhKZC26Dh5tx/xsM7hqAPQtHi9wqTQfPKyxaHxEROQcGQGSS5qwqa4n//nkMa3LOaB2sSkRE1BKcA0Qm8fd2x/Du7VCrUuHv45eaLtBCGw9dxMZDF3GytAIv3N5T9PqIiMg5cASITCKRSPDFQ4Ow+uFYi9b7Z36xResjIiLHxgCIzK6Nj4e1m0BERGQQAyBqtpXTByDIT4oZ8eHqtPen9cfuF0fDV+qGyCBfDOveTqvcqB6BJtd1vPgqrlyrbklziYiI1BgAUbMlRgcj+4XRiO3cRp0WLPOEi4sEeS+NxcYnh+HjpAEaZb6fFYd3p96CxF7BeH9af5Pqe/qHA2ZpNxERESdBU4s1Xhnm6qK5SszT3RWnlozHmpwzcHN1waCI+mBp5T+B0ePfGF/PliMXW95YIiIicASIzCDE30v9vpVUd0w9dVAY7h7Q0aj7NX6kRkREJAZRA6CysjIkJSVBJpNBJpMhKSkJV65cMVhGEASkpKQgJCQEXl5eGDFiBA4dOqS+fvnyZcyZMweRkZHw9vZGWFgY5s6dC4WCG+ZZS3QHGdr5StE1sJXOHacNGdpN+6iLxOhgczXNbOp4UCsRkUMRNQCaNm0acnNzkZ6ejvT0dOTm5iIpKclgmWXLlmH58uVYsWIFdu3aheDgYIwZMwbl5eUAgKKiIhQVFeHNN99EXl4ePv/8c6Snp2PmzJlidoWasOvF0dgyf7jJ5e4bFKaVJjQz1vjfzkJ8v/ts8wobcLy4HH1SNuLdLccA1AfpPLmeiMi+SQShub9uDDty5AiioqKQlZWFmJj6M6SysrIQFxeH/Px8REZGapURBAEhISGYN28ennvuOQBAVVUVgoKCsHTpUsyaNUtnXT/88AOmT5+OiooKuLk1Pa1JqVRCJpNBoVDAz8+vBb0kcwh//neNzwdfGovoxRt15v3m4RjEd9UeNTpeXI7Ry3cAAE4tGW/W9s38fBf++GcfolNLxuPBz3JwQVGJ3+YMgZsrnyITEVmKOX9/i/avd2ZmJmQymTr4AYDY2FjIZDJkZGToLFNYWAi5XI6EhAR1mlQqxfDhw/WWAaD+D2FM8EO259nE+mD4qTHdcfjlsXrnEQHAntNlOtOLy6vU79MPXjBvAxs5c+kathaUIF9ejkNFStHqISIicYkWAMnlcgQGau/3EhgYCLlcrrcMAAQFBWmkBwUF6S1z6dIlvPLKK3pHh4D6USSlUqnxItvx2IiuyHnhNsy5rRu8PeqDn4XjdR978euBIp3pjccxH/l6r1nb13iIdNgbW9XvLXwsGhERmZHJAVBKSgokEonB1+7duwHUH5twM0EQdKY3dvN1fWWUSiXGjx+PqKgoLF68WO/9UlNT1ROxZTIZQkNDjekqWVCgn6fG54eHdtaZ7+jFq1BW1mDs2zsw9eNMFJZWAABOllzVyHetulachhIRkUMw+ZnR7NmzMXXqVIN5wsPDceDAAVy8qL1vS0lJidYIT4Pg4PrVP3K5HO3bt1enFxcXa5UpLy9HYmIiWrVqhbS0NLi7u+ttz4IFCzB//nz1Z6VSySDIjq3OOoOCi/WT4ke+uQ1v3N0Hi345pJEn6j8b8evsIejdUSZaOyTgEBARkb0yOQAKCAhAQID2JNSbxcXFQaFQICcnB4MGDQIAZGdnQ6FQID4+XmeZiIgIBAcHY/PmzejXrx8AoLq6Gtu3b8fSpUvV+ZRKJcaOHQupVIp169bB09NT5/0aSKVSSKVSY7tINq66VqXx+Zkfde8QfceKnWafEN0YH4EREdkv0eYA9ezZE4mJiUhOTkZWVhaysrKQnJyMCRMmaKwA69GjB9LS0gDUP/qaN28eXn/9daSlpeHgwYOYMWMGvL29MW3aNAD1Iz8JCQmoqKjAqlWroFQqIZfLIZfLUVdXJ1Z3yAo+/ddAhLXxxmczbtVIX7n9hNnqyD17Bd/tOgORFkMSEZGNEnXZ1OrVqzF37lz1qq6JEydixYoVGnkKCgo0NjF89tlncf36dTz22GMoKytDTEwMNm3aBF9fXwDAnj17kJ2dDQDo2rWrxr0KCwsRHh4uYo/IkkZHBWF0lPbj0us1LQ90V2efxpELSnyddQYA0F7mpfPgViIickyiBkBt2rTB119/bTDPzX95SyQSpKSkICUlRWf+ESNG8K91MpqysgZ+ntrzw15MO6jxOXVDvskBEHeHJiKyX9zFjRya8nqNUfmOXNDcGqFxcFN05brOMn8dK9GZvumQHK/8dpgBEhGRDWMARA7ttwPamyJW1Rp+hHbkghK3vLQJH20/gcqaOuTLy3Xme3PTUew+dVkjrbpWhX9/tQerdhYibd/55jeciIhExQCIHNqSDfkan1UqAZeuVhss88SafSivqkXqhnz0WJRuMO/uRjtTP/fjAXRfuEH9+aKyshktJiIiS+DZEeQ0Xvr1ED77+1ST+Y5evNpkngaKfx6xXa6oxnc3HcTKuWpERLaLI0BkF1ZOH9DiezQV/Pz3j2Mm3/PDbSdQUVWLNbvOaF1j/ENEZLsYAJFd6ODvJXodb20+2qxySzbkY1l6gVY64x8iItvFAIjsQkt2Xc44XtrkxOcGW/OLTb7/V1mndaZzBIiIyHYxACK7EOhn3FEmT9zWTStt2qfZWPTzQR25tT34+S6D14ebsFdQHSMgIiKbxQCI7EKgr+Hz3hrMiA/Xmf797nNmaccXDw0yOq+xexAREZHlMQAih9LaxwOT+3VAZJCvtZsCFUeAiIhsFpfBk8NomCi9fMotEAQBEQvWW7U9N59aT0REtoMjQOQQXF0kSHssXv1Z0pJZ02ZSxQCIiMhmMQAiu/Hu1Fv0Xjv26jgE+hk3T6ilHhocYVQ+jgAREdkuBkBkN+68pYPeay4uzRvx2TJ/uNF5P06q34yxczsfo/LLvLVPoSciItvAAIjs3txRXZtdtmtgK4S2MW6TxYRewQDqH7cZ45ts7d2hiYjINjAAIrv18JAI7F+cgPkJkS26T7fApleMHX55rPq9u6v+r03uf8a0qC1ERGQZDIDIrqRO7q1+39rHAzIv0x8zhbXxNrmMm8uNr8r43u3RRcdjsDY+HvD39lB/7hfmb/T9a+pU2HemDLV1nDdERGQJDIDIrtw3KEz9vm9Hf4N5R/UI1Jke0MpDZzoAdA9qhaV39Yavp+YOEY2fenl5uGLL/OGYPfLGo7c5o7ritzlDAACJ/zwqO27kqfLXqmux6OeD+L8PMpC6Id+oMkRE1DIMgMjubH16BD5OGoAh3QIM5tMVAPl4uMLLw1VvmU1PDseUW8M0jrz48qFBcLvpsZdEIsHsUV0R0EqK2M5t8FRCJEL+2Yco/ZAcAFBeVdtkX4rLKxH1n41Ys+ssAGDVzsImyxARUctxI0SyOxEBPogIaHollq6tgMLa+sDLXfN/e11Tml/7v96ICvHDHX1CEKrnkZmnuysyF4yCm4FJ0XJFJYJl+pfnb8iTa6U9v/YAltzVR28ZIiJqOY4AkVPp4O+lNQLUsbX2KjCZlzseG9FVb/DTwN3VxeCmi7Gpf2BpummPtdbsOov3tx43qQwREZmGARA5LF2TnUf1CMSjw7sAACb3r99XaH5CJO7q3xFfz4wxS71rH43X+PzhthPYe6ZMZ159gc4bGwvM0hYiItKNj8DIYQ3pGoBFE6LQI9gXEgB/nyjFvQM7ws3VBQdfGguff0aCZF7ueOvevmart1Nb7cBr8gcZOLVkvFZ6cXmV2eolIiLjMQAihyWRSDBzyI1jK+K73pg03Uoq3v/6Xu76J1k3VtHEJOnzV66jg78XqmtVuKisbPJxHBERGY+PwIjMzFNPAFR6tQpr95xDZU0dvt91Fr0WbzR4n4VpeQCA+z/NwtBlW/H82gM4fanC7O0lInJGHAEiMjN9R2VM+SgTJ0oqcLBIgc/+PtXkfRTXawAAu07Vzx9as+ss1uw6i90LRyOgldRs7SUickYcASKykBMl9aM3xgQ/ACAAOHJBqZU+55t9JtctCILJZYiIHBkDICIbpVIJGPfuX1rpmScvmXSf//xyELct345r1U1vzEhE5CwYABHZqOs1dQav/7T3HHYeKzWYR6US8GXmaZwsqcCv+4vM2TwiIrvGOUBEIhjVIxB/5he36B5HDZwlNuKNrTh16RoA6Fxe3+DXAzeCHj4FIyK6gSNARCL44P7+eGZspNFL4k3VEPw0pUBern6/+3T9ZOqLykrOCSIip8cAiEgEnu6ueHxkV2QtuM2q7WgcgP245xzCn/8dMa//gXf/OIbaOpUVW0ZEZF0MgIhEJPN2Ny6fl3H5jFGnErDjaAkU12pQUa17HtE7W46h64sb8PnfPH2eiJwT5wAR2YCpg0Lx0faTzSr7+vojuHtAR7yz5Shu790epeVVSPn1sFFlU349jIm3dEAbH49m1U1EZK8YABHZgHsGhCIhKgh3fZhpctmPd5zExzvqg6f1eXKTy1+uqGIAREROh4/AiGyAh6sLBnRqg01PDsP4Pu0tXLvunauJiBwZAyAiGyD5JwbpHuSLthyNISISHQMgIhtQq7qxLN3DlV9LIiKx8V9aIpE9PrKL+v0dfUMwMrKdVp6wNt7q9x5ulv1all2rtmh9RES2gAEQkcieGdsDeSkJ+O99/bBkcm+08tRe8t74BHk3PSNAg7u2FaV996w0feI1EZG94yowIgvw9XTHHX1DAGhOOU6K7YTwAB/NzDp2aV44viemx3ZCj0XpIraSiMh5cASIyIpemRSNmUMiNNKS4sK18j08tDM8RTpWg4jIGTEAIrKwhpGgxvN+GmvnK9Vb9pmxkQCAjq29mlV3j2BfnekVVbXNuh8Rkb0SNQAqKytDUlISZDIZZDIZkpKScOXKFYNlBEFASkoKQkJC4OXlhREjRuDQoUN6844bNw4SiQQ///yz+TtAJILRPQOxbvZg/D53iN48T9zWTWf64yO7Yv9/ErDzuVEm1TkovA2kbi5Y8+9YndeHv7HVpPsREdk7UQOgadOmITc3F+np6UhPT0dubi6SkpIMllm2bBmWL1+OFStWYNeuXQgODsaYMWNQXl6ulfedd96BRMJN3Mi+SCQS9OnoD18dk6EbPDQ4Qu+1hvPFfpujP4BqLLytN75/JA4Fr46Dv7cHpseGaeUpvVqNOd/uQ9GV60bdk4jI3kkEQceMSzM4cuQIoqKikJWVhZiYGABAVlYW4uLikJ+fj8jISK0ygiAgJCQE8+bNw3PPPQcAqKqqQlBQEJYuXYpZs2ap8+7fvx8TJkzArl270L59e6SlpWHSpElGtU2pVEImk0GhUMDPz6/lnSUSyUfbT6Bja2+9u0OrVAI6v7De4D2mx4bh1Um91Z8ra+oMTqbe9OQwXFRW4tbwNibNO8o+eQl/5Bdj/pjunK9ERKIw5+9v0VaBZWZmQiaTqYMfAIiNjYVMJkNGRobOAKiwsBByuRwJCQnqNKlUiuHDhyMjI0MdAF27dg333XcfVqxYgeDg4CbbUlVVhaqqKvVnpVLZkq4RWcys4V0MXndxaXoEdOH4KI3P0ib2GUp4eweA+rlK/72vX5P3bzDl4ywAQCupG+bqeYRHRGQrRHsEJpfLERgYqJUeGBgIuVz3gY0N6UFBQRrpQUFBGmWefPJJxMfH48477zSqLampqep5SDKZDKGhocZ2g8ju3TwaY+xj41/3FzWZZ+X2E+j24npknChVpy3ffNS0BhIRWYHJAVBKSgokEonB1+7duwHo/odWEIQm/wG++XrjMuvWrcOff/6Jd955x+g2L1iwAAqFQv06e/as0WWJbN2Efx6Pje0V1ETOG7bMH27UHKKq2jqD15dsyEdNnYBpn2RrpCsra3Cy5KrR7SEisjSTH4HNnj0bU6dONZgnPDwcBw4cwMWLF7WulZSUaI3wNGh4nCWXy9G+/Y05D8XFxeoyf/75J06cOAF/f3+NsnfddReGDh2Kbdu2ad1XKpVCKtW/tJjInr1xd19MuqUDhnQLMHqjxK6BrYzKN/mDDPw+d6jJbYpP/RNXq2qx6clh6B6ke+k9EZE1mRwABQQEICAgoMl8cXFxUCgUyMnJwaBBgwAA2dnZUCgUiI+P11kmIiICwcHB2Lx5M/r1q597UF1dje3bt2Pp0qUAgOeffx4PP/ywRrnevXvj7bffxh133GFqd4jsnpeHK0ZH6f6jYmi3pr+rhhwqUkJxrUa98sxYV//ZV2jH0RIGQERkk0SbA9SzZ08kJiYiOTkZWVlZyMrKQnJyMiZMmKAxAbpHjx5IS0sDUP/oa968eXj99deRlpaGgwcPYsaMGfD29sa0adMA1I8SRUdHa7wAICwsDBER+pcOEzmDtY/GqzdaBICnE7QXG5hq9rd7m122TiXKIlMiohYT9Syw1atXY+7cuepVXRMnTsSKFSs08hQUFEChUKg/P/vss7h+/Toee+wxlJWVISYmBps2bYKvL/+KJGrKgE6tMaBTa7x4e0+cv3INfUP9Deb/5fHBuPP9vw3m+etYqcHrhtSJs8sGEVGLibYPkC3jPkBEN4Q//3uTeV6dFI3psZ000oquXEf8kj8Nlovt3AZr/h3XovYRETUw5+9vngVGRE1asiFf4/PTP+xvMvgBgKyTl3G1qhYqPgojIhvDAIiImnS1qhYHz9c/ql6fdwE/7jlndNnoxRvxwGc5YjWNiKhZRJ0DRESOY8J/d2Jot4BmzQn661gpBEHAvrNX0CWglcmryoiIzI0BEBEZrSUToueuycWv+4vQSuqGA4sTjDrGg4hILHwERkQW0XC0xtWqWvzrf3wkRkTWxQCIyMltf2YE3ri7j0Xr3Hm8+SNJRETmwACIyMl1auuDewZa/oDg3w7Ujwj9vO88sk9esnj9ROTcGAARkZY+HWUm5c9LScBtPQJNKrN801EcuaDEvO9yMeXjLJPKEhG1FAMgIgIAfHB/f0yPDcOSyb2x+uEYk8r6erpj1YxbsfnJYUaXOVlagXHv/qWVfuVaNc5cuqb+LAgCUjccwVoTlt4TETWFq8CICABwe+/2uL13+xbdw8215X9T3fLyZgBAxvOjIFdW4uus0/hp73kAwF0DOrb4/kREAAMgIjIjV0nzl7ZXVNXCy91V/fmb7DNYsfW4OZpFRKSFj8CISKff5w5Rv+8X5o9Obb2bLOPSgn9Rbn1tC379Z2I0AAY/RCQqBkBEpFOvEBk+f/BWTO7XAV88NAjbnxnZZBmXFowAXauuw3t/HGt2eSIiU/ARGBHpNSIyECMib6zu+uKhQThyQQkvd1csXndIK3/jAKiNjwf+fGo4/jpWijnf7jOqvhMlFQavH7tYjm5Bvka2nohIP44AEZHRhndvh0eGd8ED8eFY+2g8+nSUYe2jcTrzxndpC39vD9zRN8Rs9R84pzDbvYjIuTEAIqJmGdCpNdbNHoIBndqo0wQI6vcLx0ep33+bHGuWOutUQtOZiIiMwACIiMxGaBSf+EhvrOiK69LWLPd/du0BCILuIOjKtWqs3XMOFVW1Jt2zTiUgdf0R/HHkojmaSER2ggEQEZlNK88b0wo93DT/eQmReQIAPkoagG+STdtosbGpH2fhguK6Vnryl7vx1A/78WJankn3W7f/PD7acRIzv9jd7DYRkf3hJGgiMhs/T3d88q+BcHORQOrmqnEtY8Ft6veVNXXNriO78DLiUv/E1zNjMKRbgDp916kyAMC6/UV4Z2o/o+5VW6fCR9tPNrstRGS/GAARkVmNiQpqMo+HGXaMnr4qG9Ed/PDVQzFo7eOhTnd1MX4p/heZp5EvL29xW4jI/vARGBFZnIuLBH6eLf/76+B5Jd7cVKB5bxP2ItpxtKTFbSAi+8QAiIisYsezTW+saIzV2Wc0Voep9EyS1qUF+zYSkZ1jAEREVuHv7YHPZtwKAEid3LtF9+rywnr1+5q65i+VV3GZPZHTYABERFYzskcgjr02DvcNCjPrfY8Xl+PKteom8908ALT/3BV8suMk3tiYb9b2EJHt4SRoIrIqdzNMiL7Z6OU7AABv3dMXn2ecwr/iOuGOviHwdNdcmSa56RmYsrIWr60/AgC4Z0AowgN8zN42IrINHAEiIof11A/7kXdegWd+PIAei9Kb3EnatVFAVFFt2oaKRGRfGAARkU2YNbyz6HWU3fRY7OZHYNNXZavfq1SiN4eIrIgBEBHZhOcTe2DHMyPxwf39EdDKA98kx2DfojFmrePmgKeqVn+UY8pqMiKyP5wDREQ2QSKRIKytN8LaemNcdLDW/BxzaPwIbPepy9h5vFRv3lOXKtA31N/sbSAi28ARICKyOWIEPwCw8fCNA08f/HyXwbxPrMnFvjNlorSDiKyPARAR2Y3oDn4tKl9Xd+ORV3ll05Oc53+/v0X1EZHtYgBERHYhrnNbjIwMbNE9wgN8UF2rwq/7i4zKX1ha0aL6iMh2MQAiIpv225whuHtAR7w95RaEtvZu0b1S1h3CxztOYM63+8zUOiKyVwyAiMimRXeQ4c17+iJY5om7BnTE9Njm7xp96tI1rM4+Y8bWEZG9YgBERHbD1UWCVyf1xrfJsQhoJW3WPS4oKs3cKiKyRwyAiMjuxHVpi3WzB1u7GURkxxgAEZFdCvH3wv7/JOD4a+M00lPuiMJ9g0Kt1CoishfcCJGI7JbM2x0AcGrJeJSUV8HX0w2e7q547ffDVm4ZEdk6BkBE5BDa+d6YE9Tc+UFE5Dz4CIyIHM4D8eGY3K8D3p/W39pNISIbxREgInI4nu6uWD7lln/eD8TML3Zbt0FEZHM4AkREDm1UD8O7R/t7u8NXqv9vwZ3HSlFVW2fuZhGRlYkaAJWVlSEpKQkymQwymQxJSUm4cuWKwTKCICAlJQUhISHw8vLCiBEjcOjQIa18mZmZGDVqFHx8fODv748RI0bg+vXrIvWEiOyVRCLRu2T+038NRO5/EpD30lgM7tpWZ57pq7IxeMlWMZtIRFYgagA0bdo05ObmIj09Henp6cjNzUVSUpLBMsuWLcPy5cuxYsUK7Nq1C8HBwRgzZgzKy8vVeTIzM5GYmIiEhATk5ORg165dmD17NlxcOKBFRNr6dPTH8dfGYVqM5i7SjQ+df2litPr96J6ao0alV6tEbR8RWZ5EEARBjBsfOXIEUVFRyMrKQkxMDAAgKysLcXFxyM/PR2RkpFYZQRAQEhKCefPm4bnnngMAVFVVISgoCEuXLsWsWbMAALGxsRgzZgxeeeWVZrVNqVRCJpNBoVDAz69lp0sTkX2JXrwRV6vqT4LfMn8Yugb6qq8VyMvh6gK8veUYfj9wQaPcqSXjLdpOItJmzt/fog2ZZGZmQiaTqYMfoD5wkclkyMjI0FmmsLAQcrkcCQkJ6jSpVIrhw4eryxQXFyM7OxuBgYGIj49HUFAQhg8fjp07d4rVFSJyIE/c1g0A4Ct10wh+ACAy2BddA33h2nho6CbVtSpR20dEliFaACSXyxEYqD35MDAwEHK5XG8ZAAgKCtJIDwoKUl87efIkACAlJQXJyclIT09H//79cdttt+HYsWM671tVVQWlUqnxIiLn9PDQCGx6chhyFyfozePqojsAWrIhH90XbsDB8wqxmkdEFmJyAJSSkgKJRGLwtXt3/ZJTiY6/ogRB0Jne2M3XG5dRqer/+po1axYefPBB9OvXD2+//TYiIyPxv//9T+f9UlNT1ROxZTIZQkO5TT6Rs5JIJOge5Ks3yAEAFx3/Ri1Lz8fK7Sfq328sEK19RGQZJu8DNHv2bEydOtVgnvDwcBw4cAAXL17UulZSUqI1wtMgODgYQP1IUPv27dXpxcXF6jIN6VFRURple/bsiTNnzui874IFCzB//nz1Z6VSySCIiPRy1fGn4QfbTqjf16n4GIzI3pkcAAUEBCAgIKDJfHFxcVAoFMjJycGgQYMAANnZ2VAoFIiPj9dZJiIiAsHBwdi8eTP69esHAKiursb27duxdOlSAPXBVUhICAoKNP8CO3r0KMaNG6d1T6B+HpFUyq3xicg4ukaAGquo4r5ARPZOtDlAPXv2RGJiIpKTk5GVlYWsrCwkJydjwoQJGivAevTogbS0NAD1Q9Pz5s3D66+/jrS0NBw8eBAzZsyAt7c3pk2bps7zzDPP4L333sOPP/6I48ePY9GiRcjPz8fMmTPF6g4ROZGGQ1b1EWXpLBFZlKhHYaxevRpz585Vr+qaOHEiVqxYoZGnoKAACsWNCYXPPvssrl+/jsceewxlZWWIiYnBpk2b4Ot7Y7XGvHnzUFlZiSeffBKXL19G3759sXnzZnTp0kXM7hCRk3hkWBd8tP2k3uu1dXwERmTvRNsHyJZxHyAiMkQQBEQsWK/3evegVtj05HALtoiIADvZB4iIyF41tVKVewER2T8GQEREOjw/rofeawyAiOwfAyAiIh0MbBOEGpXTzRwgcjgMgIiIdGi8FP7/+nWwYkuISAwMgIiIdLi9d/2mq/3D/DF/THeNaw1nhWWeuIRzZdf03uPHPefwn18OQsURIyKbI+oyeCIiexXi74W8lAR4e7ihpLxK41rH1l5YsuHG0RjRHfzw0OAITO7fUSPf0z/sBwDEdwnA2F5BTU6uJiLL4QgQEZEevp7ucHWRoG0rD4303afL1MEPABw8r8T87/dr5LlcUa1+/8eRi7jz/b/x+Dd7xW0wERmNARARURPcXV0wIz68yXwNj7qOF19F/1c2q9N/2HMOB84p8PuBCxr5iMh6GAARERkheVjnJvOM/+9OCIKAr7NO681zqrQC/V/djDc25muknyy5irJGo0ZEJC7OASIiMkIHfy94ubvieo3+g1CPXFBCeb0WhjbYH/HmNgDA+1tPoEBejqIrlXh0RBfM+XYfAODUkvFmbTcR6cYRICIiI/lIXZvMU6tSGX1Y6pYjxTh8QakOfgCgsLSima0jIlNwBIiIyEg+UjeUXjX8mGrAq1taVMe16lpU1tTB073pYIuImo8jQERERkq5o5fodYx/byd6LErH8eKrotdF5MwYABERGalrYCuL1TV6+XaL1UXkjBgAERHZqI93nMCoN7eh0sDEayJqHgZAREQ26vX1+ThZWoF7P8q0dlOIHA4DICIiG3fgnMLaTSByOAyAiIiM5O/trvF54fieVmoJEbUUAyAiIiP5errj/pgwAEDG86Pw8NCmd4c2l/e3HteZfuSCEm9vPopr1bUWawuRI5AIhrYsdVBKpRIymQwKhQJ+fn7Wbg4R2bEH/peD7UdLLFJX/zB//PTYYPXn2joVur64AQAwc0gEFk2Iskg7iKzFnL+/OQJERNQCnz94K2aP7GqRuvaeuaLxOefUZfX7fWfKLNIGIkfBAIiIqAUkEgm8PPTv2vz5g7eKUu/5K9cx7ZNs9eeqWpUo9RA5KgZAREQtND2mk95rIyIDsfXpEWarS6Wqn7UweMmfGumHipRmq4PIGTAAIiJqIZm3O04tGY87bwnReT0iwAf7FyeYpa4HP9+F8Od/13lt+eajAICKqlpsLShGNUeFiPRiAEREZCbvTu2n95rMyx25/xmjlZ7/SiL6hvoDABJ7BTdZh6EJ1+/9cQwA8O+vduPBz3bhrU0FTd6PyFkxACIishB/bw+tNFcXCdY+Eoe/nh2JUT0DW1zHR9tP4O/jlwAA3+ScafH9iBwVAyAiIjPKeeE2jOqhP5A5tWQ81s2+sZTdRSKBm6sLQtt4A402JclLScDdAzqaXH/qhnz1+/LKWuw5fdlAbiLnxQCIiMiMAv08seqBgVgyuTfSHovXmae9zEv93kVyI318n/YIa+ON+waFwtfTHW/e07fF7bnvk2ycKLmKT/86yUNViRpxs3YDiIgcjUQiwdRBYXqvt/OVYuX0AfD2cIVEciMC8pG6YfszIzTSWqq6VoXb3toOAFBer8H8hEiz3ZvInnEEiIjIChKjgzGsezutdHMGPzd770/dx2kQOSMGQEREROR0GAAREdkwc26iSEQ3MAAiIrJhEQE+uDW8tbWbQeRwGAAREdm4fmGGA6Bx0U1voNigTiVg0yE5ipWVBvPV1KlwruyaRlplTR2Wpefz4FVyCAyAiIhs3LzR3fReiwjwwYpp/Y2+15pdZ/Dvr/Zg0Ot/4GpVrdb1S1erUFhagfs/ycaQpVux81ip+toH207gg20n8H8fZAAAjheXo6qWS+vJPjEAIiKycd4e+ncsmTe6G1xdjF859mLaQfX76MUbEf787xpBzIBXt2Dkm9uQc6p+A8Xpq7LxddZpAMBRebk634a8Cxi9fIfGifRE9oQBEBGRHVj7aJxW2n8mROGOPvUHsDbeXdpUd3+YibFv78DZy9d0Xl/4c33Q1HiF/qOr9wIA9pwuw5lLussR2TIGQEREdmBApzaI7uCn/vzlQ4Pw0JAIuPwz+tOno3+z7513XoGCi+V47J+gRh99WxQNe2Nrs+smshbuBE1EZCe+eHAQlqbno3uQL4Z2CzD7/fPOK/Re23P6Mtbnyc1eJ5G1cASIiMhOtG0lxbK7++LhoZ117hg9a3hn0eq+68NMg9cvXa0SrW4iMTAAIiJyEA/EhVut7gGvbsGE//6Fb7LPWK0NRKZgAERE5CBC/L3w3n39rFb/wfNKvJCWhz2nuU8Q2T4GQEREDqRvR5n6/YhI7cNWLeGuDzOsUi+RKUQNgMrKypCUlASZTAaZTIakpCRcuXLFYBlBEJCSkoKQkBB4eXlhxIgROHTokEYeuVyOpKQkBAcHw8fHB/3798ePP/4oYk+IiOxDWBtvjO/dHvcNCsOb9/S1dnOIbJaoAdC0adOQm5uL9PR0pKenIzc3F0lJSQbLLFu2DMuXL8eKFSuwa9cuBAcHY8yYMSgvv7EBV1JSEgoKCrBu3Trk5eVh8uTJmDJlCvbt2ydmd4iIbJ5EIsH79/dH6uTeCGglRUSAj7WbRGSTJIIgCGLc+MiRI4iKikJWVhZiYmIAAFlZWYiLi0N+fj4iIyO1ygiCgJCQEMybNw/PPfccAKCqqgpBQUFYunQpZs2aBQBo1aoVPvzwQ41gqm3btli2bBlmzpzZZNuUSiVkMhkUCgX8/PyazE9EZM9UKgGdX1hv0TpPLRlv0frIOZjz97doI0CZmZmQyWTq4AcAYmNjIZPJkJGh+/lwYWEh5HI5EhIS1GlSqRTDhw/XKDNkyBB89913uHz5MlQqFdasWYOqqiqMGDFC532rqqqgVCo1XkREzsLFhKMyiJyFaAGQXC5HYGCgVnpgYCDkct2baTWkBwUFaaQHBQVplPnuu+9QW1uLtm3bQiqVYtasWUhLS0OXLl103jc1NVU9D0kmkyE0NLS53SIioiaYcjo9kbWYHAClpKRAIpEYfO3evRsAdG7UJQiCzvTGbr5+c5mFCxeirKwMW7Zswe7duzF//nzcc889yMvL03m/BQsWQKFQqF9nz541tdtERHbtv/8sj3/znr4Y2i0APh6ueDqhuyh11dSJMrOCyKxMPgpj9uzZmDp1qsE84eHhOHDgAC5evKh1raSkRGuEp0FwcP1fDXK5HO3bt1enFxcXq8ucOHECK1aswMGDB9GrVy8AQN++ffHXX3/h/fffx8qVK7XuK5VKIZVKjesgEZEDuqNvCMb2CoaHmwvuHtBRnT6hTwhGvLlNI29EgA8KSysM3q9jay+M7hmEzzNOaV2rqq2DsrIGfp7u5mg6kShMHgEKCAhAjx49DL48PT0RFxcHhUKBnJwcddns7GwoFArEx8frvHdERASCg4OxefNmdVp1dTW2b9+uLnPtWv2pwy4umk13dXWFSqUytTtERE7Dw037n/xwHavENjwxFMO7G95D6NERXZAysReC/Ty1rv11rBR9UjbxlHiyaaLNAerZsycSExORnJyMrKwsZGVlITk5GRMmTNBYAdajRw+kpaUBqH/0NW/ePLz++utIS0vDwYMHMWPGDHh7e2PatGnq/F27dsWsWbOQk5ODEydO4K233sLmzZsxadIksbpDROQUlt3dB57urvjioUE49to4vfkm3dIBALDm37HqtCA/zZH2YW9shUrFx2Fkm0TdB2j16tXo3bs3EhISkJCQgD59+uCrr77SyFNQUACF4sYJxM8++yzmzZuHxx57DAMHDsT58+exadMm+Pr6AgDc3d2xfv16tGvXDnfccQf69OmDL7/8El988QVuv/12MbtDROTw7h14Y5GIu6v2r4jRPYOw9tF4+EjrZ1A0HkG6qNQ+ELXbwg0MgsgmibYPkC3jPkBERDf0XJSO6zV1ALT37xn37l84cuHG1iG69vcJf/53g/fPeeE2BOp4VKZPVW0dpG6uRucn52EX+wAREZF96BWi/xfJ5w/eiu5BrQyW79yufhSoW6DufMeKrxrdlsNFSkQuTMcrvx02ugxRczAAIiJycgtu7wmgfmLzzYL8PPHYiK4Gy/8+Zyi2zB+m8fissfs/zdb4vHbPOdz62hacvqS90uz29/4CAKzaWYgf95xDeWWNUX0gMhUDICIiJzegU2vkv5KI5xJ76LyeGB2MfmH+mDWss87rXh6u6Broi/F92uu83tiOoyV46of9KCmvwvA3tuFEyY3RoQJ5uUbep3/Yj94pm7D71GUTekNkHJP3ASIiIsfj6a5/zo2nuyvSHhvc5D1C/L30XqupU6Gypg5f3LRv0G1vbccH9/dHYWkF3thYoLPs3SszebYYmR0DICIiEt2Y5dtx6tI1DOzUWuvaGxsLmtx4kcjc+AiMiIhEd+qfTRF3ny7Tusbgh6yBARARERE5HQZARERE5HQYABERkc2b8+0+5J1TNJ2RyEgMgIiIyOb9ur8Id6zYiS2HL1q7KeQgGAAREZHdePjL3TxbjMyCARAREZnN+rlDMbhrW3i4iffrpfML6/Fn/kVsLSjGsGVbkVPIjRLJdDwMlYehEhGZnUol4L0/j+GdLcdEr8vDzQVHXx1nVN5iZSVe+f0IkmI7YVBEG5FbRubGw1CJiMimubhIMDIy0CJ1VdeqjM77Qloeft1fhHs/yhSxRWQPGAAREZEo+ob6W7S+oxfL8fQP+/H0D/txUVmpM8/JRpsu/nWsBJU1dZZqHtkYHoVBRESi8fN0g7Ky1uRycZ3bIvPkJaPzf7/rLJ5de0D9+XzZdXz771itfCdLbgRASaty4OPhikMvJ5rcPrJ/HAEiIiLRPDG6e7PKfTlzkEn5Gwc/AHBErjSqXEU1R4CcFQMgIiISTXhbb6PzBrSSqt9LAOx4ZmSz63WVSIzO+8Pus82uh+wXH4EREZFo9E2EDm3jhbOXr2ukjYkKhCAAvp5ucHN1QVhbb/QN9cf+s1dMrlfSKABSqQQUXCxH9yBfnXmf+fEAegT7oXdHmcn1kP1iAERERKJxcdEeibk/Jgyjo4Lw4Ge7MCiijXofn+HdA5EYHayR95fHB2NrfjEe/HyXSfW6Nnq+MfvbvVifJzeY/44VOzGqRyA+nN4fUjdXk+oi+8QAiIiIRBXe1hunLl1D344yPDQkAglRwfDycMWhl8bC28MVqRvyUacSMLZXkM7yI3sEYuO8YXB1AUYv32FUnS7/jAClrDvUZPDT4M/8Yvy87zym3BpmXMfIrjEAIiIiUX3771j8tPc87hsUhjY+Hup0H2n9r6AXbu/Z5D0ig+sfX8V3aYuME02vDrugqMSPe87h84xTJrW16Iru5fPkeDgJmoiIRNVe5oXHR3bVCH6a64H4cKPzPv3DfpPv/+4f4u9cTbaBARAREdmNhKggpM8biocGR1i7KWTnGAAREZHdkEgk6BHsh9E9LXPMBjkuBkBERGR34rq0hYerOL/CVmefxo6jJaLcm2wHAyAiIrI7EokEc2/rKsq9X0w7iH/9L6fZ5X87UISf9503Y4tIDFwFRkREdunhoZ1xqaIan/19ytpNUausqcPsb/YBAEZEtoO/d8snfpM4OAJERER2ydPdFYvv6IXEXsFNZ7aQmjqV+v01njNm0xgAERGRXXNzNf7cLwDoH+aP5ff2FaUtQqP3JhxHRlbAAIiIiOzac4k9ENBKipiINkblT53cB5P7d0QHfy+zt0VQNZ2HbAPnABERkV0LbeONXS/ehr+OlSK7UP/k5Rnx4Zg5JAKhbepPqBcEQW9eADhZchUA0LldK6PbUtfEPcl2MAAiIiK7J5FI0FTokTKxl0n3HPXWdgDAE7d1w5NjuhtVplZ1YwhIxVjIpvERGBEROYSmRnS08huZ790/jmFD3gWj8jaKf6BiBGTTGAAREZFDMBRu6FopFtu5LQDAV+oGqZvhX4ePrt6LjBOlTbah8SOwn/aex3ojAyeyPD4CIyIix9AoAhrdMxBbjhQj4/lRcJFIEOQn1cqeMrEXuga2wh19QnCi9Coe/GyXwdvnFF5GfJcAAPX7/Xi6u2rlqau70Yi3txwFAOx8biQ6tvZuTo9IRBwBIiIih+AjvfE3/acP3IpTS8YjxN8LwTJPSHSsSZd5uePxkV0R1tYbXQKanuj8zpb6k+LX511Aj0Xp+PzvQq08n2Vop11UVpnSDbIQjgAREZFDuDW8NabHhqGzEcHMzUzZs+fxb/YCAFJ+PYzC0gqMiQrGkG71I0O6dqWu41wgm8QAiIiIHIJEIsGrk3o3s6zxeV0lEtT+M9fni8zT+CLzNE4tGa83f+OVYWQ7GAAREZHTM3YB2f6zV+DqIkHtTaM6py9V6D2TjFsD2SbOASIiIqdnbJBy5/t/o6pWe0Rn+Bvb8HnGKZ1lHlu9F6nrj2iln718DSu3n0B5ZY0pTSUz4QgQERE5PcHoXYFMp7heg492nITieg2W3NVHnX77e3+hvLIWJ4qv4o17xDmbjPTjCBARETk9S8xTXrPrLCprbpwQX15ZCwDIPHlJ/MpJi6gBUFlZGZKSkiCTySCTyZCUlIQrV64YLPPTTz9h7NixCAgIgEQiQW5urlaeqqoqzJkzBwEBAfDx8cHEiRNx7tw5cTpBREQOz9VCR7f3WJSOA+euoKKqVp3GVWLWIWoANG3aNOTm5iI9PR3p6enIzc1FUlKSwTIVFRUYPHgwlixZojfPvHnzkJaWhjVr1mDnzp24evUqJkyYgLq6Or1liIiI9AltY/6T4fWZuOJv9Fq8Uf35gqLSYnXTDaLNATpy5AjS09ORlZWFmJgYAMAnn3yCuLg4FBQUIDIyUme5hgDp1KlTOq8rFAqsWrUKX331FUaPHg0A+PrrrxEaGootW7Zg7Nix5u8MERE5NIlEgocGR+B/OjY3JMck2ghQZmYmZDKZOvgBgNjYWMhkMmRkZDT7vnv27EFNTQ0SEhLUaSEhIYiOjtZ736qqKiiVSo0XERGRMaYMDLV2E0gEoo0AyeVyBAYGaqUHBgZCLpe36L4eHh5o3bq1RnpQUJDe+6ampuKll15qdp1EROT4Am86L6xhc0O5ohLf7T5rjSaRiEweAUpJSYFEIjH42r17NwDoPHtFEASd6S1l6L4LFiyAQqFQv86e5f/IRESkaUZ8uNXqFrhbosWZPAI0e/ZsTJ061WCe8PBwHDhwABcvXtS6VlJSgqCgIFOrVQsODkZ1dTXKyso0RoGKi4sRHx+vs4xUKoVUqn0SMBERUQNPd1eMiGyHbQUlGunBMk/R6848eQlxndvirU1HERHgg7sGdDS6bGVNHbJOXkJs57Y6T6gn3UweAQoICECPHj0Mvjw9PREXFweFQoGcnBx12ezsbCgUCr2BijEGDBgAd3d3bN68WZ124cIFHDx4sEX3JSIi+vewzgCAcdHBGul5KQm6spvNtE+y8UtuEVZsPY6nfthvUtmFPx/EjM924dkfD4jUOsck2iTonj17IjExEcnJycjKykJWVhaSk5MxYcIEjRVgPXr0QFpamvrz5cuXkZubi8OHDwMACgoKkJubq57fI5PJMHPmTDz11FP4448/sG/fPkyfPh29e/dWrwojIiJqjvguAdi9cDTen9ZfI93X0x2tvd2Nvk9AKw+T6573Xa7JZQDgxz31++Ct21/UrPLOStR9gFavXo3evXsjISEBCQkJ6NOnD7766iuNPAUFBVAoFOrP69atQ79+/TB+fP3ks6lTp6Jfv35YuXKlOs/bb7+NSZMm4d5778XgwYPh7e2NX3/9Fa6uHPojIqKWCWglhYuL9pzSLfOHG32PmUM6t6gNf+ZrTyEh85IITjjzSqlUQiaTQaFQwM/Pz9rNISIiOxH+/O9G5Tvx+u3Yd6YMz609gBMlFc2qa+H4nnh4aNOBVOM2Naxcc1Tm/P3Ns8CIiIia6akx3TEmSnthj6uLBAPD2+D3uUPxbXJss+796u9HtFaHCYKAOd/uQ+I7O3BBcb1Z96V6DICIiIiaSSUYPkfM090VcV3aYteLozGgU2u9+fQpuVqlfv/4N3sRsWA9ft1fhHx5OeJS/2xWm6keAyAiIqJm6t3RD31CZU3ma+crxdpHTV+p3Pig1N8PXNC6fry43OR7Uj3RdoImIiJyNEmxnXC8+CpSJvZCwcVyjIwMxOCuAViXW4SjF8vh6iLB3Qb28Jl6ayjW7DJ+M97aOgHzv89FpzY+Oq9P/kDzCKji8koE+oq/b5EjYABERERkpFcmRavfRwb7AgCkbq5InzcMAKBSCTpXkDXw8tBcrezn6QZlZa3e/Llnr+Cnvef1Xr+57KDX/kDBq4mQunFVdFP4CIyIiMhMDAU/AHDzums3V8O/hrcfLTF4XZdPdpw0uYwzYgBERERkITev6po5JMJg/uZsbph+qPkHjjsTBkBEREQW0i/sxkqwboGt8OjwLvjl8cF681fXqkyu4+B5ZbPa5mwYABEREVnIxL4hmNg3BL6ebnj//v5wcZGgb6i/2espq6jGvSsz8b0JE66dDSdBExERWYiLiwTv3ddP9Hr6vVJ/YHjOqcu499ZQ0euzRxwBIiIicmDF5ZXWboJNYgBERERkZeFtvUW796DX/jApf2VNHdIPXkB5ZY1ILbINfARGRERkZVufHgG5shJSN1fkni3Du1uOYf85hVXa8uBnu5B58hKGdW+Hd6fcgie+y8U9Azrijr4hVmmPWDgCREREZGUSiQTtZV5o4+OBUT2CrBb81NSpkHnyEgBgx9ESvL3lKHYcLcGcb/dZpT1iYgBERETk4PLlSmScKMWY5duRU3hZZ57aOhW25hdrpH2ZedoSzbMKPgIjIiKyIzPiwzGqRyD+9b8co8skvvOX+v29H2Vi69MjUFFVi4gAHxw4p4CLBJjycZbBexwqUsDf2wMd/L2a3XZbwgCIiIjIjqRM7AWVSmg6owEj39xmcpnx7+0EAJxaMr5FddsKPgIjIiKyMV7uhg8zvfnMsZiINmI2xyExACIiIrIxqx4YqDN9yeTeOtOjO8jEbI5DYgBERERkYyKDfdXvHx3RRf1+XO/2OvOPiw4WvU2OhnOAiIiIbIyb643xiWHd2mH+mO6oqlWhlVT713afjjIMDG+Dnx8fjEnv/23JZto1BkBEREQ2xt31xhwfVxcJ3F1d4O6q+6HNQ4MjAAC9LfQYbEPeBRQpKnHwvAJv3tMXrjfNR7IXDICIiIhsjJvLjWBHT9yDLu18cKKkAsO6t/snnwQ5L94Glap+Q8PZ3+wVZUPFR1fvVb8f37s9RkcFmb0OS2AAREREZGMajwBJJLpHWDbOG4brNXXw9XRXpwX6eqrf/zJ7CMKf/128RgKoqK4V9f5iYgBERERkYxoHPb465v0A9fOEfPUND1mISmjZfkTWxACIiIjIBr00sRdKyqvQLci36cxWoiv++Sb7DL7ffRarHhiItq2klm+UkRgAERER2aAH4sOt3YQm6dqQ+oW0PADA21uO4tVJuvctsgXcB4iIiMhBffIv3Rsqmsv6vAtYu+cchH+GgrL/OUkeAK5V1Ylad0sxACIiInJQY0ReofVnfjGe+mE//jpWimvVtRoHqv6077yodbcUAyAiIiIn983DMXr3EerSzqfJ8gXyciz+5ZC5myUqBkBEREQObFpMmMHrri4SxHcNwLrZgzXSpwwMRRsfD/z4SHyTdagEAT/sOdeidloaAyAiIiIH9uqd0fjzqeH4bc4QtPHxwPB/Nk5s0HCQqkQiwa4XR8PDzQXvTr0FS+/ug10vjkZrH48m67DHxfBcBUZEROTAXFwk6NyuFQBgz8LRkEgkGhsk3tHnxgGr7XylOPrqOPXnhmMuJvfvgJ/26p/Ts2RDvrmbLTqOABERETmJhg0Wtz09AgGtPPDwkAjMMGK5fXcb3ououTgCRERE5GTCA3ywe+EYo/PPiA+3y1EeQzgCRERERAZ5urtauwlmxwCIiIiImtRe5tl0JjvCAIiIiIia9MMjcer3HyUNaDL/W/f0FbM5LcY5QERERNSkjq29cWrJeNTWqeBmxCn0kcG2PXGaI0BERERktIbg558V8jpNvTUUvUL8LNSi5mEARERERCZzNRABLbmrj3rJva1iAEREREQmMxQA2QNRA6CysjIkJSVBJpNBJpMhKSkJV65cMVjmp59+wtixYxEQEACJRILc3FyN65cvX8acOXMQGRkJb29vhIWFYe7cuVAoFOJ1hIiIiDS42vgIT1NEDYCmTZuG3NxcpKenIz09Hbm5uUhKSjJYpqKiAoMHD8aSJUt0Xi8qKkJRURHefPNN5OXl4fPPP0d6ejpmzpwpRheIiIhIB30jQG52MjIk2iqwI0eOID09HVlZWYiJiQEAfPLJJ4iLi0NBQQEiIyN1lmsIkE6dOqXzenR0NNauXav+3KVLF7z22muYPn06amtr4ebGhW1ERERi0xcAuRuxQswWiNbKzMxMyGQydfADALGxsZDJZMjIyDBrXQqFAn5+fnqDn6qqKiiVSo0XERERNd8jw7tYuwktIloAJJfLERgYqJUeGBgIuVxutnouXbqEV155BbNmzdKbJzU1VT0PSSaTITQ01Gz1ExEROaPkoZ3x25wh1m5Gs5kcAKWkpEAikRh87d69GwB0LoETBMFsS+OUSiXGjx+PqKgoLF68WG++BQsWQKFQqF9nz541S/1ERETOysVFgugOMgztFqCR3qG1l5VaZBqTJ8zMnj0bU6dONZgnPDwcBw4cwMWLF7WulZSUICgoyNRqtZSXlyMxMRGtWrVCWloa3N3d9eaVSqWQSqUtrpOIiIg0vTPlFox6azsU12sA2M8cIJMDoICAAAQEBDSZLy4uDgqFAjk5ORg0aBAAIDs7GwqFAvHx8aa3tBGlUomxY8dCKpVi3bp18PR0rAPaiIiI7EXbVlLsWTgaXV/cAACwk/hHvDlAPXv2RGJiIpKTk5GVlYWsrCwkJydjwoQJGivAevTogbS0NPXny5cvIzc3F4cPHwYAFBQUIDc3Vz1vqLy8HAkJCaioqMCqVaugVCohl8shl8tRV1cnVneIiIhIDzdXF3h7uAIAhnRtZ+XWGEfUNeOrV6/G3LlzkZCQAACYOHEiVqxYoZGnoKBAYxPDdevW4cEHH1R/bnjctnjxYqSkpGDPnj3Izs4GAHTt2lXjXoWFhQgPDxejK0RERGTApieHYWtBCe4Z0NHaTTGKRBAEwdqNsDSlUgmZTKZePk9ERES2z5y/v+3kSR0RERGR+TAAIiIiIqfDAIiIiIicDgMgIiIicjoMgIiIiMjpMAAiIiIip8MAiIiIiJwOAyAiIiJyOgyAiIiIyOkwACIiIiKnwwCIiIiInA4DICIiInI6DICIiIjI6bhZuwHWIAgCgPpTZYmIiMg+NPzebvg93hJOGQCVl5cDAEJDQ63cEiIiIjJVeXk5ZDJZi+4hEcwRRtkZlUqFoqIi+Pr6QiKRWLs5olAqlQgNDcXZs2fh5+dn7eZYhLP12dn6Czhfn9lfx+dsfW5pfwVBQHl5OUJCQuDi0rJZPE45AuTi4oKOHTtauxkW4efn5xRfqsacrc/O1l/A+frM/jo+Z+tzS/rb0pGfBpwETURERE6HARARERE5HQZADkoqlWLx4sWQSqXWborFOFufna2/gPP1mf11fM7WZ1vqr1NOgiYiIiLnxhEgIiIicjoMgIiIiMjpMAAiIiIip8MAiIiIiJwOAyArS01Nxa233gpfX18EBgZi0qRJKCgo0MgjCAJSUlIQEhICLy8vjBgxAocOHdLIU1VVhTlz5iAgIAA+Pj6YOHEizp07p76+bds2SCQSna9du3bpbd+MGTO08sfGxlq9vx9//DFGjBgBPz8/SCQSXLlyRauusrIyJCUlQSaTQSaTISkpSWc+U+u21T6fOnUKM2fOREREBLy8vNClSxcsXrwY1dXVBttnzz/j8PBwrbY///zzBttnzz9jR/oeX758GXPmzEFkZCS8vb0RFhaGuXPnQqFQaNzHFr7HluqvrXyHLdlnwIrfY4GsauzYscJnn30mHDx4UMjNzRXGjx8vhIWFCVevXlXnWbJkieDr6yusXbtWyMvLE6ZMmSK0b99eUCqV6jyPPPKI0KFDB2Hz5s3C3r17hZEjRwp9+/YVamtrBUEQhKqqKuHChQsar4cfflgIDw8XVCqV3vY98MADQmJioka5S5cuWb2/b7/9tpCamiqkpqYKAISysjKtuhITE4Xo6GghIyNDyMjIEKKjo4UJEyYYbJ8xddtqnzds2CDMmDFD2Lhxo3DixAnhl19+EQIDA4WnnnrKYPvs+WfcqVMn4eWXX9Zoe3l5ucH22fPP2JG+x3l5ecLkyZOFdevWCcePHxf++OMPoVu3bsJdd92lUZctfI8t1V9b+Q5bss+CYL3vMQMgG1NcXCwAELZv3y4IgiCoVCohODhYWLJkiTpPZWWlIJPJhJUrVwqCIAhXrlwR3N3dhTVr1qjznD9/XnBxcRHS09N11lNdXS0EBgYKL7/8ssH2PPDAA8Kdd97Zwl7p15z+NrZ161advygOHz4sABCysrLUaZmZmQIAIT8/X2dbTK27ucTqsy7Lli0TIiIiDOax15+xINT/w/n2228b3RZH+xk7yve4wffffy94eHgINTU1giDY7vdYrP7qYgvfYUEQt8/W+h7zEZiNaRgabNOmDQCgsLAQcrkcCQkJ6jxSqRTDhw9HRkYGAGDPnj2oqanRyBMSEoLo6Gh1nputW7cOpaWlmDFjRpNt2rZtGwIDA9G9e3ckJyejuLi4ud3T0pz+GiMzMxMymQwxMTHqtNjYWMhkMr33MVfdTRGrz/rqaqjHEHv8GTdYunQp2rZti1tuuQWvvfaawccFjvYzdrTvsUKhgJ+fH9zc6o+ptNXvsVj91ZfH2t/hhnYA4vXZGt9jpzwM1VYJgoD58+djyJAhiI6OBgDI5XIAQFBQkEbeoKAgnD59Wp3Hw8MDrVu31srTUP5mq1atwtixYxEaGmqwTePGjcM999yDTp06obCwEIsWLcKoUaOwZ8+eFu/k2dz+GkMulyMwMFArPTAwUO9/E3PVbYiYfb7ZiRMn8N///hdvvfWWwXz2+jMGgCeeeAL9+/dH69atkZOTgwULFqCwsBCffvqpzvyO9jN2pO/xpUuX8Morr2DWrFnqNFv8HovZ35vZwncYEL/P1voeMwCyIbNnz8aBAwewc+dOrWsSiUTjsyAIWmk305fn3Llz2LhxI77//vsm2zRlyhT1++joaAwcOBCdOnXC77//jsmTJzdZ3hBz97epexh7H3PUrY/YfW5QVFSExMRE3HPPPXj44YcN5rXnn/GTTz6pft+nTx+0bt0ad999t/qvSX0c4WfsSN9jpVKJ8ePHIyoqCosXLzZ4D0P3aU7dphK7vw1s5TsMiN9na32P+QjMRsyZMwfr1q3D1q1b0bFjR3V6cHAwAGj9tVNcXKyOfoODg1FdXY2ysjK9eRr77LPP0LZtW0ycONHkdrZv3x6dOnXCsWPHTC7bWEv6a4zg4GBcvHhRK72kpETvfcxVtz5i97lBUVERRo4cibi4OHz88ccml7eXn7EuDStfjh8/rvO6o/yMAcf5HpeXlyMxMRGtWrVCWloa3N3dNe5jS99jsfvbwFa+w4Dl+tyYxb7HRs8WIlGoVCrh8ccfF0JCQoSjR4/qvB4cHCwsXbpUnVZVVaVzEvR3332nzlNUVKRzErRKpRIiIiKaXFWgT2lpqSCVSoUvvviiWeXN0d/GmpoEnZ2drU7LysoyavKksXUby1J9FgRBOHfunNCtWzdh6tSp6hWAprKXn7Euv/76qwBAOH36tN622fvPuOF+jvA9VigUQmxsrDB8+HChoqJC6z628j22VH8FwTa+w4Jg2T7fzFLfYwZAVvboo48KMplM2LZtm8YSwGvXrqnzLFmyRJDJZMJPP/0k5OXlCffdd5/OZfAdO3YUtmzZIuzdu1cYNWqUxjL4Blu2bBEACIcPH9bZnsjISOGnn34SBEEQysvLhaeeekrIyMgQCgsLha1btwpxcXFChw4dmr2c1Fz9vXDhgrBv3z7hk08+EQAIO3bsEPbt26ex9DMxMVHo06ePkJmZKWRmZgq9e/fWWj7buL/G1m2rfT5//rzQtWtXYdSoUcK5c+c06tLXZ3v+GWdkZAjLly8X9u3bJ5w8eVL47rvvhJCQEGHixIl6+2ts3bba5waO8D1WKpVCTEyM0Lt3b+H48eMa92n875YtfI8t1V9b+Q5bss/W/B4zALIyADpfn332mTqPSqUSFi9eLAQHBwtSqVQYNmyYkJeXp3Gf69evC7NnzxbatGkjeHl5CRMmTBDOnDmjVd99990nxMfHG2xPQ93Xrl0TEhIShHbt2gnu7u5CWFiY8MADD+i8r6X7u3jx4ibvc+nSJeH+++8XfH19BV9fX+H+++/X+ou6OXXbap8/++wzvXXp67M9/4z37NkjxMTECDKZTPD09BQiIyOFxYsXa/2V6Ug/4waO8D1uGOXS9SosLFTns4XvsaX6ayvfYUv22ZrfY8k/NyYiIiJyGpwETURERE6HARARERE5HQZARERE5HQYABEREZHTYQBERERETocBEBERETkdBkBERETkdBgAERERkdNhAEREREROhwEQEREROR0GQEREROR0GAARERGR0/l/OfFyfNzISpsAAAAASUVORK5CYII=", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(df['decimal year'], df['new delta e (m)'], label='East displacement')" + ] + }, + { + "cell_type": "code", + "execution_count": 265, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    station ID (SSSS)date (yymmmdd)decimal yearmodified Julian dayGPS weekday of GPS weeklongitude (degrees) of reference meridiandelta e (m)delta n (m)delta v (m)antenna height (m)sigma e (m)sigma n (m)sigma v (m)correlation encorrelation evcorrelation nvnew delta e (m)new delta n (m)new delta v (m)
    0P39506JAN252006.067153760.01359.03.0-123.93347.679174.987420e+0653.036780.00830.000690.001050.00327-0.048320.01695-0.318160.000000.000000.00000
    1P39506JAN262006.069853761.01359.04.0-123.93347.680864.987420e+0653.030030.00830.000690.001040.00321-0.046480.00271-0.309700.00169-0.00067-0.00675
    2P39506JAN272006.072653762.01359.05.0-123.93347.680724.987420e+0653.039060.00830.000690.001050.00326-0.023670.00817-0.319410.001550.001010.00228
    3P39506JAN282006.075353763.01359.06.0-123.93347.679384.987420e+0653.043820.00830.000690.001050.00324-0.036810.00908-0.305150.00021-0.001500.00704
    4P39506JAN292006.078053764.01360.00.0-123.93347.680424.987420e+0653.035130.00830.000680.001050.00328-0.048150.00619-0.330290.00125-0.00162-0.00165
    \n", + "
    " + ], + "text/plain": [ + " station ID (SSSS) date (yymmmdd) decimal year modified Julian day \\\n", + "0 P395 06JAN25 2006.0671 53760.0 \n", + "1 P395 06JAN26 2006.0698 53761.0 \n", + "2 P395 06JAN27 2006.0726 53762.0 \n", + "3 P395 06JAN28 2006.0753 53763.0 \n", + "4 P395 06JAN29 2006.0780 53764.0 \n", + "\n", + " GPS week day of GPS week longitude (degrees) of reference meridian \\\n", + "0 1359.0 3.0 -123.9 \n", + "1 1359.0 4.0 -123.9 \n", + "2 1359.0 5.0 -123.9 \n", + "3 1359.0 6.0 -123.9 \n", + "4 1360.0 0.0 -123.9 \n", + "\n", + " delta e (m) delta n (m) delta v (m) antenna height (m) sigma e (m) \\\n", + "0 3347.67917 4.987420e+06 53.03678 0.0083 0.00069 \n", + "1 3347.68086 4.987420e+06 53.03003 0.0083 0.00069 \n", + "2 3347.68072 4.987420e+06 53.03906 0.0083 0.00069 \n", + "3 3347.67938 4.987420e+06 53.04382 0.0083 0.00069 \n", + "4 3347.68042 4.987420e+06 53.03513 0.0083 0.00068 \n", + "\n", + " sigma n (m) sigma v (m) correlation en correlation ev correlation nv \\\n", + "0 0.00105 0.00327 -0.04832 0.01695 -0.31816 \n", + "1 0.00104 0.00321 -0.04648 0.00271 -0.30970 \n", + "2 0.00105 0.00326 -0.02367 0.00817 -0.31941 \n", + "3 0.00105 0.00324 -0.03681 0.00908 -0.30515 \n", + "4 0.00105 0.00328 -0.04815 0.00619 -0.33029 \n", + "\n", + " new delta e (m) new delta n (m) new delta v (m) \n", + "0 0.00000 0.00000 0.00000 \n", + "1 0.00169 -0.00067 -0.00675 \n", + "2 0.00155 0.00101 0.00228 \n", + "3 0.00021 -0.00150 0.00704 \n", + "4 0.00125 -0.00162 -0.00165 " + ] + }, + "execution_count": 265, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 266, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "P395 overall plate motion there 0.0 mm/year\n", - "parameters: Coefficient of determination 0.0000004.2, P-value 1.0000004.2, standard deviation of errors 0.0000004.2\n" + "P395 overall plate motion there -0.0064397312911273945 m/year\n", + "parameters: Coefficient of determination -0.9970084.2, P-value 0.0000004.2, standard deviation of errors 0.0000064.2\n" ] } ], @@ -762,13 +1703,34 @@ "from scipy import stats\n", "# linear regression such that: displacement = Velocity * time\n", "# velocity in the East component.\n", - "Ve, intercept, r_value, p_value, std_err = stats.linregress(df['date_year'][df['station']==sta],df['east'][df['station']==sta])\n", + "\n", + "Ve, intercept, r_value, p_value, std_err = stats.linregress(df['decimal year'],df['new delta e (m)'])\n", "# horizontal plate motion:\n", - "print(sta,\"overall plate motion there\",Ve,'mm/year')\n", + "print(sta,\"overall plate motion there\",Ve,'m/year')\n", "print(\"parameters: Coefficient of determination %f4.2, P-value %f4.2, standard deviation of errors %f4.2\"\\\n", " %(r_value,p_value,std_err))\n" ] }, + { + "cell_type": "code", + "execution_count": 267, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "False" + ] + }, + "execution_count": 267, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.isnan(df['new delta e (m)']).any()" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -778,19 +1740,29 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 268, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Coefficient / Velocity eastward (mm/year): 0.0\n" + "Coefficient / Velocity eastward (mm/year): -0.006439731291127403\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAHf0lEQVR4nO3aMY4jRRiA0bI1qT0pa43FJkgrgk05AQGHICIjhZiAmCsQcRouwAEYqYXYjdy5m2g2s9YSnu2B7720Wl1/Vl+ra7MsyzIAgKzt2gMAAOsSAwAQJwYAIE4MAECcGACAODEAAHFiAADi7q556Hw+j2maxm63G5vN5rlnAgBuYFmWMc/zOBwOY7u9/P1/VQxM0zSOx+PNhgMAPp3Hx8fx8PBwcf2qGNjtdh9ett/vbzMZAPCsTqfTOB6PH87xS66KgadfA/v9XgwAwH/Mx37xu0AIAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQd7fm5r//+PP47Ldf1xwBAF6Ev779bnz1y0+r7L1qDJzfvR+f//3nmiMAwIswvXu/2t6rxsDrH74ff3zz9ZojAMCL8PrLL1bbe9UYePX2zXj19s2aIwBAnguEABAnBgAgTgwAQJwYAIA4MQAAcWIAAOLEAADEiQEAiBMDABAnBgAgTgwAQJwYAIA4MQAAcWIAAOLEAADEiQEAiBMDABAnBgAgTgwAQJwYAIA4MQAAcWIAAOLEAADEiQEAiBMDABAnBgAgTgwAQJwYAIA4MQAAcWIAAOLEAADEiQEAiBMDABAnBgAgTgwAQJwYAIA4MQAAcWIAAOLEAADEiQEAiBMDABAnBgAgTgwAQJwYAIA4MQAAcWIAAOLEAADEiQEAiBMDABAnBgAgTgwAQJwYAIA4MQAAcWIAAOLEAADEiQEAiBMDABAnBgAgTgwAQJwYAIA4MQAAcWIAAOLEAADEiQEAiBMDABAnBgAgTgwAQJwYAIA4MQAAcWIAAOLEAADEiQEAiBMDABAnBgAgTgwAQJwYAIA4MQAAcWIAAOLEAADEiQEAiBMDABAnBgAgTgwAQJwYAIA4MQAAcWIAAOLEAADEiQEAiBMDABAnBgAgTgwAQJwYAIA4MQAAcWIAAOLEAADEiQEAiBMDABAnBgAgTgwAQJwYAIA4MQAAcWIAAOLEAADEiQEAiBMDABAnBgAgTgwAQJwYAIA4MQAAcWIAAOLEAADEiQEAiBMDABAnBgAgTgwAQJwYAIA4MQAAcWIAAOLEAADEiQEAiBMDABAnBgAgTgwAQJwYAIA4MQAAcWIAAOLEAADEiQEAiBMDABAnBgAgTgwAQJwYAIA4MQAAcWIAAOLEAADEiQEAiBMDABAnBgAgTgwAQJwYAIA4MQAAcWIAAOLEAADEiQEAiBMDABAnBgAgTgwAQJwYAIA4MQAAcWIAAOLEAADEiQEAiBMDABAnBgAgTgwAQJwYAIA4MQAAcWIAAOLEAADEiQEAiBMDABAnBgAgTgwAQJwYAIA4MQAAcWIAAOLEAADEiQEAiBMDABAnBgAgTgwAQJwYAIA4MQAAcWIAAOLEAADEiQEAiBMDABAnBgAgTgwAQJwYAIA4MQAAcXfXPLQsyxhjjNPp9KzDAAC383RuP53jl1wVA/M8jzHGOB6P/3IsAOBTm+d53N/fX1zfLB/LhTHG+Xwe0zSN3W43NpvNTQcEAJ7HsixjnudxOBzGdnv5ZsBVMQAA/H+5QAgAcWIAAOLEAADEiQEAiBMDABAnBgAgTgwAQNw/gLhWxarIuvIAAAAASUVORK5CYII=", + "text/plain": [ + "[]" + ] + }, + "execution_count": 268, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGdCAYAAAD60sxaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABL1ElEQVR4nO3deVxU9f4/8NeAOIrCuBAgiYJLKGq5JaKV2xVxb7mm0eWr/oxcLppZmbZcSW+iZtpiZVppdb2pmRTdDJdSW1hccV/SKDUcMcUZVASV8/vjNBuzL2fW1/PxmMec+ZzPdi53nHfnfBaZIAgCiIiIiAJIkKc7QERERORuDICIiIgo4DAAIiIiooDDAIiIiIgCDgMgIiIiCjgMgIiIiCjgMAAiIiKigMMAiIiIiAJOHU93wBNqampQWlqKsLAwyGQyT3eHiIiIbCAIAioqKhATE4OgIOfu4QRkAFRaWorY2FhPd4OIiIgccPbsWTRv3typOgIyAAoLCwMg/g8YHh7u4d4QERGRLdRqNWJjY7W/484IyABI89grPDycARAREZGPccXwFQ6CJiIiooDDAIiIiIgCDgMgIiIiCjgMgIiIiCjgMAAiIiKigMMAiIiIiAIOAyAiIiIKOAyAiIiIKOAwACIiIqKAwwCIiIiIAg4DICIiIgo4DICIiIgo4DAAksh//wts2uTpXhAREZEpDIAkcOYM8PjjwNChwMCBwFdfebpHREREpK+Opzvgj8rKdMfbtokvQfBcf4iIiMgQ7wBJID/fdLpaLd4R+uAD9/aHiIiIDDEAcrErV4CnnjJ9bvFi8W5QRoZbu0RERES1MABysU8+MX/uyhW3dYOIiIgsYADkYosXm06vqeE4ICIiIm/BAMiFLl8Gzp41fS44GLh50739ISIiItPcEgC9++67iI+PR7169dCtWzf8+OOPFvPv3LkT3bp1Q7169dCqVSssX77cKM8XX3yBxMREyOVyJCYmIicnR6ru2+z6dcvn33/fPf0gIiIiyyQPgNatW4fp06fjxRdfxP79+3H//fdj8ODBOHPmjMn8JSUlGDJkCO6//37s378fL7zwAqZNm4YvvvhCm6egoACjR49Geno6Dhw4gPT0dDz66KMoKiqS+nIssucRV1ER8NtvknWFiIiILJAJgrQjU5KSktC1a1e899572rT27dvjwQcfRHZ2tlH+559/Hrm5uTh27Jg2bdKkSThw4AAKCgoAAKNHj4Zarca3336rzZOamorGjRvjs88+s9ontVoNhUIBlUqF8PBwZy7PQEkJ0KqVfWU4LoiIiMg2rvz9lvQOUHV1Nfbu3YuUlBSD9JSUFOSbWSynoKDAKP+gQYOwZ88e3PxrEI25PObqrKqqglqtNnhJ4dYtSaolIiIiF5M0APrzzz9x+/ZtREVFGaRHRUVBqVSaLKNUKk3mv3XrFv7880+LeczVmZ2dDYVCoX3FxsY6ekkWuSIAun4deO89w8HUFRWm8woCcPQoUF3tfLtERESBxC2DoGUymcFnQRCM0qzlr51uT52zZ8+GSqXSvs6am6rlpIQE+8uEhYlT5FUqMaB58UVgyhSge3fx/KOPAuHhQGoqsHIlUF4upo8fDwQFAR06AEOGuO4aiIiIAoGke4FFREQgODjY6M5MWVmZ0R0cjejoaJP569Spg6ZNm1rMY65OuVwOuVzu6GXYLMiBcPLqVaBpU3GRxGnTgLfeEtPLygD9eG7zZvH16qtAo0bAgQO6c99950yviYiIAo+kd4Dq1q2Lbt26YevWrQbpW7duRa9evUyWSU5ONsq/ZcsWdO/eHSEhIRbzmKvT22lWiNYEP5b8/rth8ENERET2k3w3+BkzZiA9PR3du3dHcnIyVqxYgTNnzmDSpEkAxMdTf/zxBz75aw+JSZMmYdmyZZgxYwYyMjJQUFCADz/80GB211NPPYUHHngACxcuxMiRI/HVV19h27Zt+Omnn6S+HK9VUSE+TiMiIiLrJB8DNHr0aLzxxhuYO3cuOnfujB9++AGbNm1Cy5YtAQDnz583WBMoPj4emzZtwo4dO9C5c2fMmzcPb731Fh555BFtnl69emHt2rVYtWoV7r77bqxevRrr1q1DUlKS1JfjtcxtwUFERETGJF8HyBtJtQ4QYDhux50yM4G33/ZM20RERO7gM+sAkfsCIkcGYBMREQUq/mxKqKgIOH/ePW3973/uaYeIiMgfSD4IOpD16OG+tn791X1tERER+TreAXKxbduAu+4Cdu7Upe3YAXz8sfgupQMHxAUViYiIyDIOgnbxIGhrEhKAkyelbSPw/qJERBQIOAjah+3dK30bmzdL3wYREZEvYwDkZg0bSt/G9u3St0FEROTLGAB5QIsWhp9HjDCfNzTU/Lla26G5zKxZQNu2uo1XiYiI/A0DIA/Yt8/w81dfARcuAP37G+ddutQ4TRDEHeTN7P2KhQsd71tNjVj+1ClgxQrH6yEiIvJmDIA8QH/c1iuviO+RkUC9err0DRuASZOA8eOBsWON67C2wOLixfavDSQIQLt2us8XL9pXnoiIyFdwFpibZ4FpaAKYL78ERo4Uj4cOBTZtEo/1/yo1NUBEhO6RlP45a4HQtWuWH6Ppu3rVcEPVJk2AS5dsK0tERCQ1zgLzA0uWAI89BgwbpkvLyBDfe/Y0zBsUBNx5p+l6vv3WcjtHj9rep5oaw8+XLwN9+gBbttheBxERkS/gHSAP3QEy59gxoFUrQC43TB8yRBfs1L47FBxsuc5XXgH+9S/T527fBj77DLjvPuDcOeD++03nC7z/lxARkbfhHSA/1r69cfADiAOSR4wQV5rWZ8smqHPmGH4+dw44e1Y8fv99ID0diI8H5s51rM9ERES+hgGQj2jeXJwtNmCA8bncXNvr2bULiI0Vp+KfPAls3ao7p39cm/4dIEEA/vtf4PBh29slIiLyJgyA/MDw4eKjLEt+/hm4eRNIStKlJSQAlZW2tZGfr2tj0ybg8ceBTp0c6y8REZGnMQDyE0FBhlPYa7vvPuPB1YDt22bcdx+QmCgGQbXXMSIiIvI1DID8iLkBzBrOBi4nTwI//uhcHURERN6AAZAfWbxY+jb69ePYHyIi8n0MgPxIeDjw3HPSt7N+ve74++/N56upAUaPBl58Ufo+ERER2YMBkJ+xNhja1fbvN38uP18MlubPFz/v2ydO87d3iw4iIiJXYwDkZ1wVAHXsaFu+kBDdsSCIe5iVlIifa88w69YNOH5cnLXWuzdw5QoXWCQiIs9gAORnXBEAbdhg++ywd9/VHa9bB4waJa5kDVgObvLzgcaNgUcfdbyfREREjmIA5GdatHC+DrUaiImxLe+JE7rjH34wPJeZqTs2t6nqhg1AWZl9/SMiInIWAyA/M3WqGHg8+6zjdWh2nbfXV18Zfv7lF93xH3+YL/fMM461R0RE5CgGQH6mXj3g7beBRYuAL78E2raVvk3N/mSlpbo0lcowT5cu5sufP+/6PhEREVnCAMhPyWTAyJFAcbH9ZW/dEt/37jUc5GzOwIHA778bpjVqZPi5psZ8+YoKu7pHRETkNAZAfi442P4yN26I7127Ah9+aFuZuDj729E4eNDxskRERI5gAOTnghz4C9etqzseM8Z1fTHnxg1OhyciIvdiAOTn7A2AkpKAKVN0n0NCgKVLpV9hulcvy4/JiIiIXIkBkJ/TD4AOHQJu3gS2bDEepAwATz4JFBaKW2romz4dyMqSspdiu7m5vBNERETuUcfTHSBpyWTiysw3bgDt2olpAwca5mnRwngQc222DIZ21kMPie+RkeIiie+9J26+SkRE5Gq8AxQA4uJ0wY++F18Emjc3XK/HnJAQ3XR3qZWViQss9u/vnvaIiCjwMAAKYP/+N3D2rOGgZ0sGDHD/qs379rm3PSIiCgwMgMgujswqc8a//w188IHxxqpERETOYABEdmnSBEhNFe8GuUNODpCRAfzrX+5pj4iIAgMDILKLTAZ8+637xgNpfPONe9sjIiL/xgCIXC4iwtM9ICIisowBEDls40YgJkbcgV5j/XrgwgVxLaGOHYFBg4zLDR1qf1vHjgGXLzveVyIiIn0MgMhhDz0E/PEH0LevLq15c3GgtEolLryYk2NY5ocfgP/+F3j4YTFYssf48U53mYiICAAXQiQX0N9wtfbmq/Xri6s7f/CBuJbQ/feL6V98YX87ubmO95GIiEgf7wCR01q00B3X3kZD44kngLFjbatv2jTn+0RERGSJpAFQeXk50tPToVAooFAokJ6ejitXrlgsIwgCsrKyEBMTg/r166Nv3744cuSI9vzly5cxdepUJCQkIDQ0FC1atMC0adOgMrW5FblFly5AdDTQvr3pFactqb0tByA+HvM2t297ugdERORKkgZAaWlpKC4uRl5eHvLy8lBcXIz09HSLZRYtWoQlS5Zg2bJl2L17N6KjozFw4EBUVFQAAEpLS1FaWorFixfj0KFDWL16NfLy8jBhwgQpL4WsOH8eOHrU/nJPPmmc5uiGqG++Caxa5VhZS44dAxo1AubOFT8LAneuJyLyeYJEjh49KgAQCgsLtWkFBQUCAOH48eMmy9TU1AjR0dHCggULtGk3btwQFAqFsHz5crNtrV+/Xqhbt65w8+ZNm/qmUqkEAIJKpbLxakhKYkihe6nVxmma13ffma7j6FFdHlcbNsyw7iFDBKFTJ0Gw8f9uRETkIq78/ZbsDlBBQQEUCgWSkpK0aT179oRCoUB+fr7JMiUlJVAqlUhJSdGmyeVy9OnTx2wZAFCpVAgPD0edOhzT7Yuys8X3efOAq1eBsDDzec3930Cp1B1v3Oi6vtX266/Apk3iDLf9+6Vrh4iIpCVZAKRUKhEZGWmUHhkZCaX+r1WtMgAQFRVlkB4VFWW2zKVLlzBv3jxMnDjRbF+qqqqgVqsNXuQ9Zs0CSkuBl14CGjQQ05YsMZ137VrT6fqPpB55xLX9038k17q17lgmc207RETkPnYHQFlZWZDJZBZfe/bsAQDITPxCCIJgMl1f7fPmyqjVagwdOhSJiYmYM2eO2fqys7O1A7EVCgViY2NtuVRyo2bNDD8//bTpfEeOiGsMdeoE9OsH/PKLmH7ihGG+a9dc30ciIvIfdj8zyszMxJgxYyzmiYuLw8GDB3HhwgWjcxcvXjS6w6MRHR0NQLwT1EzvF7GsrMyoTEVFBVJTU9GwYUPk5OQgJCTEbH9mz56NGTNmaD+r1WoGQT5s+XLg8GHx+K67xIHP//ynYZ6GDYE9e4Bu3aTrB+8AERH5LrsDoIiICETYsNlTcnIyVCoVdu3ahR49egAAioqKoFKp0KtXL5Nl4uPjER0dja1bt6JLly4AgOrqauzcuRMLFy7U5lOr1Rg0aBDkcjlyc3NRr149i32Ry+WQy+W2XiJ5uaoqw8/mVoju3t3xGWW2YABEROS7JBsD1L59e6SmpiIjIwOFhYUoLCxERkYGhg0bhoSEBG2+du3aIeev/RJkMhmmT5+O+fPnIycnB4cPH8a4ceMQGhqKtLQ0AOKdn5SUFFy7dg0ffvgh1Go1lEollEolbnOxFr+Smwu0amW8E7xeLOy0XbuADz90LFBiAERE5LsknTa1Zs0aTJs2TTura8SIEVi2bJlBnhMnThgsYjhz5kxUVlZiypQpKC8vR1JSErZs2YKwv6YG7d27F0VFRQCANm3aGNRVUlKCuLg4Ca+I3Gn4cPFV2/Xrztf9/vvAgQPAe++Jn2NjAb3JhzaR8u4SERFJSyYIgffPuFqthkKh0E6fJ+/n6N2WK1cAhcJ6fffcAxQXm65j2DDju1CAePfo3nsd6xcREdnPlb/f3AuM/JqVnVe0Dhww/Kz/NPXMGdNltmwxnf7VV8CMGdw+g4jImzEAIr+2bp1xWu1B1LUdPAg0aQK89hpQWSkuemjKSy8BP/9smFZdDTz4ILB0KfCf/zjUZSIicgMGQOTXnn/e8HNNDVBWZrlMWhqgVgMzZwKhoZbz6gdATzwB6E82/OMP+/pKRETuwwCIAsb06UBwMNCiheV8R47YXmd5ufj+55/ibDJ9gTe6jojIdzAAIp/giv293nzT8vl//9v+OhcsEPcv++AD43MMgIiIvBcDIPIJ1u7auMLLLztW7vnngdmzjdMZABEReS8GQOQTgpz4f+r331sf+KyxaZP99b/7rul0BkBERN6LARD5hNqbpZpjak/cAQOAKVNsKz90qOXzqam21QNwGjwRkTdjAEQ+4a99cq2aOtV0+kcfuaYf335re17NAGkiIvI+DIDIrzRtCqSnAx07eron4pR7IiLyTpLuBUbkTpqB0p98Io6/cWbckCvYOu6IiIjcj3eAyC8EBwOFhbrP3rBT+40bnu4BERGZwwCIfMaaNebPVVfbPlDaWdOn25aPd4CIiLwXAyDyGWlp5s85+rjr2DHb8375pfiekGBb/iZN7O4OERG5CQMg8nmOLmAIAO3aAfHxtuUdOVJ8Dw62Lf/77zvWJyIikh4DIPJZM2aIU83nznWunsRE63muXtUd161rPt+lS871hYiI3IMBEPmUFSt0xxERQKNG9tfRqpX9ZUJCdMejRol3jmqLiDB87NWzp+3137wJFBUBt27Z3zciIrIfAyDyKRkZuuN777Wc19yqzlFR5st06CBubKpQGKbrjzEKDQWOHgVefFGX9tJLwL594vHDD4vvR49a7p/GtWviStU9ewIzZ9pWhoiInMMAiHzOyZPigOS//c1yvmHDjNMaNhQDGHMOHwYmTDDc8mLzZqBOrRWzZDIxAIqKAvr2BebNA2JjxXOanevVamtXAiiVYp80u8kvXWq9DBEROY8LIZLPadtWfFljai2g1q2BBg2s51u+HOjcGRgzBoiLM11//frA2bPGwZG+P/4A7rzT/PkNG4zTMjKAlSvNlyEiIufxDhAFlJYtje8AmQpwGjUCZs0yH/xohIRYXnSxeXNg9mz7+vjBB0B2tn1liIjIPgyAyG+ZGuw8dKgY2ADA//2f+D5vHjB2LLB1q2vazc83/LxggeEq1frmzzed/sILrukLERGZJhMEQfB0J9xNrVZDoVBApVIhPDzc090hiQgC8OabQKdO4l2a774DXnlFfGRVUSGOvZFiy4yyMtMDrU190yy1H3jfTCIiy1z5+80xQOS3ZDLDbSv699cdh4VJ166lQdb69NcWMuXMGXGD1+pqcSyRrQs2EhGRdXwERuRi9eubTi8rE3eqr6wEPvrIehA2ebL4PmCA+DgvIwM4fdq1fSUiClS8A0TkYua2yujTBzh+XFwv6M03rddTXi6+//ST+P7BB+LrwgUgMtI1fSUiClS8A0TkJsePi++2BD+AOAbo4EHj9DFj7G+b44mIiAwxACLyUrdvA/fcY5y+fbt99WRmAu3biytOExGRiAEQkZe6ft3y+U8/BbZts5ynpgZ45x3gxAlg7VrX9Y2IyNdxDBCRBIYOBb75xrk6jhwxf65tW+DUKfHY0uMt/aCHj8GIiHR4B4hIAhs2AK++avuUeHtpgh9rDh/WHf/8s/heWspgiIiIARCRBOrVE1dzPnfOs/3QD8BWrxbXRrrzTmDuXODWLY91i4jI4xgAEUmocWPX5rPF7dvAli3iNHpziy1mZYn7mL39tuvaJSLyJQyAiLxARobjZZ97ThwvNGoUsH498O67wKBBQJMmwMKFlstOmwb8+afjbRMR+SruBca9wEhituw3duwYcPky0Lu39P2p7ehRcZo8EZG3c+XvN+8AEXmBunWBXr3EQcuPPuretqXYEJaIyNsxACLyAkF/fRM7dADuuMOzfSEiCgQMgIi8wM2bumO53HP9ICIKFAyAiCT2wgu64zFjgCFDjPO0aqU7dncAxEHQRBSIGAARSezVVwGVSlyVeeVKwNS4Pf0d5ENCTNczYIA0/bv/fmnqJSLyZtwKg8gNwsOB0aPFY/1Bx1OmiNta6DM1L/P114HJk6VbWZqIKNBwGjynwZObpaUBn30mHpv69l24AERHG6Zp8kk1Yyvw/hUgIl/EafBEPmzMGPFdf9yPvqgo82Xnzxff4+Ica/vuu02nm1sxmojIX0kaAJWXlyM9PR0KhQIKhQLp6em4cuWKxTKCICArKwsxMTGoX78++vbtiyNmtsUWBAGDBw+GTCbDl19+6foLIJLA8OHA7t3A/v3m88yZYzp99mxxwcSSEvvavP9+cX+y7dtNn2/d2r76iIh8naQBUFpaGoqLi5GXl4e8vDwUFxcjPT3dYplFixZhyZIlWLZsGXbv3o3o6GgMHDgQFRUVRnnfeOMNyLiKG/kYmQzo3t30YGiNp54yf06zb9jevba116YN8MMPQGWluD3G5MnGecrKgMceA86eta1OIiKfJ0jk6NGjAgChsLBQm1ZQUCAAEI4fP26yTE1NjRAdHS0sWLBAm3bjxg1BoVAIy5cvN8hbXFwsNG/eXDh//rwAQMjJybG5byqVSgAgqFQq+y6KyM0WLRKE9evNn799WxDEETzmX5MnG5aprLSc//BhQdiyRRCuX7evrzt3CsKzz4r1ExFJwZW/35LNAisoKIBCoUBSUpI2rWfPnlAoFMjPz0dCQoJRmZKSEiiVSqSkpGjT5HI5+vTpg/z8fEycOBEAcP36dTz22GNYtmwZomuPFjWhqqoKVVVV2s9qtdqZSyNym+ees3w+yIZ7uEuWGH62ts5Qx47i+5gxusHatujTR3wPDwdeftn2ckREniDZIzClUonIyEij9MjISCiVSrNlACCq1ijQqKgogzJPP/00evXqhZEjR9rUl+zsbO04JIVCgdjYWFsvg8jn1atn+NnWp8Zr11rPs2iRuI+Z/tiif/3L9r4REXmK3QFQVlYWZDKZxdeePXsAwOT4HEEQrI7bqX1ev0xubi6+//57vPHGGzb3efbs2VCpVNrXWQ50ID+iWV/ooYdsL3PsGLBvn/V8ejdOTXr+eXEbj/79DdNVKuDkSdv7Q0TkbnY/AsvMzMQYzTxeM+Li4nDw4EFcuHDB6NzFixeN7vBoaB5nKZVKNGvWTJteVlamLfP999/j9OnTaNSokUHZRx55BPfffz927NhhVK9cLoecGyyRn/roI+Dxx4G//c32hRLbtbMtX3KybYFSbbGxQEWFuLt9hw72lycikprdAVBERAQiIiKs5ktOToZKpcKuXbvQo0cPAEBRURFUKhV69eplskx8fDyio6OxdetWdOnSBQBQXV2NnTt3YuHChQCAWbNm4YknnjAo16lTJyxduhTDhw+393KIfF5oqDi13pSBA52re/9+oLxcN/PMVppJm5s3MwAiIu8k2Rig9u3bIzU1FRkZGSgsLERhYSEyMjIwbNgwgwHQ7dq1Q05ODgDx0df06dMxf/585OTk4PDhwxg3bhxCQ0ORlpYGQLxL1LFjR4MXALRo0QLx8fFSXQ6RT8jP1y20CIj7kDnLyg1fi27fdr59IiIpSLoX2Jo1azBt2jTtrK4RI0Zg2bJlBnlOnDgBlUql/Txz5kxUVlZiypQpKC8vR1JSErZs2YKwsDApu0rkF5KTxdfixcDvvwP33ms5/65dwF83aM3assXx/jAAIiJvxb3AuBcYBThbZoW99x4waZJh2tmzQIsWlsv17Wt+9WkiIntxLzAicquZMw0/jx9vPfgBgB07xPFANTWSdIuIyGEMgIjIqooK3WywDRuA1attLxseDqSmStItIiKHMQAiIpt06wYMGgSMGmV/2a1bxY02CgvFWWVERJ7GAIiIbObMgOi0NHGAdsuWfCRGRJ7HAIiI3EKztUZFhXgniYjIkxgAEQW4U6eAVavc2+a2be5tj4ioNgZARAGudWtg3Dj3t7t+vfi+Zg3www/ub5+IAhsDICIy0r27fflVKmDYMPvKvPwycPAg8I9/AH362FeWiMhZDICICADw+efA5MnAypXAd9/ZVzY8HPj6a+DIEdvLnDwJ3HOPcfrly8Cvv+o+C4K46/wnn9jXJyIiS7gSNFeCJjLJlhWiNTT/ivzyC3DXXY61p6lD0+6ZM8Aff4irUGuCn8D714qI9Lny91vSvcCIKLAEBzte9upVcWd7jfffd81mrkREpvARGBGZtH+/7rhnT3GwtDXOBEDR0cC6dbrPDH6ISEoMgIjIpM6dgW+/BdLTgbw8cbq8NUFO/Ity7Rowd67j5YmI7MEAiIjMSk0Vx98oFOLnvDxg4ULg7bdN59cPgCIigEuXdAsg2uL4ccvnjx61vS4iIksYABGRzQYNEneGz8wE8vPF6fI//2w674ABQJMmwOjRrmt/zx7X1UVEgY0BEBE5JDkZ2L0b6NVLl6Y/S+v113XH27e7ps1bt1xTDxERAyAichn9ACgsTHfct69r6p8wwfxU+MuXxcd1V6/aV+ft2+Jdrf/9z/n+EZHvYABERC6jvyyHXG54LjZWfM/JAb7/3vE2+vUDzp0zTh85Ehg7Fpg0yb76PvsMeO01YPhwx/tERL6HCyFyIUQil8rNBerUAYYMMZ/nxg2gfn3n2tm6Ffjb33SfNQsoBgWJd3VscesW0K2buCUHwIUWibwdF0IkIq81YoT1PHXrOt/OwIFA167Ali1A06a6dHvWIlq2TBf8EFFg4SMwInK7oCCgUSPn69m3D3jpJcM0ewKgzZud7wMR+SYGQETkEadPu6ae5csNH3nZ+vgLsG+/MyLyLwyAiMgjmjQBvvlGPF6xwrm66ug9zL950/F6amqc6wcR+Q6OASIijxkyBKiuBkJCgCefdF29x44BUVFikGVJ7TtAu3cDP/0kTqnnXmRE/o13gIjIo0JCXF9nYqI4MPqTT8TVqlevBiorjfPVDoCuXAGefRaYP9+2vc+IyHcxACIivzV2LLB3LzB+PBAaan18kP4AansXVCQi38IAiIi8wsyZ0rdx6ZLh59p3gAYO1B3bM5iaiHwPAyAi8goLFogzwz7/HIiMFFeL/vNP17ZRO+C5ccN8Xg6IJvJvHARNRF5BJgNatRJfjzwizRR1/c1Uf/4Z2LbNfN5Tp4B773V9H4jIO/AOEBF5HanW5/nyS93x0KGW86alAUVF0vSDiDyPARAR+YyuXZ0rr38HSKWynj893bn2iMh7MQAiIp/Qr5/lDVZt0batuO7QunW25f/lF+faIyLvxQCIiLza3r3AuHHAp58C8fHO1TV1KvDaa8CYMS7pGhH5MJkgCIKnO+FuarUaCoUCKpUK4eHhnu4OEdno9m0xiHnvPcfraN4cOHfO9vyB9y8kkfdy5e837wARkc8IDgbefRfYvl3c6sIR9gQ/ROS/GAARkc/p21fct4uIyFEMgIjIJ8XGipuW1t79/a23gIwMz/SJiHwHAyAi8lmNGwN16ojjdJRK4Pp1cYwQh/YRkTVcCZqI/IL+mCBHxwcRUeDgHSAi8juZmeIihuvXe7onROSteAeIiPxO/frAJ5+Ix19/DQwf7tn+EJH34R0gIvJr1vb8atLE8pihbduAqirX9omIPE/SAKi8vBzp6elQKBRQKBRIT0/HlStXLJYRBAFZWVmIiYlB/fr10bdvXxw5csQoX0FBAfr3748GDRqgUaNG6Nu3LyorKyW6EiLyVTKZ+SnzubnApUvivmADBpjOM3Ag0LKldP0jIs+QNABKS0tDcXEx8vLykJeXh+LiYqRb2V1w0aJFWLJkCZYtW4bdu3cjOjoaAwcOREVFhTZPQUEBUlNTkZKSgl27dmH37t3IzMxEUBBvaBGRse7dxenyEycapuvvOr9sme649iOzCxek6xsReYZkW2EcO3YMiYmJKCwsRFJSEgCgsLAQycnJOH78OBISEozKCIKAmJgYTJ8+Hc8//zwAoKqqClFRUVi4cCEm/vWvV8+ePTFw4EDMmzfPob5xKwyiwBUeDmj+e+roUaB9e925w4fF1aazsowHUHNLDCLP84mtMAoKCqBQKLTBDyAGLgqFAvn5+SbLlJSUQKlUIiUlRZsml8vRp08fbZmysjIUFRUhMjISvXr1QlRUFPr06YOffvpJqkshIj8yZ474Hh5uGPwAQMeOYlpwsPny1dXS9Y2I3EeyAEipVCIyMtIoPTIyEkql0mwZAIiqtYhHVFSU9tyvv/4KAMjKykJGRgby8vLQtWtXDBgwAL/88ovJequqqqBWqw1eRBSYZswQ7/Rcvmw+j7kAaNYsQC4H9u+Xpm9E5D52B0BZWVmQyWQWX3v27AEAyPQfsP9FEAST6fpqn9cvU1NTAwCYOHEixo8fjy5dumDp0qVISEjARx99ZLK+7Oxs7UBshUKB2NhYey+biPyETAZ06GD5Lo+pcy+8ACxcKB7Pni1N34jIfexeBygzMxNjxoyxmCcuLg4HDx7EBRMjBy9evGh0h0cjOjoagHgnqFmzZtr0srIybRlNemJiokHZ9u3b48yZMybrnT17NmbMmKH9rFarGQQRkVmmAqDsbN3xrVvu6wsRScPuACgiIgIRERFW8yUnJ0OlUmHXrl3o0aMHAKCoqAgqlQq9evUyWSY+Ph7R0dHYunUrunTpAgCorq7Gzp07sfCv//SKi4tDTEwMTpw4YVD25MmTGDx4sMl65XI55HK5zddIRIHN2oTSq1fd0w8iko5kY4Dat2+P1NRUZGRkoLCwEIWFhcjIyMCwYcMMZoC1a9cOOTk5AMRHX9OnT8f8+fORk5ODw4cPY9y4cQgNDUVaWpo2z3PPPYe33noLGzZswKlTp/Dyyy/j+PHjmDBhglSXQ0QBpEkTy+c5I4zI90m6FcaaNWswbdo07ayuESNGYJn+YhsATpw4AZVKpf08c+ZMVFZWYsqUKSgvL0dSUhK2bNmCsLAwbZ7p06fjxo0bePrpp3H58mXcc8892Lp1K1q3bi3l5RBRgJg5E1i0yPz5mzfd1xcikoZk6wB5M64DRESWCILlx2AdOogzyYjIvXxiHSAiIl9lZaIq9wYj8gMMgIiITNBMeTeFARCR72MARERkgqVHYBwDROT7GAAREZmgHwD94x+e6wcRSYMBEBGRCaNGie/JyUDtfZc1CyXu2AH8/rv5Oj7+GMjMBP5awJ6IvAgDICIiE2JjAZUK+PFHICTE8FxcnLgvWL9+4nG3bsCnnxrXMW4c8M47wFdfce0gIm/DafCcBk9EVty8CdStaz2f/r+mf/4J3HGHeDx+PHDoENCqFbBunTR9JAoEnAZPRORGISHA1KnW82kedR0/rgt+AGDVKmDPHmD9esN8ROQ5DICIiGzw7LPW83TtKt4Feu8983lOnRKDoxdfNEw/eRK4dMm5PhKR7RgAERHZoEULIDTUcp4DB4ArVyzf4WnbFrh8GZg/HxgxAujSRXwslpAA2LDPNBG5iKR7gRER+ZOGDYHr1y3nuXXL9gHPX38tvo8Zo0v75RcxSCIiaTEAIiKyUVgYUFZmOU9kpHNtXLsG3LgB1KvnXD1EZBkfgRER2eitt6Rvo0sXoH59cSA1EUmHARARkY0SE93XVvv27muLKBAxACIi8lKLF4uDoysrPd0TIv/DAIiIyEbuXjb2uefE6fEPPODedokCAQMgIiIvt2ePp3tA5H8YABER2ahpU8PPr7/umX4QkfMYABER2Sg8HJg0STw+cwaYMcN9bWdnm04/eBDIyhKnzxOR7bgZKjdDJSInDB4M5OW5p63kZCA/X/f51i3dTvVPPw0sWeKefhB5CjdDJSLyEps2Ge/rJZWCAsPPP/6oOy4sdE8fiPwFAyAiIifIZJb3CPv2W2naPXMG6N9f9/nGDWnaIfJXfATGR2BE5KTycqBJE9PnBEHc3+uuu1zT1u3bQFCQGHiZaovIn/ERGBGRF2ncWAw+0tJMn2/bVgySXGHoUNPBDwDMmSO+X70q3nmqrnZNm0T+iAEQEZGLrFlj/lyjRsClS8bplZVAjx7i8cMPW2/D0oDruXPF9wcfBIYMAV56yXp9RIGKARARkZuYekwWHAz8/DPw66/AsGHOt/Haa8B334nHK1Y4Xx+Rv2IARETkQqWl4mMqcwQB2L1b9zkoCKhTB4iPNxzDo1IB48bZ3/7MmYZ16E+bJyIdBkBERC7UrBnw9dfAypXmp6bHxuqOg/T+FX70UaBVKyAjQ1x0cdUq5/vTvz9w4oS4RhBnihHp1PF0B4iI/I1MBjzxhPnzUVHAxo1AgwaGA5obNgROnTI/yNkRVVVAu3bi8ZUrunFCRIGO0+A5DZ6IvJgrgyGAU+XJt3EaPBEREZETGAAREXmxkyc93QMi/8QAiIjIi7VtC9x3n6d7QeR/GAAREXm5nj0tn3/kEdvrun0b+Oor4Px5y/lu3gR+/90wrbISeOEFoKjI9vaIvBUDICIiL5eVZf5c27bAunW21/XBB+JK0TExQEWF8fmLF8W9ywYMAOLigG3bdOcWLACys3UB2bFj4iwzIl/EAIiIyMs1aGD+XFaWuJq0rSZN0h2Hh4uzzPSDmMhIcePWH38UPw8cCCxfLh4fPqzL98UXQGKi4Y70RL6EARARkQ/4+WfjtDfeAMaMEY/1V5e2V+/eQKdOwG+/mT4/ebL4rj8l/+9/F9/z88VtPIh8DRdCJCLyAb16AV27Avv2iZ83bwZSUnTnu3d3vO69e8V3TVBjjrk1iVq35vpC5HsYABER+Yi8PGDWLKBDB/HRlKtpAiFT8vOBDRtc3yaRp/ARGBGRj7jjDuDDD4EZM0zfjdHfCNXVeve2fP7iRenaJpICAyAiIj+Rmem5tiMjgW7dgBUrPNcHInswACIi8hOxscBnn3mu/X37gIkTgYICz/WByFYMgIiI/Mi99+qOBw/2TB969fJMu0T2kDQAKi8vR3p6OhQKBRQKBdLT03HlyhWLZQRBQFZWFmJiYlC/fn307dsXR44cMcijVCqRnp6O6OhoNGjQAF27dsUGjs4jIkKrVsCoUcCTTwKrV3u6N0TeS9IAKC0tDcXFxcjLy0NeXh6Ki4uRnp5uscyiRYuwZMkSLFu2DLt370Z0dDQGDhyICr0lS9PT03HixAnk5ubi0KFDePjhhzF69Gjs379fysshIvJ6Mhmwfj3w/vviuJy2bT3dIyLvJBMEaVZvOHbsGBITE1FYWIikpCQAQGFhIZKTk3H8+HEkJCQYlREEATExMZg+fTqef/55AEBVVRWioqKwcOFCTJw4EQDQsGFDvPfeewbBVNOmTbFo0SJMmDDBat/UajUUCgVUKhXCw8NdcblERF6rpsa+1aJdgesCkRRc+fst2R2ggoICKBQKbfADAD179oRCoUB+fr7JMiUlJVAqlUjRW91LLpejT58+BmXuu+8+rFu3DpcvX0ZNTQ3Wrl2Lqqoq9O3b12S9VVVVUKvVBi8iokARxNGeREYk+1oolUpERkYapUdGRkKpVJotAwBRUVEG6VFRUQZl1q1bh1u3bqFp06aQy+WYOHEicnJy0Lp1a5P1Zmdna8chKRQKxMbGOnpZRERkhT270xN5it0BUFZWFmQymcXXnj17AAAyEyt1CYJgMl1f7fO1y7z00ksoLy/Htm3bsGfPHsyYMQOjRo3CoUOHTNY3e/ZsqFQq7evs2bP2XjYRkU9bu1Z8X71aXEW6YUPg3/+Wpq2bN6Wpl8iV7N4KIzMzE2M0u++ZERcXh4MHD+LChQtG5y5evGh0h0cjOjoagHgnqFmzZtr0srIybZnTp09j2bJlOHz4MDp06AAAuOeee/Djjz/inXfewXLNtsV65HI55HK5bRdIROSHRo8GHnoIqFsXGDvWML32QOm2bYFffrFcX1wcMHw48PbbxucqKwGVClAonO42kWTsDoAiIiIQERFhNV9ycjJUKhV27dqFHj16AACKioqgUqnQy8wiEfHx8YiOjsbWrVvRpUsXAEB1dTV27tyJhQsXAgCuX78OAAiq9VA7ODgYNTU19l4OEVHAqFvXOK1NG+O0gwfFYCkvz3xds2aJix5u3Aj88Yfhua1bgUaNgNOnxWn5RN5IsjFA7du3R2pqKjIyMlBYWIjCwkJkZGRg2LBhBjPA2rVrh5ycHADio6/p06dj/vz5yMnJweHDhzFu3DiEhoYiLS1Nm79NmzaYOHEidu3ahdOnT+P111/H1q1b8eCDD0p1OUREAeGjj4B69YBvvwWqq83ne/xx8X3HDl1aTIxhntatxRloRN5I0t3g16xZg2nTpmlndY0YMQLLli0zyHPixAmoVCrt55kzZ6KyshJTpkxBeXk5kpKSsGXLFoSFhQEAQkJCsGnTJsyaNQvDhw/H1atX0aZNG3z88ccYMmSIlJdDROT3xo/XHYeEGJ8fMUK8+9OwofhZ/w5Saalx/rp1xUCKM9HI20i2DpA34zpAREQ6DRoAf40uMFq/p3Nn4MAB3WdTvxhW5rWgtBTQG9ZpVVUVwGGbZIpPrANERES+4a8hlyZt2gT8Nd/ELM2ohsRE0+ePHrW9LwcOiI/gZsywvQyRIxgAEREFuNdeE99nzTI+FxMDzJ5tufy+fWKQ8//+n+nzf/ub4edPPhHvCJ0+bZy3c2fxfelS4OOPAa5bS1LhIzA+AiMiQmUlUL++6XM3bgD9+gH33w8sWmS+jrNngRYtTJ/T/NJs2QIMGqRLP35cdwfp8GGgUyfjsj/9BPTubf0ayP+58vdb0kHQRETkG8wFP4D4SKqgwHodlhbZv3lTDLJqrxvUrh3w+efiukMvvGC67H33cW8xcj0GQEREJLnERODUKdN3cl54wfrCi0SuxjFAREQkuVOnxPeffzY+x+CHPIEBEBEREQUcBkBEREQUcBgAERGR13vsMWDvXk/3gvwJAyAiIvJ6a9cC3bsDX3/t6Z6Qv2AAREREPmPECG6wSq7BAIiIiFymuBgYMEDavbyCg4FvvhF3rG/dGvjxR+naIv/FAIiIiFzmnnuAbdvEzVWzsqRrZ9gwYMgQ4NdfgYEDbS93/rw4nohBEzEAIiIilwsKEgMUd6iqsj3vxInieKIHHpCuP+QbGAAREZEk7r3Xve0dOQKMHy++SktN5zl5Une8dau4PQcFJm6FQUREkmnUCLhyxf5y/foB27fbnv+jj4AJE3Sff/8d+P5743wnTuiOU1KAhg2Bigr7+0e+j3eAiIhIMnPmOFZu82b78usHPwBw4IBt5a5eta8d8h8MgIiISDJt2tieNypKdyyTAadPO95ucLDteVevdrwd8l18BEZERJIxNxA6Ph4oKTFMGzECEARAoQDq1AFatQJ69AB27bK/3SC9/7yvqQEOHwY6dDCdd/x4oFMnoFs3+9sh38U7QEREJJkgE78ykyYB77wjHuvPxho8GFi5Eli8WJdWVCSu+WMv/TtAo0eL0/PrWPhP/u7dxan19swoI9/GO0BERCSpNm2AU6fEWWHTpwMPPgiEhoqDjxs0AGbOBG7fFtNNGTIEOHRIDGoSE21rUxN4TZsGbNhgW5lvvgH+8x/j8UTknxgAERGRpLZvBz75BHjySSAiQpfesKH4/tpr1uvo2FF879/f9Oyu2s6dAz7+GHj7bfv6evasffnJd8kEQRA83Ql3U6vVUCgUUKlUCA8P93R3iIjIRl9+CTz0kLRtBN6vou9w5e83xwAREZHPGDkSOHhQfJRG5AwGQERE5DNkMnHG1vDhnu4J+ToGQERE5HP69QPq1pWm7vffB7ZskaZu8h4MgIiIyOfIZMC//iVN3ZMmAYMGOV5+/XpgzRrX9YekwQCIiIh80jPPAE895eleGLpxQ1x36B//AC5f9nRvyBIGQERE5JPq1QPeeAN4+GFP90Snulp3fO2a5/pB1jEAIiIinxYSYl/+5GRxXSIp6E+hl8mkaYNcgwEQERH5tAULxI1U+/SxLf+KFUB6OtCihev7UlPj+jpJGgyAiIjIp8XFAefPAy+8YDnftGnAr7/qVpW2tuDhyZPiyx63b9uXnzyHARAREfk8mcx6QPPmm+Iu9LZKSBBfWVm2l7l1S3fMu0HejQEQERH5BXu3sLA1/yuvAF98YVte/TtAvBvk3RgAERGRX7AU0JiaKda3r/geHi7OKLPk738XN3W1Rj/o+fRT23eiJ/djAERERH5BPwDSbJVx5oy4M7ypQOTtt4FXXwX27wc2brRe/w8/6I4rK03n0X8ENmcOMGoU8Pvv1usm92MAREREfiEsTHecmysGRLGxwJ13mp6S3qiROHC6VStxrI81mrFAGzYAoaFiAFXbW28Zp5WW2tJ7crc6nu4AERGRK9x3HzB5sm3BTG1BdtwOePRR8X3aNHGW2MiRwN/+Jqa9+aZxfv27QuQ9GAAREZFfkMmAd991vKytgoN1Qc2yZeLL0vgjBkDeiY/AiIgo4Nk6I2z3bqCOiVsHp0+b35eM0+G9EwMgIiIKeLYGKT16iBue1tamjenxP4A4EHrmTOP0khJg0SJArba9n+Q6fARGREQBz941hOxRXg689pr4vnKlLr1LF0ClAo4fBz76SLr2yTTeASIiooDnjsdUH3xgOH1epRLfbVlfiFxP0gCovLwc6enpUCgUUCgUSE9Px5UrVyyW2bhxIwYNGoSIiAjIZDIUFxcb5amqqsLUqVMRERGBBg0aYMSIETh37pw0F0FERH4vONg97YSGAnv2AFev6tI4SNozJA2A0tLSUFxcjLy8POTl5aG4uBjp6ekWy1y7dg29e/fGggULzOaZPn06cnJysHbtWvz000+4evUqhg0bhttcd5yIiBxgzx5hzrr3XsM1i/jf754hEwRpnnweO3YMiYmJKCwsRFJSEgCgsLAQycnJOH78OBKsLNTw22+/IT4+Hvv370fnzp216SqVCnfccQc+/fRTjB49GgBQWlqK2NhYbNq0CYMGDbLaN7VaDYVCAZVKhfDwcMcvkoiI/MbTTwNvvOGZtqUcg+RPXPn7LdkdoIKCAigUCm3wAwA9e/aEQqFAfn6+w/Xu3bsXN2/eREpKijYtJiYGHTt2NFtvVVUV1Gq1wYuIiMgWEyZ4ugckBckCIKVSicjISKP0yMhIKJVKp+qtW7cuGjdubJAeFRVltt7s7GztOCSFQoHY2FiH2yciIv/UrJnhZ0EQX6+84pn+kLTsDoCysrIgk8ksvvbs2QMAkJlYWlMQBJPpzrJU7+zZs6FSqbSvs2fPurx9IiLybVOneq5tPgJzP7vXAcrMzMSYMWMs5omLi8PBgwdx4cIFo3MXL15EVFSUvc1qRUdHo7q6GuXl5QZ3gcrKytCrVy+TZeRyOeRyucNtEhGR/6tfHxg8GPj2W8P0O++Uvu0dO4C+fYGXXwbuugv4v/+zveyNG2L5Pn3EayDb2H0HKCIiAu3atbP4qlevHpKTk6FSqbBr1y5t2aKiIqhUKrOBii26deuGkJAQbN26VZt2/vx5HD582Kl6iYiInntOfH/kEcN0zZo9UunfH/jvf4FXXwXGjrWv7OTJYuDGsUr2kWwWGAAMHjwYpaWleP/99wEATz75JFq2bImvv/5am6ddu3bIzs7GQw89BAC4fPkyzpw5g9LSUgwdOhRr165FQkICoqOjER0dDQCYPHky/ve//2H16tVo0qQJnn32WVy6dAl79+5FsA2LOXAWGBERmVNWBkREGO8QHxEBXLpkWx2RkWI9jrLnl1l/9Ie/P0rziVlgALBmzRp06tQJKSkpSElJwd13341PP/3UIM+JEyeg0gutc3Nz0aVLFwwdOhQAMGbMGHTp0gXLly/X5lm6dCkefPBBPProo+jduzdCQ0Px9ddf2xT8EBERWRIZaRz8AMCxY7bXMWOGc3345hvnypN1kt4B8la8A0RERI6wdQ7PrVtAYSHwxBPiXl+OWLJEXJvInj75+y+6z9wBIiIi8mfz5gEjRxqnBwcDvXsD+/c7vtfXjBnGAY0gAI89Btx9N1eQdhYDICIiIgfV1FjeR6xePXF2l1IJODJPR38y9ejR4qO5tWuBQ4cALmnnHAZAREREDurWTdzby5qoKODnn+2vX3+j1PXrjc/bMy6JDDEAIiIistGUKUC/fuIdmM8+A4YMEcfp3H23eHcmJATIyDBf/okn7Gvv1i1xWvzcuabP176r5MRGCwHH7oUQiYiIAtU77+iOO3YU3+Vy4MAB8bimxvQMMo0GDQw/N2oEXLliPn9REfDJJ+bP1y7brJm4MCLX/rWOd4CIiIhcxFLwA4gBkr46Vm5D5OXZ34fFi+0vE4gYABEREblJ7Vld1tYL+uwz+9vYuNH+MoGIARAREZGb9OypO05MBJ5/HtDbMcpIVZX9bezbZ3+ZQMQAiIiIyE0ee0x8KRTirK6gINtmkdnr0iXggQeAjz5yfd3+gitBcyVoIiLyMFtXmHaEP/3KcyVoIiIisgmnxpvGAIiIiMjD2rSRru5mzezLX1kpDqRWq6Xpj7dgAERERORhJ08CZ88CFy8C//ufNOOCbDV0KPDII8Cjj4pjiVJTgXXrPNcfqXAMEMcAERGRl3H1mCBbf+lv3gTq1tV9/uc/dYs/ekO0wDFAREREZLNDh8Rd6Tt0AH780XSeW7eATZsM0/RXvvY33AqDiIjIh0ybJj6mGjTI9jJ33607fuAB8ZFbRQVw113Anj3idPw+fSzXUVwMNGkCtGjhULe9Dh+B8REYERF5GUuPwARB3FIjONh9/andvqfwERgREZEfCw21fL72nmPW7t6QMQZAREREXubrr02nr1xpOr1rV+n64q8YABEREXmZTp10x7Nm6Y7//nfT+R95RNr++CMGQERERF4mJER3PGgQUF0tLkzYqJFx3u7dgd69gaIit3XPL3AWGBERkZfRD4CCg8XP+mn6pk8X37t1k7xbAIAvvhAXbdy7F1i92nODsZ3FAIiIiMjL1A6ATGnXDjh+XDcdPjgYOH8euH1bvGM0ejSwe7fr+6b/GO7RR4Hhw13fhjswACIiIvIy+gFQ7RlfGocOAdevA/qzwaOjdce7dkm7yzwgriXkqzgGiIiIyMvoBy7mlrupU8f8OXepqfFs+85gAEREROSF3n4bePFFIDHR0z0xz9SiiCtWAD17ihu7ejM+AiMiIvJCmZme7oF1pu4ATZwovs+ZA7z7rnv7Yw/eASIiIvJTX30lbf2ffw588onuTtAPP+jOXb0qbdvO4l5gnn6ASkREJCGpB0IDwObN4lpEDRsaprs6wuBeYEREROQy331nfh2hdu2slz90CJg61bV9khoDICIiIj+mGZNjTnAw0L+/8ZpBEyYAERHATz9Zb6OmBli1yvE+egIDICIiIj/27rvAiRPiys0REUBqquF5zZ0fmQxQKgG5HPjvf4EPPhA/N21qvQ1fHEzDWWBERER+LCgIuOsu8bisTAx09McFjRmjO46KAm7c0H3WrEL9f/8nDnY25/nnXddfd+EdICIiogChCXx++QWIjARmzLBt7E6HDtL2yxM4C4yzwIiIiCyqrARCQ+0vx1lgRERE5LPq1/d0D1yPARARERFZ1by5p3vgWgyAiIiIyCr96fA5Odbzf/yxdH1xBc4CIyIiIqtathTH9Ny6Je5Eb03HjtL3yRm8A0REREQ20wQ/QRYiiCeeALp0cU9/HMUAiIiIiOymWSPIlJUr3bMHmTMYABEREZHdbHkM5s0kDYDKy8uRnp4OhUIBhUKB9PR0XLlyxWKZjRs3YtCgQYiIiIBMJkNxcbHB+cuXL2Pq1KlISEhAaGgoWrRogWnTpkGlUkl3IURERGTA0h0gXyBpAJSWlobi4mLk5eUhLy8PxcXFSE9Pt1jm2rVr6N27NxYsWGDyfGlpKUpLS7F48WIcOnQIq1evRl5eHiZMmCDFJRAREZEJ5u4A+cqdIclWgj527BgSExNRWFiIpKQkAEBhYSGSk5Nx/PhxJCQkWCz/22+/IT4+Hvv370fnzp0t5v3888/xj3/8A9euXUMdG/6X50rQREREzomIAC5dMk4PDQWuXZOmTZ9YCbqgoAAKhUIb/ABAz549oVAokJ+f79K2NP9DmAt+qqqqoFarDV5ERETkOF/cAFWfZAGQUqlEZGSkUXpkZCSUSqXL2rl06RLmzZuHiRMnms2TnZ2tHYekUCgQGxvrsvaJiIgC0TPPAPv2eboXjrM7AMrKyoJMJrP42rNnDwBAZmIOnCAIJtMdoVarMXToUCQmJmLOnDlm882ePRsqlUr7Onv2rEvaJyIiClRBQeJaPykphuktW3qmP/aye6hSZmYmxowZYzFPXFwcDh48iAsXLhidu3jxIqKiouxt1khFRQVSU1PRsGFD5OTkICQkxGxeuVwOuVzudJtERERk6D//ARISgPJy8XPdup7tj63sDoAiIiIQERFhNV9ycjJUKhV27dqFHj16AACKioqgUqnQq1cv+3uqR61WY9CgQZDL5cjNzUW9evWcqo+IiIgcc8cdQFkZoLkP4SvT4yUbA9S+fXukpqYiIyMDhYWFKCwsREZGBoYNG2YwA6xdu3bI0dtV7fLlyyguLsbRo0cBACdOnEBxcbF23FBFRQVSUlJw7do1fPjhh1Cr1VAqlVAqlbh9+7ZUl0NERERm1KkDNGggHg8c6Nm+2ErS2fpr1qzBtGnTkPLXA8IRI0Zg2bJlBnlOnDhhsIhhbm4uxo8fr/2sedw2Z84cZGVlYe/evSgqKgIAtGnTxqCukpISxMXFSXEpREREZMGRI8CmTYDeT7hXk2wdIG/GdYCIiIh8j0+sA0RERETkrRgAERERUcBhAEREREQBhwEQERERBRwGQERERBRwGAARERFRwGEARERERAGHARAREREFHAZAREREFHAYABEREVHAYQBEREREAYcBEBEREQUcBkBEREQUcOp4ugOeIAgCAHFXWSIiIvINmt9tze+4MwIyAKqoqAAAxMbGergnREREZK+KigooFAqn6pAJrgijfExNTQ1KS0sRFhYGmUzm6e5IQq1WIzY2FmfPnkV4eLinu+MWgXbNgXa9QOBdM6/X/wXaNTt7vYIgoKKiAjExMQgKcm4UT0DeAQoKCkLz5s093Q23CA8PD4gvlb5Au+ZAu14g8K6Z1+v/Au2anbleZ+/8aHAQNBEREQUcBkBEREQUcBgA+Sm5XI45c+ZALpd7uituE2jXHGjXCwTeNfN6/V+gXbM3XW9ADoImIiKiwMY7QERERBRwGAARERFRwGEARERERAGHARAREREFHAZAHpadnY17770XYWFhiIyMxIMPPogTJ04Y5BEEAVlZWYiJiUH9+vXRt29fHDlyxCBPVVUVpk6dioiICDRo0AAjRozAuXPntOd37NgBmUxm8rV7926z/Rs3bpxR/p49e3r8elesWIG+ffsiPDwcMpkMV65cMWqrvLwc6enpUCgUUCgUSE9PN5nP3ra99Zp/++03TJgwAfHx8ahfvz5at26NOXPmoLq62mL/fPlvHBcXZ9T3WbNmWeyfL/+N/el7fPnyZUydOhUJCQkIDQ1FixYtMG3aNKhUKoN6vOF77K7r9ZbvsDuvGfDg91ggjxo0aJCwatUq4fDhw0JxcbEwdOhQoUWLFsLVq1e1eRYsWCCEhYUJX3zxhXDo0CFh9OjRQrNmzQS1Wq3NM2nSJOHOO+8Utm7dKuzbt0/o16+fcM899wi3bt0SBEEQqqqqhPPnzxu8nnjiCSEuLk6oqakx27+xY8cKqampBuUuXbrk8etdunSpkJ2dLWRnZwsAhPLycqO2UlNThY4dOwr5+flCfn6+0LFjR2HYsGEW+2dL2956zd9++60wbtw4YfPmzcLp06eFr776SoiMjBSeeeYZi/3z5b9xy5Ythblz5xr0vaKiwmL/fPlv7E/f40OHDgkPP/ywkJubK5w6dUr47rvvhLZt2wqPPPKIQVve8D121/V6y3fYndcsCJ77HjMA8jJlZWUCAGHnzp2CIAhCTU2NEB0dLSxYsECb58aNG4JCoRCWL18uCIIgXLlyRQgJCRHWrl2rzfPHH38IQUFBQl5ensl2qqurhcjISGHu3LkW+zN27Fhh5MiRTl6VeY5cr77t27eb/KE4evSoAEAoLCzUphUUFAgAhOPHj5vsi71tO0qqazZl0aJFQnx8vMU8vvo3FgTxH86lS5fa3Bd/+xv7y/dYY/369ULdunWFmzdvCoLgvd9jqa7XFG/4DguCtNfsqe8xH4F5Gc2twSZNmgAASkpKoFQqkZKSos0jl8vRp08f5OfnAwD27t2LmzdvGuSJiYlBx44dtXlqy83NxZ9//olx48ZZ7dOOHTsQGRmJu+66CxkZGSgrK3P08ow4cr22KCgogEKhQFJSkjatZ8+eUCgUZutxVdvWSHXN5trStGOJL/6NNRYuXIimTZuic+fOePXVVy0+LvC3v7G/fY9VKhXCw8NRp464TaW3fo+lul5zeTz9Hdb0A5Dumj3xPQ7IzVC9lSAImDFjBu677z507NgRAKBUKgEAUVFRBnmjoqLw+++/a/PUrVsXjRs3NsqjKV/bhx9+iEGDBiE2NtZinwYPHoxRo0ahZcuWKCkpwcsvv4z+/ftj7969Tq/k6ej12kKpVCIyMtIoPTIy0uz/Jq5q2xIpr7m206dP4+2338brr79uMZ+v/o0B4KmnnkLXrl3RuHFj7Nq1C7Nnz0ZJSQk++OADk/n97W/sT9/jS5cuYd68eZg4caI2zRu/x1Jeb23e8B0GpL9mT32PGQB5kczMTBw8eBA//fST0TmZTGbwWRAEo7TazOU5d+4cNm/ejPXr11vt0+jRo7XHHTt2RPfu3dGyZUt88803ePjhh62Wt8TV12utDlvrcUXb5kh9zRqlpaVITU3FqFGj8MQTT1jM68t/46efflp7fPfdd6Nx48b4+9//rv2vSXP84W/sT99jtVqNoUOHIjExEXPmzLFYh6V6HGnbXlJfr4a3fIcB6a/ZU99jPgLzElOnTkVubi62b9+O5s2ba9Ojo6MBwOi/dsrKyrTRb3R0NKqrq1FeXm42j75Vq1ahadOmGDFihN39bNasGVq2bIlffvnF7rL6nLleW0RHR+PChQtG6RcvXjRbj6vaNkfqa9YoLS1Fv379kJycjBUrVthd3lf+xqZoZr6cOnXK5Hl/+RsD/vM9rqioQGpqKho2bIicnByEhIQY1ONN32Opr1fDW77DgPuuWZ/bvsc2jxYiSdTU1Aj//Oc/hZiYGOHkyZMmz0dHRwsLFy7UplVVVZkcBL1u3TptntLSUpODoGtqaoT4+HirswrM+fPPPwW5XC58/PHHDpV3xfXqszYIuqioSJtWWFho0+BJW9u2lbuuWRAE4dy5c0Lbtm2FMWPGaGcA2stX/samfP311wIA4ffffzfbN1//G2vq84fvsUqlEnr27Cn06dNHuHbtmlE93vI9dtf1CoJ3fIcFwb3XXJu7vscMgDxs8uTJgkKhEHbs2GEwBfD69evaPAsWLBAUCoWwceNG4dChQ8Jjjz1mchp88+bNhW3btgn79u0T+vfvbzANXmPbtm0CAOHo0aMm+5OQkCBs3LhREARBqKioEJ555hkhPz9fKCkpEbZv3y4kJycLd955p8PTSV11vefPnxf2798vrFy5UgAg/PDDD8L+/fsNpn6mpqYKd999t1BQUCAUFBQInTp1Mpo+q3+9trbtrdf8xx9/CG3atBH69+8vnDt3zqAtc9fsy3/j/Px8YcmSJcL+/fuFX3/9VVi3bp0QExMjjBgxwuz12tq2t16zhj98j9VqtZCUlCR06tRJOHXqlEE9+v9uecP32F3X6y3fYXdesye/xwyAPAyAydeqVau0eWpqaoQ5c+YI0dHRglwuFx544AHh0KFDBvVUVlYKmZmZQpMmTYT69esLw4YNE86cOWPU3mOPPSb06tXLYn80bV+/fl1ISUkR7rjjDiEkJERo0aKFMHbsWJP1uvt658yZY7WeS5cuCY8//rgQFhYmhIWFCY8//rjRf1E70ra3XvOqVavMtmXumn35b7x3714hKSlJUCgUQr169YSEhARhzpw5Rv+V6U9/Yw1/+B5r7nKZepWUlGjzecP32F3X6y3fYXdesye/x7K/KiYiIiIKGBwETURERAGHARAREREFHAZAREREFHAYABEREVHAYQBEREREAYcBEBEREQUcBkBEREQUcBgAERERUcBhAEREREQBhwEQERERBRwGQERERBRwGAARERFRwPn/iO87f1NJkB0AAAAASUVORK5CYII=", "text/plain": [ "
    " ] @@ -802,8 +1774,10 @@ "source": [ "from sklearn.linear_model import LinearRegression\n", "# convert the data into numpy arrays.\n", - "E = np.asarray(df['east'][df['station']==sta]).reshape(-1, 1)# reshaping was necessary to be an argument of Linear regress\n", - "t = np.asarray(df['date_year'][df['station']==sta]).reshape(-1, 1)\n", + "E = np.asarray(df['new delta e (m)']).reshape(-1, 1)# reshaping was necessary to be an argument of Linear regress\n", + "# E = np.asarray(df['east'][df['station']==sta]).reshape(-1, 1)# reshaping was necessary to be an argument of Linear regress\n", + "# make a new time array\n", + "t = np.asarray(df['decimal year']).reshape(-1, 1)\n", "tt = np.linspace(np.min(t),np.max(t),1000)\n", "\n", "# perform the linear regression. First we will use the entire available data\n", @@ -815,13 +1789,8 @@ "\n", "# The coefficients\n", "print('Coefficient / Velocity eastward (mm/year): ', regr.coef_[0][0])\n", - "\n", - "plt.plot(t,E);ax[0].grid(True);ax[0].set_ylabel('East (mm)')\n", - "plt.plot(t,Epred,color=\"red\")\n", - "plt.grid(True)\n", - "plt.xticks(())\n", - "plt.yticks(())\n", - "plt.show()\n" + "# plot the data\n", + "plt.plot(t,E,'b',label='data')" ] }, { @@ -833,7 +1802,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 269, "metadata": {}, "outputs": [ { @@ -841,7 +1810,7 @@ "output_type": "stream", "text": [ "Mean squared error (mm): 0.00\n", - "Coefficient of determination: 1.00\n" + "Coefficient of determination: 0.99\n" ] } ], @@ -872,19 +1841,19 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 270, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "mean of the velocity estimates 0.0000004.2 and the standard deviation 0.0000004.2\n" + "mean of the velocity estimates -0.0064404.2 and the standard deviation 0.0000064.2\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAAGxCAYAAACTN+exAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA8Q0lEQVR4nO3deVyVZf7/8fcRDmtAggmSqOSYWaKWlkuaC4I5LjnWOGWZlZWNaZGamlZi8w0n+6bMaNbUzxHNXGZMm7ZxhEzTkdzN1Ha3TJEyAtzgCNfvD7+cPLIIxuKFr+fj4ePhuc7nvu/rfLjP4c29gMMYYwQAAGCZOjU9AQAAgAtBiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIqUVSUlLkcDjc//z8/BQREaHu3btr6tSpyszMLLZMYmKiHA5HhbZz4sQJJSYmavXq1RVarqRtNWnSRH379q3Qes5n4cKFSk5OLvE5h8OhxMTESt1eZfvwww/Vrl07BQYGyuFw6O23367pKXlISkq66OZUmiZNmui+++6rdds9d/2HDh1SYmKitm/fXqz2Qt7jleWBBx7QrbfeWiPbPp8dO3bI4XBo27ZtNT2VUt1yyy1KSEio6Wlc3Axqjblz5xpJZu7cuSY9Pd18/PHHZunSpSYhIcGEhISY0NBQk5qa6rHMd999Z9LT0yu0nR9++MFIMpMnT67QciVtq3HjxqZPnz4VWs/59OnTxzRu3LjE59LT0813331XqdurTIWFhSY0NNR06NDBpKWlmfT0dPPTTz/V9LQ8BAYGmqFDh9b0NMqlcePGNTLXqt7u1q1bzTfffON+vGnTJvd7/1wX8h6vDFu3bjV16tQxmzZtqvZtl8ezzz5roqOja3oaZVq9erVxOp3miy++qOmpXLS8azhDoQq0bNlS7dq1cz++/fbb9cQTT6hz584aOHCgvv76a4WHh0uSGjZsqIYNG1bpfE6cOKGAgIBq2db5dOjQoUa3fz6HDh3STz/9pN/97neKjY2t6elc9Ir2rUvN9ddfX+7amnrf/fnPf9ZNN93k8Vl0MVm6dKluv/32mp5GiYr2665du6p58+Z66aWX9Nprr9X0tC5KnE66RDRq1EgvvfSScnNz9be//c09XtKh5lWrVqlbt24KCwuTv7+/GjVqpNtvv10nTpzQvn37dMUVV0iSpkyZ4j51VXRou2h9W7du1R133KG6deuqadOmpW6ryPLly9WqVSv5+fnpqquu0l//+leP54tOle3bt89jfPXq1XI4HO5TW926ddP777+v/fv3e5xaK1LS6aSdO3fqtttuU926deXn56c2bdpo3rx5JW5n0aJFmjRpkiIjIxUcHKyePXvqyy+/LL3xZ1m3bp1iY2MVFBSkgIAAderUSe+//777+cTERPc3m/Hjx8vhcKhJkyZlrjMnJ0djx45VdHS0fHx8dOWVVyohIUHHjx/3qHv55Zd1yy23qH79+goMDFRMTIymTZsml8vlUbdt2zb17dtX9evXl6+vryIjI9WnTx8dPHjQ3b/jx49r3rx57t5269ZNOTk58vb21osvvuhe148//qg6deooJCREp0+fdo8/9thjuuKKK2T+72/Ppqam6rbbblPDhg3l5+en3/zmNxo+fLh+/PFHj7mVtW+5XC6NGzdOERERCggIUOfOnbVx48bzfk1cLpfq16+vIUOGFHvu559/lr+/v0aPHl3hfpfkwIEDuueee9y9bdGihV566SUVFhZ61OXl5em5555TixYt5Ofnp7CwMHXv3l3r169315x9Omn16tW68cYbJUn333+/++tStJ+X9r5bsmSJOnbsqMDAQF122WXq1atXsVMre/bs0Z133qnIyEj5+voqPDxcsbGxJZ62OtuRI0e0fPnyYn0teh8tXLhQ48ePV4MGDXTZZZepX79+OnLkiHJzc/Xwww+rXr16qlevnu6//34dO3bMYx0Oh0MjR47U3Llz1bx5c/n7+6tdu3b65JNPZIzRiy++qOjoaF122WXq0aOHvvnmm2Lz++KLL7R7927dfvvtMsaoWbNm6tWrV7G6Y8eOKSQkRI8++qh7rLLfc926dVPLli318ccfq1OnTgoICNADDzzgfn7IkCFauHChcnNzy+z5pYojMZeQ3/72t/Ly8tLHH39cas2+ffvUp08fdenSRX//+991+eWX6/vvv9eKFSuUn5+vBg0aaMWKFbr11ls1bNgwPfjgg5LkDjZFBg4cqDvvvFOPPPLIeT/gt2/froSEBCUmJioiIkJvvvmmHn/8ceXn52vs2LEVeo2zZ8/Www8/rG+//VbLly8/b/2XX36pTp06qX79+vrrX/+qsLAwLViwQPfdd5+OHDmicePGedRPnDhRN998s/7f//t/ysnJ0fjx49WvXz99/vnn8vLyKnU7a9asUVxcnFq1aqU5c+bI19dXs2fPVr9+/bRo0SL94Q9/0IMPPqjWrVtr4MCBGjVqlAYPHixfX99S13nixAl17dpVBw8e1MSJE9WqVSvt2rVLzz77rD777DOlpaW5v3l9++23Gjx4sPuD99NPP9Xzzz+vL774Qn//+98lScePH1dcXJyio6P18ssvKzw8XBkZGfroo4/cH6Dp6enq0aOHunfvrmeeeUaSFBwcrODgYN14441KS0vTk08+KenMtT2+vr7Kzc3Vxo0b1alTJ0lSWlqaevTo4TG3jh076sEHH1RISIj27dun6dOnq3Pnzvrss8/kdDo9XndJ+9ZDDz2k+fPna+zYsYqLi9POnTs1cODA837wO51O3XPPPXr11Vf18ssvKzg42P3cokWLdOrUKd1///0V7ve5fvjhB3Xq1En5+fn605/+pCZNmui9997T2LFj9e2332r27NmSpNOnT6t3795au3atEhIS1KNHD50+fVqffPKJDhw44O7h2W644QbNnTtX999/v55++mn16dNHkso8+pKUlKSnn37avUx+fr5efPFFdenSRRs3btS1114r6cxnRkFBgaZNm6ZGjRrpxx9/1Pr16/Xzzz+X2deVK1fK5XKpe/fuJT4/ceJEde/eXSkpKdq3b5/Gjh2ru+66S97e3mrdurUWLVqkbdu2aeLEiQoKCir2Q817772nbdu26c9//rMcDofGjx+vPn36aOjQodqzZ49mzZql7OxsjR49Wrfffru2b9/u8bV56623dOWVV6p9+/ZyOBwaNWqUEhIS9PXXX6tZs2buuvnz5ysnJ8cdYir7PVfk8OHDuueeezRu3DglJSWpTp1fji9069ZN48eP1+rVq9WvX78y+35JquHTWahERdfElHUOOjw83LRo0cL9ePLkyebs3WDp0qVGktm+fXup6yjrmpii9T377LOlPne2xo0bG4fDUWx7cXFxJjg42Bw/ftzjte3du9ej7qOPPjKSzEcffeQeK+uamHPnfeeddxpfX19z4MABj7revXubgIAA8/PPP3ts57e//a1H3T/+8Q8j6bzXHHTo0MHUr1/f5ObmusdOnz5tWrZsaRo2bGgKCwuNMcbs3bvXSDIvvvhimeszxpipU6eWeM1B0dfwgw8+KHG5goIC43K5zPz5842Xl5f7mpvNmzcbSebtt98uc7ulXRPz9NNPG39/f3Pq1CljjDEPPvigufXWW02rVq3MlClTjDHGfP/990aSee2110pcd2FhoXG5XGb//v1GkvnXv/7lfq60fevzzz83kswTTzzhMf7mm28aSee9NmXHjh0lzummm24ybdu2dT+uSL/PvSZmwoQJRpLZsGGDx7J//OMfjcPhMF9++aUxxpj58+cbSeb1118vc87nrr+sa2LOfd8dOHDAeHt7m1GjRnnU5ebmmoiICDNo0CBjjDE//vijkWSSk5PLnEtJ/vjHPxp/f3/3fl2k6H3Ur18/j/GEhAQjyTz22GMe4wMGDDChoaEeY5JMRESEOXbsmHvs7bffNpJMmzZtPLaZnJxsJJkdO3Z4rKNNmzYerz8nJ8cEBQWZxx9/3KPu2muvNd27d3c/ruz3nDHGdO3a1UgyH374YYnL5ufnG4fDYcaPH1/i85c6TiddYsz/HcIvTZs2beTj46OHH35Y8+bN0549ey5oOxU513zdddepdevWHmODBw9WTk6Otm7dekHbL69Vq1YpNjZWUVFRHuP33XefTpw4ofT0dI/x/v37ezxu1aqVJGn//v2lbuP48ePasGGD7rjjDl122WXucS8vLw0ZMkQHDx4s9ymps7333ntq2bKl2rRpo9OnT7v/9erVy+MUm3TmNFH//v0VFhYmLy8vOZ1O3XvvvSooKNBXX30lSfrNb36junXravz48Xr11Ve1e/fuCs0nNjZWJ0+edJ/2SEtLU1xcnHr27KnU1FT3mCT17NnTvVxmZqYeeeQRRUVFydvbW06nU40bN5Ykff7558W2c+6+9dFHH0mS7r77bo/xQYMGydv7/AebY2Ji1LZtW82dO9c99vnnn2vjxo0eh/Ur0u9zrVq1Stdee61uuukmj/H77rtPxhitWrVKkvTvf/9bfn5+HtutbP/5z390+vRp3XvvvR6vw8/PT127dnW/jtDQUDVt2lQvvviipk+frm3bthU79VWaQ4cO6Yorrij1yNS5dyS2aNFCktxHkc4e/+mnn4qdUurevbsCAwOLLd+7d2+PbRaNn/3+3LNnj7Zv3+6xHwUFBen+++9XSkqK++jeqlWrtHv3bo0cOdJdV9nvuSJ169ZVjx49SuyV0+l0HxFHcYSYS8jx48d19OhRRUZGllrTtGlTpaWlqX79+nr00UfVtGlTNW3aVH/5y18qtK0GDRqUuzYiIqLUsaNHj1ZouxV19OjREuda1KNztx8WFubxuOh0z8mTJ0vdRlZWlowxFdpOeRw5ckQ7duyQ0+n0+BcUFCRjjPuakgMHDqhLly76/vvv9Ze//EVr167Vpk2b9PLLL3vMPSQkRGvWrFGbNm00ceJEXXfddYqMjNTkyZOLnccvSdH5/LS0NH3zzTfat2+fO8Rs2LBBx44dU1pamq666ipFR0dLkgoLCxUfH69ly5Zp3Lhx+vDDD7Vx40Z98sknHnM727l9LOrdufuRt7d3sa9XaR544AGlp6friy++kCTNnTtXvr6+uuuuu9w15e13Scq7n/3www+KjIz0OJ1Q2Y4cOSJJuvHGG4u9liVLlrhfh8Ph0IcffqhevXpp2rRpuuGGG3TFFVfoscceO+9pupMnT8rPz6/U50NDQz0e+/j4lDl+6tSpSlt+6dKlql+/vjp37uxRO2rUKOXm5urNN9+UJM2aNUsNGzbUbbfd5q6p7PdckfN9Xvr5+ZX5GXMp45qYS8j777+vgoICdevWrcy6Ll26qEuXLiooKNDmzZs1c+ZMJSQkKDw8XHfeeWe5tlWR30uRkZFR6ljRN6GiD8S8vDyPurK+cZRHWFiYDh8+XGz80KFDkqR69er9qvVLZ37KqlOnTqVvp169evL39y92fv3s5yXp7bff1vHjx7Vs2TL3EQ5JJV6cGRMTo8WLF8sYox07diglJUXPPfec/P39NWHChDLn4+Pjo86dOystLU0NGzZURESEYmJidNVVV0k6c1Hnhx9+6PFT+M6dO/Xpp58qJSVFQ4cOdY+XdDFmkXP3raJ9JCMjQ1deeaV7/PTp0+UOh3fddZdGjx6tlJQUPf/883rjjTc0YMAA1a1b111T3n6XpLz72RVXXKF169apsLCwyoJM0baWLl3qsT+UpHHjxpozZ44k6auvvtI//vEPJSYmKj8/X6+++mqZ26jqo6gX6q233tKAAQOKXcP2m9/8Rr1799bLL7+s3r1765133tGUKVM86qriPSed//MyKyurUj6LaiOOxFwiDhw4oLFjxyokJETDhw8v1zJeXl5q3769+6eHog+l8hx9qIhdu3bp008/9RhbuHChgoKCdMMNN0iS+y6dHTt2eNS98847xdbn6+tb7rnFxsZq1apV7m8mRebPn6+AgIBKuSU7MDBQ7du317JlyzzmVVhYqAULFqhhw4a6+uqrK7zevn376ttvv1VYWJjatWtX7F9Rz4o+IM++SNgYo9dff73UdTscDrVu3VozZszQ5Zdf7vENqaz+9uzZU1u2bNFbb73lPmUUGBioDh06aObMmTp06JDHqaSS5ibJ4w668ykK5UU/QRf5xz/+4XFXVFnq1q2rAQMGaP78+XrvvfeUkZFR7JROeftdktjYWO3evbvYN/b58+fL4XC4L4Dt3bu3Tp06pZSUlHLNu0hF3pO9evWSt7e3vv322xJfR2m3RF999dV6+umnFRMTc96Acs011+jo0aPKzs6u0Ouoat999502bdpU6unuxx9/XDt27NDQoUPl5eWlhx56yOP5qnzPlebQoUM6deqU+2JreOJITC20c+dO97nazMxMrV27VnPnzpWXl5eWL19e7E6is7366qtatWqV+vTpo0aNGunUqVPunzqKvvkEBQWpcePG+te//qXY2FiFhoaqXr16570duDSRkZHq37+/EhMT1aBBAy1YsECpqal64YUX3L8D5MYbb1Tz5s01duxYnT59WnXr1tXy5cu1bt26YuuLiYnRsmXL9Morr6ht27aqU6dOqR/MkydP1nvvvafu3bvr2WefVWhoqN588029//77mjZtmkJCQi7oNZ1r6tSpiouLU/fu3TV27Fj5+Pho9uzZ2rlzpxYtWnRBv1E1ISFBb731lm655RY98cQTatWqlQoLC3XgwAGtXLlSY8aMUfv27RUXFycfHx/dddddGjdunE6dOqVXXnlFWVlZHut77733NHv2bA0YMEBXXXWVjDFatmyZfv75Z8XFxbnrYmJitHr1ar377rtq0KCBgoKC1Lx5c0lnvlkXFBToww8/9LhNvWfPnpo8ebIcDofHuf9rrrlGTZs21YQJE2SMUWhoqN599133NTTl0aJFC91zzz1KTk6W0+lUz549tXPnTv3v//6vx91G5/PAAw9oyZIlGjlypBo2bOgRtirS75I88cQTmj9/vvr06aPnnntOjRs31vvvv6/Zs2frj3/8ozvE3nXXXZo7d64eeeQRffnll+revbsKCwu1YcMGtWjRotQjoU2bNpW/v7/efPNNtWjRQpdddpkiIyNLPHXcpEkTPffcc5o0aZL27NmjW2+9VXXr1tWRI0e0ceNGBQYGasqUKdqxY4dGjhyp3//+92rWrJl8fHy0atUq7dix47xH5bp16yZjjDZs2KD4+PjytL9avPXWW7r88stLvWsqLi5O1157rT766CP37fBnq+z3XHkUnVotbc6XvJq5nhhVoegOnqJ/Pj4+pn79+qZr164mKSnJZGZmFlvm3DsX0tPTze9+9zvTuHFj4+vra8LCwkzXrl3NO++847FcWlqauf76642vr6/HHSBF6/vhhx/Ouy1jfvmNvUuXLjXXXXed8fHxMU2aNDHTp08vtvxXX31l4uPjTXBwsLniiivMqFGjzPvvv1/s7qSffvrJ3HHHHebyyy83DofDY5sq4a6qzz77zPTr18+EhIQYHx8f07p162J3eRTdVfHPf/7TY7zobqKS7go519q1a02PHj1MYGCg8ff3Nx06dDDvvvtuiesrz91Jxhhz7Ngx8/TTT5vmzZsbHx8fExISYmJiYswTTzxhMjIy3HXvvvuuad26tfHz8zNXXnmlefLJJ82///1vj9598cUX5q677jJNmzY1/v7+JiQkxNx0000mJSXFY5vbt283N998swkICDCSTNeuXd3PFRYWmnr16hlJ5vvvv3eP//e//zWSzA033FDsNezevdvExcWZoKAgU7duXfP73//eHDhwoNjXqqx9Ky8vz4wZM8bUr1/f+Pn5mQ4dOpj09PQK/ebcgoICExUVZSSZSZMmlVhT3n6XtN39+/ebwYMHm7CwMON0Ok3z5s3Niy++aAoKCjzqTp48aZ599lnTrFkz4+PjY8LCwkyPHj3M+vXry1z/okWLzDXXXGOcTqdH70p63xlz5o6e7t27m+DgYOPr62saN25s7rjjDpOWlmaMMebIkSPmvvvuM9dcc40JDAw0l112mWnVqpWZMWOGOX369Hl72aRJEzNixAiP8dLeR6XdWVnS11ySefTRRz3qSnvfnLu9zp07n3d/SExMNJLMJ598UuLzlfmeM+bM3UnXXXddqfMZMmSIiYmJKXPOlzKHMee5XQUAgAp66aWX9Pzzz+v777+Xv79/TU/Hfc3U22+/XebvW2nXrp0cDoc2bdpUjbMrWU5OjiIjIzVjxoxip7ZwBtfEAAAq3aOPPqqQkBD3NXU1LSIiQgUFBSUGmJycHK1fv14TJ07Uli1bNGnSpBqYYXEzZsxQo0aN3L9wEcVxTQwAoNL5+fnpjTfeuKj/SnSRrVu3qnv37goLC9PkyZM1YMCAmp6SpDO/DTslJaVcv+/oUsXpJAAAYCVOJwEAACsRYgAAgJUIMQAAwEq19mqhwsJCHTp0SEFBQRf0i8QAAED1M8YoNze3XH9HrNaGmEOHDhX7y8QAAMAO3333nRo2bFhmTa0NMUFBQZLONKEiv3q8tnK5XFq5cqXi4+PldDprejq1Fn2uHvS5etDn6kOvf5GTk6OoqCj39/Gy1NoQU3QKKTg4mBCjM2+QgIAABQcHX/JvkKpEn6sHfa4e9Ln60OviynMpCBf2AgAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVKhxiPv74Y/Xr10+RkZFyOBx6++23PZ43xigxMVGRkZHy9/dXt27dtGvXLo+avLw8jRo1SvXq1VNgYKD69++vgwcPetRkZWVpyJAhCgkJUUhIiIYMGaKff/65wi8QAADUThUOMcePH1fr1q01a9asEp+fNm2apk+frlmzZmnTpk2KiIhQXFyccnNz3TUJCQlavny5Fi9erHXr1unYsWPq27evCgoK3DWDBw/W9u3btWLFCq1YsULbt2/XkCFDLuAlAgCA2qjCfwCyd+/e6t27d4nPGWOUnJysSZMmaeDAgZKkefPmKTw8XAsXLtTw4cOVnZ2tOXPm6I033lDPnj0lSQsWLFBUVJTS0tLUq1cvff7551qxYoU++eQTtW/fXpL0+uuvq2PHjvryyy/VvHnzC329AACglqjUv2K9d+9eZWRkKD4+3j3m6+urrl27av369Ro+fLi2bNkil8vlURMZGamWLVtq/fr16tWrl9LT0xUSEuIOMJLUoUMHhYSEaP369SWGmLy8POXl5bkf5+TkSDrzl0FdLldlvkwrFfWAXlQt+lw96HP1oM/Vh17/oiI9qNQQk5GRIUkKDw/3GA8PD9f+/fvdNT4+Pqpbt26xmqLlMzIyVL9+/WLrr1+/vrvmXFOnTtWUKVOKja9cuVIBAQEVfzG1VGpqak1P4ZJAn6sHfa4e9Ln60GvpxIkT5a6t1BBTxOFweDw2xhQbO9e5NSXVl7Wep556SqNHj3Y/zsnJUVRUlOLj4xUcHFyR6ddKLpdLqampiouLk9PprOnp1Fr0uXoU9fmZzXWUV1j6Z8vOxF7VOKvah/25+tDrXxSdSSmPSg0xERERks4cSWnQoIF7PDMz0310JiIiQvn5+crKyvI4GpOZmalOnTq5a44cOVJs/T/88EOxozxFfH195evrW2zc6XRe8jvE2ehH9aDP1SOv0KG8gtJDDF+DysH+XH3odcXet5X6e2Kio6MVERHhcTgsPz9fa9ascQeUtm3byul0etQcPnxYO3fudNd07NhR2dnZ2rhxo7tmw4YNys7OdtcAAIBLW4WPxBw7dkzffPON+/HevXu1fft2hYaGqlGjRkpISFBSUpKaNWumZs2aKSkpSQEBARo8eLAkKSQkRMOGDdOYMWMUFham0NBQjR07VjExMe67lVq0aKFbb71VDz30kP72t79Jkh5++GH17duXO5MAAICkCwgxmzdvVvfu3d2Pi65DGTp0qFJSUjRu3DidPHlSI0aMUFZWltq3b6+VK1cqKCjIvcyMGTPk7e2tQYMG6eTJk4qNjVVKSoq8vLzcNW+++aYee+wx911M/fv3L/V30wAAgEtPhUNMt27dZIwp9XmHw6HExEQlJiaWWuPn56eZM2dq5syZpdaEhoZqwYIFFZ0eAAC4RPC3kwAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwUqWHmNOnT+vpp59WdHS0/P39ddVVV+m5555TYWGhu8YYo8TEREVGRsrf31/dunXTrl27PNaTl5enUaNGqV69egoMDFT//v118ODByp4uAACwVKWHmBdeeEGvvvqqZs2apc8//1zTpk3Tiy++qJkzZ7prpk2bpunTp2vWrFnatGmTIiIiFBcXp9zcXHdNQkKCli9frsWLF2vdunU6duyY+vbtq4KCgsqeMgAAsJB3Za8wPT1dt912m/r06SNJatKkiRYtWqTNmzdLOnMUJjk5WZMmTdLAgQMlSfPmzVN4eLgWLlyo4cOHKzs7W3PmzNEbb7yhnj17SpIWLFigqKgopaWlqVevXpU9bQAAYJlKDzGdO3fWq6++qq+++kpXX321Pv30U61bt07JycmSpL179yojI0Px8fHuZXx9fdW1a1etX79ew4cP15YtW+RyuTxqIiMj1bJlS61fv77EEJOXl6e8vDz345ycHEmSy+WSy+Wq7JdpnaIe0IuqRZ+rR1F/feuYctXhwrA/Vx96/YuK9KDSQ8z48eOVnZ2ta665Rl5eXiooKNDzzz+vu+66S5KUkZEhSQoPD/dYLjw8XPv373fX+Pj4qG7dusVqipY/19SpUzVlypRi4ytXrlRAQMCvfl21RWpqak1P4ZJAn6vHn9oVlvn8Bx98UE0zqd3Yn6sPvZZOnDhR7tpKDzFLlizRggULtHDhQl133XXavn27EhISFBkZqaFDh7rrHA6Hx3LGmGJj5yqr5qmnntLo0aPdj3NychQVFaX4+HgFBwf/ildUO7hcLqWmpiouLk5Op7Omp1Nr0efqUdTnZzbXUV5h6Z8bOxM59fxrsD9XH3r9i6IzKeVR6SHmySef1IQJE3TnnXdKkmJiYrR//35NnTpVQ4cOVUREhKQzR1saNGjgXi4zM9N9dCYiIkL5+fnKysryOBqTmZmpTp06lbhdX19f+fr6Fht3Op2X/A5xNvpRPehz9cgrdCivoPQQw9egcrA/Vx96XbH3baXfnXTixAnVqeO5Wi8vL/ct1tHR0YqIiPA4ZJafn681a9a4A0rbtm3ldDo9ag4fPqydO3eWGmIAAMClpdKPxPTr10/PP/+8GjVqpOuuu07btm3T9OnT9cADD0g6cxopISFBSUlJatasmZo1a6akpCQFBARo8ODBkqSQkBANGzZMY8aMUVhYmEJDQzV27FjFxMS471YCAACXtkoPMTNnztQzzzyjESNGKDMzU5GRkRo+fLieffZZd824ceN08uRJjRgxQllZWWrfvr1WrlypoKAgd82MGTPk7e2tQYMG6eTJk4qNjVVKSoq8vLwqe8oAAMBClR5igoKClJyc7L6luiQOh0OJiYlKTEwstcbPz08zZ870+CV5AAAARfjbSQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwUpWEmO+//1733HOPwsLCFBAQoDZt2mjLli3u540xSkxMVGRkpPz9/dWtWzft2rXLYx15eXkaNWqU6tWrp8DAQPXv318HDx6siukCAAALVXqIycrK0s033yyn06l///vf2r17t1566SVdfvnl7ppp06Zp+vTpmjVrljZt2qSIiAjFxcUpNzfXXZOQkKDly5dr8eLFWrdunY4dO6a+ffuqoKCgsqcMAAAs5F3ZK3zhhRcUFRWluXPnuseaNGni/r8xRsnJyZo0aZIGDhwoSZo3b57Cw8O1cOFCDR8+XNnZ2ZozZ47eeOMN9ezZU5K0YMECRUVFKS0tTb169arsaQMAAMtUeoh555131KtXL/3+97/XmjVrdOWVV2rEiBF66KGHJEl79+5VRkaG4uPj3cv4+vqqa9euWr9+vYYPH64tW7bI5XJ51ERGRqply5Zav359iSEmLy9PeXl57sc5OTmSJJfLJZfLVdkv0zpFPaAXVYs+V4+i/vrWMeWqw4Vhf64+9PoXFelBpYeYPXv26JVXXtHo0aM1ceJEbdy4UY899ph8fX117733KiMjQ5IUHh7usVx4eLj2798vScrIyJCPj4/q1q1brKZo+XNNnTpVU6ZMKTa+cuVKBQQEVMZLqxVSU1NregqXBPpcPf7UrrDM5z/44INqmkntxv5cfei1dOLEiXLXVnqIKSwsVLt27ZSUlCRJuv7667Vr1y698soruvfee911DofDYzljTLGxc5VV89RTT2n06NHuxzk5OYqKilJ8fLyCg4Mv9OXUGi6XS6mpqYqLi5PT6azp6dRa9Ll6FPX5mc11lFdY+ufGzkROPf8a7M/Vh17/ouhMSnlUeohp0KCBrr32Wo+xFi1a6K233pIkRURESDpztKVBgwbumszMTPfRmYiICOXn5ysrK8vjaExmZqY6depU4nZ9fX3l6+tbbNzpdF7yO8TZ6Ef1oM/VI6/QobyC0kMMX4PKwf5cfeh1xd63lX530s0336wvv/zSY+yrr75S48aNJUnR0dGKiIjwOGSWn5+vNWvWuANK27Zt5XQ6PWoOHz6snTt3lhpiAADApaXSj8Q88cQT6tSpk5KSkjRo0CBt3LhRr732ml577TVJZ04jJSQkKCkpSc2aNVOzZs2UlJSkgIAADR48WJIUEhKiYcOGacyYMQoLC1NoaKjGjh2rmJgY991KAADg0lbpIebGG2/U8uXL9dRTT+m5555TdHS0kpOTdffdd7trxo0bp5MnT2rEiBHKyspS+/bttXLlSgUFBblrZsyYIW9vbw0aNEgnT55UbGysUlJS5OXlVdlTBgAAFqr0ECNJffv2Vd++fUt93uFwKDExUYmJiaXW+Pn5aebMmZo5c2YVzBAAANiOv50EAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJWqPMRMnTpVDodDCQkJ7jFjjBITExUZGSl/f39169ZNu3bt8lguLy9Po0aNUr169RQYGKj+/fvr4MGDVT1dAABgiSoNMZs2bdJrr72mVq1aeYxPmzZN06dP16xZs7Rp0yZFREQoLi5Oubm57pqEhAQtX75cixcv1rp163Ts2DH17dtXBQUFVTllAABgCe+qWvGxY8d099136/XXX9f//M//uMeNMUpOTtakSZM0cOBASdK8efMUHh6uhQsXavjw4crOztacOXP0xhtvqGfPnpKkBQsWKCoqSmlpaerVq1ex7eXl5SkvL8/9OCcnR5Lkcrnkcrmq6mVao6gH9KJq0efqUdRf3zqmXHW4MOzP1Yde/6IiPXAYY8r+FLhAQ4cOVWhoqGbMmKFu3bqpTZs2Sk5O1p49e9S0aVNt3bpV119/vbv+tttu0+WXX6558+Zp1apVio2N1U8//aS6deu6a1q3bq0BAwZoypQpxbaXmJhY4vjChQsVEBBQFS8RAABUshMnTmjw4MHKzs5WcHBwmbVVciRm8eLF2rp1qzZt2lTsuYyMDElSeHi4x3h4eLj279/vrvHx8fEIMEU1Rcuf66mnntLo0aPdj3NychQVFaX4+PjzNuFS4HK5lJqaqri4ODmdzpqeTq1Fn6tHUZ+f2VxHeYWOUut2JhY/aovyY3+uPvT6F0VnUsqj0kPMd999p8cff1wrV66Un59fqXUOh+cHjzGm2Ni5yqrx9fWVr69vsXGn03nJ7xBnox/Vgz5Xj7xCh/IKSv/c4GtQOdifqw+9rtj7ttIv7N2yZYsyMzPVtm1beXt7y9vbW2vWrNFf//pXeXt7u4/AnHtEJTMz0/1cRESE8vPzlZWVVWoNAAC4tFV6iImNjdVnn32m7du3u/+1a9dOd999t7Zv366rrrpKERERSk1NdS+Tn5+vNWvWqFOnTpKktm3byul0etQcPnxYO3fudNcAAIBLW6WfTgoKClLLli09xgIDAxUWFuYeT0hIUFJSkpo1a6ZmzZopKSlJAQEBGjx4sCQpJCREw4YN05gxYxQWFqbQ0FCNHTtWMTEx7ruVAADApa3KbrEuy7hx43Ty5EmNGDFCWVlZat++vVauXKmgoCB3zYwZM+Tt7a1Bgwbp5MmTio2NVUpKiry8vGpiygAA4CJTLSFm9erVHo8dDocSExOVmJhY6jJ+fn6aOXOmZs6cWbWTAwAAVuJvJwEAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASpUeYqZOnaobb7xRQUFBql+/vgYMGKAvv/zSo8YYo8TEREVGRsrf31/dunXTrl27PGry8vI0atQo1atXT4GBgerfv78OHjxY2dMFAACWqvQQs2bNGj366KP65JNPlJqaqtOnTys+Pl7Hjx9310ybNk3Tp0/XrFmztGnTJkVERCguLk65ubnumoSEBC1fvlyLFy/WunXrdOzYMfXt21cFBQWVPWUAAGAh78pe4YoVKzwez507V/Xr19eWLVt0yy23yBij5ORkTZo0SQMHDpQkzZs3T+Hh4Vq4cKGGDx+u7OxszZkzR2+88YZ69uwpSVqwYIGioqKUlpamXr16Vfa0AQCAZSo9xJwrOztbkhQaGipJ2rt3rzIyMhQfH++u8fX1VdeuXbV+/XoNHz5cW7Zskcvl8qiJjIxUy5YttX79+hJDTF5envLy8tyPc3JyJEkul0sul6tKXptNinpAL6oWfa4eRf31rWPKVYcLw/5cfej1LyrSgyoNMcYYjR49Wp07d1bLli0lSRkZGZKk8PBwj9rw8HDt37/fXePj46O6desWqyla/lxTp07VlClTio2vXLlSAQEBv/q11Bapqak1PYVLAn2uHn9qV1jm8x988EE1zaR2Y3+uPvRaOnHiRLlrqzTEjBw5Ujt27NC6deuKPedwODweG2OKjZ2rrJqnnnpKo0ePdj/OyclRVFSU4uPjFRwcfAGzr11cLpdSU1MVFxcnp9NZ09Optehz9Sjq8zOb6yivsPTPjZ2JnHr+Ndifqw+9/kXRmZTyqLIQM2rUKL3zzjv6+OOP1bBhQ/d4RESEpDNHWxo0aOAez8zMdB+diYiIUH5+vrKysjyOxmRmZqpTp04lbs/X11e+vr7Fxp1O5yW/Q5yNflQP+lw98godyisoPcTwNagc7M/Vh15X7H1b6XcnGWM0cuRILVu2TKtWrVJ0dLTH89HR0YqIiPA4ZJafn681a9a4A0rbtm3ldDo9ag4fPqydO3eWGmIAAMClpdKPxDz66KNauHCh/vWvfykoKMh9DUtISIj8/f3lcDiUkJCgpKQkNWvWTM2aNVNSUpICAgI0ePBgd+2wYcM0ZswYhYWFKTQ0VGPHjlVMTIz7biUAAHBpq/QQ88orr0iSunXr5jE+d+5c3XfffZKkcePG6eTJkxoxYoSysrLUvn17rVy5UkFBQe76GTNmyNvbW4MGDdLJkycVGxurlJQUeXl5VfaUAQCAhSo9xBhT9i2P0pmLehMTE5WYmFhqjZ+fn2bOnKmZM2dW4uwAAEBtwd9OAgAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVLvoQM3v2bEVHR8vPz09t27bV2rVra3pKAADgInBRh5glS5YoISFBkyZN0rZt29SlSxf17t1bBw4cqOmpAQCAGnZRh5jp06dr2LBhevDBB9WiRQslJycrKipKr7zySk1PDQAA1DDvmp5AafLz87VlyxZNmDDBYzw+Pl7r168vVp+Xl6e8vDz34+zsbEnSTz/9JJfLVbWTtYDL5dKJEyd09OhROZ3Omp5OrUWfq0dRn71ddVRQ6Ci17ujRo9U4q9qH/bn60Otf5ObmSpKMMeetvWhDzI8//qiCggKFh4d7jIeHhysjI6NY/dSpUzVlypRi49HR0VU2RwAXt3ov1fQMAFyo3NxchYSElFlz0YaYIg6H509ZxphiY5L01FNPafTo0e7HhYWF+umnnxQWFlZi/aUmJydHUVFR+u677xQcHFzT06m16HP1oM/Vgz5XH3r9C2OMcnNzFRkZed7aizbE1KtXT15eXsWOumRmZhY7OiNJvr6+8vX19Ri7/PLLq3KKVgoODr7k3yDVgT5XD/pcPehz9aHXZ5zvCEyRi/bCXh8fH7Vt21apqake46mpqerUqVMNzQoAAFwsLtojMZI0evRoDRkyRO3atVPHjh312muv6cCBA3rkkUdqemoAAKCGXdQh5g9/+IOOHj2q5557TocPH1bLli31wQcfqHHjxjU9Nev4+vpq8uTJxU65oXLR5+pBn6sHfa4+9PrCOEx57mECAAC4yFy018QAAACUhRADAACsRIgBAABWIsQAAAArEWIAAICVCDG1VFZWloYMGaKQkBCFhIRoyJAh+vnnn8u9/PDhw+VwOJScnFxlc6wtKtprl8ul8ePHKyYmRoGBgYqMjNS9996rQ4cOVd+kLTB79mxFR0fLz89Pbdu21dq1a8usX7Nmjdq2bSs/Pz9dddVVevXVV6tppnarSJ+XLVumuLg4XXHFFQoODlbHjh31n//8pxpna6+K7s9F/vvf/8rb21tt2rSp2glaihBTSw0ePFjbt2/XihUrtGLFCm3fvl1Dhgwp17Jvv/22NmzYUK6/W4GK9/rEiRPaunWrnnnmGW3dulXLli3TV199pf79+1fjrC9uS5YsUUJCgiZNmqRt27apS5cu6t27tw4cOFBi/d69e/Xb3/5WXbp00bZt2zRx4kQ99thjeuutt6p55napaJ8//vhjxcXF6YMPPtCWLVvUvXt39evXT9u2bavmmdulon0ukp2drXvvvVexsbHVNFMLGdQ6u3fvNpLMJ5984h5LT083kswXX3xR5rIHDx40V155pdm5c6dp3LixmTFjRhXP1m6/ptdn27hxo5Fk9u/fXxXTtM5NN91kHnnkEY+xa665xkyYMKHE+nHjxplrrrnGY2z48OGmQ4cOVTbH2qCifS7Jtddea6ZMmVLZU6tVLrTPf/jDH8zTTz9tJk+ebFq3bl2FM7QXR2JqofT0dIWEhKh9+/busQ4dOigkJETr168vdbnCwkINGTJETz75pK677rrqmKr1LrTX58rOzpbD4eCPlkrKz8/Xli1bFB8f7zEeHx9fak/T09OL1ffq1UubN2+Wy+Wqsrna7EL6fK7CwkLl5uYqNDS0KqZYK1xon+fOnatvv/1WkydPruopWu2i/rMDuDAZGRmqX79+sfH69esX+6vgZ3vhhRfk7e2txx57rCqnV6tcaK/PdurUKU2YMEGDBw/mr9dK+vHHH1VQUFDsr9WHh4eX2tOMjIwS60+fPq0ff/xRDRo0qLL52upC+nyul156ScePH9egQYOqYoq1woX0+euvv9aECRO0du1aeXvzbbosHImxSGJiohwOR5n/Nm/eLElyOBzFljfGlDguSVu2bNFf/vIXpaSklFpzKanKXp/N5XLpzjvvVGFhoWbPnl3pr8Nm5/bvfD0tqb6kcXiqaJ+LLFq0SImJiVqyZEmJQR6eytvngoICDR48WFOmTNHVV19dXdOzFhHPIiNHjtSdd95ZZk2TJk20Y8cOHTlypNhzP/zwQ7GfBoqsXbtWmZmZatSokXusoKBAY8aMUXJysvbt2/er5m6bqux1EZfLpUGDBmnv3r1atWoVR2H+T7169eTl5VXsp9TMzMxSexoREVFivbe3t8LCwqpsrja7kD4XWbJkiYYNG6Z//vOf6tmzZ1VO03oV7XNubq42b96sbdu2aeTIkZLOnLYzxsjb21srV65Ujx49qmXuNiDEWKRevXqqV6/eees6duyo7Oxsbdy4UTfddJMkacOGDcrOzlanTp1KXGbIkCHFPox69eqlIUOG6P777//1k7dMVfZa+iXAfP311/roo4/4RnsWHx8ftW3bVqmpqfrd737nHk9NTdVtt91W4jIdO3bUu+++6zG2cuVKtWvXTk6ns0rna6sL6bN05gjMAw88oEWLFqlPnz7VMVWrVbTPwcHB+uyzzzzGZs+erVWrVmnp0qWKjo6u8jlbpQYvKkYVuvXWW02rVq1Menq6SU9PNzExMaZv374eNc2bNzfLli0rdR3cnVQ+Fe21y+Uy/fv3Nw0bNjTbt283hw8fdv/Ly8uriZdw0Vm8eLFxOp1mzpw5Zvfu3SYhIcEEBgaaffv2GWOMmTBhghkyZIi7fs+ePSYgIMA88cQTZvfu3WbOnDnG6XSapUuX1tRLsEJF+7xw4ULj7e1tXn75ZY/99ueff66pl2CFivb5XNydVDpCTC119OhRc/fdd5ugoCATFBRk7r77bpOVleVRI8nMnTu31HUQYsqnor3eu3evkVTiv48++qja53+xevnll03jxo2Nj4+PueGGG8yaNWvczw0dOtR07drVo3716tXm+uuvNz4+PqZJkybmlVdeqeYZ26kife7atWuJ++3QoUOrf+KWqej+fDZCTOkcxvzf1W8AAAAW4e4kAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFjp/wPwJQqStBRmGgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAGxCAYAAACa3EfLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABA30lEQVR4nO3deXxU1f3/8fdkmyyEkIWQREKIFBENooKCKEIMCVJWwWqhUqFatQo1IkUFlcFWVGjBFkRtqwTEKIrgAlZMZJMCylpAhIqAIKsCJmwmITm/P/zm/hgyCQlNCDm8no/HPGDOnLn3fO6Zmbxzl4zLGGMEAABQx/nV9gAAAACqA6EGAABYgVADAACsQKgBAABWINQAAAArEGoAAIAVCDUAAMAKhBoAAGAFQg0AALACoaaOyMrKksvlcm7BwcGKi4tTamqqnnnmGR04cKDMczwej1wuV5XWc/z4cXk8Hi1atKhKz/O1rqZNm6pHjx5VWs6ZZGdn6/nnn/f5mMvlksfjqdb1VbdPPvlEbdu2VVhYmFwul959993aHpKXsWPHnndjKk/Tpk01aNAg69Z7+vL37Nkjj8ejdevWlel7Nu/x6vKb3/xGN998c62s+0zWr18vl8ultWvX1vZQynXjjTcqMzOztodhH4M6YerUqUaSmTp1qlm+fLlZsmSJmTVrlsnMzDQREREmKirK5OTkeD1n165dZvny5VVaz3fffWckmdGjR1fpeb7WlZSUZLp3716l5ZxJ9+7dTVJSks/Hli9fbnbt2lWt66tOJSUlJioqyrRv397k5uaa5cuXm0OHDtX2sLyEhYWZO++8s7aHUSlJSUm1MtaaXu+aNWvM1q1bnfsrV6503vunO5v3eHVYs2aN8fPzMytXrjzn666MJ5980iQnJ9f2MCq0aNEiExgYaDZv3lzbQ7FKQC1nKlRRSkqK2rZt69zv16+fHnroId1www3q27evvvrqKzVq1EiS1LhxYzVu3LhGx3P8+HGFhoaek3WdSfv27Wt1/WeyZ88eHTp0SLfccovS0tJqezjnvdLX1oXmqquuqnTf2nrfPfvss7r22mu9PovOJ7NmzVK/fv1qexg+lb6uO3XqpBYtWugvf/mL/v73v9f2sKzB4ScLNGnSRH/5y1905MgRvfzyy067r13TCxYsUOfOnRUdHa2QkBA1adJE/fr10/Hjx7Vjxw41bNhQkjRmzBjnUFfprvDS5a1Zs0a33nqrIiMj1axZs3LXVWrOnDm64oorFBwcrIsvvlh/+9vfvB4vPbS2Y8cOr/ZFixbJ5XI5h8I6d+6sefPm6ZtvvvE6FFfK1+GnjRs3qnfv3oqMjFRwcLCuvPJKTZs2zed63njjDY0aNUoJCQmqX7++unTpoi1btpS/4U+xdOlSpaWlKTw8XKGhoerQoYPmzZvnPO7xeJwfPo888ohcLpeaNm1a4TLz8/M1fPhwJScnKygoSBdddJEyMzN17Ngxr34vvPCCbrzxRsXGxiosLEytWrXSuHHjVFRU5NVv7dq16tGjh2JjY+V2u5WQkKDu3bvr22+/dbbfsWPHNG3aNGfbdu7cWfn5+QoICND48eOdZX3//ffy8/NTRESETp486bT//ve/V8OGDWX+73tyc3Jy1Lt3bzVu3FjBwcH62c9+pnvvvVfff/+919gqem0VFRVpxIgRiouLU2hoqG644QZ9/vnnZ5yToqIixcbGauDAgWUe++GHHxQSEqJhw4ZVeXv7snPnTt1xxx3Otm3ZsqX+8pe/qKSkxKtfQUGBnnrqKbVs2VLBwcGKjo5Wamqqli1b5vQ59fDTokWLdM0110iSBg8e7MxL6eu8vPfdzJkzdd111yksLEz16tVT165dyxyK2bZtm375y18qISFBbrdbjRo1Ulpams/DXKfav3+/5syZU2a7lr6PsrOz9cgjjyg+Pl716tVTz549tX//fh05ckT33HOPYmJiFBMTo8GDB+vo0aNey3C5XBoyZIimTp2qFi1aKCQkRG3bttWKFStkjNH48eOVnJysevXq6aabbtLWrVvLjG/z5s3atGmT+vXrJ2OMmjdvrq5du5bpd/ToUUVEROiBBx5w2qr7Pde5c2elpKRoyZIl6tChg0JDQ/Wb3/zGeXzgwIHKzs7WkSNHKtzmqDz21Fji5z//ufz9/bVkyZJy++zYsUPdu3dXx44d9eqrr6pBgwbavXu3PvroIxUWFio+Pl4fffSRbr75Zt111126++67JckJOqX69u2rX/7yl7rvvvvO+IG/bt06ZWZmyuPxKC4uTq+//roefPBBFRYWavjw4VWqccqUKbrnnnv09ddfa86cOWfsv2XLFnXo0EGxsbH629/+pujoaM2YMUODBg3S/v37NWLECK/+I0eO1PXXX69//vOfys/P1yOPPKKePXvqyy+/lL+/f7nrWbx4sdLT03XFFVfolVdekdvt1pQpU9SzZ0+98cYbuv3223X33XerdevW6tu3r4YOHaoBAwbI7XaXu8zjx4+rU6dO+vbbbzVy5EhdccUV+uKLL/Tkk09qw4YNys3NdX6Yff311xowYIDzQfyf//xHTz/9tDZv3qxXX31VknTs2DGlp6crOTlZL7zwgho1aqR9+/Zp4cKFzgfq8uXLddNNNyk1NVVPPPGEJKl+/fqqX7++rrnmGuXm5uoPf/iDpJ/ODXK73Tpy5Ig+//xzdejQQZKUm5urm266yWts1113ne6++25FRERox44dmjBhgm644QZt2LBBgYGBXnX7em399re/1fTp0zV8+HClp6dr48aN6tu37xl/EAQGBuqOO+7QSy+9pBdeeEH169d3HnvjjTf0448/avDgwVXe3qf77rvv1KFDBxUWFuqPf/yjmjZtqrlz52r48OH6+uuvNWXKFEnSyZMn1a1bN3366afKzMzUTTfdpJMnT2rFihXauXOnsw1PdfXVV2vq1KkaPHiwHn/8cXXv3l2SKtw7M3bsWD3++OPOcwoLCzV+/Hh17NhRn3/+uS677DJJP31mFBcXa9y4cWrSpIm+//57LVu2TD/88EOF2/Xjjz9WUVGRUlNTfT4+cuRIpaamKisrSzt27NDw4cPVv39/BQQEqHXr1nrjjTe0du1ajRw5UuHh4WV+yZk7d67Wrl2rZ599Vi6XS4888oi6d++uO++8U9u2bdPkyZOVl5enYcOGqV+/flq3bp3X3Lzzzju66KKL1K5dO7lcLg0dOlSZmZn66quv1Lx5c6ff9OnTlZ+f74Sa6n7Pldq7d6/uuOMOjRgxQmPHjpWf3//fl9C5c2c98sgjWrRokXr27Fnhdkcl1fLhL1RS6Tk1FR3DbtSokWnZsqVzf/To0ebUKZ41a5aRZNatW1fuMio6p6Z0eU8++WS5j50qKSnJuFyuMutLT0839evXN8eOHfOqbfv27V79Fi5caCSZhQsXOm0VnVNz+rh/+ctfGrfbbXbu3OnVr1u3biY0NNT88MMPXuv5+c9/7tXvrbfeMpLOeM5C+/btTWxsrDly5IjTdvLkSZOSkmIaN25sSkpKjDHGbN++3Ugy48ePr3B5xhjzzDPP+DxnoXQOP/zwQ5/PKy4uNkVFRWb69OnG39/fOWdn1apVRpJ59913K1xveefUPP744yYkJMT8+OOPxhhj7r77bnPzzTebK664wowZM8YYY8zu3buNJPP3v//d57JLSkpMUVGR+eabb4wk89577zmPlffa+vLLL40k89BDD3m1v/7660bSGc9tWb9+vc8xXXvttaZNmzbO/aps79PPqXn00UeNJPPZZ595Pfd3v/udcblcZsuWLcYYY6ZPn24kmX/84x8Vjvn05Vd0Ts3p77udO3eagIAAM3ToUK9+R44cMXFxcea2224zxhjz/fffG0nm+eefr3Asvvzud78zISEhzuu6VOn7qGfPnl7tmZmZRpL5/e9/79Xep08fExUV5dUmycTFxZmjR486be+++66RZK688kqvdT7//PNGklm/fr3XMq688kqv+vPz8014eLh58MEHvfpddtllJjU11blf3e85Y4zp1KmTkWQ++eQTn88tLCw0LpfLPPLIIz4fR9Vx+Mki5v92+ZfnyiuvVFBQkO655x5NmzZN27ZtO6v1VOVY9eWXX67WrVt7tQ0YMED5+flas2bNWa2/shYsWKC0tDQlJiZ6tQ8aNEjHjx/X8uXLvdp79erldf+KK66QJH3zzTflruPYsWP67LPPdOutt6pevXpOu7+/vwYOHKhvv/220oewTjV37lylpKToyiuv1MmTJ51b165dvQ7JST8dVurVq5eio6Pl7++vwMBA/frXv1ZxcbH++9//SpJ+9rOfKTIyUo888oheeuklbdq0qUrjSUtL04kTJ5zDJLm5uUpPT1eXLl2Uk5PjtElSly5dnOcdOHBA9913nxITExUQEKDAwEAlJSVJkr788ssy6zn9tbVw4UJJ0q9+9Suv9ttuu00BAWfe0dyqVSu1adNGU6dOddq+/PJLff75516HAaqyvU+3YMECXXbZZbr22mu92gcNGiRjjBYsWCBJ+te//qXg4GCv9Va3+fPn6+TJk/r1r3/tVUdwcLA6derk1BEVFaVmzZpp/PjxmjBhgtauXVvmUFl59uzZo4YNG5a75+r0Kx5btmwpSc5eplPbDx06VOYQVGpqqsLCwso8v1u3bl7rLG0/9f25bds2rVu3zut1FB4ersGDBysrK8vZ+7dgwQJt2rRJQ4YMcfpV93uuVGRkpG666Saf2yowMNDZY47qQaixxLFjx3Tw4EElJCSU26dZs2bKzc1VbGysHnjgATVr1kzNmjXTX//61yqtKz4+vtJ94+Liym07ePBgldZbVQcPHvQ51tJtdPr6o6Ojve6XHh46ceJEues4fPiwjDFVWk9l7N+/X+vXr1dgYKDXLTw8XMYY55yUnTt3qmPHjtq9e7f++te/6tNPP9XKlSv1wgsveI09IiJCixcv1pVXXqmRI0fq8ssvV0JCgkaPHl3mPABfSs8HyM3N1datW7Vjxw4n1Hz22Wc6evSocnNzdfHFFys5OVmSVFJSooyMDM2ePVsjRozQJ598os8//1wrVqzwGtupTt+Opdvu9NdRQEBAmfkqz29+8xstX75cmzdvliRNnTpVbrdb/fv3d/pUdnv7UtnX2XfffaeEhASvww/Vbf/+/ZKka665pkwtM2fOdOpwuVz65JNP1LVrV40bN05XX321GjZsqN///vdnPKx34sQJBQcHl/t4VFSU1/2goKAK23/88cdqe/6sWbMUGxurG264wavv0KFDdeTIEb3++uuSpMmTJ6tx48bq3bu306e633OlzvR5GRwcXOFnDKqGc2osMW/ePBUXF6tz584V9uvYsaM6duyo4uJirVq1SpMmTVJmZqYaNWqkX/7yl5VaV1X+Lsa+ffvKbSv9oVT6AVlQUODVr6IfJJURHR2tvXv3lmnfs2ePJCkmJuZ/Wr70029hfn5+1b6emJgYhYSElDk+f+rjkvTuu+/q2LFjmj17trMHRJLPkz1btWqlN998U8YYrV+/XllZWXrqqacUEhKiRx99tMLxBAUF6YYbblBubq4aN26suLg4tWrVShdffLGkn04S/eSTT7x+S9+4caP+85//KCsrS3feeafT7uvkzlKnv7ZKXyP79u3TRRdd5LSfPHmy0mGxf//+GjZsmLKysvT000/rtddeU58+fRQZGen0qez29qWyr7OGDRtq6dKlKikpqbFgU7quWbNmeb0efElKStIrr7wiSfrvf/+rt956Sx6PR4WFhXrppZcqXEdN72U9W++884769OlT5hy4n/3sZ+rWrZteeOEFdevWTe+//77GjBnj1a8m3nPSmT8vDx8+XC2fRfgJe2ossHPnTg0fPlwRERG69957K/Ucf39/tWvXzvntovRDqjJ7J6riiy++0H/+8x+vtuzsbIWHh+vqq6+WJOcqoPXr13v1e//998ssz+12V3psaWlpWrBggfPDpdT06dMVGhpaLZeAh4WFqV27dpo9e7bXuEpKSjRjxgw1btxYl1xySZWX26NHD3399deKjo5W27Zty9xKt1npB+apJx0bY/SPf/yj3GW7XC61bt1aEydOVIMGDbx+QFW0fbt06aLVq1frnXfecQ4xhYWFqX379po0aZL27NnjdejJ19gkeV2hdyalIb30N+xSb731ltdVVxWJjIxUnz59NH36dM2dO1f79u0rcwiostvbl7S0NG3atKnMD/rp06fL5XI5J9R269ZNP/74o7Kysio17lJVeU927dpVAQEB+vrrr33WUd4l2Jdccokef/xxtWrV6oyB5dJLL9XBgweVl5dXpTpq2q5du7Ry5cpyD48/+OCDWr9+ve688075+/vrt7/9rdfjNfmeK8+ePXv0448/Oidv43/Hnpo6ZuPGjc6x3gMHDujTTz/V1KlT5e/vrzlz5pS5UulUL730khYsWKDu3burSZMm+vHHH53fSkp/GIWHhyspKUnvvfee0tLSFBUVpZiYmDNeflyehIQE9erVSx6PR/Hx8ZoxY4ZycnL03HPPOX+D5JprrlGLFi00fPhwnTx5UpGRkZozZ46WLl1aZnmtWrXS7Nmz9eKLL6pNmzby8/Mr94N69OjRmjt3rlJTU/Xkk08qKipKr7/+uubNm6dx48YpIiLirGo63TPPPKP09HSlpqZq+PDhCgoK0pQpU7Rx40a98cYbZ/UXXzMzM/XOO+/oxhtv1EMPPaQrrrhCJSUl2rlzpz7++GM9/PDDateundLT0xUUFKT+/ftrxIgR+vHHH/Xiiy/q8OHDXsubO3eupkyZoj59+ujiiy+WMUazZ8/WDz/8oPT0dKdfq1attGjRIn3wwQeKj49XeHi4WrRoIemnH97FxcX65JNPvC6L79Kli0aPHi2Xy+V17sCll16qZs2a6dFHH5UxRlFRUfrggw+cc3Aqo2XLlrrjjjv0/PPPKzAwUF26dNHGjRv15z//2etqpjP5zW9+o5kzZ2rIkCFq3LixV/iqyvb25aGHHtL06dPVvXt3PfXUU0pKStK8efM0ZcoU/e53v3NCbf/+/TV16lTdd9992rJli1JTU1VSUqLPPvtMLVu2LHdPabNmzRQSEqLXX39dLVu2VL169ZSQkODzUHPTpk311FNPadSoUdq2bZtuvvlmRUZGav/+/fr8888VFhamMWPGaP369RoyZIh+8YtfqHnz5goKCtKCBQu0fv36M+6169y5s4wx+uyzz5SRkVGZzX9OvPPOO2rQoEG5V2Wlp6frsssu08KFC53L709V3e+5yig9FFvemHEWauf8ZFRV6RVCpbegoCATGxtrOnXqZMaOHWsOHDhQ5jmnXxmxfPlyc8stt5ikpCTjdrtNdHS06dSpk3n//fe9npebm2uuuuoq43a7va4wKV3ed999d8Z1GfP//6LwrFmzzOWXX26CgoJM06ZNzYQJE8o8/7///a/JyMgw9evXNw0bNjRDhw418+bNK3P106FDh8ytt95qGjRoYFwul9c65eOqrQ0bNpiePXuaiIgIExQUZFq3bl3mKpLSqzbefvttr/bSq5V8XXVyuk8//dTcdNNNJiwszISEhJj27dubDz74wOfyKnP1kzHGHD161Dz++OOmRYsWJigoyERERJhWrVqZhx56yOzbt8/p98EHH5jWrVub4OBgc9FFF5k//OEP5l//+pfXttu8ebPp37+/adasmQkJCTERERHm2muvNVlZWV7rXLdunbn++utNaGiokWQ6derkPFZSUmJiYmKMJLN7926n/d///reRZK6++uoyNWzatMmkp6eb8PBwExkZaX7xi1+YnTt3lpmril5bBQUF5uGHHzaxsbEmODjYtG/f3ixfvrxKf9m3uLjYJCYmGklm1KhRPvtUdnv7Wu8333xjBgwYYKKjo01gYKBp0aKFGT9+vCkuLvbqd+LECfPkk0+a5s2bm6CgIBMdHW1uuukms2zZsgqX/8Ybb5hLL73UBAYGem07X+87Y366Yig1NdXUr1/fuN1uk5SUZG699VaTm5trjDFm//79ZtCgQebSSy81YWFhpl69euaKK64wEydONCdPnjzjtmzatKm5//77vdrLex+Vd+WmrzmXZB544AGvfuW9b05f3w033HDG14PH4zGSzIoVK3w+Xp3vOWN+uvrp8ssvL3c8AwcONK1atapwzKgalzFnuGQGAIBT/OUvf9HTTz+t3bt3KyQkpLaH45xz9e6771b4917atm0rl8ullStXnsPR+Zafn6+EhARNnDixzKEwnD3OqQEAVMkDDzygiIgI55y82hYXF6fi4mKfgSY/P1/Lli3TyJEjtXr1ao0aNaoWRljWxIkT1aRJE+cPQKJ6cE4NAKBKgoOD9dprr53X34Jdas2aNUpNTVV0dLRGjx6tPn361PaQJP3017qzsrIq9feWUHkcfgIAAFbg8BMAALACoQYAAFiBUAMAAKxQJ89QKikp0Z49exQeHn5Wf9gMAACce8YYHTlypMa+B61Ohpo9e/aU+eZlAABQN+zatUuNGzeu9uXWyVATHh4u6aeNcuqfSi8qKtLHH3+sjIwMBQYG1tbwahx12oU67XKh1CldOLVSZ/XJz89XYmKi83O8utXJUFN6yKl+/fplQk1oaKjq169v/QuPOu1BnXa5UOqULpxaqbP61dSpI5woDAAArECoAQAAViDUAAAAKxBqAACAFQg1AADACoQaAABgBUINAACwAqEGAABYgVADAACsQKgBAABWINQAAAArEGoAAIAVCDUAAMAKhBoAAGCFgNoeAACcrumj82p7CFW249nutT0E4ILHnhoAAGAFQg0AALACoQYAAFiBUAMAAKxAqAEAAFYg1AAAACsQagAAgBUINQAAwAqEGgAAYAVCDQAAsAKhBgAAWIFQAwAArECoAQAAViDUAAAAKxBqAACAFQg1AADACoQaAABgBUINAACwQkBVOj/zzDOaPXu2Nm/erJCQEHXo0EHPPfecWrRo4fQZNGiQpk2b5vW8du3aacWKFc79goICDR8+XG+88YZOnDihtLQ0TZkyRY0bN/4fywFwuqaPzqvtIUiS3P5G466VUjzzVVDsqu3hALBQlfbULF68WA888IBWrFihnJwcnTx5UhkZGTp27JhXv5tvvll79+51bh9++KHX45mZmZozZ47efPNNLV26VEePHlWPHj1UXFz8v1cEAAAuSFXaU/PRRx953Z86dapiY2O1evVq3XjjjU672+1WXFycz2Xk5eXplVde0WuvvaYuXbpIkmbMmKHExETl5uaqa9euVa0BAACgaqHmdHl5eZKkqKgor/ZFixYpNjZWDRo0UKdOnfT0008rNjZWkrR69WoVFRUpIyPD6Z+QkKCUlBQtW7bMZ6gpKChQQUGBcz8/P1+SVFRUpKKiIqe99P+nttmIOu1S03W6/U2NLLeq3H7G61/bnD6Ptr9upQunVuqs/nXUFJcx5qw+YYwx6t27tw4fPqxPP/3UaZ85c6bq1aunpKQkbd++XU888YROnjyp1atXy+12Kzs7W4MHD/YKKZKUkZGh5ORkvfzyy2XW5fF4NGbMmDLt2dnZCg0NPZvhAwCAc+z48eMaMGCA8vLyVL9+/Wpf/lnvqRkyZIjWr1+vpUuXerXffvvtzv9TUlLUtm1bJSUlad68eerbt2+5yzPGyOXyffLgY489pmHDhjn38/PzlZiYqIyMDK+NUlRUpJycHKWnpyswMPBsSzvvUaddarrOFM/8al/m2XD7Gf2xbYmeWOWnghL7ThTe6PlpL/OF8rqVLpxaqbP6lB5pqSlnFWqGDh2q999/X0uWLDnjFUvx8fFKSkrSV199JUmKi4tTYWGhDh8+rMjISKffgQMH1KFDB5/LcLvdcrvdZdoDAwN9bvjy2m1DnXapqTrPtyuNCkpc592YqsPpc3ehvG6lC6dW6qyeZdekKl39ZIzRkCFDNHv2bC1YsEDJyclnfM7Bgwe1a9cuxcfHS5LatGmjwMBA5eTkOH327t2rjRs3lhtqAAAAzqRKe2oeeOABZWdn67333lN4eLj27dsnSYqIiFBISIiOHj0qj8ejfv36KT4+Xjt27NDIkSMVExOjW265xel711136eGHH1Z0dLSioqI0fPhwtWrVyrkaCgAAoKqqFGpefPFFSVLnzp292qdOnapBgwbJ399fGzZs0PTp0/XDDz8oPj5eqampmjlzpsLDw53+EydOVEBAgG677Tbnj+9lZWXJ39//f68IAABckKoUas50oVRISIjmzz/zSYnBwcGaNGmSJk2aVJXVAwAAlIvvfgIAAFYg1AAAACsQagAAgBUINQAAwAqEGgAAYAVCDQAAsAKhBgAAWIFQAwAArECoAQAAViDUAAAAKxBqAACAFQg1AADACoQaAABgBUINAACwAqEGAABYgVADAACsQKgBAABWINQAAAArEGoAAIAVCDUAAMAKhBoAAGAFQg0AALACoQYAAFiBUAMAAKxAqAEAAFYg1AAAACsQagAAgBUINQAAwAqEGgAAYAVCDQAAsAKhBgAAWIFQAwAArECoAQAAViDUAAAAKxBqAACAFQg1AADACoQaAABgBUINAACwAqEGAABYgVADAACsQKgBAABWINQAAAArEGoAAIAVCDUAAMAKhBoAAGAFQg0AALACoQYAAFiBUAMAAKxAqAEAAFYg1AAAACsQagAAgBUINQAAwAqEGgAAYAVCDQAAsAKhBgAAWKFKoeaZZ57RNddco/DwcMXGxqpPnz7asmWLVx9jjDwejxISEhQSEqLOnTvriy++8OpTUFCgoUOHKiYmRmFhYerVq5e+/fbb/70aAABwwapSqFm8eLEeeOABrVixQjk5OTp58qQyMjJ07Ngxp8+4ceM0YcIETZ48WStXrlRcXJzS09N15MgRp09mZqbmzJmjN998U0uXLtXRo0fVo0cPFRcXV19lAADgghJQlc4fffSR1/2pU6cqNjZWq1ev1o033ihjjJ5//nmNGjVKffv2lSRNmzZNjRo1UnZ2tu69917l5eXplVde0WuvvaYuXbpIkmbMmKHExETl5uaqa9eu1VQaAAC4kFQp1JwuLy9PkhQVFSVJ2r59u/bt26eMjAynj9vtVqdOnbRs2TLde++9Wr16tYqKirz6JCQkKCUlRcuWLfMZagoKClRQUODcz8/PlyQVFRWpqKjIaS/9/6ltNqJOu9R0nW5/UyPLrSq3n/H61zanz6Ptr1vpwqmVOqt/HTXFZYw5q08YY4x69+6tw4cP69NPP5UkLVu2TNdff712796thIQEp+8999yjb775RvPnz1d2drYGDx7sFVIkKSMjQ8nJyXr55ZfLrMvj8WjMmDFl2rOzsxUaGno2wwcAAOfY8ePHNWDAAOXl5al+/frVvvyz3lMzZMgQrV+/XkuXLi3zmMvl8rpvjCnTdrqK+jz22GMaNmyYcz8/P1+JiYnKyMjw2ihFRUXKyclRenq6AgMDq1JOnUKddqnpOlM886t9mWfD7Wf0x7YlemKVnwpKKv48qIs2en7ay3yhvG6lC6dW6qw+pUdaaspZhZqhQ4fq/fff15IlS9S4cWOnPS4uTpK0b98+xcfHO+0HDhxQo0aNnD6FhYU6fPiwIiMjvfp06NDB5/rcbrfcbneZ9sDAQJ8bvrx221CnXWqqzoLi8ytAFJS4zrsxVYfT5+5Ced1KF06t1Fk9y65JVbr6yRijIUOGaPbs2VqwYIGSk5O9Hk9OTlZcXJxycnKctsLCQi1evNgJLG3atFFgYKBXn71792rjxo3lhhoAAIAzqdKemgceeEDZ2dl67733FB4ern379kmSIiIiFBISIpfLpczMTI0dO1bNmzdX8+bNNXbsWIWGhmrAgAFO37vuuksPP/ywoqOjFRUVpeHDh6tVq1bO1VAAAABVVaVQ8+KLL0qSOnfu7NU+depUDRo0SJI0YsQInThxQvfff78OHz6sdu3a6eOPP1Z4eLjTf+LEiQoICNBtt92mEydOKC0tTVlZWfL39//fqgEAABesKoWaylwo5XK55PF45PF4yu0THBysSZMmadKkSVVZPQAAQLn47icAAGAFQg0AALACoQYAAFiBUAMAAKxAqAEAAFYg1AAAACsQagAAgBUINQAAwAqEGgAAYAVCDQAAsAKhBgAAWIFQAwAArECoAQAAViDUAAAAKxBqAACAFQg1AADACoQaAABgBUINAACwAqEGAABYgVADAACsQKgBAABWINQAAAArEGoAAIAVCDUAAMAKhBoAAGAFQg0AALACoQYAAFiBUAMAAKwQUNsDAOqSpo/Oq/Zluv2Nxl0rpXjmq6DYVe3LB4ALBXtqAACAFQg1AADACoQaAABgBUINAACwAqEGAABYgVADAACsQKgBAABWINQAAAArEGoAAIAVCDUAAMAKhBoAAGAFQg0AALACoQYAAFiBUAMAAKxAqAEAAFYg1AAAACsQagAAgBUINQAAwAqEGgAAYAVCDQAAsAKhBgAAWIFQAwAArECoAQAAViDUAAAAKxBqAACAFQg1AADAClUONUuWLFHPnj2VkJAgl8uld9991+vxQYMGyeVyed3at2/v1aegoEBDhw5VTEyMwsLC1KtXL3377bf/UyEAAODCVuVQc+zYMbVu3VqTJ08ut8/NN9+svXv3OrcPP/zQ6/HMzEzNmTNHb775ppYuXaqjR4+qR48eKi4urnoFAAAAkgKq+oRu3bqpW7duFfZxu92Ki4vz+VheXp5eeeUVvfbaa+rSpYskacaMGUpMTFRubq66du1a1SEBAABUPdRUxqJFixQbG6sGDRqoU6dOevrppxUbGytJWr16tYqKipSRkeH0T0hIUEpKipYtW+Yz1BQUFKigoMC5n5+fL0kqKipSUVGR0176/1PbbESdtcftb6p/mX7G619b2V7n6a/X8+l1W1MulFqps/rXUVNcxpiz/oRxuVyaM2eO+vTp47TNnDlT9erVU1JSkrZv364nnnhCJ0+e1OrVq+V2u5Wdna3Bgwd7hRRJysjIUHJysl5++eUy6/F4PBozZkyZ9uzsbIWGhp7t8AEAwDl0/PhxDRgwQHl5eapfv361L7/a99Tcfvvtzv9TUlLUtm1bJSUlad68eerbt2+5zzPGyOVy+Xzsscce07Bhw5z7+fn5SkxMVEZGhtdGKSoqUk5OjtLT0xUYGFgN1ZyfqLP2pHjmV/sy3X5Gf2xboidW+amgxPd7wAa217nR89Ne5vPxdVtTLpRaqbP6lB5pqSk1cvjpVPHx8UpKStJXX30lSYqLi1NhYaEOHz6syMhIp9+BAwfUoUMHn8twu91yu91l2gMDA31u+PLabUOd515Bcc39MC4ocdXo8s8XttZ5+mv0fHrd1rQLpVbqrJ5l16Qa/zs1Bw8e1K5duxQfHy9JatOmjQIDA5WTk+P02bt3rzZu3FhuqAEAADiTKu+pOXr0qLZu3erc3759u9atW6eoqChFRUXJ4/GoX79+io+P144dOzRy5EjFxMTolltukSRFRETorrvu0sMPP6zo6GhFRUVp+PDhatWqlXM1FAAAQFVVOdSsWrVKqampzv3Sc13uvPNOvfjii9qwYYOmT5+uH374QfHx8UpNTdXMmTMVHh7uPGfixIkKCAjQbbfdphMnTigtLU1ZWVny9/evhpIAAMCFqMqhpnPnzqrogqn58898ImVwcLAmTZqkSZMmVXX1AAAAPvHdTwAAwAqEGgAAYAVCDQAAsAKhBgAAWIFQAwAArECoAQAAViDUAAAAKxBqAACAFQg1AADACoQaAABgBUINAACwAqEGAABYgVADAACsQKgBAABWINQAAAArEGoAAIAVCDUAAMAKhBoAAGAFQg0AALACoQYAAFiBUAMAAKxAqAEAAFYg1AAAACsQagAAgBUINQAAwAoBtT0AALBB00fnSZLc/kbjrpVSPPNVUOyq5VGd2Y5nu9f2EIBqw54aAABgBUINAACwAqEGAABYgVADAACsQKgBAABWINQAAAArEGoAAIAVCDUAAMAKhBoAAGAFQg0AALACoQYAAFiBUAMAAKxAqAEAAFYg1AAAACsQagAAgBUINQAAwAqEGgAAYAVCDQAAsAKhBgAAWIFQAwAArECoAQAAViDUAAAAKxBqAACAFQg1AADACoQaAABgBUINAACwAqEGAABYgVADAACsQKgBAABWqHKoWbJkiXr27KmEhAS5XC69++67Xo8bY+TxeJSQkKCQkBB17txZX3zxhVefgoICDR06VDExMQoLC1OvXr307bff/k+FAACAC1uVQ82xY8fUunVrTZ482efj48aN04QJEzR58mStXLlScXFxSk9P15EjR5w+mZmZmjNnjt58800tXbpUR48eVY8ePVRcXHz2lQAAgAtaQFWf0K1bN3Xr1s3nY8YYPf/88xo1apT69u0rSZo2bZoaNWqk7Oxs3XvvvcrLy9Mrr7yi1157TV26dJEkzZgxQ4mJicrNzVXXrl3LLLegoEAFBQXO/fz8fElSUVGRioqKnPbS/5/aZiPqrD1uf1P9y/QzXv/aijrPT//L++t8fI/WBOqs/nXUFJcx5qzfeS6XS3PmzFGfPn0kSdu2bVOzZs20Zs0aXXXVVU6/3r17q0GDBpo2bZoWLFigtLQ0HTp0SJGRkU6f1q1bq0+fPhozZkyZ9Xg8Hp/t2dnZCg0NPdvhAwCAc+j48eMaMGCA8vLyVL9+/WpffpX31FRk3759kqRGjRp5tTdq1EjffPON0ycoKMgr0JT2KX3+6R577DENGzbMuZ+fn6/ExERlZGR4bZSioiLl5OQoPT1dgYGB1VLT+Yg6a0+KZ361L9PtZ/THtiV6YpWfCkpc1b788wV1np82esruHa+s8/E9WhOos/qUHmmpKdUaakq5XN5vZGNMmbbTVdTH7XbL7XaXaQ8MDPS54ctrtw11nnsFxTX3Q6qgxFWjyz9fUOf5pTreW+fTe7QmUWf1LLsmVesl3XFxcZJUZo/LgQMHnL03cXFxKiws1OHDh8vtAwAAUFXVGmqSk5MVFxennJwcp62wsFCLFy9Whw4dJElt2rRRYGCgV5+9e/dq48aNTh8AAICqqvLhp6NHj2rr1q3O/e3bt2vdunWKiopSkyZNlJmZqbFjx6p58+Zq3ry5xo4dq9DQUA0YMECSFBERobvuuksPP/ywoqOjFRUVpeHDh6tVq1bO1VAAAABVVeVQs2rVKqWmpjr3S0/gvfPOO5WVlaURI0boxIkTuv/++3X48GG1a9dOH3/8scLDw53nTJw4UQEBAbrtttt04sQJpaWlKSsrS/7+/tVQEgAAuBBVOdR07txZFV0F7nK55PF45PF4yu0THBysSZMmadKkSVVdPQAAgE989xMAALACoQYAAFiBUAMAAKxAqAEAAFYg1AAAACsQagAAgBUINQAAwAqEGgAAYAVCDQAAsAKhBgAAWIFQAwAArECoAQAAViDUAAAAKxBqAACAFQg1AADACoQaAABgBUINAACwAqEGAABYgVADAACsQKgBAABWINQAAAArEGoAAIAVCDUAAMAKhBoAAGAFQg0AALACoQYAAFiBUAMAAKxAqAEAAFYIqO0B4MLV9NF5FT7u9jcad62U4pmvgmLXORoVAKCuYk8NAACwAqEGAABYgVADAACsQKgBAABWINQAAAArEGoAAIAVCDUAAMAKhBoAAGAFQg0AALACoQYAAFiBUAMAAKxAqAEAAFYg1AAAACsQagAAgBUINQAAwAqEGgAAYAVCDQAAsAKhBgAAWIFQAwAArECoAQAAViDUAAAAKwTU9gAAALWn6aPzzvq5bn+jcddKKZ75Kih2VeOoKrbj2e7nbF2oW9hTAwAArECoAQAAViDUAAAAKxBqAACAFao91Hg8HrlcLq9bXFyc87gxRh6PRwkJCQoJCVHnzp31xRdfVPcwAADABaZG9tRcfvnl2rt3r3PbsGGD89i4ceM0YcIETZ48WStXrlRcXJzS09N15MiRmhgKAAC4QNTIJd0BAQFee2dKGWP0/PPPa9SoUerbt68kadq0aWrUqJGys7N17733+lxeQUGBCgoKnPv5+fmSpKKiIhUVFTntpf8/tc1GttTp9jcVP+5nvP61FXXa5UKpU6q9Ws/1Z58tn7lnci7qrOlt6DLGVOur0ePxaPz48YqIiJDb7Va7du00duxYXXzxxdq2bZuaNWumNWvW6KqrrnKe07t3bzVo0EDTpk0rd5ljxowp056dna3Q0NDqHD4AAKghx48f14ABA5SXl6f69etX+/KrPdT861//0vHjx3XJJZdo//79+tOf/qTNmzfriy++0JYtW3T99ddr9+7dSkhIcJ5zzz336JtvvtH8+fN9LtPXnprExER9//33XhulqKhIOTk5Sk9PV2BgYHWWdV6xpc4Uj+/5LuX2M/pj2xI9scpPBSXn7g97nWvUaZcLpU6p9mrd6Ol6ztYl2fOZeybnos78/HzFxMTUWKip9sNP3bp1c/7fqlUrXXfddWrWrJmmTZum9u3bS5JcLu8XvzGmTNup3G633G53mfbAwECfG768dtvU9Tor+xdIC0pc5/SvldYW6rTLhVKndO5rra3Pvbr+mVtZNVlnTW+/Gr+kOywsTK1atdJXX33lnGezb98+rz4HDhxQo0aNanooAADAYjUeagoKCvTll18qPj5eycnJiouLU05OjvN4YWGhFi9erA4dOtT0UAAAgMWq/fDT8OHD1bNnTzVp0kQHDhzQn/70J+Xn5+vOO++Uy+VSZmamxo4dq+bNm6t58+YaO3asQkNDNWDAgOoeCgAAuIBUe6j59ttv1b9/f33//fdq2LCh2rdvrxUrVigpKUmSNGLECJ04cUL333+/Dh8+rHbt2unjjz9WeHh4dQ8FAABcQKo91Lz55psVPu5yueTxeOTxeKp71QAA4ALGdz8BAAArEGoAAIAVCDUAAMAKhBoAAGAFQg0AALACoQYAAFiBUAMAAKxAqAEAAFYg1AAAACsQagAAgBUINQAAwAqEGgAAYAVCDQAAsAKhBgAAWIFQAwAArECoAQAAViDUAAAAKxBqAACAFQg1AADACgG1PQBUj6aPzqvtIQAAUKvYUwMAAKxAqAEAAFYg1AAAACsQagAAgBUINQAAwAqEGgAAYAVCDQAAsAKhBgAAWIFQAwAArECoAQAAViDUAAAAKxBqAACAFQg1AADACoQaAABgBUINAACwAqEGAABYgVADAACsQKgBAABWINQAAAArEGoAAIAVAmp7AAAAVEXTR+ed0/W5/Y3GXSuleOaroNh1VsvY8Wz3ah4VfGFPDQAAsAKhBgAAWIFQAwAArECoAQAAViDUAAAAKxBqAACAFQg1AADACoQaAABgBUINAACwAqEGAABYgVADAACswHc/+XCuv1ekqqrje0gAALANoQYAgBp2vv+yLJX9hbkufglnrR5+mjJlipKTkxUcHKw2bdro008/rc3hAACAOqzWQs3MmTOVmZmpUaNGae3aterYsaO6deumnTt31taQAABAHVZroWbChAm66667dPfdd6tly5Z6/vnnlZiYqBdffLG2hgQAAOqwWjmnprCwUKtXr9ajjz7q1Z6RkaFly5aV6V9QUKCCggLnfl5eniTp0KFDKioqctqLiop0/PhxHTx4UIGBgWc9voCTx876uedCQInR8eMlCijyU3GJvScKU6ddqNM+F0qtF2qdBw8erPZ1HDlyRJJkjKn2ZZcu+JzbvXu3kWT+/e9/e7U//fTT5pJLLinTf/To0UYSN27cuHHjxs2C265du2okX9Tq1U8ul3fiNcaUaZOkxx57TMOGDXPul5SU6NChQ4qOjvbqn5+fr8TERO3atUv169evuYHXMuq0C3Xa5UKpU7pwaqXO6mOM0ZEjR5SQkFAjy6+VUBMTEyN/f3/t27fPq/3AgQNq1KhRmf5ut1tut9urrUGDBuUuv379+la/8EpRp12o0y4XSp3ShVMrdVaPiIiIGlt2rZwoHBQUpDZt2ignJ8erPScnRx06dKiNIQEAgDqu1g4/DRs2TAMHDlTbtm113XXX6e9//7t27typ++67r7aGBAAA6rBaCzW33367Dh48qKeeekp79+5VSkqKPvzwQyUlJZ31Mt1ut0aPHl3mUJVtqNMu1GmXC6VO6cKplTrrDpcxNXVdFQAAwLnDt3QDAAArEGoAAIAVCDUAAMAKhBoAAGAFQg0AALDCOQk1hw8f1sCBAxUREaGIiAgNHDhQP/zwQ4XPMcbI4/EoISFBISEh6ty5s7744guvPgUFBRo6dKhiYmIUFhamXr166dtvvy2zrHnz5qldu3YKCQlRTEyM+vbt63OdBw8eVOPGjeVyucqMzxijP//5z7rkkkvkdruVmJiosWPHevWZO3eu89UNfn5+ateuXZ2qc8eOHXK5XGVuH330kdNn0aJFPvv06tXLulqluj+np9q6davCw8PL/DXu8ub0888/t6pOqe7P55YtW5SamqpGjRopODhYF198sR5//HGvL/a1YT4rU6dU9+dz0aJF6t27t+Lj4xUWFqYrr7xSr7/+utdzbZjPytQpSYsXL1abNm2cOX/ppZcqrLG8wmvczTffbFJSUsyyZcvMsmXLTEpKiunRo0eFz3n22WdNeHi4eeedd8yGDRvM7bffbuLj401+fr7T57777jMXXXSRycnJMWvWrDGpqammdevW5uTJk06fWbNmmcjISPPiiy+aLVu2mM2bN5u3337b5zp79+5tunXrZiSZw4cPez02dOhQ06JFC/Pee++Zbdu2mbVr15qcnBzn8W3bthk/Pz8THR1tsrOzzaOPPmokmTZt2tSZOrdv324kmdzcXLN3717nVlBQ4PRZuHChkWQ6duxoLr30UvPBBx+YDz74oM7NaWVqtWFOSxUWFpq2bduabt26mYiICK/HSuf0kksucebz0ksvNd27d7eqThvm8+uvvzavvvqqWbdundmxY4d57733TGxsrHnsscecPjbMZ2XqtGE+n376afP444+bf//732br1q3mr3/9q/Hz8zPvv/++08eG+axMndu2bTOhoaHmwQcfNJs2bTL/+Mc/TGBgoJk1a1aFdZ6uxkPNpk2bjCSzYsUKp2358uVGktm8ebPP55SUlJi4uDjz7LPPOm0//vijiYiIMC+99JIxxpgffvjBBAYGmjfffNPps3v3buPn52c++ugjY4wxRUVF5qKLLjL//Oc/zzjOKVOmmE6dOplPPvmkzIRs2rTJBAQElDteY4y56667ytTZp0+fOlVn6Q/6tWvXlvv80jdYXZ/TytRqw5yWGjFihLnjjjvM1KlTy/ywz8rKMpK8Qnpdm8/K1GnTfJ7qoYceMjfccINz36b5rKhOW+fz5z//uRk8eLBz39b5PL3OESNGmEsvvdSrz7333mvat29/xnWfqsYPPy1fvlwRERFq166d09a+fXtFRERo2bJlPp+zfft27du3TxkZGU6b2+1Wp06dnOesXr1aRUVFXn0SEhKUkpLi9FmzZo12794tPz8/XXXVVYqPj1e3bt3K7ILbtGmTnnrqKU2fPl1+fmU3yQcffKCLL75Yc+fOVXJyspo2baq7775bhw4dcvosWbJEQUFBXnX++te/liR9+umndaLOUr169VJsbKyuv/56zZo1y2cfl8ulPn36KC0tTQsXLqxzc1qZWm2Z0wULFujtt9/WCy+84PPx0mX+9re/VXx8vNLS0nTixIk6N59nqtOW+TzV1q1b9dFHH6lTp05Omy3zeaY6bZxPScrLy1NUVJRz38b59FXn8uXLvcYiSV27dtWqVavKHHasSI2Hmn379ik2NrZMe2xsbJlv6T71OZLKfGN3o0aNnMf27dunoKAgRUZGlttn27ZtkiSPx6PHH39cc+fOVWRkpDp16uQEkoKCAvXv31/jx49XkyZNfI5n27Zt+uabb/T2229r+vTpysrK0urVq3Xrrbc6fQ4dOqTw8PAyYzl1HOd7nfXq1dOECRM0a9Ysffjhh0pLS9Ptt9+uGTNmOH3i4+PVp08fJSYmavbs2WrRooXS0tK0ZMmSOjWnlanVhjk9ePCgBg0apKysrHK/dbeoqEixsbF65513vOY0PDy8zsxnZeq0YT5LdejQQcHBwWrevLk6duyop556ynnMhvmsTJ02zWepWbNmaeXKlRo8eLDTZtN8VlTnvn37fI735MmT+v777yu1XOl/CDUej8fnyUun3latWiXpp9/qT2eM8dl+qtMfr8xzTu1TUlIiSRo1apT69eunNm3aaOrUqXK5XHr77bclSY899phatmypO+64o9w6X375ZRUUFOizzz7TjTfeqNTUVK1bt04LFy6ssE7zf99AURfqlKTJkydr2LBhateuna655hr98Y9/VElJiQYOHOjM6ZEjR3TNNdcoODhY1113naZMmaLu3bvrz3/+c52a04YNG1ZYqw1z6vF4FBMTo127dqlTp05yuVwaPHiw8vLyvN6jDRs2VIMGDXT11Vd7zenhw4etqrO88fpqP1/rLK1n+fLlKigokCT9/e9/l7+/v1XzWZk6yxuvr/bzvc7S2y9+8QsVFhYqJSXFmvk83aJFizRo0CD94x//0OWXX37G8fpqr8hZh5ohQ4boyy+/rPCWkpKiuLg47d+/v8zzv/vuuzKprFRcXJwklUmhBw4ccJ4TFxenwsJCHT58uNw+8fHxkqTLLrvMedztduviiy/Wzp07Jf3/XdYBAQEKCAhQWlqaJCkmJkajR4/WkCFDdP/998vf39+rtrVr10qS/vnPfyolJUVRUVHKz88vMxZJSk5OPu/rlHzP6bhx4xQUFFThnLZv315fffVVnZpTX6/XU2u1YU6HDBmievXqyc/Pz7mVfjj4+fnpT3/6U7nv0fbt2+vEiRN1Zj4rU6cN8+nrdfvcc8/J7XZr48aN1sxnZeq0aT6nTZum0NBQjRkzplI/Q+vSfJ5q8eLF6tmzpyZMmOAcKjx1zL7GGxAQoOjoaJ91+lSlM3DOQumJwp999pnTtmLFikqd5PTcc885bQUFBT5Pcpo5c6bTZ8+ePV4nOeXl5Rm32+11klNhYaGJjY01L7/8sjHGmK1bt5oNGzY4t1dffdVIMsuWLTP79+83xhgzf/58I8ls3brVWc66deuMJLNlyxZjzP8/ae3UOm+55ZY6VacvDz/8sElOTvZqO31O+/XrZ66++mrrarVhTjdt2uTV509/+pMJDw83GzZsMIcOHXL6nF5namqqdXXaMJ++TJ8+3QQEBJiioiJnW9T1+axMnbbM58KFC01YWJiZPHmyzzHbMp9nqnPEiBGmZcuWXm333XdflU8UPmeXdF9xxRVm+fLlZvny5aZVq1ZlLv9t0aKFmT17tnP/2WefNREREWb27Nlmw4YNpn///j4vR2vcuLHJzc01a9asMTfddFOZy9EefPBBc9FFF5n58+ebzZs3m7vuusvExsY6H3SnK72659Qzt4uLi83VV19tbrzxRrNmzRqzatUq065dO5Oenu70Kb28MCYmxrzxxhtm5MiRPi8vPJ/rzMrKMq+//rrZtGmT2bx5sxk/frwJDAw0EyZMcPpMnDjRzJkzx3Ts2NFccsklZuDAgUaSadKkSZ2a08rUasOcns7XVUETJ040V111lWnRooV5/fXXnTm1rU4b5nPGjBlm5syZZtOmTebrr782b731lrnooovMr371K6ePDfNZmTptmM+FCxea0NBQ89hjj3n9aYmDBw86fWyYz8rUWXpJ90MPPWQ2bdpkXnnllfPzkm5jjDl48KD51a9+ZcLDw014eLj51a9+VeYDSZKZOnWqc7+kpMSMHj3axMXFGbfbbW688UazYcMGr+ecOHHCDBkyxERFRZmQkBDTo0cPs3PnTq8+hYWF5uGHHzaxsbEmPDzcdOnSxWzcuLHcsZb3gbl7927Tt29fU69ePdOoUSMzaNAgrwkxxpj333/fREZGGknG5XKZa6+9tk7VmZWVZVq2bGlCQ0NNeHi4adOmjXnttde8nvfcc8+ZZs2aGbfbbYKCgoy/v78JCQmpc3NamVqNqftzejpfP+yfe+4507RpU+Pn52ckGX9/f9O5c2fr6jSm7s/nm2++aa6++mpTr149ExYWZi677DIzduxYc+LECaePDfNZmTqNqfvzeeeddzp/IuPUW6dOnZw+NsxnZeo0xphFixaZq666ygQFBZmmTZuaF198sdz1lMf1fxsDAACgTuO7nwAAgBUINQAAwAqEGgAAYAVCDQAAsAKhBgAAWIFQAwAArECoAQAAViDUAAAAKxBqAACAFQg1AADACoQaAABghf8HIbCK/IOi3D0AAAAASUVORK5CYII=", "text/plain": [ "
    " ] @@ -916,7 +1885,9 @@ "# the data shows clearly a trend, so the predictions of the trends are close to each other:\n", "print(\"mean of the velocity estimates %f4.2 and the standard deviation %f4.2\"%(np.mean(vel),np.std(vel)))\n", "\n", - "plt.hist(vel,50);plt.title('Distribution of eastward velocities (mm/year)');plt.grid(True)\n", + "plt.hist(vel,10);plt.title('Distribution of eastward velocities (mm/year)');plt.grid(True)\n", + "# only show a few values in the x-axis\n", + "\n", "plt.show()" ] }, @@ -956,22 +1927,22 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 271, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 25, + "execution_count": 271, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmoAAAHFCAYAAABCcNXZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABhlElEQVR4nO3deVhUdf8+8HtEVhGURRZDQH1UeFxScIFSlAKUMspdiyBzwSUVKhMXRJ+Q9GuG5fZoJlqmWJimUTCWa04uCC64VaJUQoqaqCgMw+f3hw/n5ziAgCCHmft1XVx5znnPOZ/3GUfuzjYKIYQAEREREclOo/oeABERERGVj0GNiIiISKYY1IiIiIhkikGNiIiISKYY1IiIiIhkikGNiIiISKYY1IiIiIhkikGNiIiISKYY1IiIiIhkikGNiJ6oxMREKBSKCn/27NlTJ9tdsGABtm3bVifrpupJSUlBbGxsfQ+DqEFoXN8DICLDtG7dOnTo0EFnvqenZ51sb8GCBRgyZAhefvnlOlk/VV1KSgqWL1/OsEZUBQxqRFQvOnbsCG9v7/oeBhGRrPHUJxHJ1vLly9GnTx+0aNECTZo0QadOnbBo0SKo1WqtuoyMDLz44oto0aIFTE1N4ezsjBdeeAF//vknAEChUODOnTtYv369dIq1b9++lW67qKgI8+fPh4eHB8zMzGBra4t+/frh4MGDUs29e/cQHR0Nd3d3mJiYoGXLlpg0aRL++ecfrXW5ubnhxRdfxM6dO9G1a1eYm5vDw8MDO3fuBHD/dLCHhweaNGmCHj164OjRo1qvDw8Ph6WlJbKysvDcc8+hSZMmsLe3x+TJk1FYWKhVW90x/fDDD+jWrRvMzc3RoUMHfPbZZzr7Ii8vD+PHj8dTTz0FExMTuLu7Y968eSgpKZFqLl68CIVCgcWLF2PJkiVwd3eHpaUlfHx88Msvv2j1snz5cul9Kfu5ePFipe8HkaHiETUiqhcajUbrFz1w/xe3kZGRNP37779j1KhRUug4fvw44uLicPbsWSlQ3LlzBwEBAXB3d8fy5cvh4OCAvLw87N69G7du3QIAqFQq+Pv7o1+/fpgzZw4AwMrKqsKxlZSUYMCAAdi/fz+mTZsGf39/lJSU4JdffkFOTg58fX0hhMDLL7+MH3/8EdHR0ejduzdOnDiBuXPnQqVSQaVSwdTUVFrn8ePHER0djVmzZsHa2hrz5s3DoEGDEB0djR9//BELFiyAQqHAe++9hxdffBHZ2dkwNzeXXq9WqxEcHIzx48djxowZOHjwIN5//31cunQJO3bsAIAajentt9/GjBkz4ODggE8//RRvvvkm2rZtiz59+gC4H9J69OiBRo0aISYmBm3atIFKpcL777+PixcvYt26dVr7bvny5ejQoQMSEhIAAHPmzEFwcDCys7NhbW2NOXPm4M6dO/j666+hUqmk1zk5OT3ibwyRgRJERE/QunXrBIByf4yMjCp8nUajEWq1WmzYsEEYGRmJ69evCyGEOHr0qAAgtm3bVul2mzRpIsLCwqo0xg0bNggAYs2aNRXW/PDDDwKAWLRokdb8pKQkAUCsXr1amufq6irMzc3Fn3/+Kc3LzMwUAISTk5O4c+eONH/btm0CgPj222+leWFhYQKAWLp0qda24uLiBABx4MCBGo3JzMxMXLp0SZp39+5dYWNjI8aPHy/NGz9+vLC0tNSqE0KIxYsXCwAiKytLCCFEdna2ACA6deokSkpKpLrDhw8LAGLTpk3SvEmTJgn++iGqGp76JKJ6sWHDBhw5ckTr59ChQ1o1GRkZeOmll2BrawsjIyMYGxvj9ddfh0ajwfnz5wEAbdu2RfPmzfHee+9h1apVOH369GOP7fvvv4eZmRlGjx5dYc1PP/0E4P6pvAcNHToUTZo0wY8//qg1/+mnn0bLli2laQ8PDwBA3759YWFhoTP/0qVLOtt89dVXtaZHjRoFANi9e3eNx9SqVStp2szMDO3atdPa9s6dO9GvXz84OzujpKRE+hkwYAAAYO/evVrrfOGFF7SOinbu3LnCfojo0Xjqk4jqhYeHR6U3E+Tk5KB3795o3749li5dCjc3N5iZmeHw4cOYNGkS7t69CwCwtrbG3r17ERcXh5kzZ+LGjRtwcnLC2LFjMXv2bBgbG1d7bFevXoWzszMaNar4/2WvXbuGxo0bw97eXmu+QqGAo6Mjrl27pjXfxsZGa9rExKTS+ffu3dOa37hxY9ja2mrNc3R0lMZSkzE9vD4AMDU1lfYtAPz999/YsWNHhfsxPz+/0nWWnWp9cJ1EVHUMakQkS9u2bcOdO3ewdetWuLq6SvMzMzN1ajt16oTNmzdDCIETJ04gMTER8+fPh7m5OWbMmFHtbdvb2+PAgQMoLS2tMKzZ2tqipKQEV69e1QpGQgjk5eWhe/fu1d5uZUpKSnDt2jWtIJSXlyeNpa7GZGdnh86dOyMuLq7c5c7OztVeJxFVHU99EpEsKRQKANC6+F0IgTVr1lT6mi5duuCjjz5Cs2bNcOzYMWnZw0eKKjNgwADcu3cPiYmJFdY899xzAIAvvvhCa35ycjLu3LkjLa9NGzdu1Jr+8ssvAUC6g7UuxvTiiy/i1KlTaNOmDby9vXV+ahLUeJSNqOp4RI2I6sWpU6d07voEgDZt2sDe3h4BAQEwMTHByJEjMX36dNy7dw8rV67EjRs3tOp37tyJFStW4OWXX0br1q0hhMDWrVvxzz//ICAgQKrr1KkT9uzZgx07dsDJyQlNmzZF+/btyx3byJEjsW7dOkRERODcuXPo168fSktLcejQIXh4eGDEiBEICAhAUFAQ3nvvPRQUFOCZZ56R7rDs2rUrQkNDa3V/mZiY4MMPP8Tt27fRvXt36a7PAQMG4NlnnwWAOhnT/PnzoVQq4evriylTpqB9+/a4d+8eLl68iJSUFKxatQpPPfVUtdbZqVMnAMDChQsxYMAAGBkZoXPnztJpXyJ6QL3eykBEBqeyuz7x0J2WO3bsEF26dBFmZmaiZcuW4t133xXff/+9ACB2794thBDi7NmzYuTIkaJNmzbC3NxcWFtbix49eojExESt7WZmZopnnnlGWFhYCADCz8+v0nHevXtXxMTEiH/961/CxMRE2NraCn9/f3Hw4EGtmvfee0+4uroKY2Nj4eTkJCZMmCBu3LihtS5XV1fxwgsv6GwDgJg0aZLWvLK7J//v//5PmhcWFiaaNGkiTpw4Ifr27SvMzc2FjY2NmDBhgrh9+7bOuB9nTH5+fjr75urVq2LKlCnC3d1dGBsbCxsbG+Hl5SVmzZolbb+8cT/Y59y5c6XpoqIiMWbMGGFvby8UCoUAILKzs3VeR0RCKIQQoj4CIhERVU14eDi+/vpr3L59u76HQkRPGK9RIyIiIpIpBjUiIiIimeKpTyIiIiKZ4hE1IiIiIpliUCMiIiKSKQY1IiIiIpniA29lrLS0FJcvX0bTpk2lp7QTERGRvAkhcOvWrUd+Z3BVMKjJ2OXLl+Hi4lLfwyAiIqIa+OOPP6r9zR0PY1CTsaZNmwK4/0ZbWVnV82jqhlqtRlpaGgIDA2FsbFzfw3kiDK1n9qv/DK1n9qv/HrfngoICuLi4SL/HHweDmoyVne60srLS66BmYWEBKysrg/oHwJB6Zr/6z9B6Zr/6r7Z6ro3LlngzAREREZFMMagRERERyRSDGhEREZFM8Ro1IiIyeBqNBmq1ukq1arUajRs3xr1796DRaOp4ZPXP0PoFHt2zsbExjIyMnshYGNSIiMhgCSGQl5eHf/75p1qvcXR0xB9//GEQz7g0tH6BqvXcrFkzODo61vk+YVAjIiKDVRbSWrRoAQsLiyr90i0tLcXt27dhaWn52A8zbQgMrV+g8p6FECgsLMSVK1cAAE5OTnU6FgY1IiIySBqNRgpptra2VX5daWkpiouLYWZmZhDBxdD6BR7ds7m5OQDgypUraNGiRZ2eBjWMPU5ERPSQsmvSLCws6nkk1BCV/b2p6rWNNcWgRkREBs1Qrrui2vWk/t4wqBERERHJFIMaERGRAXNzc0NCQkKV6/fs2QOFQlGtO2Wp5hjUiIiIGpC+ffti2rRptba+I0eOYNy4cVWu9/X1RW5uLqytrWttDHWhtvdTfeFdn0RERI9BUypwOPs6rty6hxZNzdDD3QZGjer3ujchBDQaDRo3fvSveXt7+2qt28TEBI6OjjUdGlUTj6gRERHV0A+ncvHswp8wcs0vmLo5EyPX/IJnF/6EH07l1sn2wsPDsXfvXixduhQKhQIKhQIXL16UTkempqbC29sbpqam2L9/P37//XeEhITAwcEBlpaW6N69O3bt2qW1zodPfSoUCnz66ad45ZVXYGFhgfbt2yMlJUVa/vCpz8TERDRr1gypqanw8PCApaUl+vfvj9zc/78PSkpKMGXKFDRr1gy2trZ47733EBYWhpdffrnCXi9duoSBAweiefPmaNKkCf79739rjeP06dMIDg6GpaUlHBwcEBoaivz8/Er3U0PEoEZERFQDP5zKw4QvjiH35j2t+Xk372HCF8fqJKwtXboUPj4+GDt2LHJzc5GbmwsXFxdp+fTp0xEfH48zZ86gc+fOuH37NoKDg7Fr1y5kZGQgKCgIAwcORE5OTqXbmTdvHoYNG4YTJ05gwIABGD9+PK5fv15hfWFhIRYvXozPP/8c+/btQ05ODt555x1p+cKFC7Fx40asW7cOP//8MwoKCrBt27ZKxzBp0iQUFRVh3759OHnyJBYuXAhLS0sAQG5uLvz8/PD000/j6NGj+OGHH/D3339j2LBhVdpPDQlPfRIREVWTplRg/s4zEOUsEwAUAObtOI0AT8daPQ1qbW0NExMTWFhYlHv6cf78+QgICJCmbW1t0aVLF2n6/fffxzfffINvv/0WkydPrnA74eHhGDlyJAAgLi4Oy5Ytw+HDhxEcHFxuvVqtxqpVq9CmTRsAwOTJkzF//nxp+SeffILo6Gi88sorAIBly5ZpHR0rT05ODgYPHoxOnToBAFq3bi0tW7lyJbp164YFCxZI8z777DO4uLjg/PnzaNeuXaX7qSHhETUiIqJqOvZHAfIK7lW4XADIvXkPh7MrPgpVF7y9vbWm79y5g+nTp8PT0xPNmjWDpaUlzp49+8gjap07d5b+3KRJE1haWkpfmVQeCwsLKaQB979Wqaz+5s2b+Pvvv9GjRw9puZGREby8vCodw5QpU/D+++/jmWeewdy5c3HixAlpWXp6Onbv3g1LS0vpp0OHDgCA33//vdL1NjQMakRERNWUf6e4SnVXblUc5upCkyZNtKbfffddJCcnIy4uDvv370dmZiY6deqE4uLKx29sbKw1rVAoUFpaWq16IYTOvAc9vPxhY8aMwYULFxAaGoqTJ0/C29sbn3zyCYD7X/E0cOBAZGZmav38+uuv6NOnT6XrbWgaTFCLi4uDr68vLCws0KxZs3Jrpk6dCi8vL5iamuLpp58utyY1NRW9evVC06ZNYW9vj8GDByM7O1urZu/evfDy8oKZmRlat26NVatW6awnOTkZnp6eMDU1haenJ7755hudmhUrVsDd3R1mZmbw8vLC/v37q903ERHJj10TkyrVtWhqVuvbNjExgUajqVLt/v37ER4ejldeeQWdOnWCo6PjE7+o3traGg4ODjh8+LA0T6PRICMj45GvdXFxQUREBLZu3Yq3334ba9asAQB069YNWVlZcHNzQ9u2bbV+ysJqdfaTnDWYoFZcXIyhQ4diwoQJFdYIITB69GgMHz683OUXLlxASEgI/P39kZmZidTUVOTn52PQoEFSTXZ2NoKDg9G7d29kZGRg5syZmDJlCpKTk6UalUqF4cOHIzQ0FMePH0doaCiGDRuGQ4cOSTVJSUmYNm0aZs2ahYyMDPTu3RsDBgx45OFmIiKSv24uVnC0MkNFV58pADhZ339UR21zc3PDoUOHcPHiReTn51d6pKtt27bYunUrMjMzcfz4cYwaNarS+rry1ltvIT4+Htu3b8e5c+cwdepU3Lhxo9KvYZo2bRpSU1ORnZ2NY8eO4aeffoKHhweA+zcaXL9+HSNHjsThw4dx4cIFpKWlYfTo0VI4q85+krMGE9TmzZuHyMhI6aLC8nz88ceYNGmS1gWHDzp27Bg0Gg3ef/99tGnTBt26dcM777yD48ePS1+qumrVKrRq1QoJCQnw8PDAmDFjMHr0aCxevFhaT0JCAgICAhAdHY0OHTogOjoazz33nNbtzUuWLMGbb76JMWPGwMPDAwkJCXBxccHKlStrZ4cQEVG9MWqkQMyL90PDw1GjbHruQM86eZ7aO++8AyMjI3h6esLe3r7SAwAfffQRmjdvDl9fXwwcOBBBQUHo1q1brY/pUd577z2MHDkSr7/+Onx8fGBpaYmgoCCYmVV8xFGj0WDSpEnw8PBA//790b59e6xYsQIA4OzsjJ9//hkajQZBQUHo2LEjpk6dCmtrazRqdD/aVGc/yZlB3fXp7e0NIyMjrFu3DuHh4bh9+zY+//xzBAYGSufXVSoVAgMDtV4XFBSEtWvXQq1Ww9jYGCqVCpGRkTo1ZUGtuLgY6enpmDFjhlZNYGAgDh48WOH4ioqKUFRUJE0XFBQAuH83TVmQ1Ddlfelrf+UxtJ7Zr/5rqD2r1WoIIVBaWlqtoy1l11YF/dsBy0d1xfydZ7RuLHC0NsOcFzwQ6OlQJ0dx2rZti59//llrXqtWraQjSQ9us1WrVjrPTSs7M1VWd+HCBa3ph9cjhMClS5fQtGlTlJaWok+fPlo1r7/+Ol5//XWt7b700kvQaDTSvEaNGmHp0qVYunSp9Lp///vfGDp0aIX76MH6B5XVt2nTBl9//bXOciEEhBDl7qeqvh9l73HZ34/ylJaWQggBtVoNIyMjrWW1+VkwqKDm5uaGtLQ0DB06FOPHj4dGo4GPj4/WLcJ5eXlwcHDQep2DgwNKSkqQn58PJyenCmvy8vIAAPn5+dBoNJXWlCc+Ph7z5s3TmZ+WlgYLC4tq99uQKJXK+h7CE2doPbNf/dfQem7cuDEcHR1x+/btR15cX55bt27Bt5UFvovohmN/FCD/TjHsmpigm4sVjBoppP/Z1he3bt2q8WtzcnKwe/duPPPMMygqKsKaNWuQnZ2NgQMHyno/VdZzcXEx7t69i3379qGkpERrWWFhYa2NoV6DWmxsbLnB5EFHjhzRud24pvLy8jBmzBiEhYVh5MiRuHXrFmJiYjBkyBAolUrpXHlFd6Y8OL+8mofnVaXmQdHR0YiKipKmCwoK4OLigsDAQFhZWVWj04ZDrVZDqVQiICBA564hfWVoPbNf/ddQe7537x7++OMPWFpaVnoK7mFCCNy6dQtNmzaV/k1/rpm8v/fycZTXb3VZW1tjy5YtiImJgRACHTt2RFpaGrp3717Lo60dVen53r17MDc3R58+fXT+/tRm+KzXoDZ58mSMGDGi0ho3N7da297y5cthZWWFRYsWSfO++OILuLi44NChQ+jVqxccHR11jnpduXIFjRs3hq2tLQBUWFN2BM3Ozg5GRkaV1pTH1NQUpqamOvONjY0b1D9+NWEIPT7M0Hpmv/qvofWs0WigUCjQqFEj6bqmqig7FVb2Wn1XG/26urrqnIaUs6r03KhRIygUinL/3tfm56Beg5qdnR3s7Oye2PYKCwt1ziOXTZe9KT4+PtixY4dWTVpaGry9vaUd7+PjA6VSqXWdWlpaGnx9fQHcvyXYy8sLSqVSegozcP+0QEhISO03RkRERHqpwVyjlpOTg+vXryMnJwcajQaZmZkA7l9UWfbdX7/99htu376NvLw83L17V6rx9PSEiYkJXnjhBXz00UeYP3++dOpz5syZcHV1RdeuXQEAERERWLZsGaKiojB27FioVCqsXbsWmzZtksYydepU9OnTBwsXLkRISAi2b9+OXbt24cCBA1JNVFQUQkND4e3tDR8fH6xevRo5OTmIiIh4MjuMiIiIGrwGE9RiYmKwfv16abosWO3evRt9+/YFcP8pxnv37tWpyc7OhpubG/z9/fHll19i0aJFWLRoESwsLODj44MffvgB5ubmAAB3d3ekpKQgMjISy5cvh7OzMz7++GMMHjxYWq+vry82b96M2bNnY86cOWjTpg2SkpLQs2dPqWb48OG4du0a5s+fj9zcXHTs2BEpKSlwdXWts31ERERE+qXBBLXExEQkJiZWWrNnz55HrmfEiBGPvC7Oz88Px44dq7RmyJAhGDJkSKU1EydOxMSJEx85JiIiIqLy6P9VkEREREQNFIMaERERkUwxqBERERkYNzc3ra89VCgU2LZtW4X1OTk5MDIykm7Sq6mLFy9CoVA89noMCYMaERGRgcvNzcWAAQNqdZ3h4eF4+eWXtea5uLhIN9jJmZGREb777rv6HgaABnQzAREREdUNR0fHJ7IdIyOjJ7YtfcEjakRERA3Ef//7X7Rs2VLni8JfeuklhIWFAQB+//13hISEwMHBAZaWlujevbvOF7M/7OFTn4cPH0bXrl1hZmaGHj164MSJE1r1Go0Gb775Jtzd3WFubo727dtrfYF6bGws1q9fj+3bt0OhUEChUGDPnj3lnvrcu3cvevToAVNTUzg5OWHGjBla353Zt29fTJkyBdOnT4eNjQ0cHR0RGxtbaT979uxBjx490KRJEzRr1gzPPPMMLl26JC3fsWMHvLy8YGZmhtatW2PevHnSNsu+Eem1116DkZFRrX5DUk0wqBERETUQQ4cORX5+Pnbv3i3Nu3HjBlJTU/Hqq68CAG7fvo3g4GDs2rULGRkZCAoKwsCBA5GTk1Olbdy5cwcvvvgi2rdvj/T0dMTExGDOnDlaNaWlpXjqqaewZcsWnD59GjExMZg5cya2bNkCAHjnnXcwbNgw9O/fH7m5ucjNzZW+vedBf/31F4KDg9G9e3ccP34cK1euxNq1a/H+++9r1a1fvx5NmjTBoUOHsGjRIsyfPx9KpbLc8ZeUlODll1+Gn58fTpw4AZVKhXHjxknf2ZmamorXXnsNU6ZMwenTp/Hf//4XiYmJiIuLA3D/O8aB+187+ddff0nT9YWnPomIiB7H9evAuHHAL78AvXoBq1cDNjZ1sikbGxv0798fX375JZ577jkAwFdffQUbGxtpukuXLujSpYv0mvfffx/ffPMNvv32W0yePPmR29i4cSM0Gg0+++wzWFhYwMPDA7/99hvefvttqcbY2Bjz5s2Tpt3d3XHw4EFs2bIFw4YNg6WlJczNzVFUVFTpqc4VK1bAxcUFy5Ytg0KhQIcOHXD58mW89957iImJkb5ns3Pnzpg7dy4A4F//+heWLVuGH3/8EQEBATrrLCgowM2bN/Hiiy+iTZs2AAAPDw9peVxcHGbMmCEdgWzdujX+85//YPr06Zg7dy7s7e0B3P8ieUdHx3r/PlceUSMiInoc48YB27YBf/11/7/jxtXp5l599VUkJyejqKgIwP1gNWLECOm7q+/cuYPp06fD09MTzZo1g6WlJc6ePVvlI2pnzpxBly5dYGFhIc3r3r27Tt2qVavg7e0Ne3t7WFpaYs2aNVXexoPb8vHxkY52AcAzzzyD27dv488//5Tmde7cWet1Tk5OuHLlSrnrtLGxQXh4uHQkcenSpcjNzZWWp6enY/78+bC0tJR+xo4di9zcXBQWFlZr/E8CgxoREdHj+OUXQKO5/2eN5v50HRo4cCBKS0vx3Xff4Y8//sD+/fvx2muvScvfffddJCcnIy4uDvv370dmZiY6deqE4uLiKq1fCPHImi1btiAyMhKjR49GWloaMjMz8cYbb1R5Gw9u68GQ9uD2H5xvbGysVaNQKHSu03vQunXroFKp4Ovri6SkJLRr1w6//O99KS0txbx585CZmSn9nDx5Er/++ivMzMyqNf4ngac+iYiIHkevXvePpGk0gJHR/ek6ZG5ujkGDBmHjxo347bff0K5dO3h5eUnL9+/fj/DwcLzyyisA7l+zdvHixSqv39PTE59//jnu3r0rfQ/20aNHtWr2798PX19fra9J/P3337VqTExMoCkLsJVsKzk5WSuwHTx4EE2bNkXLli2rPObydO3aFV27dkV0dDR8fHzw5ZdfolevXujWrRvOnTuHtm3bVvhaY2PjR479SeERNSIiosexejXw8stAy5b3/7t6dZ1v8tVXX8V3332Hzz77TOtoGgC0bdsWW7duRWZmJo4fP45Ro0ZVevTpYaNGjUKjRo3w5ptv4vTp00hJScGyZct0tnH06FGkpqbi/PnzmDNnjs5F925ubjhx4gTOnTuH/Px8qNVqnW1NnDgRf/zxB9566y2cPXsW27dvx9y5cxEVFVXja8Oys7MRHR0NlUqFS5cuIS0tDefPn5euU4uJicGGDRsQGxuLrKwsnDlzBklJSZg9e7bW2Pfu3Yu8vDzcuHGjRuOoLQxqREREj8PGBvj6a+DPP+//t45uJHiQv78/bGxscO7cOYwaNUpr2UcffYTmzZvD19cXAwcORFBQELp161bldVtaWmLHjh04ffo0unbtijlz5ug8DiMiIgKDBg3C8OHD0bNnT1y7dk3r6BoAjB07Fu3bt5euY/v55591ttWyZUukpKTg8OHD6NKlCyIiIvDmm29qhabqsrCwwNmzZzF48GC0a9cO48aNw+TJkzF+/HgAQFBQEHbu3AmlUonu3bujV69eWLJkCVxdXaV1/N///R/27NkDV1dXdO3atcZjqQ0KUZWT0VQvCgoKYG1tjZs3b8LKyqq+h1Mn1Go1UlJSEBwcrHMNgr4ytJ7Zr/5rqD3fu3cP2dnZcHd3r9a1SaWlpSgoKICVlVW93xH4JBhav0DVeq7s709t/v42jD1ORERE1AAxqBERERHJFIMaERERkUwxqBERERHJFIMaEREZNN5TRzXxpP7eMKgREZFBKrtDVY5fG0TyV/b3pq7vdOY3ExARkUEyMjJCs2bNpO+MtLCw0Pk6o/KUlpaiuLgY9+7dM4jHVRhav0DlPQshUFhYiCtXrqBZs2bSd6zWFQY1IiIyWI6OjgBQ4Rd8l0cIIX29UlWCXUNnaP0CVeu5WbNm0t+fusSgRkREBkuhUMDJyQktWrQo9yuOyqNWq7Fv3z706dOnQT3gt6YMrV/g0T0bGxvX+ZG0MgxqRERk8IyMjKr8i9fIyAglJSUwMzMziOBiaP0C8urZME42ExERETVADGpEREREMsWgRkRERCRTDGpEREREMsWgRkRERCRTDGpEREREMsWgRkRERCRTDGpEREREMsWgRkRERCRTDGpEREREMsWgRkRERCRTDGpEREREMsWgRkRERCRTDGpEREREMsWgRkRERCRTDGpEREREMsWgRkRERCRTDGpEREREMsWgRkRERCRTDSaoxcXFwdfXFxYWFmjWrJnO8uPHj2PkyJFwcXGBubk5PDw8sHTpUp26kydPws/PD+bm5mjZsiXmz58PIYRWzd69e+Hl5QUzMzO0bt0aq1at0llPcnIyPD09YWpqCk9PT3zzzTc6NStWrIC7uzvMzMzg5eWF/fv313wHEBERkcFpMEGtuLgYQ4cOxYQJE8pdnp6eDnt7e3zxxRfIysrCrFmzEB0djWXLlkk1BQUFCAgIgLOzM44cOYJPPvkEixcvxpIlS6Sa7OxsBAcHo3fv3sjIyMDMmTMxZcoUJCcnSzUqlQrDhw9HaGgojh8/jtDQUAwbNgyHDh2SapKSkjBt2jTMmjULGRkZ6N27NwYMGICcnJw62DtERESkjxrX9wCqat68eQCAxMTEcpePHj1aa7p169ZQqVTYunUrJk+eDADYuHEj7t27h8TERJiamqJjx444f/48lixZgqioKCgUCqxatQqtWrVCQkICAMDDwwNHjx7F4sWLMXjwYABAQkICAgICEB0dDQCIjo7G3r17kZCQgE2bNgEAlixZgjfffBNjxoyRXpOamoqVK1ciPj6+VvcNERER6acGE9Rq4ubNm7CxsZGmVSoV/Pz8YGpqKs0LCgpCdHQ0Ll68CHd3d6hUKgQGBmqtJygoCGvXroVarYaxsTFUKhUiIyN1asrCXXFxMdLT0zFjxgytmsDAQBw8eLDC8RYVFaGoqEiaLigoAACo1Wqo1erqNd9AlPWlr/2Vx9B6Zr/6z9B6Zr/673F7rs19pbdBTaVSYcuWLfjuu++keXl5eXBzc9Oqc3BwkJa5u7sjLy9PmvdgTUlJCfLz8+Hk5FRhTV5eHgAgPz8fGo2m0pryxMfHS0cOH5SWlgYLC4tHN92AKZXK+h7CE2doPbNf/WdoPbNf/VfTngsLC2ttDPUa1GJjY8sNJg86cuQIvL29q7XerKwshISEICYmBgEBAVrLFAqF1nTZjQQPzq9pzcPzqlLzoOjoaERFRUnTBQUFcHFxQWBgIKysrCp8XUOmVquhVCoREBAAY2Pj+h7OE2FoPbNf/WdoPbNf/fe4PZedEasN9RrUJk+ejBEjRlRa8/ARsEc5ffo0/P39MXbsWMyePVtrmaOjo84RrStXrgD4/0fWKqpp3LgxbG1tK60pW4ednR2MjIwqrSmPqamp1mnZMsbGxnr/4TCEHh9maD2zX/1naD2zX/1X055rcz/Va1Czs7ODnZ1dra0vKysL/v7+CAsLQ1xcnM5yHx8fzJw5E8XFxTAxMQFw/7Sis7OzFAh9fHywY8cOrdelpaXB29tb2vE+Pj5QKpVa16mlpaXB19cXAGBiYgIvLy8olUq88sorUo1SqURISEit9UtERET6rcE8niMnJweZmZnIycmBRqNBZmYmMjMzcfv2bQD3Q1q/fv0QEBCAqKgo5OXlIS8vD1evXpXWMWrUKJiamiI8PBynTp3CN998gwULFkh3fAJAREQELl26hKioKJw5cwafffYZ1q5di3feeUdaz9SpU5GWloaFCxfi7NmzWLhwIXbt2oVp06ZJNVFRUfj000/x2Wef4cyZM4iMjEROTg4iIiKezA4jIiKiBq/B3EwQExOD9evXS9Ndu3YFAOzevRt9+/bFV199hatXr2Ljxo3YuHGjVOfq6oqLFy8CAKytraFUKjFp0iR4e3ujefPmiIqK0rouzN3dHSkpKYiMjMTy5cvh7OyMjz/+WHo0BwD4+vpi8+bNmD17NubMmYM2bdogKSkJPXv2lGqGDx+Oa9euYf78+cjNzUXHjh2RkpICV1fXutpFREREpGcaTFBLTEys8BlqwP0bE2JjYx+5nk6dOmHfvn2V1vj5+eHYsWOV1gwZMgRDhgyptGbixImYOHHiI8dEREREVJ4Gc+qTiIiIyNAwqBERERHJFIMaERERkUwxqBERERHJFIMaERERkUwxqBERERHJFIMaERERkUwxqBERERHJFIMaERERkUwxqBERERHJFIMaERERkUwxqBERERHJFIMaERERkUwxqBERERHJFIMaERERkUwxqBERERHJFIMaERERkUwxqBERERHJFIMaERERkUwxqBERERHJFIMaERERkUwxqBERERHJFIMaERERkUwxqBERERHJFIMaERERkUwxqBERERHJFIMaERERkUwxqBERERHJFIMaERERkUwxqBERERHJFIMaERERkUwxqBERERHJFIMaERERkUwxqBERERHJFIMaERERkUwxqBERERHJFIMaERERkUwxqBERERHJFIMaERERkUwxqBERERHJFIMaERERkUwxqBERERHJFIMaERERkUw1mKAWFxcHX19fWFhYoFmzZjrLjx8/jpEjR8LFxQXm5ubw8PDA0qVLtWr27NmDkJAQODk5oUmTJnj66aexceNGnXXt3bsXXl5eMDMzQ+vWrbFq1SqdmuTkZHh6esLU1BSenp745ptvdGpWrFgBd3d3mJmZwcvLC/v376/5DiAiIiKD02CCWnFxMYYOHYoJEyaUuzw9PR329vb44osvkJWVhVmzZiE6OhrLli2Tag4ePIjOnTsjOTkZJ06cwOjRo/H6669jx44dUk12djaCg4PRu3dvZGRkYObMmZgyZQqSk5OlGpVKheHDhyM0NBTHjx9HaGgohg0bhkOHDkk1SUlJmDZtGmbNmoWMjAz07t0bAwYMQE5OTh3sHSIiItJLooFZt26dsLa2rlLtxIkTRb9+/SqtCQ4OFm+88YY0PX36dNGhQwetmvHjx4tevXpJ08OGDRP9+/fXqgkKChIjRoyQpnv06CEiIiK0ajp06CBmzJhRpbELIcTNmzcFAHHz5s0qv6ahKS4uFtu2bRPFxcX1PZQnxtB6Zr/6z9B6Zr/673F7rs3f343rOyjWpZs3b8LGxuaRNR4eHtK0SqVCYGCgVk1QUBDWrl0LtVoNY2NjqFQqREZG6tQkJCQAuH/0Lz09HTNmzNCqCQwMxMGDByscS1FREYqKiqTpgoICAIBarYZara60j4aqrC997a88htYz+9V/htYz+9V/j9tzbe4rvQ1qKpUKW7ZswXfffVdhzddff40jR47gv//9rzQvLy8PDg4OWnUODg4oKSlBfn4+nJycKqzJy8sDAOTn50Oj0VRaU574+HjMmzdPZ35aWhosLCwqblYPKJXK+h7CE2doPbNf/WdoPbNf/VfTngsLC2ttDPUa1GJjY8sNJg86cuQIvL29q7XerKwshISEICYmBgEBAeXW7NmzB+Hh4VizZg3+/e9/ay1TKBRa00IInfnl1Tw8ryo1D4qOjkZUVJQ0XVBQABcXFwQGBsLKyqrC1zVkarUaSqUSAQEBMDY2ru/hPBGG1jP71X+G1jP71X+P23PZGbHaUK9BbfLkyRgxYkSlNW5ubtVa5+nTp+Hv74+xY8di9uzZ5dbs3bsXAwcOxJIlS/D6669rLXN0dNQ56nXlyhU0btwYtra2ldaUHUGzs7ODkZFRpTXlMTU1hampqc58Y2Njvf9wGEKPDzO0ntmv/jO0ntmv/qtpz7W5n+o1qNnZ2cHOzq7W1peVlQV/f3+EhYUhLi6u3Jo9e/bgxRdfxMKFCzFu3Did5T4+Plp3gQL3Tz16e3tLO97HxwdKpVLrOrW0tDT4+voCAExMTODl5QWlUolXXnlFqlEqlQgJCXnsPomIiMgwNJhr1HJycnD9+nXk5ORAo9EgMzMTANC2bVtYWloiKysL/fr1Q2BgIKKioqSjWUZGRrC3twdwP6S98MILmDp1KgYPHizVmJiYSDcdREREYNmyZYiKisLYsWOhUqmwdu1abNq0SRrL1KlT0adPHyxcuBAhISHYvn07du3ahQMHDkg1UVFRCA0Nhbe3N3x8fLB69Wrk5OQgIiLiSewuIiIi0gMNJqjFxMRg/fr10nTXrl0BALt370bfvn3x1Vdf4erVq9i4caPWQ2xdXV1x8eJFAEBiYiIKCwsRHx+P+Ph4qcbPzw979uwBALi7uyMlJQWRkZFYvnw5nJ2d8fHHH2Pw4MFSva+vLzZv3ozZs2djzpw5aNOmDZKSktCzZ0+pZvjw4bh27Rrmz5+P3NxcdOzYESkpKXB1da2L3UNERER6qMEEtcTERCQmJla4PDY2FrGxsY+1jjJ+fn44duxYpTVDhgzBkCFDKq2ZOHEiJk6c+MjtEREREZWnwXwzAREREZGhYVAjIiIikikGNSIiIiKZYlAjIiIikikGNSIiIiKZYlAjIiIikikGNSIiIiKZYlAjIiIikikGNSIiIiKZYlAjIiIikqnHCmpFRUW1NQ4iIiIieki1glpqairCw8PRpk0bGBsbw8LCAk2bNoWfnx/i4uJw+fLluhonERERkcGpUlDbtm0b2rdvj7CwMDRq1Ajvvvsutm7ditTUVKxduxZ+fn7YtWsXWrdujYiICFy9erWux01ERESk9xpXpWjBggVYvHgxXnjhBTRqpJvthg0bBgD466+/sHTpUmzYsAFvv/127Y6UiIiIyMBUKagdPny4Sitr2bIlFi1a9FgDIiIiIqL7eNcnERERkUxV6Yjag4QQ+Prrr7F7925cuXIFpaWlWsu3bt1aa4MjIiIiMmTVDmpTp07F6tWr0a9fPzg4OEChUNTFuIiIiIgMXrWD2hdffIGtW7ciODi4LsZDRERERP9T7WvUrK2t0bp167oYCxERERE9oNpBLTY2FvPmzcPdu3frYjxERERE9D/VPvU5dOhQbNq0CS1atICbmxuMjY21lh87dqzWBkdERERkyKod1MLDw5Geno7XXnuNNxMQERER1aFqB7XvvvsOqampePbZZ+tiPERERET0P9W+Rs3FxQVWVlZ1MRYiIiIiekC1g9qHH36I6dOn4+LFi3UwHCIiIiIqU+1Tn6+99hoKCwvRpk0bWFhY6NxMcP369VobHBEREZEhq3ZQS0hIqINhEBEREdHDqh3UwsLC6mIcRERERPSQage1MleuXCn3S9k7d+782IMiIiIiohoEtfT0dISFheHMmTMQQmgtUygU0Gg0tTY4IiIiIkNW7aD2xhtvoF27dli7di0feEtERERUh6od1LKzs7F161a0bdu2LsZDRERERP9T7eeoPffcczh+/HhdjIWIiIiIHlDtI2qffvopwsLCcOrUKXTs2FHnOWovvfRSrQ2OiIiIyJBVO6gdPHgQBw4cwPfff6+zjDcTEBEREdWeap/6nDJlCkJDQ5Gbm4vS0lKtH4Y0IiIiotpT7aB27do1REZGwsHBoS7GQ0RERET/U+2gNmjQIOzevbsuxkJERERED6j2NWrt2rVDdHQ0Dhw4gE6dOuncTDBlypRaGxwRERGRIVOIh79e4BHc3d0rXplCgQsXLjz2oOi+goICWFtb4+bNm7Cysqq19V4tKELwRz/h6t3SRxfXMVMjgUU9NJh+2AhFGsN4eLKh9cx+9Z+h9cx+9c+uaX5o62gpTavVaqSkpCA4OFjngFRV1Obv7xo98JYars6xqSi4V1LfwyAiIpKN5xP2QgEg+4MX6nsoOqp9jRo1XAxpRERE5RMA3Gd8V9/D0CWqID4+Xty5c6cqpeKXX34RO3furFJtdbz//vvCx8dHmJubC2tra53lmZmZYsSIEeKpp54SZmZmokOHDiIhIaHC9f3666/C0tKy3HXt2bNHdOvWTZiamgp3d3excuVKnZqvv/5aeHh4CBMTE+Hh4SG2bt2qU7N8+XLh5uYmTE1NRbdu3cS+ffuq1fPNmzcFAHHz5s1qva48V27eE67v7RSu7+0Uk4KjRCkgi58ic3Oxbds2UWRuXu9jYc/sl/2yZ/ZrmP1eMW8qnh23Rri+t1P8mntLFBcXi23btoni4uIa/c6tzd/fVTqidvr0abRq1QoTJkzA999/j6tXr0rLSkpKcOLECaxYsQK+vr4YMWJErV5PVaa4uBhDhw7FhAkTyl2enp4Oe3t7fPHFF8jKysKsWbMQHR2NZcuW6dSq1WqMHDkSvXv31lmWnZ2N4OBg9O7dGxkZGZg5cyamTJmC5ORkqUalUmH48OEIDQ3F8ePHERoaimHDhuHQoUNSTVJSEqZNm4ZZs2YhIyMDvXv3xoABA5CTk1MLe6P6XllxQPrzJylLAAAKmfzIaSzsmf0aar9VHXNFdQ2x58fZV4bUrz69vxX1YXf3FrZ8+R4AYMDHeyEnVbpGbcOGDThx4gSWL1+OV199FTdv3oSRkRFMTU1RWFgIAOjatSvGjRuHsLAwmJqa1vpA582bBwBITEwsd/no0aO1plu3bg2VSoWtW7di8uTJWstmz56NDh064LnnnsPBgwe1lq1atQqtWrVCQkICAMDDwwNHjx7F4sWLMXjwYABAQkICAgICEB0dDQCIjo7G3r17kZCQgE2bNgEAlixZgjfffBNjxoyRXpOamoqVK1ciPj6+5juihq7fUWtNKyqoIyLDVNV/E/hvB/dBQ1bRe6cA0OLODQCAuvSJDadKqnyNWufOnfHf//4X165dw7Fjx/DVV19hzZo1SE1Nxd9//42jR49i3LhxdRLSaurmzZuwsbHRmvfTTz/hq6++wvLly8t9jUqlQmBgoNa8oKAgHD16FGq1utKastBXXFyM9PR0nZrAwECdYPik2DTRvmulWrf6EpHeq+q/Cfy3g/ugIavovRMArjRpDgAwltnV+9W+61OhUKBLly7o0qVLXYyn1qhUKmzZsgXffff/Lwy8du0awsPD8cUXX1R4ejYvL0/nWxccHBxQUlKC/Px8ODk5VViTl5cHAMjPz4dGo6m0pjxFRUUoKiqSpgsKCgDcP1VbFhJr6qtxvdD3w/sPKp4W8i7+L033lHB9UJubAwCKzc0N5h8/Q+uZ/eo/Q+uZ/eqfa+aWeG1EPEyNBL6d8Kz0O7emv3sf93f2g6od1GpTbGysdEqzIkeOHIG3t3e11puVlYWQkBDExMQgICBAmj927FiMGjUKffr0qfT1CoX2wVHxv0fNPTi/vJqH51Wl5kHx8fHl7o+0tDRYWFhUOuaqWNTjf3/o8Qy+f+OZx15fbdr12Wf1PYQnztB6Zr/6z9B6Zr/6ZQoAQIOz6Xtx9n/zlEpljdZVdllYbajXoDZ58mSMGDGi0ho3N7dqrfP06dPw9/fH2LFjMXv2bK1lP/30E7799lssXrwYwP3gVFpaisaNG2P16tUYPXo0HB0ddY56XblyBY0bN4atrS0AVFhTdgTNzs4ORkZGldaUJzo6GlFRUdJ0QUEBXFxcEBgYWGs3aPjG/4iCIvk8osO0kcB/vEsx52gjFJUaxpUfhtYz+9V/htYz+9VPCgAnY4MA3D8iplQqERAQUOMH3taWeg1qdnZ2sLOzq7X1ZWVlwd/fH2FhYYiLi9NZrlKpoNFopOnt27dj4cKFOHjwIFq2bAkA8PHxwY4dO7Rel5aWBm9vb+nN8vHxgVKpRGRkpFaNr68vAMDExAReXl5QKpV45ZVXpBqlUomQkJAKx29qalruNX7GxsY1+otSniMx/WX1zQRlikoVevvE64oYWs/sV/8ZWs/sV388/M0EZWr6+7e2fmcDQJWeoyYHly5dEhkZGWLevHnC0tJSZGRkiIyMDHHr1i0hhBCnTp0S9vb24tVXXxW5ubnSz5UrVypc57p163Seo3bhwgVhYWEhIiMjxenTp8XatWuFsbGx+Prrr6Wan3/+WRgZGYkPPvhAnDlzRnzwwQeicePG4pdffpFqNm/eLIyNjcXatWvF6dOnxbRp00STJk3ExYsXq9xzbT6HRa4e91k1DZGh9cx+9Z+h9cx+9V+De47ag0aPHo1bt27pzL9z547OIzJqU0xMDLp27Yq5c+fi9u3b6Nq1K7p27YqjR48CAL766itcvXoVGzduhJOTk/TTvXv3am3H3d0dKSkp2LNnD55++mn85z//wccffyw9mgMAfH19sXnzZqxbtw6dO3dGYmIikpKS0LNnT6lm+PDhSEhIwPz58/H0009j3759SElJgaura+3sECIiItJ71Q5q69evx927d3Xm3717Fxs2bKiVQZUnMTERQgidn759+wK4f2NCecsvXrxY4TrDw8Pxzz//6Mz38/PDsWPHUFRUhOzsbEREROjUDBkyBGfPnkVxcTHOnDmDQYMG6dRMnDgRFy9eRFFREdLT0x95EwMRERHRg6p8jVpBQYEUfm7dugUzMzNpmUajQUpKClq0aFEngyQiIiIyRFUOas2aNYNCoYBCoUC7du10lisUikc+aoOIiIiIqq7KQW337t0QQsDf3x/JyclaT/w3MTGBq6srnJ2d62SQRERERIaoykHNz88PwP0vLW/VqlWlD24lIiIiosdX7ZsJzpw5g59//lmaXr58OZ5++mmMGjUKN27cqNXBERERERmyage1d999V3ri7smTJxEVFYXg4GBcuHBB66n6RERERPR4qv3NBNnZ2fD09AQAJCcnY+DAgViwYAGOHTuG4ODgWh8gERERkaGq9hE1ExMT6ctGd+3ahcDAQACAjY1NrX63FREREZGhq/YRtWeffRZRUVF45plncPjwYSQlJQEAzp8/j6eeeqrWB0hERERkqKp9RG3ZsmVo3Lgxvv76a6xcuVL6MvPvv/8e/fv3r/UBEhERERmqah9Ra9WqFXbu3Kkz/6OPPqqVARERERHRfdUOag+6e/cu1Gq11jwrK6vHGhARERER3VftU5937tzB5MmT0aJFC1haWqJ58+ZaP0RERERUO6od1KZPn46ffvoJK1asgKmpKT799FPMmzcPzs7O2LBhQ12MkYiIiMggVfvU544dO7Bhwwb07dsXo0ePRu/evdG2bVu4urpi48aNePXVV+tinEREREQGp9pH1K5fvw53d3cA969Hu379OoD7j+3Yt29f7Y6OiIiIyIBVO6i1bt0aFy9eBAB4enpiy5YtAO4faWvWrFltjo2IiIjIoFU7qL3xxhs4fvw4ACA6Olq6Vi0yMhLvvvturQ+QiIiIyFBV+xq1yMhI6c/9+vXD2bNncfToUbRp0wZdunSp1cERERERGbLHeo4acP8BuK1ataqNsRARERHRA6p86jM4OBg3b96UpuPi4vDPP/9I09euXYOnp2etDo6IiIjIkFU5qKWmpqKoqEiaXrhwoXTHJwCUlJTg3LlztTs6IiIiIgNW5aAmhKh0moiIiIhqV7Xv+iQiIiKiJ6PKQU2hUEChUOjMIyIiIqK6UeW7PoUQCA8Ph6mpKQDg3r17iIiIQJMmTQBA6/o1IiIiInp8VQ5qYWFhWtOvvfaaTs3rr7/++CMiIiIiIgDVCGrr1q2ry3EQERER0UN4MwERERGRTDGoEREREckUgxoRERGRTDGoEREREckUgxoRERGRTDGoEREREckUgxoRERGRTDGoEREREckUgxoRERGRTDGoEREREckUgxoRERGRTDGoEREREckUgxoRERGRTDGoEREREckUgxoRERGRTDGoEREREclUgwlqcXFx8PX1hYWFBZo1a6az/Pjx4xg5ciRcXFxgbm4ODw8PLF26VKdOCIHFixejXbt2MDU1hYuLCxYsWKBVs3fvXnh5ecHMzAytW7fGqlWrdNaTnJwMT09PmJqawtPTE998841OzYoVK+Du7g4zMzN4eXlh//79Nd8BREREZHAaTFArLi7G0KFDMWHChHKXp6enw97eHl988QWysrIwa9YsREdHY9myZVp1U6dOxaefforFixfj7Nmz2LFjB3r06CEtz87ORnBwMHr37o2MjAzMnDkTU6ZMQXJyslSjUqkwfPhwhIaG4vjx4wgNDcWwYcNw6NAhqSYpKQnTpk3DrFmzkJGRgd69e2PAgAHIycmp5T1DRERE+qpxfQ+gqubNmwcASExMLHf56NGjtaZbt24NlUqFrVu3YvLkyQCAM2fOYOXKlTh16hTat29f7npWrVqFVq1aISEhAQDg4eGBo0ePYvHixRg8eDAAICEhAQEBAYiOjgYAREdHY+/evUhISMCmTZsAAEuWLMGbb76JMWPGSK9JTU3FypUrER8fX/MdQURERAajwQS1mrh58yZsbGyk6R07dqB169bYuXMn+vfvDyEEnn/+eSxatEiqU6lUCAwM1FpPUFAQ1q5dC7VaDWNjY6hUKkRGRurUlIW74uJipKenY8aMGVo1gYGBOHjwYIXjLSoqQlFRkTRdUFAAAFCr1VCr1dXfAQ1AWV/62l95DK1n9qv/DK1n9qv/Hrfn2txXehvUVCoVtmzZgu+++06ad+HCBVy6dAlfffUVNmzYAI1Gg8jISAwZMgQ//fQTACAvLw8ODg5a63JwcEBJSQny8/Ph5ORUYU1eXh4AID8/HxqNptKa8sTHx0tHDh+UlpYGCwuL6u2ABkapVNb3EJ44Q+uZ/eo/Q+uZ/eq/mvZcWFhYa2Oo16AWGxtbbjB50JEjR+Dt7V2t9WZlZSEkJAQxMTEICAiQ5peWlqKoqAgbNmxAu3btAABr166Fl5cXzp07J50OVSgUWusTQujML6/m4XlVqXlQdHQ0oqKipOmCggK4uLggMDAQVlZWj+y7IVKr1VAqlQgICICxsXF9D+eJMLSe2a/+M7Se2a/+e9yey86I1YZ6DWqTJ0/GiBEjKq1xc3Or1jpPnz4Nf39/jB07FrNnz9Za5uTkhMaNG0shDbh/DRoA5OTkoH379nB0dNQ56nXlyhU0btwYtra2AFBhTdkRNDs7OxgZGVVaUx5TU1OYmprqzDc2Ntb7D4ch9PgwQ+uZ/eo/Q+uZ/eq/mvZcm/upXoOanZ0d7Ozsam19WVlZ8Pf3R1hYGOLi4nSWP/PMMygpKcHvv/+ONm3aAADOnz8PAHB1dQUA+Pj4YMeOHVqvS0tLg7e3t7TjfXx8oFQqta5TS0tLg6+vLwDAxMQEXl5eUCqVeOWVV6QapVKJkJCQWuuXiIiI9FuDuUYtJycH169fR05ODjQaDTIzMwEAbdu2haWlJbKystCvXz8EBgYiKipKOpplZGQEe3t7AMDzzz+Pbt26YfTo0UhISEBpaSkmTZqEgIAA6ShbREQEli1bhqioKIwdOxYqlQpr166V7uYE7j/io0+fPli4cCFCQkKwfft27Nq1CwcOHJBqoqKiEBoaCm9vb/j4+GD16tXIyclBRETEE9pjRERE1NA1mKAWExOD9evXS9Ndu3YFAOzevRt9+/bFV199hatXr2Ljxo3YuHGjVOfq6oqLFy8CABo1aoQdO3bgrbfeQp8+fdCkSRMMGDAAH374oVTv7u6OlJQUREZGYvny5XB2dsbHH38sPZoDAHx9fbF582bMnj0bc+bMQZs2bZCUlISePXtKNcOHD8e1a9cwf/585ObmomPHjkhJSZGO3BERERE9SoMJaomJiRU+Qw24f2NCbGzsI9fj7Oys9fDa8vj5+eHYsWOV1gwZMgRDhgyptGbixImYOHHiI8dEREREVJ4G880ERERERIaGQY2IiIhIphjUiIiIiGSKQY2IiIhIphjUiIiIiGSKQY2IiIhIphjUiIiIiGSKQY2IiIhIphjUiIiIiGSKQY2IiIhIphjUiIiIiGSKQY2IiIhIphjUiIiIiGSKQY2IiIhIphjUiIiIiGSKQY2IiIhIphjUiIiIiGSKQY2IiIhIphjUiIiIiGSKQY2IiIhIphjUiIiIiGSKQY2IiIhIphjUiIiIiGSKQY2IiIhIphjUiIiIiGSKQY2IiIhIphjUiIiIiGSKQY2IiIhIphjUiIiIiGSKQY2IiIhIphjUiIiIiGSKQY2IiIhIphjUiIiIiGSKQY2IiIhIphjUiIiIiGSKQY2IiIhIphjUiIiIiGSKQY2IiIhIphjUiIiIiGSKQY2IiIhIphjUiIiIiGSKQY2IiIhIphjUiIiIiGSqwQS1uLg4+Pr6wsLCAs2aNdNZfvz4cYwcORIuLi4wNzeHh4cHli5dqlOXmpqKXr16oWnTprC3t8fgwYORnZ2tVbN37154eXnBzMwMrVu3xqpVq3TWk5ycDE9PT5iamsLT0xPffPONTs2KFSvg7u4OMzMzeHl5Yf/+/TXfAURERGRwGkxQKy4uxtChQzFhwoRyl6enp8Pe3h5ffPEFsrKyMGvWLERHR2PZsmVSzYULFxASEgJ/f39kZmYiNTUV+fn5GDRokFSTnZ2N4OBg9O7dGxkZGZg5cyamTJmC5ORkqUalUmH48OEIDQ3F8ePHERoaimHDhuHQoUNSTVJSEqZNm4ZZs2YhIyMDvXv3xoABA5CTk1MHe4eIiIj0UeP6HkBVzZs3DwCQmJhY7vLRo0drTbdu3RoqlQpbt27F5MmTAQDHjh2DRqPB+++/j0aN7mfUd955ByEhIVCr1TA2NsaqVavQqlUrJCQkAAA8PDxw9OhRLF68GIMHDwYAJCQkICAgANHR0QCA6Oho7N27FwkJCdi0aRMAYMmSJXjzzTcxZswY6TWpqalYuXIl4uPja2/HEBERkd5qMEGtJm7evAkbGxtp2tvbG0ZGRli3bh3Cw8Nx+/ZtfP755wgMDISxsTGA+0fLAgMDtdYTFBSEtWvXSmFOpVIhMjJSp6Ys3BUXFyM9PR0zZszQqgkMDMTBgwcrHG9RURGKioqk6YKCAgCAWq2GWq2u/g5oAMr60tf+ymNoPbNf/WdoPbNf/fe4PdfmvtLboKZSqbBlyxZ899130jw3NzekpaVh6NChGD9+PDQaDXx8fJCSkiLV5OXlwcHBQWtdDg4OKCkpQX5+PpycnCqsycvLAwDk5+dDo9FUWlOe+Ph46cjhg9LS0mBhYVH15hsgpVJZ30N44gytZ/ar/wytZ/ar/2rac2FhYa2NoV6DWmxsbLnB5EFHjhyBt7d3tdablZWFkJAQxMTEICAgQJqfl5eHMWPGICwsDCNHjsStW7cQExODIUOGQKlUQqFQAID03zJCCJ355dU8PK8qNQ+Kjo5GVFSUNF1QUAAXFxcEBgbCysqqKq03OGq1GkqlEgEBAdJRTX1naD2zX/1naD2zX/33uD2XnRGrDfUa1CZPnowRI0ZUWuPm5latdZ4+fRr+/v4YO3YsZs+erbVs+fLlsLKywqJFi6R5X3zxBVxcXHDo0CH06tULjo6OOke9rly5gsaNG8PW1hYAKqwpO4JmZ2cHIyOjSmvKY2pqClNTU535xsbGev/hMIQeH2ZoPbNf/WdoPbNf/VfTnmtzP9VrULOzs4OdnV2trS8rKwv+/v4ICwtDXFyczvLCwkIYGRlpzSubLi0tBQD4+Phgx44dWjVpaWnw9vaWdryPjw+USqXWdWppaWnw9fUFAJiYmMDLywtKpRKvvPKKVKNUKhESElILnRIREZEhaDDXqOXk5OD69evIycmBRqNBZmYmAKBt27awtLREVlYW+vXrh8DAQERFRUlHs4yMjGBvbw8AeOGFF/DRRx9h/vz50qnPmTNnwtXVFV27dgUAREREYNmyZYiKisLYsWOhUqmwdu1a6W5OAJg6dSr69OmDhQsXIiQkBNu3b8euXbtw4MABqSYqKgqhoaHw9vaGj48PVq9ejZycHERERDyhPUZEREQNXYMJajExMVi/fr00XRasdu/ejb59++Krr77C1atXsXHjRmzcuFGqc3V1xcWLFwEA/v7++PLLL7Fo0SIsWrQIFhYW8PHxwQ8//ABzc3MAgLu7O1JSUhAZGYnly5fD2dkZH3/8sfRoDgDw9fXF5s2bMXv2bMyZMwdt2rRBUlISevbsKdUMHz4c165dw/z585Gbm4uOHTsiJSUFrq6udbmbiIiISI80mKCWmJhY4TPUgPs3JsTGxj5yPSNGjHjkdXF+fn44duxYpTVDhgzBkCFDKq2ZOHEiJk6c+MgxEREREZWnwXwzAREREZGhYVAjIiIikikGNSIiIiKZYlAjIiIikikGNSIiIiKZYlAjIiIikikGNSIiIiKZYlAjIiIikikGNSIiIiKZYlAjIiIikikGNSIiIiKZYlAjIiIikikGNSIiIiKZYlAjIiIikikGNSIiIiKZYlAjIiIikikGNSIiIiKZYlAjIiIikikGNSIiIiKZYlAjIiIikikGNSIiIiKZYlAjIiIikikGNSIiIiKZYlAjIiIikikGNSIiIiKZYlAjIiIikikGNSIiIiKZYlAjIiIikikGNSIiIiKZYlAjIiIikikGNSIiIiKZYlAjIiIikikGNSIiIiKZYlAjIiIikikGNSIiIiKZYlAjIiIikikGNSIiIiKZYlAjIiIikikGNSIiIiKZYlAjIiIikikGNSIiIiKZYlAjIiIikikGNSIiIiKZajBBLS4uDr6+vrCwsECzZs10ll+7dg39+/eHs7MzTE1N4eLigsmTJ6OgoECr7uTJk/Dz84O5uTlatmyJ+fPnQwihVbN37154eXnBzMwMrVu3xqpVq3S2l5ycDE9PT5iamsLT0xPffPONTs2KFSvg7u4OMzMzeHl5Yf/+/Y+3E4iIiMigNJigVlxcjKFDh2LChAnlLm/UqBFCQkLw7bff4vz580hMTMSuXbsQEREh1RQUFCAgIADOzs44cuQIPvnkEyxevBhLliyRarKzsxEcHIzevXsjIyMDM2fOxJQpU5CcnCzVqFQqDB8+HKGhoTh+/DhCQ0MxbNgwHDp0SKpJSkrCtGnTMGvWLGRkZKB3794YMGAAcnJy6mDvEBERkV4SDcy6deuEtbV1lWqXLl0qnnrqKWl6xYoVwtraWty7d0+aFx8fL5ydnUVpaakQQojp06eLDh06aK1n/PjxolevXtL0sGHDRP/+/bVqgoKCxIgRI6TpHj16iIiICK2aDh06iBkzZlRp7EIIcfPmTQFA3Lx5s8qvaWiKi4vFtm3bRHFxcX0P5YkxtJ7Zr/4ztJ7Zr/573J5r8/d34/oOinXl8uXL2Lp1K/z8/KR5KpUKfn5+MDU1leYFBQUhOjoaFy9ehLu7O1QqFQIDA7XWFRQUhLVr10KtVsPY2BgqlQqRkZE6NQkJCQDuH/1LT0/HjBkztGoCAwNx8ODBCsdcVFSEoqIiabrstK1arYZara7eDmggyvrS1/7KY2g9s1/9Z2g9s1/997g91+a+0rugNnLkSGzfvh13797FwIED8emnn0rL8vLy4ObmplXv4OAgLXN3d0deXp4078GakpIS5Ofnw8nJqcKavLw8AEB+fj40Gk2lNeWJj4/HvHnzdOanpaXBwsLi0c03YEqlsr6H8MQZWs/sV/8ZWs/sV//VtOfCwsJaG0O9BrXY2Nhyg8mDjhw5Am9v7yqv86OPPsLcuXNx7tw5zJw5E1FRUVixYoW0XKFQaNWL/91I8OD8mtY8PK8qNQ+Kjo5GVFSUNF1QUAAXFxcEBgbCysqqwtc1ZGq1GkqlEgEBATA2Nq7v4TwRhtYz+9V/htYz+9V/j9vzwzcyPo56DWqTJ0/GiBEjKq15+AjYozg6OsLR0REdOnSAra0tevfujTlz5sDJyQmOjo46R7SuXLkC4P8fWauopnHjxrC1ta20pmwddnZ2MDIyqrSmPKamplqnZcsYGxvr/YfDEHp8mKH1zH71n6H1zH71X017rs39VK9Bzc7ODnZ2dnW2/rIjYWXXffn4+GDmzJkoLi6GiYkJgPunFZ2dnaVA6OPjgx07dmitJy0tDd7e3tKO9/HxgVKp1LpOLS0tDb6+vgAAExMTeHl5QalU4pVXXpFqlEolQkJC6qZZIiIi0jsN5hq1nJwcXL9+HTk5OdBoNMjMzAQAtG3bFpaWlkhJScHff/+N7t27w9LSEqdPn8b06dPxzDPPSCFs1KhRmDdvHsLDwzFz5kz8+uuvWLBgAWJiYqRTkhEREVi2bBmioqIwduxYqFQqrF27Fps2bZLGMnXqVPTp0wcLFy5ESEgItm/fjl27duHAgQNSTVRUFEJDQ+Ht7Q0fHx+sXr0aOTk5Wo8LISIiIqpMgwlqMTExWL9+vTTdtWtXAMDu3bvRt29fmJubY82aNYiMjERRURFcXFwwaNAgrTsvra2toVQqMWnSJHh7e6N58+aIiorSui7M3d0dKSkpiIyMxPLly+Hs7IyPP/4YgwcPlmp8fX2xefNmzJ49G3PmzEGbNm2QlJSEnj17SjXDhw/HtWvXMH/+fOTm5qJjx45ISUmBq6trXe4mIiIi0iMNJqglJiYiMTGxwuX9+vWr9NEXZTp16oR9+/ZVWuPn54djx45VWjNkyBAMGTKk0pqJEydi4sSJjxwTERERUXkazDcTEBERERkaBjUiIiIimWJQIyIiIpIpBjUiIiIimWJQIyIiIpIpBjUiIiIimWJQIyIiIpIpBjUiIiIimWJQIyIiIpIpBjUiIiIimWJQIyIiIpIpBjUiIiIimWowX8puiIQQAICCgoJ6HkndUavVKCwsREFBAYyNjet7OE+EofXMfvWfofXMfvXf4/Zc9nu77Pf442BQk7Fbt24BAFxcXOp5JERERFRdt27dgrW19WOtQyFqI+5RnSgtLcXly5fRtGlTKBSK+h5OnSgoKICLiwv++OMPWFlZ1fdwnghD65n96j9D65n96r/H7VkIgVu3bsHZ2RmNGj3eVWY8oiZjjRo1wlNPPVXfw3girKysDOYfgDKG1jP71X+G1jP71X+P0/PjHkkrw5sJiIiIiGSKQY2IiIhIphjUqF6Zmppi7ty5MDU1re+hPDGG1jP71X+G1jP71X9y6pk3ExARERHJFI+oEREREckUgxoRERGRTDGoEREREckUgxoRERGRTDGoUZXEx8eje/fuaNq0KVq0aIGXX34Z586d06oRQiA2NhbOzs4wNzdH3759kZWVpVVTVFSEt956C3Z2dmjSpAleeukl/Pnnn9LyPXv2QKFQlPtz5MiRCscXHh6uU9+rV69673f16tXo27cvrKysoFAo8M8//+hs68aNGwgNDYW1tTWsra0RGhpabl11ty3Xni9evIg333wT7u7uMDc3R5s2bTB37lwUFxdXOr6G/B67ubnpjH3GjBmVjq+23+Mn1a9cPsO11fP169fx1ltvoX379rCwsECrVq0wZcoU3Lx5U2s9cvgcP6l+9ekzXNX3t14/w4KoCoKCgsS6devEqVOnRGZmpnjhhRdEq1atxO3bt6WaDz74QDRt2lQkJyeLkydPiuHDhwsnJydRUFAg1URERIiWLVsKpVIpjh07Jvr16ye6dOkiSkpKhBBCFBUVidzcXK2fMWPGCDc3N1FaWlrh+MLCwkT//v21Xnft2rV67/ejjz4S8fHxIj4+XgAQN27c0NlW//79RceOHcXBgwfFwYMHRceOHcWLL75Y6fiqsm259vz999+L8PBwkZqaKn7//Xexfft20aJFC/H2229XOr6G/B67urqK+fPna4391q1blY6vtt/jJ9WvXD7DtdXzyZMnxaBBg8S3334rfvvtN/Hjjz+Kf/3rX2Lw4MFa25LD5/hJ9atPn+Gqvr/1+RlmUKMauXLligAg9u7dK4QQorS0VDg6OooPPvhAqrl3756wtrYWq1atEkII8c8//whjY2OxefNmqeavv/4SjRo1Ej/88EO52ykuLhYtWrQQ8+fPr3Q8YWFhIiQk5DG7qlhN+n3Q7t27y/2ldvr0aQFA/PLLL9I8lUolAIizZ8+WO5bqbrum6qrn8ixatEi4u7tXWtNQ32Mh7v8j/9FHH1V5LE/iPX5S769cPsNCPH7PZbZs2SJMTEyEWq0WQsj3c1xX/ZZHHz7DZcrrtz4/wzz1STVSdljYxsYGAJCdnY28vDwEBgZKNaampvDz88PBgwcBAOnp6VCr1Vo1zs7O6Nixo1TzsG+//Rb5+fkIDw9/5Jj27NmDFi1aoF27dhg7diyuXLlS0/Z01KTfqlCpVLC2tkbPnj2leb169YK1tXWF66mtbT9KXfVc0bbKtlOZhvgel1m4cCFsbW3x9NNPIy4urtLTRE/iPX5S769cPsNA7fV88+ZNWFlZoXHj+1+XLdfPcV31W1GNvnyGK+q3vj7D/FJ2qjYhBKKiovDss8+iY8eOAIC8vDwAgIODg1atg4MDLl26JNWYmJigefPmOjVlr3/Y2rVrERQUBBcXl0rHNGDAAAwdOhSurq7Izs7GnDlz4O/vj/T09Md+snRN+62KvLw8tGjRQmd+ixYtKtwntbXtytRlzw/7/fff8cknn+DDDz+stK6hvscAMHXqVHTr1g3NmzfH4cOHER0djezsbHz66afl1tf1e/wk3185fIaB2uv52rVr+M9//oPx48dL8+T4Oa7Lfh+mT5/hivqtz88wgxpV2+TJk3HixAkcOHBAZ5lCodCaFkLozHtYRTV//vknUlNTsWXLlkeOafjw4dKfO3bsCG9vb7i6uuK7777DoEGDHvn6ytR2v49aR1XXUxvbrkhd91zm8uXL6N+/P4YOHYoxY8ZUWtuQ3+PIyEjpz507d0bz5s0xZMgQ6f/QK1JX7/GTen/l8hkGaqfngoICvPDCC/D09MTcuXMrXUdl66nJtqurrvsto0+f4cr6rc/PME99UrW89dZb+Pbbb7F792489dRT0nxHR0cA0Pm/xytXrkj/R+Ho6Iji4mLcuHGjwpoHrVu3Dra2tnjppZeqPU4nJye4urri119/rfZrH/Q4/VaFo6Mj/v77b535V69erXA9tbXtitR1z2UuX76Mfv36wcfHB6tXr6726xvKe1yesjvdfvvtt3KX1+W2n2S/cvgMA7XT861bt9C/f39YWlrim2++gbGxsdZ65PQ5rut+y+jTZ7gq/T7oiX6Gq3VFGxms0tJSMWnSJOHs7CzOnz9f7nJHR0excOFCaV5RUVG5NxMkJSVJNZcvXy73ZoLS0lLh7u7+yLuIKpKfny9MTU3F+vXra/T62uj3QY+6meDQoUPSvF9++aVKFyFXddtV9aR6FkKIP//8U/zrX/8SI0aMkO74ra6G8h6XZ8eOHQKAuHTpUoVjq+33+En3W9+f4bIx1EbPN2/eFL169RJ+fn7izp07OuuRy+f4SfUrhH59hqvS78Oe5GeYQY2qZMKECcLa2lrs2bNH6/bkwsJCqeaDDz4Q1tbWYuvWreLkyZNi5MiR5T6e46mnnhK7du0Sx44dE/7+/lqP5yiza9cuAUCcPn263PG0b99ebN26VQghxK1bt8Tbb78tDh48KLKzs8Xu3buFj4+PaNmyZY1vc6+tfnNzc0VGRoZYs2aNACD27dsnMjIytG5J79+/v+jcubNQqVRCpVKJTp066dzW/2C/Vd22XHv+66+/RNu2bYW/v7/4888/tbZVUc8N+T0+ePCgWLJkicjIyBAXLlwQSUlJwtnZWbz00ksV9lvVbcux3zL1/RmurZ4LCgpEz549RadOncRvv/2mtZ4H/92Sw+f4SfWrT5/hqvRb359hBjWqEgDl/qxbt06qKS0tFXPnzhWOjo7C1NRU9OnTR5w8eVJrPXfv3hWTJ08WNjY2wtzcXLz44osiJydHZ3sjR44Uvr6+lY6nbNuFhYUiMDBQ2NvbC2NjY9GqVSsRFhZW7nqfdL9z58595HquXbsmXn31VdG0aVPRtGlT8eqrr+ocpajJtuXa87p16yrcVkU9N+T3OD09XfTs2VNYW1sLMzMz0b59ezF37lyd/3Ov6/f4Sf6dFqL+P8O11XPZkcPyfrKzs6U6OXyOn1S/+vQZrkq/9f0ZVvxv5UREREQkM7yZgIiIiEimGNSIiIiIZIpBjYiIiEimGNSIiIiIZIpBjYiIiEimGNSIiIiIZIpBjYiIiEimGNSIyKDExsbi6aefrrftz5kzB+PGjau37VfVsmXLavQdnURUu/jAWyLSGwqFotLlYWFhWLZsGYqKimBra/uERvX//f333/jXv/6FEydOwM3N7YlvvzqKiorg5uaGr776Cs8++2x9D4fIYDWu7wEQEdWW3Nxc6c9JSUmIiYnBuXPnpHnm5uawtLSEpaVlfQwPa9euhY+PT72HNI1GA4VCgUaNKj6pYmpqilGjRuGTTz5hUCOqRzz1SUR6w9HRUfqxtraGQqHQmffwqc/w8HC8/PLLWLBgARwcHNCsWTPMmzcPJSUlePfdd2FjY4OnnnoKn332mda2/vrrLwwfPhzNmzeHra0tQkJCcPHixUrHt3nzZq3TiRs2bICtrS2Kioq06gYPHozXX39dmt6xYwe8vLxgZmaG1q1bS+Mrs2TJEnTq1AlNmjSBi4sLJk6ciNu3b0vLExMT0axZM+zcuROenp4wNTXFpUuXsGfPHvTo0QNNmjRBs2bN8Mwzz+DSpUvS61566SVs27YNd+/erdL+J6Lax6BGRAbvp59+wuXLl7Fv3z4sWbIEsbGxePHFF9G8eXMcOnQIERERiIiIwB9//AEAKCwsRL9+/WBpaYl9+/bhwIEDsLS0RP/+/VFcXFzuNm7cuIFTp07B29tbmjd06FBoNBp8++230rz8/Hzs3LkTb7zxBgAgNTUVr732GqZMmYLTp0/jv//9LxITExEXFye9plGjRvj4449x6tQprF+/Hj/99BOmT5+utf3CwkLEx8fj008/RVZWFmxsbPDyyy/Dz88PJ06cgEqlwrhx47ROH3t7e0OtVuPw4cOPv5OJqGaq/TXuREQNwLp164S1tbXO/Llz54ouXbpI02FhYcLV1VVoNBppXvv27UXv3r2l6ZKSEtGkSROxadMmIYQQa9euFe3btxelpaVSTVFRkTA3NxepqanljicjI0MAEDk5OVrzJ0yYIAYMGCBNJyQkiNatW0vr7t27t1iwYIHWaz7//HPh5ORUYe9btmwRtra20vS6desEAJGZmSnNu3btmgAg9uzZU+F6hBCiefPmIjExsdIaIqo7vEaNiAzev//9b63rtRwcHNCxY0dp2sjICLa2trhy5QoAID09Hb/99huaNm2qtZ579+7h999/L3cbZacPzczMtOaPHTsW3bt3x19//YWWLVti3bp1CA8Pl45spaen48iRI1pH0DQaDe7du4fCwkJYWFhg9+7dWLBgAU6fPo2CggKUlJTg3r17uHPnDpo0aQIAMDExQefOnaV12NjYIDw8HEFBQQgICMDzzz+PYcOGwcnJSWt85ubmKCwsrNqOJKJax1OfRGTwjI2NtaYVCkW580pLSwEApaWl8PLyQmZmptbP+fPnMWrUqHK3YWdnB+D+KdAHde3aFV26dMGGDRtw7NgxnDx5EuHh4dLy0tJSzJs3T2s7J0+exK+//gozMzNcunQJwcHB6NixI5KTk5Geno7ly5cDANRqtbQec3Nznbti161bB5VKBV9fXyQlJaFdu3b45ZdftGquX78Oe3v7R+1CIqojPKJGRFRN3bp1Q1JSElq0aAErK6sqvaZNmzawsrLC6dOn0a5dO61lY8aMwUcffYS//voLzz//PFxcXLS2de7cObRt27bc9R49ehQlJSX48MMPpaOCW7ZsqXIvXbt2RdeuXREdHQ0fHx98+eWX6NWrFwDg999/x71799C1a9cqr4+IahePqBERVdOrr74KOzs7hISEYP/+/cjOzsbevXsxdepU/Pnnn+W+plGjRnj++edx4MCBctf3119/Yc2aNRg9erTWspiYGGzYsAGxsbHIysrCmTNnkJSUhNmzZwO4HwBLSkrwySef4MKFC/j888+xatWqR/aQnZ2N6OhoqFQqXLp0CWlpaTh//jw8PDykmv3796N169Zo06ZNdXYPEdUiBjUiomqysLDAvn370KpVKwwaNAgeHh4YPXo07t69W+kRtnHjxmHz5s3SKdQyVlZWGDx4MCwtLfHyyy9rLQsKCsLOnTuhVCrRvXt39OrVC0uWLIGrqysA4Omnn8aSJUuwcOFCdOzYERs3bkR8fHyVejh79iwGDx6Mdu3aYdy4cZg8eTLGjx8v1WzatAljx46txp4hotrGbyYgInpChBDo1asXpk2bhpEjR2otCwgIgIeHBz7++ON6Gp22U6dO4bnnnsP58+dhbW1d38MhMlg8okZE9IQoFAqsXr1a62G1169fx+bNm/HTTz9h0qRJ9Tg6bZcvX8aGDRsY0ojqGY+oERHVIzc3N9y4cQNz5szBO++8U9/DISKZYVAjIiIikime+iQiIiKSKQY1IiIiIpliUCMiIiKSKQY1IiIiIpliUCMiIiKSKQY1IiIiIpliUCMiIiKSKQY1IiIiIpliUCMiIiKSqf8HNE+8ym4jCXsAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAHFCAYAAADWlnwrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACy2ElEQVR4nOzdeVxU9f748deZYV8cRYUBM0FcCVPMDcs0TSSXbna73TJNb13LXLrpbaNuqd3S9Nt6XaprWZqtP8tuluGSZhagpqKZikZopuAGsq8z5/fHOMc5M8OmoCDv5+NhMOd8zpnzAcM3n8/78/4oqqqqCCGEEEKIC2K43A8ghBBCCNGYSTAlhBBCCHERJJgSQgghhLgIEkwJIYQQQlwECaaEEEIIIS6CBFNCCCGEEBdBgikhhBBCiIsgwZQQQgghxEWQYEoIIYQQ4iJIMCWEcOu9995DUZRK/3z33Xf18r5z5szhiy++qJd7i9pZs2YNs2bNutyPIUSD53G5H0AI0bC9++67dOnSxeV4VFRUvbzfnDlzuOOOO7jtttvq5f6i5tasWcOiRYskoBKiGhJMCSGqFB0dTa9evS73YwghRIMl03xCiIu2aNEibrzxRoKDg/H396dbt27Mnz+f8vJyXbtdu3YxcuRIgoOD8fb2JiwsjBEjRvDHH38AoCgKhYWFLFu2TJtOHDRoUJXvXVpaynPPPUfXrl3x8fGhZcuW3HTTTSQlJWltSkpKSEhIICIiAi8vL9q0acOUKVM4e/as7l7h4eGMHDmSr776ipiYGHx9fenatStfffUVYJv67Nq1K/7+/vTp04effvpJd/2ECRMICAjgl19+YciQIfj7+9O6dWumTp1KUVGRrm1tnykxMZGePXvi6+tLly5dWLp0qcvXIisriwcffJCrrroKLy8vIiIimD17NhUVFVqbw4cPoygKL730Eq+88goREREEBAQQGxtLSkqKri+LFi3Svi/2P4cPH67y+yFEUyQjU0KIKlksFt0/xmD7x9VoNGqv09PTGTNmjBYY7N69mxdeeIEDBw5o/+gXFhYydOhQIiIiWLRoESEhIWRlZbFp0yby8/MBSE5OZvDgwdx0000888wzADRr1qzSZ6uoqOCWW25hy5YtPPLIIwwePJiKigpSUlL4/fff6d+/P6qqctttt/Htt9+SkJDAgAED2LNnDzNnziQ5OZnk5GS8vb21e+7evZuEhASefvppTCYTs2fP5vbbbychIYFvv/2WOXPmoCgKTzzxBCNHjiQjIwNfX1/t+vLycoYPH86DDz7Ik08+SVJSEs8//zxHjhxh9erVABf0TP/85z958sknCQkJ4e233+b++++nQ4cO3HjjjYAtkOrTpw8Gg4Fnn32WyMhIkpOTef755zl8+DDvvvuu7mu3aNEiunTpwmuvvQbAM888w/Dhw8nIyMBkMvHMM89QWFjIypUrSU5O1q4LDQ2t5m+MEE2QKoQQbrz77rsq4PaP0Wis9DqLxaKWl5ery5cvV41Go5qdna2qqqr+9NNPKqB+8cUXVb6vv7+/On78+Bo94/Lly1VAXbJkSaVtEhMTVUCdP3++7vgnn3yiAup///tf7Vi7du1UX19f9Y8//tCOpaamqoAaGhqqFhYWase/+OILFVC//PJL7dj48eNVQH399dd17/XCCy+ogPrDDz9c0DP5+PioR44c0Y4VFxerQUFB6oMPPqgde/DBB9WAgABdO1VV1ZdeekkF1F9++UVVVVXNyMhQAbVbt25qRUWF1m7btm0qoH700UfasSlTpqjyz4QQ1ZNpPiFElZYvX8727dt1f7Zu3aprs2vXLm699VZatmyJ0WjE09OTe++9F4vFwsGDBwHo0KEDLVq04IknnuDNN99k3759F/1s33zzDT4+Ptx3332Vttm4cSNgm7Zy9Je//AV/f3++/fZb3fEePXrQpk0b7XXXrl0BGDRoEH5+fi7Hjxw54vKe99xzj+71mDFjANi0adMFP9PVV1+tvfbx8aFTp0669/7qq6+46aabCAsLo6KiQvtzyy23ALB582bdPUeMGKEbXbz22msr7Y8QomoyzSeEqFLXrl2rTED//fffGTBgAJ07d+b1118nPDwcHx8ftm3bxpQpUyguLgbAZDKxefNmXnjhBZ566ilycnIIDQ1l4sSJ/Otf/8LT07PWz3bq1CnCwsIwGCr/vfDMmTN4eHjQunVr3XFFUTCbzZw5c0Z3PCgoSPfay8uryuMlJSW64x4eHrRs2VJ3zGw2a89yIc/kfD8Ab29v7WsLcOLECVavXl3p1/H06dNV3tM+reh4TyFEzUgwJYS4KF988QWFhYV8/vnntGvXTjuemprq0rZbt258/PHHqKrKnj17eO+993juuefw9fXlySefrPV7t27dmh9++AGr1VppQNWyZUsqKio4deqULnhRVZWsrCx69+5d6/etSkVFBWfOnNEFK1lZWdqz1NcztWrVimuvvZYXXnjB7fmwsLBa31MIUTMyzSeEuCiKogDoEqZVVWXJkiVVXtO9e3deffVVmjdvzs6dO7VzziMuVbnlllsoKSnhvffeq7TNkCFDAFixYoXu+GeffUZhYaF2vi598MEHutcffvghgLYysT6eaeTIkezdu5fIyEh69erl8udCgikZrRKiZmRkSghRpb1797qs5gOIjIykdevWDB06FC8vL+6++24ef/xxSkpKeOONN8jJydG1/+qrr1i8eDG33XYb7du3R1VVPv/8c86ePcvQoUO1dt26deO7775j9erVhIaGEhgYSOfOnd0+29133827777LpEmTSEtL46abbsJqtbJ161a6du3KXXfdxdChQxk2bBhPPPEEeXl5XH/99drKuZiYGMaNG1enXy8vLy9efvllCgoK6N27t7aa75ZbbuGGG24AqJdneu6551i/fj39+/fn4YcfpnPnzpSUlHD48GHWrFnDm2++yVVXXVWre3br1g2AefPmccstt2A0Grn22mu1KU4hxDmXNf1dCNFgVbWaD6cVdKtXr1a7d++u+vj4qG3atFEfe+wx9ZtvvlEBddOmTaqqquqBAwfUu+++W42MjFR9fX1Vk8mk9unTR33vvfd075uamqpef/31qp+fnwqoAwcOrPI5i4uL1WeffVbt2LGj6uXlpbZs2VIdPHiwmpSUpGvzxBNPqO3atVM9PT3V0NBQ9aGHHlJzcnJ092rXrp06YsQIl/cA1ClTpuiO2VfF/d///Z92bPz48aq/v7+6Z88eddCgQaqvr68aFBSkPvTQQ2pBQYHLc1/MMw0cONDla3Pq1Cn14YcfViMiIlRPT081KChIve6669Snn35ae393z+3Yz5kzZ2qvS0tL1b///e9q69atVUVRVEDNyMhwuU6Ipk5RVVW9HEGcEEJcaSZMmMDKlSspKCi43I8ihLiEJGdKCCGEEOIiSDAlhBBCCHERZJpPCCGEEOIiyMiUEEIIIcRFkGBKCCGEEOIiSDAlhBBCCHERpGhnHbBarRw/fpzAwECtGrQQQgghGjZVVcnPz692j8/qSDBVB44fP07btm0v92MIIYQQ4gIcPXq01jsEOJJgqg4EBgYCtm9Gs2bNLvPT1I/y8nLWrVtHXFxcpbvSX0maWn+h6fVZ+nvla2p9bmr9hYvvc15eHm3bttX+Hb9QEkzVAfvUXrNmza7oYMrPz49mzZo1if9Jm1p/oen1Wfp75WtqfW5q/YW66/PFpuhIAroQQgghxEWQYEoIIYQQ4iJIMCWEEEIIcREkZ0oIIUSjYLVaKSsrq3H78vJyPDw8KCkpwWKx1OOTNQxNrb9QfZ89PT0xGo31/hwSTAkhhGjwysrKyMjIwGq11vgaVVUxm80cPXq0SdQAbGr9hZr1uXnz5pjN5nr9mkgwJYQQokFTVZXMzEyMRiNt27atcXFFq9VKQUEBAQEBF1WQsbFoav2FqvusqipFRUWcPHkSgNDQ0Hp7DgmmhBBCNGgVFRUUFRURFhaGn59fja+zTwv6+Pg0ieCiqfUXqu+zr68vACdPniQ4OLjepvyaxldbCCFEo2XPhfHy8rrMTyIaI3sAXl5eXm/vIcGUEEKIRqGp5AGJunUp/t5IMCWEEEIIcREkmGokyiqsvLPlN579317e2fIbZRU1X9EihBCi8QsPD+e1116rcfvvvvsORVE4e/ZsvT2TsJEE9EZg7pp9LNmSgVU9f+yFNfuZOCCChOFRl+/BhBBCVGrQoEH06NGjVgFQVbZv346/v3+N2/fv35/MzExMJlOdvH99qeuv0+UgwVQD9/LHSXSf+Rg/Hk9jV1hnEuKnkesbiFWFt77PAJCASgghasBiVdmWkc3J/BKCA33oExGE0XB587BUVcViseDhUf0/x61bt67Vvb28vDCbzRf6aKIWZJqvAVu9+zhdZz5G3KEUQgvOEHcohbmJC3RtlmzJkCk/IYSoRuLeTG6Yt5G7l6Twj49TuXtJCjfM20ji3sx6eb8JEyawefNmXn/9dRRFQVEUDh8+rE29rV27ll69euHt7c2WLVtIT0/nT3/6EyEhIQQEBNC7d282bNigu6fzNJ+iKLz99tuMHj0aPz8/OnfuzJo1a7TzztN87733Hs2bN2ft2rV07dqVgIAA4uPjycw8/zWoqKjg4Ycfpnnz5rRs2ZInnniC8ePHc9ttt1Xa1yNHjjBq1ChatGiBv78/11xzje459u3bx/DhwwkICCAkJIRx48Zx+vTpKr9OjY0EUw1U4t5Mpn20i5jjaXiotmDJQ7USczxN186qwvvJhy/DEwohROOQuDeLh1bsJDO3RHc8K7eEh1bsrJeA6vXXXyc2NpaJEyeSmZlJZmYmbdu21c4//vjjzJ07l/3793PttddSUFDA8OHD2bBhA7t27WLYsGGMGjWK33//vcr3mT17NnfeeSd79uzhlltu4cEHHyQ7O7vS9kVFRbz00ku8//77fP/99/z+++88+uij2vl58+bxwQcf8O677/Ljjz+Sl5fHF198UeUzTJkyhdLSUr7//nt+/vln5s2bR0BAAACZmZkMHDiQHj168NNPP5GYmMiJEye48847a/R1aixkmq8BslhVZq/eh6k4H1BRAQWwpUyp547D3MQFxBxPI/v7GPjqEwgKumzPLIQQDZHFqvLcV/tR3Zyz/2ydvXofQ6PMdTrlZzKZ8PLyws/Pz+1U23PPPcfQoUO11y1btqR79+7a6+eff55Vq1bx5ZdfMnXq1ErfZ8KECdx9990AvPDCCyxcuJBt27YxfPhwt+3Ly8t58803iYyMBGDq1Kk899xz2vkFCxaQkJDA6NGjAVi4cKFulMmd33//nT//+c9069YNgPbt22vn3njjDXr27MmcOXO0Y0uXLqVt27YcPHiQTp06Vfl1aiwkmGqAtmVkk5lbwuLEBbQuyNECKQVoXZCjTfXFHUrBQ7USvHUjPPAArFx5OR9bCCEanJ1H88jKK6n0vApk5pawLSOb2MiWl+y5evXqpXtdWFjI7Nmz+eqrrzh+/DgVFRUUFxdXOzJ17bXXap/7+/sTEBCgbZ/ijp+fnxZIgW2LFXv73NxcTpw4QZ8+fbTzRqOR6667rso9ER9++GEeeugh1q1bx80338yf//xn7bl27NjBpk2btJEqR+np6XTq1KnK/jUWMs3XAL21+VcA2xTfud+n7L8veaDS89h+3fSf0Wol77stl+NRhRCiQTtdWFajdifzKw+46oPzqrzHHnuMzz77jBdeeIEtW7aQmppKt27dKCur+vk9PT11rxVFqTLwcddeVVWXY46czzv7+9//zm+//ca4ceP4+eef6dWrFwsW2H7pt1qtjBo1itTUVN2fQ4cOceONN1Z538ZEgqkGpqzCyncHbYl5v7YI04amHT+GFObgYSmj4lyIVaEY+KFlB15bfxCLteq/9EII0ZS08q/ZFjTBgT51/t5eXl7aVjjV2bJlCxMmTGD06NF069YNs9l8yROxTSYTISEhbNu2TTtmsVjYtWtXtde2bduWSZMm8fnnn/PPf/6TJUuWANCzZ09++eUXwsPD6dChg+6PPaCszdepoZJgqoFxTCbvfWy/9rni8FEBWhXnc8a/OZkBLVnXsR8J8dN47dtDXP9i/a1OEUKIxqZn22aYm/lQWTaUAoSabGUS6lp4eDhbt27l8OHDnD59usoRow4dOvD555+TmprK7t27GTNmTJXt68u0adOYO3cu//vf/0hLS+Mf//gHOTk5VW7J8sgjj7B27VoyMjLYuXMnGzdupGvXroAtOT07O5u7776bbdu28dtvv7Fu3Truu+8+LYCqzdepoWp0wdTixYuJiIjAx8eH6667ji1bqp7e2rx5M9dddx0+Pj60b9+eN99806XNZ599RlRUFN7e3kRFRbFq1ar6evxqHcku0j73tlZU+QPAVFJA7JRlTB79FLm+gQBk5dXf6hQhhGhsjAaFZ0fa/mF3/nlqfz1zVFS91Jt69NFHMRqNREVF0bp16yrzn1599VVatGhB//79GTVqFMOGDaNnz551/kzVeeKJJ7j77ru59957iY2NJSAggGHDhuHjU/nIncViYcqUKXTt2pX4+Hg6d+7M4sWLAQgLC+PHH3/EYrEwbNgwoqOj+cc//oHJZMJgsIUgtfk6NVSNKgH9k08+4ZFHHmHx4sVcf/31vPXWW9xyyy3s27ePq6++2qV9RkYGw4cPZ+LEiaxYsYIff/yRyZMn07p1a/785z8DkJyczF//+lf+/e9/M3r0aFatWsWdd97JDz/8QN++fS91FykoqahxW09L5W1nr97H4C4h7DiS06AK1AkhxKUWH23mjbE9mb16n648gtnkw8xRUcRHh9bL+3bq1Ink5GTdsfDwcLc5SOHh4WzcuFF3bMqUKbrXztN+7u5z5MgRmjVrBtgqizu2mTBhAhMmTNC1v+2223RtPDw8WLBggS7nqWvXrlopA3fsbSvTsWNHPv/880rPu/s6NTaNKph65ZVXuP/++/n73/8OwGuvvcbatWt54403mDt3rkv7N998k6uvvlorcta1a1d++uknXnrpJS2Yeu211xg6dCgJCQkAJCQksHnzZl577TU++uijS9OxcyxWlfX7TmivywweeFsrD5jKDUa3x+2rU657fh35Jefnoc3NvLm7z9WEt/KX4EoI0aTER4cyNMrc4CqgNzRHjhxh3bp1DBw4kNLSUhYuXEhGRgZjxoy53I/WoDWaYKqsrIwdO3bw5JNP6o7HxcWRlJTk9prk5GTi4uJ0x4YNG8Y777xDeXk5np6eJCcnM336dJc2Ve0RVFpaSmlpqfY6Ly8PsNXvKC8vr023dLZlZFNWUY73uRhpc5e+DMrY6Xaqz14q4b+rX+Rfw6aQ6+u67LSsvEK7F0BOYQmLNx3UXrf296J/h1bkF5dTVG6hW5iJvpEt6R3u+gPG3q+L6V9j0tT6C02vz9LfxqO8vBxVVbFarbXKp7GPuNivVYC+ES0cW2C9ghbtOPf3Qr333ns8+uijqKpKdHQ069ato3Pnzg0yl6kmfbZaraiqSnl5OUajfhCirv5/aDTB1OnTp7FYLISEhOiOh4SEkJWV5faarKwst+0rKio4ffo0oaGhlbap7J4Ac+fOZfbs2S7H161bh5+fX0275Nb88+U9KO7zGN/U4JqnAbiQlRDFwFHwPvey/BTZB35l7YHKr1i/fv0FvE/j1dT6C02vz9Lfhs/DwwOz2UxBQUG1pQLcyc/Pr4enargupr8mk4mvv/7a5bh90KChqqrPZWVlFBcX8/3331NRoZ/tKSoqquSq2mk0wZSdu/oXVa0yqKxehuPx2t4zISGBGTNmaK/z8vJo27YtcXFx2lz1hdiWkc19y7Zrr03FBczc8Ba9/viF5iUFuhV9zioUA2f8TYDCbnNHZt/8oMto1SurX2Zw+nY8VCtWoMzoRfLV3fApL6HvH79oKwUrgI0d+rJnzn94dFgXwBa9r1+/nqFDh7rUKbkSNbX+QtPrs/S38SgpKeHo0aMEBARUmQjtTFVV8vPzCQwMrPJn+pWiqfUXatbnkpISfH19ufHGG13+/tRVkNhogqlWrVphNBpdRoxOnjzpMrJkZzab3bb38PCgZcuWVbap7J4A3t7eeHt7uxz39PS8qB9S/ToE4+/tTXaR7TevWV8v0KqcO24p4+6viyfQpqgQBQg7dQyvokIm3jETU3E+L339CgMOp+JtKddd600xN+/7QQuiHO/VM+NnpvzwO1bFwNMjrqmzPjY2Ta2/0PT6LP1t+CwWC4qiYDAYtBVgNWGf9rFfe6Vrav2FmvXZYDCgKIrbv/t19f9Co/lqe3l5cd1117kMUa9fv57+/fu7vSY2Ntal/bp16+jVq5f2BaysTWX3rE9Gg8JtMWHaa8cq546jUo4z/I6f29sYgBsO7wZs+/cNSd+Oj1MghUNb5+MqsCusMwBLthxmzZ7jF9IdIYQQokloNMEUwIwZM3j77bdZunQp+/fvZ/r06fz+++9MmjQJsE2/3XvvvVr7SZMmceTIEWbMmMH+/ftZunQp77zzjm6H7H/84x+sW7eOefPmceDAAebNm8eGDRt45JFHLnX3ABgadX6jx11hnalQbN8ie9BUgeI2gHKmAKbifAb/ur3ab7JzcKZiK7tg31D56S9+lsrqQgghRCUazTQfwF//+lfOnDnDc889R2ZmJtHR0axZs4Z27doBkJmZqSv2FRERwZo1a5g+fTqLFi0iLCyM//znP1pZBID+/fvz8ccf869//YtnnnmGyMhIPvnkk8tSYwqgT0QQgT5G8kssJMRPA6Dnsf2oioJBVbEqCiEF2VXeQwVSro4mcekUvK3Vr1Rwnj40ADf99hNzExcwefRT5BRVsONIzsV0SwghhLhiNapgCmDy5MlMnjzZ7bn33nvP5djAgQPZuXNnlfe84447uOOOO+ri8S6a0aBwR8+reDfpCLm+gUwe/RSm4nzmJi4g5ngazYvzqxxpso8s9T2yB58qKqjb2zoHUtqGyqqVmONpWtvTBaUIIYQQwlWjmuZrKuKu0VfjnZtoS0QPLTiDt6UMeyUNdxNvCrZvanWBlF1lCe1WzudNAbQKcE24F0IIUb/Cw8N1dQ8VReGLL76otP3vv/+O0WgkNTX1ot738OHDKIpy0fdpKiSYaoD6RAQRavLBVJzP4lVzGHYoWUtEN2AraWBRlCqDpZouiq2snaoo2jQjQHZB7Wu7CCGEqFuZmZnccsstdXrPCRMmcNttt+mOtW3bVkunaciMRqPbuliXmgRTDZDRoDBzVBQvnhuRMqrq+QR0xcDGyF6s7RiLxSk53Z2qzlUVcJUZPLXNkwEe/Wx3TR9fCCFEPTGbzW5L89Q1o9GI2WzGw6PRZQNdFhJMNVDx0aHcdPY3XWkEi6KwrmM/EuKnkRA/jbUd+2Gl6qCopiNUziv6cn38SF40nsWr5mir+oBar+qzWFWS08/wv9RjJKefkVWBQogm4a233qJNmzYuW5zceuutjB8/HoD09HT+9Kc/ERISQkBAAL1792bDhg1V3td5mm/btm3ExMTg4+NDnz592LNnj669xWLh/vvvJyIiAl9fXzp37szrr7+unZ81axbLli3jf//7H4qioCgK3333ndtpvs2bN9OnTx+8vb0JDQ3lySef1FUUHzRoEA8//DCPP/44QUFBmM1mZs2aVWV/vvvuO/r06YO/vz/Nmzfn+uuv58iRI9r51atXc9111+Hj40P79u2ZPXu29p7h4eEAjB07FqPRqL2+HCSYasB8BlyPem4foQrFwNqOsUwe/RS5voFacnqZ0atO3ssedKmABYWQwrOEFpzhloNJJC6dgqm4AIBtv52p8T0T92Zyw7yN3L0khX98nMrdS1K4Yd5GEvdm1skzCyFEQ/WXv/yF06dPs2nTJu1YTk4Oa9eu5Z577gGgoKCA4cOHs2HDBnbt2sWwYcMYNWqUblV6VQoLCxk5ciSdO3dmx44dPPvsszzzzDO6NlarlauuuopPP/2Uffv28eyzz/LUU0/x6aefAvDoo49y5513Eh8fT2ZmJpmZmW7rLB47dozhw4fTu3dvdu/ezRtvvME777zD888/r2u3bNky/P392bp1K/Pnz+e5556rdAujiooKbrvtNgYOHMiePXtITk7mgQce0CqZr127lrFjx/Lwww+zb98+3nrrLd577z1eeOEFALZvt+0YsmjRIo4dO6a9vhwkmGrI/vtflNtuQ23Thu+j+utymOy2h3WpciqvthTAiKpb3WcuyGbmhrcA+N/umhXwTNybyUMrdpKZW6I7npVbwkMrdkpAJYS49LKz4Y474KqrbB+zqy4zczGCgoKIj4/nww8/1I79v//3/wgKCmLIkCEAdO/enQcffJBu3brRsWNHnn/+edq3b8+XX35Zo/f44IMPsFgsLF26lGuuuYaRI0cybZr+3wlPT09mz55N7969iYiI4J577mHChAlaMBUQEICvry/e3t6YzWbMZjNeXq6/pC9evJi2bduycOFCunTpwm233cbs2bN5+eWXdaNv1157LTNnzqRjx47ce++99OrVi2+//dbt8+fl5ZGbm8vIkSOJjIyka9eujB8/nquvvhqAF154gSeffJLx48fTvn17hg4dyr///W/eesv271Hr1q0B236CZrNZe305SDDVkAUFwcqVKH/8QdnHn5LnkMNk1yn76AXdWnX443zceWpQAXpk2sokHMjMq3aqzmJVmb16n9sgz/6es1fvkyk/IcSl9cAD8MUXcOyY7eMDD9Tr291zzz189tlnlJbaSst88MEH3HXXXRjPzTgUFhby+OOPExUVRfPmzQkICODAgQM1Hpnav38/3bt3x8/PTzvWu3dvl3ZvvvkmvXr1onXr1gQEBLBkyZIav4fje8XGxur2v7v++uspKCjgjz/+0I5de+21uutCQ0M5efKk23sGBQUxYcIEbUTu9ddfJzPz/C/aO3bs4LnnniMgIED7M3HiRDIzM+tsg+K6IsFUIxEfHcobY3tibqZPPGxVdFYX/FQWILlTm3wq9dz/QL+eLqTnv9dVObK0LSNbG5Gyr0h0zr/KzC1hW0b9/VYohBAuUlLAYrF9brHYXtejUaNGYbVa+frrrzl69Chbtmxh7Nix2vnHHnuMzz77jBdeeIEtW7aQmppKt27dKCur2eppVa3+F9JPP/2U6dOnc99997Fu3TpSU1P529/+VuP3cHwv542E7e/veNx5rztFUVzyxhy9++67JCcn079/fz755BM6depEyrnvi9VqZfbs2aSmpmp/fv75Zw4dOlSrDa8vBUnTb0Tio0MZGmVm6oc7+GbvCQBO+rfAXJCtFd8sMXqyo01Xrv99j3bMioLBYerOuUin/XWFYgDVihF9oKUABsv5Suq5xRVMWrGTN8f2JD5aXxMLYN0+28bRpuJ8EpdO0Z6v9cFkACaPfgqArLwSl2uFEKLe9OtnG5GyWMBotL2uR76+vtx+++188MEH/Prrr3Tq1InrrrtOO79lyxYmTJjA6NGjAVsO1eHDh2t8/6ioKN5//32Ki4vx9fUF4KefftK12bJlC/3799cVu05PT9e18fLywmIPMqt4r88++0wXVCUlJREYGEibNm1q/MzuxMTEEBMTQ0JCArGxsXz44Yf069ePnj17kpaWRocOHSq91tPTs9pnvxRkZKqRMRoU7o2N0F7fOWYeWQFBWBSFrIAg4u5fzJTbEvimU38yA1ryTaf+ZPuZKh29sgdgmQEtWdexHxUGo9uNj5uVuVZAf/KzPS5TdRarysodtiHfuYkLtEAKwANVV1X9k221G2YWQoiL8t//wm23QZs2to///W+9v+U999zD119/zdKlS3WjUgAdOnTg888/JzU1ld27dzNmzJgqR3GcjRkzBoPBwP3338++fftYs2YNCxcudHmPn376ibVr13Lw4EGeeeYZl0Tt8PBw9uzZQ1paGqdPn6a83HUbssmTJ3P06FGmTZvGgQMH+N///sfMmTOZMWMGBsOFhRIZGRkkJCSQnJzMkSNHWLduHQcPHqRr164APPvssyxfvpxZs2bxyy+/sH//fj755BP+9a9/6Z598+bNZGVlkZNz+bY9k5GpRqhPRBDeHgqlFSpHW4QSO2W5Sxv76A/A4lVziDuUgodqpUIx8EN4DzqfOkxwYQ4n/Vtw55h5HG0Riqk4n13/SXK5lwJ4WVz/5zpbXEHSr6fxMBo4mV9CcKAPVlUlv8S2bDXmeJpLEOdYVT0lI5u5a/aRMDzqgr8WQghRY+fyUC+lwYMHExQURFpaGmPGjNGde/XVV7nvvvvo378/rVq14oknniAvL6/G9w4ICGD16tVMmjSJmJgYoqKimDVrFvfee6/WZtKkSaSmpvLXv/4VRVG4++67mTx5Mt98843WZuLEiXz33Xf06tWLgoICNm3a5FJmoE2bNqxZs4bHHnuM7t27ExQUxP33368LbGrLz8+PAwcOsGzZMs6cOUNoaChTp07lwQcfBGDYsGF89dVXPPfcc8yfPx9PT0+6dOnC3//+d+0e//d//8eMGTNo164dbdq0qdXIXl1S1JpMuooq5eXlYTKZyM3NpVmzZpfkPSe9/xOJv5yoUVvHvf12hXUmIX6ariCn3eJVc7jlYJLbXKoyX1+++egjHt9mpNRyvoWPh4GSCqvDa4WSChVTcT7r3plMcGGONpV40r8Fcfcv1r23Aiy/rw/ZRWUEB/rQJyIIo6Gm2Vz1p7y8nDVr1jB8+HCXHIArVVPrs/S38SgpKSEjI4OIiIha5cpYrVby8vJo1qzZBY+eNCZNrb9Qsz5X9fenrv79lpGpRmpcv/AaB1P2mlTVcR5Jcmfjfx9gd1CEFpA5BlKOQRuotD4XSNntMXdwCeJUYNzSbdrrUJMPM0dFuc3FEkIIIRqiphG6XoH6RbakuV/d/na5K6wzlc3W24Oi4MKzxB1KYW7iApc2jhsymwuydX+5FGDA4d1uq6o7kjpUQgghGhsJphopo0Hhxdu71ek9E+Kn8W1kb4qNXlipvKSCh2rVEskdSx8MTv9Jt/2N8xY1XpYyQgvOVBqM4XCN1KESQgjRWEgw1YjFR4fyppvaU+7UJAsp1zeQiXfMpOujn3PSv0Wl16iAolq0aT37aJS3pUy3StD5evtfNg/VSs9j+yt9DhWpQyWEEKLxkJypRs5ee2pbRra2oi6nsIx/f71Pt5WL2eTDrd1D+e/3GUDlo052P5s7EJK+3W1ApQAhhWfZumg8KuhGo+z3tqC4bEujOnw0lRRgKs53mwhvdzJf6lAJIc6T9VLiQlyKvzcSTF0BjAaF2MiWumPDovUBln2VXMzVLZi9Wh9ohZp8GHmtmSVbDjvcoeqxLAXwsZRhBazgkh9ldBOuOQZWPpZyUhaNZ1Nkr0pXFwYHVr5qx2JVSUk/Q/JvpwFb//u1b9kgVgIKIeqWffuVsrIyrTilEDVl33qmPlexSjB1hXIXYIH7kazz5QgUlmyxjVxFn0iv0dSgASgxeqFiC66cR6IqowC+ljLiDybR6499NCstQgV+CO/OoyNmkOsbyNbfzrh5Rtsmyk9+/jNni87Xvlq46Vea+3ny4u3dZCWgEFcYDw8P/Pz8OHXqFJ6enjVe9m+1WikrK6OkpKRJlApoav2FqvusqipFRUWcPHmS5s2ba0F5fZBgqgmqLNB6ekQUVovKO0mH2RXWmdbnCn1WFRTZE9V/CO9O98yDtC7K1U3pVccAtHbYX3BI+nbmJi5g8uineO3bQ1q7zp5lLEt5m+Z7dmJt3h41fho4jWadLSqvcpsbIUTjpCgKoaGhZGRkcOTIkRpfp6qqttWK875yV6Km1l+oWZ+bN2+O2Wyu1+eQYEro3HyNmXeSDpMQPw2w1Z4KLnCfCG4PmHwtZdycvl0XdNXmf2PHtgZwm5z+j09fotW54C7ulG0H8smjn3JbkPTR/7eHwV1C8PJoGr+ZCdEUeHl50bFjx1pt0FteXs7333/PjTfe2OgKlV6IptZfqL7Pnp6e9ToiZSfBlNCxJ307FvpcsvI5Bh7/2W17x2m9uvg9SAVUN79dxBxP0xLd7aUZnDdSNh9MIub4AeLvW0TfORuYK1N+QlxRDAZDrSqgG41GKioq8PHxaRLBRVPrLzScPsuv7kKnlb9rmYVHR0znjG+Ay/GaBE+OpRJUp2PuKIDR6roD+K6wzlQoBu16o9XC1oXjdBspK4C5IJu5iQvIKSqX4p9CCCEuCQmmhF4lEZLVcGGDmBYUMgNasiGyN9+F98Q1TNKzjUy5/rVMiJ/GKf/m2tRi66KzeFsrXB5XAa2gqIoU/xRCCFH/JJgSOqcLSl2OzU1cQOvCs7W+lwqc8QskdsoyJt4xk2IvHwxUPaKlAK0Kz7psN2MrnaBUO61YgcKusM7aayn+KYQQor5JMCV03NV2qskGyO4oQKuifC0wquw+zuNGBlTmJi7QbVWzeNUc9oZE6qb63N2n3OiJp6VcF4xJ8U8hhBD1SYIpodMnIohQk48u6NkV1hn7hFplE2aV5UPZAyP7faxO17groWCfqnPcqibuUAo9jh/AUEmpBvsx+8rC176cr507fLqokqcWQgghLp4EU0LHaFCYOSoKOB/kJMRPY2OHPgBYq6hdUmLw5JRfc5cSCYPTf8JUnH9uI+U+lBi9KDF66t7DkQq0Lsimzx+/6FbwtSrOq3Sa0HHaTwEGHE7Vzr224aAkogshhKg3EkwJF/HRobwxtidmk23KL9c3kBmj/gnA9+E9tdEl502NvazlNCspwIKiC6i8LGXMTVxwbiPlZ+ny6OdsjOxd6fvbt6NpXpSnm9ZTnNpUxXE7GxWY+uEuNu07IcnoQggh6pwEU8Kt+OhQfnhiMB9N7Mcrf+muHf/XsCmcCAjSbVpsD2wMgI+1QrfBsf24fYWdXc9j+6tNRDeiopyb1qusbWVTflZFYfGqOVruVIVV5W/Lf6Lz02tklEoIIUSdkmBKVMq+7Uxo8/Mbi+b6BuC8qs45oHEOfCoUg26FHaDLfXKsQeWsutV/KmBxGL2y38eoqsQdStHytbRnUWGS1J8SQghRhySYEtVyXg3nWECzQjGQFRBEhcPUnv2jFdsmyOs69tO2p7FrWZSnC8jcqa6qugqUGT34vl0PsvxbkBUQhFU5H+h5qFZuOZjE/pduZ8nK2boVfpNX7JQpPyGEEHVCgilRLedyCQnx01jXsR+ZAS1Z17Ef8fct4ox/c11wZFEUEjv1p++UZUwe/dS5OlHnKU5jURdaesHbUkHs0Z9pXXgWc0E2RlV1yeWyr/Dbeq7Egqk4Hyvw8roDF/CuQgghhJ7szSeq1SciCHMzH6AQ0O/bZ7ejTVfizm1EXKEYWNexn0ubIV1a8+2BUwCc8m9BcGGOLohyzI2yB0TOQZa7RHRvS7nLMXftfCxlxB1MBmybJL/x3W/8M64LRkPT2F1dCCFE/ZCRKVEto0HhyVu6AJWPIDmPVjlO6zX38+TNsT15Z0IfFt4VA8Ad98yn1OjhkitlpepAygK61YLuktOrmrzzQGXYoWQWr5pDs+J8Un47U0VrIYQQonoyMiVq5OauIazJgJBmPhzJOb/ljL+3kcJSi9vRKoBHhnRg2pBO2ujPyB5heHgoPPnZHvpOeZ+URePxtZQBtqAoK6AlLYrz8LGUu9xLwRb9J13djcjsPwguzKHM4IG3pVz7raCyQAyH8/bkdIAVvTtyfYdWtf56CCGEEHYSTIlaWfvIjez6I5+T+SUEB/rQJyKI9fuymL16H5m55xPVQ00+zBwVRXx0qMs94qNDGRplZtzbyWyK7KWbHtwV1lmbinPHAPQ6doAuj34OgKk4n5e+fpUBh3fhaanA4FSWwZljcnrM8TQm780icW+m2+cUQgghakKCKVEr9nIJjuzB0baMbF2QVVUuktGgMLBziDYdGHM8jV1hnUmIn8bgX7fjYXUdmbLzspSxeNUcEuKnaYVAF6+aQ9yhFBS1Ziv0rKCVa5j15S8MjTJL7pQQQogLIsGUqBPugqzqBDfzcTs9uCUihiHp2zCgz3+yJ5YbQJums18bczxN23rGrqpin4C2IXIWsC0ju9bPL4QQQoAkoIvLyLZC0NWjI6aT2Kk/mQEt+aZTf258YAnfdOqPxamGlGNVdXebKDuvFHT83ADc9NsOrajnf79Pv/gO1YDFqpKcfob/pR4jOf2M1LoSQogrgIxMicumT0QQoSYfXa6VqTifuYkLdNN+9tEr+1SeY36VXUL8NOIPJmmvq0pAdxeQbUo7RVmFFS8PAxarqq3yW/DtQfpGhtAvsuVFTwMm7s2sVW6ZEEKIxkFGpsRlYzQozBwVpQt85iYuIO5QCqEFZ1y2g6mq/EKub2CNAijH7W8qUHQB2bKkwyTuzeS659fz9+U/AfDWlgzueWcr1z2//qK2oEncm8lDK3bqAimArNwSHpLtbYQQolGTkSlxWcVHh/LG2J7M+GQ3ReUWXe6T81ReZeUX7M74NqNlcZ5LUGVVFAyq6hJQnQpooQvIlidncDTHFux4G/X3OFtUzqQVO3lzbM9ajyJZrCqzV++rdFNmBZi9ep8kwQshRCPVaEamcnJyGDduHCaTCZPJxLhx4zh79myV16iqyqxZswgLC8PX15dBgwbxyy+/aOezs7OZNm0anTt3xs/Pj6uvvpqHH36Y3Nzceu6NcBQfHcr0oZ0A133/nDdIrorFIQ7RRp8UA6f9mru0VYDgwhzmJi7Q9uyzB1JVmfXlL7XOc9qWke0yImVnKs5n0ao5fD7nr/x+0y1YTksRUSGEaGwaTTA1ZswYUlNTSUxMJDExkdTUVMaNG1flNfPnz+eVV15h4cKFbN++HbPZzNChQ8nPt/3jefz4cY4fP85LL73Ezz//zHvvvUdiYiL333//peiScDC+fzgGpeqpPEWBZs5DRg5aFee7jD6t69gPVKvbKulGVeWWg0m89PWrNX7OrLxStmVk17g9uG4U7chxWrPtlvVsHnSbTPkJIUQj0yim+fbv309iYiIpKSn07dsXgCVLlhAbG0taWhqdO7uOXqiqymuvvcbTTz/N7bffDsCyZcsICQnhww8/5MEHHyQ6OprPPvtMuyYyMpIXXniBsWPHUlFRgYdHo/jyXBG8PAxMHBDBW99nVDqV98CACB6P70rKb2dITj8DqMS2b8VH237nq58zOenfAnNBthZIZQUEMXn0UyQvutftXn32jwMOp7q8l6m4APDl2yWT2NOinZYID1UHR+44bxTtmGTfvDhfN63Z9ch+Yi9wOlEIIcTl0SiiheTkZEwmkxZIAfTr1w+TyURSUpLbYCojI4OsrCzi4uK0Y97e3gwcOJCkpCQefPBBt++Vm5tLs2bNqgykSktLKS09v6VKXl4eAOXl5ZSXV15ssjGz96s++/fo0I4YVAvvJR/BcSbNoMCE2HbMGNoRq6WCPu1M9Gln0s6fzm/F+n3HGXvvfJb9v2dpVXiW0/7NGf+X5/A2qlh9vKmw+FbeN6MX3kb91N2zW97FMnAyQZZibvpjN3M2vcWMUf8EYOMvmQy/JrjG/Yq5KpB2LbzJyrMFYXM2vcVNf+zGQ7Vi9TJSii8GbFOSOyO64W1UmfnFHgZ1vPgVhLVxKb7HDYn098rX1Prc1PoLF9/nuvpaKapaw5LRl9GcOXN47733OHjwoO54p06d+Nvf/kZCQoLLNUlJSVx//fUcO3aMsLAw7fgDDzzAkSNHWLt2rcs1Z86coWfPnowbN47nn3++0ueZNWsWs2fPdjn+4Ycf4ufnV5uuCSGEEOIyKSoqYsyYMdpAyoW6rCNTlQUljrZv3w6Aorj+hq6qqtvjjpzPV3ZNXl4eI0aMICoqipkzZ1Z5z4SEBGbMmKG7tm3btsTFxV3UN6MhKy8vZ/369QwdOhRPT8/L/Tg6FqvKsNe+50ReidsVc6biAjYueQBvS4XuuAr8cHV3nhz+D55fu5CBGTsxYNtqpiggkO+X/Jeh992HZ3ExKlBq9KTXwx9o1+/811C8PM6nHVqsKjuO5HC6oJRWAd5c166FNrL0fvJh5q21rUx8ZfXLDE7frtXL2hjZWxv1cvTggAimDel0kV+dmmvI3+P6IP298jW1Pje1/sLF99k+s3SxLmswNXXqVO66664q24SHh7Nnzx5OnDjhcu7UqVOEhIS4vc5sNgOQlZVFaOj53JOTJ0+6XJOfn098fDwBAQGsWrWq2m+It7c33t7eLsc9PT2v+L/ADbGPnkDCiGt4aMVOAJeA6qRXIN+HdSP+YJK24sIKJHbqz+TbbPlZA9K2420p066xh9uexcV4Fhefe59iSh2WDL6fcpRJN3XAYlVZ8O1BlvyQQWGpRTvvWJAzI7tEu/bF2HvombGH4MIcMHjQK30Xr66cq8vLArAqHpfla90Qv8f1Sfp75WtqfW5q/YUL73NdfZ0uazDVqlUrWrVqVW272NhYcnNz2bZtG3369AFg69at5Obm0r9/f7fXREREYDabWb9+PTExMQCUlZWxefNm5s2bp7XLy8tj2LBheHt78+WXX+Lj436LE9Gw2etVOVcYt0uIn4anpZwbDu9GQSXXJ4Cex/ZrGyZXl5mkAhanVsuTjxDe2p9/frqbwjILpuJ8FjtVb39oxU4eubkTGacLteue/XYJIQXZGAAfSzm+RbnEHUwG0CXfy16BQgjRODSKBPSuXbsSHx/PxIkTeeuttwBb7tPIkSN1yeddunRh7ty5jB49GkVReOSRR5gzZw4dO3akY8eOzJkzBz8/P8aMGQPYRqTi4uIoKipixYoV5OXlaUN+rVu3xmisfBm+aHjio0MZGmVmW0Y2J/NLOJ1fyr+/3g/YCn5OvMM2feu4LU3coRQ8LeUUePngXVymrQR0Dq4UbKUZ7MFXrm8gWfklTFqxUwuiBqf/hJelDAPQ2mEj5lc36HP9BhxO1UbItK1tUBmc/hOm4nxyfQPxNCigwv9SjxEc6EOfiCAp6CmEEA1UowimAD744AMefvhhbXXerbfeysKFC3Vt0tLSdAU3H3/8cYqLi5k8eTI5OTn07duXdevWERhom0rZsWMHW7duBaBDhw66e2VkZBAeHl6PPRL1wWhQtBEdi1Xl7R8yyMrV51I5V1m/4fBufCxllW6MbH9tVFXiHIIk+4pDe60o+z3t973u2H63z6i6zewCL0sZcxMXMHn0U6io3PPOVu1cSKA3s/90jZRLEEKIBqjRBFNBQUGsWLGiyjbOCxMVRWHWrFnMmjXLbftBgwa5XCOuHPa9/+y5VHa7wjrT+mAyHufCGudASgGXwMrd5sh2jsGZ4zVWNwsdTMX5oKpuR78MwE0Oo1P29trGz8s78+3SJQy5PqpG/RdCCHFpNJoK6EJcCHsuVQu/80mGCfHTOBXQwm1A40x1+AO2xPW9Ie11bXaFdabC6U4KYLBacDY3cQE+VufW53mfG51ybO+48bPl7w/UejsbIYQQ9avRjEwJcaHio0O5oUNromedry3WvLhAVwXdzjlMUbD9xqG6HD0/atTz2H7KjR4YLeXavVTAajDqR5bCOnPdH79UGcAZQDfy5Twl2e2PAyT9epoBnVrXrPNCCCHqnYxMiSbhk+2/a5/PTVygK4PgGCg5T/E5Hgfb/zDXZh3S7hN3KAVzYQ4+DoGUvb1BVXnp61eIP5hEaMEZ4g8m0ayk0G3GlOrw8UCrdtpxdxs/z179i+sNhBBCXDYyMiWahCPZRdrnMcfTdL9FVLaCzx3HXKiex/Zro0bO91CBloVnufHwLu29DIC3myk+5+Aq9vc9bF04jlZFZznt15wt7XrQ5fQRrdxC7qlCyiqsuoKhQgghLh8JpkST0C7o/DY/u8I609pp9V1lgZS7aT/l3KIFVVF0AZTi0F4BjKgYnaquuwvcnD/3tlYQXJiDAgQX5mBVFGKnLNfd5/3kw9w/QJ+7JYQQ4vKQX21FkzAuNlz7PCF+Gpva98KKfnrN/tEx4Ryn8xWKgZ1tugLgaXUu46mfJlScrnU+Xxnne5gLstm+YCyLV82xrQYEMs4UVna5EEKIS0yCKdEkeHkY8PO0/XXP9Q3E41yOk7vAp9To6XLcPqK0rmM/EuKn0TYnk6Ci3EoqRulVNepV2fXOx1sXnSXuUMr5lX5S0kMIIRoMmeYTTcZVLfw4eLIAsFUhdxfk2FbuKVrSt+OI1Un/FgAkLp1K8+K8SutROX90Zr/nKT8TrYpyq0x4d/zcscZVgE/T2ndLCCEaMhmZEk3G7TFttM+NTmM/jnWk8rx9qDDYfs8oM3piAbICgjjUsq22Ms959R64jmJVNiJlP//TVdewObxnjUa37M+4K8y2fVKWm/0HhRBCXB4STIkmY/z1Edrnp/yau+Qy2T+2LsrD51zphM0RPYl84itipyyn19F9uj31ajpF5469ntSzcQ9RavSs9hr7yFhC/DQAjuUUVX2BEEKIS0aCKdFkpB49q33+S7D7lXD2Ip123c/VlALwUl1X5jlTqzjn3G5vSHsSvnsXbzejXO7sMXfUtpnZ80euVEIXQogGQoIp0WSczD8/Ndbl9JEalUPYbe6ofV6TgKe61XrOldR7Httf4/t2zzxfGb3UopLy25kaXCmEEKK+STAlmozgQB/tc8fK4o4Bjn067URAEACzb36wVu9R1Qo90E8nRp9I12pV1eS+QUV5WmkEgOR098GUxaqSnH6G/6UeIzn9jIxgCSFEPZPVfKLJ6BMRhLmZD1l5JVru0XXH9gPQrLgARVHYEt6DR0dMpyQggPlYyPUNgHP7FZ/2bUarc6v4wP3qvZP+LTAV5eGtutagcmRPJr/OaWTKcZrQuSCoEZWXvn6ViXc8C4DVoego2IKohRsP8e6PhzlbXK4dDzX5MHNUFPHRoTX+WgkhhKg5CaZEk2E0KNzd52pe3XCQXN9AJo9+qtK23m7Gi/aGdGDQ4Z3aa3vAY0Ehx8/E9quiSIifxvq3J9G6KBeoujxCQvw0bX8/D9VKhWKgQjHiYy3X3d8xoBpwOFW7R3NfL+3zxL2ZPPn5z5wtOh9E2WXmljBpxU7eHNtTAiohhKgHEkyJJiW8lZ/utak4n7mJC4g5nnZ+77tzSd7Oup7KcFsOIduvGX2mrdCOtXQYvbIHRFZsc+r216f9mgPoRsisikLz4nytrUUxYHAafXIM8XLPjT4l7s3koRU7q50ufPLznxkaZcZoqEmWlhBCiJqSnCnRpDjmTQHayFBowRl9hXE33OU3qUBgqb5MwUn/Frpin1kBQfR8+COyAoK0kaag4jzmJi7QRsh2tOlK68Kz+FpsAVKJ0Yu1HfvxXXgM9nDKCvwQ3l17n0Mn8rBYVWav3lejvKuzReUs3PhrDVoKIYSoDQmmRJPSJyKIUNP5gCrmeJq24bFjhXF3DKrqdmTKy6ovmXDnmHlkBQRhURSyAoK4c8y8c6Ndittq5s7PYQByzgVZj9z6OImd+pMZ0JLETv15dMQM7Zp1+0/xj493kVmLAp6LvvtVEtKFEKKOSTAlmhSjQWHmqCgtqHFc1VehGLQK4+ZmtoCrhe/5bVt2tOmKftJNP2UHtmnDhO/eBRTWdowl/r5FHG0RWuV7VXeuKl/tyaxRO7uyCisLvj1UfUMhhBA1JjlTosmJjw7ljbE9mb16n5azFHM8jT1XdWHP0/P4KLYLMVcFsjbxG54ZGcWUj/dgKs7H01JOmdETb8v5BHEAg9VC8qLx7ArrjKelnJt+24GHaqX1oRQALdHd8b3s+Vk+ngZKyq1uz8G5aciDyXigYj6YxC0Hkzjp34I77pmvBWmO2uZk8umHTxBcmMNJ/xbcOWaeS7u3vk+nXUs/zCZf+kQESQ6VEEJcJAmmRJMUHx3K0Cgz2zKyOfm3ARwO9OHmiCCGnQssysttAVPcNWYmDsgnZsZELUhyXmFnL5fQ+lAKVg/PSqcNnVcQhpp82P7YTSzedIg3Nqe7XV0YczwNj3MZUfb3DC7M4bMVj9Jn2ge6tqbifNa9M1nbN9BckM3KDx6n79T3de2Ky61M/3Q3AEH+Xjz/p2iGXyur/IQQ4kJJMCWaLKNBITayZbXtnh4Rxdlxh7QgqbINjj1UKxaDgmo0olgsWAzup+vs7WeOisLLw8AjQzszbUgnUn47w4+/nmb9L1kcOlUI2Kb/zAeTdO9p2z8wF1Nxvm7l4dzEBboNmBWgdWFOlX3LLixj8oc7mXg0nMfjOlX7tRBCCOFKcqaEqIFmNw3QcpqsoFutZ8+jsigGlKE3o9x2G7Rpg3H0aLyXLtElvAOYTT684VTzyWhQuL5DKx6P78KsW6O14wnx07Aq7qfh7CsPTcX5LF41h2FOQRfYAqr0eaP4bd5Iti4cR9sc9zlWS7Yc5qW1B6r/QgghhHAhI1NC1IBhyRJO5pWgpmxlb0gkoBJ94jf2hrQHFKJPpKP064t52TIICtKuGwIMiu1qm07MLyE40KfaPKV+kS0xYAvScn0D2di+Nzenb3MZnbopfTvJi8YDKq0LcjDivkio8VzoF1yYw6cfPkHslOVu3/e95CPM71PLL4wQQggJpoSokaAgzOu/JnFvJrNX79OVI6huu5aaTic6tm/f0odfz9je47khExlweBfeDlN4KuBjKSe04IxLDpcj5wAsuJppP7Ct+PP0dD1usaq1CgqFEKKpkGBKiFrQJa7XY1ChGIza5wnfvYuH1eISGDl+7rxPoDsqUG7wYOvCcYD7/QgBhrzyHbP+dK0uOEzcm8msL/dRfOIUcxMXEH48jc3tuqK+9RZDro+6+A4LIUQjJjlTQtSSfaTpTz3aEBvZsl5GZxzTpBwLelalJqU4vSzlhBTmEFyYg6+1HB9LGUPSt+kqv+cUlfPQip0k7rXlVyXuzWTSip1k5ZXoKsbfuC+J0vsmMvvLvSSnn5FioEKIJkuCKSEaoE4h51fp7Qrr7FIs1Jni8KeqNgaHz+0MQO+jP+vaqsDs1fsoq7Dy5Ofnz7mrGP9u0hHuXpLCDfM2agGYEEI0JRJMCdEANfM9PwOfED+NUqNXre/hbh/Bytq1KC5wOZ6ZW8J7P2ZwtqhcO1ZVpfbM3BImrdjJ6xsOySiVEKJJkWBKiAbIaDj/v2aubyCbIntVOzplp+I+d6qyUSuF8yv+nL28Tr9XYUL8NNZ17EdmQEvWdeynVWp39OqGg1z/4rcySiWEaDIkAV2IBii8pb/udUL8NDwtFdycvg3QB0bOgVNVCejuzqmApZKrSi36IMtexd1UnM/cxAUkLp2qKw9h3wonC3hoxU6XelpCCHElkpEpIRqgcbHhOOa15/oGMvGOZ4Gq86KqYl/t5+54tm9Are710tevEH8widCCM9ycvp2b07cRWnCGuEMpumT22av3yZSfEOKKJ8GUEA2Ql4eBiQMiXI5XFgy5a1fTnCkr0LK4gN2v/RWANz57niUrnyN50XgWr5qDqThfa2uvtn5z+nZdMrvjljr2/QhVbHlU2zKyK3lnIYS4Msg0nxANVMJwW/2mt77P0I5l+zaj5bmNlSujAt+F9yT26M/4WMp1x+0ci3/aVvmpWFVbixt+34NHcTEGbJs3A9omzPbSCFVNJR5o1U537GR+ifvGQghxhZCRKSEasIThUex/Ll57bTEYq53mU4FiLx82RvbWVt6dD5pc86vcJarbfzB4qFYGp/9E25xM3vv0WW45mFRtzauoUxm618GBPpW0FEKIK4MEU0I0cF4eBjzO/Z+6o03XaotzGrDVg0qIn8Yp/+ZaIFXZdKC7Y47HvS1lbP7vRAZm7Kw2kFOAVg5b1vh6GugTEVT5BUIIcQWQYEqIBm5bRjYV5waDEuKncdK/hRbsOAY+9o9WYG9Ie3J9AwGl2kKe7o45j145j2g5c3yGcuP5jf08jQbZv08IccWTYEqIBs4x5yjXN5A95o664OWkfwtKjOfTHxXA02oBbEU2L8VaOseNlj0tFVrSel5JBcVllkvwBEIIcflIMCVEA+eccxR9Il37H9cAWBUDYNAFNP1+3wvgtqhmZZxHuC6UAVVXHmHOmn0XeUchhGjYJJgSooHrExFEqMlHC5bcbelSWRmEXN/AKreRcbfCr6ZU3JdgUEArjwDw26nCWt5ZCCEaFwmmhGjgjAaFmaNsZRIU9Fu6bGrfC09LOYqq6nKmfgjvrl1fVZL5Kb/mboMhd+2dX1sVhdO+zdy23RsSqb0+fraoit4JIUTjJ8GUEI1AfHQob4ztidnko23pEjtlGeVGD276bQc+1nJbSQSjF4md+vPoiBnatY4J4WALdkqMnoy89zWG/v0NvunUn2KjV5V7/zlvXwNgVFVaVVLzyqesWPs840wxE5ZuJTn9TI2roVusKsnpZ/hf6rFaXSeEEJdDowmmcnJyGDduHCaTCZPJxLhx4zh79myV16iqyqxZswgLC8PX15dBgwbxyy+/VNr2lltuQVEUvvjii7rvgBAXKT46lB+eGMwzI7pqx2KOp2l1nwzA2XOBlm0ln82W8BgtULInrPebspx9oR20wKzflGWc8jfp3q+q8EVx+uh8LvboXt2x7w6e5u4lKdwwb2O1GyAn7s3khnkbuXtJCv/4OLXG1wkhxOXSaIKpMWPGkJqaSmJiIomJiaSmpjJu3Lgqr5k/fz6vvPIKCxcuZPv27ZjNZoYOHUp+fr5L29deew1FkSXcomEzGhQmXB+h5VC5y58C8PU4/3f50RHTOREQpNWball4VpcgDrbcKlNJMTXhuMefu5wpAGMloVhmbgkPrdjpNjCyWFVe33CQSSt2kpmrr5qeVcV1QghxuTWKYGr//v0kJiby9ttvExsbS2xsLEuWLOGrr74iLS3N7TWqqvLaa6/x9NNPc/vttxMdHc2yZcsoKiriww8/1LXdvXs3r7zyCkuXLr0U3RHiojjmUD3lkD+1rmM/noqfhgJMGtRRa+9cb8oDVZcgblebop4WFDIDWlJq8HS5TgVKDR66Pf2cOW+AnLg3k+tf3MirGw65bW8P2p5etZeyiqorsAshxKXWKIKp5ORkTCYTffv21Y7169cPk8lEUlKS22syMjLIysoiLi5OO+bt7c3AgQN11xQVFXH33XezcOFCzGZz/XVCiDpkz6HyNbfW8qcmj34KX3Nr3hjbk6mDO2Bu5q21r2wEy1HS1d10ryurmq4AigKxU5axsYN+yxr7eW9rBYlLp7jdLNl5A+TEvZlMWrGTrLzzo1H2DZWdrz9TWEa/uRtkhEoI0aA0io2Os7KyCA4OdjkeHBxMVlZWpdcAhISE6I6HhIRw5MgR7fX06dPp378/f/rTn2r8PKWlpZSWlmqv8/LyACgvL6e8vLyyyxo1e7+u1P45awz9HdK5FYM6DmDHkRxOF5TSKsCb69q1wGhQsFoqmDmyC498kgrArBHTUDd40T3rELvNHZl984N4G/XjTs8Nn8JjQJmvL3B+NMiAPlBSgZMBLfA2qtp9h/661SXwamkpRgFu+mM3cza9xYxR/9Sdn//NL3w0sR8zv9iDt1HFVFzA82sX0f/3nzFayjGgYnBzfWFJGY98tINX/9qDm7uGcKEaw/e4LjW1/kLT63NT6y9cfJ/r6mulqKp62ZbJzJo1i9mzZ1fZZvv27axbt45ly5a5TOl17NiR+++/nyeffNLluqSkJK6//nqOHz9OaGiodnzixIkcPXqUxMREvvzyS/75z3+ya9cuAgICAFAUhVWrVnHbbbfV+rk//PBD/Pz8quyPEEIIIRqGoqIixowZQ25uLs2auZZ6qanLOjI1depU7rrrrirbhIeHs2fPHk6cOOFy7tSpUy4jT3b2KbusrCxdMHXy5Entmo0bN5Kenk7z5s111/75z39mwIABfPfdd27vnZCQwIwZ55ee5+Xl0bZtW+Li4i7qm9GQlZeXs379eoYOHYqnp2f1FzRyV1J/LVaV7RnZbD98BlDoHRFE7/Agbc+8bRnZ3LdsO94GlX/3sjL0vvvwLLYlo58ICGK3uSOD07fjoVqpUAxsjOztMsp01dkTfP3ewxgdfjezJ7xbgc0RPZl2m+svPVc19+WPs7b32vGfe/C2uP6WWNl7Aiwd3/uCN1K+kr7HNdHU+gtNr89Nrb9w8X22zyxdrMsaTLVq1YpWrVpV2y42Npbc3Fy2bdtGnz59ANi6dSu5ubn079/f7TURERGYzWbWr19PTEwMAGVlZWzevJl58+YB8OSTT/L3v/9dd123bt149dVXGTVqVKXP4+3tjbe3t8txT0/PK/4vcFPoo6Mrob+ewIAuZgZ0cZ8T2K9DMEEBvuQU2IIapaQUz+JiKhQDe9q247rfduNbVKjd67rfdqNiIMjfi6w823R3eqCZPDxpXZzrNiG9+5F9fPefCewK60xC/DStdEPGmRKs567wKcjHwynlXQUqjJ68GHsPpRbXDK7TRRUX/f25Er7HtdHU+gtNr89Nrb9w4X2uq69To0hA79q1K/Hx8UycOJGUlBRSUlKYOHEiI0eOpHPn84m0Xbp0YdWqVYBtuu6RRx5hzpw5rFq1ir179zJhwgT8/PwYM2YMYBu9io6O1v0BuPrqq4mIiLj0HRXiMnBcHQiwMbK3tjowIX4aqqLoSyEoCvf0a8esW6/R3SeoyDWQAtvoVHBhDqEFZ4g7lKIry+C4Lq/C4Pq7nQL4WMr59/o33D67876FQghxOTSKBHSADz74gIcfflhbnXfrrbeycOFCXZu0tDRyc3O1148//jjFxcVMnjyZnJwc+vbty7p16wgMDEQIcV58dCiv/rUHZRk7mDHqn7pRIIOq6op0GlSVuCgzsZEtGR97NcuSfwfAWMX9tbIMqpVhh5JZvGqOboQKIKVdNwZm7HQJyBRgwOFdLvf08zJc8BSfEELUpUYTTAUFBbFixYoq2zjn0iuKwqxZs5g1a1aN3+cy5uMLcVnd3DWENRnQws+TrPwK7fiONl2JO5Si5Uz9En4NA88FMfHRYVowddK/BcGFOVVumKxi24Ym7lAKAJNHP3X+XBX/7xlUlfT5ozjp34I7x8zjaItQisqsvPjNPp4ecU2l1wkhxKXQKKb5hBCXzsxR1+hqTDlurLy+Yz/Ut97Sktf7RAQR4G0bk7rjnvmc9G9RaVV00I9QxRxPw1Scz5KVs9n/f6MZdHhXlYGYUVUxF2Tz3X8f0GpPLdlymNW7j198p4UQ4iJIMCWE0Lm5a4i2qTKg7d93+1OfoHy2kiHXn8+vMhoU4qJsq2OPtggl7v7FfNPJ/aIQR5ZzhUPnJi5gSPp2fK3lVQZSjtOMRlRd7tW0j3bxVeqxC+mqEELUiUYzzSeEuHTio0MZGmVmW0Y2J/NLCA70oU/E+XIKjgJ8zq+GeenrVxmSvk0r7lnZFjUG1YpfeQldTmZc0G90HqqVwek/kbxovG2FYPE0Evt24vW7Ytw+oxBC1CcJpoQQbhkNCrGRLatt1y7ofKHaAYd3acGR44bIjuGN/fOBGTu1KUF35RQUN68dP3pbyggtOIP5YBIxxw8QzyKuPXCSu3q35eYoc6XBnxBC1DWZ5hNCXJRxseHYYxYPS4XL+crCGQX9DyDV6ZzjccdpPvtrx2PmgmzmJi6gsMzCOz8e5u4lKdwwb6Ps4SeEuCQkmBJCXBQvDwMTB9jqsrmrFVXd+ljF6WNl5yt7bT8Wc1y/3VRmbgkPrdipC6gsVpXk9DP8L/WYttGyEEJcLJnmE0JctIThUVRYVbasjGFI+jZtc2THqT5HjqNNleVW1YZ67r+m4nxd7SoVSPj8Z4ZGmVm7N5N//W8v2YW2LWu8jSrz+8CG/Se45dqrLvIJhBBNmQRTQog68czIa5h+dA7lrz1L/MEkl9wpd3lTzp+Da35UTdiqrJ8lcekUQNFtW5NTVM4NL35L5rmtb5xN/yQVxWAkPjrU7XkhhKiOBFNCiDrz0oOD6XK0lJ/nj8bHUqYdr+3I0ynfQIJKCnQbJ1fHqFoxF2SjACEHk/C0VPDoiOnMTVxAzPE0l30B7VRg9up9DI0yS8K6EOKCXFTOVGmp+9/0hBBNk9GgsGBMDFvCe+im96oq5OnO9rbdWNsxtlbXOI5kGYABh1OZm7iAuEMpbvcFdJSZWyI5VEKIC1arYGrt2rVMmDCByMhIPD098fPzIzAwkIEDB/LCCy9w/LhUIhaiqYuPDoV332VDZG+KjV6UGL2wULspu5jjaSTET6PU6FnjgMrddGHM8TQ8VNt2yh6qlZvSf8JUnO/2+pP5JTV8JyGE0KtRMPXFF1/QuXNnxo8fj8Fg4LHHHuPzzz9n7dq1vPPOOwwcOJANGzbQvn17Jk2axKlTp+r7uYUQDdjQAVHsWbycro9+TpdHP6fC6FXtNfagqeJczlOubyC5PgEXlJyuAnnePhhUqy4Y87aUVTo6tX7fiQt4JyGEqGHO1Jw5c3jppZcYMWIEBoNr/HXnnXcCcOzYMV5//XWWL1/OP//5z7p9UiFEo/LIzZ156/sMyiqsbAnvwc3nKqPbORf0VAArsK5TLAnx0zAV52NVlFqv9rO3Dy7Kc7nWAFrl9J0R3ajo84h2bs3PmZRVWPHykIoxQojaqdFPjW3btjFq1Ci3gZSjNm3aMH/+fAmkhBAYDQpTBnUA4NER089N+3liURRKjJ58Fx6DVdGHSWVGLyaPfopc30DmJi6g9bmE8trkTjkGZ84/sVTA61zl9MHp23XnrCq8n3y4Fu8khBA2sppPCFFvpg7uwLtJGZwlkIl3zHQ5v2Tlc1pdKiuwJbyHdi7meJr2A8p5a5rKyidU9xrOB1j2XCpH3x86xf0D2teob0IIYVfrYEpVVVauXMmmTZs4efIkVqv+B9Lnn39eZw8nhGjcjAaFF2/vxqQVO92ed1e6wG5XWGfMB5N0I00lRi88reVayQTngMo50HLmGFi5hlKQnH7mgqf6LFa1RhtDCyGuPLX+ifGPf/yDcePGkZGRQUBAACaTSfdHCCEcxUeH8ubYnoSafFzO5foGMnn0U8ROWaZN79klxE8jKyDofGK6YmBjZC/Wdox1CYRUh4+OgVVVoYzVzdkyi8q1sxJZv+UXuOMOuOoq28fsqssmJO7N5IZ5G5n0n/V4/vVOwnt0ZvO1N/Ltj/uqvE4IcWWo9cjUihUr+Pzzzxk+fHh9PI8Q4goUHx3K0CizNnKTcaqQ5SlHyC4sq/SaXN9A4u9b5HbkanD6T1pRUAWwKAoGVa02UV1fi8oWgr2y+mV6ZvysK+pZ/vcHsP66FYPVAl98Ybtg5Uq390zcm8lDK3aiAovP1bXyUK203pfE+vsmkvjZSqmuLsQVrtbBlMlkon17ySkQQtSO0aAQG9lSez1tSEe2ZWSzYV8Wq1KPaXvmObKPXDnbGNlLC1oqFAPlBiO+FtfrnTmv7AO4+deteBcXa1XTJ97xLDHH02yBFIDFgpqS4jZQs1hVZq/ep42MOde16nE8jduluroQV7xaT/PNmjWL2bNnU1xcXB/PI4RoIuzB1TOjrmH700P5aGI/Xr+rB8+M6FrttQnx01jXsR+ZAS1Z17Ef+d5+tVrx58jg8HHwb9sxFeezK6wzFYrtTIVi4FtTOGv2uBYl3paRTWbu+WKfztftCuss1dWFaAJqPTL1l7/8hY8++ojg4GDCw8Px9PTUnd+5032iqRBCVMZx1MpiVXn7hwyycksqDZCcR6wOvDT6gop7OjOoKnMTFzB30N+IOX6A4MIcTvk3Z/YNEzj64S4e/OMsCcOjtPbOVdPt05DO05L//uoXnhl5jSSlC3GFqnUwNWHCBHbs2MHYsWMJCQlBUeQHgxCi7hgNCjNHRfHQip0uq/Lsr/28jBSVWbTj1WdL1YwCDDuUTMzxA7QuyMGISuvCsyR89y6TRz/FW99n4O1hxKra3tXkq/9lsrJpyX2Z+dy9JIVQkw8zR0VJDpUQV5haB1Nff/01a9eu5YYbbqiP5xFCCOKjQ3ljbE9mr96nm0YznwtGhkaZ+eHgKca/Zyu8+UN4d25O366FVM7V1WtKBYyqivlcsVCw5T7FHE/T2vxn46+6a2pTVDQzt4SHVuzkjbE9JaAS4gpS65yptm3b0qxZs/p4FiGE0MRHh/LDE4O1XKqPJvbjhycGEx8ditGgMLBLMCOvtQUkj46YodtYeWubKCwouiBHdfqIm3PO9ars51oU5bF41Ry3myRfSK7W7NX7sFgvNMtLCNHQ1Hpk6uWXX+bxxx/nzTffJDw8vB4eSQghbJxXADp7/a4YNh44Sa5ThfXkRfdiPDf5p577c8q/BahWUAwEF+bo7lPdCJaPtZxbDiYxOH0buT6B7GjTVSujUFsqaEnpVfVNCNF41DqYGjt2LEVFRURGRuLn5+eSgJ5dTXE7IYSoK0aDwit3dnepsB5cmKPfQFlR6Dv1fe384lVzuOmP3YCtErq77WncffS2VBBSmEPcoRQAt/lRNeWcvC6EaLxqHUy99tpr9fAYQghxYewV1h/5JJWScluNp5P+LbS8J/Xca0cJ8dP4vw0LAX3yelX7/uHw2jmPys5UnM/CVXO5/uge7R4/tr2WqaMTXEaxggNdK8ILIRqnWgdT48ePr4/nEEKICxYfHcrfjp7ljc2/AXDnmHl8+uETBBfmcNK/BXeOmae1NRXnMzdxAf2P7+Vb0KYD7SoLpBxVoLArrLPLPW9K346PpVw3mnXD0T0kLp1C/H2LdAFVThXV34UQjUutgym7kydPut3o+Nprr73ohxJCiNq6oUNrLZg62iKU2CnL3babe27LF9XH2+356gIpe9p47z/2sXjVHBLip2n3tFc/d6QA5oJs5iYu0E0LPvbZboZFS2V0Ia4EtQ6mduzYwfjx49m/fz+qql+NoigKFoulkiuFEKL+9ItsSXM/T84WVb2tjH3LF3etqgukOHfeiErrorNa7pTjNjKVXXPdH7/ojhWWWkj69TQDOrWu5h2FEA1drUsj/O1vf6NTp04kJSXx22+/kZGRof357bff6uMZhRCiWkaDwou3d6u2neOWL45qEkjZOedOOd7TXQkGFWhZlOdSWuGzHUdr+I5CiIas1iNTGRkZfP7553To0KE+nkcIIS6YPRl91pe/kJVX6raNfYuX7tkZAJQaPPGg+IJqqFtBt23MsINJGM+dc87DMqKy6Iu5jL17jnb8j7Oyok+IK0Gtg6khQ4awe/duCaaEEA1SfHQoQ6PMbMvIJiu3mM0HT/FF6vlNiu1bvngbVeZj4bp/fEDqvNt1iePuuKuqXmr0Yu6gv/HS168y4HAqoKBWsrmNAlz/+x5MxflaInpYc9+L6qsQomGodTD19ttvM378ePbu3Ut0dLRLnalbb721zh5OCCEuhGOxT7PJVxdMuZPv7YdvUW6VbZwDJBU46xvAunem4GMpc9nKpjKOiejRobKbhBBXgloHU0lJSfzwww988803LuckAV0I0dD0iQgi1ORDVm5JpYHO7tBOLnv71WTaz3EPP7uqSisooKtP1bqZ+xWFQojGpdYJ6A8//DDjxo0jMzMTq9Wq+yOBlBCioTEaFGaOiqqmleLyyr4NTVVX1GRa0PmYY30qKdwpxJWh1sHUmTNnmD59OiEhIfXxPEIIUefio0N5Y2xPQk3ug5foE+m6wEgFNkT24ZtO/Sk2etV6M2N7oOV8nZXzCfBaQyFEo1frab7bb7+dTZs2ERkZWR/PI4QQ9cIxMX39viz+t/MoYBtN3xXWmdbnim6qQFZAEI+OmE6ubyCm4nwSl07RbU9T2xIKlb0+XeB+xaEQonGpdTDVqVMnEhIS+OGHH+jWrZtLAvrDDz9cZw8nhBB1yZ6YHhvZksfjOrI28Ru8jQZttMheMyohfpq24i7XN5D4+xYxN3EBtxxMqtVgknPgpaBPQG8VIDlTQlwJLmg1X0BAAJs3b2bz5s26c4qiSDAlhGgU7Nu4bHv6Zmb8vz1M9n2q0rb2cgr7X7odX0vN9tSrbKPknsf2a6/fT/qN6zu0quWTCyEamgsq2imEEFcKo0Fh8dhevPD1LyzZcrjKtj+Ed2dI+nYMuK875cjdlKDq8F+AxH2nWLPnOMOvDbuwhxdCNAi1TkAXQogr0dMjrmHxmJ4E+XtV2ubRETM4ERCkBUlVTflVABYUXRK6AjQvKdS1e/yzPVistU1xF0I0JDUKpl588UWKiopqdMOtW7fy9ddfX9RDCSHE5TD82lC2P30zH03sx/3Xh7uct+VRKW6DKHs4ZAWKjV6s69Sfmx74L9Zq0tALSi0s/SFDAiohGrEaBVP79u3j6quv5qGHHuKbb77h1KlT2rmKigr27NnD4sWL6d+/P3fddRfNmtV9Vd+cnBzGjRuHyWTCZDIxbtw4zp49W+U1qqoya9YswsLC8PX1ZdCgQfzyyy8u7ZKTkxk8eDD+/v40b96cQYMGUVxcXOd9EEI0fPYk9WdGXcObY3tidiqsuSuss9uSByf9W3DCvwWJnfrTb8oyJo9+iqMtQtkY2RurQ7st4T1c3vOFNfu5Yd5GEvdm1kOPhBD1rUbB1PLly9m4cSNWq5V77rkHs9mMl5cXgYGBeHt7ExMTw9KlS5kwYQIHDhxgwIABdf6gY8aMITU1lcTERBITE0lNTWXcuHFVXjN//nxeeeUVFi5cyPbt2zGbzQwdOpT8/PM7tycnJxMfH09cXBzbtm1j+/btTJ06FYNBZkCFaOrio0P58ckhTL+5k3YsIX4aWeem+gAqUEjs1J++U9+n79T3mTz6KW0lIMCjI6aT2Kk/J/xbcCIgiG5Zh1i8ag6m4nzde2XllvDQip0SUAnRCNU4Af3aa6/lrbfe4s0332TPnj0cPnyY4uJiWrVqRY8ePWjVqv5WpOzfv5/ExERSUlLo27cvAEuWLCE2Npa0tDQ6d+7sco2qqrz22ms8/fTT3H777QAsW7aMkJAQPvzwQx588EEApk+fzsMPP8yTTz6pXduxY8d664sQonExGhT+cXNHOpsDePaLvZzkfKkEx1IKlbGvBFyy8jmGpG/DAMQfTMLTUsHEO57V2tmDs9mr9zE0yqytNhRCNHy1Xs2nKArdu3ene/fu9fE8biUnJ2MymbRACqBfv36YTCaSkpLcBlMZGRlkZWURFxenHfP29mbgwIEkJSXx4IMPcvLkSbZu3co999xD//79SU9Pp0uXLrzwwgvccMMNlT5PaWkppaXni+3l5eUBUF5eTnl5eV10ucGx9+tK7Z+zptZfaHp9rm1/h3RuxaDHBvKnhT9wOFtl+h0JuvPe1dRJjz2RhsXXF4vDa2+j6zXZBcWk/HqSPhFBNXqummpq319oen1uav2Fi+9zXX2tah1MXQ5ZWVkEBwe7HA8ODiYrK6vSawCXbW9CQkI4cuQIAL/99hsAs2bN4qWXXqJHjx4sX76cIUOGsHfv3kpHqObOncvs2bNdjq9btw4/P7+ad6wRWr9+/eV+hEuqqfUXml6fa9vfyR0u7H2+XbHM5dh83O9nenp/Cmv2uz110Zra9xeaXp+bWn/hwvtc08V11bmswdSsWbPcBiWOtm/fDthGxJypqur2uCPn847XWK22tNAHH3yQv/3tbwDExMTw7bffsnTpUubOnev2ngkJCcyYMUN7nZeXR9u2bYmLi6uX5PuGoLy8nPXr1zN06FCXqvdXoqbWX2h6fb7Q/lqsKsNe+56svJIq23kYoOJc5vkrq1/m5l+3akmqKvDD1dfy0J//5fbaJ4Z1ZlxseI2fqSaa2vcXml6fm1p/4eL7bJ9ZuliXNZiaOnUqd911V5VtwsPD2bNnDydOnHA5d+rUqUo3XDabzYBthCo0NFQ7fvLkSe0a+/GoKP2O8l27duX333+v9Jm8vb3x9nbdBsLT0/OK/wvcFProqKn1F5pen2vbX08gYcQ1PLRiZ6UTew/eGEH/yFaMf3c7puJ8huz7EW/L+ekEFbgxbStbXhvLT1ddo9u+BqBFgG+9fQ+a2vcXml6fm1p/4cL7XFdfp8u6ZK1Vq1Z06dKlyj8+Pj7ExsaSm5vLtm3btGu3bt1Kbm4u/fv3d3vviIgIzGazbuivrKyMzZs3a9eEh4cTFhZGWlqa7tqDBw/Srl27euixEOJKEB8dyhtjexJq8tEdD/L3ZPGYGBKGR5FdaNt2Zm7iAl0gBbZKU0YguCiXWw4m8dqX83XngwP19xVCNGy1Hpm67777eP311wkMDNQdLywsZNq0aSxdurTOHs6ua9euxMfHM3HiRN566y0AHnjgAUaOHKlLPu/SpQtz585l9OjRKIrCI488wpw5c+jYsSMdO3Zkzpw5+Pn5MWbMGMA2BfjYY48xc+ZMunfvTo8ePVi2bBkHDhxg5cqVdd4PIcSVIz46lKFRZrZlZHMyv4TgQB/6RARpq/BOF9iCqZjjaW6LfCoOHwccTnV/UgjRKNQ6mFq2bBkvvviiSzBVXFzM8uXL6yWYAvjggw94+OGHtdV5t956KwsXLtS1SUtLIzc3V3v9+OOPU1xczOTJk8nJyaFv376sW7dO9+yPPPIIJSUlTJ8+nezsbLp378769euJjIysl34IIa4c9gKf7mQX2lb87grrjPlgUpXxkdFpwvB0QWklLYUQDVGNg6m8vDxUVUVVVfLz8/HxOT8MbbFYWLNmjdsVd3UlKCiIFStWVNlGVfU/kBRFYdasWcyaNavK65588kldnSkhhLhYmbm2BPWE+GnccjCp0nYqUGrU52208nfNyRRCNFw1DqaaN2+OoigoikKnTp1cziuKUu3KPCGEaCraNPcFbEU7T/q3ILgwBwW0TZLtFCDPW19SpdS+DNCBxapWOqUohLi8ahxMbdq0CVVVGTx4MJ999hlBQecLynl5edGuXTvCwsLq5SGFEKKx6d+hFYu+Swfgjnvm8+mHT2AuyHaZ7lOBn666RnfsoRXbef3unsRH21YcJ+7NZNaX+3TlGEy+ntx3fQRTB3eQoEqIy6zGwdTAgQMBW2Xxq6++utr6TkII0ZT1a9+S5n6enC0qJ88ngF1hXRic/hPeljJdQGVBcdmOptQCk1bs5M2xPQHb585yi8t5dcNB3k3K4MXbu2mBlxDi0qt1aYT9+/fz448/aq8XLVpEjx49GDNmDDk5OXX6cEII0VgZDQov3t4NsJVHiDuUgo/FtsLPnt1pBTZF9tLVmHI07cOdTPnQNZBydLaonEkrdvL6hkNYrFVvaSOEqB+1DqYee+wxrWLozz//zIwZMxg+fDi//fabriq4EEI0dfHRobw5tic9j6fhodryoBSg1OhFZkBLEjv159ER539umorzWbxqDsmLxrN41Rz8CvOxuKZPufXqhoP0en4da/Ycr4eeCCGqUuvSCBkZGVrF8M8++4xRo0YxZ84cdu7cyfDhw+v8AYUQojGLjw7FMnQgFV98gYdqpUIxsDGyF5NHP4WpOJ+Xvn6VAYdTUYFcHz9aFeXhoVppfSgFsK0GnJu4gJjjaewK6+xSLd1RTlEFkz/cxfA9x7mnbzinC0u1ZHUhRP2pdTDl5eWlbQy4YcMG7r33XsBWuqCu9rgRQogrifHtJew8epbQA7u1gMhUnE/i0im6pHSfwvP5VB6qlZjjadoUoWOANXn0U1W+35q9J1iz9/wWXKEmH54d0bmKK4QQF6PWwdQNN9zAjBkzuP7669m2bRuffPIJYNuC5aqrrqrzBxRCiEYvKIgdL/+XF9Yc0A4tXjXHZXWfY+mECsXArrDOxDhMEdoDrKqYivNdRrIygUc+SWV+n7rumBACLiBnauHChXh4eLBy5UreeOMN2rRpA8A333xDfHx8nT+gEEJcCVoF6AtxVrXNjAqUG4zMHfQ3doV1pkKx/ai2B1ju2POtUhaNJ/5gEqEFZ4g7lMLcxAW6dut+yaqD3gghHNV6ZOrqq6/mq6++cjn+6quv1skDCSHElchs8tW93hXWmZCDSW5/o1UAH0s5n614lAl3zCbm+AGCC3M47dcMv/ISkheNd8mfcpwOtHM3kjXj/+3G6OEhpRSEqEO1HplyVFxcTF5enu6PEEIIV30igvB0+ImbED8NaxU79ilA66Jcvlw+nZCCbIyqSnDhWW7M2Ol21MlxOtBOPfdfU3G+7vhjK3dTXGa5+E4JIYALCKYKCwuZOnUqwcHBBAQE0KJFC90fIYQQrowGhcFdQrTXub6BVDjtyedMATxQtR/UBs7/0PZQrVx3bL/Wdm9Ie+yhlMr53KuQgmxSFo3nldUva23zSyxEzUxk7pp9F9cpIQRwAcHU448/zsaNG1m8eDHe3t68/fbbzJ49m7CwMJYvX14fzyiEEFeEe/uH615vCe9Bbcps2oMk++dWRcFUnM+SlbMZnP6TNs6lcH7/PwPgaylj8K/b9PdS4a3vMySgEqIO1DqYWr16NYsXL+aOO+7Aw8ODAQMG8K9//Ys5c+bwwQcf1MczCiHEFaF3uL7e03NDJlLDmpyAPkhSAHNBNjv+M4ab07djRK1i0tA2wgXw7ZJJLF41R5v6W7IlgzI3GysLIWqu1sFUdnY2ERERADRr1ozs7GzAVjLh+++/r9unE0KIK8iOI/ottxK+e1f3Q7iyUarKjitQbRDlfI+QgmziDiZp+VZWFd5PPozFqvLjr6d5aW0aL609wI+HTsv2NELUUK1X87Vv357Dhw/Trl07oqKi+PTTT+nTpw+rV6+mefPm9fCIQghxZTiZX6J7fd2x/S51ppxVF87UNJBybOcBulV+n+08xoJNv3K2qFw7tnBTOs39PGUTZSFqoNYjU3/729/YvXs3AAkJCVru1PTp03nsscfq/AGFEOJKERzoo3ttVRRdsOSYE2V/XZNgyZnzfZzvoYKuXtW+zDxdIGVn30Q5cW/mBTyFEE1HrUempk+frn1+0003ceDAAX766SciIyPp3r17nT6cEEJcSfpEBOHvaaCw/Nymx6p+iq4EI95YdHlRjh9rqqr2KmBBISF+Wo3vN+vLXxgaZcZouJDQTogr30XVmQJbEc/bb79dAikhhKiG0aDw9xsjtdc723TVVTc/G2CqNhByLH9wIRSgXDFWulmyO1l5pWzLyL7AdxTiylfjYGr48OHk5uZqr1944QXOnj2rvT5z5gxRUVF1+nBCCHGleXhIR/y8jICtcOe6jv3IDGjJuo79MKjVJ5OXGj3dTv/VJrhSDO5/9Nu3pEleNF634g/gm72ZJKefkaR0Idyo8TTf2rVrKS0t1V7PmzePu+++W0s6r6ioIC2t6g04hRCiqTMaFF65szuTVuwk1zeQyaOf0s4tXjWH+Eq2mAFbAOVlrXAbSFUWhNnPOdanyvXxx1Scr41Otc3J5NMPnyDk3MbLCtD6UAqA9nzLk4+wPPkIoSYfZo6KkqR0IRzUeGRKVdUqXwshhKiZ+OhQ3hzbE3Mz/ebHCfHTKDV6VXqdCpz0b1GjUSj7lKBVUSgxeGDfPEYBWhbm6LaiWfnB45gLsjFwPihzt68fQGZuiSSlC+HkonOmhBBC1F58dCg/PjmEjyb24/W7evD+fX3I9Q1kU2SvSgt5WhWFO8fMc9nTz3HkyfGYAhhVFW9rBUaHcx7ATek/0TYnkyUrnyO4MMdlZMuKfsWfsyc//1mm/IQ4p8bTfIqioCiKyzEhhBAXxmhQiI1sqb3u1z6IhPhpeFoqGHA4FU9LOYZzRTlVYEt4DEdbhFJu9MRoKdOus6/Qcy7g6W57GTsfSxmfrXiUVkW5bqcIFcDTUqGbDnR0tqicJ1buYd4d18oqP9Hk1TiYUlWVCRMm4O1tG5YuKSlh0qRJ+Pv7A+jyqYQQQtTe8vv60ulf2Uy841kAlqyczZD07VowVW6wjS9tCe/BkPRtGHDIl1IUTvo1p3VhjnZcpfLpBwVoXUkgZT9/028/MTdxgS6vy9HKnX/ww6+nmXWr5FCJpq3G03zjx48nODgYk8mEyWRi7NixhIWFaa+Dg4O599576/NZhRDiiublYWBEt/NBSfSJ37Qf0oZzrwEeHTGdxE79sSiKLscJILFTfzIDWrIhsg/fRvamAqXKHKuqznmoVnr/sa/SFX4AWXklPCQ5VKKJq/HI1LvvvlufzyGEEAL4z90xrP0liwqryq6wzrQ+lIKHaqVCMWg5TPZVgItXzSHO4fyONl1dRpHa5mSy7p3JupwpO/uIV2WrAVUgsLRAew/nFX6O7Wav3ieFPUWTJQnoQgjRgBgNCtMGdwBc61A5Vy2v7jzA0Rah9JuynO8iegKVJ6q7owDelgpt1KuyFX5gW+UnhT1FU1Xr7WSEEELUr6mDO/Ju0mHOEug2X0kB/L2N5FZy3lmubyDTbnuS+VgoM3riSXGttqhxrFXVuiCbJStn8+iIGS6J6Vl5Je4uF+KKJyNTQgjRwBgNCi/e3q3SVXYA8/98LeZmPm5aVO2sb2CVBT7dvXZcFeiBypD07bo6VXbZBe4XIlmsKsnpZ/hf6jGtirq7Y0I0VjIyJYQQDVB8dChvjO3J7NX7yMw9P+JjdqhAbjAoPLRiJ1Dz7WR2mzvS5tSxKgO1yl7bGcDtdF+Qv77gaFmFlac+/5k1P2dSVG7Rjjf38wRs5RUcr72tRxhDo8z0iQiS3CvRqEgwJYQQDVR8dChDo8xsy8jmZH4JwYE+ukCjsoAr1OTDMyO60sLfm0+2/84Xqce1c68MGMvgfT/iYymv1VSfI/Xcf51rUG0+eIrgQB/6RbZkfuJ+/rslA3ebZTgGUXbZhWUs/fEwS388TJC/J8//KZrh14Zd4BMKcWlJMCWEEA2Yc2FPZ9UFXNe1a8GXu88HUzO2rMDTUqHlQFW2YXJVgZYCmAuyWfvOQ/xs7kT0iXR2hXUmoXgaX6Qex8MAFZWVca+B7MJyJn+4iwf/OEvC8KgLv5EQl4jkTAkhRCNnD7j+1KMNsZEtdVNkXh4GJg6I0F53zzqEx7mQybE0ghUoMXiwIbKPy3Y17ihASOFZhqRvI7TgDLccTGLHf8awZOVs/AvzXdqbivOrrFflzlvfZ7Bmj9SvEg2fBFNCCHGFSxgexbVtmgG2nCnHQSMV+KZTf9o/8RVdHvuCiXc8S7mxZpMWCuf/EbEnp9+cvp3EpVN0wZKpOJ/EpVO45WASoQVniDuY7DaB3Z3HP9sjyemiwZNgSgghmoDY9q0AmH3zg5QazyeKG4Bhh5J1o0VbwmO0gKu6MMZd3SpzQTZzExdoo1FbF43HXJB9vlo7qpbA3jYnk+RF95I+fxTJi+6lbY5+JKqgtIKU9DO17q8Ql5IEU0II0QT0jggCINc3gE2RvahQbD/+VcCoqsQdStFGix4dMZ1vI/tQYvTUpgGr4i6gijmextzEBcQdSsHHUqabOFRBq+b+6YdPYC7IxqiqmAuy+W7JAy7TgEm/nb7QbgtxSUgwJYQQTUDv8CDtc3vldOe9/eyjRbm+gZQbPfCwWrRNk61UHlQ5Z1hZsQVLMcfTtOrpdipw0q+ZVq09uDBHV8fKObADWLwpnS93Hqt1n4W4VCSYEkKIJsAxKd2+t9/ajrHaCJXj3n+ALhAyANm+zVzuWVlwpQJ+5SU0L85328ZUWqx9fsrP5NLGQ7VyU/pP2uiUCjz8aSq3LtxSTS+FuDwkmBJCiCakua+n9nlVe/vtCuusC7QsBndbJbsvoWAAbszYia+lzG17b0s5u/5zNxnzRtK6MNftfb0tZS5J6nv+yOPvy7ZX3UEhLgOpMyWEEE3IrFuv4aEPdwPnR6jcsQdWMcfT2BXWmcG/bnfJe6qsVpXj5smVVVq3HzegVhqQXXdsv8vxDftPUlxmwdfLfXAnxOUgI1NCCNGE3Nw1hDfH9iTUpN/XL9Tkw8K7eqCci2zsgVbslGVMHv2U2yRzx4/OalrMoKrrTSUFbutSvfD1LzW8uxCXRqMJpnJychg3bhwmkwmTycS4ceM4e/ZsldeoqsqsWbMICwvD19eXQYMG8csv+v8Js7KyGDduHGazGX9/f3r27MnKlSvrsSdCCHF5xUeH8sMTg/loYj9ev6sHH03sxw9PDGZkjzb8/YYIt9fk+QZoAVJNVvhd7M569unA0IIzxB9M4qWvX9XOpR49e5F3F6JuNZpgasyYMaSmppKYmEhiYiKpqamMGzeuymvmz5/PK6+8wsKFC9m+fTtms5mhQ4eSn3/+N5xx48aRlpbGl19+yc8//8ztt9/OX//6V3bt2lXfXRJCiMumsqrpT4+I4rp2zd1eczGjURdSdvP8VCAMOJzq5owQDUOjCKb2799PYmIib7/9NrGxscTGxrJkyRK++uor0tJcdy4H26jUa6+9xtNPP83tt99OdHQ0y5Yto6ioiA8//FBrl5yczLRp0+jTpw/t27fnX//6F82bN2fnzp2XqntCCNGgfPpgf12iOsCONl11CenOVOC0b6Bu9MrRxYY/qsMdY9sHVdFSiEuvUQRTycnJmEwm+vbtqx3r168fJpOJpKQkt9dkZGSQlZVFXFycdszb25uBAwfqrrnhhhv45JNPyM7Oxmq18vHHH1NaWsqgQYPqrT9CCNGQGQ0KL/65my4Acl7551jSwP4xqAb77V0IFcj18ddeF5dfxC7KQtSDRrGaLysri+DgYJfjwcHBZGVlVXoNQEhIiO54SEgIR44c0V5/8skn/PWvf6Vly5Z4eHjg5+fHqlWriIyMrPR5SktLKS0t1V7n5eUBUF5eTnl5ec071ojY+3Wl9s9ZU+svNL0+S3+rNqRzKxaP6c6L3xwgK6+EkoAApt+RAICpuIB537xO7O97MKjnN00GqK8wx+Lri7fR9l7HcvJr1A/5Hl/5LrbPdfW1uqzB1KxZs5g9e3aVbbZvt9UUURTXQWJVVd0ed+R83vmaf/3rX+Tk5LBhwwZatWrFF198wV/+8he2bNlCt27d3N5z7ty5bp973bp1+Pn5Vfk8jd369esv9yNcUk2tv9D0+iz9rdqMLu6O+pI38EnW1skT1dx8LOc+O8WaNWtqfJ18j698F9rnoqKiOnn/yxpMTZ06lbvuuqvKNuHh4ezZs4cTJ064nDt16pTLyJOd2WwGbCNUoaGh2vGTJ09q16Snp7Nw4UL27t3LNddcA0D37t3ZsmULixYt4s0333R774SEBGbMmKG9zsvLo23btsTFxdGsmWuV4CtBeXk569evZ+jQoXh6elZ/QSPX1PoLTa/P0t/am7JiO5t/zebbJZMIKcjWjjvWmnJXd8pRdeed2wKc8m/OvXf+mz+an/95rwAv/6UHcde4/zcA5HvcFFxsn+0zSxfrsgZTrVq1olWrVtW2i42NJTc3l23bttGnTx8Atm7dSm5uLv3793d7TUREBGazmfXr1xMTEwNAWVkZmzdvZt68ecD5iNRg0KeOGY1GrNbKB6u9vb3x9vZ2Oe7p6XnF/wVuCn101NT6C02vz9Lfmvvv3/ozcfl29rRoR9zpTDxUKxWKgWw/E6aSQkDlrI8/wYVndQm59gCqAts/OlWtBrQXArVTgNDiYr56azKbInuRED+NXN9AAKZ8vJs3x/YkPjrUzd3AYrXdaf2B0wSb/OkTEaTbVudK1dT+TsOF97muvk6NIgG9a9euxMfHM3HiRFJSUkhJSWHixImMHDmSzp3P7yXVpUsXVq1aBdim9x555BHmzJnDqlWr2Lt3LxMmTMDPz48xY8Zo7Tt06MCDDz7Itm3bSE9P5+WXX2b9+vXcdtttl6OrQgjRoC25tzc3bf6CXTEDyTqXjB53/2K6PPo5XR5dRb+pKzjl30KXnG5B4YR/C8qN7v/hUoESoydZAUFk+bfgm079OenfQlcawddS5rIBMsDs1fu0oMlR4t5Mhr32PQCPf7aHu5ekcMO8jSTuzayTr4MQjhpFAjrABx98wMMPP6ytzrv11ltZuHChrk1aWhq5uef3eXr88ccpLi5m8uTJ5OTk0LdvX9atW0dgoO23Gk9PT9asWcOTTz7JqFGjKCgooEOHDixbtozhw4dfus4JIUQj4mtuTe8dG7FYVVpkZOPxwQ4oOp/I6ziVpwCn/ZvTb+r7pM8f5TIqpQJZAUHE37dIG3ECWLLyOYakb9P9xu+hWl22mMnMLeG9HzNoFehNcKAPfSKCWL8vi0krdmoJ645tJ63YyeIxPRl+rfvRLCEuRKMJpoKCglixYkWVbVRV/z+OoijMmjWLWbNmVXpNx44d+eyzz+riEYUQokmxF/4Mbe7LGYdgamebrsQdStGmAXe26QrASf8WmAuytak8Ffg2sg+PjpiuBVKm4nzmJi5gQMYulzwsFbC6WXT076/PB1g+RgVrNVlZkz/cyUJrD0b2aHPBfRfCUaOY5hNCCNFw9WjbXPvcVJyPp6WCCoMHxUYvNrW/Tts0+c4x88gKCMKiKGQFBDHwgSVMvONZ3YjU3MQFxB1Kwcda7lJxXQEUtepa6iUWlTJL9QUapn6cytw1+2rRSyEq12hGpoQQQjRMT4+IYsXW3wFbMHTTbz9po1LlRk8tWDraIpTYKcurvFfM8TQ8VPfBkAo0Lylk8ao5WoD20tevcMPh3SjAlvAeulGu6rz1fQbdr2ohU37iosnIlBBCiIvi62VkaJStsLJjMOShWok57n7LL3du7tqaXWGdte1q3I1B+Tgkos9NXMCQ9O34WsrwsZRxc/o23YbINfHM//a6TWAXojYkmBJCCHHRltzbm6FRwbpgqEIxsCusMxGtalbMuIu5mW7bGucta+zTfR6qlV5//ELM8TTdP2IKMOCw6yb1C754kf0v3c6Bl25nycrnMDlse3OmsIxtGdku1whRGxJMCSGEqBP2sglpfQeT3bw1aX0Hc9PmL9gwYxDN/Sqv56MAoSYfYtu3Itc3kMmjnyJ2yjJUNxsqgy2wCiwtYldYZ5fRK29LOUtWPseSlbP5dskkAAZl7NRGr4akb3Mpr5CVV3IRvRZCcqaEEELUIV9za65Jtm3tEeRw/MXbu/HQip0uwY99tGnmqCj6RbbE30uhsMzWqlXRWZckdPvn3pZy5g76G/EHk1zODUnfBtj283O+1gAu5RVOSjAlLpKMTAkhhKh38dGhvDG2J6EmH91xs8mHN85VMTcaFObd3l075zjN50wBvvvvRLdFEAxU/o+bu/u9sv6gFPMUF0VGpoQQQlwS8dGhDI0ysy0jm5P5JVqRTcctXkb2aMPT/9tLbnEFv7a8mpDCs27vpQBGp2POewRWdl2zonzdsdIKK5NW7KxyaxohqiIjU0IIIS4Ze6HPP/VoQ2xkS7d75d3UuTUAvY4dqPGmyOA6FVgZH7WCtjmuI1GPfJzKqp1/kJx+Rlb4iVqRkSkhhBANhsWqsunASaDy0SX7uYvZsnjTfx9gXadY3cbJJRVWpn+6G7AlxM8cFSUjVaJGZGRKCCFEg7EtI5vcEgsAP4R3rzKgulAK4IFK/MEkti4az+JVc3TlEsC2j99DK3ZKLpWoERmZEkII0WCczD+/su7RETN46etXGJz+EwbUGk/jOassIDNgKwJ6y8EkbjmYxAn/5vzlnv/jaItQ7bonP/+ZQG9P+rmZkrRYVVLSz/Bj+imOny2hTQtf+ke2ol9799OX4solI1NCCCEajODA86v9cn0DmXjHTHo+/CEbIvtgQbmgkSrHjZUrO68AIYVn+fTDJ3TnzhaVc887W7lh3kbdKFXi3kxuSviM3JF/YtxfBhA3cyor1qRyz9tbue759TKi1cRIMCWEEKLB6BMRhLmZt+6YLah6lo2RvWp1L8fgyR4wVUUBggtz3J5znPZL3JvJpBU7efKLV4k7lEJowRltixuwBWCTZIqwSZFgSgghRINhNCjMuvUat+eiT/xWaUDkbuTJua3q9NHdPRRV1XKoTMX5LF41h+RzeVXNivOZvXofj6+0Jalfd2y/bh/CYQeTdasEZ6/eJ6sCmwgJpoQQQjQo8dGhvDm2JwHe+kpS7raPsXNXX8pdcFXVKkAF2z+KjhspO488ZeaWkHcuQd6q6KcdDais/OBx7XVmbgkLNx6qoqfiSiHBlBBCiAYnPjqUnc/E4ZjHPXfQ36oeVXJ67fx5TcspeKhWYo6nEXM8TTfyFHM8TddOUV2T4p2nCV/dcIg1e47X4F1FYybBlBBCiAbJy8PAbT3CtNcJ371b5aiS80fV6fOaTripQIvifECl4twdKxQDu8I669rtbNPV5Z7u3mPqR7tYs0fyp65kEkwJIYRosF788/m9+mKOp7kNplTA6vC5/aPjuJEClBk93QY77o75WMowF2RTbvQgy78F6zr2IyF+mq5NQvw07X3tyhTXikNWFSZ/KAnpVzIJpoQQQjRYXh4GurVpBthyphyDFxWoQOG78J58G9mbE34mSoyeWBSFrIAgkq6+VmtboRjYEt6DrICgSnOpHF/bP/pYylFAC6R0CeklBZz2b6EL4PJ8/dn/0u0ceOl2lqx8TlcMNOHznyUh/QolRTuFEEI0aLd2D+PnY3kkxE/D01LODYd3owBbwnvw6Ijp2nYwzoLL8nkaOBEQxJ627bSA6KWvX+Xm9G01KgJqz4Oylz2IO5SCh2ol5GASww4mo5wb/7KHSK2LcrV7DUnfxtzEBUwe/RQAOUXlpPx2hus7tLrwL4ZokCSYEkII0aC1OlfI017Es6ZyfQMAC0Mmvkmp5Xy4NPGOZ1mycjY3p293WQXoLqhSgFsOJmFVFIyqraVBd5X76wzgkrT+46HTEkxdgWSaTwghRINmbuZTfaNaenTEDDZE9qbY6EWJ0YvNET2xUnWVdINauyk6Fdgb0l53bPcfZy/gaUVDJyNTQgghGrQ+EUGEmnzIzC2pvnElHrwxgre+z9Beuxvl2rbgHoKLciu9x4Xttqe/ytezdmMYFqvKtoxsTuaXEBzoQ5+IINn3rwGSYEoIIUSDZjQozBwVxUMrdgI1L3Fg99pfe3DLtVcRc3ULnlq1l+zCMrftfrrqGi0nqqppP/sz1GR7mmuz9EU7g2sxypa4N5PZq/fpgshQkw8zR0URHx1a4/uI+ifBlBBCiAYvPjqUN8b2dAkumvt6MqF/O3qHt+RkfgmnC8o4W1SGokDfds3JTtvKzV1DtHsM7hJCv7kbyC4sd3mPhPhpxBw/gLkgu9ISDM4r/6qiAi0Lz7J14Th2tOlKQvw0TL5eNbo2cW8mD63Y6fJeWef2CHxjbE8JqBoQCaaEEEI0CvHRoQyNMtd42qu8vJw1+vxvvDwMzBndjUnnRrkc2VYFKjUuDFodBTCiElKYQ9yhFAB+ueWdaq+zWFVmr95XaU0sBdu+f0OjzDLl10BIAroQQohGw2hQiI1syZ96tCE2suUFBRPx0aEsHtPT7TnnWlYXy/509u1omvtVPzK1LSO7yvwwFdu+f9sysuvmIcVFk2BKCCFEkzP82lAeGdLB5XhC/DS+jexD6blq6bWZ0nP32v7Rvh3Nd2kneGfLb5RVVB6yncyvWaJ9TduJ+ifBlBBCiCZp2pBONPfz1B2zrfJ7ls6PriIroGWNpvTcJaMroFViP+GwHc2P6dn8++v9dHnmG+au2ef2fsGBNUtSr2k7Uf8kmBJCCNEkGQ0KL97erdLze0PaVzoy5TjyZAFtQ2T7cStQbvBkV1gX4u5fzOTRT+kqtVtVeOv7DF742jWgspeCqCp3K9RkyxcTDYMEU0IIIZqs+OhQpt/cqZKz7sMZx5EoBVAUhXWdYsnyb0FWQBAlRttol4+ljLhDKdpWNO4s2ZLBV6nHdMfspSAqfwKYOSpKks8bEAmmhBBCNGlTB3fA3Mzb5Xj0iXSXYMY5F0oFTvq3YPLop+g39X1ipyznrE+A9o+rh2ql57H9Vb//x6n8e/UvJKef0TZCjo8O5e8DIty29/Uy1qhf4tKRYEoIIUSTZjQozLr1GpfAaVdYZyyK8y5850eLrEBWQBB3jpmnu05VFF2wZSopwFScX+UzvPPjYe5eksIN8zaSuDeTuWv2sWRLhttpxqIyC5NW7CRxb2bNOijqnQRTQgghmjx7UdBQ0/mk7oT4aZz0b+4yrWf/WGb0InbKco620BfP9LBade18LOWsfech2uZksnjVHJIXjWfxqjluA6ys3BImrdip2/oGwFSc73Lt7NX7tJEscXlJ0U4hhBCC80VBX12fxvtrUpmbuIDgwpwqt5Rxp8JgcAnAQgrPsvKDx2ldmIMBMB9M4rpj+4m7f7EuMd3xnqbifOYmLiDmeBqg0rogBw9UWp8rADp59FNsy8gmNrLlxXRb1AEZmRJCCCHOMRoUru/QmrmJC4g7lIJRVXUBjuNqvR/Cu7u9h6KqbkslBJ8LpBxfv/T1K5U+i/0ZQgvOYC7IxuPcu9sLgAKs35dVyx6K+iDBlBBCCOGgT0QQvbIO4qHaCmsq2IKnEqMnJ/1bkOXfgsRO/Zn/1ycwN3MtYbCzTddKi3g6UoAbDu8G3E/jxRxP0z2DcwFQgC9Sj2OxqlisqlYRfVtGtkz/XWIyzSeEEEI4MBoUrH36UPFtIh6qlQrFwLqO/Zg8+ilduzfvtm1J89CKnbpgJyF+GrccTNK1rbxmlO2ql75+hSHp2zEAIQeT8LSUsyusM60PpeChWlGxBXN5PgHapskA2YVlPPLxTn46cpbsgmLm94H7lm0nKMCXmaOiZDPkS0RGpoQQQggn5k/e5/SQeE4EttSql9s19/PkzbE9iY8O1RLXzQ6J67m+gZSc246mKiqQ6xMA2Eao7P8gG4Cb0n9iYb87qTAYtfwrb0s5e8wdXAqArt6T5bKXX1ZuCQ/Jir9LRkamhBBCCGdBQZjXf43FqmL67Qzj0s8AKrHtW9HPaYNle+L6M1/s4cNtfwAw/o5ZfPzJ04B+VMo5Mb1VYQ7Ji+7Fx1Kme3sjKl8un46R8/lXBs5PC1bH/j6zV+9jaJRZCnzWMwmmhBBCiErYEtJbcX2HVtW2m3VrNy2YmvjTF7bq6E7tnAMrI2AuyNamCR0DLQ83Y1uKqrJ41RxijqexK6wzCfHTdKNUjlQgM7dEVvxdAhJMCSGEEHXAaFC0oOiGw7ur3CS5stpV7jZNdrwm1zeAuHN5VCEHk7gp/Sc2RfYiIX4aJQEBbq87mV/i9rioO40mZyonJ4dx48ZhMpkwmUyMGzeOs2fPVnnN559/zrBhw2jVqhWKopCamurSprS0lGnTptGqVSv8/f259dZb+eOPP+qnE0IIIa5Y2zKytbGkmgZSlZ13Lsdg/2MqztdW+BkA33P7/7309Su8svplAF5Z/bKuIGhwoA+ifjWaYGrMmDGkpqaSmJhIYmIiqampjBs3rsprCgsLuf7663nxxRcrbfPII4+watUqPv74Y3744QcKCgoYOXIkFoulrrsghBDiCuY4ArQlvEelCeiOK//cnXP8aP9cwfYPtre1AqvTNR6qlZvTtzP0160ADE7frm2u3MLPkz4RQbXphrgAjWKab//+/SQmJpKSkkLfvn0BWLJkCbGxsaSlpdG5c2e319mDrcOHD7s9n5ubyzvvvMP777/PzTffDMCKFSto27YtGzZsYNiwYXXfGSGEEFckxxGgR0dMZ+eCMRhV17CpupGpmpxzHAGz389+zrGoZ5/wFpJ8fgk0imAqOTkZk8mkBVIA/fr1w2QykZSUVGkwVZ0dO3ZQXl5OXFycdiwsLIzo6GiSkpIqDaZKS0spLS3VXufl5QFQXl5OeXn5BT1LQ2fv15XaP2dNrb/Q9Pos/b3yXeo+XxsWgI/RVjG9JCCAb7tez8CMHW6ngKoLqGrK8T7lvr4AlPn68rO5K95GlePZhVf09/xiv8d19bVpFMFUVlYWwcHBLseDg4PJyrrwUvpZWVl4eXnRokUL3fGQkJAq7zt37lxmz57tcnzdunX4+fld8PM0BuvXr7/cj3BJNbX+QtPrs/T3yncp+zyvz/nPi/s8SuIle+fzNixdCsB8LEAua9asuQxPcWld6Pe4qKioTt7/sgZTs2bNchuUONq+fTsAiuIaw6uq6vb4xaruvgkJCcyYMUN7nZeXR9u2bYmLi6NZs2Z1/jwNQXl5OevXr2fo0KF4enpe7sepd02tv9D0+iz9vfJd6j6v+TmTxz/b43LcVFzA82sX0f/3n88V6vSldWFunSctl/v6sn7pUobedx+WMgu9Hl4B2EauXv5LD+KuCanjd7z8LvZ7bJ9ZuliXNZiaOnUqd911V5VtwsPD2bNnDydOnHA5d+rUKUJCLvwvh9lspqysjJycHN3o1MmTJ+nfv3+l13l7e+Pt7e1y3NPT84r/IdUU+uioqfUXml6fpb9XvkvV52CTP6UW11/ET3oF8sCoJ7XXyYvG411cXG/P4VlcjKGsgldXzj1fj6pgGodG9mTakI5V51BlZ8MDD0BKCvTrB//9LwQ1/AT2C/0e19Xfi8saTLVq1YpWraouhAYQGxtLbm4u/7+9e4+Lqtr/Bv6ZGWC4j1zEAe+ioobmXbCbmuJUHjPtanqki3bx0vWcE51fofVKtKf0/MLKLoaalXpO2cF6IrU0K0AN4RHDUBEtuWgCAnJnZj1/4Gxnzw10uAzD5/168ZK999p7r+9MO7+utfZaBw8exPjxTW2oBw4cQHl5ud2kpzljxoyBu7s7du/ejXvvvRcAUFRUhKNHj+L111+/5usSEVHXM75/IAJ9PFBaVW+3XGZYBHocT5Vaplpz/JTxT3d9I3SX79H9RDoA4EmvF5H0cz5W3z3C9pp9ixYBX34J6PVNfwLAf/7TCrVzbZ1izNTQoUOh0+mwcOFCvPfeewCARYsWYcaMGbLB50OGDEFCQgLuuusuAEBpaSl+//13FBYWAgByc5vebtBqtdBqtdBoNHjkkUfw3HPPISgoCIGBgXj++ecxfPhw6e0+IiKillApFZg1Mgwf/Xzabrk43VKMKTiGkKqyFiVRxmSrpW8BNs2sfuUtQtO3+8prG/H4lsN4Z+5oBPh4oLiiFqWX6hDo4wGtxgtRaelQGKcG0uubWqioWZ0imQKATz75BMuWLZPevJs5cybWrVsnK5Obm4vy8nJpOzk5GQ899JC0bexSjI+Px/LlywEAa9euhZubG+69917U1NTg1ltvxcaNG6FSqdo4IiIicjXThmmbTabKvfxgUCjtznxua9taQmW+z3wsVqNCicww+Vvviz89bHWuq48C+mNScTGUBj2ESgUxYULnmZCyA3WaZCowMBBbtmyxW0aYzecRGxuL2NhYu+d4enoiMTERiYmJjlaRiIi6uPH9AxGq8URRuf0lXDLDItD98rIwjQolFELIWpNMmU/gCciTK1sEgFqVh7TcjPkxa565dTESGgzSWKv/HTYPzxwtst0tSAA6UTJFRETk7FRKBeL/MgxPbDkMQJ60mCY/xuTGmLS46xsw+VSGlFz96dMN3asuwk0YpBnPlWbXsva7KYNCgXJPH7jrG/DG12sReS7PYnFkTU0lElISZQsnP3nXi1cu0gA8seUw3p03mgmVHWy9IyIiakW6yFC8O280tBr5mnhajSeevnUQgKauvjjdUmSGRUjjmfYOGIsi3yDsGhSFe+euxq5BUSjyDcJ34ePxXfg41Kg8LJaSsbcoskIIaKvKMDXvEKbmHUTopRLEnEiXlpoBgISURMScSEfopRLcdjwVKR8tlq3rZ7xW3BfZ0BvstYN1bWyZIiIiamW6yFBMG6bFwfxSnK+sRYifp7RG3vs/nkJ1vV5KZNyEAd2ryrBrUBSiF2+SriFrIcKVVqQpeb/AQ1/fbGuI8bhpwmU6GB1oahkzLpysAKC9VIqElESLe5dVN+DprYeROHfM1XwMXQZbpoiIiNqASqlAdHgQ7hzZE9HhQVApFVApFXjs5nAA8kTGPMmxptzLD0/e9SImLN6ElMETUavyuOrFlAUgG4yeGRZh0RU5uuAY3tmxEmlvL8A7O1ZKLVU7jxTj/x4pbFHsXQ2TKSIiona0ZMpA+KhVyAyLQKOi6a9ha2/c2WKaVO0JH49alTv0UMi6AG299VercpeSJU1NJRImPYQ6lZtsjiqlMEhdf+bdgn///Ai7+6xgNx8REVE7UikV+D9zRiDuonwQuvkbd9Z4uytR02BoWpbGyw8L735ZOhZSX4l/AtADMJ3XW1z+OecbiO5VF6GtKsP0E+mYnHcInvqmhX5NE6/u1eXStnmL2aU6PdJPleCGgc1PuN2VMJkiIiJqZ7ePCMP/mz4CT3q92HxhE2/cMxLPbs9EbaNl61C5ly8APS74BqBnTY1sHiuDQoGAmktSt6JKGOCpN1i0Xhm7Bw1o6rqy1mL288kLTKbMsJuPiIioA8TdPgzvzB2NQB+PZst283LD+nlNs5ZbS6RMKYSwmPBTJQQ89PVSV6C92dQVAOqU7tKbheYtZt8dK2ZXnxm2TBEREXWQ20eEYnrklbf+gn3VMOgF0vNLUHixBmEBXpg4IBhRlwew/zeroNlrZoVGoEfJObgJgyxpUgKoUXngktobwdUXbZ4vAFz09pPeLNTUVOKdHStl3ZFjXt2FVXPsrPHXxTCZIiIi6kDGt/5M3RTR3WrZED9Pq/tNrZj6GBR19bjteKpFC9Xe8LEYXZBjcY5p0qUAEFJVhvR183G451DZhKLSosl3vYjHtxzG+mYm89QbhCxRhAAuVNVJU0WolK2xxHPHYzJFRETUSYzvHwitvxrFFXU2y5R7+eLJu15E/uoZFse8G2rRo+qi1bFSppSXJ/y87Xiq7LibMGBy3i/Q1FSi3MsPy5N/xbRhWqtJUcrRIqzYmWNzaR2tvxrLZ17nEq1bHDNFRETUSaiUCiyfeV2Lylob1XRz/mGrY6XMy5q2UpnPWaXW10vTJRRX1GHjz/kWY6hSjhbhiS2HUV38p9U5q4znPr7lMFKOFrUoHmfGZIqIiKgT0UWGYv280ejm7W63XGqfEbL5owDbf+kbEyZ7k4AaKQHZdAmvfn0M417bjVd3/oq0vBLUNxqwYmcOBOTL1ZjPWWX0DxeYu4rdfERERJ2Mcbma9LwSpJ26gKzfL+LQ6QuyMotnxSEhJRGT836Bp77e5tt7RqYJlb2y1qZLKK1qwIafT2PDz6fho1ahqk4PoGWzvJfXNCLxuxN4etrgZmrovNgyRURE1AmplArcMCgYz08fgo8eGg/zYUvGmdIvqb2bTaSMrM2abvq7ANCgVGFd1L02r+F28SI++M8r+O2N2eh+qVSajqFptndhtcvvX9+d6NTdfUymiIiIOjkPNyVio/taPeZbV2VznT7TP40UNn43bnvqG7Dhi1csrmecQiH97QWYmncQnvp6uKFpzqtalQf+9OmG7pfKbHb5rdiZ02m7+5hMERERuYBnY4YAgEULlYe+wWrLlLFbTw/LFihY2SebOuFSqcX1jOOjvMy6FBUAyrz8AChgXAXQWpdfUXktDuZbXrczYDJFRETkQn755zT0C/SStutV7jYHlgNAep8RqFW6ScvIlHj5Qw/bLVRN3X0Ki+460/FRMCsfUF0BlUEvS9Ryu1u2pJ2vtD6NgrPjAHQiIiIX4uGmxG0jQvHuvlMAgEq1N7yqy62WVQAILy3A0L99Kdt/YN18hFSV2WzRUkEg9FIJtMdT4VVfi4fuewWZYRHofiJdmnndWBYAPA0NUJvNuj7k/CmLa1+orIPeIDrdZJ5smSIiInIxN4ZfmUH9l17XofFyWmPeQiUAZIZFSOOdjK1N/tWVdgetm3b5TTp9GEnbXsbYszlQCYM04Fxh5U/T37tbSfBe/foYblz9facbjM5kioiIyMWM6x8o/R6nW4pdg6NR5BuEYt9ANF7eLwAU+wYiTrfUYj4oD6Fv8b2MCVX36otSwmRrYlDTbr4GpZvsjT6j4vJaPNHJJvNkMkVERORiMs6USb8bp0iIXrwJuoffxq7BE1HkG4RvBk+E7uG3Ue7lZzEfVIPKTWphsvcmoJF5q5N5WQOAOqWbrLyHvsHqJJ7Ga3emt/s4ZoqIiMjF2BrIbUyszJmOd2pUKPFjv1FoULlhdMExBFddlN7CM7KWMNlbpkYJQG1olJUxn0nd/Lyi8lqknyqBUqHA+cpap14cmckUERGRiwnx85Rta2oqkZCSiFGFucgMi0CcbinKvfyk43G6pQBg9fg7O1ZCdzzVbleWcZoF87f+7M1ZZQAsZlI3t/iTw7hY0yBth2o8Ef+XYU63ODKTKSIiIhczvn8gNF7uKL+ciBjHRLkJA7qfSAcAWQuVrRYroCnRctc34Mb8LHgYGqG8PBGnKWvL0NhrPxIAvgsfLyVxtpgmUsCV8VTvzhvtVAkVx0wRERG5GJVSgYdv6C9tt2SNPFvKvfyw8O54DP3bDoT/Yyf0ZmlS05goRYuXrAEAg0KBBpUbUj5aYrG0jD3OOp6KyRQREZELWjJlILp5uwNo6k5rWhtPvlBxwOXjLU2ENDWWUyYoAKutVfYohcBtx1NtLi1jj3E8lTPNls5kioiIyAWplAqsmj0cwOXpEQZFocg3CLsGReFF3VIoACTMHo7180ZDq5GPsQrVeOKduaOweHK4bH9CSiIUVt7vM46ZMiWs7DPuN337z00YMCXvlxa3Thk502zpHDNFRETkonSRoVg/bzRW7MyRjYkK1XhilclA7mnDtDiYX2rx1lyAjxpv782TzhtVmGu3FcZ8DT9rrO1X6+uR8tFiaaoGI3sD54N91c1/AO2EyRQREZEL00WG2kyWjFRKBaLDgyzOHd8/EAHe7iirbhoIbjqFgjXmy8jYKmP+9p8CgPZSKQ4nzsX3A8bh+TueAQCkfLQY2kulTTOmH08DcGXgvEHvPGOmmEwRERG5OFvJUkvOixoQhG+OFgO4MoXC9ONpVsdJKSHv3lPAMsEy3WeeUKmEwNS8g3j7ywRUePpKiRQAuEHIBs4fOF2CqAHdrjqmtsAxU0RERGRTeHcf6XfjFAoXfLpZHYhu/LNO5Y5vLs+0vid8HM77BEgJVCMU2BM+TnaO+XVu+P0IxhQcs5i3ynReKoP1xrEOwZYpIiIisil6QDDWmYybAoCMnkOleausz36ukI3RMh/75K5vtDjDXFDVRegVSqgu38O4jqBReU39NcfU2phMERERkU1R4UHo5u2Oi9VXJtA0JjVjCo7BoFCgW3UFPC8vF2MA8GO/kbJrmE8Kmvb2ArvjqhQAVBCAEBAA9FDgqTuekw1OP1fhPG/zsZuPiIiIbDKdYsHImBxNWPIxohdvRtSSj6VuvZTBE6UB5LZkhkU0u4CywuRHBYGt2/6J3mVF0vGaBufp52MyRURERHYZp1jQ+lufjsCYXEUv3oQn73pR1oJkTZxuKUo9/SwSKnvTKSgA/OeTv0v7Inv6t7j+bY3dfERERNQs8ykWduecw1dHiuyec/fonvBWu6F3gBf+tecEqur1AJqSr261l6yu8WftDUDj792ryqTtYF/5RKMdickUERERtYjpFAt3juyJnt1y8P7+fIsWJh+1Cm/ec71sMeLDv5fhm6PnpG3zmdTNp0mw3g14Jb0K9uOknURERNTJxd0+DM/FDMGm1HwcOl0GHw8VZo/uhYkDg2WTggLAvAn9ZMnUnz4BCKkqs5jA08h8vwBQ4n2la0/rz5YpIiIicgEebkosvDkcC2+2X878rcC7H3wd2z/9B0KqylCvdINa32AxkNu8m09cXqw5VNM0i7uhBVMstAcOQCciIqI2Z/5W4B8BoYhevBnhf9+JqMWb8V34ONSoPKwumAwAjQolMnoOBQDE/2WYRctXR2IyRURERO3C1luB5V5+WHh3PIY+/wX0ZucIAEW+Qdg1KApxuqWYPTJUNhbLGXSaZKqsrAzz58+HRqOBRqPB/PnzcfHiRbvnfPHFF5g+fTqCg4OhUCiQlZUlO15aWoqlS5ciIiIC3t7e6NOnD5YtW4by8vK2C4SIiKgL00WG4ucXbsVnC6Mw6/owi+ONSnfZdr3SXTblQmWdebrV8TpNMjV37lxkZWUhJSUFKSkpyMrKwvz58+2eU1VVhRtuuAGrVq2yerywsBCFhYV44403kJ2djY0bNyIlJQWPPPJIW4RAREREuPJW4C1DQiyOpfcdLlsIOb2vfMLQ6nrnGCdlqlMMQD927BhSUlKQnp6OCRMmAAA++OADREdHIzc3FxEREVbPMyZbp0+ftno8MjISn3/+ubQdHh6O1157DfPmzUNjYyPc3DrFx0NERNQpGd/IM127T2my3p8A0KBUyc4J8nWeKRGMOkXLVFpaGjQajZRIAUBUVBQ0Gg1SU1Nb9V7l5eXw9/dnIkVERNTGxvcPhK9ahYSURMScSEfopRKEVJVJyYkSQOS5U7JzegV4t3s9m9MpMobi4mKEhFg2BYaEhKC4uLjV7lNSUoJXX30Vjz32mN1ydXV1qKurk7YrKioAAA0NDWhoaLB1WqdmjMtV4zPX1eIFul7MjNf1dbWYO2u8twwMwIiyMxCeahhrbmyZalQocbj/cKhVV97xG9/b3yLWa425tT4rhRDC2iSj7WL58uVYsWKF3TKHDh3Crl27sGnTJuTm5sqODRo0CI888gheeOEFu9c4ffo0+vfvj8zMTIwcOdJqmYqKCsTExCAgIADJyclwd3e3Ws5evT/99FN4eztfxkxERESWqqurMXfuXKlX6lp1aMvUkiVLcP/999st069fPxw5cgTnzp2zOPbnn3+iR48eDtejsrISOp0Ovr6+2LFjh91ECgDi4uLw7LPPStsVFRXo3bs3YmJiHPoynFlDQwN2796NadOmNfv5uIKuFi/Q9WJmvK6vq8XcWeP93z252L77KOL3vIfri08AEOh+6UpXnwHAnoET8OxfngMAPDC+D/55e9N8U47GbOxZclSHJlPBwcEIDg5utlx0dDTKy8tx8OBBjB8/HgBw4MABlJeXY+LEiQ7VoaKiAtOnT4darUZycjI8PZufnl6tVkOtthwA5+7u3qn+A74WXSFGU10tXqDrxcx4XV9Xi7mzxRs9UIt1P5zB4tufBwCkvb0A6poaWZnR+dmo0zdN0tkzwNcivmuNubU+p04xAH3o0KHQ6XRYuHAh0tPTkZ6ejoULF2LGjBmyN/mGDBmCHTt2SNulpaXIyspCTk4OACA3NxdZWVnSOKvKykrExMSgqqoKGzZsQEVFBYqLi1FcXAy93vnmsSAiInI1xmVmjDLDImAwOW64vM9oiNav/SrXQp0imQKATz75BMOHD0dMTAxiYmIwYsQIfPzxx7Iyubm5sgk3k5OTMWrUKNxxxx0AgPvvvx+jRo3C+vXrAQAZGRk4cOAAsrOzMXDgQISGhko/f/zxR/sFR0RE1EWZLzMTp1uK78LHo1blgRqVB74LH4c43VLpeGl1fUdU065O8TYfAAQGBmLLli12y5iPpY+NjUVsbKzN8pMmTbI4h4iIiNqXLjIUz0wdhLV7TlxeWuZlm2VD/JofjtPeOk3LFBEREbmuJVMGSZN4WqMAEKrxxPj+ge1XqRZiMkVEREQdTqVUYPnMYVCgKXEyZdyO/8swqJTmRzsekykiIiJyCrrIULw7bzS0GnkLlVbjiXfnjYYuMrSDamZfpxkzRURERK5PFxmKacO0OJhfivOVtQjxa+rac8YWKSMmU0RERORUVEoFosODOroaLcZuPiIiIiIHMJkiIiIicgCTKSIiIiIHMJkiIiIicgCTKSIiIiIHMJkiIiIicgCTKSIiIiIHMJkiIiIicgCTKSIiIiIHcAb0ViCEAABUVFR0cE3aTkNDA6qrq1FRUQF3d/eOrk6b62rxAl0vZsbr+rpazF0tXsDxmI1/bxv/Hr9WTKZaQWVlJQCgd+/eHVwTIiIiulqVlZXQaDTXfL5COJqOEQwGAwoLC+Hn5weFwnkXYnRERUUFevfujT/++AP+/v4dXZ0219XiBbpezIzX9XW1mLtavIDjMQshUFlZibCwMCiV1z7yiS1TrUCpVKJXr14dXY124e/v32UeUqDrxQt0vZgZr+vrajF3tXgBx2J2pEXKiAPQiYiIiBzAZIqIiIjIAUymqEXUajXi4+OhVqs7uirtoqvFC3S9mBmv6+tqMXe1eAHniZkD0ImIiIgcwJYpIiIiIgcwmSIiIiJyAJMpIiIiIgcwmSIiIiJyAJMpF5OQkIBx48bBz88PISEhmDVrFnJzc2VlhBBYvnw5wsLC4OXlhUmTJuHXX3+Vlamrq8PSpUsRHBwMHx8fzJw5E2fPnpWO79u3DwqFwurPoUOHbNYvNjbWonxUVFSHx/v+++9j0qRJ8Pf3h0KhwMWLFy3uVVZWhvnz50Oj0UCj0WD+/PlWy13tvZ0x3tOnT+ORRx5B//794eXlhfDwcMTHx6O+vt5u/Vr7+23PmAGgX79+FvV/4YUX7Navs37HrvQMl5aWYunSpYiIiIC3tzf69OmDZcuWoby8XHYdZ3iG2zNmZ3mO2/M77rBnWJBLmT59ukhKShJHjx4VWVlZ4o477hB9+vQRly5dksqsWrVK+Pn5ic8//1xkZ2eL++67T4SGhoqKigqpzOOPPy569uwpdu/eLQ4fPiwmT54srr/+etHY2CiEEKKurk4UFRXJfh599FHRr18/YTAYbNZvwYIFQqfTyc4rKSnp8HjXrl0rEhISREJCggAgysrKLO6l0+lEZGSkSE1NFampqSIyMlLMmDHDbv1acm9njPebb74RsbGx4ttvvxV5eXniv//9rwgJCRHPPfec3fq19vfbnjELIUTfvn3FK6+8Iqt/ZWWl3fp11u/YlZ7h7OxsMXv2bJGcnCxOnjwpvvvuOzFo0CAxZ84c2b2c4Rluz5id5Tluz++4o55hJlMu7vz58wKA+OGHH4QQQhgMBqHVasWqVaukMrW1tUKj0Yj169cLIYS4ePGicHd3F1u3bpXKFBQUCKVSKVJSUqzep76+XoSEhIhXXnnFbn0WLFgg7rzzTgejsu1a4jW1d+9eq3/x5OTkCAAiPT1d2peWliYAiN9++81qXa723teireK15vXXXxf9+/e3W6atv18h2jbmvn37irVr17a4Lq70HbvKM2y0fft24eHhIRoaGoQQzvsMC9F2MVvjDM9xW8bbUc8wu/lcnLEJNDAwEACQn5+P4uJixMTESGXUajVuueUWpKamAgAyMjLQ0NAgKxMWFobIyEipjLnk5GRcuHABsbGxzdZp3759CAkJweDBg7Fw4UKcP3/+WsOzcC3xtkRaWho0Gg0mTJgg7YuKioJGo7F5nda6tz1tFa+texnvY09bfr/GegBtF/Pq1asRFBSEkSNH4rXXXrPbJeJK37GrPcPl5eXw9/eHm1vTErTO+gwb6wq0fsy2ynT0c9zW8XbEM8yFjl2YEALPPvssbrzxRkRGRgIAiouLAQA9evSQle3RowfOnDkjlfHw8EBAQIBFGeP55jZs2IDp06ejd+/edut022234Z577kHfvn2Rn5+Pl156CVOmTEFGRobDM9hea7wtUVxcjJCQEIv9ISEhNj+T1rq3LW0Zr7m8vDwkJibizTfftFuuLb9foO1jfuqppzB69GgEBATg4MGDiIuLQ35+Pj788EOr5V3pO3alZ7ikpASvvvoqHnvsMWmfMz7DQNvGbM4ZnuO2jrejnmEmUy5syZIlOHLkCH766SeLYwqFQrYthLDYZ85WmbNnz+Lbb7/F9u3bm63TfffdJ/0eGRmJsWPHom/fvvj6668xe/bsZs+3p7Xjbe4aLb1Oa9zbmraO16iwsBA6nQ733HMPHn30Ubtl2/L7Bdo+5meeeUb6fcSIEQgICMDdd98t/UvXls7+HbvSM1xRUYE77rgDw4YNQ3x8vN1r2LvOtdz7WrR1zEbO8hy3dbwd9Qyzm89FLV26FMnJydi7dy969eol7ddqtQBg8S+x8+fPS5m5VqtFfX09ysrKbJYxlZSUhKCgIMycOfOq6xkaGoq+ffvixIkTV32uKUfibQmtVotz585Z7P/zzz9tXqe17m1NW8drVFhYiMmTJyM6Ohrvv//+VZ/fWt8v0H4xmzK+wXTy5Emrx13hOwZc5xmurKyETqeDr68vduzYAXd3d9l1nOkZBto+ZiNneY7bK15T7fYMt3h0FXUKBoNBLF68WISFhYnjx49bPa7VasXq1aulfXV1dVYHoG/btk0qU1hYaHUAusFgEP3792/27RBbLly4INRqtdi0adM1nd8a8ZpqbgD6gQMHpH3p6ektGrza0nu3RHvFK4QQZ8+eFYMGDRL333+/9Bbn1XL0+xWifWM2t3PnTgFAnDlzxmbdOvN3bLyeKzzD5eXlIioqStxyyy2iqqrK4jrO8gwbr9seMQvhHM9xe8Zrrr2eYSZTLuaJJ54QGo1G7Nu3T/ZqaHV1tVRm1apVQqPRiC+++EJkZ2eLBx54wOrUCL169RJ79uwRhw8fFlOmTJFNjWC0Z88eAUDk5ORYrU9ERIT44osvhBBCVFZWiueee06kpqaK/Px8sXfvXhEdHS169ux5za8Zt1a8RUVFIjMzU3zwwQcCgNi/f7/IzMyUvQ6s0+nEiBEjRFpamkhLSxPDhw+3eK3aNN6W3tsZ4y0oKBADBw4UU6ZMEWfPnpXdy1a8bfH9tmfMqampYs2aNSIzM1OcOnVKbNu2TYSFhYmZM2fajLml93bGeI1c4RmuqKgQEyZMEMOHDxcnT56UXcf0/1nO8Ay3Z8zO8hy3V7wd+QwzmXIxAKz+JCUlSWUMBoOIj48XWq1WqNVqcfPNN4vs7GzZdWpqasSSJUtEYGCg8PLyEjNmzBC///67xf0eeOABMXHiRLv1Md67urpaxMTEiO7duwt3d3fRp08fsWDBAqvXbe944+Pjm71OSUmJePDBB4Wfn5/w8/MTDz74oMW/9q/l3s4Yb1JSks172Yq3Lb7f9ow5IyNDTJgwQWg0GuHp6SkiIiJEfHy8xb+AXeU7NnKFZ9jY+mbtJz8/XyrnDM9we8bsLM9xe8Xbkc+w4vKFiYiIiOgacAA6ERERkQOYTBERERE5gMkUERERkQOYTBERERE5gMkUERERkQOYTBERERE5gMkUERERkQOYTBGRU1q+fDlGjhzZYfd/6aWXsGjRog67f0utW7fumtbUI6LWw0k7iajdNbca+4IFC7Bu3TrU1dXZXem9rZw7dw6DBg3CkSNH0K9fv3a//9Woq6tDv3798O9//xs33nhjR1eHqEty6+gKEFHXU1RUJP2+bds2vPzyy8jNzZX2eXl5wdfXF76+vh1RPWzYsAHR0dEdnkjp9XooFAoolbY7EdRqNebOnYvExEQmU0QdhN18RNTutFqt9KPRaKBQKCz2mXfzxcbGYtasWVi5ciV69OiBbt26YcWKFWhsbMTf/vY3BAYGolevXvjoo49k9yooKMB9992HgIAABAUF4c4778Tp06ft1m/r1q2yrrPNmzcjKCgIdXV1snJz5szBX//6V2l7586dGDNmDDw9PTFgwACpfkZr1qzB8OHD4ePjg969e+PJJ5/EpUuXpOMbN25Et27d8NVXX2HYsGFQq9U4c+YM9u3bh/Hjx8PHxwfdunXDDTfcgDNnzkjnzZw5E19++SVqampa9PkTUetiMkVEncb333+PwsJC7N+/H2vWrMHy5csxY8YMBAQE4MCBA3j88cfx+OOP448//gAAVFdXY/LkyfD19cX+/fvx008/wdfXFzqdDvX19VbvUVZWhqNHj2Ls2LHSvnvuuQd6vR7JycnSvgsXLuCrr77CQw89BAD49ttvMW/ePCxbtgw5OTl47733sHHjRrz22mvSOUqlEm+99RaOHj2KTZs24fvvv8ff//532f2rq6uRkJCADz/8EL/++isCAwMxa9Ys3HLLLThy5AjS0tKwaNEiWVfp2LFj0dDQgIMHDzr+IRPR1buqZZGJiFpZUlKS0Gg0Fvvj4+PF9ddfL20vWLBA9O3bV+j1emlfRESEuOmmm6TtxsZG4ePjIz777DMhhBAbNmwQERERwmAwSGXq6uqEl5eX+Pbbb63WJzMzUwAQv//+u2z/E088IW677TZp+1//+pcYMGCAdO2bbrpJrFy5UnbOxx9/LEJDQ23Gvn37dhEUFCRtJyUlCQAiKytL2ldSUiIAiH379tm8jhBCBAQEiI0bN9otQ0Rtg2OmiKjTuO6662Tjh3r06IHIyEhpW6VSISgoCOfPnwcAZGRk4OTJk/Dz85Ndp7a2Fnl5eVbvYewq8/T0lO1fuHAhxo0bh4KCAvTs2RNJSUmIjY2VWogyMjJw6NAhWUuUXq9HbW0tqqur4e3tjb1792LlypXIyclBRUUFGhsbUVtbi6qqKvj4+AAAPDw8MGLECOkagYGBiI2NxfTp0zFt2jRMnToV9957L0JDQ2X18/LyQnV1dcs+SCJqVezmI6JOw93dXbatUCis7jMYDAAAg8GAMWPGICsrS/Zz/PhxzJ071+o9goODATR195kaNWoUrr/+emzevBmHDx9GdnY2YmNjpeMGgwErVqyQ3Sc7OxsnTpyAp6cnzpw5g9tvvx2RkZH4/PPPkZGRgbfffhsA0NDQIF3Hy8vL4m3HpKQkpKWlYeLEidi2bRsGDx6M9PR0WZnS0lJ07969uY+QiNoAW6aIyGWNHj0a27ZtQ0hICPz9/Vt0Tnh4OPz9/ZGTk4PBgwfLjj366KNYu3YtCgoKMHXqVPTu3Vt2r9zcXAwcONDqdX/55Rc0NjbizTfflFrXtm/f3uJYRo0ahVGjRiEuLg7R0dH49NNPERUVBQDIy8tDbW0tRo0a1eLrEVHrYcsUEbmsBx98EMHBwbjzzjvx448/Ij8/Hz/88AOeeuopnD171uo5SqUSU6dOxU8//WT1egUFBfjggw/w8MMPy469/PLL2Lx5M5YvX45ff/0Vx44dw7Zt2/A///M/AJqStMbGRiQmJuLUqVP4+OOPsX79+mZjyM/PR1xcHNLS0nDmzBns2rULx48fx9ChQ6UyP/74IwYMGIDw8PCr+XiIqJUwmSIil+Xt7Y39+/ejT58+mD17NoYOHYqHH34YNTU1dluqFi1ahK1bt0rdhUb+/v6YM2cOfH19MWvWLNmx6dOn46uvvsLu3bsxbtw4REVFYc2aNejbty8AYOTIkVizZg1Wr16NyMhIfPLJJ0hISGhRDL/99hvmzJmDwYMHY9GiRViyZAkee+wxqcxnn32GhQsXXsUnQ0StiTOgExGZEUIgKioKTz/9NB544AHZsWnTpmHo0KF46623Oqh2ckePHsWtt96K48ePQ6PRdHR1iLoktkwREZlRKBR4//33ZRNulpaWYuvWrfj++++xePHiDqydXGFhITZv3sxEiqgDsWWKiKgF+vXrh7KyMrz00kt4/vnnO7o6ROREmEwREREROYDdfEREREQOYDJFRERE5AAmU0REREQOYDJFRERE5AAmU0REREQOYDJFRERE5AAmU0REREQOYDJFRERE5AAmU0REREQO+P9r2eneKuQTEQAAAABJRU5ErkJggg==", "text/plain": [ "
    " ] @@ -1007,17 +1978,17 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 272, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Training set: Coefficient / Velocity eastward (mm/year): 0.0\n", + "Training set: Coefficient / Velocity eastward (mm/year): -0.006437910455226973\n", "MSE (mean square error) on training set (mm): 0.00\n", - "Coefficient of determination on training set: 1.00\n", - "MSE on validation set (mm): 0.00 and coefficient of determiniation on 1.00\n" + "Coefficient of determination on training set: 0.99\n", + "MSE on validation set (mm): 0.00 and coefficient of determiniation on 0.99\n" ] }, { @@ -1026,13 +1997,13 @@ "Text(0.5, 1.0, 'Random selection for data split')" ] }, - "execution_count": 26, + "execution_count": 272, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmoAAAGxCAYAAADSw5oOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABlJUlEQVR4nO3deVxUZfs/8M8IwyaLIiigyKKmEJkmqVCKUqBihSZuFUpuEfmkYJm4on7NJTM0NbN4RMMUDXdJwUTLnAwXLBVbDMRSUlxARWGA+/eHD+fnOAOCshxmPu/Xi1ec+1znPvd1Zo5cnVUhhBAgIiIiItlpVN8DICIiIiLdWKgRERERyRQLNSIiIiKZYqFGREREJFMs1IiIiIhkioUaERERkUyxUCMiIiKSKRZqRERERDLFQo2IiIhIplioEdWT+Ph4KBQK6cfY2BiOjo4YNmwY/vjjj3obV0xMDBQKRb2tvzYdOHAACoUCBw4cqJX+L168iJiYGGRkZGjNq8/teu3aNQwbNgzNmzeHQqHAgAED6mUcrq6uCAsLq/ZyhYWFiImJqbXPrabo+ox79eqFXr16SdMNJReSD+P6HgCRoVuzZg06dOiAu3fv4scff8S8efOQlpaGs2fPomnTpvU9PKqGixcvYvbs2XB1dUWnTp005o0ZMwZ9+/atl3HNnTsXW7duxX//+1+0adMGtra29TKOR1VYWIjZs2cDgEbR0xCsXLlSY7oh50L1g4UaUT3z8vKCt7c3gHv/cJeWlmLWrFnYtm0b3nzzzXoeHdWUVq1aoVWrVvWy7lOnTqFNmzZ4/fXXa6Q/IQTu3r0Lc3PzGulPn3l6etb3EKiB46lPIpkpL9r+/fdfqe3u3buYNGkSOnXqBBsbG9ja2sLHxwfbt2/XWl6hUGD8+PH46quv4OHhAQsLCzz99NPYtWuXVuzu3bvRqVMnmJqaws3NDYsXL9Y5prt37yI6Ohpubm4wMTFBy5Yt8c477+DGjRsaca6urnjppZewa9cudO7cGebm5vDw8JDWHR8fDw8PDzRu3Bhdu3bF0aNHH7o9CgsL8d5778HNzQ1mZmawtbWFt7c3NmzYoBF39OhRvPLKK7C1tYWZmRk6d+6MTZs2PbT/6iz7zz//YNy4cXB2doaJiQmcnJwQEhKCf//9FwcOHMCzzz4LAHjzzTelU9oxMTEAdJ8WKysrw6JFi9ChQweYmpqiefPmGDFiBP7++2+NuF69esHLywvp6eno0aMHLCws4O7ujgULFqCsrKzCvLKzs6FQKLBv3z5kZmZKYyo/7Xbt2jVERESgZcuWMDExgbu7O6ZNm4aioiKNfsq/U6tWrYKHhwdMTU2xdu3aCterVqsxefJkODg4wMLCAs8//zx+/vlnrbgrV64gIiICnp6esLS0RPPmzeHv748ffvhBIwd7e3sAwOzZs6Ucyk+h/vnnn3jzzTfRrl07WFhYoGXLlnj55Zfx66+/Vji++23evBndunWDjY2NtF1HjRolzS8/XZ6QkICoqCg4ODjA3Nwcfn5+OHHixEP7v//U58NyIdJJEFG9WLNmjQAg0tPTNdqXL18uAIikpCSp7caNGyIsLEx89dVXYv/+/WLPnj3ivffeE40aNRJr167VWB6AcHV1FV27dhWbNm0SycnJolevXsLY2FicO3dOitu3b58wMjISzz//vNiyZYvYvHmzePbZZ0Xr1q3F/f80lJWViT59+ghjY2MxY8YMkZKSIhYvXiwaN24sOnfuLO7evSvFuri4iFatWgkvLy+xYcMGkZycLLp16yaUSqWYOXOmeO6558SWLVvE1q1bxRNPPCFatGghCgsLK91Ob731lrCwsBBLliwRaWlpYteuXWLBggXi008/lWL2798vTExMRI8ePURiYqLYs2ePCAsLEwDEmjVrpLi0tDQBQKSlpVV72b///ls4OjoKOzs7sWTJErFv3z6RmJgoRo0aJTIzM0V+fr70mU6fPl2oVCqhUqnEhQsXhBBCzJo1Szz4T+64ceMEADF+/HixZ88esWrVKmFvby+cnZ3FlStXpDg/Pz/RrFkz0a5dO7Fq1SqRmpoqIiIiBACtz/9+d+/eFSqVSnTu3Fm4u7tLY8rPzxd37twRHTt2FI0bNxaLFy8WKSkpYsaMGcLY2FgEBQVp9ANAtGzZUnTs2FF8/fXXYv/+/eLUqVMVrnfkyJFCoVCI999/X6SkpIglS5aIli1bCmtrazFy5Egp7uzZs+Ltt98WGzduFAcOHBC7du0So0ePFo0aNZI+o7t374o9e/YIAGL06NFSDn/++acQQoiDBw+KSZMmiW+++UYcPHhQbN26VQwYMECYm5uLs2fPVjhGIYQ4fPiwUCgUYtiwYSI5OVns379frFmzRoSGhkox5d8ZZ2dnERwcLHbu3CkSEhJE27ZthbW1tcY+pesz9vPzE35+flXKhUgXFmpE9aT8j/pPP/0k1Gq1uHnzptizZ49wcHAQPXv2FGq1usJlS0pKhFqtFqNHjxadO3fWmAdAtGjRQhQUFEhtubm5olGjRmL+/PlSW7du3YSTk5O4c+eO1FZQUCBsbW01/tiU/2FZtGiRxnoSExMFALF69WqpzcXFRZibm4u///5basvIyBAAhKOjo7h9+7bUvm3bNgFA7Nixo9Lt5OXlJQYMGFBpTIcOHUTnzp21ttlLL70kHB0dRWlpqRBCd6FW1WVHjRollEqlOHPmTIXjSE9P1yrwyj34RzwzM1MAEBERERpxR44cEQDE1KlTpTY/Pz8BQBw5ckQj1tPTU/Tp06fC8dy//JNPPqnRtmrVKgFAbNq0SaN94cKFAoBISUmR2gAIGxsbce3atYeuqzyvyMhIjfb169cLABqF2oPKv9cvvPCCGDhwoNR+5coVAUDMmjXroesvKSkRxcXFol27dlpjeNDixYsFAHHjxo0KY8q/M88884woKyuT2rOzs4VSqRRjxoyR2h5WqFU3FyIhhOCpT6J61r17dyiVSlhZWaFv375o2rQptm/fDmNjzUtIN2/ejOeeew6WlpYwNjaGUqlEXFwcMjMztfrs3bs3rKyspOkWLVqgefPmOH/+PADg9u3bSE9Px6uvvgozMzMpzsrKCi+//LJGX/v37wcArdMzgwcPRuPGjfHdd99ptHfq1AktW7aUpj08PADcOwVkYWGh1V4+pop07doV3377LaZMmYIDBw7gzp07GvP//PNPnD17Vrr+qqSkRPoJCgrCpUuX8Ntvv+nsuzrLfvvtt+jdu7c07seVlpYGQHu7du3aFR4eHlrb1cHBAV27dtVo69ix40O3X0X279+Pxo0bIyQkRKO9fDwPrt/f379KN7eU5/Xg9XBDhgzR+k4DwKpVq/DMM8/AzMxM+l5/9913Or/XupSUlODDDz+Ep6cnTExMYGxsDBMTE/zxxx8P7aP8VPWQIUOwadMm/PPPPxXGvvbaaxqnrl1cXODr6yvlS1RbWKgR1bN169YhPT0d+/fvx1tvvYXMzEwMHz5cI2bLli0YMmQIWrZsiYSEBKhUKqSnp2PUqFG4e/euVp/NmjXTajM1NZWKnOvXr6OsrAwODg5acQ+2Xb16FcbGxtK1NeUUCgUcHBxw9epVjfYH7yg0MTGptF3X+O+3bNkyfPDBB9i2bRt69+4NW1tbDBgwQHqESfm1fO+99x6USqXGT0REBAAgLy9PZ9/VWfbKlSs1ejNA+XZzdHTUmufk5KS1XR/2mT7K+h0cHLSum2vevDmMjY211q9rnBX1C2h/j4yNjbVyWLJkCd5++21069YNSUlJ+Omnn5Ceno6+fftWOa+oqCjMmDEDAwYMwM6dO3HkyBGkp6fj6aeffmgfPXv2xLZt21BSUoIRI0agVatW8PLy0rr+UVc+5W0Pbieimsa7PonqmYeHh3QDQe/evVFaWoovv/wS33zzjXS0IyEhAW5ubkhMTNT4w/rgRd9V1bRpUygUCuTm5mrNe7CtWbNmKCkpwZUrVzSKNSEEcnNzpaMStaVx48aYPXs2Zs+ejX///Vc6uvbyyy/j7NmzsLOzAwBER0fj1Vdf1dlH+/btdbZXZ1l7e3uti/wfR3nRcunSJa0C8OLFi9LYakuzZs1w5MgRCCE0vlOXL19GSUmJ1vqr+gy48rxyc3M1jqyWlJRoFTUJCQno1asXPvvsM432mzdvVjmPhIQEjBgxAh9++KFGe15eHpo0afLQ5YODgxEcHIyioiL89NNPmD9/Pl577TW4urrCx8dHiqtoX9FVQBPVJB5RI5KZRYsWoWnTppg5c6Z0R59CoYCJiYnGH8vc3Fydd31WRfldl1u2bNE4onXz5k3s3LlTI/aFF14AcO8P4v2SkpJw+/ZtaX5daNGiBcLCwjB8+HD89ttvKCwsRPv27dGuXTucPHkS3t7eOn/uPw18v+os269fP6SlpVV4GhW4d4QLQJWOBvn7+wPQ3q7p6enIzMys9e36wgsv4NatW9i2bZtG+7p166T5j6L8Dsf169drtG/atAklJSUabQqFQtpm5X755ReoVCqNtsq2q64+du/eXelpTF1MTU3h5+eHhQsXAoDWHZ0bNmyAEEKaPn/+PA4fPlztZ6FV5ztCBPCIGpHsNG3aFNHR0Zg8eTK+/vprvPHGG3jppZewZcsWREREICQkBBcuXMDcuXPh6Oj4yG8xmDt3Lvr27YuAgABMmjQJpaWlWLhwIRo3boxr165JcQEBAejTpw8++OADFBQU4LnnnsMvv/yCWbNmoXPnzggNDa2p1HXq1q0bXnrpJXTs2BFNmzZFZmYmvvrqK/j4+EjXvH3++efo168f+vTpg7CwMLRs2RLXrl1DZmYmjh8/js2bN1fYf1WXnTNnDr799lv07NkTU6dOxVNPPYUbN25gz549iIqKQocOHdCmTRuYm5tj/fr18PDwgKWlJZycnODk5KS13vbt22PcuHH49NNP0ahRI/Tr1w/Z2dmYMWMGnJ2dERkZWTsb9H9GjBiBFStWYOTIkcjOzsZTTz2FQ4cO4cMPP0RQUBBefPHFR+rXw8MDb7zxBmJjY6FUKvHiiy/i1KlTWLx4MaytrTViX3rpJcydOxezZs2Cn58ffvvtN8yZMwdubm4aRZ2VlRVcXFywfft2vPDCC7C1tYWdnZ30OJj4+Hh06NABHTt2xLFjx/DRRx9V6TT1zJkz8ffff+OFF15Aq1atcOPGDSxduhRKpRJ+fn4asZcvX8bAgQMxduxY5OfnY9asWTAzM0N0dHS1tk9luRDpVM83MxAZrIoezyGEEHfu3BGtW7cW7dq1EyUlJUIIIRYsWCBcXV2Fqamp8PDwEF988YXOu8wAiHfeeUerTxcXF6077nbs2CE6duwoTExMROvWrcWCBQt09nnnzh3xwQcfCBcXF6FUKoWjo6N4++23xfXr17XW0b9/f6116xpTVlaWACA++uijCreREEJMmTJFeHt7i6ZNmwpTU1Ph7u4uIiMjRV5enkbcyZMnxZAhQ0Tz5s2FUqkUDg4Owt/fX6xatUqK0XXXZ1WXFUKICxcuiFGjRgkHBwehVCqFk5OTGDJkiPj333+lmA0bNogOHToIpVKpcXefru1aWloqFi5cKJ544gmhVCqFnZ2deOONN6RHepTTddemEPceg+Hi4lLp9qts+atXr4rw8HDh6OgojI2NhYuLi4iOjtZ45IoQFX+nKlJUVCQmTZokmjdvLszMzET37t2FSqXS+g4WFRWJ9957T7Rs2VKYmZmJZ555Rmzbtk1nXvv27ROdO3cWpqamGnePXr9+XYwePVo0b95cWFhYiOeff1788MMPWndb6rJr1y7Rr18/0bJlS2FiYiKaN28ugoKCxA8//CDFlH9nvvrqK/Huu+8Ke3t7YWpqKnr06CGOHj2q0V9V7vqsLBciXRRC3Hcsl4iIiCQHDhxA7969sXnzZq07ZInqAq9RIyIiIpIpFmpEREREMsVTn0REREQyxSNqRERERDLFQo2IiIhIplioEREREckUH3grY2VlZbh48SKsrKyq/PoWIiIiql9CCNy8eRNOTk5o1OjxjomxUJOxixcvwtnZub6HQURERI/gwoULVXpLRmVYqMlY+TsGL1y4oPXqFX2hVquRkpKCwMBAKJXK+h5OnTC0nJmv/jO0nJmv/nvcnAsKCuDs7Fzhe4arg4WajJWf7rS2ttbrQs3CwgLW1tYG9Q+AIeXMfPWfoeXMfPVfTeVcE5ct8WYCIiIiIplioUZEREQkUyzUiIiIiGSK16gREVGDJ4RASUkJSktLa31darUaxsbGuHv3bp2sr74ZWr7Aw3M2MjKCsbFxnTw6i4UaERE1aMXFxbh06RIKCwvrZH1CCDg4OODChQsG8YxLQ8sXqFrOFhYWcHR0hImJSa2OhYUaERE1WGVlZcjKyoKRkRGcnJxgYmJS68VEWVkZbt26BUtLy8d+mGlDYGj5ApXnLIRAcXExrly5gqysLLRr165WtwsLNSIiarCKi4tRVlYGZ2dnWFhY1Mk6y8rKUFxcDDMzM4MoXAwtX+DhOZubm0OpVOL8+fNSXG0xjC1ORER6zVAKCJKPuvrO8ZtNREREJFMs1IiIiIhkioUaERGRTPTq1QsTJ06s72GQjLBQIyIiaoAOHDgAhUKBGzdu1PdQqBaxUCMiIiKSKRZqRESkV4QQKCwuqdWfO8WlWm1CiGqN8/bt2xgxYgQsLS3h6OiIjz/+WGN+QkICvL29YWVlBQcHB7z22mu4fPkyACA7Oxu9e/cGADRt2hQKhQJhYWEAgD179uD5559HkyZN0KxZM7z00ks4d+7c429Yqhd8jhoREemVO+pSeM7cW+frPTOnDyxMqv5n9f3330daWhq2bt0KBwcHTJ06FceOHUOnTp0A3HtG3Ny5c9G+fXtcvnwZkZGRCAsLQ3JyMpydnZGUlIRBgwbht99+g7W1NczNzQHcKwCjoqLw1FNP4fbt25g5cyYGDhyIjIwMPsakAWKhRkREVMdu3bqFuLg4rFu3DgEBAQCAtWvXolWrVlLMqFGjpN/d3d2xbNkydO3aVXpivq2tLQCgefPmaNKkiRQ7aNAgjXXFxcWhefPmOHPmDLy8vGoxK6oNLNSIiEivmCuNcGZOn1rrv6ysDDcLbsLK2krjCJW50qjKfZw7dw7FxcXw8fGR2mxtbdG+fXtp+sSJE4iJiUFGRgauXbuGsrIyAEBOTg48PT0r7XvGjBn46aefkJeXp7EcC7WGh4UaERHpFYVCUa1TkNVVVlaGEhMjWJgYP/KpxIddz3b79m0EBgYiMDAQCQkJsLe3R05ODvr06YPi4uJKl3355Zfh7OyML774Ak5OTigrK4OXl9dDlyN5ajAnq+fNmwdfX19YWFhoHOK934QJE9ClSxeYmppK5/gftHfvXnTv3h1WVlawt7fHoEGDkJWVpRFz8OBBdOnSBWZmZnB3d8eqVau0+klKSoKnpydMTU3h6emJrVu3asWsXLkSbm5uMDMzQ5cuXfDDDz9UO28iItI/bdu2hVKpxE8//SS1Xb9+Hb///jsA4OzZs8jLy8OCBQvQo0cPdOjQQbqRoJyJiQkAoLS0VGq7evUqMjMzMX36dLzwwgvw8PDA9evX6yAjqi0NplArLi7G4MGD8fbbb1cYI4TAqFGjMHToUJ3z//rrLwQHB8Pf3x8ZGRnYu3cv8vLy8Oqrr0oxWVlZCAoKQo8ePXDixAlMnToV7777LpKSkqQYlUqFoUOHIjQ0FCdPnkRoaCiGDBmCI0eOSDGJiYmYOHEipk2bhhMnTqBHjx7o168fcnJyamBrEBFRQ2ZpaYnRo0fj/fffx3fffYdTp04hLCxMOkLXunVrmJiY4NNPP8Vff/2FHTt2YO7cuRp9uLi4QKFQYNeuXbhy5Qpu3bqFpk2bolmzZli9ejX+/PNP7N+/H1FRUfWRItWQBnPqc/bs2QCA+Pj4CmOWLVsGALhy5Qp++eUXrfnHjx9HaWkp/u///k/aGd577z0EBwdDrVZDqVRi1apVaN26NWJjYwEAHh4eOHr0KBYvXixdoBkbG4uAgABER0cDAKKjo3Hw4EHExsZiw4YNAIAlS5Zg9OjRGDNmjLTM3r178dlnn2H+/Pk6x19UVISioiJpuqCgAACgVquhVqurtJ0amvK89DU/XQwtZ+ar/+ozZ7VaDSEEysrKpGuxalv5acvy9T6qhQsX4ubNm3jllVdgZWWFqKgo5OfnQwiBZs2a4b///S+mT5+OZcuW4ZlnnsGiRYswYMAAKVdHR0fExMRgypQpePPNNxEaGoo1a9bg66+/xsSJE+Hl5YX27dsjNjYW/v7+j7yNairfhqQqOZeVlUEIAbVaDSMjzesTa3JfUIjqPvilnsXHx2PixImVPok5JiYG27ZtQ0ZGhkZ7dnY2OnTogBUrViAsLAy3bt3C2LFjUVBQgD179gAAevbsic6dO2Pp0qXSclu3bsWQIUNQWFgIpVKJ1q1bIzIyEpGRkVLMJ598gtjYWJw/fx7FxcWwsLDA5s2bMXDgQClmwoQJyMjIwMGDByscd3lBer+vv/4aFhYWVdk8REQGxdjYGA4ODnB2dpZOBRLVheLiYly4cAG5ubkoKSnRmFdYWIjXXnsN+fn5sLa2fqz1NJgjajXB1dUVKSkpGDx4MN566y2UlpbCx8cHycnJUkxubi5atGihsVyLFi1QUlKCvLw8ODo6VhiTm5sLAMjLy0NpaWmlMbpER0drHKIuKCiAs7MzAgMDH/uDliu1Wo3U1FQEBARAqVTW93DqhKHlzHz1X33mfPfuXVy4cAGWlpYwMzOrk3UKIXDz5k1YWVlBoVDUyTrrk6HlC1Qt57t378Lc3Bw9e/bU+u6VnxGrCfVaqFV0BOl+6enp8Pb2rpH15ebmYsyYMRg5ciSGDx+OmzdvYubMmQgJCUFqaqr0YTz4oZQfdLy/XVfMg21VibmfqakpTE1NtdqVSqXe/4NvCDk+yNByZr76rz5yLi0thUKhQKNGjersYa7lp8LK16vvDC1foGo5N2rUCAqFQuf3vib3g3ot1MaPH49hw4ZVGuPq6lpj61uxYgWsra2xaNEiqS0hIQHOzs44cuQIunfvDgcHB62jXpcvX4axsTGaNWsGABXGlB9Bs7Ozg5GRUaUxRERERA9Tr4WanZ0d7Ozs6mx9hYWFWhf8lU+XV88+Pj7YuXOnRkxKSgq8vb2lCtnHxwepqaka16ilpKTA19cXwL1bprt06YLU1FSNa9RSU1MRHBxc84kRERGRXmow16jl5OTg2rVryMnJQWlpqXSjQNu2bWFpaQkA+PPPP3Hr1i3k5ubizp07UoynpydMTEzQv39/fPLJJ5gzZ4506nPq1KlwcXFB586dAQDh4eFYvnw5oqKiMHbsWKhUKsTFxUl3cwL3bgro2bMnFi5ciODgYGzfvh379u3DoUOHpJioqCiEhobC29sbPj4+WL16NXJychAeHl43G4yIiIgavAZTqM2cORNr166VpssLq7S0NPTq1QsAMGbMGI07KstjsrKy4OrqCn9/f3z99ddYtGgRFi1aBAsLC/j4+GDPnj3Sy2zd3NyQnJyMyMhIrFixAk5OTli2bJnGu9N8fX2xceNGTJ8+HTNmzECbNm2QmJiIbt26STFDhw7F1atXMWfOHFy6dAleXl5ITk6Gi4tLrW0jIiIi0i8NplCLj4+v9BlqAHDgwIGH9jNs2LCHXhfn5+eH48ePVxoTEhKCkJCQSmMiIiIQERHx0DERERER6WIYt28QERERNUAs1IiIiIhkioUaERFRPRBCYNy4cbC1tYVCoUBGRgZ69eqFiRMn1vfQakVMTAw6depUrWVcXV2lVzoaKhZqRERE9WDPnj2Ij4/Hrl27pJvOtmzZovHy9fosVOLj49GkSZMa6++9997Dd999V61l0tPTMW7cuBobQ0PUYG4mICIieqixY4FTp2p1FQoAlqWlUDzwXE4AgJcX8MUXVern3LlzcHR0lJ7BCQC2trY1NMq6U1xcXKX3rFpaWkqP06oqe3v7Rx2W/hAkW/n5+QKAyM/Pr++h1Jri4mKxbds2UVxcXN9DqTOGljPz1X/1mfOdO3fEmTNnxJ07d+41dO8uBFB/P927V2ncI0eOFACkHxcXFyGEEH5+fmLChAnS7/fHVPYn+/z58+KVV14RjRs3FlZWVmLw4MEiNzdXmj9r1izx9NNPi3Xr1gkXFxdhbW0thg4dKgoKCnT2l5aWprXumTNnCiGEcHFxEXPnzhUjR44U1tbWYsSIEUIIISZPnizatWsnzM3NhZubm5g+fbrGd6J8DPdvg+DgYPHRRx8JBwcHYWtrKyIiIjSWcXFxEZ988ok0DUB88cUXYsCAAcLc3Fy0bdtWbN++XWPs27dvF23bthVmZmaiV69eIj4+XgAQ169fr3D7Pai0tFRcv35dlJaWVhij9d27T03+/eapTyIiojq2dOlSzJkzB61atcKlS5eQnp6uFbNlyxa0atVKeh7npUuXdPYlhMCAAQNw7do1HDx4EKmpqTh37hyGDh2qEXfu3Dls27YNu3btwq5du3Dw4EEsWLBAZ5++vr6IjY2FtbU1/vnnH5w9exaTJk2S5n/00Ufw8vLCsWPHMGPGDACAlZUV4uPjcebMGSxduhRffPEFPvnkk0q3Q1paGs6dO4e0tDSsXbu2So/imj17NoYMGYJffvkFQUFBeP3113Ht2jUAQHZ2NkJCQjBgwABkZGTgrbfewrRp0yrtT+546pOIiKiO2djYwMrKCkZGRnBwcNAZY2trCyMjI1hZWVUYAwD79u3DL7/8gqysLDg7OwMAvvrqKzz55JNIT0/Hs88+C+DeqxLj4+NhZWUFAAgNDcV3332HefPmafVpYmICGxsbKBQKODg4wMLCQuO0pb+/P9577z2NZaZPny797urqikmTJiExMRGTJ0+ucOxNmzbF8uXLYWRkhA4dOqB///747rvvMHbs2AqXCQsLw/DhwwEAH374IT799FP8/PPP6Nu3L1atWoX27dvjo48+AgC0b98ep06d0pljQ8EjakRERA1YZmYmnJ2dpSINuPfqxCZNmiAzM1Nqc3V1lYo0AHB0dMTly5cfaZ3e3t5abd988w2ef/55ODg4wNLSEjNmzEBOTk6l/Tz55JMa7+Cuypg6duwo/d64cWNYWVlJy/z2229SYVqua9euD81HznhEjYiI9IeXV62vQgAoLS2FkZERFPWwfq3xCAGFQmskWu1KpVJjvkKhQFlZ2SOts3HjxhrTP/30E4YNG4bZs2ejT58+sLGxwcaNG/Hxxx9X2s+jjKmyZXRtCyFEpf3JHQs1IiLSH1W84/JxiLIy3CoogLW1NRSNavfElImJCUpLSyuN8fT0RE5ODi5cuCAdVTtz5gzy8/Ph4eFRq+su9+OPP8LFxUXjerDz588/8rofVYcOHZCcnKzRdvTo0TofR03iqU8iIiKZcnV1xffff49//vkHeXl5OmNefPFFdOzYEa+//jqOHz+On3/+GSNGjICfn5/OU5TVWfetW7fw3Xff4erVqygsLKwwtm3btsjJycHGjRtx7tw5LFu2DFu3bn3kdT+qt956C2fPnsUHH3yA33//HZs2bZJuTtB11LEhYKFGREQkU3PmzEF2djbatGlT4TPFFAoFtm3bhqZNm6Jnz5548cUX4e7ujsTExMdat6+vL8LDwzF8+HC0bdtWukBfl+DgYERGRmL8+PHo1KkTDh8+LN0NWpfc3NzwzTffYMuWLejYsSM+++wz6SifqalpnY+nJihEQz95q8cKCgpgY2OD/Px8WFtb1/dwaoVarUZycjKCgoK0rjvQV4aWM/PVf/WZ8927d5GVlQU3NzeYmZnVyTrLyspQ8L9Tn41q+dSnHDT0fOfNm4dVq1bhwoULVV6mKjlX9t2ryb/fvEaNiIiI9MbKlSvx7LPPolmzZvjxxx/x0UcfYfz48fU9rEfGQo2IiIj0xh9//IH/+7//w7Vr19C6dWtMmjQJ0dHR9T2sR8ZCjYiIiPTGJ5988tA3IjQkDe9kMxEREZGBYKFGREREJFMs1IiIiIhkioUaERERkUyxUCMiIiKSKRZqRERERDLFQo2IiKgeCCEwbtw42NraQqFQICMjA7169cLEiRPre2g1JiYmBp06dZKmw8LCMGDAgEqXqaltoC/bks9RIyIiqgd79uxBfHw8Dhw4AHd3d9jZ2WHLli0ar+FydXXFxIkT9aLgAIClS5eipt9ceeDAAfTu3RvXr19HkyZNpPYHt2VDxUKNiIioHpw7dw6Ojo7w9fWV2mxtbetxRLXPxsamztalL9uSpz6JiEivCCFwu/h27f6otduqc6QoLCwM//nPf5CTkwOFQgFXV1cAmqfrevXqhfPnzyMyMhIKhQIKhaLC/nJychAcHAxLS0tYW1tjyJAh+Pfff6X55acgv/rqK7i6usLGxgbDhg3DzZs3dfaXn58Pc3Nz7NmzR6N9y5YtaNy4MW7dugUA+OCDD/DEE0/AwsIC7u7umDFjBtRqdaV533/q8/bt2xgxYgQsLS3h6OiIjz/+WGuZhIQEeHt7w8rKCg4ODnjttddw+fJlAEB2djZ69+4NAGjatCkUCgXCwsK0tiUAXL9+HSNGjEDTpk1hYWGBfv364Y8//pDmx8fHo0mTJti7dy+efPJJtGrVCv369cOlS5cqzKcu8IgaERHplUJ1ISznW9b5em9F30Jjk8ZVil26dCnatGmD1atXIz09HUZGRloxW7ZswdNPP41x48Zh7NixFfYlhMCAAQPQuHFjHDx4ECUlJYiIiMDQoUNx4MABKe7cuXPYtm0bdu3ahevXr2PIkCFYsGAB5s2bp9WnjY0N+vfvj/Xr1yMwMFBq//rrr6WCEACsrKwQHx8PJycn/Prrrxg7diysrKwwefLkKm2H999/H2lpadi6dSscHBwwdepUHDt2TOO6tuLiYsydOxft27fH5cuXERkZibCwMCQnJ8PZ2RlJSUkYNGgQfvvtN1hbW8Pc3FznusLCwvDHH39gx44dsLa2xgcffICgoCCcOXNGOkVaWFiIxYsXY+3atbhz5w7efvttvPfee1i/fn2V8qkNLNSIiIjqmI2NDaysrGBkZAQHBwedMba2tjAyMpKOJFVk3759+OWXX5CVlQVnZ2cAwFdffYUnn3wS6enpePbZZwEAZWVliI+Ph5WVFQAgNDQU3333nc5CDQBef/11jBgxAoWFhQCAgoIC7N69G0lJSVLM9OnTpd9dXV0xadIkJCYmVqlQu3XrFuLi4rBu3ToEBAQAANauXYtWrVppxI0aNUr63d3dHcuWLUPXrl1x69YtWFpaSqc4mzdvrnGN2v3KC7Qff/xROtW8fv16ODs7Y9u2bRg8eDAAQK1WY9WqVXBzc0NBQQHeeecdzJ0796G51CYWakREpFcslBa4FX2r1vovKytDwc0CWFtZo1Gj/38FkYXSotbWWZnMzEw4OztLRRoAeHp6okmTJsjMzJQKNVdXV6lIAwBHR0fpFKIu/fv3h7GxMXbs2IGgoCAkJSXByspK4wjbN998g9jYWPz555+4desWSkpKYG1tXaVxnzt3DsXFxfDx8ZHabG1t0b59e424EydOICYmBhkZGbh27RrKysoA3Dvd6+npWaV1ZWZmwtjYGN26dZPamjVrhvbt2yMzM1Nqs7CwQJs2baR1ODg4VLqN6gILNSIi0isKhaLKpyAfRVlZGUqVpWhs0lijUKsvQgid16892P7gHZAKhUIqSHQxMTFBSEgINmzYgKCgIGzYsAFDhw6FsfG90uGnn37CsGHDMHv2bPTp0wc2NjbYuHGjzuvMKhr3w9y+fRuBgYEIDAxEQkIC7O3tkZOTgz59+qC4uLhK66lsXVXZRjV9l2p11f83jIiIiHQyMTFBaWlppTGenp7IycnBhQsXpLYzZ84gPz8fHh4ej7X+119/HXv37kVmZiYOHDiA119/XZr3448/wsXFBdOmTYO3tzfatWuH8+fPV7nvtm3bQqlU4qeffpLarl+/jt9//12aPnv2LPLy8rBgwQL06NEDHTp00DrCZWJiAgCVbidPT0+UlJTgyJEjUtvVq1fx+++/P/Y2qm0s1IiIiGTK1dUV33//Pf755x/k5eXpjHnxxRfRsWNHvP766zh+/Dh+/vlnjBgxAn5+fvD29n6s9fv5+aFFixYYN24cXF1d0b17d2le27ZtkZOTg40bN+LcuXNYtmwZtm7dWuW+LS0tMXr0aLz//vv47rvvcOrUKYSFhWkcpWzdujVMTEzw6aef4q+//sKOHTu0rhlzcXGBQqHArl27cOXKFemO1Pu1a9cOwcHBGDt2LA4dOoSTJ0/ijTfeQMuWLREcHPwIW6busFAjIiKSqTlz5iA7Oxtt2rSBvb29zhiFQoFt27ahadOm6NmzJ1588UW4u7sjMTHxsdevUCgwbNgwnDp1Cq+99prGvODgYERGRmL8+PHo1KkTDh8+jBkzZlSr/48++gg9e/bEK6+8ghdffBHPP/88unTpIs23t7dHfHw8Nm/eDE9PTyxYsACLFy/W6KNly5aYPXs2pkyZghYtWmD8+PE617VmzRp06dIFL730Enx8fCCEQHJysuwfiqsQ9X3ylSpUUFAAGxsb5OfnV/nizIZGrVYjOTkZQUFBst9Zaoqh5cx89V995nz37l1kZWXBzc0NZmZmdbLOsrIyFBQUwNraWhbXqNU2Q8sXqFrOlX33avLvt2FscSIiIqIGiIUaERERkUyxUCMiIiKSKRZqRERERDLFQo2IiBo83hdHda2uvnMs1IiIqMG6/2XaRHWp/DtX23c68xVSRETUYBkZGaFJkybS0+otLCx0vk6pJpWVlaG4uBh37941iMdVGFq+QOU5CyFQWFiIy5cvo0mTJjAyMqrVsbBQIyKiBs3BwQEA6uzl2UII3LlzB+bm5rVeFMqBoeULVC3nJk2aSN+92tRgCrV58+Zh9+7dyMjIgImJCW7cuKEx/+TJk1iwYAEOHTqEvLw8uLq6Ijw8HBMmTNCI+/XXXzF+/Hj8/PPPsLW1xVtvvYUZM2ZofBAHDx5EVFQUTp8+DScnJ0yePBnh4eEa/SQlJWHGjBk4d+4c2rRpg3nz5mHgwIEaMStXrsRHH32ES5cu4cknn0RsbCx69OhRsxuGiMjAKRQKODo6onnz5lCr1bW+PrVaje+//x49e/Y0iIcaG1q+wMNzViqVtX4krVyDKdSKi4sxePBg+Pj4IC4uTmv+sWPHYG9vj4SEBDg7O+Pw4cMYN24cjIyMpNdJFBQUICAgAL1790Z6ejp+//13hIWFoXHjxpg0aRIAICsrC0FBQRg7diwSEhLw448/IiIiAvb29hg0aBAAQKVSYejQoZg7dy4GDhyIrVu3YsiQITh06BC6desGAEhMTMTEiROxcuVKPPfcc/j888/Rr18/nDlzBq1bt66jrUZEZDiMjIzq5I+nkZERSkpKYGZmZhCFi6HlC8gr5wZTqM2ePRsAEB8fr3P+qFGjNKbd3d2hUqmwZcsWqVBbv3497t69i/j4eJiamsLLywu///47lixZgqioKCgUCqxatQqtW7dGbGwsAMDDwwNHjx7F4sWLpUItNjYWAQEBiI6OBgBER0fj4MGDiI2NxYYNGwAAS5YswejRozFmzBhpmb179+Kzzz7D/Pnza3TbEBERkX5qMIXao8jPz4etra00rVKp4OfnB1NTU6mtT58+iI6ORnZ2Ntzc3KBSqRAYGKjRT58+fRAXFwe1Wg2lUgmVSoXIyEitmPLirri4GMeOHcOUKVM0YgIDA3H48OEKx1tUVISioiJpuqCgAMC9Q7B1cTi/PpTnpa/56WJoOTNf/WdoOTNf/fe4OdfkttLbQk2lUmHTpk3YvXu31JabmwtXV1eNuBYtWkjz3NzckJubK7XdH1NSUoK8vDw4OjpWGJObmwsAyMvLQ2lpaaUxusyfP186cni/lJQUWFhYPDzpBiw1NbW+h1DnDC1n5qv/DC1n5qv/HjXnmnxcTL0WajExMToLk/ulp6fD29u7Wv2ePn0awcHBmDlzJgICAjTmPXj3RvkD6+5vf9SYB9uqEnO/6OhoREVFSdMFBQVwdnZGYGAgrK2tK1yuIVOr1UhNTUVAQEC9XwdQVwwtZ+ar/wwtZ+ar/x435/IzYjWhXgu18ePHY9iwYZXGPHgE7GHOnDkDf39/jB07FtOnT9eY5+DgoHVEq/x27vKjXxXFGBsbo1mzZpXGlPdhZ2cHIyOjSmN0MTU11TgtW06pVOr9zmEIOT7I0HJmvvrP0HJmvvrvUXOuye1Ur4WanZ0d7Ozsaqy/06dPw9/fHyNHjsS8efO05vv4+GDq1KkoLi6GiYkJgHunFZ2cnKSC0MfHBzt37tRYLiUlBd7e3tKG9/HxQWpqqsZ1aikpKfD19QUAmJiYoEuXLkhNTdV4ZEdqaiqCg4NrLF8iIiLSbw3mEcM5OTnIyMhATk4OSktLkZGRgYyMDNy6dQvAvSKtd+/eCAgIQFRUFHJzc5Gbm4srV65Ifbz22mswNTVFWFgYTp06ha1bt+LDDz+U7vgEgPDwcJw/fx5RUVHIzMzEf//7X8TFxeG9996T+pkwYQJSUlKwcOFCnD17FgsXLsS+ffswceJEKSYqKgpffvkl/vvf/yIzMxORkZHIycnReh4bERERUUUazM0EM2fOxNq1a6Xpzp07AwDS0tLQq1cvbN68GVeuXMH69euxfv16Kc7FxQXZ2dkAABsbG6SmpuKdd96Bt7c3mjZtiqioKI3rwtzc3JCcnIzIyEisWLECTk5OWLZsmfRoDgDw9fXFxo0bMX36dMyYMQNt2rRBYmKi9Aw1ABg6dCiuXr2KOXPm4NKlS/Dy8kJycjJcXFxqaxMRERGRnmkwhVp8fHyFz1AD7t2YEBMT89B+nnrqKXz//feVxvj5+eH48eOVxoSEhCAkJKTSmIiICERERDx0TERERES6NJhTn0RERESGhoUaERERkUyxUCMiIiKSKRZqRERERDLFQo2IiIhIplioEREREckUCzUiIiIimWKhRkRERCRTLNSIiIiIZIqFGhEREZFMsVAjIiIikikWakREREQyxUKNiIiISKZYqBERERHJFAs1IiIiIplioUZEREQkUyzUiIiIiGSKhRoRERGRTLFQIyIiIpIpFmpEREREMsVCjYiIiEimWKgRERERyRQLNSIiIiKZYqFGREREJFMs1IiIiIhkioUaERERkUyxUCMiIiKSKRZqRERERDLFQo2IiIhIplioEREREckUCzUiIiIimWKhRkRERCRTLNSIiIiIZIqFGhEREZFMsVAjIiIikikWakREREQyxUKNiIiISKZYqBERERHJFAs1IiIiIplioUZEREQkUyzUiIiIiGSKhRoRERGRTLFQIyIiIpKpBlOozZs3D76+vrCwsECTJk205p88eRLDhw+Hs7MzzM3N4eHhgaVLl2rEHDhwAMHBwXB0dETjxo3RqVMnrF+/XquvgwcPokuXLjAzM4O7uztWrVqlFZOUlARPT0+YmprC09MTW7du1YpZuXIl3NzcYGZmhi5duuCHH3549A1AREREBqfBFGrFxcUYPHgw3n77bZ3zjx07Bnt7eyQkJOD06dOYNm0aoqOjsXz5cinm8OHD6NixI5KSkvDLL79g1KhRGDFiBHbu3CnFZGVlISgoCD169MCJEycwdepUvPvuu0hKSpJiVCoVhg4ditDQUJw8eRKhoaEYMmQIjhw5IsUkJiZi4sSJmDZtGk6cOIEePXqgX79+yMnJqYWtQ0RERHpJNDBr1qwRNjY2VYqNiIgQvXv3rjQmKChIvPnmm9L05MmTRYcOHTRi3nrrLdG9e3dpesiQIaJv374aMX369BHDhg2Tprt27SrCw8M1Yjp06CCmTJlSpbELIUR+fr4AIPLz86u8TENTXFwstm3bJoqLi+t7KHXG0HJmvvrP0HJmvvrvcXOuyb/fxvVdKNam/Px82NraPjTGw8NDmlapVAgMDNSI6dOnD+Li4qBWq6FUKqFSqRAZGakVExsbC+De0b9jx45hypQpGjGBgYE4fPhwhWMpKipCUVGRNF1QUAAAUKvVUKvVlebRUJXnpa/56WJoOTNf/WdoOTNf/fe4OdfkttLbQk2lUmHTpk3YvXt3hTHffPMN0tPT8fnnn0ttubm5aNGihUZcixYtUFJSgry8PDg6OlYYk5ubCwDIy8tDaWlppTG6zJ8/H7Nnz9ZqT0lJgYWFRcXJ6oHU1NT6HkKdM7Scma/+M7Scma/+e9ScCwsLa2wM9VqoxcTE6CxM7peeng5vb+9q9Xv69GkEBwdj5syZCAgI0Blz4MABhIWF4YsvvsCTTz6pMU+hUGhMCyG02nXFPNhWlZj7RUdHIyoqSpouKCiAs7MzAgMDYW1tXeFyDZlarUZqaioCAgKgVCrrezh1wtByZr76z9ByZr7673FzLj8jVhPqtVAbP348hg0bVmmMq6trtfo8c+YM/P39MXbsWEyfPl1nzMGDB/Hyyy9jyZIlGDFihMY8BwcHraNely9fhrGxMZo1a1ZpTPkRNDs7OxgZGVUao4upqSlMTU212pVKpd7vHIaQ44MMLWfmq/8MLWfmq/8eNeea3E71WqjZ2dnBzs6uxvo7ffo0/P39MXLkSMybN09nzIEDB/DSSy9h4cKFGDdunNZ8Hx8fjbtAgXunHr29vaUN7+Pjg9TUVI3r1FJSUuDr6wsAMDExQZcuXZCamoqBAwdKMampqQgODn7sPImIiMgwNJhr1HJycnDt2jXk5OSgtLQUGRkZAIC2bdvC0tISp0+fRu/evREYGIioqCjpaJaRkRHs7e0B3CvS+vfvjwkTJmDQoEFSjImJiXTTQXh4OJYvX46oqCiMHTsWKpUKcXFx2LBhgzSWCRMmoGfPnli4cCGCg4Oxfft27Nu3D4cOHZJioqKiEBoaCm9vb/j4+GD16tXIyclBeHh4XWwuIiIi0gMNplCbOXMm1q5dK0137twZAJCWloZevXph8+bNuHLlCtavX6/xEFsXFxdkZ2cDAOLj41FYWIj58+dj/vz5Uoyfnx8OHDgAAHBzc0NycjIiIyOxYsUKODk5YdmyZRg0aJAU7+vri40bN2L69OmYMWMG2rRpg8TERHTr1k2KGTp0KK5evYo5c+bg0qVL8PLyQnJyMlxcXGpj8xAREZEeajCFWnx8POLj4yucHxMTg5iYmMfqo5yfnx+OHz9eaUxISAhCQkIqjYmIiEBERMRD10dERESkS4N5MwERERGRoWGhRkRERCRTLNSIiIiIZIqFGhEREZFMsVAjIiIikikWakREREQyxUKNiIiISKZYqBERERHJFAs1IiIiIplioUZEREQkU49VqBUVFdXUOIiIiIjoAdUq1Pbu3YuwsDC0adMGSqUSFhYWsLKygp+fH+bNm4eLFy/W1jiJiIiIDE6VCrVt27ahffv2GDlyJBo1aoT3338fW7Zswd69exEXFwc/Pz/s27cP7u7uCA8Px5UrV2p73ERERER6z7gqQR9++CEWL16M/v37o1Ej7dpuyJAhAIB//vkHS5cuxbp16zBp0qSaHSkRERGRgalSofbzzz9XqbOWLVti0aJFjzUgIiIiIrqHd30SERERyVSVjqjdTwiBb775Bmlpabh8+TLKyso05m/ZsqXGBkdERERkyKpdqE2YMAGrV69G79690aJFCygUitoYFxEREZHBq3ahlpCQgC1btiAoKKg2xkNERERE/1Pta9RsbGzg7u5eG2MhIiIiovtUu1CLiYnB7NmzcefOndoYDxERERH9T7VPfQ4ePBgbNmxA8+bN4erqCqVSqTH/+PHjNTY4IiIiIkNW7UItLCwMx44dwxtvvMGbCYiIiIhqUbULtd27d2Pv3r14/vnna2M8RERERPQ/1b5GzdnZGdbW1rUxFiIiIiK6T7ULtY8//hiTJ09GdnZ2LQyHiIiIiMpV+9TnG2+8gcLCQrRp0wYWFhZaNxNcu3atxgZHREREZMiqXajFxsbWwjCIiIiI6EHVLtRGjhxZG+MgIiIiogdUu1Ard/nyZZ0vZe/YseNjD4qIiIiIHqFQO3bsGEaOHInMzEwIITTmKRQKlJaW1tjgiIiIiAxZtQu1N998E0888QTi4uL4wFsiIiKiWlTtQi0rKwtbtmxB27Zta2M8RERERPQ/1X6O2gsvvICTJ0/WxliIiIiI6D7VPqL25ZdfYuTIkTh16hS8vLy0nqP2yiuv1NjgiIiIiAxZtQu1w4cP49ChQ/j222+15vFmAiIiIqKaU+1Tn++++y5CQ0Nx6dIllJWVafywSCMiIiKqOdUu1K5evYrIyEi0aNGiNsZDRERERP9T7ULt1VdfRVpaWm2MhYiIiIjuU+1r1J544glER0fj0KFDeOqpp7RuJnj33XdrbHBEREREhuyR7vq0tLTEwYMHcfDgQY15CoWChRoRERFRDXmkB95SA3fzJvDpp0B2dn2PBEZlZXg6JwdGO3cCjap9Jr7mWVoCvXvX6ioUJSVocfQoFGVlgPEjv263wajVfMvKgN27a7bPxyS773QdMLScma8esbUFJkwAHB3reyQV0v+/EqQpLg4YM6a+RyFpBMC1vgfxoE8+qdXujQF0r9U1yIuh5SvL73QtM7Scma+eWbgQGDECWLu2vkeiU5UKtQULFuDdd9+FhYXFQ2OPHDmCvLw89O/f/7EHd7958+Zh9+7dyMjIgImJCW7cuKEx/+TJk1iwYAEOHTqEvLw8uLq6Ijw8HBMmTNDZ359//onOnTvDyMhIq6+DBw8iKioKp0+fhpOTEyZPnozw8HCNmKSkJMyYMQPnzp1DmzZtMG/ePAwcOFAjZuXKlfjoo49w6dIlPPnkk4iNjUWPHj0ee1s8ljFjoG4EuE8A/rap36HUtgk/1fcIiIhIrhI6AlctgO/WAv7r1gHLlgE28vvDWKVC7cyZM2jdujUGDx6MV155Bd7e3rC3twcAlJSU4MyZMzh06BASEhJw6dIlrFu3rsYHWlxcjMGDB8PHxwdxcXFa848dOwZ7e3skJCTA2dkZhw8fxrhx42BkZITx48drxKrVagwfPhw9evTA4cOHNeZlZWUhKCgIY8eORUJCAn788UdERETA3t4egwYNAgCoVCoMHToUc+fOxcCBA7F161YMGTIEhw4dQrdu3QAAiYmJmDhxIlauXInnnnsOn3/+Ofr16ydty3px6xYAYPOT+l+kAcBSQzqMQ0REj+SFkYCIAbBtGzByZD2PRptCCCGqEvjLL79gxYoV2Lx5M/Lz82FkZARTU1MUFhYCADp37oxx48Zh5MiRMDU1rbUBx8fHY+LEiVpHwXR55513kJmZif3792u0f/DBB7h48SJeeOEFrb4++OAD7NixA5mZmVJbeHg4Tp48CZVKBQAYOnQoCgoKNN7O0LdvXzRt2hQbNmwAAHTr1g3PPPMMPvvsMynGw8MDAwYMwPz586uUa0FBAWxsbJCfnw9ra+sqLfNQCgVKFUC3scAxp5rpUo5MSoD3Dj88joiIDNPmJ4HsJsAP/wW6/YN7129bWgK4d0AnOTkZQUFBWk+3qIqa/Ptd5WvUOnbsiM8//xyrVq3CL7/8guzsbNy5cwd2dnbo1KkT7OzsHmsgtSE/Px+2trYabfv378fmzZuRkZGBLVu2aC2jUqkQGBio0danTx/ExcVBrVZDqVRCpVIhMjJSKyY2NhbAvaN/x44dw5QpUzRiAgMDtY7g3a+oqAhFRUXSdEFBAYB7Xxi1Wv3whKtA8fXXMH7tNRxdXSPdERERNUjz7juGU/ruuygzNQX+97dW/cB/q6um/mYDj3AzgUKhwNNPP42nn366xgZRG1QqFTZt2oTd990RdvXqVYSFhSEhIaHCCjc3N1frrQstWrRASUkJ8vLy4OjoWGFMbm4uACAvLw+lpaWVxugyf/58zJ49W6s9JSWlStcHVomFBRTffAPngwdh8e+/NdOnHik1NcX1J56o72FQVZWVwe706foeBRE1UMVWVjj/4osoNTcHkpO15qempj5Sv+VnG2tCvd71GRMTo7MwuV96ejq8vb2r1e/p06cRHByMmTNnIiAgQGofO3YsXnvtNfTs2bPS5RUKhcZ0+dnh+9t1xTzYVpWY+0VHRyMqKkqaLigogLOzMwIDA2vu1Ge5V16p2f4ekVqtRmpqKgICAh7p8HJDZGg5M1/9Z2g5M1/90kFH2+PmXH5GrCbUa6E2fvx4DBs2rNIYV1fXavV55swZ+Pv7Y+zYsZg+fbrGvP3792PHjh1YvHgxgHuFU1lZGYyNjbF69WqMGjUKDg4OWke9Ll++DGNjYzRr1gwAKowpP4JmZ2cHIyOjSmN0MTU11Xl9n1Kp1Mud436GkOODDC1n5qv/DC1n5qv/HjXnmtxO9Vqo2dnZ1ei1badPn4a/vz9GjhyJefPmac1XqVQoLS2Vprdv346FCxfi8OHDaNmyJQDAx8cHO3fu1FguJSUF3t7e0ob38fFBamqqxnVqKSkp8PX1BQCYmJigS5cuSE1N1XhkR2pqKoKDg2ssXyIiItJvDeaBtzk5Obh27RpycnJQWlqKjIwMAEDbtm1haWmJ06dPo3fv3ggMDERUVJR0NMvIyEh6lIiHh4dGn0ePHkWjRo3g5eUltYWHh2P58uWIiorC2LFjoVKpEBcXJ93NCQATJkxAz549sXDhQgQHB2P79u3Yt28fDh06JMVERUUhNDQU3t7e8PHxwerVq5GTk6P1PDYiIiKiilT7XRCjRo3CzZs3tdpv376NUaNG1cigdJk5cyY6d+6MWbNm4datW+jcuTM6d+6Mo0ePAgA2b96MK1euYP369XB0dJR+nn322Wqtx83NDcnJyThw4AA6deqEuXPnYtmyZdIz1ADA19cXGzduxJo1a9CxY0fEx8cjMTFReoYacO8RHrGxsZgzZw46deqE77//HsnJyXBxcamZDUJERER6r9qF2tq1a3Hnzh2t9jt37tTKg27LxcfHQwih9dOrVy8A925M0DU/u5L3WYaFhel8Hpufnx+OHz+OoqIiZGVl6TwKFhISgrNnz6K4uBiZmZl49dVXtWIiIiKQnZ2NoqIiHDt27KE3MRARERHdr8qnPgsKCqTi5+bNmzAzM5PmlZaWIjk5Gc2bN6+VQRIREREZoioXak2aNIFCoYBCocATOp4zpVAoHvqoDSIiIiKquioXamlpaRBCwN/fH0lJSRpP/DcxMYGLiwucnPT4nUREREREdazKhZqfnx+Aey8tb926daUPbiUiIiKix1ftmwkyMzPx448/StMrVqxAp06d8Nprr+H69es1OjgiIiIiQ1btQu3999+XXo3w66+/IioqCkFBQfjrr780Xn9ERERERI+n2g+8zcrKgqenJwAgKSkJL7/8Mj788EMcP34cQUFBNT5AIiIiIkNV7SNqJiYm0lvh9+3bh8DAQACAra1tjb6ElIiIiMjQVfuI2vPPP4+oqCg899xz+Pnnn5GYmAgA+P3339GqVasaHyARERGRoar2EbXly5fD2NgY33zzDT777DPpZebffvst+vbtW+MDJCIiIjJU1T6i1rp1a+zatUur/ZNPPqmRARERERHRPdUu1O53584dqNVqjTZra+vHGhARERER3VPtU5+3b9/G+PHj0bx5c1haWqJp06YaP0RERERUM6pdqE2ePBn79+/HypUrYWpqii+//BKzZ8+Gk5MT1q1bVxtjJCIiIjJI1T71uXPnTqxbtw69evXCqFGj0KNHD7Rt2xYuLi5Yv349Xn/99doYJxEREZHBqfYRtWvXrsHNzQ3AvevRrl27BuDeYzu+//77mh0dERERkQGrdqHm7u6O7OxsAICnpyc2bdoE4N6RtiZNmtTk2IiIiIgMWrULtTfffBMnT54EAERHR0vXqkVGRuL999+v8QESERERGapqX6MWGRkp/d67d2+cPXsWR48eRZs2bfD000/X6OCIiIiIDNljPUcNuPcA3NatW9fEWIiIiIjoPlU+9RkUFIT8/Hxpet68ebhx44Y0ffXqVXh6etbo4IiIiIgMWZULtb1796KoqEiaXrhwoXTHJwCUlJTgt99+q9nRERERERmwKhdqQohKp4mIiIioZlX7rk8iIiIiqhtVLtQUCgUUCoVWGxERERHVjirf9SmEQFhYGExNTQEAd+/eRXh4OBo3bgwAGtevEREREdHjq3KhNnLkSI3pN954QytmxIgRjz8iIiIiIgJQjUJtzZo1tTkOIiIiInoAbyYgIiIikikWakREREQyxUKNiIiISKZYqBERERHJFAs1IiIiIplioUZEREQkUyzUiIiIiGSKhRoRERGRTLFQIyIiIpIpFmpEREREMsVCjYiIiEimWKgRERERyRQLNSIiIiKZYqFGREREJFMs1IiIiIhkioUaERERkUw1mEJt3rx58PX1hYWFBZo0aaI1/+TJkxg+fDicnZ1hbm4ODw8PLF26VCtOCIHFixfjiSeegKmpKZydnfHhhx9qxBw8eBBdunSBmZkZ3N3dsWrVKq1+kpKS4OnpCVNTU3h6emLr1q1aMStXroSbmxvMzMzQpUsX/PDDD4++AYiIiMjgNJhCrbi4GIMHD8bbb7+tc/6xY8dgb2+PhIQEnD59GtOmTUN0dDSWL1+uETdhwgR8+eWXWLx4Mc6ePYudO3eia9eu0vysrCwEBQWhR48eOHHiBKZOnYp3330XSUlJUoxKpcLQoUMRGhqKkydPIjQ0FEOGDMGRI0ekmMTEREycOBHTpk3DiRMn0KNHD/Tr1w85OTk1vGWIiIhIXxnX9wCqavbs2QCA+Ph4nfNHjRqlMe3u7g6VSoUtW7Zg/PjxAIDMzEx89tlnOHXqFNq3b6+zn1WrVqF169aIjY0FAHh4eODo0aNYvHgxBg0aBACIjY1FQEAAoqOjAQDR0dE4ePAgYmNjsWHDBgDAkiVLMHr0aIwZM0ZaZu/evfjss88wf/58nesuKipCUVGRNF1QUAAAUKvVUKvVlW6fhqo8L33NTxdDy5n56j9Dy5n56r/Hzbkmt1WDKdQeRX5+PmxtbaXpnTt3wt3dHbt27ULfvn0hhMCLL76IRYsWSXEqlQqBgYEa/fTp0wdxcXFQq9VQKpVQqVSIjIzUiikv7oqLi3Hs2DFMmTJFIyYwMBCHDx+ucLzz58+XCtL7paSkwMLColq5NzSpqan1PYQ6Z2g5M1/9Z2g5M1/996g5FxYW1tgY9LZQU6lU2LRpE3bv3i21/fXXXzh//jw2b96MdevWobS0FJGRkQgJCcH+/fsBALm5uWjRooVGXy1atEBJSQny8vLg6OhYYUxubi4AIC8vD6WlpZXG6BIdHY2oqChpuqCgAM7OzggMDIS1tfWjbQiZU6vVSE1NRUBAAJRKZX0Pp04YWs7MV/8ZWs7MV/89bs7lZ8RqQr0WajExMTqPIN0vPT0d3t7e1er39OnTCA4OxsyZMxEQECC1l5WVoaioCOvWrcMTTzwBAIiLi0OXLl3w22+/SadDFQqFRn9CCK12XTEPtlUl5n6mpqYwNTXValcqlXq/cxhCjg8ytJyZr/4ztJyZr/571JxrcjvVa6E2fvx4DBs2rNIYV1fXavV55swZ+Pv7Y+zYsZg+fbrGPEdHRxgbG0tFGnDvGjQAyMnJQfv27eHg4KB11Ovy5cswNjZGs2bNAKDCmPIjaHZ2djAyMqo0hoiIiOhh6rVQs7Ozg52dXY31d/r0afj7+2PkyJGYN2+e1vznnnsOJSUlOHfuHNq0aQMA+P333wEALi4uAAAfHx/s3LlTY7mUlBR4e3tLFbKPjw9SU1M1rlNLSUmBr68vAMDExARdunRBamoqBg4cKMWkpqYiODi4xvIlIiIi/dZgrlHLycnBtWvXkJOTg9LSUmRkZAAA2rZtC0tLS5w+fRq9e/dGYGAgoqKipKNZRkZGsLe3BwC8+OKLeOaZZzBq1CjExsairKwM77zzDgICAqSjbOHh4Vi+fDmioqIwduxYqFQqxMXFSXdzAvce8dGzZ08sXLgQwcHB2L59O/bt24dDhw5JMVFRUQgNDYW3tzd8fHywevVq5OTkIDw8vI62GBERETV0DaZQmzlzJtauXStNd+7cGQCQlpaGXr16YfPmzbhy5QrWr1+P9evXS3EuLi7Izs4GADRq1Ag7d+7Ef/7zH/Ts2RONGzdGv3798PHHH0vxbm5uSE5ORmRkJFasWAEnJycsW7ZMejQHAPj6+mLjxo2YPn06ZsyYgTZt2iAxMRHdunWTYoYOHYqrV69izpw5uHTpEry8vJCcnCwduSMiIiJ6mAZTqMXHx1f4DDXg3o0JMTExD+3HyclJ4+G1uvj5+eH48eOVxoSEhCAkJKTSmIiICERERDx0TERERES6NJg3ExAREREZGhZqRERERDLFQo2IiIhIplioEREREckUCzUiIiIimWKhRkRERCRTLNSIiIiIZIqFGhEREZFMsVAjIiIikikWakREREQyxUKNiIiISKZYqBERERHJFAs1IiIiIplioUZEREQkUyzUiIiIiGSKhRoRERGRTLFQIyIiIpIpFmpEREREMsVCjYiIiEimWKgRERERyRQLNSIiIiKZYqFGREREJFMs1IiIiIhkioUaERERkUyxUCMiIiKSKRZqRERERDLFQo2IiIhIplioEREREckUCzUiIiIimWKhRkRERCRTLNSIiIiIZIqFGhEREZFMsVAjIiIikikWakREREQyxUKNiIiISKZYqBERERHJFAs1IiIiIplioUZEREQkUyzUiIiIiGSKhRoRERGRTLFQIyIiIpIpFmpEREREMsVCjYiIiEimGkyhNm/ePPj6+sLCwgJNmjTRmn/y5EkMHz4czs7OMDc3h4eHB5YuXaoVt3fvXnTv3h1WVlawt7fHoEGDkJWVpRFz8OBBdOnSBWZmZnB3d8eqVau0+klKSoKnpydMTU3h6emJrVu3asWsXLkSbm5uMDMzQ5cuXfDDDz88+gYgIiIig9NgCrXi4mIMHjwYb7/9ts75x44dg729PRISEnD69GlMmzYN0dHRWL58uRTz119/ITg4GP7+/sjIyMDevXuRl5eHV199VYrJyspCUFAQevTogRMnTmDq1Kl49913kZSUJMWoVCoMHToUoaGhOHnyJEJDQzFkyBAcOXJEiklMTMTEiRMxbdo0nDhxAj169EC/fv2Qk5NTC1uHiIiI9JFxfQ+gqmbPng0AiI+P1zl/1KhRGtPu7u5QqVTYsmULxo8fDwA4fvw4SktL8X//939o1Ohejfree+8hODgYarUaSqUSq1atQuvWrREbGwsA8PDwwNGjR7F48WIMGjQIABAbG4uAgABER0cDAKKjo3Hw4EHExsZiw4YNAIAlS5Zg9OjRGDNmjLTM3r178dlnn2H+/Pk1t2GIiIhIbzWYQu1R5Ofnw9bWVpr29vaGkZER1qxZg7CwMNy6dQtfffUVAgMDoVQqAdw7WhYYGKjRT58+fRAXFycVcyqVCpGRkVox5cVdcXExjh07hilTpmjEBAYG4vDhwxWOt6ioCEVFRdJ0QUEBAECtVkOtVld/AzQA5Xnpa366GFrOzFf/GVrOzFf/PW7ONbmt9LZQU6lU2LRpE3bv3i21ubq6IiUlBYMHD8Zbb72F0tJS+Pj4IDk5WYrJzc1FixYtNPpq0aIFSkpKkJeXB0dHxwpjcnNzAQB5eXkoLS2tNEaX+fPnS0cO75eSkgILC4uqJ98Apaam1vcQ6pyh5cx89Z+h5cx89d+j5lxYWFhjY6jXQi0mJkZnYXK/9PR0eHt7V6vf06dPIzg4GDNnzkRAQIDUnpubizFjxmDkyJEYPnw4bt68iZkzZyIkJASpqalQKBQAIP23nBBCq11XzINtVYm5X3R0NKKioqTpgoICODs7IzAwENbW1lVJvcFRq9VITU1FQECAdFRT3xlazsxX/xlazsxX/z1uzuVnxGpCvRZq48ePx7BhwyqNcXV1rVafZ86cgb+/P8aOHYvp06drzFuxYgWsra2xaNEiqS0hIQHOzs44cuQIunfvDgcHB62jXpcvX4axsTGaNWsGABXGlB9Bs7Ozg5GRUaUxupiamsLU1FSrXalU6v3OYQg5PsjQcma++s/Qcma++u9Rc67J7VSvhZqdnR3s7OxqrL/Tp0/D398fI0eOxLx587TmFxYWwsjISKOtfLqsrAwA4OPjg507d2rEpKSkwNvbW9rwPj4+SE1N1bhOLSUlBb6+vgAAExMTdOnSBampqRg4cKAUk5qaiuDg4BrIlIiIiAxBg7lGLScnB9euXUNOTg5KS0uRkZEBAGjbti0sLS1x+vRp9O7dG4GBgYiKipKOZhkZGcHe3h4A0L9/f3zyySeYM2eOdOpz6tSpcHFxQefOnQEA4eHhWL58OaKiojB27FioVCrExcVJd3MCwIQJE9CzZ08sXLgQwcHB2L59O/bt24dDhw5JMVFRUQgNDYW3tzd8fHywevVq5OTkIDw8vI62GBERETV0DaZQmzlzJtauXStNlxdWaWlp6NWrFzZv3owrV65g/fr1WL9+vRTn4uKC7OxsAIC/vz++/vprLFq0CIsWLYKFhQV8fHywZ88emJubAwDc3NyQnJyMyMhIrFixAk5OTli2bJn0aA4A8PX1xcaNGzF9+nTMmDEDbdq0QWJiIrp16ybFDB06FFevXsWcOXNw6dIleHl5ITk5GS4uLrW5mYiIiEiPNJhCLT4+vsJnqAH3bkyIiYl5aD/Dhg176HVxfn5+OH78eKUxISEhCAkJqTQmIiICERERDx0TERERkS4N5s0ERERERIaGhRoRERGRTLFQIyIiIpIpFmpEREREMsVCjYiIiEimWKgRERERyRQLNSIiIiKZYqFGREREJFMs1IiIiIhkioUaERERkUyxUCMiIiKSKRZqRERERDLFQo2IiIhIplioEREREckUCzUiIiIimWKhRkRERCRTLNSIiIiIZIqFGhEREZFMsVAjIiIikikWakREREQyxUKNiIiISKZYqBERERHJFAs1IiIiIplioUZEREQkUyzUiIiIiGSKhRoRERGRTLFQIyIiIpIpFmpEREREMsVCjYiIiEimWKgRERERyRQLNSIiIiKZYqFGREREJFMs1IiIiIhkioUaERERkUyxUCMiIiKSKRZqRERERDLFQo2IiIhIplioEREREckUCzUiIiIimWKhRkRERCRTLNSIiIiIZIqFGhEREZFMsVAjIiIikqkGU6jNmzcPvr6+sLCwQJMmTbTmX716FX379oWTkxNMTU3h7OyM8ePHo6CgQCPu119/hZ+fH8zNzdGyZUvMmTMHQgiNmIMHD6JLly4wMzODu7s7Vq1apbW+pKQkeHp6wtTUFJ6enti6datWzMqVK+Hm5gYzMzN06dIFP/zww+NtBCIiIjIoDaZQKy4uxuDBg/H222/rnN+oUSMEBwdjx44d+P333xEfH499+/YhPDxciikoKEBAQACcnJyQnp6OTz/9FIsXL8aSJUukmKysLAQFBaFHjx44ceIEpk6dinfffRdJSUlSjEqlwtChQxEaGoqTJ08iNDQUQ4YMwZEjR6SYxMRETJw4EdOmTcOJEyfQo0cP9OvXDzk5ObWwdYiIiEgviQZmzZo1wsbGpkqxS5cuFa1atZKmV65cKWxsbMTdu3eltvnz5wsnJydRVlYmhBBi8uTJokOHDhr9vPXWW6J79+7S9JAhQ0Tfvn01Yvr06SOGDRsmTXft2lWEh4drxHTo0EFMmTKlSmMXQoj8/HwBQOTn51d5mYamuLhYbNu2TRQXF9f3UOqMoeXMfPWfoeXMfPXf4+Zck3+/jeu7UKwtFy9exJYtW+Dn5ye1qVQq+Pn5wdTUVGrr06cPoqOjkZ2dDTc3N6hUKgQGBmr01adPH8TFxUGtVkOpVEKlUiEyMlIrJjY2FsC9o3/Hjh3DlClTNGICAwNx+PDhCsdcVFSEoqIiabr8tK1arYZara7eBmggyvPS1/x0MbScma/+M7Scma/+e9yca3Jb6V2hNnz4cGzfvh137tzByy+/jC+//FKal5ubC1dXV434Fi1aSPPc3NyQm5srtd0fU1JSgry8PDg6OlYYk5ubCwDIy8tDaWlppTG6zJ8/H7Nnz9ZqT0lJgYWFxcOTb8BSU1Prewh1ztByZr76z9ByZr7671FzLiwsrLEx1GuhFhMTo7MwuV96ejq8vb2r3Ocnn3yCWbNm4bfffsPUqVMRFRWFlStXSvMVCoVGvPjfjQT3tz9qzINtVYm5X3R0NKKioqTpgoICODs7IzAwENbW1hUu15Cp1WqkpqYiICAASqWyvodTJwwtZ+ar/wwtZ+ar/x435wdvZHwc9VqojR8/HsOGDas05sEjYA/j4OAABwcHdOjQAc2aNUOPHj0wY8YMODo6wsHBQeuI1uXLlwH8/yNrFcUYGxujWbNmlcaU92FnZwcjI6NKY3QxNTXVOC1bTqlU6v3OYQg5PsjQcma++s/Qcma++u9Rc67J7VSvhZqdnR3s7Oxqrf/yI2Hl1335+Phg6tSpKC4uhomJCYB7pxWdnJykgtDHxwc7d+7U6CclJQXe3t7Shvfx8UFqaqrGdWopKSnw9fUFAJiYmKBLly5ITU3FwIEDpZjU1FQEBwfXTrJERESkdxrMNWo5OTm4du0acnJyUFpaioyMDABA27ZtYWlpieTkZPz777949tlnYWlpiTNnzmDy5Ml47rnnpCLstddew+zZsxEWFoapU6fijz/+wIcffoiZM2dKpyTDw8OxfPlyREVFYezYsVCpVIiLi8OGDRuksUyYMAE9e/bEwoULERwcjO3bt2Pfvn04dOiQFBMVFYXQ0FB4e3vDx8cHq1evRk5OjsbjQoiIiIgq02AKtZkzZ2Lt2rXSdOfOnQEAaWlp6NWrF8zNzfHFF18gMjISRUVFcHZ2xquvvqpx56WNjQ1SU1PxzjvvwNvbG02bNkVUVJTGdWFubm5ITk5GZGQkVqxYAScnJyxbtgyDBg2SYnx9fbFx40ZMnz4dM2bMQJs2bZCYmIhu3bpJMUOHDsXVq1cxZ84cXLp0CV5eXkhOToaLi0ttbiYiIiLSIw2mUIuPj0d8fHyF83v37l3poy/KPfXUU/j+++8rjfHz88Px48crjQkJCUFISEilMREREYiIiHjomIiIiIh0aTBvJiAiIiIyNCzUiIiIiGSKhRoRERGRTLFQIyIiIpIpFmpEREREMsVCjYiIiEimWKgRERERyRQLNSIiIiKZYqFGREREJFMs1IiIiIhkioUaERERkUw1mHd9GiIhBACgoKCgnkdSe9RqNQoLC1FQUAClUlnfw6kThpYz89V/hpYz89V/j5tz+d/t8r/jj4OFmozdvHkTAODs7FzPIyEiIqLqunnzJmxsbB6rD4WoiXKPakVZWRkuXrwIKysrKBSK+h5OrSgoKICzszMuXLgAa2vr+h5OnTC0nJmv/jO0nJmv/nvcnIUQuHnzJpycnNCo0eNdZcYjajLWqFEjtGrVqr6HUSesra0N5h+AcoaWM/PVf4aWM/PVf4+T8+MeSSvHmwmIiIiIZIqFGhEREZFMsVCjemVqaopZs2bB1NS0vodSZwwtZ+ar/wwtZ+ar/+SUM28mICIiIpIpHlEjIiIikikWakREREQyxUKNiIiISKZYqBERERHJFAs1IiIiIplioUZVMn/+fDz77LOwsrJC8+bNMWDAAPz2228aMUIIxMTEwMnJCebm5ujVqxdOnz6tEVNUVIT//Oc/sLOzQ+PGjfHKK6/g77//luYfOHAACoVC5096enqF4wsLC9OK7969e73nu3r1avTq1QvW1tZQKBS4ceOG1rquX7+O0NBQ2NjYwMbGBqGhoTrjqrtuueacnZ2N0aNHw83NDebm5mjTpg1mzZqF4uLiSsfXkD9jV1dXrbFPmTKl0vHV9GdcV/nKZR+uqZyvXbuG//znP2jfvj0sLCzQunVrvPvuu8jPz9foRw77cV3lq0/7cFU/33rdhwVRFfTp00esWbNGnDp1SmRkZIj+/fuL1q1bi1u3bkkxCxYsEFZWViIpKUn8+uuvYujQocLR0VEUFBRIMeHh4aJly5YiNTVVHD9+XPTu3Vs8/fTToqSkRAghRFFRkbh06ZLGz5gxY4Srq6soKyurcHwjR44Uffv21Vju6tWr9Z7vJ598IubPny/mz58vAIjr169rratv377Cy8tLHD58WBw+fFh4eXmJl156qdLxVWXdcs3522+/FWFhYWLv3r3i3LlzYvv27aJ58+Zi0qRJlY6vIX/GLi4uYs6cORpjv3nzZqXjq+nPuK7ylcs+XFM5//rrr+LVV18VO3bsEH/++af47rvvRLt27cSgQYM01iWH/biu8tWnfbiqn2997sMs1OiRXL58WQAQBw8eFEIIUVZWJhwcHMSCBQukmLt37wobGxuxatUqIYQQN27cEEqlUmzcuFGK+eeff0SjRo3Enj17dK6nuLhYNG/eXMyZM6fS8YwcOVIEBwc/ZlYVe5R875eWlqbzj9qZM2cEAPHTTz9JbSqVSgAQZ8+e1TmW6q77UdVWzrosWrRIuLm5VRrTUD9jIe79I//JJ59UeSx18RnX1ecrl31YiMfPudymTZuEiYmJUKvVQgj57se1la8u+rAPl9OVb33uwzz1SY+k/LCwra0tACArKwu5ubkIDAyUYkxNTeHn54fDhw8DAI4dOwa1Wq0R4+TkBC8vLynmQTt27EBeXh7CwsIeOqYDBw6gefPmeOKJJzB27Fhcvnz5UdPT8ij5VoVKpYKNjQ26desmtXXv3h02NjYV9lNT636Y2sq5onWVr6cyDfEzLrdw4UI0a9YMnTp1wrx58yo9TVQXn3Fdfb5y2YeBmss5Pz8f1tbWMDY2BiDf/bi28q0oRl/24Yryra99uOKtTlQBIQSioqLw/PPPw8vLCwCQm5sLAGjRooVGbIsWLXD+/HkpxsTEBE2bNtWKKV/+QXFxcejTpw+cnZ0rHVO/fv0wePBguLi4ICsrCzNmzIC/vz+OHTv22K8AedR8qyI3NxfNmzfXam/evHmF26Sm1l2Z2sz5QefOncOnn36Kjz/+uNK4hvoZA8CECRPwzDPPoGnTpvj5558RHR2NrKwsfPnllzrja/szrsvPVw77MFBzOV+9ehVz587FW2+9JbXJcT+uzXwfpE/7cEX51uc+zEKNqm38+PH45ZdfcOjQIa15CoVCY1oIodX2oIpi/v77b+zduxebNm166JiGDh0q/e7l5QVvb2+4uLhg9+7dePXVVx+6fGVqOt+H9VHVfmpi3RWp7ZzLXbx4EX379sXgwYMxZsyYSmMb8mccGRkp/d6xY0c0bdoUISEh0v+hV6S2PuO6+nzlsg8DNZNzQUEB+vfvD09PT8yaNavSPirr51HWXV21nW85fdqHK8u3PvdhnvqkavnPf/6DHTt2IC0tDa1atZLaHRwcAEDr/x4vX74s/R+Fg4MDiouLcf369Qpj7rdmzRo0a9YMr7zySrXH6ejoCBcXF/zxxx/VXvZ+j5NvVTg4OODff//Var9y5UqF/dTUuitS2zmXu3jxInr37g0fHx+sXr262ss3lM9Yl/I73f7880+d82tz3XWZrxz2YaBmcr558yb69u0LS0tLbN26FUqlUqMfOe3HtZ1vOX3ah6uS7/3qdB+u1hVtZLDKysrEO++8I5ycnMTvv/+uc76Dg4NYuHCh1FZUVKTzZoLExEQp5uLFizpvJigrKxNubm4PvYuoInl5ecLU1FSsXbv2kZaviXzv97CbCY4cOSK1/fTTT1W6CLmq666quspZCCH+/vtv0a5dOzFs2DDpjt/qaiifsS47d+4UAMT58+crHFtNf8Z1nW9978PlY6iJnPPz80X37t2Fn5+fuH37tlY/ctmP6ypfIfRrH65Kvg+qy32YhRpVydtvvy1sbGzEgQMHNG5PLiwslGIWLFggbGxsxJYtW8Svv/4qhg8frvPxHK1atRL79u0Tx48fF/7+/hqP5yi3b98+AUCcOXNG53jat28vtmzZIoQQ4ubNm2LSpEni8OHDIisrS6SlpQkfHx/RsmXLR77NvabyvXTpkjhx4oT44osvBADx/fffixMnTmjckt63b1/RsWNHoVKphEqlEk899ZTWbf3351vVdcs153/++Ue0bdtW+Pv7i7///ltjXRXl3JA/48OHD4slS5aIEydOiL/++kskJiYKJycn8corr1SYb1XXLcd8y9X3PlxTORcUFIhu3bqJp556Svz5558a/dz/75Yc9uO6ylef9uGq5Fvf+zALNaoSADp/1qxZI8WUlZWJWbNmCQcHB2Fqaip69uwpfv31V41+7ty5I8aPHy9sbW2Fubm5eOmll0ROTo7W+oYPHy58fX0rHU/5ugsLC0VgYKCwt7cXSqVStG7dWowcOVJnv3Wd76xZsx7az9WrV8Xrr78urKyshJWVlXj99de1jlI8yrrlmvOaNWsqXFdFOTfkz/jYsWOiW7duwsbGRpiZmYn27duLWbNmaf2fe21/xnX5nRai/vfhmsq5/Mihrp+srCwpTg77cV3lq0/7cFXyre99WPG/zomIiIhIZngzAREREZFMsVAjIiIikikWakREREQyxUKNiIiISKZYqBERERHJFAs1IiIiIplioUZEREQkUyzUiIiIiGSKhRoRERGRTLFQIyIiIpIpFmpEREREMvX/AMILHgV9mLc8AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAGxCAYAAABGJTP8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACm90lEQVR4nOzddVxV9x/H8delpUVFDBSwuwM7sWPqnIWizpxzdkydqJuz5pz6c252zy5UxG4UA2N2oE7FFlQazu+PCxeuXBCQEPk8Hw8ecr+nvt8Lwodz3ud7VIqiKAghhBBCiBTRy+gOCCGEEEJkZlJMCSGEEEJ8AimmhBBCCCE+gRRTQgghhBCfQIopIYQQQohPIMWUEEIIIcQnkGJKCCGEEOITSDElhBBCCPEJpJgSQgghhPgEUkwJkYjly5ejUqk0HwYGBuTJk4dOnTpx69atDOuXu7s7KpUqw46flg4fPoxKpeLw4cNpsv/Hjx/j7u6Or69vvGUZ+b6+evWKTp06YWtri0qlom3bthnSDwcHB9zc3JK9XVBQEO7u7mn2dUstur7G9erVo169eprXmWUs4vNhkNEdECIzWLZsGcWLFyckJIQTJ07wyy+/cOjQIa5fv0727NkzunsiGR4/fsykSZNwcHCgfPnyWsu+/fZbmjZtmiH9mjJlClu3bmXp0qUUKlQIGxubDOlHSgUFBTFp0iQArcIkM1iwYIHW68w8FpExpJgSIglKly5N5cqVAfUP18jISCZOnMi2bdvo2bNnBvdOpJb8+fOTP3/+DDn2lStXKFSoEF27dk2V/SmKQkhICNmyZUuV/X3JSpYsmdFdEJmcXOYTIgViCqunT59q2kJCQhg+fDjly5fHysoKGxsbnJ2d2b59e7ztVSoVgwYNYtWqVZQoUQJTU1PKlSuHh4dHvHV37dpF+fLlMTY2xtHRkVmzZunsU0hICGPHjsXR0REjIyPy5cvHd999x5s3b7TWc3BwoGXLlnh4eFChQgWyZctGiRIlNMdevnw5JUqUwMzMjKpVq3L27NmPvh9BQUGMGDECR0dHTExMsLGxoXLlyqxbt05rvbNnz9K6dWtsbGwwMTGhQoUKbNiw4aP7T862jx49om/fvtjb22NkZETevHnp0KEDT58+5fDhw1SpUgWAnj17ai7furu7A7ovAUVFRTFjxgyKFy+OsbExtra2dO/enf/++09rvXr16lG6dGl8fHyoXbs2pqamODk5MW3aNKKiohIcl5+fHyqViv3793Pt2jVNn2IuMb169YqBAweSL18+jIyMcHJyYty4cYSGhmrtJ+Z7auHChZQoUQJjY2NWrFiR4HHDw8MZNWoUdnZ2mJqaUqtWLc6cORNvvefPnzNw4EBKliyJubk5tra2NGjQgGPHjmmNIVeuXABMmjRJM4aYy4W3b9+mZ8+eFClSBFNTU/Lly0erVq24fPlygv2La+PGjVSrVg0rKyvN+9qrVy/N8phLw6tXr2bYsGHY2dmRLVs26taty4ULFz66/7iX+T42FiF0UoQQCVq2bJkCKD4+Plrt8+fPVwBl8+bNmrY3b94obm5uyqpVq5SDBw8qnp6eyogRIxQ9PT1lxYoVWtsDioODg1K1alVlw4YNyu7du5V69eopBgYGyp07dzTr7d+/X9HX11dq1aqlbNmyRdm4caNSpUoVpUCBAkrc/75RUVFKkyZNFAMDA2XChAmKl5eXMmvWLMXMzEypUKGCEhISolm3YMGCSv78+ZXSpUsr69atU3bv3q1Uq1ZNMTQ0VH766SelZs2aypYtW5StW7cqRYsWVXLnzq0EBQUl+j7169dPMTU1VWbPnq0cOnRI8fDwUKZNm6bMmzdPs87BgwcVIyMjpXbt2sr69esVT09Pxc3NTQGUZcuWadY7dOiQAiiHDh1K9rb//fefkidPHiVnzpzK7Nmzlf379yvr169XevXqpVy7dk0JCAjQfE3Hjx+vnDp1Sjl16pTy8OFDRVEUZeLEicqHPxb79u2rAMqgQYMUT09PZeHChUquXLkUe3t75fnz55r16tatq+TIkUMpUqSIsnDhQmXfvn3KwIEDFSDe1z+ukJAQ5dSpU0qFChUUJycnTZ8CAgKU4OBgpWzZsoqZmZkya9YsxcvLS5kwYYJiYGCgNG/eXGs/gJIvXz6lbNmyytq1a5WDBw8qV65cSfC4PXr0UFQqlTJy5EjFy8tLmT17tpIvXz7F0tJS6dGjh2a969evKwMGDFD++ecf5fDhw4qHh4fSu3dvRU9PT/M1CgkJUTw9PRVA6d27t2YMt2/fVhRFUY4cOaIMHz5c2bRpk3LkyBFl69atStu2bZVs2bIp169fT7CPiqIoJ0+eVFQqldKpUydl9+7dysGDB5Vly5Yprq6umnVivmfs7e2VNm3aKDt37lRWr16tFC5cWLG0tNT6P6Xra1y3bl2lbt26SRqLELpIMSVEImJ+8Xp7eyvh4eHK27dvFU9PT8XOzk6pU6eOEh4enuC2ERERSnh4uNK7d2+lQoUKWssAJXfu3EpgYKCmzd/fX9HT01N+/fVXTVu1atWUvHnzKsHBwZq2wMBAxcbGRusXQswP/xkzZmgdZ/369Qqg/P3335q2ggULKtmyZVP+++8/TZuvr68CKHny5FHev3+vad+2bZsCKDt27Ej0fSpdurTStm3bRNcpXry4UqFChXjvWcuWLZU8efIokZGRiqLoLqaSum2vXr0UQ0ND5erVqwn2w8fHJ14RFuPDX7TXrl1TAGXgwIFa650+fVoBlB9//FHTVrduXQVQTp8+rbVuyZIllSZNmiTYn7jblypVSqtt4cKFCqBs2LBBq3369OkKoHh5eWnaAMXKykp59erVR48VM66hQ4dqta9Zs0YBtIqpD8V8Xzds2FD56quvNO3Pnz9XAGXixIkfPX5ERIQSFhamFClSJF4fPjRr1iwFUN68eZPgOjHfMxUrVlSioqI07X5+foqhoaHy7bffato+VkwldyxCKIqiyGU+IZKgevXqGBoaYmFhQdOmTcmePTvbt2/HwEA7drhx40Zq1qyJubk5BgYGGBoasmTJEq5duxZvn/Xr18fCwkLzOnfu3Nja2nL//n0A3r9/j4+PD+3atcPExESznoWFBa1atdLa18GDBwHiXYr4+uuvMTMz48CBA1rt5cuXJ1++fJrXJUqUANSXO0xNTeO1x/QpIVWrVmXPnj2MGTOGw4cPExwcrLX89u3bXL9+XZMHioiI0Hw0b96cJ0+ecOPGDZ37Ts62e/bsoX79+pp+f6pDhw4B8d/XqlWrUqJEiXjvq52dHVWrVtVqK1u27Effv4QcPHgQMzMzOnTooNUe058Pj9+gQYMk3RARM64P81kdO3aM9z0NsHDhQipWrIiJiYnm+/rAgQM6v691iYiIYOrUqZQsWRIjIyMMDAwwMjLi1q1bH91HzGXZjh07smHDBh49epTgul26dNG6TFuwYEFq1KihGa8QaUWKKSGSYOXKlfj4+HDw4EH69evHtWvX6Ny5s9Y6W7ZsoWPHjuTLl4/Vq1dz6tQpfHx86NWrFyEhIfH2mSNHjnhtxsbGmkLk9evXREVFYWdnF2+9D9tevnyJgYGBJusRQ6VSYWdnx8uXL7XaP7xTzMjIKNF2Xf2Pa+7cuYwePZpt27ZRv359bGxsaNu2rWb6iJhs2YgRIzA0NNT6GDhwIAAvXrzQue/kbPv8+fNUDZDHvG958uSJtyxv3rzx3tePfU1Tcnw7O7t4OS5bW1sMDAziHV9XPxPaL8T/PjIwMIg3htmzZzNgwACqVavG5s2b8fb2xsfHh6ZNmyZ5XMOGDWPChAm0bduWnTt3cvr0aXx8fChXrtxH91GnTh22bdtGREQE3bt3J3/+/JQuXTpeHk/XeGLaPnyfhEhtcjefEElQokQJTei8fv36REZGsnjxYjZt2qQ5a7B69WocHR1Zv3691i+/D4PCSZU9e3ZUKhX+/v7xln3YliNHDiIiInj+/LlWQaUoCv7+/pq/7tOKmZkZkyZNYtKkSTx9+lRzlqpVq1Zcv36dnDlzAjB27FjatWuncx/FihXT2Z6cbXPlyhUvGP4pYgqLJ0+exCvSHj9+rOlbWsmRIwenT59GURSt76lnz54RERER7/hJnSMrZlz+/v5aZygjIiLiFR6rV6+mXr16/Pnnn1rtb9++TfI4Vq9eTffu3Zk6dapW+4sXL7C2tv7o9m3atKFNmzaEhobi7e3Nr7/+SpcuXXBwcMDZ2VmzXkL/V3QVuUKkJjkzJUQKzJgxg+zZs/PTTz9p7tRSqVQYGRlp/ULz9/fXeTdfUsTcTbdlyxatM0Nv375l586dWus2bNgQUP/Simvz5s28f/9eszw95M6dGzc3Nzp37syNGzcICgqiWLFiFClShIsXL1K5cmWdH3EvecaVnG2bNWvGoUOHErxkCOozRUCSzqo0aNAAiP+++vj4cO3atTR/Xxs2bMi7d+/Ytm2bVvvKlSs1y1Mi5s61NWvWaLVv2LCBiIgIrTaVSqV5z2JcunSJU6dOabUl9r7q2seuXbsSvWSni7GxMXXr1mX69OkA8e7UW7duHYqiaF7fv3+fkydPJnuuqOR8jwgBcmZKiBTJnj07Y8eOZdSoUaxdu5Zu3brRsmVLtmzZwsCBA+nQoQMPHz5kypQp5MmTJ8WzpU+ZMoWmTZvSuHFjhg8fTmRkJNOnT8fMzIxXr15p1mvcuDFNmjRh9OjRBAYGUrNmTS5dusTEiROpUKECrq6uqTV0napVq0bLli0pW7Ys2bNn59q1a6xatQpnZ2dNBuuvv/6iWbNmNGnSBDc3N/Lly8erV6+4du0a58+fZ+PGjQnuP6nbTp48mT179lCnTh1+/PFHypQpw5s3b/D09GTYsGEUL16cQoUKkS1bNtasWUOJEiUwNzcnb9685M2bN95xixUrRt++fZk3bx56eno0a9YMPz8/JkyYgL29PUOHDk2bNzRa9+7d+d///kePHj3w8/OjTJkyHD9+nKlTp9K8eXMaNWqUov2WKFGCbt26MWfOHAwNDWnUqBFXrlxh1qxZWFpaaq3bsmVLpkyZwsSJE6lbty43btxg8uTJODo6ahVeFhYWFCxYkO3bt9OwYUNsbGzImTOnZiqO5cuXU7x4ccqWLcu5c+eYOXNmki7J/vTTT/z33380bNiQ/Pnz8+bNG/744w8MDQ2pW7eu1rrPnj3jq6++ok+fPgQEBDBx4kRMTEwYO3Zsst6fxMYihE4ZHIAX4rOW0NQIiqIowcHBSoECBZQiRYooERERiqIoyrRp0xQHBwfF2NhYKVGihLJo0SKddw8BynfffRdvnwULFox3J9WOHTuUsmXLKkZGRkqBAgWUadOm6dxncHCwMnr0aKVgwYKKoaGhkidPHmXAgAHK69ev4x2jRYsW8Y6tq0/37t1TAGXmzJkJvkeKoihjxoxRKleurGTPnl0xNjZWnJyclKFDhyovXrzQWu/ixYtKx44dFVtbW8XQ0FCxs7NTGjRooCxcuFCzjq67+ZK6raIoysOHD5VevXopdnZ2iqGhoZI3b16lY8eOytOnTzXrrFu3TilevLhiaGioddeWrvc1MjJSmT59ulK0aFHF0NBQyZkzp9KtWzfNdAoxdN2NpyjqKQgKFiyY6PuX2PYvX75U+vfvr+TJk0cxMDBQChYsqIwdO1ZrugtFSfh7KiGhoaHK8OHDFVtbW8XExESpXr26curUqXjfg6GhocqIESOUfPnyKSYmJkrFihWVbdu26RzX/v37lQoVKijGxsZadwW+fv1a6d27t2Jra6uYmpoqtWrVUo4dOxbvLjpdPDw8lGbNmin58uVTjIyMFFtbW6V58+bKsWPHNOvEfM+sWrVKGTx4sJIrVy7F2NhYqV27tnL27Fmt/SXlbr7ExiKELipFiXNOVAghhMhkDh8+TP369dm4cWO8Ox+FSA+SmRJCCCGE+ARSTAkhhBBCfAK5zCeEEEII8QnkzJQQQgghxCeQYkoIIYQQ4hNIMSWEEEII8Qlk0s5UEBUVxePHj7GwsEjy4xyEEEIIkbEUReHt27fkzZsXPb2Un1+SYioVPH78GHt7+4zuhhBCCCFS4OHDh5/0kHQpplJBzHPBHj58GO9RDF+K8PBwvLy8cHFxwdDQMKO7k+ay2ngh641Zxvvly2pjzmrjhU8fc2BgIPb29gk+GzSppJhKBTGX9iwtLb/oYsrU1BRLS8ss8Z80q40Xst6YZbxfvqw25qw2Xki9MX9qREcC6EIIIYQQn0CKKSGEEEKITyDFlBBCCCHEJ5DMlBBCiHSjKAoRERFERkam+bHCw8MxMDAgJCQkXY6X0bLaeOHjY9bX18fAwCDNpy2SYkoIIUS6CAsL48mTJwQFBaXL8RRFwc7OjocPH2aJOQCz2nghaWM2NTUlT548GBkZpVk/pJgSQgiR5qKiorh37x76+vrkzZsXIyOjNP+FHxUVxbt37zA3N/+kCRkzi6w2Xkh8zIqiEBYWxvPnz7l37x5FihRJs/dFiikhhBBpLiwsjKioKOzt7TE1NU2XY0ZFRREWFoaJiUmWKC6y2njh42POli0bhoaG3L9/X7NeWsga77YQQojPQlb5JS8+H+nxPSff1UIIIYQQn0CKKSGEEEKITyDFlBBCCJFM9erVY8iQIRndDfGZkGLqcxYZCQ8eQFRURvdECCFECh0+fBiVSsWbN28yuisijUgx9bnavRty5oSCBUFfn/vV6/P8bWhG90oIIYQQH5Bi6nMUGAgdOhD69g07isFjCyh4+jC5LE0Y8dtOgsOyxsy2Qogvl6IoBIVFpPlHcFhkvDZFUZLV1/fv39O9e3fMzc3JkycPv/32m9by1atXU7lyZSwsLLCzs6NLly48e/YMAD8/P+rXrw9A9uzZUalUuLm5AeDp6UmtWrWwtrYmR44ctGzZkjt37nz6myvSncwz9Tny8YHgYP6qBj80Uzf9uh/GHIdZI1pz+vZoqv05LWP7KIQQnyA4PJKSP+3NkGNfndwEU6Ok//obOXIkhw4dYuvWrdjZ2fHjjz9y7tw5ypcvD6jn0JoyZQrFihXj2bNnDB06FDc3N3bv3o29vT2bN2+mffv23LhxA0tLS7Jlywaoi7Rhw4ZRpkwZ3r9/z08//cRXX32Fr6+vTCGRyUgx9TkqWhRUKlrcVDTF1NhG6o/gn6HawumwcDq7Tt9hle9T5naugK1F2kxEJoQQWdm7d+9YsmQJK1eupHHjxgCsWLGC/Pnza9bp1auX5nMnJyfmzp1L1apVNTNz29jYAGBra4u1tbVm3fbt22sda8mSJdja2nL16lVKly6dhqMSqU2Kqc+RvT1MnkyhCRP47zfIPzx2UbbxsG8lNLoLLaoVYnWnX/jVKhu/f1M+w7orhBDJlc1Qn6uTm6TpMaKiongb+BYLSwutMz3ZDPWTvI87d+4QFhaGs7Ozps3GxoZixYppXl+4cAF3d3d8fX159eoVUdE3DT148ICSJUsmuu8JEybg7e3NixcvtLaTYipzkWLqczV+PFy6RL6NG1Hcod03sLWEelHj7tD4DuxdBev+GcelKx7wzckM7a4QQiSHSqVK1qW2lIiKiiLCSB9TI4MUXzb7WL7q/fv3uLi44OLiwurVq8mVKxcPHjygSZMmhIWFJbptq1atsLe3Z9GiReTNm5eoqChKly790e3E50cuyn7GXixdRbuuMwHYsh6OLo1dtq8Q6LnDfSsoe+UUqFTqaRSEEEKkmsKFC2NoaIi3t7em7fXr19y8eROA69ev8+LFC6ZNm0bt2rUpXry4Jnwew8jICIDIyNibh16+fMm1a9cYP348DRs2pESJErx+/TodRiTSghRTn7Gftl/hfP4SFB6xjUAjU2o/gNApYBIeu47DUPi1VvSLggVhxowM6asQQnyJzM3N6d27NyNHjuTAgQNcuXIFNzc3zZmuAgUKYGRkxLx587h79y47duxgypQpWvsoWLAgKpUKDw8Pnj9/zrt378iePTs5cuTg77//5vbt2xw8eJBhw4ZlxBBFKsh0xdSCBQtwdHTExMSESpUqcezYsUTXP3LkCJUqVcLExAQnJycWLlwYb53NmzdTsmRJjI2NKVmyJFu3bk2r7ifL7sv+AEToG1B26AbGNx6AUSQE/wJ/7Ild78dGoHKHYANg9Gj1WaqQkAzpsxBCfGlmzpxJnTp1aN26NY0aNaJWrVpUqlQJgFy5crF8+XI2btxIyZIlmTZtGrNmzdLaPl++fEyaNIkxY8aQO3duBg0ahJ6eHv/88w/nzp2jdOnSDB06lJkzZ2bE8EQqyFSZqfXr1zNkyBAWLFhAzZo1+euvv2jWrBlXr16lQIEC8da/d+8ezZs3p0+fPqxevZoTJ04wcOBAcuXKpbmL4tSpU3zzzTdMmTKFr776iq1bt9KxY0eOHz9OtWrV0nuIiVpdsQV7i9bA53+uDD4NHa5CvjjhdNPx4LUSGt8FsmWD/fuhYcMM668QQnwJzM3NWbVqFatWrdK0jRw5UvN5586d6dy5s9Y2H2atJkyYwIQJE7TaGjVqxNWrVxPdTmQOmerM1OzZs+nduzfffvstJUqUYM6cOdjb2/Pnn3/qXH/hwoUUKFCAOXPmUKJECb799lt69eql9VfDnDlzaNy4MWPHjqV48eKMHTuWhg0bMmfOnHQaVfI8N8+Ow2gPPIrXJu9bUNzhq2uxy126Q6PuoAA0agRNmoD85xRCCCHSTKY5MxUWFsa5c+cYM2aMVruLiwsnT+q+k+3UqVO4uLhotTVp0oQlS5YQHh6OoaEhp06dYujQofHWSayYCg0NJTQ09tEugYGBAISHhxMeHp7QZqlqUJvRLK3cmi2rR7JlPRwvALWjpzo54KQOp9+bAw5eXqCnR/itW+pMVQrFjCu9xpfRstp4IeuNWcab/sdXFIWoqCjNFABpLeYsT8xxv3RZbbyQtDFHRUWhKArh4eHo62tPi5Fa/x8yTTH14sULIiMjyZ07t1Z77ty58ff317mNv7+/zvUjIiJ48eIFefLkSXCdhPYJ8OuvvzJp0qR47V5eXpiamiZ1SB9V2FKP24EJnzw8n08dTj8/ryu1HrwndApkHw1B6htHcBwCvxyAH4+BYZEi/Nu9Oze/akd4FBjrmGYlNBICwyBXtoT7tG/fvk8bVCaT1cYLWW/MMt70YWBggJ2dHe/evUv3W//fvn2brsfLaFltvJD4mMPCwggODubo0aNERERoLQsKCkqV42eaYiqGSqXSeq0oSry2j63/YXty9zl27Fituy4CAwOxt7fHxcUFS0vLjw8iico6B1N/duIB+wh9A8oOWU+3C7v52WsB76fC3DiPoRnXUP0R9DOUWrmSUitXUmz4FuZ0r4qBvop6RXPx7G0oNWcc0exz24DqlMqrPY7w8HD27dtH48aNMTQ0TLUxfq6y2ngh641Zxpu+QkJCePjwIebm5piYpM8TGxRF4e3bt1hYWCT6M/1LkdXGC0kbc0hICNmyZaNOnTrxvvdirix9qkxTTOXMmRN9ff14Z4yePXsW78xSDDs7O53rGxgYkCNHjkTXSWifAMbGxhgbG8drNzQ0TNUfUmbZkv5A49UVmrO3iLMmnP71v5B3ROxy0/HqST5d7sCN39rR9b+fOeFQnm7VC7DaW3t+qkM3X1K+YA6dx0ntMX7ustp4IeuNWcabPiIjI1GpVOjp6aXbc+diLvvEHPdLl9XGC0kbs56eHiqVSuf3fmr9X8g077aRkRGVKlWKd4p637591KhRQ+c2zs7O8db38vKicuXKmjcwoXUS2md60k/mXxYx4fQdJeqQ5506nN4uzo0iTVyhYXQ4fc368axcP4HVp+7H249eFvmLRgghhEgNmaaYAhg2bBiLFy9m6dKlXLt2jaFDh/LgwQP69+8PqC+/de/eXbN+//79uX//PsOGDePatWssXbqUJUuWMGJE7CmbH374AS8vL6ZPn87169eZPn06+/fvZ8iQIek9vHj09VJW1AxuPYp23dTzlWzeAMfizJx+MCacbg11/C7gN6MV+QK0Z+v9ff/NFB1XCCGEyIoyVTH1zTffMGfOHCZPnkz58uU5evQou3fvpmD0XWpPnjzhQZxHqjg6OrJ7924OHz5M+fLlmTJlCnPnztV6UneNGjX4559/WLZsGWXLlmX58uWsX7/+s5hjSi+FxRTEhtMDjM2oFT1zunnsDYg4DYFfaqs/P7GwFwO8N35aZ4UQQogsKtNkpmIMHDiQgQMH6ly2fPnyeG1169bl/Pnzie6zQ4cOdOjQITW6l6qSe5nvQxH6BpQbsp6uF3bzi9cC3v4K86vC983Vy8c3VH8E/Qyjj6xg9JEVFBu2mVDD+HkwIYQQQuiWqc5MZTVxL/OZGumYyyCJ1lRoTuVB6pl7B52Bx9pPOlDPnF5I/fmN2e2pde9Cio8lhBBfEkVR6Nu3LzY2NqhUKnx9falXr95nEQVJC+7u7pQvXz5Z2zg4OHy2E12nFymmPmNxi6l1faqzvm91nJ1032X3MS/M1OH0bSXrasLpHf6NXd7EFer3UIfTV2+YQFTDRjJzuhAiy/P09GT58uV4eHjw5MkTSpcuzZYtW7QeZpyRxcTy5cuxtrZOtf2NGDGCAwcOJGsbHx8f+vbtm2p9yIwy3WW+rCTuZT5zEwPK2VtTxfElp+6+TPE+h7QayYqKrdi6egQbN8IJb6jVW73ssKM6nH53DjgePAB6enDvHjg4fMIohBDiA336wJUraX4YFWAeGYlKX8eZ/dKlYdGij+7jzp075MmTR+sObxsbm1TsZfoICwvDyMjoo+uZm5tjbm6erH3nypUrpd36YsiZqc+Ynp6Kryrko16xXDjlNANgYL1C/NSyJAeH103xfi/kK07hEdt4bWJBzYcQNjl+OP3nOtEvHB1h6tSUD0IIIT505Qp4e6f5h8rbGwMfH1S6liehmHNzc+P777/nwYMHqFQqHKL/sIx7ma9evXrcv3+foUOHolKpEp0s88GDB7Rp0wZzc3MsLS3p2LEjT58+1SyPucS2atUqHBwcsLKyolOnTgnO7n348GF69uxJQEAAKpUKfX19pk2bBqjPlv3888+4ublhZWVFnz59ABg9ejRFixbF1NQUJycnJkyYoPVIlQ8v87m5udG2bVtmzZpFnjx5yJEjB999953WNh+emVOpVCxevJivvvoKU1NTihQpwo4dO7T6vmPHDooUKUK2bNmoX78+K1asQKVS8ebNmwTfv8+ZFFOfud+/Kc/ynlU1/0FNDPXpVcsRp1zm7B9W5yNbJyxC34AKP6zjxybfYRiFOpy+K3b5hAagcocgQ2DcOAyNjNCL8zxCIYT40v3xxx9MnjyZ/Pnz8+TJE3x8fOKts2XLFvLnz8/kyZN58uQJT5480bkvRVFo27Ytr1694siRI+zbt487d+7wzTffaK13584dtm3bhoeHBx4eHhw5ckRTIH2oRo0azJkzB0tLS548ecKjR48YNGiQZvnMmTMpXbo0586dY8KECQBYWFiwfPlyrl69yh9//MGiRYv4/fffE30fDh06xJ07dzh06BArVqxg+fLlOm/4imvSpEl07NiRS5cu0bx5c7p27cqrV68A8PPzo0OHDrRt2xZfX1/69evHuHHjEt3f506KqUyssK3FJ+9jbflmmnD6dz7w5INwutk42BsdTm/1zTeosthzzIQQWZeVlRUWFhbo6+tjZ2en83KWjY0N+vr6WFhYYGdnh52dnc597d+/n0uXLrF27VoqVapEtWrVWLVqFUeOHNEq0qKioli+fDmlS5emdu3auLq6JphhMjIywsrKCpVKpTl23Et0DRo0YMSIERQuXJjChQsDMH78eGrUqIGDgwOtWrVi+PDhbNiwIdH3IXv27MyfP5/ixYvTsmVLWrRo8dFclZubG507d6Zw4cJMnTqV9+/fc+bMGQAWLlxIsWLFmDlzJsWKFaNTp064ubklur/PnRRTmVyb8nk/eR9xw+l20eH0r+OE05u6Qj03dTjdoEULaNhQwulCCJEM165dw97eHnt7e01byZIlsba25tq1a5o2BwcHLCxi/1DOkycPz55pT6ycVJUrV47XtmnTJmrVqqUpvCZMmKA1P6MupUqVQj9O7iwpfSpbtqzmczMzMywsLDTb3LhxgypVqmitX7Vq1Y+O53MmAfRMbmaHcmz3fax5fXhEPerNOpzg+p2r2rPuzMN47V2rFcB+wFbaTljGtlXD2bARTnpDzehw+hGHuOH0g0kOp794F8pXC07QrkJ+hjYumszRCSG+SKVLp8thFNTPBNTX1ydekimd+qDpi6LozFN92P7hs+JUKpXm+XPJZWZmpvXa29ubTp06MWnSJJo0aYKVlRX//PMPv/32W6L7SUmfEttG13uhZPI/0KWYyuSMDLRPLjrkNOP2L8148S6M6r/GPw3brmJ+rWJqaKOiDG5YGJVKxav3YfjmLUbhEds487/u1HgYSNhkyDkKAqMftO00BCYfhAlHUYfTf/4ZErnW/eOWyzx8FcwfB25JMSWEUEvCXXSpQYmK4l1gIJaWlqjS8MG/RkZGREYm/mD6kiVL8uDBAx4+fKg5O3X16lUCAgIoUaJEmh47xokTJyhYsKBWPun+/fjPZ01rxYsXZ/fu3VptZ8+eTfd+pCa5zPcFMtDXw87KRPO6UxV7Ole1Z3H3yhS3085ZGRnoaf5CiJnWKkLfgIqD1zK2ySAMoyBgGvwvTjj9p7jh9PHjQaWC4OB4/Th55wVeV5/GaxdCiC+Jg4MDR48e5dGjR7x48ULnOo0aNaJs2bJ07dqV8+fPc+bMGbp3707dunV1Xo5LzrHfvXvHgQMHePHiBUFBQQmuW7hwYR48eMA///zDnTt3mDt3Llu3bk3xsVOqX79+XL9+ndGjR3Pz5k02bNigCbQndjfk50yKqS/A15XyJ7rc2ECPX9uVpVHJ3FiYGOL7U2Od61ll0z4tu658UyoNWg3AwATC6Z6Fo1+YmoKXl9by/qvOab0OCA5HCCG+NJMnT8bPz49ChQolOOeSSqVi27ZtZM+enTp16tCoUSOcnJxYv379Jx27Ro0a9O/fn2+++YbcuXMzd+7cBNdt06YNQ4cOZdCgQZQvX56TJ09q7vJLT46OjmzatIktW7ZQtmxZ/vzzT83ZMmPjzPk4M5WS2S9UfgYCAwOxsrIiICAAS0vLdD/+y3ehjNx0iY6V7WlaOvZOknozD+H3MoiN/Z2p4qA9yZzDGPWppjHNitO/bqF47R+a7fEb7f49BMA3HWBDnLhBHT84vFw9QR716sHBg6BSUXriXt6FRmjWc8pphq2lMat6V8NQ//Ou48PDw9m9ezfNmzePd+3/S5XVxizjTV8hISHcu3cPR0dHTExMPr5BKoiKiiIw+jKfXhpe5vtcZObx/vLLLyxcuJCHD+NnehOTlDEn9r2XWr+/M9e7LXTKYW7MUrcqWoUUwJ4f6nBgeN14hVRcH56NSsiwlsNp46oOKa7fBCcXxy476hAdTs8OHD4MenpE3bmrVUgB3H3xHu+7r+i66HSSjimEEOLLtGDBAnx8fLh79y6rVq1i5syZ9OjRI6O7lWJSTH3BshnpUyiX7scCTGtXhlbl8tK+ovYlQq+hCU8EejFvMQqN3E6gRXac/1PPnG4VEru80A8wOXpidr3ChRh08h+d+znj9yp5AxFCCPFFuXXrFm3atKFkyZJMmTKF4cOH4+7untHdSjEpprKoTlULMK9zhXh3AxaxNcelZO4Et4vU0+fbGbvg778xjII302CBR+zyifVjw+kjjq3Gb3pLjMMTnzn98Ztg1vs8IDQiaXekCCGEyNx+//13Hj9+TEhICDdv3mTChAkYGGTeCQakmBJaVCoVf3evzD99qye4zhm/VwS6uvHbqqMADDirO5y+JzqcfmN2e+rc1Q6jR0TGzlHSdM5RRm++zLwDt1NnEEIIIUQ6kmJK6FTdKUeiy8u6ezHvSiAOoz3YXLqBZub0Tpdj12neDWr3VE+ct3LjRP5ZO0Yzc3qxCZ6sOuUHQGCIOlt19NbzNBiJEEIIkbakmBKfbHiLYbTuPhuAdZu1w+nHC8aG06s/vILfjFbkf+NPZJTChO3/6tqdEEIIkalIMSUSlNilvg9dylOUQiO389zUWhNOt44zj2ehH2BSdDj9+F/f8v2JdQD4PnyjWefhq4QnmxNCCCE+V1JMiQR97FLfhyL19Kny/WpGN/0ewyh4PR3+jBNOd48TTh9+fA1+01vSaU7sI29eByU+qaeP3ys6/HmSK48CktUvIYQQIi1JMSVS3fpyTTQzp/c/C/4ztZebjYPdRdSfX5/dgbofhNMT8vXCU5y9/5ruS88AMN3zOp3/9ibgI0WYEEIIkZakmBJp4qWZtSacnvu9Opze5VLs8hZdoVYvdTh9xcaJrI8TTo/xJCCYnRcfExml3f7qfRhXHwfy5+E7nLr7knKTvdhz+Yk8rkYIkeoURaFv377Y2NigUqnw9fWlXr16DBkyJKO7lmrc3d0pX7685rWbmxtt27ZNdJvUeg++lPdSiimRpoa3GAZn1GeS1myBU3HC6ScKqMPpr7JBtehwOnfvapbXnXmY79ddYLV3/KeavwkO03o9YM15yk3y4vJ/cglQCJF6PD09Wb58OR4eHjx58oTSpUuzZcsWpkyZolnHwcGBOXPmZFwnU9kff/yhefBwajl8+DAqlYo3b95otX/4XmZWUkyJtFelCieuPeGZWXaqR4fTbeJkzcv1h8MO0S8KFYLJkwEIi1DPRXXs1vN44XS9BJ4s3mr+8dTuvRAiC7tz5w558uShRo0a2NnZYWBggI2NDRYWFhndtTRjZWWFtbV1uhzrS3kvpZgSifqnb3VcqxfEKtunzUyr6BtQddAqRjUdjGEUvJwBK7ZC4ZfwnxU06AFjG0KYPjBxIqhUmISrn1Xz6E0Ik3ZqT6NgafLlP5hWiC+Zoii8D3uf9h/h8duUDyIFCXFzc+P777/nwYMHqFQqHBwcAO1LU/Xq1eP+/fsMHToUlUqFKoE/9AAePHhAmzZtMDc3x9LSko4dO/L06VPN8pjLbatWrcLBwQErKys6derE27dvde4vICCAbNmy4enpqdW+ZcsWzMzMePfuHQCjR4+maNGimJqa4uTkxIQJEwgPTzgW8eFlvvfv39O9e3fMzc3JkycPv/32W7xtVq9eTeXKlbGwsMDOzo4uXbrw7NkzAPz8/Khfvz4A2bNnR6VS4ebmFu+9BHj9+jXdu3cne/bsmJqa0qxZM27duqVZvnz5cqytrdm7dy8lSpTA0tKSDh068OTJkwTHkx4y79ztIl1Ud8pBdaccDKjjwOyNB9l0Tz9F+7E2VRc/G8q5sL9INc7P60r3i9D+KgxpCosrwbTasN9JfTmw6Et1ON2tgzuHqYyNmXbxdP7B608emxAi4wSFB2H+q+5nh6a1d2PfYWZk9tH1/vjjDwoVKsTff/+Nj48P+vrxf/5t2bKFcuXK0bdvX/r06ZPgvhRFoW3btpiZmXHkyBEiIiIYOHAg33zzDYcPH9asd+fOHbZt24aHhwevX7+mY8eOTJs2jV9++SXePq2srGjRogVr1qyhadOmmvZ169ZpijYACwsLli9fTt68ebl8+TJ9+vTBwsKCUaNGffQ9ABg5ciSHDh1i69at2NnZ8eOPP3Lu3DmtnFVYWBhTpkyhWLFiPHv2jKFDh+Lm5sbu3buxt7dn8+bNtG/fnhs3bmBpaUm2bNl0HsvNzY1bt26xY8cOLC0tGT16NM2bN+fq1asYGqp/DwQFBTFr1ixWrVoFQLdu3Rg5ciRr165N0njSghRTIklyWRhT205h072UbV8qryU/Ni/O1N3XeWVqhcNoD2bumsPXV/azaCc0vQ19WsPZfFChH8zdA70uwPJN7pzJX5KOXaZDnL/4xm+7kkojE0II3aysrLCwsEBfXx87Ozud69jY2KCvr685I5OQ/fv3c+nSJe7du4e9vT0Aq1atolSpUvj4+FClShUAoqKiWL58uebSl6urKwcOHNBZTAF07dqV7t27ExQUhImJCYGBgezevZvNmzdr1hk/frzmcwcHB4YPH8769euTVEy9e/eOJUuWsHLlSho3bgzAihUryJ8/v9Z6vXr10nzu5OTE3LlzqVq1Ku/evcPc3BwbGxsAbG1tE7yEGFNEnThxgho1agCwZs0a7O3t2bZtG19//TUA4eHhLFy4kEKFChEVFcW3337LrFmzdO4zvUgxJZIlt6UxTwMTf3CxLiqVir51CjF193VN28gWQ1hZsQU7Vw6l/TWo9gi6fwWHHOHbNrCnCPy9E6r+dxW/Ga2o3W8xD60T/mElhMg8TA1NeTf2XZoeIyoqisC3gVhaWKKnF5tqMTU0TdPj6nLt2jXs7e01hRRAyZIlsba25tq1a5piysHBQStDlCdPHs3lMl1atGiBgYEBO3bsoGPHjuzcuRMLCwtcXFw062zatIk5c+Zw+/Zt3r17R0REBJaWlknq9507dwgLC8PZ2VnTZmNjQ7FixbTWu3DhAu7u7vj6+vLq1SuiotSZ1wcPHlCyZMkkHevatWsYGBhQrVo1TVuOHDkoVqwY165d07SZmppSqFAhzWs7O7tE36P0IJkpkTxJixokKJuh9mnyy3mKUGjkdp6a25A/EPathOn7wCASNpeEsgPgkIN63WN/fcsPxz9+GlfmnRLi86dSqTAzMkv7D8P4bYnlmtKKoig6j/the8ylrBgqlUpTmOhiZGREhw4dNJe4Nm3aRMeOHTEwUJ8r8fb2plOnTjRr1gwPDw8uXLjAuHHjCAsLS3CfH/bvY96/f4+Liwvm5uasXr0aHx8ftm7dCpDk4yR2rKS8R0nNwaUVKaZEmvqppfZfJIdG1KNdxXxabZF6+lT7biUjmw1GX4FRJ8B7MRR9AY8soWEPGNNIHU4femItftNbasLpupSb7MXWC/+lyXiEEOJDRkZGREZGJrpOyZIlefDgAQ8fPtS0Xb16lYCAAEqUKPFJx+/atSuenp78+++/HDt2jC5dumiWnThxgoIFCzJu3DgqV65MkSJFuH8//nQzCSlcuDCGhoZ4e3tr2l6/fs3Nmzc1r69fv86LFy+YNm0atWvXpnjx4vHOFBkZGQEk+j6VLFmSiIgITp8+rWl7+fIlN2/e/OT3KK1JMSWSpWs19SnqSgWz4/tTY06NbcDmAc40LG4bb90LExrTq5ajVpudlQmzO5bXue+NZV2o8P0a9f6fwPm/oM85UFQwvRbU6A03o59wc312B+rd8Umwn0PXXyQ8MuG/5oQQIrU4ODhw9OhRHj16xIsXL3Su06hRI8qWLUvXrl05f/48Z86coXv37tStW5fKlSt/0vHr1q1L7ty5cXV1pUCBAlSvHvtc1cKFC/PgwQP++ecf7ty5w9y5czVnjZLC3Nyc3r17M3LkSA4cOMCVK1dwc3PTumxaoEABjIyMmDdvHnfv3mXHjh3x5o4qWLAgKpUKDw8Pnj9/rrnTMK4iRYrQpk0b+vTpw/Hjx7l48SLdunUjX758tGnTJgXvTPqRYkokS9/ajmzs78zq3tWwNjUij1U2KhW0wdQ4Nn53fkJj/Ka1ILuZUYL7+bpSfp3tr6PD6RtLN8IsXJ2Z2rxePS/VubzqcPriiuqrjcs3TeLrS17xZk6PUWTcHhzG7KLo+D0MWnueCCmuhBBpYPLkyfj5+VGoUCFy5cqlcx2VSsW2bdvInj07derUoVGjRjg5ObF+/fpPPr5KpaJz585cvHhRE9KO0aZNG4YOHcqgQYMoX748J0+eZMKECcna/8yZM6lTpw6tW7emUaNG1KpVi0qVKmmW58qVi+XLl7Nx40ZKlizJtGnT4gXC8+XLx6RJkxgzZgy5c+dm0KBBOo+1bNkyKlWqRMuWLXF2dkZRFHbv3h3v0t7nRqVk9IXGL0BgYCBWVlYEBAQkOdSX2YSHh7N7926aN2+u85v6SUAwXRad5uvK+RlYr/BH9xcUFsGoTZfwuJTw3CCl/W/jsWIIAI8s1OH0g07qZe2uwqKdYBMMu4rV5McmgwjIlvjEb7+2K0PnqgU+2jf4+Hi/RFltzDLe9BUSEsK9e/dwdHTExMQkXY4ZFRVFYGAglpbaAfQvVVYbLyRtzIl976XW7++s8W6LNJfHKhuHRtRLUiEFYGpkwPwuFRNd54pdYZxGbsff3IZ8b2HfKpjhBYaRsCU6nH7QEVrcOMGeZd9T/cGlRPc3dsvlJI9HCCGESCoppkSGssqW+F/IUXr6VP9uJSOb/YCeAiNPqp/vFxNOb9QdRjeCnEEvWLtuHKOOLMcwMuG7+Q5ce8pZv1epPQwhhBBZmBRTIkMt6VEZWwtjJrUuleh6G8s2psL3a3hkkSteOH1GdDj9Vg6Fgd6b2LR6FI6vHuncT+8VZ+mw8FRaDEUIIUQWJcWUyFCVHWw4M64Rrcvl/ei6r02tqDlwGX3ajSfUwJK/d8KWf2LD6RWjw+ll/W+xa/lgOl5MOJwuUUEhhBCpRYop8VnQS2ASPXPj+JP07ytSnaY953HUoQJfXYdLf0KDuxBkpH4kTYeOEGwQygzPuSzY9itWwfEfEhoZJcWUEBlB/pAR6S09vuekmBKfBctsBtQtmouahXNotZ+f0Ji/XdW34P72dTlN+zOLHPToOIkV7b8n13uDeOH0ctHh9OY3T+K5dBDO97XD6dt9H6f9oIQQGnEfUitEeor5nkvLu1jl2Xzis6BSqVjRqyoADmN2adqNDPRwKWWH37QWANiYGdFzuXqyTkWlR7cNf+C9pTVOg/sw8qQfDe9B5/ZwM6c6nD7iJPx88CVr/hnHX9XaM7t2V8L1DRm+8SLNy+Qhm1H8p8ALIVKfvr4+1tbWmpmxTU1N0/yxLlFRUYSFhRESEpIlpgrIauOFxMesKApBQUE8e/YMa2tr9PXT7ue9FFMiU6lf3Jaz4xux6NhdOlcpgL6eipodGkHzf3k5YDAVVy7h/F8wrAn8XRlm1oQDjrB2s8KA05uoed+XH1qN5J5NPvwDQ3DMaZbRQxIiy7CzUz+oPL0eSqsoCsHBwWTLli1DnseX3rLaeCFpY7a2ttZ876UVKaZEppPT3JixzT54TpOpKTlWLObbd3mZsecP/vIIpOlt+LY1nI8Op8/xhG/P32bX8sFMatiX/x3Mx6wEHm0jhEh9KpWKPHnyYGtrS3h42j+QPDw8nKNHj1KnTp0sMzFrVhovfHzMhoaGaXpGKoYUU+Kz80/f6nT625uF3Sp9fOUP7C9SjSZ55vPbrt/56voFqj1Sz5x+wAn6toY9RWDRjlCme87j3It/odFGsLFJg1EkLjJKQV8va/zlKMSH9PX10+UXnL6+PhEREZiYmGSJ4iKrjRc+nzFnmouqr1+/xtXVFSsrK6ysrHB1deXNmzeJbqMoCu7u7uTNm5ds2bJRr149/v33X83yV69e8f3331OsWDFMTU0pUKAAgwcPJiAgII1HIxJT3SkHftNa0LR08k/LVixgzXNzG3p0nMSU+r3JEWSA1yqYGR1O31pCPXP6AUeodPYglC0Lhw7F28+jN8FsvqfHw9epH5b92eMq5Sd78fhNMABRcmehEEJkapmmmOrSpQu+vr54enri6emJr68vrq6uiW4zY8YMZs+ezfz58/Hx8cHOzo7GjRvz9q36VvnHjx/z+PFjZs2axeXLl1m+fDmenp707t07PYYk0sCab9VPS1dUeiyp+hV/z1hLWOFijDgJ3ouh2At4bAmNu8OoxhDm/wgaNoQxYyAsTLMf16VnOeqvx/CNqf8ImsXH7/E2JIK/jtzh4sM3lJ/sxWrv+6l+HCGEEOkjUxRT165dw9PTk8WLF+Ps7IyzszOLFi3Cw8ODGzdu6NxGURTmzJnDuHHjaNeuHaVLl2bFihUEBQWxdu1aAEqXLs3mzZtp1aoVhQoVokGDBvzyyy/s3LmTiIiI9ByiSCXZjPQx1FdfPjv9Y0MGDe3And2HWFWhORWfwLm/oN9Z9czpM2uCc2+4nkOB6dOhRg2I/n56+Fp91ujCwwDeh6bN98KKU/cZut6XwJAIxm+7kibHEEIIkfYyRWbq1KlTWFlZUa1aNU1b9erVsbKy4uTJkxQrVizeNvfu3cPf3x8XFxdNm7GxMXXr1uXkyZP069dP57FinhxtYJDwWxMaGkpoaKjmdWBgIKAOwqVHqDIjxIwrM4zv3I8NiIiKwsJEfS3dMb8NHVt9zxHHSkzf8wcLEwin9zl3DipWJHL2bFDyQfSdIX8fuc2g+oXSpK93X7zXfJ7R721m+hqnBhnvly+rjTmrjRc+fcyp9V5limLK398fW1vbeO22trb4+/snuA1A7ty5tdpz587N/fu6L6m8fPmSKVOmJFhoxfj111+ZNGlSvHYvLy9MTU0T3Taz27dvX0Z3IUV+LAPjQqvRNDqc3vb6BarGCaf3awWehWHRjiBy9O/Pn0VrMLbpIN5ks2Teods4Bes+A5oyuv/b7d69OxWPkXKZ9WucUjLeL19WG3NWGy+kfMypNYlshhZT7u7uOouSuHx81BM06po/QlGUj86l8eHyhLYJDAykRYsWlCxZkokTJya6z7FjxzJs2DCtbe3t7XFxccHS0jLRbTOr8PBw9u3bR+PGjTPlXSJvgsIZd/aQJpze6+wORh1ZjteqCH6vDmMbqcPpp/PByq3Q7OZJyj++wbCWwzhVsBwbn+dmafeKqTJ3yw+nvHS2N2/e/JP3/Sky+9c4uWS8X76sNuasNl749DHHXFn6VBlaTA0aNIhOnToluo6DgwOXLl3i6dOn8ZY9f/483pmnGDETdPn7+5MnTx5N+7Nnz+Jt8/btW5o2bYq5uTlbt2796BfE2NgYY2PjeO2GhoZf/DdwZh2jUZwuKyo9llRpy6kCZVl3eC7DT92mwT3o0h6u51KH02NnTh/P39Xa8VtkN+YeuseIJvEvKaeWz+V9zaxf45SS8X75stqYs9p4IeVjTq33KUMD6Dlz5qR48eKJfpiYmODs7ExAQABnzpzRbHv69GkCAgKoUaOGzn07OjpiZ2endeovLCyMI0eOaG0TGBiIi4sLRkZG7NixAxMTk7QbsMgwltkMcCmZm0YlYi8XX83tRLV201hZoQUV/OHc39rh9Orfws2cCv1Pb2bz6pHs3nQ40WNEREax8pQfN5/Gf7CyEEKIL1emuJuvRIkSNG3alD59+uDt7Y23tzd9+vShZcuWWuHz4sWLs3XrVkB9eW/IkCFMnTqVrVu3cuXKFdzc3DA1NaVLly6A+oyUi4sL79+/Z8mSJQQGBuLv74+/vz+RkZEZMlaRNlQqFX93r8ziHlVwrV5Q0x5iaMJPLgPo3X4CwQaWLPSAbesgRxBcyKMOp/9VCcr438ZjxQ+waBF88ATyN0FhDF53ge/Wnuen7f/i8vvR9B6eEEKIDJQpiimANWvWUKZMGVxcXHBxcaFs2bKsWrVKa50bN25oTbg5atQohgwZwsCBA6lcuTKPHj3Cy8sLCwsLAM6dO8fp06e5fPkyhQsXJk+ePJqPhw8fpuv4RPopamcRr+1A4Wo07TWfow4VaHMDLv0Jje5AsCH0bwXtvoEgw1Do2xfat4eXLzXbTve8zo6Lj9n7b/xL0UIIIb58meJuPgAbGxtWr16d6DrKB2cMVCoV7u7uuLu761y/Xr168bYRX76EIuQx4fSeZ3cy+sgy9q6ODadvKwGn86vD6Y22boXTp2HlSmjYkBv+8S/rffi4mKQ8PuZpYAi5LbUvM4eERzJtz3XqF7elbtFcyR6rEEKItJdpzkwJkVoSuyFPUemxtEob2nafzW2bAgw/BacXQfHn8MRCHU4f2RhCnz6Gxo1h1Cgu33sebz8v3sXOQ+a+41+q/rKfh6+CeBMUFm/dGDWmHYzXtujoXZaf9KPH0jM6thBCCPE5kGJKZDmqBM9Nxbpm60SrHr9rhdP7q2fpYFZNcP42eub0mTPZsmoETi//09q+2tQDms+Xn/Tj5fswas84RPnJCc+FEhnnGX3vQiNwGLOL3/bdTObohBBCpDcppkSWUypv0uYCCzU05ieXAfRq/xPBBpb8uUt3OL300zt4rPiBTr6e8cLpr94nfCYqMaUn7k3RdkIIIdKfFFMiyylnb52s9Q8WrkrTXv/jiGNFTTi9cZxw+led1OH0aXvns3DbVKyD1ZPA3fB/y7O3Ick61j9nHvA2JOs8CkIIIb4EUkwJkQTPzbPj9rU7kxv0IW+oEZ6r4be9YBQB24tD2QGw3wma3jyF59JB1PDz5Zu/T6GXzBnTx2y5zIiNF9NoFEIIIdKCFFNCJFFMOP3enkO8tC/EsFNwerF2OH2EC2QPfsXq9RPov+sv9FLwEE2ZYkEIITIXKaaESEDN3FE62+t7vWb21DWsqNiC8tHh9AHR4fTfaqhnTr+RU6H/mS2EVK5KoZcyZ5kQQnzJpJgSWVKjErqf6RhXg7xR5LaI/wxGgHWXXzCxsTqcHmRoxYJdsD06nO6bByr1g4WVodTTO3gsH0JnHeF0O0sTZncslyrjEUIIkXGkmBJZkpmx/kfXUQF/dauQ6N1/BwtXpVnP+Rx2rETrG3B5QWw4fUBLdTj9vVEov+6dz19bfyF7UOwM/fp6KkyNPt4PIYQQnzcppkSWFBH18ZnvrY3U0yjsGlyb4Y2LJrjec/Ps9Px6IpMa9sEm2ADP1TDbMzacXmYA7HOCJre88Vz2PTX9fAHQk/99QgjxRZAf5yJLyp89W6LLv6mcH/04/ztqFM6Z6PqKSo9lldvQpvvv3MpRgKHe6nB6iefgbwEu3WG4C1gHv2LN+vGMPbQUk8hwCtiYpcZwhBBCZCAppkSW9H2DIuSz1l1Q/fZ1OX5uU1KrzUg/af9Vrts60rr77yyv2JLy/nA2Tjh9dnQ4/VpO6HdmC0v++oGSgY8/aRxCCCEynhRTIksyNzbgl69K61ym64HE2Yw+/l/lh4ZFmN6+DKGGxrg37k/PDhO1wuk532uH0+3v34CKFeniuydeOF0IIUTmIcWUyLISql9qF4l/Sc8hx8cvx+W1NuGbKgU0rw8VqkLTXvM55KQOp1/6E1xux4bT23aC56pgpu79H39/EE7XJTIJOS8hhBDpT4opkWXpfXAG6vYvzfh3UhNymMefDkHX2aoPBYdFxmt7YZadnh3ccW/YF5tgQ/asgd+jw+k7omdO3+cELh+E0wGalbajccnYKRzehUYkY3RCCCHSixRTIsuqUSiH1msDfT3MjA10rqtKwmNhgsN1T/KJSsXyyq1p3UMdTh/iDWcWQclnusPpPx5cglFEOF2rFWRmh7Ka3YRHJrB/HZ4EBPPgZVCS1xdCCJFyUkyJLMtQX4//dan4SfuoVDC75vPg8PhnpkrkseTiTy4A3MjlQOvuv7OrTnvKPQWfRTDwjHq92TWgWh+4mgv6+mzljMd4akW+wNrUSLOvF+9Ck9Snd6EROP96kDozD8nZLCGESAdSTIksrXkZOxZ2q8ixUfVTtP2m/s6az4PDtAuXHs4F2fNDbaxMDTVtLpUdqbZrDezahWl2W/63G3asVYfTL9pBpb7wZ2WwuvEvVKwIf/2lCXctOnrvo/35zesGpSfu1bx+/CY4ReMSQgiRdFJMiSxNpVLRtHQe7G1MU7x9DF1npmKs61Odn9uWZl7nCuQ0N4bmzeHSJWjWjFY3Y8PpIYYwsCW06awOp9O/vyacvvn8f4QkcgyAeQdva712+f0oFx++SdHYhBBCJI0UU0KkkuAw7UxTbisTzefOhXLQrXpB7Q1y54Zdu+CPP8gTbqwVTt9ZTB1O9yoUG06vde8CxSd48up9WLL61eZ/J7j97F2KxyWEECJxUkwJkUQJPUevbfm8APSu5QjAou6V6Vg5P71qOn58pyoVDB4MPj7olSodL5zexBWGNVGH01dvmMC4g4upPnH3R89QfWjA6nPJWl8IIUTS6b51SQgRz+7Btdnu+5juzgVZcvweztF3A/7+TXl+/qoM5tF3AjYumVtrSoMkKVMGzpyB0aMpN28eZ/+GkS7wv6rwuzMcdIS1m6GPzzZq3L/E2mJG9OrTXGsXUYnMQ/U0MCR5/RFCCJFkcmZKiCRyyGnGD42KkN3MiBFNilEz+nl9KpVKU0h9kmzZYO5c2LWLbDa2zN8NOz8Ipy+oAiWf3aXrd+1g4UJNOD0iMop3YQnfuRcYErvsSUAwQYmsK4QQInmkmBLicxMnnN7yJlz+E5pEh9O/a6EOpwcahsKAAbxxaQ4vXtBw9hHKunt9dNcPXwXh/OtBSv60l+2+j4hIxtxVQgghdJNiSojPUUw4fe5cbEKM2P1BOL3MQNhbCKz3e6KUKYP92RNJ2u2J2y80n//wjy/f/O2dViMQQogsQ4opIT5XKhV8/z2zp67mZo6CDPFWT/RZ8hk8NYemrjC0CYS+8NeE040iwhPcXVhEFAevP9NqO3f/NS+TOBloDEUeyiyEEFqkmBLiM9dnQGva9PidZZVaUfYpnP0bBp1WL5vjDNW+Vc+c3sdnG1tXDafQi4c69zN73028rj6N1/4+NOl3Bv73Ooga0w6y8MidFI1FCCG+RFJMCfGZy2FuTKiBEZMa9cOtgzvvjKyZtwc81kCu93Dpg3D6rhU/0O3Cbk04PUZCBZBKBc8CQ1h0/B7vEz6xBcB3a87zJCCEaXuup9bwhBAi05NiSohM5HChyjTrNY+DTpVpcUs9c3rTW7Hh9Nad4a1RGD97LWDRlp+xCQr4+D5vPqfq1APM2HuLlbcS/5Fw8b+P708IIbIaKaaEyAR2D67N4AaFAXhhlp1eHSbyU6N+ZA82ZNdamLNHHU73iBNOb3z7NJ5LB1H73vlE9z1h2xXN59cDkv4j4eW7UILDIgkI+sjpLCGE+MJJMSVEJlAyryXDXIrFNqhUrKzUilY9fudGTgd+OK0Op5f6IJxuGfqaVRt+YvyBRYmG01Oi0s/7KfGTJ+Ume/H6fZgE04UQWZYUU0JkIv3qOmm9vpnLgbbdZ7O0UmvKPgUfHeH0f3PBt2e3s23VMAq/eJDsY/oHhOB99yXhicxJVWHKPhzH7k72nYFCCPElkGJKiEzE2CD+8wFDDYyY3KivOpxuHD+cXrkv/K8KlHh2D48VQ+h2fle8cHpc230f4/WvP/1XneNNUBjVfz1Ap7+9KTJuz0f713mRzFslhMh6pJgSIjNJpAg6XKgyTXvO14TTLy+AZtHh9EHR4fRA4zB+3vcni7ZMSTCcPmLzFfquOofnv/60np+0yUBj3Hz6LlnrCyHEl0CKKSEykY+lkl6aWdOrw0SYPx/bSBN2rYE/9oBxdDi97ADwLAyNb59JUjj9waug1Ou8EEJ8oaSYEiITSVLGW6WC775DdfYsqjJlGHxanaWKCac36wZDmsaG0yekQThdCCGyEimmhMhE9FTar12rF0x45VKl4MwZllZqTZln6oLq++hw+h/VoWofuGILvc9uZ/vKoSkKpwshhJBiSohMxa2mI/mss2leD3cpmvgGJiZMbtSXHl9P4p2xNXP3wK41YPsOLueGKn1gflUo/twvSeF0IYQQ8UkxJUQmYmNmxPHR9dk5qBYb+ztjbWoUbx1rU8N4bUecKtG053wOFKpC8+iZ02PC6d83h1ZdYsPpizdPTtLM6QkJCotI8bZCCJEZSTElRCajUqkok9+KKg42Wu1Fc5vTtJQdWwbU0LndSzNrerf/iQmN+5MrQh1On7tbHU7fVTQ2nN7ojg97l35HnbvnUtS/oLCkPzhZCCG+BFJMCfGFKJXXioWulXDKZa7VPqBeodgXKhWrKrZE75w6nP79GXWWqvTT2HD6D03BIvQNKzdOZMKBRRhHhCWrH4HBEmYXQmQtUkwJkckVsDEFoEWZPDqXj2pSLH5jdDh9SeU2lHkGZxbB4Oj5Nud+EE7ftnIYRZ7fT3J/fvjHN7lDEEKITC3TFFOvX7/G1dUVKysrrKyscHV15c2bN4luoygK7u7u5M2bl2zZslGvXj3+/fffBNdt1qwZKpWKbdu2pf4AhEgjuwbXYsegmjQsYatzuUql0tmOiQndvbcQssMDxSInf3jC7tWx4fTKfWPD6TtXDsX1vAcoCmu/rQZAvzpO9K3jFG+3lx8FcPzWi1QbnxBCfO4yTTHVpUsXfH198fT0xNPTE19fX1xdXRPdZsaMGcyePZv58+fj4+ODnZ0djRs35u3bt/HWnTNnTsK/dIT4jFmYGFI2v3Wi37/T25fRfF6pYHbN54b6epi0aoHh1Svcq16fZrfV4fTmNyHUQB1ObxkdTp+ybyGLN0+mhmUUftNaMLZ5CUbqOusFdFtymjn7b6beIIUQ4jOWKYqpa9eu4enpyeLFi3F2dsbZ2ZlFixbh4eHBjRs3dG6jKApz5sxh3LhxtGvXjtKlS7NixQqCgoJYu3at1roXL15k9uzZLF26ND2GI0S6+6ZKAQ6PqMe3tRxZ0LVivOWGdrnJf8STI259sQo1wmNtbDh9d1EoMwD2RIfTKVsWPD3V2+kn/CNkzv5btFtwgvsv33PlUfLuDoyKUvjN6wYHrj1N3kCFECIDGGR0B5Li1KlTWFlZUa1aNU1b9erVsbKy4uTJkxQrFv+v43v37uHv74+Li4umzdjYmLp163Ly5En69esHQFBQEJ07d2b+/PnY2dklqT+hoaGEhoZqXgcGBgIQHh5OePiXGb6NGdeXOr4PfYnjzWdlxOgmRQDd4wqPiOBpq+a00ivH3J0z+f6MH/X9oHN7uJIbmndT56qm73+KSbNmRH7/PVG//EIeKxOeBIToPOb5B2+oO/MwACdG1cXWwjhJffW6+pR5B28DcGuKy0fWTpkv8WucmKw2Xsh6Y85q44VPH3NqvVeZopjy9/fH1jZ+HsTW1hZ/f/8EtwHInTu3Vnvu3Lm5fz82TDt06FBq1KhBmzZtktyfX3/9lUmTJsVr9/LywtTUNMn7yYz27duX0V1IV1ltvAYquJWrIG27z2bkkRV8e3Y7PotgdCN1MH1udTjoCOs2Q+l583i3cydNuwxnGY4f3ff6XQcoZJnw8nfh8Pd1ffRVUNRKIebE+baduzHST6UB6pDVvsZZbbyQ9cac1cYLKR9zUFDqPH80Q4spd3d3nUVJXD4+PoDuEK2iKB/NOX24PO42O3bs4ODBg1y4cCE53Wbs2LEMGzZM8zowMBB7e3tcXFywtEzkt0UmFh4ezr59+2jcuDGGhvEnhfzSZLXxgnrMXl7qH0ihBkaoZv9G93kV+W337/zh+Yamt8GtrfosVeW+MNMLBp3x46fZI+k0bDyzizZm77XnCe4/b9FyNK+YL8HlP+24yv13/wFw923s/9tKteoREhZFvuwmmBql3o+srPY1zmrjhaw35qw2Xvj0McdcWfpUGVpMDRo0iE6dOiW6joODA5cuXeLp0/jZiefPn8c78xQj5pKdv78/efLE3jL+7NkzzTYHDx7kzp07WFtba23bvn17ateuzeHDh3Xu29jYGGPj+JcrDA0Nv/hv4Kwwxriy2nhVKtg9qAbhigozY32mOFWiSa//MWP3HJrd9uHyn9CzjTpHNbg57CkCy7aFUGzqeIZW8uKsc19emlnr3PeYrf9SLI8VFQpk17k8IET3zOmn7r1h3NYrFMplxoHh9VJppLGy2tc4q40Xst6Ys9p4IeVjTq33KUMD6Dlz5qR48eKJfpiYmODs7ExAQABnzpzRbHv69GkCAgKoUUP3bM+Ojo7Y2dlpnfoLCwvjyJEjmm3GjBnDpUuX8PX11XwA/P777yxbtiztBi7EZ6xIbnPK2VtjpK++tvbK1Ipv2//EeJeB5Io0wWMtzIsOp+8pop45fXcRKH7uKJ7LBlE3kZnTR226lOCyk3de6mwft/UKAHeev/+EUQkhRNrJFHfzlShRgqZNm9KnTx+8vb3x9vamT58+tGzZUit8Xrx4cbZu3QqoL+8NGTKEqVOnsnXrVq5cuYKbmxumpqZ06dIFUJ+9Kl26tNYHQIECBXB0/HgGRIgvWYEcpgyoV4jKBbODSsV259aozp1DVa4cg87A2b+hzFN4Zg4tusLgZuqZ01dsnMjE/X/pnDn91rN3PA3UHVZ/E5R1QrNCiC9LpgigA6xZs4bBgwdr7s5r3bo18+fP11rnxo0bBATE3oI9atQogoODGThwIK9fv6ZatWp4eXlhYWGRrn0XIrMa3bQ4iqJw+t4ritiag7kxnD4NY8dS+vffObMIxjSCP6rDvGpwyAHWboae53ZS/cFlfmg1gpu5HLT2ee/Fe3JbmmTIeIQQIi1kmmLKxsaG1atXJ7qOoihar1UqFe7u7ri7uyf5OB/uQ4isTqVSUd0pR2yDsTHMng1Nm2LSowdzPP1pcht6tlWH06v0hRn74PvTfuxcMZRf6vdiZcWW6kAW0Olvb+5MbY6+XvInyQ0MCcfSJGtlQYQQn79McZlPCPEZcnGBS5egVSvNzOktomdO/6GZ+tLfG5NwJu//i6WbJpHj/RvNpkFhsWHz529DcRizK0mHLOvuxftQ3UF1IYTIKFJMCSFSLlcu2L4dFizANtKEnWth/i4wCVeH08sMhF1FoMHds3guHUS9O2cB2HHxMe9CIwiNiKTKL/uTdchSE/dy9GbCUzAIIUR6k2JKCPFpVCoYMADOn+d1kRJ85xMbTn9uBi27wvfNwDzsDcs3ueM3vSXT13lTeuJeKk5O2UR7Y7dcJiA4nHP3X8uleSFEhpNiSgiROkqUYO+SbSyq0pZSz+HMIvjBW71ofjWo2gcuRz/I4NIfnWh19QjvwyJTdKhHb4KpPf0g7f88ycaz/6XSAIQQImWkmBJCpJqiBXLyS4Nvce04mUDj7MzxhD2rIfe72HD63GqgAPN2zuTAon6olKgUHSswepLPUZsvcfL2i1QchRBCJI8UU0KIVFOpoA3zu1TgcqlqNO01n32Fq9E0Opze8kZsOL15V3hqBoVePeLejNYUe+73Sceduuda6gxACCFSQIopIUSqalk2L2XzW/PK1Io+7cbzd5WvsH0PO9bFhtM944TTAfYuHcTE/X+l+JhXHqmfr/UsMISlx+8RECwTgAoh0o8UU0KIVFcst7n6E5WKqQ1606/tj6hAE04v6x8bTh/UHIIN1BN9+k1vyer2RVnQtSL1i+VK1jEVRcF1yRkme1zlxy2XU39QQgiRACmmhBCpbkijovSs6cAIl6Ks6l2VvcVqUHrIBgBKPYfTi2HIKfW6/6uqzlJdin5mea2qRWl+5TDLelZN1jHXnXnIjadvAfC66g+oC6zr/oGEhMcG3a8+DmTUpos8CdD9WBshhEiuTyqmQkNDU6sfQogviJmxARNblWJQgyLULqI+w/TO2BSH0R4srNoOkwj4fW9sOP1fW/Xdfn9Eh9Pp0gWKFElWOP3HrbFno6KiZ0vYfdmfpnOO0XXxacIjo1hx0o/mc4+x4ex/DNmQ8EOXhRAiOZJVTO3duxc3NzcKFSqEoaEhpqamWFhYULduXX755RceP36cVv0UQmRiszuW03w+rX4vGn77JwBNb8PlBbHh9CHR4XR/c+D27RSH0yOjq6mpu9XB9HP3X7Pw8B0m7vhXs84N/7cpH5AQQsSRpGJq27ZtFCtWjB49eqCnp8fIkSPZsmULe/fuZcmSJdStW5f9+/fj5ORE//79ef5cZicWQsT6qkI+qjvZaF7/9lMnHEbt5F9bJ3IFqcPp/4sTTi87ADyKqtfdu3QQ7vsWJvuYq7zv8+hNcOwx993UWh4lk30KIVJJkh50PHXqVGbNmkWLFi3Q04tff3Xs2BGAR48e8ccff7By5UqGDx+euj0VQmRaKpWKtd9W56cdVyiX35ry9ta0Lp+PFj3n0uTmSf7aOpWBPlDXD7q0h0t20KoLfHcGZnqB23kP3M57UPaHfwg0MU/SMafvuZ7o8uDwlM1vJYQQH0pSMXXmzJkk7SxfvnzMmDHjkzokhPgy6emp+LltGc3rX9uVoUw+K2heAu+f+lC9gqNm5vSxjeB3Z3U4/ZADrNsMZZ+qZ073m/s39R7l/ejx3skDkYUQ6UTu5hNCZAgzYwP61HGiTx0nqpd3wH37Fbxadsc4EmbvBc9VYPcWrtpClT4wpzpEqcBhcF8O/d0nxTOnCyFEakvSmam4FEVh06ZNHDp0iGfPnhEVpf0DbcuWLanWOSFE1uHeuhS0XgHXx0KJEjS5o545vVcb8CgGQ5uCZ2FYvg0cXz/h3ozWNO05j+u2jhnddSFEFpfsM1M//PADrq6u3Lt3D3Nzc6ysrLQ+hBDikxQvDlFRULGiJpy+wEMdTt9bGMrECad7LvueyV5/pvhQvi9VCS476/eKU3deJnufl/57w8TtV3gTFJbifgkhMpdkn5lavXo1W7ZsoXnz5mnRHyGEAJUKzp3jf4Nn8t28UQw4C3Xvq8PpF6PD6QPPwCwv6H5hF90v7EpWOD3Gspv65Dx2j+8aFNVqD42IpMNC9ayil91dsDAxTPI+W88/AagfxPz7N+WT1R8hROaU7DNTVlZWODk5pUVfhBBCS7dpQ1i5Vz25ZsnncHoRDI2eOX1BVajcFy5Gz5x+6Y9OtL56ONnHmOl1i/Z/ntTMTQUQEhYbXwgOi9S1mU73X77XfC7zWAmRdSS7mHJ3d2fSpEkEBwd/fGUhhPgEVqaGdHcpA4oCo0drwul744TTq/aB36PD6XN3zuLIX98mO5x+7v5rCv24m6XH7wEQEScLqqeX8KXAD9WdeVjzucxiJUTWkexi6uuvv+b169fY2tpSpkwZKlasqPUhhBBpYto0uK6eO8olOpze6gaEGcCwpuqZ05+YQ8E3/tyb0ZoSz+4m+xCTPa4CaJ2l0lclvZiKS5FJQYXIMpKdmXJzc+PcuXN069aN3Llzo0rhDxohhEi2YsXU4fSqVcl19izb18HCyjCsiTqcXnYALNsOLW/CnmWDWVWhORNcBibrEIeuP6OonYXmtZREQoiPSXYxtWvXLvbu3UutWrXSoj9CCJE4lQp8fGDbNlRffcWAs1DPDzp30A6nz9wHrhd243phd7LC6T2X+2i9TukZpuuSmRIiy0j2ZT57e3ssLS3Toi9CCJF0bdtCYCAAJV6ow+nDTqoX6Qqnt/n3UIoOM+/gba48CiAqKvlFlX9ACD/8c4HzD16n6NhCiMwh2cXUb7/9xqhRo/Dz80uD7gghRDJYWKjD6WPHYhwJv3nFhtOv5dIOp//h8RtHF/ZGLyrpd+cBLD/pR8t5x+mz8iy9lvvwwz8XuPIoIEnbjtx0ke2+j2m34GRKRieEyCSSXUx169aNQ4cOUahQISwsLLCxsdH6EEKIdDd1Kty4AajD6Zf/hNbXY8PpzaLD6QUCnnJ3ZhtKPk1+OP3A9WccvP6M7b6PaTnvuObOv8T4xZkqQQjx5Up2ZmrOnDlp0A0hhPhERYtqwuk5z55l2z/wV3Q43Ss6nL50O7S6CbuXD2Z1+WaMb/Jdig832eMqvWol/iibh69kChkhsoJkF1M9evRIi34IIcSniwmnb9+Oqm1b+p+Fun7qmdN980DrLjDARz1zejffPXTz3UO5wesIyGbx0V1/jEyFIETWlezLfDGePXvGlStXuHTpktaHEEJkuDZt4K36broSL8B7MQyPji39WUUdTve1U7++OLczbVMYTo/r+3UXEl2enJnUhRCZS7KLqXPnzlG6dGny5MlD2bJlKV++vOajQoUKadFHIYRIPnNzrXD6LC/wWgl5osPp1b6F2c7qcPocj984loJwelwel54kurzET54p3rcQ4vOW7GKqZ8+eFC1alJMnT3L37l3u3bun+bh7N/mhTiGESFNxwumN76pnTo8Jpw9vEhtOt/+EcPqxW89Tu9dCiEwk2Zmpe/fusWXLFgoXLpwW/RFCiNQXHU4Pq1KVnOfU4fS/K8HQpupwepmB6nB66xvqcPqa8k0Z12RQknZ978V7xm+7ksYDEEJ8zpJ9Zqphw4ZcvHgxLfoihBBpR6XC6KwPHpP/RAX0Owfn/oLyT+ClKbTpDANaQJAhdPX1xG96S6yCE5/FXFEU6s86zP2XQekzBiHEZynZZ6YWL15Mjx49uHLlCqVLl8bQ0FBreevWrVOtc0IIkdpaTugPQ7uBhYUmnD6uIfxWAxZWgSMOsHYzlPdXh9OHthjG1tINdO4rLDIqfTsvhPgsJbuYOnnyJMePH2fPnj3xlqlUKiIj5Y4VIcRnztyc8LAw7nbtSrGNG5nlBU1vQ/evYsPpvx6AId7w+67ZDD+2ijr9FhOlp6+1m2Ljkxcqj4pS0NOTh8ML8aVJ9mW+wYMH4+rqypMnT4iKitL6kEJKCJGZXO/alfB//wWgUXQ4vU2ccHrTbvDYAvIHPufuzDaUenrnk44nZ7KE+DIlu5h6+fIlQ4cOJXfu3GnRHyGESF9FikBUFEq1auQMgq3/wF87IVs47Cuknjl9RzH1qruW/8BUz/kpPtTWC49SqdNCiM9Jsoupdu3acejQp09wJ4QQnw2VCpW3N+zYgQroew7O/wUVdITTu1xUh9OtgwOTfZhngaGp33chRIZLdmaqaNGijB07luPHj1OmTJl4AfTBgwenWueEECJdtWqlnjndwoLiL+DUYhjfAGbVVIfTDzuow+kV/MF3bheGtRjKltINk7z7yCi5zCfElyhFd/OZm5tz5MgRjhw5orVMpVJJMSWEyNxiZk6fMAHjn39m5j5ocgd6tIXruaBaH/h1Pwz1htm7fmf40dXU7h8/nK7Ln0fuMMylWNqPQQiRrpJ9mS/ujOcffsgM6EKIL8aUKXDzJhAbTm97DcL1YUQTaBIdTs/3Nunh9PBIeRiyEF+iFD/oWAghvnjR4XScnckRDFvWx4bT90eH07fHCafP8pqPqZE+zk45EtzlA5ngU4gvTpKKqWnTphEUlLQfAKdPn2bXrl2f1CkhhPhsqFRw8iTs3KkznN62M/RvqQ6nd7jgydUpzVjXvkiCu6sz8xCHbzxLv/4LIdJckoqpq1evUqBAAQYMGMCePXt4/jz2oZ4RERFcunSJBQsWUKNGDTp16oSlpWWqd/T169e4urpiZWWFlZUVrq6uvHnzJtFtFEXB3d2dvHnzki1bNurVq8e/0XPKxHXq1CkaNGiAmZkZ1tbW1KtXj+Dg4FQfgxAiE2vZEt69A9CE00eeUC/6qzJU7AcX7KLXzZmT9pcPAFA6X/yfh2tPP0iPHgsh0kmSiqmVK1dy8OBBoqKi6Nq1K3Z2dhgZGWFhYYGxsTEVKlRg6dKluLm5cf36dWrXrp3qHe3SpQu+vr54enri6emJr68vrq6uiW4zY8YMZs+ezfz58/Hx8cHOzo7GjRvz9m3s87ZOnTpF06ZNcXFx4cyZM/j4+DBo0CD09OQKqBDiA2ZmseH0SJixD/avgLyBcCOnOpw+qwZEqeC33b9zY3kfNn5bLd5uDPRlFnQhviRJvpuvbNmy/PXXXyxcuJBLly7h5+dHcHAwOXPmpHz58uTMmTPNOnnt2jU8PT3x9vamWjX1D6ZFixbh7OzMjRs3KFYs/t0xiqIwZ84cxo0bR7t27QBYsWIFuXPnZu3atfTr1w+AoUOHMnjwYMaMGaPZtkiRhE/RCyEEkydD9+5QpAgN76nD6X1aw9YSMNIF9haCFdsg79MnYGpMqR5z+NeusGZzPZW6mAqLiMJQX4VKJcWVEJlZsqdGUKlUlCtXjnLlyqVFf3Q6deoUVlZWmkIKoHr16lhZWXHy5EmdxdS9e/fw9/fHxcVF02ZsbEzdunU5efIk/fr149mzZ5w+fZquXbtSo0YN7ty5Q/Hixfnll1+oVatWgv0JDQ0lNDR28r3AQPXkfeHh4YSHh6fGkD87MeP6Usf3oaw2Xsh6Y/7k8RYsCKGhUKcuOU57s3k9LK4IQ5qqw+llBsCSHdD2OuxaMYR/yrowppl66hg94NXbYGrPOkK5fFas6Fk5lUaVsKz29YWsN+asNl749DGn1nulUhTls79Xd+rUqSxfvpyb0bcpxyhatCg9e/Zk7Nix8bY5efIkNWvW5NGjR+TNm1fT3rdvX+7fv8/evXvx9vbG2dkZGxsbZs2aRfny5Vm5ciULFizgypUrCZ6hcnd3Z9KkSfHa165di6mp6SeOVgiR2eQ+e5bqP/8MwI0c0KU9nI/+sdP3LMzeC2bRP7PLD17Lm2yW1MsTxeEn6jjBH84RGdFtIbK8oKAgunTpQkBAwCflvZN9Zio1JVSUxOXj4wOg8zS4oigfPT3+4fK420RFz0bcr18/evbsCUCFChU4cOAAS5cu5ddff9W5z7FjxzJs2DDN68DAQOzt7XFxcUmT8P3nIDw8nH379tG4ceN4s95/ibLaeCHrjTlVx9u8OeHDh2OYPTvFXsKpJTChPsysCX9XhiMOsG5T7MzpI5oPYRON4mze/NOOnwRZ7esLWW/MWW288Oljjrmy9KkytJgaNGgQnTp1SnQdBwcHLl26xNOnT+Mte/78eYIPXLazU99W4+/vT548eTTtz54902wT016yZEmtbUuUKMGDBwnfbWNsbIyxsXG8dkNDwy/+GzgrjDGurDZeyHpjTrXxWlurw+kTJ2I0eTLT96tnTnf9KjacPvUADDsFs3bPYcTRldQYsIwoPf10fb+z2tcXst6Ys9p4IeVjTq33KUNvWcuZMyfFixdP9MPExARnZ2cCAgI4c+aMZtvTp08TEBBAjRo1dO7b0dEROzs79u3bp2kLCwvjyJEjmm0cHBzImzcvN27c0Nr25s2bFCxYMA1GLIT44k2aBLdvA9AgOpz+VfTM6SNdwMUVHlmA3btX3J3ZhtL+tzO4w0KIT5XsYqpXr15aUwvEeP/+Pb169UqVTn2oRIkSNG3alD59+uDt7Y23tzd9+vShZcuWWuHz4sWLs3XrVkB9eW/IkCFMnTqVrVu3cuXKFdzc3DA1NaVLly6adUaOHMncuXPZtGkTt2/fZsKECVy/fp3evXunyViEEFlAoULqmdNr1iRHMGxeD4t2gGkYHHBSz5y+rbh6VY8VQyCNfnYKIdJHsoupFStW6JzQMjg4mJUrV6ZKp3RZs2YNZcqUwcXFBRcXF8qWLcuqVau01rlx4wYBAQGa16NGjWLIkCEMHDiQypUr8+jRI7y8vLCwsNCsM2TIEMaOHcvQoUMpV64cBw4cYN++fRQqVCjNxiKEyAJUKjh+HHbtQgV8e149c3rFx/DKFL7qBP1awntDYNky9fovXmR0r4UQKZDkzFRgYCCKoqAoCm/fvsXExESzLDIykt27d2Nra5smnQSwsbFh9erVia7z4Y2JKpUKd3d33N3dE91uzJgxWvNMCSFEqmnenHcv32CewzrBcPrazVDxCZArFyxdCtE3xAghMockn5mytrbGxsYGlUpF0aJFyZ49u+YjZ86c9OrVi++++y4t+yqEEJmSuY0VDqM9mFOzM0aRMH0/7F8ZO3N69W9hZvTM6fTqBXnzQmRkRndbCJFEST4zdejQIRRFoUGDBmzevBkbGxvNMiMjIwoWLKg1n5MQQghtc2p1ZUupBhz9u48mnB4zc/ooF9hbGFZshXxPnoCBAfj4QOW0n9BTCPFpklxM1a1bF1DPLF6gQAF5/IEQQqRAlJMTDqN2sn7tGKr99y+b18OSivBD09hw+uId8NV1oEoV9SW/pUszuttCiEQkO4B+7do1Tpw4oXn9v//9j/Lly9OlSxdev36dqp0TQogvRa+ajgBMblMKVCq+6Todtw7umnD6hb+gUnQ4vV0n6NtKO5z+9r8nDN9wkSM3n2foOIQQ8SW7mBo5cqRmxtDLly8zbNgwmjdvzt27d7VmBRdCCBFrQssSXJzoQoPisRMNHy5UmeLDNgFQ9CWcXAKjj4NKgUWVoGI/OBc957CFfV70li+lx1L1fHuZ4ElgQmQZyS6m7t27p5kxfPPmzbRq1YqpU6eyYMEC9uzZk+odFEKIL4FKpcIqm3q25YmtYp+6EGJogsNoD2bX6opRJEzbDwdWQL5AuJkTnL+FGTXV4fSZe+biM78bBy8/ourUAxy/JVMpCPE5SHYxZWRkRFBQEAD79+/HxcUFUE9dkFrPuBFCiC9Zz+hLfnHNrdmZ2v0WA1DfDy7+Ce2uqmdOH90YGkfPnJ7r/RsalM2P3c0rdFtyGoCoKDlLJURGSnYxVatWLYYNG8aUKVM4c+YMLVq0ANSPYMmfP3+qd1AIIb5E/eo4xWt7aG2Hw6idnLYvTY5g2LQBFm9Xz5x+MDqcvjV65vSdK4cya9fvzNx7nXKTvXj4Kkizn7CIKC7/FyCXAoVIJ8kupubPn4+BgQGbNm3izz//JF++fADs2bOHpk2bpnoHhRDiSzS2eQndC1QqvukyTRNO730hfji9T3Q4vcOVA4xsWgLDVy+pPeMQrktO8+PWy3T6+xSt5h9n4Jrz6TomIbKqJE+NEKNAgQJ4eHjEa//9999TpUNCCCFiw+nXZ3fQhNMn1oPptWBxJThaUD1zeqUncH5eV0Y3/Z71NNHax54r/hnTeSGymGSfmYorODiYwMBArQ8hhBCpI8TQhGm7r2nC6b8eSDicPt1zHj7zuqEfpT1zekh4pFzuEyKNJbuYev/+PYMGDcLW1hZzc3Otx8pkz549LfoohBBZ1sIjd5hbszO14oTTL/0J7eOE0xt1h/8sIVfQG+7MbEPZJzc12xef4EmzP45lUO+FyBqSXUyNGjWKgwcPsmDBAoyNjVm8eDGTJk0ib968rFy5Mi36KIQQWd5/0eH0UwXKYBMMGzfAku1gFgaHHNXh9C3RMawdK4fx267Zmm2v+7/lv9fBGdRzIb58yS6mdu7cyYIFC+jQoQMGBgbUrl2b8ePHM3XqVNasWZMWfRRCCAGgUtG586/0+HoSKqDXBbiwECo/gtfZoP03seH09lcO4je9JTZBAQCcuvuSCWf12XjuUcaOQYgvULKLqVevXuHoqJ4jxdLSklevXgHqKROOHj2aur0TQggRzxGnSpqZ04u8ghNLYcwx9czpi6NnTj8b/dz58/O68s3Fvfy47SqB4Sp+3PYvkTIvlRCpKtnFlJOTE35+fgCULFmSDRs2AOozVtbW1qnZNyGEEAmImTl9Vu1umnD6wbjh9N4wvSZERofTz83togmnR0RFZXDvhfiyJLuY6tmzJxcvXgRg7NixmuzU0KFDGTlyZKp3UAghvlQ5zY01n2/o55yifcyv0UkTTq/npw6nd/gXIvRhTJxweo7gQO7MbEO5xzeIiJQzU0KkpmQXU0OHDmXw4MEA1K9fn+vXr7Nu3TrOnz/PDz/8kOodFEKIL9WhEXUBcK1ekKqONriUzP2RLXSLCaefLFAWm2DYsDE2nH44Opy+OTqcvn3VcP5t3JYrjwJ07mv5iXscuPY0Rf0QIqtK9qSdHypQoAAFChRIjb4IIUSWYmFiiN+0FprXw1yK4nU1hYWMSkWXzlOpc/ccKzdOpNcFqH0furSHs/mgwzfQ+zzM8YSqx3ZBfmuu+d6iRLnCml3M2X+TOftvAWj1SwiRuCSfmWrevDkBAbF/yfzyyy+8efNG8/rly5eULFlSx5ZCCCGSoridJTd+/rTHch11qkSxYZsBdTj95BIYGx1OX1JRO5xeonwRWLRIs21MISWESJ4kF1N79+4lNDRU83r69OmaO/kAIiIiuHHjRur2TgghshhjA/1El6/uXe2j+wg1NMZhtAcza7tiGAVTo8Pp+QPgVg51OH1aLXU4nb59IVcu5nld09pHeKSE1IVIqiQXUx8+jkAeTyCEEGljUutSOtsL2JhSq0hOxjQrnqT9/K/GN1rh9IsLY8PpYxvFhtN58YLvm5Sk/OPYP4j9A0I+dRhCZBmf9Gw+IYQQqa9HDQfOjW8Ur12lUv/bv24h+tctlKR9xYTTTxSMDacv3aY7nL5t1XBme/wGQO0ZhzT7uPo4kJtP337SmIT4kiW5mFKpVKhi/ifHaRNCCJH6cpgb41bDQast7k/c0U2LYWNmFG+7E2MaAGCkH+fHu0pF105Tce04GRXQ01c9c3qV6JnTO3wDvVvDOyNo9+8h/Ka3JMf7N0RERvE+NILmc4/h8vtRufQnRAKSfDefoii4ublhbKyeFyUkJIT+/ftjZmYGoJWnEkII8em+re3I8pN+mtdx/4BVqVRsHlCD+rMOa22TzzobZ35siJmxAaUm7tVadsyxIsWGbebG7PbqmdOXgHs9+LU2LK0IxwrCms1Q5TGcm9+NKfd9aD7vJ832YRFRGOrLBQ0hPpTk/xU9evTA1tYWKysrrKys6NatG3nz5tW8trW1pXv37mnZVyGEyFLyZzdlSY/Kmtc1CuXQWu6Y04ybPzeLt52tpQlmxrF/K+e1MmFDn6pAbDh9Rp3uGEbBLwfh0PLYcHqNOOH0CTv/oGgpR83M6d2XnpG8rBA6JPnM1LJly9KyH0IIIXRoWCI3x0bVx+vqUzpVsY+33MhAj5qFc3Di9ksqFLDWWjajQ1mm7bnO/7pWpHQec1oXiGTHA/XdggucO7KjZF2OL+xN3fvqmdP7tYKNpdTh9L2FYOVWsA9Uz5ze1vU3zlEM/8AQjt96Qb7s2ahRKGd6vAVCfPY+edJOIYQQacvexpTetRwTXD6/c0W2XnhEm/J5tdo7Vrbn60r5UalUhIeHY2Oivd1/VrlxGLWTVesnUPu+L+s3QrNb8H1zdTi93AD4eyd0uKoOp28rWZe/azqw7IQfIBN7ChFDLn4LIUQml93MiF61HMkR51l/MeLmrHT+wFepcO30M906TtGE033jhNO/7gi92qjD6W2vHmFi69LkfP8agP9eB6XJeITIbKSYEkKILKKAecJ5p+OOFTQzpxeODqePO6qeOX1ZBajQD3yiT3ydne9KF989fLvibHp0W4jPnhRTQgiRRWQ3BjfnhJ+l+mE4/eeDcHg52AfA7ehw+q/R4fSpe//H+jHNITw8/QYgxGdKiikhhMhCxjX/+OzpC5w7Uqv/EgDq3IeLf0LHK+qZ039sBA17wENLsAp9D0ZG4O2d1t0W4rMmxZQQQoh4YsLpxwqWJ3sI/LMJlm1Tz5x+xEE9c/rGmGfbOzujdOmS6P78A0IIDovUajvr94pZe28QFiGTgYrMTYopIYTIYmZ0KJvgsv3D6vC3ayX1i+hwetdvfkYFuPmqw+lV/4M32aBjnHC6at069fNunj7V7EtRFK48CuDW07dU//UAtaYfJDIqNrfVYeEp5h+6zfKT9wgKi+Dei/dpNGIh0pYUU0IIkcVUc7RJcFlhWwtcStlptZ1wKK8VTj++NH44/Uy+6JXt7GDhQgC2XnhEy3nHafz7UQBevg+jxrQDBIZo56zuPHtPkzlHqT/rMOcfvE6lUQqRfqSYEkKILKZgDjNK5bXUauvhXJDt39VMcJuYcPr0uj10htNr9oKptdXhdAYMINjcig2n7sbbz9PAUHb4PtZqW3/2IQ9fBQPQbsHJTx6fEOlNiikhhMiCNvZ31no9qU1pytlba157Dqmtc7s/q39Nzf5Lgfjh9HENY8Pp2d4H8s+gulR8dC3ZfTt3X85OicxFiikhhMiCTI0MWNGrKo1K5NZZOBW0MUtw20dWtjiM2slRhwqacPryrWAeGhtO31BKve6W1SOZu2OG1vahEVGsOuWX4P4n7riSkiEJkWGkmBJCiCyqbtFcLO5RmeJ2lvGWZTPST3xjlYru30zRhNN7XIQLf8WG07/5Gnq2gbdG0PraUfymtyTXO/UZp7+O3GHC9n8T3PWVR4GfMiwh0p0UU0IIIXSamchdfzFOOJSn2PAtQPxw+vIKUKF/bDjd53+udLuwm2dvQz+63ykeV2k17zgv3318XSEymhRTQgghdPq6sn2S1gs1MMJhtAfT6rpphdMLvIE7NuqZ03+JDqf/7LWAS793xCAyItF9Ljl+j8uPAqj0834UJeHH4AjxOZBiSgghRIJMDJP+a2Jh9Q7a4fSF8M0ViNSD8Q2hQQ94YAWWYUHcntU2yeH0G0/fpqjvQqSXTFNMvX79GldXV6ysrLCyssLV1ZU3b94kuo2iKLi7u5M3b16yZctGvXr1+Pdf7ev0/v7+uLq6Ymdnh5mZGRUrVmTTpk1pOBIhhMg81vWpTqm8lvzTt3qS1n9kZYvDaA8OO1bCOgTWbYIV0eH0ow5Qrr92OH3e9ukf3acK1SeMQIi0l2mKqS5duuDr64unpyeenp74+vri6uqa6DYzZsxg9uzZzJ8/Hx8fH+zs7GjcuDFv38b+lePq6sqNGzfYsWMHly9fpl27dnzzzTdcuHAhrYckhBCfvQoFsrNrcG2qO+XgyMh6ABTMYfrR7dw6TqJLdDi9+0X1zOnVdITTW10/phVO10U/0/ymEllVpvgWvXbtGp6enixevBhnZ2ecnZ1ZtGgRHh4e3LhxQ+c2iqIwZ84cxo0bR7t27ShdujQrVqwgKCiItWvXatY7deoU33//PVWrVsXJyYnx48djbW3N+fPn02t4QgiRKRTMYcbdqc3ZP6xuktY/GSecXug1HFsK44+AXlRsOP103HD6+V069xMeKZkp8XkzyOgOJMWpU6ewsrKiWrVqmrbq1atjZWXFyZMnKVasWLxt7t27h7+/Py4uLpo2Y2Nj6taty8mTJ+nXrx8AtWrVYv369bRo0QJra2s2bNhAaGgo9erVS7A/oaGhhIbG3mESGKi+jTc8PJzw8PCENsvUYsb1pY7vQ1ltvJD1xizjTbnkBMJjwul9T2/mx8PLmHIIXO5At3bqcHrN3jDpEIw5Dj/v+5PRR5ZTYfA6IvRjfz0Fh4alqN/yNf7yfeqYU+u9yhTFlL+/P7a2tvHabW1t8ff3T3AbgNy5c2u1586dm/v372ter1+/nm+++YYcOXJgYGCAqakpW7dupVChQgn259dff2XSpEnx2r28vDA1/fjp78xs3759Gd2FdJXVxgtZb8wy3pRK3q+Pv6u1x6NEbU7+2YvaD9Th9AEt4J8y6nD63sKwegsUCAjm9qy2tOs6k/P5SwBw9PgJHlqkvKfyNf7ypXTMQUFBqXL8DC2m3N3ddRYlcfn4+ACgUsUPICqKorM9rg+Xf7jN+PHjef36Nfv37ydnzpxs27aNr7/+mmPHjlGmTBmd+xw7dizDhg3TvA4MDMTe3h4XFxcsLeNPfvclCA8PZ9++fTRu3BhDQ8OM7k6ay2rjhaw3Zhnvp1nywJtHb0KY2aE0Y7b8i62FMdUcs7PkxP0Et3lsqQ6nL98wkXr3zrF2MzS7Dd81h2MF1TOn/7UTvvkXtqwZiUexWgxqO4bKVasn+nDmhMjX+Mv3qWOOubL0qTK0mBo0aBCdOnVKdB0HBwcuXbrE06dP4y17/vx5vDNPMezs1E899/f3J0+ePJr2Z8+eaba5c+cO8+fP58qVK5Qqpb69pFy5chw7doz//e9/LIx+8vmHjI2NMTY2jtduaGj4xX8DZ4UxxpXVxgtZb8wy3pTZ9l0tIhUFQ309zoxT/4xVFIXKDjkYsCY2c+qQwxS/l9p//bt1nITz/Yus+2cc3S9CzQfqy37e9tDpa9hTBObthpY3jtNyeku8Gp1Hv7Atenopu6tPvsZfvpSOObXepwwNoOfMmZPixYsn+mFiYoKzszMBAQGcOXNGs+3p06cJCAigRo0aOvft6OiInZ2d1qm/sLAwjhw5otkm5vSenp7226Cvr09UVFRqD1cIIb4YenoqDD+4zU6lUtGsTB6ttnEtSrKkR+V4dwCeKlhOK5x+dBlMiA6nrygP5eOE010aV+R/Xw9Ns7EI8akyxd18JUqUoGnTpvTp0wdvb2+8vb3p06cPLVu21AqfFy9enK1btwLq/9RDhgxh6tSpbN26lStXruDm5oapqSldunTRrF+4cGH69evHmTNnuHPnDr/99hv79u2jbdu2GTFUIYT4ojQobkvDErk5MrI+uwdrP1A5Jpy+ut13GEbB5EOxM6ffjQ6n/1xHPXP691v+INLcHLJQuFpkHpmimAJYs2YNZcqUwcXFBRcXF8qWLcuqVau01rlx4wYBAQGa16NGjWLIkCEMHDiQypUr8+jRI7y8vLCwUCcZDQ0N2b17N7ly5aJVq1aULVuWlStXsmLFCpo3b56u4xNCiC+RfpxLc7rmp/q6Un66bJwHDx4AaMLpnS+rZ06f0ADqu8F9K9B//x6MjODkyfTqvhBJkinu5gOwsbFh9erVia7z4e26KpUKd3d33N3dE9ymSJEibN68OTW6KIQQIo5+dZ20Xn94WTCHmREzvy6nfmFvD4rC/er1KHj6CGs2Q7Nb8F0LdTi93ABY6AGdrgA1a0KHDrBx40f7oCgQGhFFFosQiXSWac5MCSGEyFwMP8ijGhnosah7Zc1rXXdjh2zbSedOv6ACXC+pZ06v/hACTKBzB+jRVj1zOps2gUoFT54k2of1d/UoPWk/91++T4URCaGbFFNCCCFSVcuy6hB6l2oF4i1rXDL2DmwLk/gXR4rZWTB13g+8ffOWSJUeTq/h2DL46bA6nL6yvDqc7p0/eoO8efm74zDGbL4Ub19PA0M49Uz9a27A6vOcvP3ik8cmhC5STAkhhEhV8zpX4PqUpuS1zqZz+cJuFSmUy4z/damoc7ljTjMsrMwpNGoHv9TrhUEUTDoMR5ZDwTfqcHqtXjAlOpzed+Pv/NS5KjvP+vE+NEKzn3YLT2s+v/okkC6LT/Ozx1WtdYRIDVJMCSGESFUqlQoTQ/0ElzctnYcDw+tRMu/HJzleVK0dzgOWAVDrgfqyX0w4/acGUM9NHU43DQ+lVRVHuvf+ncCQcKpPPcCzt6Hx9rf4+D1m7tX9TFchUkqKKSGEEJ+lnObqyZGfWObCYbQHBwpVwToE1m6GVVvAIhSOR4fT/ymt3mbzmlG8bt4G/8CQBPd7/sHr9Oi+yEKkmBJCCPFZGteiuNbr3h0m0rnTVAC6RYfTnT8IpwcaQ8FDe/Cb3hLbty917jcZz2kWIkmkmBJCCPFZsjY1itd2qmBZig7fqgmnH/0gnF6hX2w4/cyCHvQ4tzNd+yyyJimmhBBCfJb+fRSgsz3MwJBCo3bwc/3YcPrRZbrD6ZP2/8W139pjGBk7c/rlBPYrREpJMSWEEOKzlFiIHWBx1XZUH7AcgJoP4eKf0OWSdjjdzxqyRYRya9ZXVP7vX822k3deJTJKrveJ1CHFlBBCiM+Srst8H/K3zInDaA/2Fa6KVSis2fJBOL0/rIsOp29aM5qFW38BYOmJexT6cXdadl9kIVJMCSGE+CzlS2CeKl36tP+JTp1jw+kX/1SH0wNNoEsH6P6VOpze9OYprXD6qE0X06TvImuRYkoIIcRnqbqTDe6tSmJtaoi9zccLK+8C6nB6uJ4+jm/UOaqJh9Xh9FXl1DOnn4oTTnc7u4MNZ/9j8s6rPAkIZuCac/RYeibec16F+BgppoQQQnyWVCoVbjUd8f3JhSMj6idpmzADQ4qM3M6U+r0xiAL3w+qiyuE13MsOtXvB5LoQoQfuB/7mxqyvWHX0Js6/HmT3ZX+O3HzOf6+Dk9zHLef/Y/SmS0RERqVwlOJLIMWUEEKIz56eXvyHIidmSdWvtMLpvguha3Q4fWL92HC6cWQ4t2Z9RZWHV1LUr2EbLrL+7EO2+z5O0fbiyyDFlBBCiEzB4/tayVr/w3D66i2werM6nH6igDqcvraMet2Na8fw15aftbZfd+YB3644y/IT9z56rOEbL/Jcx+NrRNYgxZQQQohMoXQ+qxRt16f9T4waNBeArpfV4fQaD9Th9K7twTU6nN7kljd+01ty8KAvPZedYeyWy+y/9hT3nVcJCY/86HGq/LKfRUfvpqiPInOTYkoIIcQXr+2QzhQdvpVQfQMc38CR5eB+SB1OX/1BOL3H1zVxWLP4o/uM0jFP1S+7r6Vux0WmIMWUEEKITC2nue75qKyyGWg+d3bKQZiBIcVGbGNKg28xiIKJR+BYAuH0iQcWcWNWW83M6bpu8ItIYNLPu8/fffqgRKYixZQQQohMo28dp3hth0bU07nuyp6VKWwZxYa+VVGpVJyf0BiAJVXaUm3gcgBqJBpOj+DWrK+o+vAKUXGqqVfvw3j0JpiIKN138DX47cinDFFkQlJMCSGEyDQG1isUr83IQI9qjjbx2kvmseT7UlFUsLcGwMbMCL9pLShgY8pTi5hwejWtcLplSPxw+oa1YzDq0A6A0IhIKk7ZR81pB+m13CfBfpaZuJfN5/779AGLTMHg46sIIYQQnwdjg9jn9S11q4yliSHGBvqs61Od0Igo/ANDGLnxIu6tSyW4D88htXnwKogt5x/RhwlUfXiFDWvH0PWy+kxVt3ZwsoA6nL6nMMzfDVYeO0Glos7A5WCREwDvu68SPMbb0AiGb7xI+0r5U23s4vMlZ6aEEEJkGtmM9Pmza0Xmda5Ag+K5qeygPiOlp6cim5E+jjnN2DSgRqJ3/pkaGVDczpIfm5cA4Ix9aYqM2EqIgVGC4fST9uptTy9wo5fP9iT3V2ZTzxqkmBJCCJGpNCuTh1bl8qbKvhxymAIQrm9I8eFbmNSwj1Y43fE1+GWHOj1hUnQ4/aeDi7g5sy1GEeEf3f/hG89TpZ/i8ybFlBBCiCxr1+DaeA2to3m9rHKbeOH0bhfV4XT3+lDXTR1ON4qK4OZvX1HtweVE9+95xT/tOi8+G1JMCSGEyLLMjA0omtuCfNaxD1KOCafvLVIdy1BYtRXWRIfTT0aH09dEh9PXrxvLos2TE9y/glzmywqkmBJCCJHlbRrgHK+tX7vxfN1lGgBdLsPFhVAzeub0bu3VQfUAY2h8+wx+01tiF/gi3j4evQlm3oFbvH4fluZjEBlHiikhhBBZXh6rbDrbfeKE0x3ewOHlMOkQ6EfBmrLa4XTvP93ofWar1vYnbr/kt303Gb7xYor69fp9GH/sv8XDV0Ep2l6kDymmhBBCCGB93+r0rOkQrz0mnO7esC8GUfDTETi2NDacXrsnuNdTh9MnHFrCrZlt4oXTT96Jf9YqKUZtvsTv+2/y1YKTKdpepA8ppoQQQgigmlMOJrZKeH6q5ZVbU3XgCgCc/1OH010vQpQeTKqnDqffswbDqMgkhdOT4tSdlwC8eBf6yfsSaUeKKSGEECKJnlnkwGG0B55FnbEMhZVbYe2m2HB6+Q/C6Ys3TQJAhSoDey3SmhRTQgghRBxDGxUlp7lxouv0/2qcJpze+Ur8cHrX6HB6ozs++E1vSe5AmW/qSybFlBBCCBHHD42K4DOuYaLrODvloNmAjighIZAtmyacPvmgOpy+NjqcfiI6nH54bnfu/ziZkPDIZPVFZlDPHKSYEkIIIT6gUiV+Wa59pfz0quWIytgYgoLgjz8wiIIJR7XD6XXihNML/joRQ2MjHj19ky5jEOlHiikhhBDiUw0eTJXvVgK6w+l1eqrD6fpKFPnssuO/fU9G9lakMimmhBBCiGSqVThnvLbn5jY4jPbgpUsLrXC6VQicsodyA2B1WfW6dm2bQ8uWHz1O3It8i4/dlfmmPlNSTAkhhBBJ0KpcXm783JTzExpjZ2USb/naPtWY3KYUNp476dB1OhAdTv8Tat2Ht8bg2i42nM6uXaBSEXX/AaERurNUUXEyUz/vukbzucfSZGzi00gxJYQQQiTCKZcZftNaMK9zBYwN9LExM9K5Xo1COenu7IBKpeJs/lIUGbGV94YmFAyAQyu0w+nlBsSG0/UcCjKnWX/ehUZo7S8sIoqQ8Cittrch2uuIz4MUU0IIIYQOOwfVomkpO5b0qJKi7cP1DSk1bBM/NeqnCacfXwpOr+C+tTpHNbGeOpw+ev9izE0MmbjxHMFh6rNUZ+69Sr3BiDQlxZQQQgihQ5n8Vix0rYRjTrNP2s/KSq004fTq/8GFv6C7rzqcPrme+nE0d7Or153UsTKbf1v5aR0X6U6KKSGEECKNxYTTdxWriWUorNgG66LD6d726jmpVpVVB867/diLJ7Uasvj43YzutkgiKaaEEEKIdPJd27G07zoDgE4fhNO7t4Ou7dXh9DwnDrK8VzXy6Jg5vdW841x9HBivfeelJ/z7Wh5bkxGkmBJCCCHS0bn8JSkyYivvjLJRMEA9c/qU6HD6ujLqcPrxAup1T/3Zk76nN2ttf/lRAM3nHuPei/eaNv+AEIZtvMzf1/XTcSQihhRTQgghRDoL1zek9NCNTGjcH30Fxh+FE0tiw+l13eCn+upw+o+Hl+E3vSXGEWFa+xi63lfz+av32stE+so0xdTr169xdXXFysoKKysrXF1defPmTaLbbNmyhSZNmpAzZ05UKhW+vr7x1gkNDeX7778nZ86cmJmZ0bp1a/7777+0GYQQQogswdLEIEnrrarYkirfrQKg2iP1zOk9fNXh9Cl1tcPpN35rh/P9i5ptfR++wWHMLqKiFM7ej73zT57nl/4yTTHVpUsXfH198fT0xNPTE19fX1xdXRPd5v3799SsWZNp06YluM6QIUPYunUr//zzD8ePH+fdu3e0bNmSyMjkPYxSCCGEiLHm2+pJXve5eXYcRnvgUawWFmGwfBv8s1F3OH3dP+NYvmGi1vZOP+7mp+3/al5LLZX+klY6Z7Br167h6emJt7c31apVA2DRokU4Oztz48YNihUrpnO7mGLLz89P5/KAgACWLFnCqlWraNSoEQCrV6/G3t6e/fv306RJk9QfjBBCiC9emfxWyd5mUNsx/2/vzuOiKvc/gH9mWAZRGEVERBHccgl3S3DHElFwyXKpJCkhW9Bb2ma3wjIDu6X3Zt3UMjW11K6aeLupaK4B6g8hURMzwQ1xAZwhURjh+f0xMDDMwsgAM8x83q8XrxfnzHOe83w5PvLlzHeeg28u/46tG17H1FPqZRQiJgGH/NTF6f/rAnz5EzAiKxXZi8Mx6MVvkOPupdNPGbOpBtcokqnk5GTI5XJNIgUAgYGBkMvlSEpKMphM1SQ1NRUqlQohISGafT4+PggICEBSUpLBZKq4uBjFxcWabaVS/akKlUoFlUpVq7FYu4q4bDW+6uwtXsD+Yma8ts8aY+7rK0faJYXB14+3647Or/2I4589BT9FEfatAeKHALHBwMae6mf8rd8KDLkIJH35HOJGRGLFwCe0+ihRqeDo0GjeeDKLude4rv5tNIpkKjc3F15eutm3l5cXcnNzzerX2dkZLVq00NrfunVro/3GxcXh/fff19m/e/duuLq61no8jUFiYqKlh9Cg7C1ewP5iZry2z3IxV/6KHdGmDI/5lwHIQ9ol47967zk4otermzH9+E/4MPFL/P0Q8Oh54KnHgfMe6uL0tw8B7x0A5u9fg/n716DrvK0odlQ/5mbPnr1wtI9cSqO217ioqG4eHG3RZGrBggV6k5Kqjh07BgCQSHTXzhBC6N1vrpr6nT9/PubOnavZViqV8PX1RUhICNzd3et8PNZApVIhMTERo0aNgpOTk6WHU+/sLV7A/mJmvLbP0jG7P5CHZ9emAgD8/f0xdmw3AMCikwdwvbDY2KEAgPX9wrDrgUE49kWEpjh99lhgbR/gw+FAYidgwxagU4G6OP2pqR8iyb8P3Dr1Q3B37/oMzWqYe40r3lkyl0WTqZiYGEybNs1oG39/f5w4cQLXrl3Tee3GjRto3bp1rc/v7e2NkpISFBQUaN2dun79OgYNGmTwOJlMBplMprPfycnJ5v+TsocYq7K3eAH7i5nx2j5LxayV0EikmjF8O/NhhP7zkEl9VBSnf759McLPHMKaH4ExfwCzxgFH2qmL07/4HxDxG/DdpndwoEM/zMAHyI73xdlrhVj9axZmj+wCn+ZNTB73+Rt/oaikFAFt77/uy1Jqe43r6t+FRW8Eenp6olu3bka/XFxcEBQUBIVCgaNHj2qOPXLkCBQKhdGkpyb9+/eHk5OT1u3Bq1ev4uTJk2b1S0REBAADO3gAAKYM8NXs6+btjg8nBtxXPzET3sSk6f8AAEw9BZz4Ehh6AfhLBsx4DHjyCeCWCzA86ziyF4dj6ao9GPuvQ/j+6CXEfHf8vs418tMDCF92GDf/qvnuGak1indVu3fvjtDQUERHRyMlJQUpKSmIjo5GeHi4VvF5t27dsG3bNs12fn4+0tPTcfr0aQBAZmYm0tPTNfVQcrkcM2fOxLx587B3716kpaVh+vTp6Nmzp+bTfURERLX1XXQgUt95FD18tEtAHuvb9r77Ot5WXZyulDVFewWwbw2waK965fRNAUDvF4BD5Sunvxo1ClFJPwAAzuQW1mrsl/Lrpp7IHjSKZAoANmzYgJ49eyIkJAQhISHo1asX1q1bp9UmMzMTCkXlpyQSEhLQt29fhIWFAQCmTZuGvn37Yvny5Zo2S5cuxcSJEzFlyhQMHjwYrq6u2LFjBxwcuCQ/ERGZx0EqQctmumUhTWW1q7K55+CIXq9swjshL8FBqAvRk1YBnfKBi82BEZHAu8GASgq8dWANsheHo7ToDkruld33ucq4woLJGsWn+QDAw8MD69evN9qm+qqvkZGRiIyMNHqMi4sLli1bhmXLlpk7RCIiIpMFdWyJ5PN5NbZr27wJfnx5MHJu3cGEL34FAKzvOxa7ugTh2BcRePgKkLYcmDMGWNNXf3H605c/xL9XvwF5E9NrhLiSuukazZ0pIiIiW1KqJ1nJjg/T2SeVAq3cZOjt2xy/zBuO+WPUnwqsKE5P6D4MbiXA6u3Aph+A5ncqi9PX9lavnL5h0zs413ew1vLoQghkXFZgxD/24ZNdmVCVlmklULwzZTomU0RERBZQamK2Iq2yVE/HVs3w/LCOWDjhQQzp7AkAmDP+DU1x+pRTwG/LgWHZ6uL0yCrF6f0zj6kzswsXcCZXif4f7sG4zw8jO68In+87h9iEU1qPouGdKdMxmSIiIrKAJk6m1eZKq617KJFIEBHkj/VRlU8FqShOV5QXp/+yVl2c7lhaWZx+0K+8sb8/jr3wBvJvl2j1+92Ri/ir5J5mm3emTMdkioiIyAIWTgxAF69mWDKlN/45tQ9+mTccALDtJfXSPK3dZXB3ccTSqX1M6s/fW47e1YrTf/2msjg9eAbwzkh1cXrE9hXIXhwO2T3thKrXgt2a7/+192ydxGkPmEwRERFZQAfPpkicOxyT+rXDxL5t0bFVMwBA3/YtkB0fhiNvP4r090LQx7e5Sf1N7OMDQF2cPiBG/Wn3iuL0Z9OAMimwaBgw9Dngz/J1qjM/nYQhWWl6+0s5n4/Df9w0L0g7wWSKiIjISkmlpj8yzbOZs+b7m03Vxek/9hgOtxLgm+3A5s3axelr+qiL09dvfhfrNr6jVZxeYfqqI3UQhe1jMkVERGQDwnrqPo/vlXGv47HpnwAAJp9Wr5w+PFtdnP7sRGDaE0CBCzD0QjqyPx6HtorrDTtoG8FkioiIyAZIJRIsGnAPk/trr66e1rYbOr/2Iwpc3OCrBPauBT7aoy5O3xwA9H6xsjj91+XP4aXkzVrH31WVNlQIjRaTKSIiokbq0BvBAIBpD/nC2VGKZk6An4erTrt7Do7o+7fv8fbol+EggPmH1Sund84DLsnVK6f/vbw4/Y2D36qL01XqZ/OVlgn8J/UypixPRh6f16cXkykiIqJGytfDFdnxYYh/vJdmn7H1q77rM0ZTnP5QDpC2AnjuOCAkwEfDgCHPAefUz2ZG5pLHMSQrDQ8v2oPXfvgNR7Pz8clufsJPHyZTRERENsRQMtWjjfphy1WL05uVAKsSKovTj7YD+s7SLk5f+e2bmuL0X85cM3mxUXvCZIqIiMiGTB7QVu/+01eVWtuvjHsdEyM+VR+jpzh96mR1cfrgCyeQ/fE4tFNcwzVlMb7cf+6+xnP2WiGOmPAMwsaMyRQREZEN8XZ3wZmFoTj+7ihseTEI/5rWx2DbdJ+u6Pzaj8hv4q4pTo8rL07/4UF1cfqB8uL0w8tn4qXkzVj9a7bJYyktEwhZehBTV6bgUn4Rfky7ghnfHIXijsq8IK0MkykiIiIb4+LkAI+mzujv54EHfeRG295zcES/Od9h/ugYOAjgrWrF6cGR2sXpqe+FAHfumDSOf+2prLHKzruNVzal48DZG/hi3/3d3bJ2TKaIiIhsWFOZac8A/L5PKPrHrAegvzh98MzK4nS4uuKrd77Ec2uOGXwg8lXFHXz2S2XSdCm/MgGr/lzAxo7JFBERkQ1zdXI0+vq+10Zovs9r2hz+b/4X23qM0BSn/1BenH6srXrl9NV91MXp0YtewswFUcjMVeLg2RtQ3lUhM7cQF/OK8OZ/TiAo7het87y9LUPz/V1VKZL+vAlVaVkdRmo5xn/CRERE1Ki5Grkzder90Wgq000FXh33Gtb2H4cf183DE6eBgZeBZx4D9ncAnpsI/NwFWLFDXZwOn+aImvU1FN7tUHj3nklj+u+Jq/jviat4flhHvD22e21Dsxq8M0VERGTDnBwM/6rXl0hVFKyn+3RFp9e346arHL5KYM+32sXpvaoWp6+IwjO/bLjvsa3+Neu+j7FGTKaIiIhIY0KfyqUVSqUOGDB7A96qVpzeJQ+4XF6c/vYj6uL01w+t01o53RS2smQVkykiIiIbF9DWXfN9+/LHzUx7yNdg+z6+zbW2N1YrTj++AphZXpweN1RdnP5HlZXTh2YdN2lcZQaK1xsbJlNEREQ2rmqd98E3gvHbeyGIm9RTs6+Vm0yr/cbnA3X6qChO3/JgMJqVAF8nAP/ZBLQoL07v+wLwTV91cfq6ze/h++/na1ZON8RGcikmU0RERLau+vIFclcnSCQSzXY3bzet112cHPD22G56+5oXPg8TyldOf/x34LcvgRFZwG1nYOaEypXTgy5mqFdOv5VrdGyX8osQtfYYdp8y3s6aMZkiIiKycTW9nRYT3BkAMKlfZb1U9NCO2PnKUJxbNAbvhHVHv/bNNa/9Vl6cfsO1uaY4PT5Ruzh9v7+67eEVUYhJ2mjw3EM/3oc9v1/H8+tSax2fpTGZIiIisnE1PZx4YMeW+O29EHw6ubdmn0QiQTdvdzg6SBE1tCO+i9Z+669U6oCHZq/Hm6Gz4SCAN38FkqsUp4+cAcwvL05/7dB6ZC8Oh4vqbr3EZ2lMpoiIiGxcx1bNamxT/a2/6hyl+l/b1Hu0pjh9QHlxelSqujg9figwqEpx+pklT2DY+cZ7B8oQJlNEREQ2btFjAZjUry22vjSo1n04GEimgCrF6QEj0awE+GpHZXH6/1UrTv/2h1hs/O4tk6rP76pKMW1lMj7/5Y9aj7shMJkiIiKycV5uLlgypQ/6tW9R6z6M3bWqMC9sLsY/swSAujj9xJdAcJXi9CmTgfwmQOClk8j+eBx8ayhO33r8ClLO5+OT3WeNtrM0JlNERERUZ060eQCdXt+O601boJ0SSPwWWFxenP6fB4HeL1QWpx9aEYXZv36vOfb7oxdx7nqhZrvq8/ysGZMpIiIiMsn30brrT+lTKnXAwzHr8EboHDgI4I1fgZSvgQduahenlzgA8w5v0BSnz9+agUeXHAQA/JxxVavPXIX1Fq8zmSIiIiKTdGzVtMY2KfMfwfwx3SBzlGJz7xD0m61+Zl//q7rF6YOfA862VB93ZskTGF6lOP3FDdqrqC/63+91F0gdYzJFREREJmnh6lxjGy83GWYN74RT748GAOS7yjHooz34sc8oNFWpi9O3VC1OnwWsKi9OX/tDLDYZKE4//MeNug6nzjCZIiIiIpM4O0px/N1ROP7uKDwT5Ie2zZvotJGWf+rP0UGKt8d2g7yJE/a/HoxxqbuAY8cAAJPKi9NHngeKnIGoCcDkKeri9IGXTgJSqU5xujU/eYbJFBEREZnMo6kzPJo644MJATj8ZjDOLAw12Pb5YZ3wW2wInB2l6qUVBgwAVKrK4vR1lcXpW3qoV07f568+9tCKKMypUpxuzZhMERERUa1IJBLNc/ycHaT435yhNR/k6KgpTpdWK06/4g48MgN461F1cfrcKsXprk4O9R9QLTGZIiIiIrM8P6wTzi4agx4+7ia1//jxXtjcOwR9qxWnR5cXpy8eol45vWpx+sNnjtTX8M3GZIqIiIga1KDO6iypwFUO/zf/ix8CHkVTFbByB7B1I+BRBKT6qIvTV/ZX10v989u/AydOWHbgBjCZIiIiogbVTOaotf162CsIn/FPAMBjZ7SL02eNA6QLgGIHAC+80MAjNQ2TKSIiImpQzV2d8fex3TXbs4Z1xEnvzuj4+nbkNvNA20J1cfrcpMpjdncC8Lt1rjXlWHMTIiIioroVPawjnh3sD0cHKVSlZVhx8DzKpA4IfPlbTD6xG//4+TN8uhsYehG4KAceyQIQHmzpYevFO1NERERkEY4O6jTEUar9EOUfeqmL08sgwehzMsw5Arj2eQj47DNLDLNGvDNFREREFiWRSHT2FbjK0fHNHRjX0Q3LHusOtGplgZGZhnemiIiIyGoN69fBqhMpoBElUwUFBYiIiIBcLodcLkdERARu3bpl9JitW7di9OjR8PT0hEQiQXp6utbr+fn5mD17Nrp27QpXV1e0b98ec+bMgUKhqL9AiIiIyGTB3bwsPYQaNZpk6qmnnkJ6ejp27tyJnTt3Ij09HREREUaPuX37NgYPHoz4+Hi9r+fk5CAnJweffPIJMjIysGbNGuzcuRMzZ86sjxCIiIjoPkn1vAVobRpFzdTvv/+OnTt3IiUlBQMHDgQAfPXVVwgKCkJmZia6du2q97iKZCs7O1vv6wEBAdiyZYtmu1OnTli0aBGmT5+Oe/fuwdGxUfx4iIiIbJajA5OpOpGcnAy5XK5JpAAgMDAQcrkcSUlJBpOp2lAoFHB3dzeaSBUXF6O4uFizrVQqAQAqlQoqlarOxmJNKuKy1fiqs7d4AfuLmfHaPnuL2WbjLS2FoZDMjbmuflaNIpnKzc2Fl5fue6ZeXl7Izc2ts/Pk5eVh4cKFmDVrltF2cXFxeP/993X27969G66urnU2HmuUmJho6SE0KHuLF7C/mBmv7bO3mBtrvB8NAG7eBZac1E5NEnfvgmMNRUm1jbmoqKhWx1Vn0WRqwYIFepOSqo4dOwZA/8cmhRB699eGUqlEWFgYevTogdjYWKNt58+fj7lz52od6+vri5CQELi7m/aQx8ZGpVIhMTERo0aNgpOTk6WHU+/sLV7A/mJmvLbP3mK2lXiXnNyttR0+dgykUv2/682NueKdJXNZNJmKiYnBtGnTjLbx9/fHiRMncO3aNZ3Xbty4gdatW5s9jsLCQoSGhqJZs2bYtm1bjRdEJpNBJpPp7HdycmrU/4BNYQ8xVmVv8QL2FzPjtX32FnNjj/frZwYg6tv/02zLZM41HlPbmOvq52TRZMrT0xOenp41tgsKCoJCocDRo0fx8MMPAwCOHDkChUKBQYMGmTUGpVKJ0aNHQyaTISEhAS4uLmb1R0RERLX3aI/WeCesOz78yTqfw6dPo1gaoXv37ggNDUV0dDRSUlKQkpKC6OhohIeHaxWfd+vWDdu2bdNs5+fnIz09HadPnwYAZGZmIj09XVNnVVhYiJCQENy+fRurVq2CUqlEbm4ucnNzUVpa2rBBEhEREQDgke7mv+vUkBpFAToAbNiwAXPmzEFISAgAYPz48fj888+12mRmZmotuJmQkIBnn31Ws13xlmJsbCwWLFiA1NRUHDlyBADQuXNnrb6ysrLg7+9fH6EQERGRER08m+LfT/eDZzPdkhpr1GiSKQ8PD6xfv95oGyGE1nZkZCQiIyMNth8xYoTOMURERGR5Y3u2sfQQTNYo3uYjIiIislZMpoiIiIjMwGSKiIiIyAxMpoiIiIjMwGSKiIiIyAxMpoiIiIjMwGSKiIiIyAxMpoiIiIjMwGSKiIiIyAxMpoiIiIjMwGSKiIiIyAxMpoiIiIjMwGSKiIiIyAyOlh6ALRBCAACUSqWFR1J/VCoVioqKoFQq4eTkZOnh1Dt7ixewv5gZr+2zt5jtLV7A/Jgrfm9X/B6vLSZTdaCwsBAA4Ovra+GREBER0f0qLCyEXC6v9fESYW46RigrK0NOTg7c3NwgkUgsPZx6oVQq4evri0uXLsHd3d3Sw6l39hYvYH8xM17bZ28x21u8gPkxCyFQWFgIHx8fSKW1r3zinak6IJVK0a5dO0sPo0G4u7vbzSQF7C9ewP5iZry2z95itrd4AfNiNueOVAUWoBMRERGZgckUERERkRmYTJFJZDIZYmNjIZPJLD2UBmFv8QL2FzPjtX32FrO9xQtYT8wsQCciIiIyA+9MEREREZmByRQRERGRGZhMEREREZmByRQRERGRGZhMEREREZmByZSNiYuLw0MPPQQ3Nzd4eXlh4sSJyMzM1GojhMCCBQvg4+ODJk2aYMSIETh16pRWm+LiYsyePRuenp5o2rQpxo8fj8uXL2te379/PyQSid6vY8eOGRxfZGSkTvvAwECLx7ty5UqMGDEC7u7ukEgkuHXrls65CgoKEBERAblcDrlcjoiICL3t7vfc1hhvdnY2Zs6ciQ4dOqBJkybo1KkTYmNjUVJSYnR8dX19GzJmAPD399cZ/1tvvWV0fI31GtvSHM7Pz8fs2bPRtWtXuLq6on379pgzZw4UCoVWP9YwhxsyZmuZxw15jS02hwXZlNGjR4vVq1eLkydPivT0dBEWFibat28v/vrrL02b+Ph44ebmJrZs2SIyMjLE1KlTRZs2bYRSqdS0eeGFF0Tbtm1FYmKiOH78uAgODha9e/cW9+7dE0IIUVxcLK5evar1FRUVJfz9/UVZWZnB8c2YMUOEhoZqHZeXl2fxeJcuXSri4uJEXFycACAKCgp0zhUaGioCAgJEUlKSSEpKEgEBASI8PNzo+Ew5tzXG+/PPP4vIyEixa9cu8eeff4rt27cLLy8vMW/ePKPjq+vr25AxCyGEn5+f+OCDD7TGX1hYaHR8jfUa29IczsjIEJMmTRIJCQni3LlzYu/evaJLly7i8ccf1zqXNczhhozZWuZxQ15jS81hJlM27vr16wKAOHDggBBCiLKyMuHt7S3i4+M1be7evSvkcrlYvny5EEKIW7duCScnJ7Fx40ZNmytXrgipVCp27typ9zwlJSXCy8tLfPDBB0bHM2PGDDFhwgQzozKsNvFWtW/fPr2/eE6fPi0AiJSUFM2+5ORkAUCcOXNG71ju99y1UV/x6vPxxx+LDh06GG1T39dXiPqN2c/PTyxdutTksdjSNbaVOVxh8+bNwtnZWahUKiGE9c5hIeovZn2sYR7XZ7yWmsN8m8/GVdwC9fDwAABkZWUhNzcXISEhmjYymQzDhw9HUlISACA1NRUqlUqrjY+PDwICAjRtqktISMDNmzcRGRlZ45j2798PLy8vPPDAA4iOjsb169drG56O2sRriuTkZMjlcgwcOFCzLzAwEHK53GA/dXVuY+orXkPnqjiPMfV5fSvGAdRfzIsXL0bLli3Rp08fLFq0yOhbIrZ0jW1tDisUCri7u8PR0RGA9c7hirECdR+zoTaWnsf1Ha8l5rDhnzg1ekIIzJ07F0OGDEFAQAAAIDc3FwDQunVrrbatW7fGhQsXNG2cnZ3RokULnTYVx1e3atUqjB49Gr6+vkbHNGbMGEyePBl+fn7IysrCu+++i5EjRyI1NdXsxwHUNl5T5ObmwsvLS2e/l5eXwZ9JXZ3bkPqMt7o///wTy5Ytw6effmq0XX1eX6D+Y/7b3/6Gfv36oUWLFjh69Cjmz5+PrKwsfP3113rb29I1tqU5nJeXh4ULF2LWrFmafdY4h4H6jbk6a5jH9R2vpeYwkykbFhMTgxMnTuDw4cM6r0kkEq1tIYTOvuoMtbl8+TJ27dqFzZs31zimqVOnar4PCAjAgAED4Ofnh59++gmTJk2q8Xhj6jremvowtZ+6OLc+9R1vhZycHISGhmLy5MmIiooy2rY+ry9Q/zG/+uqrmu979eqFFi1a4IknntD8pWtIY7/GtjSHlUolwsLC0KNHD8TGxhrtw1g/tTl3bdR3zBWsZR7Xd7yWmsN8m89GzZ49GwkJCdi3bx/atWun2e/t7Q0AOn+JXb9+XZOZe3t7o6SkBAUFBQbbVLV69Wq0bNkS48ePv+9xtmnTBn5+fvjjjz/u+9iqzInXFN7e3rh27ZrO/hs3bhjsp67OrU99x1shJycHwcHBCAoKwsqVK+/7+Lq6vkDDxVxVxSeYzp07p/d1W7jGgO3M4cLCQoSGhqJZs2bYtm0bnJyctPqxpjkM1H/MFaxlHjdUvFU12Bw2ubqKGoWysjLx8ssvCx8fH3H27Fm9r3t7e4vFixdr9hUXF+stQN+0aZOmTU5Ojt4C9LKyMtGhQ4caPx1iyM2bN4VMJhNr166t1fF1EW9VNRWgHzlyRLMvJSXFpOJVU89tioaKVwghLl++LLp06SKmTZum+RTn/TL3+grRsDFXt2PHDgFAXLhwweDYGvM1rujPFuawQqEQgYGBYvjw4eL27ds6/VjLHK7otyFiFsI65nFDxltdQ81hJlM25sUXXxRyuVzs379f66OhRUVFmjbx8fFCLpeLrVu3ioyMDPHkk0/qXRqhXbt2Ys+ePeL48eNi5MiRWksjVNizZ48AIE6fPq13PF27dhVbt24VQghRWFgo5s2bJ5KSkkRWVpbYt2+fCAoKEm3btq31x4zrKt6rV6+KtLQ08dVXXwkA4uDBgyItLU3r48ChoaGiV69eIjk5WSQnJ4uePXvqfKy6arymntsa471y5Yro3LmzGDlypLh8+bLWuQzFWx/XtyFjTkpKEkuWLBFpaWni/PnzYtOmTcLHx0eMHz/eYMymntsa461gC3NYqVSKgQMHip49e4pz585p9VP1/yxrmMMNGbO1zOOGiteSc5jJlI0BoPdr9erVmjZlZWUiNjZWeHt7C5lMJoYNGyYyMjK0+rlz546IiYkRHh4eokmTJiI8PFxcvHhR53xPPvmkGDRokNHxVJy7qKhIhISEiFatWgknJyfRvn17MWPGDL39NnS8sbGxNfaTl5cnnn76aeHm5ibc3NzE008/rfPXfm3ObY3xrl692uC5DMVbH9e3IWNOTU0VAwcOFHK5XLi4uIiuXbuK2NhYnb+AbeUaV7CFOVxx903fV1ZWlqadNczhhozZWuZxQ8VryTksKe+YiIiIiGqBBehEREREZmAyRURERGQGJlNEREREZmAyRURERGQGJlNEREREZmAyRURERGQGJlNEREREZmAyRURERGQGJlNEREREZmAyRURERGQGJlNEREREZvh/7ovbfhwNIFkAAAAASUVORK5CYII=", "text/plain": [ "
    " ] @@ -1078,15 +2049,15 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 273, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - " Training set: Coefficient / Velocity eastward (mm/year): 0.0\n", - "Validation set MSE (mm) and Coef of Determination: 0.00,1.00\n" + " Training set: Coefficient / Velocity eastward (mm/year): -0.006250720119447979\n", + "Validation set MSE (mm) and Coef of Determination: 0.00,0.92\n" ] }, { @@ -1095,13 +2066,13 @@ "Text(0.5, 1.0, 'Chronological selection for data split')" ] }, - "execution_count": 27, + "execution_count": 273, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmoAAAHFCAYAAABCcNXZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABvPElEQVR4nO3deVhUZfsH8O+wg2yygyKbuRCZBqVQipjglpG5awq5hUopWL3iipS7KZpbFommKZpLbm+CuWVMLrik4FIEYgkpWKKiMMDz+8OX83NkQFCWYeb7uS4uPc+5z3Oe+8wcuT2rTAghQERERERqR6e+B0BEREREqrFQIyIiIlJTLNSIiIiI1BQLNSIiIiI1xUKNiIiISE2xUCMiIiJSUyzUiIiIiNQUCzUiIiIiNcVCjYiIiEhNsVAjqoJff/0V7777Ltzc3GBkZARTU1O89NJLWLBgAW7duiXFubq64o033qjHkT4bmUyG6OjoWl1HaGgoXF1da63/6OhoyGSyWuu/PtaZnJyM6Oho/Pvvv+Xmde7cGZ07d661dVfmzJkz8Pf3h4WFBWQyGWJjY+t8DJmZmZDJZIiPj6/2smlpaYiOjkZmZmaNj6smqfqMH99XG0ouVH169T0AInX35ZdfYty4cWjZsiU++ugjeHp6QqFQ4NSpU1i9ejXkcjl27NhR38NsMKZPn44JEybU9zAalOTkZMyaNQuhoaGwtLRUmrdy5cr6GRSAESNG4N69e9i8eTMaN25cqwV4bUhLS8OsWbPQuXPnBjd2uVyOpk2bStMNOReqHAs1okrI5XKMHTsWgYGB2LlzJwwNDaV5gYGBmDRpEn744YcaWdf9+/dhZGRU50eD6pqHh0d9D0GjeHp61tu6L1y4gNGjR6NHjx410p9CoYBMJoOeHn81PUmHDh3qewhUR3jqk6gSc+bMgUwmw5o1a5SKtDIGBgZ48803y7X/8MMPeOmll2BsbIxWrVrh66+/VpofHx8PmUyGxMREjBgxAra2tjAxMUFhYSFKS0uxYMECtGrVCoaGhrCzs8Pw4cPx559/KvXRuXNneHl54eTJk+jYsSNMTEzg7u6OefPmobS0VCk2KysL77zzDuzs7GBoaIjWrVvjs88+KxenyoULFxAcHIzGjRvDyMgIbdu2xbp168rFpaamIigoCCYmJrC1tcX48eOxd+9eyGQyHD58WIpTdeqztLQUn3/+Odq2bQtjY2NYWlqiQ4cO2LVrlxSTkJCAoKAgODo6wtjYGK1bt8bkyZNx7969J+agyh9//IFBgwbByckJhoaGsLe3x+uvv46zZ88qxSUkJMDX1xeNGjWCqakpunXrhjNnzlRpHVVd9vjx4+jduzesra1hZGQEDw8PTJw4EcDD06offfQRAMDNzQ0ymUxpm6o6LXbr1i2MGzcOTZo0gYGBAdzd3TF16lQUFhYqxclkMoSHh+Obb75B69atYWJighdffBF79uypNK+y729xcTFWrVoljalMVb4zhw8fhkwmwzfffINJkyahSZMmMDQ0xO+//17heq9fv44BAwbAzMwMFhYWGDhwIHJycsrFnTp1CoMGDYKrqyuMjY3h6uqKwYMH4+rVq0o59O/fHwAQEBAg5VB2CjUpKQnBwcFo2rQpjIyM0Lx5c7z33nvIzc2tdNsAD7/Pn376KVq2bCl9n9u0aYOlS5dKMWWny8+cOYO3334b5ubmsLCwwDvvvIObN28+cR2Pnvp8Ui7UsPG/LUQVKCkpwcGDB+Ht7Q1nZ+cqL3fu3DlMmjQJkydPhr29Pb766iuMHDkSzZs3R6dOnZRiR4wYgV69euGbb77BvXv3oK+vj7Fjx2LNmjUIDw/HG2+8gczMTEyfPh2HDx/G6dOnYWNjIy2fk5ODoUOHYtKkSZg5cyZ27NiBqKgoODk5Yfjw4QCAmzdvws/PD0VFRfjkk0/g6uqKPXv24MMPP0R6enqlp84uX74MPz8/2NnZYdmyZbC2tsaGDRsQGhqKv//+Gx9//DEAIDs7G/7+/mjUqBFWrVoFOzs7bNq0CeHh4VXaZqGhodiwYQNGjhyJmJgYGBgY4PTp00rX2/z222/o2bMnJk6ciEaNGuHSpUuYP38+Tpw4gYMHD1b145H07NkTJSUlWLBgAZo1a4bc3FwkJycrXQc2Z84cTJs2De+++y6mTZuGoqIiLFy4EB07dsSJEycqPZpV1WX379+P3r17o3Xr1li8eDGaNWuGzMxMJCYmAgBGjRqFW7du4fPPP8f27dvh6OgIoOIjaQ8ePEBAQADS09Mxa9YstGnTBj/99BPmzp2Ls2fPYu/evUrxe/fuxcmTJxETEwNTU1MsWLAAffr0weXLl+Hu7q5yHb169YJcLoevry/69euHSZMmSfOq+p0pExUVBV9fX6xevRo6Ojqws7NTuc779++ja9euuH79OubOnYsWLVpg7969GDhwYLnYzMxMtGzZEoMGDYKVlRWys7OxatUqvPzyy0hLS4ONjQ169eqFOXPmYMqUKVixYgVeeuklAP9/xDc9PR2+vr4YNWoULCwskJmZicWLF+O1117D+fPnoa+vr3KcALBgwQJER0dj2rRp6NSpExQKBS5duqTyGsM+ffpgwIABCAsLQ2pqKqZPn460tDQcP3680nU86km5UAMniEilnJwcAUAMGjSoysu4uLgIIyMjcfXqVant/v37wsrKSrz33ntS29q1awUAMXz4cKXlL168KACIcePGKbUfP35cABBTpkyR2vz9/QUAcfz4caVYT09P0a1bN2l68uTJKuPGjh0rZDKZuHz5stQGQMycOVOaHjRokDA0NBRZWVlKy/bo0UOYmJiIf//9VwghxEcffSRkMplITU1ViuvWrZsAIA4dOiS1hYSECBcXF2n66NGjAoCYOnWqqKrS0lKhUCjEkSNHBABx7tw5ad7MmTPFk/5py83NFQBEbGxshTFZWVlCT09PvP/++0rtd+7cEQ4ODmLAgAEVrrM6y3p4eAgPDw9x//79CseycOFCAUBkZGSUm+fv7y/8/f2l6dWrVwsAYsuWLUpx8+fPFwBEYmKi1AZA2Nvbi/z8fKktJydH6OjoiLlz51Y4nkeXHz9+vFJbVb8zhw4dEgBEp06dnrgeIYRYtWqVACC+//57pfbRo0cLAGLt2rUVLltcXCzu3r0rGjVqJJYuXSq1b926tdz3U5Wy79vVq1dVjuFxb7zxhmjbtm2lMWXfmYiICKX2jRs3CgBiw4YNUtvjn7EQ5ffVquZCDQ9PfRLVsLZt26JZs2bStJGREVq0aKF02qVM3759laYPHToE4OERpke98soraN26NX788UeldgcHB7zyyitKbW3atFFa18GDB+Hp6VkuLjQ0FEKISo9GHTx4EK+//nq5I4qhoaEoKCiAXC4HABw5cgReXl7ljvIMHjy4wr7L/Pe//wUAjB8/vtK4P/74A0OGDIGDgwN0dXWhr68Pf39/AMDFixefuJ5HWVlZwcPDAwsXLsTixYtx5syZcqeB9+/fj+LiYgwfPhzFxcXSj5GREfz9/ZVO5z6uqsteuXIF6enpGDlyJIyMjKqVQ0UOHjyIRo0aoV+/fkrtZd+px79DAQEBMDMzk6bt7e1hZ2en8vta1fVX5TtT5vF9oCKHDh2CmZlZuUsNhgwZUi727t27+M9//oPmzZtDT08Penp6MDU1xb1796r8Xblx4wbCwsLg7OwMPT096Ovrw8XFBcCTv2+vvPIKzp07h3HjxmH//v3Iz8+vMHbo0KFK0wMGDICenp70bwERT30SVcDGxgYmJibIyMio1nLW1tbl2gwNDXH//v1y7WWnscrk5eWpbAcAJyencr88q7KuvLw8lXeBOTk5Ka1Tlby8vArH8uiyeXl5cHNzKxdnb29fYd9lbt68CV1dXTg4OFQYc/fuXXTs2BFGRkb49NNP0aJFC5iYmODatWt4++23VW7byshkMvz444+IiYnBggULMGnSJFhZWWHo0KGYPXs2zMzM8PfffwMAXn75ZZV96OhU/P/cqi5bdi3So3fvPau8vDw4ODiUuynFzs4Oenp65T7v6nxfq7r+qnxnyqiKrahfVd8nVd+bIUOG4Mcff8T06dPx8ssvw9zcHDKZDD179qxSXqWlpQgKCsL169cxffp0vPDCC2jUqBFKS0vRoUOHJ/YRFRWFRo0aYcOGDVi9ejV0dXXRqVMnzJ8/Hz4+PpWOX09PD9bW1pXul6RdWKgRVUBXVxevv/46/vvf/+LPP/+s0V+mZR7/ZVr2SzM7O7vc+q5fv650fVpVWVtbIzs7u1z79evXAaDSPqu6rLW1tVScPErVhd6Ps7W1RUlJCXJycir8pX3w4EFcv34dhw8flo6iAVB5zU9Vubi4IC4uDsDDI1tbtmxBdHQ0ioqKsHr1aim37777TjqSUlVVXdbW1hYAyt0o8iysra1x/PhxCCGUvl83btxAcXHxU32Hqrv+6nzfqnqXs7W1NU6cOFGu/fHv2O3bt7Fnzx7MnDkTkydPltoLCwuVnnlYmQsXLuDcuXOIj49HSEiI1F7ZjQ6P0tPTQ2RkJCIjI/Hvv//iwIEDmDJlCrp164Zr167BxMREafxNmjSRpouLi5GXl6eygCbtxFOfRJWIioqCEAKjR49GUVFRufkKhQK7d++usfV16dIFALBhwwal9pMnT+LixYt4/fXXq93n66+/jrS0NJw+fVqpff369ZDJZAgICKh02bIi6fFlTUxMpEcE+Pv748KFC0hLS1OK27x58xPHV/Zoh1WrVlUYU/bL/PE7b7/44osn9l8VLVq0wLRp0/DCCy9I26lbt27Q09NDeno6fHx8VP5UpKrLtmjRAh4eHvj666/L3ZH5qLK8q3I06PXXX8fdu3exc+dOpfb169dL82tTVb8z1RUQEIA7d+4o3QkMAN9++63StEwmgxCi3Hflq6++QklJiVJbRdu1Jr9vlpaW6NevH8aPH49bt26VeyDtxo0blaa3bNmC4uLiaj/EuDrfEWpYeESNqBK+vr5YtWoVxo0bB29vb4wdOxbPP/88FAoFzpw5gzVr1sDLywu9e/eukfW1bNkSY8aMweeffw4dHR306NFDuuvT2dkZERER1e4zIiIC69evR69evRATEwMXFxfs3bsXK1euxNixY9GiRYsKl505cyb27NmDgIAAzJgxA1ZWVti4cSP27t2LBQsWwMLCAgAwceJEfP311+jRowdiYmJgb2+Pb7/9FpcuXQJQ+WnCjh07YtiwYfj000/x999/44033oChoSHOnDkDExMTvP/++/Dz80Pjxo0RFhaGmTNnQl9fHxs3bsS5c+eqvT2Ah2+aCA8PR//+/fHcc8/BwMAABw8exK+//iodhXF1dUVMTAymTp2KP/74A927d0fjxo3x999/48SJE2jUqBFmzZqlsv/qLLtixQr07t0bHTp0QEREBJo1a4asrCzs379f+iX+wgsvAACWLl2KkJAQ6Ovro2XLlkrXlpUZPnw4VqxYgZCQEGRmZuKFF17AsWPHMGfOHPTs2RNdu3Z9qm1WVVX9zlTX8OHDsWTJEgwfPhyzZ8/Gc889h3379mH//v1Kcebm5ujUqRMWLlwIGxsbuLq64siRI4iLiyv3sGAvLy8AwJo1a2BmZgYjIyO4ubmhVatW8PDwwOTJkyGEgJWVFXbv3o2kpKQqjbV3797w8vKCj48PbG1tcfXqVcTGxsLFxQXPPfecUuz27duhp6eHwMBA6a7PF198EQMGDKjW9qkoFx6Z0wD1eisDUQNx9uxZERISIpo1ayYMDAxEo0aNRLt27cSMGTPEjRs3pDgXFxfRq1evcss/ftdW2V2fJ0+eLBdbUlIi5s+fL1q0aCH09fWFjY2NeOedd8S1a9fK9fn888+XW/7xuyqFEOLq1atiyJAhwtraWujr64uWLVuKhQsXipKSEqU4PHYnmRBCnD9/XvTu3VtYWFgIAwMD8eKLL6q8w+7ChQuia9euwsjISFhZWYmRI0eKdevWlbsrU9X4SkpKxJIlS4SXl5cwMDAQFhYWwtfXV+zevVuKSU5OFr6+vsLExETY2tqKUaNGidOnT5e7468qd33+/fffIjQ0VLRq1Uo0atRImJqaijZt2oglS5aI4uJipdidO3eKgIAAYW5uLgwNDYWLi4vo16+fOHDgwBPXWZVlhRBCLpeLHj16CAsLC2FoaCg8PDzK3Q0YFRUlnJychI6OjtLdfaruCMzLyxNhYWHC0dFR6OnpCRcXFxEVFSUePHigFAcVd20K8fB7HBISUuk2rGz5qnxnyu763Lp16xPXU+bPP/8Uffv2FaampsLMzEz07dtXJCcnl/sOlMU1btxYmJmZie7du4sLFy6ozCs2Nla4ubkJXV1dpX7S0tJEYGCgMDMzE40bNxb9+/cXWVlZKveRx3322WfCz89P2NjYCAMDA9GsWTMxcuRIkZmZKcWUfWdSUlJE7969pZwGDx4s/v77b6X+qnLXZ2W5UMMmE0KIui8PiUgbjBkzBps2bUJeXh4MDAzqezhEaiM6OhqzZs3CzZs3a/26QWrYeOqTiGpETEwMnJyc4O7ujrt372LPnj346quvMG3aNBZpRERPiYUaEdUIfX19LFy4EH/++SeKi4vx3HPPYfHixXwBOxHRM+CpTyIiIiI1xcdzEBEREakpFmpEREREaoqFGhEREZGa4s0Eaqy0tBTXr1+HmZlZlV+zQkRERPVLCIE7d+7Aycmp0gd+VwULNTV2/fp1ODs71/cwiIiI6Clcu3btmd8TzUJNjZW9HubatWswNzev59HUDoVCgcTERAQFBUFfX7++h1MntC1n5qv5tC1n5qv5njXn/Px8ODs7q3zNW3WxUFNjZac7zc3NNbpQMzExgbm5uVb9A6BNOTNfzadtOTNfzVdTOdfEZUu8mYCIiIhITbFQIyIiIlJTLNSIiIiI1BSvUSMiIo1QUlIChUJR6+tRKBTQ09PDgwcPUFJSUuvrq2/ali/w5Jz19fWhq6tbJ2NhoUZERA2aEAI5OTn4999/62x9Dg4OuHbtmlY841Lb8gWqlrOlpSUcHBxqfZuwUCMiogatrEizs7ODiYlJrf/iLC0txd27d2FqavrMDzNtCLQtX6DynIUQKCgowI0bNwAAjo6OtToWFmpERNRglZSUSEWatbV1nayztLQURUVFMDIy0orCRdvyBZ6cs7GxMQDgxo0bsLOzq9XToNqxxYmISCOVXZNmYmJSzyMhbVP2navt6yJZqBERUYOnLddOkfqoq+8cCzUiIiIiNcVCjYiISE107twZEydOrO9hkBphoUZERNQAHT58GDKZrM4eS0L1g3d9EhERASgpFTiRcQs37jyAnZkRXnGzgq4Or32j+sUjakREpPV+uJCN1+YfxOAvf8GEzWcx+Mtf8Nr8g/jhQnatrfPevXsYPnw4TE1N4ejoiM8++0xp/oYNG+Dj4wMzMzM4ODhgyJAh0rO7MjMzERAQAABo3LgxZDIZQkNDH+byww947bXXYGlpCWtra7zxxhtIT0+vtTyodrFQIyIirfbDhWyM3XAa2bcfKLXn3H6AsRtO11qx9tFHH+HQoUPYsWMHEhMTcfjwYaSkpEjzi4qK8Mknn+DcuXPYuXMnMjIypGLM2dkZ27ZtAwBcvnwZ2dnZWLp0KYCHBWBkZCROnjyJH3/8ETo6OujTpw9KS0trJQ+qXTz1SUREWqukVGDW7jQIFfMEABmAWbvTEOjpUKOnQe/evYu4uDisX78egYGBAIB169ahadOmUsyIESOkv7u7u2PZsmV45ZVXpCfmW1lZAQDs7OxgaWkpxfbt21dpXXFxcbCzs0NaWhq8vLxqLAeqGzyiRkREWutExq1yR9IeJQBk336AExm3anS96enpKCoqgq+vr9RmZWWFli1bStNnzpxBcHAwXFxcYGZmhs6dOwMAsrKyntj3kCFD4O7uDnNzc7i5uVVpOVJPLNSIiEhr3bhTcZH2NHFVJYSqY3j/7969ewgKCoKpqSk2bNiAkydPYseOHQAenhKtTO/evZGXl4cvv/wSx48fx/Hjx6u0HKmnBlOozZ49G35+fjAxMVE6xPuoCRMmwNvbG4aGhmjbtq3KmP3796NDhw4wMzODra0t+vbti4yMDKWYI0eOwNvbG0ZGRnB3d8fq1avL9bNt2zZ4enrC0NAQnp6e0g70qJUrV8LNzQ1GRkbw9vbGTz/9VO28iYio9tiZGdVoXFU1b94c+vr6+OWXX6S2f/75B1euXAEAXLp0Cbm5uZg3bx46duyIVq1aSTcSlDEwMADw8H2nZfLy8nDx4kVMmzYNr7/+Olq3bo1//vmnRsdOdavBFGpFRUXo378/xo4dW2GMEAIjRozAwIEDVc7/448/EBwcjC5duuDs2bPYv38/cnNz8fbbb0sxGRkZ6NmzJzp27IgzZ85gypQp+OCDD6SLNgFALpdj4MCBGDZsGM6dO4dhw4ZhwIAB0v9aACAhIQETJ07E1KlTcebMGXTs2BE9evTgoWciIjXyipsVHC2MUNHVZzIAjhYPH9VRk0xNTTFy5Eh89NFH+PHHH3HhwgWEhoZKLwBv1qwZDAwM8Pnnn+OPP/7Arl278Mknnyj14eLiAplMhj179uDmzZu4e/cuGjduDGtra6xZswa///47Dh48iMjIyBodO9WtBlOozZo1CxEREXjhhRcqjFm2bBnGjx8Pd3d3lfNPnz6NkpISfPrpp/Dw8MBLL72EDz/8EOfOnZNeqrp69Wo0a9YMsbGxaN26NUaNGoURI0Zg0aJFUj+xsbEIDAxEVFQUWrVqhaioKLz++uuIjY2VYhYvXoyRI0di1KhRaN26NWJjY+Hs7IxVq1bVzAYhIqJnpqsjw8zengBQrlgrm57Z27NWnqe2cOFCdOrUCW+++Sa6du2K1157Dd7e3gAAW1tbxMfHY+vWrfD09MS8efOUfg8BQJMmTTBr1ixMnjwZ9vb2CA8Ph46ODjZv3oyUlBR4eXkhIiICCxcurPGxU93Rqrs+fXx8oKuri7Vr1yI0NBR3797FN998g6CgIOjr6wN4eLQsKChIablu3bohLi4OCoUC+vr6kMvliIiIKBdTVqgVFRUhJSUFkydPVooJCgpCcnJyheMrLCxEYWGhNJ2fnw8AUCgUUiGpacry0tT8VNG2nJmv5qvPnBUKBYQQKC0tferHTwR52mPFkHaI2XMROfn/fy2ag4URpvdqjSBPe6W+y64vK1vv0zIxMcG6deuwbt06qW3SpEkAgNLSUgwcOLDcGaKy05xl6506dSqmTp0qzS8tLUWXLl1w4cKFSperjprKtyGpSs6lpaUQQkChUEBXV1dpXk3uC1pVqLm6uiIxMRH9+/fHe++9h5KSEvj6+mLfvn1STE5ODuzt7ZWWs7e3R3FxMXJzc+Ho6FhhTE5ODgAgNzcXJSUllcaoMnfuXMyaNatce2JiIkxMTKqdb0OSlJRU30Ooc9qWM/PVfPWRs56eHhwcHHD37t1nuljer5kJ9oa9hNPX8pF7rwg2jQzwkrM5dHVk0n+aH3fnzp2nXl9DpG35ApXnXFRUhPv37+Po0aMoLi5WmldQUFBjY6jXQi06OlplYfKokydPwsfHp0bWl5OTg1GjRiEkJASDBw/GnTt3MGPGDPTr1w9JSUmQyR4e2i77s0xZZf1ou6qYx9uqEvOoqKgopWsJ8vPz4ezsjKCgIJibm1cj04ZDoVAgKSkJgYGB0lFNTadtOTNfzVefOT948ADXrl2DqakpjIye/YL/1y0tnhgjhMCdO3dgZmZW6b/pmkLb8gWqlvODBw9gbGyMTp06lfvuVVTcP416LdTCw8MxaNCgSmNcXV1rbH0rVqyAubk5FixYILVt2LABzs7OOH78ODp06AAHB4dyR71u3LgBPT09WFtbA0CFMWVH0GxsbKCrq1tpjCqGhoYwNDQs166vr6/x/+BrQ46P07acma/mq4+cS0pKIJPJoKOjI12IX9vKToWVrVfTaVu+QNVy1tHRgUwmU/m9r8n9oF4LNRsbG9jY2NTZ+goKCsqdRy6bLvtQfH19sXv3bqWYxMRE+Pj4SBve19cXSUlJStepJSYmws/PD8DDW6a9vb2RlJSEPn36SDFJSUkIDg6u+cSIiIhIIzWYa9SysrJw69YtZGVloaSkBGfPngXw8Fk0pqamAIDff/8dd+/eRU5ODu7fvy/FeHp6wsDAAL169cKSJUsQExMjnfqcMmUKXFxc0K5dOwBAWFgYli9fjsjISIwePRpyuRxxcXHYtGmTNJYJEyagU6dOmD9/PoKDg/H999/jwIEDOHbsmBQTGRmJYcOGwcfHB76+vlizZg2ysrIQFhZWNxuMiIiIGrwGU6jNmDFD6c6YssLq0KFD0ms1Ro0ahSNHjpSLycjIgKurK7p06YJvv/0WCxYswIIFC2BiYgJfX1/88MMPMDY2BgC4ublh3759iIiIwIoVK+Dk5IRly5YpvTvNz88PmzdvxrRp0zB9+nR4eHggISEB7du3l2IGDhyIvLw8xMTEIDs7G15eXti3bx9cXFxqbRsRERGRZmkwhVp8fDzi4+MrjTl8+PAT+xk0aNATr4vz9/fH6dOnK43p168f+vXrV2nMuHHjMG7cuCeOiYiIiEgV7bgqkIiIiKgBYqFGREREpKZYqBEREdUDIQTGjBkDKysryGQynD17Fp07d8bEiRPre2i1Ijo6Gm3btq3WMq6urkqvZ9RGLNSIiIjqwQ8//ID4+Hjs2bNHuuls+/btSi9fr89CJT4+HpaWljXW34cffogff/yxWsucPHkSY8aMqbExNEQN5mYCIiIiTZKeng5HR0fpGZwAYGVlVY8jejpFRUUwMDB4Ypypqan0OK2qsrW1fdphaQweUSMiIqpjoaGheP/995GVlQWZTCa9hefRU5+dO3fG1atXERERAZlMVunrm7KyshAcHAxTU1OYm5tjwIAB+Pvvv6X5Zacdv/nmG7i6usLCwgKDBg2q8F2Whw8fxrvvvovbt29DV1cXjRs3ll756Orqik8//RShoaGwsLDA6NGjAQD/+c9/0KJFC5iYmMDd3R3Tp09Xejn546c+Q0ND8dZbb2HRokVwdHSEtbU1xo8fr7TM40cUZTIZvvrqK/Tp0wcmJiZ47rnnsGvXLqWx79q1C8899xyMjY0REBCAdevWQSaT4d9//61w+6kzFmpERER1bOnSpYiJiUHTpk2RnZ2NkydPlovZvn07mjZtKj2PMzs7W2VfQgi89dZbuHXrFo4cOYKkpCSkp6dj4MCBSnHp6enYuXMn9uzZgz179uDIkSOYN2+eyj79/PwQGxsLc3Nz/PXXX7h06RImTZokzV+4cCG8vLyQkpKC6dOnAwDMzMwQHx+PtLQ0LF26FF9++SWWLFlS6XY4dOgQ0tPTcejQIaxbt65Kj+KaNWsWBgwYgF9//RU9e/bE0KFDcevWLQBAZmYm+vXrh7feegtnz57Fe++9h6lTp1ban7pjoUZERAQAt24B/foBTZs+/PN/v/xrg4WFBczMzKCrqwsHBweVp/isrKygq6sLMzMzODg4wMHBQWVfBw4cwK+//opvv/0W3t7eaN++Pb755hscOXJEqQAsLS1FfHw8vLy80LFjRwwbNqzCa8YMDAxgYWEBmUwGBwcH2NvbK5227NKlCz788EM0b94czZs3BwBMmzYNfn5+cHV1Re/evTFp0iRs2bKl0u3QuHFjLF++HK1atcIbb7yBXr16PfE6ttDQUAwePBjNmzfHnDlzcO/ePZw4cQIAsHr1arRs2RILFy5Ey5YtMWjQIISGhlban7rjNWpEREQAMGYMsHMnUFLy8E8A+O67+hxRlVy8eBHOzs5wdnaW2jw9PWFpaYmLFy/i5ZdfBvDwNKKZmZkU4+joiBs3bjzVOn18fMq1fffdd4iNjZVe51hcXAxzc/NK+3n++eeV3sHt6OiI8+fPV7pMmzZtpL83atQIZmZmUh6XL1+W8i3zyiuvPDEfdcYjakRERADwyy8PizTg4Z+//FK/46kiIYTK69ceb9fX11eaL5PJUFpa+lTrbNSokdL0L7/8gkGDBqFHjx7Ys2cPzpw5g6lTp6KoqKjSfp5mTJUto2pbCCEq7U/dsVAjIiICgA4dgLKjO7q6D6frmYGBAUrKiscKeHp6IisrC9euXZPa0tLScPv2bbRu3bpW113m559/houLC6ZOnQofHx8899xzuHr16lOv+2m1atWq3PV+p06dqvNx1CQWakRERACwZg3w1ltAkyYP/1yzpr5HBFdXVxw9ehR//fUXcnNzVcZ07doVbdq0wdChQ3H69GmcOHECw4cPh7+/v8pTlNVZ9927d/Hjjz8iLy8PBQUFFcY2b94cWVlZ2Lx5M9LT07Fs2TLs2LHjqdf9tN577z1cunQJ//nPf3DlyhVs2bJFujmhsrtm1RkLNSIiIgCwsnp4Tdqffz78Uw2eaRYTE4PMzEx4eHhU+EwxmUyGnTt3onHjxujUqRO6du0Kd3d3JCQkPNO6/fz8EBYWJl24v3Dhwgpjg4ODERERgfDwcLRt2xbJycnS3aB1yc3NDd999x22b9+ONm3aYNWqVdJdn4aGhnU+npogEw395K0Gy8/Ph4WFBW7fvv3ECzIbKoVCgX379qFnz57lrjvQVNqWM/PVfPWZ84MHD5CRkQE3NzcYGRnVyTpLS0uRn58Pc3Nz6Oho/vGOhp7v7NmzsXr1aqVTw09SlZwr++7V5O9v3vVJREREGmPlypV4+eWXYW1tjZ9//hkLFy5EeHh4fQ/rqbFQIyIiIo3x22+/4dNPP8WtW7fQrFkzTJo0CVFRUfU9rKfGQo2IiIg0xpIlS574RoSGpOGdbCYiIiLSEizUiIiIiNQUCzUiIiIiNcVCjYiIiEhNsVAjIiIiUlMs1IiIiIjUFAs1IiKieiCEwJgxY2BlZQWZTIazZ8+ic+fOmDhxYn0PrcZER0ejbdu20nRoaCjeeuutSpepqW2gKduSz1EjIiKqBz/88APi4+Nx+PBhuLu7w8bGBtu3b1d6DZerqysmTpyoEQUHACxduhQ1/ebKw4cPIyAgAP/88w8sLS2l9se3ZUPFQo2IiKgepKenw9HREX5+flKblRq8CL42WVhY1Nm6NGVb8tQnERFRHQsNDcX777+PrKwsyGQyuLq6AlA+Xde5c2dcvXoVERERkMlkkMlkFfaXlZWF4OBgmJqawtzcHAMGDMDff/8tzS87BfnNN9/A1dUVFhYWGDRoEO7cuaOyv9u3b8PY2Bg//PCDUvv27dvRqFEj3L17FwDwn//8By1atICJiQnc3d0xffp0KBSKSvN+9NTnvXv3MHz4cJiamsLR0RGfffZZuWU2bNgAHx8fmJmZwcHBAUOGDMGNGzcAAJmZmQgICAAANG7cGDKZDKGhoeW2JQD8888/GD58OBo3bgwTExP06NEDv/32mzQ/Pj4elpaW2L9/P55//nk0bdoUPXr0QHZ2doX51AUWakREpFGEAO7dq/uf6pzRW7p0KWJiYtC0aVNkZ2fj5MmT5WK2b9+Opk2bIiYmBtnZ2RUWDEIIvPXWW7h16xaOHDmCpKQkpKenY+DAgUpx6enp2LlzJ/bs2YM9e/bgyJEjmDdvnso+LSws0KtXL2zcuFGp/dtvv5UKQgAwMzNDfHw80tLSsHTpUnz55ZfVen3TRx99hEOHDmHHjh1ITEzE4cOHkZKSohRTVFSETz75BOfOncPOnTuRkZEhFWPOzs7Ytm0bAODy5cvIzs7G0qVLVa4rNDQUp06dwq5duyCXyyGEQM+ePZUKy4KCAixatAjr1q3D3r17ce3aNXz44YdVzqc28NQnERFplIIC4H91RC3RAWBZrvXuXaBRo6r1YGFhATMzM+jq6sLBwUFljJWVFXR1daUjSRU5cOAAfv31V2RkZMDZ2RkA8M033+D555/HyZMn8fLLLwMASktLER8fDzMzMwDAsGHD8OOPP2L27Nkq+x06dCiGDx+OgoICAEB+fj727t0rFUYAMG3aNOnvrq6umDRpEhISEvDxxx8/cRvcvXsXcXFxWL9+PQIDAwEA69atQ9OmTZXiRowYIf3d3d0dy5YtwyuvvIK7d+/C1NRUOsVpZ2endI3ao3777Tfs2rULP//8s3SqeePGjXB2dsbOnTvRv39/AIBCocDq1avh5uaG/Px8jB8/Hp988skTc6lNPKJGRETUgF28eBHOzs5SkQYAnp6esLS0xMWLF6U2V1dXqUgDAEdHR+kUoiq9evWCnp4edu3aBQDYtm0bzMzMEBQUJMV89913eO211+Dg4ABTU1NMnz4dWVlZVRp3eno6ioqK4OvrK7VZWVmhZcuWSnFnzpxBcHAwXFxcYGZmhs6dOwNAldcDPNxGenp6aN++vdRmbW2Nli1bKm0jExMTeHh4SNMODg6VbqO6wCNqRESkUUxMHh7dqi2lpaXIz8+Hubk5dHT+/3iHiUntrbMyQgiV16893v74HZAymQylpaUV9mtgYIB+/fph06ZN6NmzJzZt2oSBAwdCT+9h6fDLL79g0KBBmDVrFrp16wYLCwts3rxZ5XVmFY37Se7du4egoCAEBQVhw4YNsLW1RVZWFrp164aioqIqraeydVVlG9X0XarVxUKNiIg0ikxW9VOQT6O0FCgpebgOnVo+L2VgYICSkpJKYzw9PZGVlYVr165JR9XS0tJw+/ZttG7d+pnWP3ToUAQFBeHixYs4fPgwPv30U2nezz//DBcXF0ydOlVqu3r1apX7bt68OfT19fHLL7+gWbNmAB5e8H/lyhX4+/sDAC5duoTc3FzMmzdPyu3UqVNK/RgYGABApdvJ09MTxcXFOH78uHTqMy8vD1euXHnmbVTbeOqTiIhITbm6uuLo0aP466+/kJubqzKma9euaNOmDYYOHYrTp0/jxIkTGD58OPz9/eHj4/NM6/f394e9vT3GjBkDV1dXdOjQQZrXvHlzZGVlYfPmzUhPT8eyZcuwY8eOKvdtamqKkSNH4qOPPsKPP/6ICxcuIDQ0VOkoZbNmzWBgYIDPP/8cf/zxB3bt2lXumjEXFxfIZDLs2bMHN2/elO5IfdRzzz2H4OBgjB49GseOHcO5c+fwzjvvoEmTJggODn6KLVN3WKgRERGpqZiYGGRmZsLDwwO2trYqY2QyGXbu3InGjRujU6dO6Nq1K9zd3ZGQkPDM65fJZBg0aBAuXLiAIUOGKM0LDg5GREQEwsPD0bZtWyQnJ2P69OnV6n/hwoXo1KkT3nzzTXTt2hWvvfYavL29pfm2traIj4/H1q1b4enpiXnz5mHRokVKfTRp0gSzZs3C5MmTYW9vj/DwcJXrWrt2Lby9vfHGG2/A19cXQgjs27dP7R+KKxP1ffKVKpSfnw8LCwvcvn0b5ubm9T2cWqFQKLBv3z707NlT7XeWmqJtOTNfzVefOT948AAZGRlwc3ODkZFRnayzomvUNJW25QtULefKvns1+ftbO7Y4ERERUQPEQo2IiIhITbFQIyIiIlJTLNSIiIiI1BQLNSIiavB4XxzVtbr6zrFQIyKiBqvsLtOy91ES1ZWy71xt3+nMNxMQEVGDpaurC0tLS+l9jCYmJipfp1STSktLUVRUhAcPHmjF4yq0LV+g8pyFECgoKMCNGzdgaWkJXV3dWh0LCzUiImrQHBwcAKDOXp4thMD9+/dhbGxc60WhOtC2fIGq5WxpaSl992pTgynUZs+ejb179+Ls2bMwMDDAv//+qzT/3LlzmDdvHo4dO4bc3Fy4uroiLCwMEyZMUIo7f/48wsPDceLECVhZWeG9997D9OnTlT6II0eOIDIyEqmpqXBycsLHH3+MsLAwpX62bduG6dOnIz09HR4eHpg9ezb69OmjFLNy5UosXLgQ2dnZeP755xEbG4uOHTvW7IYhItJyMpkMjo6OsLOzg0KhqPX1KRQKHD16FJ06ddKKhxprW77Ak3PW19ev9SNpZRpMoVZUVIT+/fvD19cXcXFx5eanpKTA1tYWGzZsgLOzM5KTkzFmzBjo6upKr5PIz89HYGAgAgICcPLkSVy5cgWhoaFo1KgRJk2aBADIyMhAz549MXr0aGzYsAE///wzxo0bB1tbW/Tt2xcAIJfLMXDgQHzyySfo06cPduzYgQEDBuDYsWNo3749ACAhIQETJ07EypUr8eqrr+KLL75Ajx49kJaWJr18loiIao6urm6d/PLU1dVFcXExjIyMtKJw0bZ8AfXKucEUarNmzQIAxMfHq5w/YsQIpWl3d3fI5XJs375dKtQ2btyIBw8eID4+HoaGhvDy8sKVK1ewePFiREZGQiaTYfXq1WjWrBliY2MBAK1bt8apU6ewaNEiqVCLjY1FYGAgoqKiAABRUVE4cuQIYmNjsWnTJgDA4sWLMXLkSIwaNUpaZv/+/Vi1ahXmzp1bo9uGiIiINFODKdSexu3bt2FlZSVNy+Vy+Pv7w9DQUGrr1q0boqKikJmZCTc3N8jlcgQFBSn1061bN8TFxUGhUEBfXx9yuRwRERHlYsqKu6KiIqSkpGDy5MlKMUFBQUhOTq5wvIWFhSgsLJSm8/PzATw8BFsXh/PrQ1lempqfKtqWM/PVfNqWM/PVfM+ac01uK40t1ORyObZs2YK9e/dKbTk5OXB1dVWKs7e3l+a5ubkhJydHans0pri4GLm5uXB0dKwwJicnBwCQm5uLkpKSSmNUmTt3rnTk8FGJiYkwMTF5ctINWFJSUn0Poc5pW87MV/NpW87MV/M9bc41+biYei3UoqOjVRYmjzp58iR8fHyq1W9qaiqCg4MxY8YMBAYGKs17/O6NsgfWPdr+tDGPt1Ul5lFRUVGIjIyUpvPz8+Hs7IygoCCYm5tXuFxDplAokJSUhMDAwHq/DqCuaFvOzFfzaVvOzFfzPWvOZWfEakK9Fmrh4eEYNGhQpTGPHwF7krS0NHTp0gWjR4/GtGnTlOY5ODiUO6JVdjt32dGvimL09PRgbW1daUxZHzY2NtDV1a00RhVDQ0Ol07Jl9PX1NX7n0IYcH6dtOTNfzadtOTNfzfe0OdfkdqrXQs3GxgY2NjY11l9qaiq6dOmCkJAQzJ49u9x8X19fTJkyBUVFRTAwMADw8LSik5OTVBD6+vpi9+7dSsslJibCx8dH2vC+vr5ISkpSuk4tMTERfn5+AAADAwN4e3sjKSlJ6ZEdSUlJCA4OrrF8iYiISLM1mEcMZ2Vl4ezZs8jKykJJSQnOnj2Ls2fP4u7duwAeFmkBAQEIDAxEZGQkcnJykJOTg5s3b0p9DBkyBIaGhggNDcWFCxewY8cOzJkzR7rjEwDCwsJw9epVREZG4uLFi/j6668RFxeHDz/8UOpnwoQJSExMxPz583Hp0iXMnz8fBw4cwMSJE6WYyMhIfPXVV/j6669x8eJFREREICsrq9zz2IiIiIgq0mBuJpgxYwbWrVsnTbdr1w4AcOjQIXTu3Blbt27FzZs3sXHjRmzcuFGKc3FxQWZmJgDAwsICSUlJGD9+PHx8fNC4cWNERkYqXRfm5uaGffv2ISIiAitWrICTkxOWLVsmPZoDAPz8/LB582ZMmzYN06dPh4eHBxISEqRnqAHAwIEDkZeXh5iYGGRnZ8PLywv79u2Di4tLbW0iIiIi0jANplCLj4+v8BlqwMMbE6Kjo5/YzwsvvICjR49WGuPv74/Tp09XGtOvXz/069ev0phx48Zh3LhxTxwTERERkSoN5tQnERERkbZhoUZERESkplioEREREakpFmpEREREaoqFGhEREZGaYqFGREREpKZYqBERERGpKRZqRERERGqKhRoRERGRmmKhRkRERKSmWKgRERERqSkWakRERERqioUaERERkZpioUZERESkplioEREREakpFmpEREREaoqFGhEREZGaYqFGREREpKZYqBERERGpKRZqRERERGqKhRoRERGRmmKhRkRERKSmWKgRERERqSkWakRERERqioUaERERkZpioUZERESkplioEREREakpFmpEREREaoqFGhEREZGaYqFGREREpKZYqBERERGpKRZqRERERGqKhRoRERGRmmKhRkRERKSmWKgRERERqSkWakRERERqioUaERERkZpioUZERESkplioEREREakpFmpEREREaoqFGhEREZGaYqFGREREpKZYqBERERGpqQZTqM2ePRt+fn4wMTGBpaVlufnnzp3D4MGD4ezsDGNjY7Ru3RpLly5Vijl8+DCCg4Ph6OiIRo0aoW3btti4cWO5vo4cOQJvb28YGRnB3d0dq1evLhezbds2eHp6wtDQEJ6entixY0e5mJUrV8LNzQ1GRkbw9vbGTz/99PQbgIiIiLROgynUioqK0L9/f4wdO1bl/JSUFNja2mLDhg1ITU3F1KlTERUVheXLl0sxycnJaNOmDbZt24Zff/0VI0aMwPDhw7F7924pJiMjAz179kTHjh1x5swZTJkyBR988AG2bdsmxcjlcgwcOBDDhg3DuXPnMGzYMAwYMADHjx+XYhISEjBx4kRMnToVZ86cQceOHdGjRw9kZWXVwtYhIiIijSQamLVr1woLC4sqxY4bN04EBARUGtOzZ0/x7rvvStMff/yxaNWqlVLMe++9Jzp06CBNDxgwQHTv3l0pplu3bmLQoEHS9CuvvCLCwsKUYlq1aiUmT55cpbELIcTt27cFAHH79u0qL9PQFBUViZ07d4qioqL6Hkqd0bacma/m07acma/me9aca/L3t159F4q16fbt27CysnpiTOvWraVpuVyOoKAgpZhu3bohLi4OCoUC+vr6kMvliIiIKBcTGxsL4OHRv5SUFEyePFkpJigoCMnJyRWOpbCwEIWFhdJ0fn4+AEChUEChUFSaR0NVlpem5qeKtuXMfDWftuXMfDXfs+Zck9tKYws1uVyOLVu2YO/evRXGfPfddzh58iS++OILqS0nJwf29vZKcfb29iguLkZubi4cHR0rjMnJyQEA5ObmoqSkpNIYVebOnYtZs2aVa09MTISJiUnFyWqApKSk+h5CndO2nJmv5tO2nJmv5nvanAsKCmpsDPVaqEVHR6ssTB518uRJ+Pj4VKvf1NRUBAcHY8aMGQgMDFQZc/jwYYSGhuLLL7/E888/rzRPJpMpTQshyrWrinm8rSoxj4qKikJkZKQ0nZ+fD2dnZwQFBcHc3LzC5RoyhUKBpKQkBAYGQl9fv76HUye0LWfmq/m0LWfmq/meNeeyM2I1oV4LtfDwcAwaNKjSGFdX12r1mZaWhi5dumD06NGYNm2aypgjR46gd+/eWLx4MYYPH640z8HBodxRrxs3bkBPTw/W1taVxpQdQbOxsYGurm6lMaoYGhrC0NCwXLu+vr7G7xzakOPjtC1n5qv5tC1n5qv5njbnmtxO9Vqo2djYwMbGpsb6S01NRZcuXRASEoLZs2erjDl8+DDeeOMNzJ8/H2PGjCk339fXV+kuUODhqUcfHx9pw/v6+iIpKUnpOrXExET4+fkBAAwMDODt7Y2kpCT06dNHiklKSkJwcPAz50lERETaocFco5aVlYVbt24hKysLJSUlOHv2LACgefPmMDU1RWpqKgICAhAUFITIyEjpaJauri5sbW0BPCzSevXqhQkTJqBv375SjIGBgXTTQVhYGJYvX47IyEiMHj0acrkccXFx2LRpkzSWCRMmoFOnTpg/fz6Cg4Px/fff48CBAzh27JgUExkZiWHDhsHHxwe+vr5Ys2YNsrKyEBYWVhebi4iIiDRAgynUZsyYgXXr1knT7dq1AwAcOnQInTt3xtatW3Hz5k1s3LhR6SG2Li4uyMzMBADEx8ejoKAAc+fOxdy5c6UYf39/HD58GADg5uaGffv2ISIiAitWrICTkxOWLVuGvn37SvF+fn7YvHkzpk2bhunTp8PDwwMJCQlo3769FDNw4EDk5eUhJiYG2dnZ8PLywr59++Di4lIbm4eIiIg0UIMp1OLj4xEfH1/h/OjoaERHRz9TH2X8/f1x+vTpSmP69euHfv36VRozbtw4jBs37onrIyIiIlKlwbyZgIiIiEjbsFAjIiIiUlMs1IiIiIjUFAs1IiIiIjXFQo2IiIhITbFQIyIiIlJTLNSIiIiI1BQLNSIiIiI1xUKNiIiISE2xUCMiIiJSU89UqBUWFtbUOIiIiIjoMdUq1Pbv34/Q0FB4eHhAX18fJiYmMDMzg7+/P2bPno3r16/X1jiJiIiItE6VCrWdO3eiZcuWCAkJgY6ODj766CNs374d+/fvR1xcHPz9/XHgwAG4u7sjLCwMN2/erO1xExEREWk8vaoEzZkzB4sWLUKvXr2go1O+thswYAAA4K+//sLSpUuxfv16TJo0qWZHSkRERKRlqlSonThxokqdNWnSBAsWLHimARERERHRQ7zrk4iIiEhNVemI2qOEEPjuu+9w6NAh3LhxA6WlpUrzt2/fXmODIyIiItJm1S7UJkyYgDVr1iAgIAD29vaQyWS1MS4iIiIirVftQm3Dhg3Yvn07evbsWRvjISIiIqL/qfY1ahYWFnB3d6+NsRARERHRI6pdqEVHR2PWrFm4f/9+bYyHiIiIiP6n2qc++/fvj02bNsHOzg6urq7Q19dXmn/69OkaGxwRERGRNqt2oRYaGoqUlBS88847vJmAiIiIqBZVu1Dbu3cv9u/fj9dee602xkNERERE/1Pta9ScnZ1hbm5eG2MhIiIiokdUu1D77LPP8PHHHyMzM7MWhkNEREREZap96vOdd95BQUEBPDw8YGJiUu5mglu3btXY4IiIiIi0WbULtdjY2FoYBhERERE9rtqFWkhISG2Mg4iIiIgeU+1CrcyNGzdUvpS9TZs2zzwoIiIiInqKQi0lJQUhISG4ePEihBBK82QyGUpKSmpscERERETarNqF2rvvvosWLVogLi6OD7wlIiIiqkXVLtQyMjKwfft2NG/evDbGQ0RERET/U+3nqL3++us4d+5cbYyFiIiIiB5R7SNqX331FUJCQnDhwgV4eXmVe47am2++WWODIyIiItJm1S7UkpOTcezYMfz3v/8tN483ExARERHVnGqf+vzggw8wbNgwZGdno7S0VOmHRRoRERFRzal2oZaXl4eIiAjY29vXxniIiIiI6H+qXai9/fbbOHToUG2MhYiIiIgeUe1r1Fq0aIGoqCgcO3YML7zwQrmbCT744IMaGxwRERGRNnuquz5NTU1x5MgRHDlyRGmeTCZjodYAXL5+B92WHa3vYQAADHUFFrwCeEXvR2GJdjw8WdtyZr6ar65y1tcBEid2hptdo1pbB5G6eaoH3lLD5Tp5b30PgYjoqShKgYDFh6EjA/6Y26u+h0NUJ6p9jRo1XCzSiEgTlArAPYr/npF2qNIRtXnz5uGDDz6AiYnJE2OPHz+O3Nxc9OpVs//bmT17Nvbu3YuzZ8/CwMAA//77r9L8c+fOYd68eTh27Bhyc3Ph6uqKsLAwTJgwQWV/v//+O9q1awddXd1yfR05cgSRkZFITU2Fk5MTPv74Y4SFhSnFbNu2DdOnT0d6ejo8PDwwe/Zs9OnTRylm5cqVWLhwIbKzs/H8888jNjYWHTt2fOZt8TQuX78j/b20SBel9w3qZRyP09EVuHGjBIrbuijWktNE2pYz89V8tZnzczcyMXv/DJTqiXLzjq0C6mMLFxsY4uKsWbBs0hJ6RYX1MIK6pen5WikeoHVpAXDhAuDhUd/DKadKhVpaWhqaNWuG/v37480334SPjw9sbW0BAMXFxUhLS8OxY8ewYcMGZGdnY/369TU+0KKiIvTv3x++vr6Ii4srNz8lJQW2trbYsGEDnJ2dkZycjDFjxkBXVxfh4eFKsQqFAoMHD0bHjh2RnJysNC8jIwM9e/bE6NGjsWHDBvz8888YN24cbG1t0bdvXwCAXC7HwIED8cknn6BPnz7YsWMHBgwYgGPHjqF9+/YAgISEBEycOBErV67Eq6++ii+++AI9evSQtmVd6/n5/1+Tdv93O+TufqnOx1CRMfU9gHqgbTkzX81XWzn/BeDVwTuBlrtraQ1P6cZwYHx9D6IOaXC+Lud9kblNDnTqBPz1V30PpxyZEKL8f1NU+PXXX7FixQps3boVt2/fhq6uLgwNDVFQUAAAaNeuHcaMGYOQkBAYGhrW2oDj4+MxceLEckfBVBk/fjwuXryIgwcPKrX/5z//wfXr1/H666+X6+s///kPdu3ahYsXL0ptYWFhOHfuHORyOQBg4MCByM/PV3o7Q/fu3dG4cWNs2rQJANC+fXu89NJLWLVqlRTTunVrvPXWW5g7d26Vcs3Pz4eFhQVu374Nc3PzKi1TkUdPe9675IC8vW2fqb+apK/z8NoTbaJtOTNfzVdbORsWF6FowBCUPvdDzXdOBMA91RvpO38GdHSA/z24X6FQYN++fejZs2e5p1tURU3+/q7yzQRt2rTBF198gdWrV+PXX39FZmYm7t+/DxsbG7Rt2xY2NjbPNJDacPv2bVhZWSm1HTx4EFu3bsXZs2exffv2csvI5XIEBQUptXXr1g1xcXFQKBTQ19eHXC5HREREuZjY2FgAD4/+paSkYPLkyUoxQUFB5Y7g1RVdGVDyv5K8UascNGqlHv/oPbxbrAQfn9DVsjvktCdn5qv5ajPni4v6wGiLol5OcVZEYWyMfZs2oefgwdC/f7++h1PrND/fnx/+4eBQv8OoQLXv+pTJZHjxxRfx4osv1sZ4aoxcLseWLVuwd+//H0nKy8tDaGgoNmzYUGGFm5OTU+6tC/b29iguLkZubi4cHR0rjMnJyQEA5ObmoqSkpNIYVQoLC1FY+P/n//Pz8wE8rOwVCkUVsq7Y7nF+6LP652fqozYY6gilP7WBtuXMfDVfbeY8KGQRNmyajIrO09RHAacwNlb6U9NpRb5GRsChQ8D/ftcqHvuzup71d/ajql2o1aTo6GjMmjWr0piTJ0/Cx8enWv2mpqYiODgYM2bMQGBgoNQ+evRoDBkyBJ06dap0eZlMedcvOzv8aLuqmMfbqhLzqLlz56rcHomJiVW6keNJFrzyzF3Umk98tOw8EbQvZ+ar+WonZxccfHNTLfT77JK+/rq+h1CnND7fixcf/jwiKSnpqboquyysJtRroRYeHo5BgwZVGuPq6lqtPtPS0tClSxeMHj0a06ZNU5p38OBB7Nq1C4sWLQLwsHAqLS2Fnp4e1qxZgxEjRsDBwaHcUa8bN25AT08P1tbWAFBhTNkRNBsbG+jq6lYao0pUVBQiIyOl6fz8fDg7OyMoKOiZz3GX8YreXyP91BRDHYFPfEox/ZQOCkvV6eRG7dG2nJmv5qvrnHVkwK8zu9X6eiqiUCiQlJSEwMDAp7p+qaHRtnyBZ8+57IxYTajXQs3GxqZGr21LTU1Fly5dEBISgtmzZ5ebL5fLUfK/CwUB4Pvvv8f8+fORnJyMJk2aAAB8fX2xe7fy3UWJiYnw8fGRPixfX18kJSUpXaeWmJgIPz8/AICBgQG8vb2RlJSk9MiOpKQkBAcHVzh+Q0NDlTdi6Ovr19jOcXn2G2r1ZoIyhaUyrbmep4y25cx8NV9t56xubyaoyX+bGwJtyxd4+pxrcjvVa6FWHVlZWbh16xaysrJQUlKCs2fPAgCaN28OU1NTpKamIiAgAEFBQYiMjJSOZunq6kqPEmndurVSn6dOnYKOjg68vLyktrCwMCxfvhyRkZEYPXo05HI54uLipLs5AWDChAno1KkT5s+fj+DgYHz//fc4cOAAjh07JsVERkZi2LBh8PHxga+vL9asWYOsrKxyz2OrDy2dzJA5Tz2e6l12Z82F6G5a8w+AtuXMfDWfNuZMVFeq/WaCESNG4M6dO+Xa7927hxEjRtTIoFSZMWMG2rVrh5kzZ+Lu3bto164d2rVrh1OnTgEAtm7dips3b2Ljxo1wdHSUfl5++eVqrcfNzQ379u3D4cOH0bZtW3zyySdYtmyZ9Aw1APDz88PmzZuxdu1atGnTBvHx8UhISJCeoQY8fIRHbGwsYmJi0LZtWxw9ehT79u2Di4tLzWwQIiIi0njVLtTWrVuH+ypuz71//36tPOi2THx8PIQQ5X46d+4M4OGNCarmZ2ZmVthnaGioyuex+fv74/Tp0ygsLERGRobKo2D9+vXDpUuXUFRUhIsXL+Ltt98uFzNu3DhkZmaisLAQKSkpT7yJgYiIiOhRVT71mZ+fLxU/d+7cgZGRkTSvpKQE+/btg52dXa0MkoiIiEgbVblQs7S0hEwmg0wmQ4sWLcrNl8lkT3zUBhERERFVXZULtUOHDkEIgS5dumDbtm1KT/w3MDCAi4sLnJycamWQRERERNqoyoWav78/gIcvLW/WrFmlD24lIiIiomdX7ZsJLl68iJ9//v9XEa1YsQJt27bFkCFD8M8//9To4IiIiIi0WbULtY8++kh64u758+cRGRmJnj174o8//lB6qj4RERERPZtqP/A2IyMDnp6eAIBt27ahd+/emDNnDk6fPo2ePXvW+ACJiIiItFW1j6gZGBhILxs9cOAAgoKCAABWVlY1+m4rIiIiIm1X7SNqr732GiIjI/Hqq6/ixIkTSEhIAABcuXIFTZs2rfEBEhEREWmrah9RW758OfT09PDdd99h1apV0svM//vf/6J79+41PkAiIiIibVXtI2rNmjXDnj17yrUvWbKkRgZERERERA9Vu1B71P3796FQKJTazM3Nn2lARERERPRQtU993rt3D+Hh4bCzs4OpqSkaN26s9ENERERENaPahdrHH3+MgwcPYuXKlTA0NMRXX32FWbNmwcnJCevXr6+NMRIRERFppWqf+ty9ezfWr1+Pzp07Y8SIEejYsSOaN28OFxcXbNy4EUOHDq2NcRIRERFpnWofUbt16xbc3NwAPLwe7datWwAePrbj6NGjNTs6IiIiIi1W7ULN3d0dmZmZAABPT09s2bIFwMMjbZaWljU5NiIiIiKtVu1C7d1338W5c+cAAFFRUdK1ahEREfjoo49qfIBERERE2qra16hFRERIfw8ICMClS5dw6tQpeHh44MUXX6zRwRERERFps2d6jhrw8AG4zZo1q4mxEBEREdEjqnzqs2fPnrh9+7Y0PXv2bPz777/SdF5eHjw9PWt0cERERETarMqF2v79+1FYWChNz58/X7rjEwCKi4tx+fLlmh0dERERkRarcqEmhKh0moiIiIhqVrXv+iQiIiKiulHlQk0mk0Emk5VrIyIiIqLaUeW7PoUQCA0NhaGhIQDgwYMHCAsLQ6NGjQBA6fo1IiIiInp2VS7UQkJClKbfeeedcjHDhw9/9hEREREREYBqFGpr166tzXEQERER0WN4MwERERGRmmKhRkRERKSmWKgRERERqSkWakRERERqioUaERERkZpioUZERESkplioEREREakpFmpEREREaoqFGhEREZGaYqFGREREpKZYqBERERGpKRZqRERERGqKhRoRERGRmmKhRkRERKSmWKgRERERqSkWakRERERqqsEUarNnz4afnx9MTExgaWlZbv65c+cwePBgODs7w9jYGK1bt8bSpUvLxQkhsGjRIrRo0QKGhoZwdnbGnDlzlGKOHDkCb29vGBkZwd3dHatXry7Xz7Zt2+Dp6QlDQ0N4enpix44d5WJWrlwJNzc3GBkZwdvbGz/99NPTbwAiIiLSOg2mUCsqKkL//v0xduxYlfNTUlJga2uLDRs2IDU1FVOnTkVUVBSWL1+uFDdhwgR89dVXWLRoES5duoTdu3fjlVdekeZnZGSgZ8+e6NixI86cOYMpU6bggw8+wLZt26QYuVyOgQMHYtiwYTh37hyGDRuGAQMG4Pjx41JMQkICJk6ciKlTp+LMmTPo2LEjevTogaysrBreMkRERKSp9Op7AFU1a9YsAEB8fLzK+SNGjFCadnd3h1wux/bt2xEeHg4AuHjxIlatWoULFy6gZcuWKvtZvXo1mjVrhtjYWABA69atcerUKSxatAh9+/YFAMTGxiIwMBBRUVEAgKioKBw5cgSxsbHYtGkTAGDx4sUYOXIkRo0aJS2zf/9+rFq1CnPnzn36DUFERERao8EUak/j9u3bsLKykqZ3794Nd3d37NmzB927d4cQAl27dsWCBQukOLlcjqCgIKV+unXrhri4OCgUCujr60MulyMiIqJcTFlxV1RUhJSUFEyePFkpJigoCMnJyRWOt7CwEIWFhdJ0fn4+AEChUEChUFR/AzQAZXlpan6qaFvOzFfzaVvOzFfzPWvONbmtNLZQk8vl2LJlC/bu3Su1/fHHH7h69Sq2bt2K9evXo6SkBBEREejXrx8OHjwIAMjJyYG9vb1SX/b29iguLkZubi4cHR0rjMnJyQEA5ObmoqSkpNIYVebOnSsdOXxUYmIiTExMqrcBGpikpKT6HkKd07acma/m07acma/me9qcCwoKamwM9VqoRUdHqyxMHnXy5En4+PhUq9/U1FQEBwdjxowZCAwMlNpLS0tRWFiI9evXo0WLFgCAuLg4eHt74/Lly9LpUJlMptSfEKJcu6qYx9uqEvOoqKgoREZGStP5+flwdnZGUFAQzM3Nn5h3Q6RQKJCUlITAwEDo6+vX93DqhLblzHw1n7blzHw137PmXHZGrCbUa6EWHh6OQYMGVRrj6uparT7T0tLQpUsXjB49GtOmTVOa5+joCD09PalIAx5egwYAWVlZaNmyJRwcHMod9bpx4wb09PRgbW0NABXGlB1Bs7Gxga6ubqUxqhgaGsLQ0LBcu76+vsbvHNqQ4+O0LWfmq/m0LWfmq/meNuea3E71WqjZ2NjAxsamxvpLTU1Fly5dEBISgtmzZ5eb/+qrr6K4uBjp6enw8PAAAFy5cgUA4OLiAgDw9fXF7t27lZZLTEyEj4+PtOF9fX2RlJSkdJ1aYmIi/Pz8AAAGBgbw9vZGUlIS+vTpI8UkJSUhODi4xvIlIiIizdZgrlHLysrCrVu3kJWVhZKSEpw9exYA0Lx5c5iamiI1NRUBAQEICgpCZGSkdDRLV1cXtra2AICuXbvipZdewogRIxAbG4vS0lKMHz8egYGB0lG2sLAwLF++HJGRkRg9ejTkcjni4uKkuzmBh4/46NSpE+bPn4/g4GB8//33OHDgAI4dOybFREZGYtiwYfDx8YGvry/WrFmDrKwshIWF1dEWIyIiooauwRRqM2bMwLp166Tpdu3aAQAOHTqEzp07Y+vWrbh58yY2btyIjRs3SnEuLi7IzMwEAOjo6GD37t14//330alTJzRq1Ag9evTAZ599JsW7ublh3759iIiIwIoVK+Dk5IRly5ZJj+YAAD8/P2zevBnTpk3D9OnT4eHhgYSEBLRv316KGThwIPLy8hATE4Ps7Gx4eXlh37590pE7IiIioidpMIVafHx8hc9QAx7emBAdHf3EfpycnJQeXquKv78/Tp8+XWlMv3790K9fv0pjxo0bh3Hjxj1xTERERESqNJg3ExARERFpGxZqRERERGqKhRoRERGRmmKhRkRERKSmWKgRERERqSkWakRERERqioUaERERkZpioUZERESkplioEREREakpFmpEREREaoqFGhEREZGaYqFGREREpKZYqBERERGpKRZqRERERGqKhRoRERGRmmKhRkRERKSmWKgRERERqSkWakRERERqioUaERERkZpioUZERESkplioEREREakpFmpEREREaoqFGhEREZGaYqFGREREpKZYqBERERGpKRZqRERERGqKhRoRERGRmmKhRkRERKSmWKgRERERqSkWakRERERqioUaERERkZpioUZERESkplioEREREakpFmpEREREaoqFGhEREZGaYqFGREREpKZYqBERERGpKRZqRERERGqKhRoRERGRmmKhRkRERKSmWKgRERERqSkWakRERERqioUaERERkZpqMIXa7Nmz4efnBxMTE1haWpabf+7cOQwePBjOzs4wNjZG69atsXTp0nJx+/fvR4cOHWBmZgZbW1v07dsXGRkZSjFHjhyBt7c3jIyM4O7ujtWrV5frZ9u2bfD09IShoSE8PT2xY8eOcjErV66Em5sbjIyM4O3tjZ9++unpNwARERFpnQZTqBUVFaF///4YO3asyvkpKSmwtbXFhg0bkJqaiqlTpyIqKgrLly+XYv744w8EBwejS5cuOHv2LPbv34/c3Fy8/fbbUkxGRgZ69uyJjh074syZM5gyZQo++OADbNu2TYqRy+UYOHAghg0bhnPnzmHYsGEYMGAAjh8/LsUkJCRg4sSJmDp1Ks6cOYOOHTuiR48eyMrKqoWtQ0RERJpIr74HUFWzZs0CAMTHx6ucP2LECKVpd3d3yOVybN++HeHh4QCA06dPo6SkBJ9++il0dB7WqB9++CGCg4OhUCigr6+P1atXo1mzZoiNjQUAtG7dGqdOncKiRYvQt29fAEBsbCwCAwMRFRUFAIiKisKRI0cQGxuLTZs2AQAWL16MkSNHYtSoUdIy+/fvx6pVqzB37tya2zBERESksRpMofY0bt++DSsrK2nax8cHurq6WLt2LUJDQ3H37l188803CAoKgr6+PoCHR8uCgoKU+unWrRvi4uKkYk4ulyMiIqJcTFlxV1RUhJSUFEyePFkpJigoCMnJyRWOt7CwEIWFhdJ0fn4+AEChUEChUFR/AzQAZXlpan6qaFvOzFfzaVvOzFfzPWvONbmtNLZQk8vl2LJlC/bu3Su1ubq6IjExEf3798d7772HkpIS+Pr6Yt++fVJMTk4O7O3tlfqyt7dHcXExcnNz4ejoWGFMTk4OACA3NxclJSWVxqgyd+5c6cjhoxITE2FiYlL15BugpKSk+h5CndO2nJmv5tO2nJmv5nvanAsKCmpsDPVaqEVHR6ssTB518uRJ+Pj4VKvf1NRUBAcHY8aMGQgMDJTac3JyMGrUKISEhGDw4MG4c+cOZsyYgX79+iEpKQkymQwApD/LCCHKtauKebytKjGPioqKQmRkpDSdn58PZ2dnBAUFwdzcvCqpNzgKhQJJSUkIDAyUjmpqOm3LmflqPm3LmflqvmfNueyMWE2o10ItPDwcgwYNqjTG1dW1Wn2mpaWhS5cuGD16NKZNm6Y0b8WKFTA3N8eCBQuktg0bNsDZ2RnHjx9Hhw4d4ODgUO6o140bN6Cnpwdra2sAqDCm7AiajY0NdHV1K41RxdDQEIaGhuXa9fX1NX7n0IYcH6dtOTNfzadtOTNfzfe0OdfkdqrXQs3GxgY2NjY11l9qaiq6dOmCkJAQzJ49u9z8goIC6OrqKrWVTZeWlgIAfH19sXv3bqWYxMRE+Pj4SBve19cXSUlJStepJSYmws/PDwBgYGAAb29vJCUloU+fPlJMUlISgoODayBTIiIi0gYN5hq1rKws3Lp1C1lZWSgpKcHZs2cBAM2bN4epqSlSU1MREBCAoKAgREZGSkezdHV1YWtrCwDo1asXlixZgpiYGOnU55QpU+Di4oJ27doBAMLCwrB8+XJERkZi9OjRkMvliIuLk+7mBIAJEyagU6dOmD9/PoKDg/H999/jwIEDOHbsmBQTGRmJYcOGwcfHB76+vlizZg2ysrIQFhZWR1uMiIiIGroGU6jNmDED69atk6bLCqtDhw6hc+fO2Lp1K27evImNGzdi48aNUpyLiwsyMzMBAF26dMG3336LBQsWYMGCBTAxMYGvry9++OEHGBsbAwDc3Nywb98+REREYMWKFXBycsKyZcukR3MAgJ+fHzZv3oxp06Zh+vTp8PDwQEJCAtq3by/FDBw4EHl5eYiJiUF2dja8vLywb98+uLi41OZmIiIiIg3SYAq1+Pj4Cp+hBjy8MSE6OvqJ/QwaNOiJ18X5+/vj9OnTlcb069cP/fr1qzRm3LhxGDdu3BPHRERERKRKg3kzAREREZG2YaFGREREpKZYqBERERGpKRZqRERERGqKhRoRERGRmmKhRkRERKSmWKgRERERqSkWakRERERqioUaERERkZpioUZERESkplioEREREakpFmpEREREaoqFGhEREZGaYqFGREREpKZYqBERERGpKRZqRERERGqKhRoRERGRmmKhRkRERKSmWKgRERERqSkWakRERERqioUaERERkZpioUZERESkplioEREREakpFmpEREREaoqFGhEREZGaYqFGREREpKZYqBERERGpKRZqRERERGqKhRoRERGRmmKhRkRERKSmWKgRERERqSkWakRERERqioUaERERkZpioUZERESkplioEREREakpFmpEREREaoqFGhEREZGaYqFGREREpKZYqBERERGpKRZqRERERGqKhRoRERGRmmKhRkRERKSmWKgRERERqakGU6jNnj0bfn5+MDExgaWlZbn5eXl56N69O5ycnGBoaAhnZ2eEh4cjPz9fKe78+fPw9/eHsbExmjRpgpiYGAghlGKOHDkCb29vGBkZwd3dHatXry63vm3btsHT0xOGhobw9PTEjh07ysWsXLkSbm5uMDIygre3N3766adn2whERESkVRpMoVZUVIT+/ftj7NixKufr6OggODgYu3btwpUrVxAfH48DBw4gLCxMisnPz0dgYCCcnJxw8uRJfP7551i0aBEWL14sxWRkZKBnz57o2LEjzpw5gylTpuCDDz7Atm3bpBi5XI6BAwdi2LBhOHfuHIYNG4YBAwbg+PHjUkxCQgImTpyIqVOn4syZM+jYsSN69OiBrKysWtg6REREpJFEA7N27VphYWFRpdilS5eKpk2bStMrV64UFhYW4sGDB1Lb3LlzhZOTkygtLRVCCPHxxx+LVq1aKfXz3nvviQ4dOkjTAwYMEN27d1eK6datmxg0aJA0/corr4iwsDClmFatWonJkydXaexCCHH79m0BQNy+fbvKyzQ0RUVFYufOnaKoqKi+h1JntC1n5qv5tC1n5qv5njXnmvz9rVffhWJtuX79OrZv3w5/f3+pTS6Xw9/fH4aGhlJbt27dEBUVhczMTLi5uUEulyMoKEipr27duiEuLg4KhQL6+vqQy+WIiIgoFxMbGwvg4dG/lJQUTJ48WSkmKCgIycnJFY65sLAQhYWF0nTZaVuFQgGFQlG9DdBAlOWlqfmpom05M1/Np205M1/N96w51+S20rhCbfDgwfj+++9x//599O7dG1999ZU0LycnB66urkrx9vb20jw3Nzfk5ORIbY/GFBcXIzc3F46OjhXG5OTkAAByc3NRUlJSaYwqc+fOxaxZs8q1JyYmwsTE5MnJN2BJSUn1PYQ6p205M1/Np205M1/N97Q5FxQU1NgY6rVQi46OVlmYPOrkyZPw8fGpcp9LlizBzJkzcfnyZUyZMgWRkZFYuXKlNF8mkynFi//dSPBo+9PGPN5WlZhHRUVFITIyUprOz8+Hs7MzgoKCYG5uXuFyDZlCoUBSUhICAwOhr69f38OpE9qWM/PVfNqWM/PVfM+a8+M3Mj6Lei3UwsPDMWjQoEpjHj8C9iQODg5wcHBAq1atYG1tjY4dO2L69OlwdHSEg4NDuSNaN27cAPD/R9YqitHT04O1tXWlMWV92NjYQFdXt9IYVQwNDZVOy5bR19fX+J1DG3J8nLblzHw1n7blzHw139PmXJPbqV4LNRsbG9jY2NRa/2VHwsqu+/L19cWUKVNQVFQEAwMDAA9PKzo5OUkFoa+vL3bv3q3UT2JiInx8fKQN7+vri6SkJKXr1BITE+Hn5wcAMDAwgLe3N5KSktCnTx8pJikpCcHBwbWTLBEREWmcBnONWlZWFm7duoWsrCyUlJTg7NmzAIDmzZvD1NQU+/btw99//42XX34ZpqamSEtLw8cff4xXX31VKsKGDBmCWbNmITQ0FFOmTMFvv/2GOXPmYMaMGdIpybCwMCxfvhyRkZEYPXo05HI54uLisGnTJmksEyZMQKdOnTB//nwEBwfj+++/x4EDB3Ds2DEpJjIyEsOGDYOPjw98fX2xZs0aZGVlKT0uhIiIiKgyDaZQmzFjBtatWydNt2vXDgBw6NAhdO7cGcbGxvjyyy8RERGBwsJCODs74+2331a689LCwgJJSUkYP348fHx80LhxY0RGRipdF+bm5oZ9+/YhIiICK1asgJOTE5YtW4a+fftKMX5+fti8eTOmTZuG6dOnw8PDAwkJCWjfvr0UM3DgQOTl5SEmJgbZ2dnw8vLCvn374OLiUpubiYiIiDRIgynU4uPjER8fX+H8gICASh99UeaFF17A0aNHK43x9/fH6dOnK43p168f+vXrV2nMuHHjMG7cuCeOiYiIiEiVBvNmAiIiIiJtw0KNiIiISE2xUCMiIiJSUyzUiIiIiNQUCzUiIiIiNcVCjYiIiEhNsVAjIiIiUlMs1IiIiIjUFAs1IiIiIjXFQo2IiIhITbFQIyIiIlJTLNSIiIiI1FSDeSm7NhJCAADy8/PreSS1R6FQoKCgAPn5+dDX16/v4dQJbcuZ+Wo+bcuZ+Wq+Z8257Pd22e/xZ8FCTY3duXMHAODs7FzPIyEiIqLqunPnDiwsLJ6pD5moiXKPakVpaSmuX78OMzMzyGSy+h5OrcjPz4ezszOuXbsGc3Pz+h5OndC2nJmv5tO2nJmv5nvWnIUQuHPnDpycnKCj82xXmfGImhrT0dFB06ZN63sYdcLc3Fxr/gEoo205M1/Np205M1/N9yw5P+uRtDK8mYCIiIhITbFQIyIiIlJTLNSoXhkaGmLmzJkwNDSs76HUGW3LmflqPm3LmflqPnXKmTcTEBEREakpHlEjIiIiUlMs1IiIiIjUFAs1IiIiIjXFQo2IiIhITbFQoyqZO3cuXn75ZZiZmcHOzg5vvfUWLl++rBQjhEB0dDScnJxgbGyMzp07IzU1VSmmsLAQ77//PmxsbNCoUSO8+eab+PPPP6X5hw8fhkwmU/lz8uTJCscXGhpaLr5Dhw71nu+aNWvQuXNnmJubQyaT4d9//y23rn/++QfDhg2DhYUFLCwsMGzYMJVx1V23uuacmZmJkSNHws3NDcbGxvDw8MDMmTNRVFRU6fga8mfs6upabuyTJ0+udHw1/RnXVb7qsg/XVM63bt3C+++/j5YtW8LExATNmjXDBx98gNu3byv1ow77cV3lq0n7cFU/33rdhwVRFXTr1k2sXbtWXLhwQZw9e1b06tVLNGvWTNy9e1eKmTdvnjAzMxPbtm0T58+fFwMHDhSOjo4iPz9figkLCxNNmjQRSUlJ4vTp0yIgIEC8+OKLori4WAghRGFhocjOzlb6GTVqlHB1dRWlpaUVji8kJER0795dabm8vLx6z3fJkiVi7ty5Yu7cuQKA+Oeff8qtq3v37sLLy0skJyeL5ORk4eXlJd54441Kx1eVdatrzv/9739FaGio2L9/v0hPTxfff/+9sLOzE5MmTap0fA35M3ZxcRExMTFKY79z506l46vpz7iu8lWXfbimcj5//rx4++23xa5du8Tvv/8ufvzxR/Hcc8+Jvn37Kq1LHfbjuspXk/bhqn6+9bkPs1Cjp3Ljxg0BQBw5ckQIIURpaalwcHAQ8+bNk2IePHggLCwsxOrVq4UQQvz7779CX19fbN68WYr566+/hI6Ojvjhhx9UrqeoqEjY2dmJmJiYSscTEhIigoODnzGrij1Nvo86dOiQyl9qaWlpAoD45ZdfpDa5XC4AiEuXLqkcS3XX/bRqK2dVFixYINzc3CqNaaifsRAP/5FfsmRJlcdSF59xXX2+6rIPC/HsOZfZsmWLMDAwEAqFQgihvvtxbeWriibsw2VU5Vuf+zBPfdJTKTssbGVlBQDIyMhATk4OgoKCpBhDQ0P4+/sjOTkZAJCSkgKFQqEU4+TkBC8vLynmcbt27UJubi5CQ0OfOKbDhw/Dzs4OLVq0wOjRo3Hjxo2nTa+cp8m3KuRyOSwsLNC+fXuprUOHDrCwsKiwn5pa95PUVs4VratsPZVpiJ9xmfnz58Pa2hpt27bF7NmzKz1NVBefcV19vuqyDwM1l/Pt27dhbm4OPb2Hr8tW1/24tvKtKEZT9uGK8q2vfZgvZadqE0IgMjISr732Gry8vAAAOTk5AAB7e3ulWHt7e1y9elWKMTAwQOPGjcvFlC3/uLi4OHTr1g3Ozs6VjqlHjx7o378/XFxckJGRgenTp6NLly5ISUl55idLP22+VZGTkwM7O7ty7XZ2dhVuk5pad2VqM+fHpaen4/PPP8dnn31WaVxD/YwBYMKECXjppZfQuHFjnDhxAlFRUcjIyMBXX32lMr62P+O6/HzVYR8Gai7nvLw8fPLJJ3jvvfekNnXcj2sz38dp0j5cUb71uQ+zUKNqCw8Px6+//opjx46VmyeTyZSmhRDl2h5XUcyff/6J/fv3Y8uWLU8c08CBA6W/e3l5wcfHBy4uLti7dy/efvvtJy5fmZrO90l9VLWfmlh3RWo75zLXr19H9+7d0b9/f4waNarS2Ib8GUdEREh/b9OmDRo3box+/fpJ/0OvSG19xnX1+arLPgzUTM75+fno1asXPD09MXPmzEr7qKyfp1l3ddV2vmU0aR+uLN/63Id56pOq5f3338euXbtw6NAhNG3aVGp3cHAAgHL/e7xx44b0PwoHBwcUFRXhn3/+qTDmUWvXroW1tTXefPPNao/T0dERLi4u+O2336q97KOeJd+qcHBwwN9//12u/ebNmxX2U1Prrkht51zm+vXrCAgIgK+vL9asWVPt5RvKZ6xK2Z1uv//+u8r5tbnuusxXHfZhoGZyvnPnDrp37w5TU1Ps2LED+vr6Sv2o035c2/mW0aR9uCr5PqpO9+FqXdFGWqu0tFSMHz9eODk5iStXrqic7+DgIObPny+1FRYWqryZICEhQYq5fv26ypsJSktLhZub2xPvIqpIbm6uMDQ0FOvWrXuq5Wsi30c96WaC48ePS22//PJLlS5Cruq6q6quchZCiD///FM899xzYtCgQdIdv9XVUD5jVXbv3i0AiKtXr1Y4tpr+jOs63/reh8vGUBM53759W3To0EH4+/uLe/fuletHXfbjuspXCM3ah6uS7+Pqch9moUZVMnbsWGFhYSEOHz6sdHtyQUGBFDNv3jxhYWEhtm/fLs6fPy8GDx6s8vEcTZs2FQcOHBCnT58WXbp0UXo8R5kDBw4IACItLU3leFq2bCm2b98uhBDizp07YtKkSSI5OVlkZGSIQ4cOCV9fX9GkSZOnvs29pvLNzs4WZ86cEV9++aUAII4ePSrOnDmjdEt69+7dRZs2bYRcLhdyuVy88MIL5W7rfzTfqq5bXXP+66+/RPPmzUWXLl3En3/+qbSuinJuyJ9xcnKyWLx4sThz5oz4448/REJCgnBychJvvvlmhflWdd3qmG+Z+t6Hayrn/Px80b59e/HCCy+I33//XamfR//dUof9uK7y1aR9uCr51vc+zEKNqgSAyp+1a9dKMaWlpWLmzJnCwcFBGBoaik6dOonz588r9XP//n0RHh4urKyshLGxsXjjjTdEVlZWufUNHjxY+Pn5VTqesnUXFBSIoKAgYWtrK/T19UWzZs1ESEiIyn7rOt+ZM2c+sZ+8vDwxdOhQYWZmJszMzMTQoUPLHaV4mnWra85r166tcF0V5dyQP+OUlBTRvn17YWFhIYyMjETLli3FzJkzy/3PvbY/47r8TgtR//twTeVcduRQ1U9GRoYUpw77cV3lq0n7cFXyre99WPa/zomIiIhIzfBmAiIiIiI1xUKNiIiISE2xUCMiIiJSUyzUiIiIiNQUCzUiIiIiNcVCjYiIiEhNsVAjIiIiUlMs1IhIq0RHR6Nt27b1tv7p06djzJgx9bb+qlq+fPlTvaOTiGoWH3hLRBpDJpNVOj8kJATLly9HYWEhrK2t62hU/+/vv//Gc889h19//RWurq51vv7qKCwshKurK7Zu3YrXXnutvodDpLX06nsAREQ1JTs7W/p7QkICZsyYgcuXL0ttxsbGMDU1hampaX0MD3FxcfD19a33Iq2kpAQymQw6OhWfVDE0NMSQIUPw+eefs1Ajqkc89UlEGsPBwUH6sbCwgEwmK9f2+KnP0NBQvPXWW5gzZw7s7e1haWmJWbNmobi4GB999BGsrKzQtGlTfP3110rr+uuvvzBw4EA0btwY1tbWCA4ORmZmZqXj27x5s9LpxPXr18Pa2hqFhYVKcX379sXw4cOl6d27d8Pb2xtGRkZwd3eXxldm8eLFeOGFF9CoUSM4Oztj3LhxuHv3rjQ/Pj4elpaW2LNnDzw9PWFoaIirV6/i8OHDeOWVV9CoUSNYWlri1VdfxdWrV6Xl3nzzTezcuRP379+v0vYnoprHQo2ItN7Bgwdx/fp1HD16FIsXL0Z0dDTeeOMNNG7cGMePH0dYWBjCwsJw7do1AEBBQQECAgJgamqKo0eP4tixYzA1NUX37t1RVFSkch3//PMPLly4AB8fH6mtf//+KCkpwa5du6S23Nxc7NmzB++++y4AYP/+/XjnnXfwwQcfIC0tDV988QXi4+Mxe/ZsaRkdHR0sW7YMFy5cwLp163Dw4EF8/PHHSusvKCjA3Llz8dVXXyE1NRVWVlZ466234O/vj19//RVyuRxjxoxROn3s4+MDhUKBEydOPPtGJqKnU+3XuBMRNQBr164VFhYW5dpnzpwpXnzxRWk6JCREuLi4iJKSEqmtZcuWomPHjtJ0cXGxaNSokdi0aZMQQoi4uDjRsmVLUVpaKsUUFhYKY2NjsX//fpXjOXPmjAAgsrKylNrHjh0revToIU3HxsYKd3d3qe+OHTuKOXPmKC3zzTffCEdHxwpz37Jli7C2tpam165dKwCIs2fPSm15eXkCgDh8+HCF/QghROPGjUV8fHylMURUe3iNGhFpveeff17pei17e3t4eXlJ07q6urC2tsaNGzcAACkpKfj9999hZmam1M+DBw+Qnp6uch1lpw+NjIyU2kePHo2XX34Zf/31F5o0aYK1a9ciNDRUOrKVkpKCkydPKh1BKykpwYMHD1BQUAATExMcOnQIc+bMQVpaGvLz81FcXIwHDx7g3r17aNSoEQDAwMAAbdq0kfqwsrJCaGgounXrhsDAQHTt2hUDBgyAo6Oj0viMjY1RUFBQtQ1JRDWOpz6JSOvp6+srTctkMpVtpaWlAIDS0lJ4e3vj7NmzSj9XrlzBkCFDVK7DxsYGwMNToI9q164dXnzxRaxfvx6nT5/G+fPnERoaKs0vLS3FrFmzlNZz/vx5/PbbbzAyMsLVq1fRs2dPeHl5Ydu2bUhJScGKFSsAAAqFQurH2Ni43F2xa9euhVwuh5+fHxISEtCiRQv88ssvSjG3bt2Cra3tkzYhEdUSHlEjIqqml156CQkJCbCzs4O5uXmVlvHw8IC5uTnS0tLQokULpXmjRo3CkiVL8Ndff6Fr165wdnZWWtfly5fRvHlzlf2eOnUKxcXF+Oyzz6Sjglu2bKlyLu3atUO7du0QFRUFX19ffPvtt+jQoQMAID09HQ8ePEC7du2q3B8R1SweUSMiqqahQ4fCxsYGwcHB+Omnn5CRkYEjR45gwoQJ+PPPP1Uuo6Ojg65du+LYsWMq+/vrr7/w5ZdfYsSIEUrzZsyYgfXr1yM6Ohqpqam4ePEiEhISMG3aNAAPC8Di4mJ8/vnn+OOPP/DNN99g9erVT8whIyMDUVFRkMvluHr1KhITE3HlyhW0bt1aivnpp5/g7u4ODw+P6mweIqpBLNSIiKrJxMQER48eRbNmzfD222+jdevWGDFiBO7fv1/pEbYxY8Zg8+bN0inUMubm5ujbty9MTU3x1ltvKc3r1q0b9uzZg6SkJLz88svo0KEDFi9eDBcXFwBA27ZtsXjxYsyfPx9eXl7YuHEj5s6dW6UcLl26hL59+6JFixYYM2YMwsPD8d5770kxmzZtwujRo6uxZYiopvHNBEREdUQIgQ4dOmDixIkYPHiw0rzAwEC0bt0ay5Ytq6fRKbtw4QJef/11XLlyBRYWFvU9HCKtxSNqRER1RCaTYc2aNUoPq7116xY2b96MgwcPYvz48fU4OmXXr1/H+vXrWaQR1TMeUSMiqkeurq74559/MH36dHz44Yf1PRwiUjMs1IiIiIjUFE99EhEREakpFmpEREREaoqFGhEREZGaYqFGREREpKZYqBERERGpKRZqRERERGqKhRoRERGRmmKhRkRERKSmWKgRERERqan/A4elt2Y2KDwlAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAHFCAYAAADWlnwrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACmHUlEQVR4nOzdd3hUVfrA8e/MpLdJb7SEUGPoCCRUFSJSxIKKSIkgFhZ3RVdXVvkJFrCtYllBUKSJHVhADL2T0EOvIfQU0nud+/tjzMiQNkkm/f08Dw+ZO+fce85kMnlz7jnvUSmKoiCEEEIIIapEXdcNEEIIIYRoyCSYEkIIIYSoBgmmhBBCCCGqQYIpIYQQQohqkGBKCCGEEKIaJJgSQgghhKgGCaaEEEIIIapBgikhhBBCiGqQYEoIIYQQohokmBKNyvHjx3n66afx9/fHxsYGBwcHunfvzocffkhycrKhnJ+fHyNGjKjDllaPSqVi1qxZNXqNsLAw/Pz8auz8s2bNQqVS1dj56+Ka+/btY9asWaSmppZ4btCgQQwaNKjGrl2eo0ePMnDgQLRaLSqVinnz5tV6Gy5fvoxKpWLJkiWVrnv69GlmzZrF5cuXzd4ucyrte3znz2pD6YuoHIu6boAQ5rJo0SKmTp1K+/btefXVVwkMDKSgoIBDhw6xYMECIiIiWL16dV03s8GYOXMm//jHP+q6GQ3Kvn37mD17NmFhYTg7Oxs999VXX9VNo4BJkyaRlZXFjz/+iIuLS40GyTXh9OnTzJ49m0GDBjW4tkdERNC8eXPD44bcF1E2CaZEoxAREcELL7zAkCFDWLNmDdbW1obnhgwZwiuvvEJ4eLhZrpWTk4ONjU2tj6rUtoCAgLpuQqMSGBhYZ9c+efIkU6ZM4YEHHjDL+QoKClCpVFhYyK+QivTp06eumyBqgdzmE43CnDlzUKlULFy40CiQKmZlZcWDDz5Y4nh4eDjdu3fH1taWDh06sHjxYqPnlyxZgkqlYtOmTUyaNAkPDw/s7OzIy8tDp9Px4Ycf0qFDB6ytrfH09GTChAlcv37d6ByDBg0iKCiIgwcP0r9/f+zs7GjdujXvv/8+Op3OqOzVq1cZN24cnp6eWFtb07FjR/7zn/+UKFeakydPMmrUKFxcXLCxsaFr164sXbq0RLlTp04RGhqKnZ0dHh4e/O1vf+P3339HpVKxY8cOQ7nSbvPpdDq++OILunbtiq2tLc7OzvTp04e1a9cayvz000+Ehobi4+ODra0tHTt25PXXXycrK6vCPpTm0qVLjBkzBl9fX6ytrfHy8uK+++4jKirKqNxPP/1EcHAw9vb2ODg4cP/993P06FGTrmFq3f379zNy5Ejc3NywsbEhICCAl156CdDfQnz11VcB8Pf3R6VSGb2mpd0CSk5OZurUqTRr1gwrKytat27NG2+8QV5enlE5lUrFtGnTWL58OR07dsTOzo4uXbqwfv36cvtV/P4tLCxk/vz5hjYVM+U9s2PHDlQqFcuXL+eVV16hWbNmWFtbc/HixTKve/PmTR5//HEcHR3RarU88cQTxMXFlSh36NAhxowZg5+fH7a2tvj5+fHkk09y5coVoz489thjANxzzz2GPhTfLty8eTOjRo2iefPm2NjY0KZNG5577jkSExPLfW1A/35+9913ad++veH93LlzZz777DNDmeJbw0ePHuWRRx7ByckJrVbLuHHjuHXrVoXXuP02X0V9EQ2X/FkhGryioiK2bdtGjx49aNGihcn1jh07xiuvvMLrr7+Ol5cX33zzDZMnT6ZNmzYMGDDAqOykSZMYPnw4y5cvJysrC0tLS1544QUWLlzItGnTGDFiBJcvX2bmzJns2LGDI0eO4O7ubqgfFxfHU089xSuvvMJbb73F6tWrmTFjBr6+vkyYMAGAW7duERISQn5+Pu+88w5+fn6sX7+ef/7zn0RHR5d7m+jcuXOEhITg6enJ559/jpubGytWrCAsLIz4+Hhee+01AGJjYxk4cCD29vbMnz8fT09PfvjhB6ZNm2bSaxYWFsaKFSuYPHkyb7/9NlZWVhw5csRo/seFCxcYNmwYL730Evb29pw9e5YPPviAAwcOsG3bNlO/PQbDhg2jqKiIDz/8kJYtW5KYmMi+ffuM5iXNmTOHN998k6effpo333yT/Px8PvroI/r378+BAwfKHRUyte7GjRsZOXIkHTt25JNPPqFly5ZcvnyZTZs2AfDMM8+QnJzMF198wapVq/Dx8QHKHpHKzc3lnnvuITo6mtmzZ9O5c2d2797N3LlziYqK4vfffzcq//vvv3Pw4EHefvttHBwc+PDDD3n44Yc5d+4crVu3LvUaw4cPJyIiguDgYEaPHs0rr7xieM7U90yxGTNmEBwczIIFC1Cr1Xh6epZ6zZycHAYPHszNmzeZO3cu7dq14/fff+eJJ54oUfby5cu0b9+eMWPG4OrqSmxsLPPnz+fuu+/m9OnTuLu7M3z4cObMmcO///1v/vvf/9K9e3fgr5HT6OhogoODeeaZZ9BqtVy+fJlPPvmEfv36ceLECSwtLUttJ8CHH37IrFmzePPNNxkwYAAFBQWcPXu21DlvDz/8MI8//jjPP/88p06dYubMmZw+fZr9+/eXe43bVdQX0YApQjRwcXFxCqCMGTPG5DqtWrVSbGxslCtXrhiO5eTkKK6urspzzz1nOPbdd98pgDJhwgSj+mfOnFEAZerUqUbH9+/frwDKv//9b8OxgQMHKoCyf/9+o7KBgYHK/fffb3j8+uuvl1ruhRdeUFQqlXLu3DnDMUB56623DI/HjBmjWFtbK1evXjWq+8ADDyh2dnZKamqqoiiK8uqrryoqlUo5deqUUbn7779fAZTt27cbjk2cOFFp1aqV4fGuXbsUQHnjjTcUU+l0OqWgoEDZuXOnAijHjh0zPPfWW28pFX0EJSYmKoAyb968MstcvXpVsbCwUF588UWj4xkZGYq3t7fy+OOPl3nNytQNCAhQAgIClJycnDLb8tFHHymAEhMTU+K5gQMHKgMHDjQ8XrBggQIoP//8s1G5Dz74QAGUTZs2GY4BipeXl5Kenm44FhcXp6jVamXu3Llltuf2+n/729+Mjpn6ntm+fbsCKAMGDKjwOoqiKPPnz1cA5X//+5/R8SlTpiiA8t1335VZt7CwUMnMzFTs7e2Vzz77zHD8l19+KfH+LE3x++3KlSultuFOI0aMULp27VpumeL3zPTp042Of//99wqgrFixwnDszu+xopT8WTW1L6Jhkdt8osnq2rUrLVu2NDy2sbGhXbt2RrcYij366KNGj7dv3w7oR2pu16tXLzp27MjWrVuNjnt7e9OrVy+jY507dza61rZt2wgMDCxRLiwsDEVRyh3V2bZtG/fdd1+JkbmwsDCys7OJiIgAYOfOnQQFBZUYLXnyySfLPHexP/74A4C//e1v5Za7dOkSY8eOxdvbG41Gg6WlJQMHDgTgzJkzFV7ndq6urgQEBPDRRx/xySefcPTo0RK3PDdu3EhhYSETJkygsLDQ8M/GxoaBAwca3bq8k6l1z58/T3R0NJMnT8bGxqZSfSjLtm3bsLe3Z/To0UbHi99Td76H7rnnHhwdHQ2Pvby88PT0LPX9aur1TXnPFLvzZ6As27dvx9HRscRt9bFjx5Yom5mZyb/+9S/atGmDhYUFFhYWODg4kJWVZfJ7JSEhgeeff54WLVpgYWGBpaUlrVq1Aip+v/Xq1Ytjx44xdepUNm7cSHp6eplln3rqKaPHjz/+OBYWFobPAtG0yW0+0eC5u7tjZ2dHTExMpeq5ubmVOGZtbU1OTk6J48W3bIolJSWVehzA19e3xC84U66VlJRU6uoeX19fo2uWJikpqcy23F43KSkJf3//EuW8vLzKPHexW7duodFo8Pb2LrNMZmYm/fv3x8bGhnfffZd27dphZ2fHtWvXeOSRR0p9bcujUqnYunUrb7/9Nh9++CGvvPIKrq6uPPXUU7z33ns4OjoSHx8PwN13313qOdTqsv9mNLVu8dyY21dlVVdSUhLe3t4lFjJ4enpiYWFR4vtdmferqdc35T1TrLSyZZ23tPdTae+bsWPHsnXrVmbOnMndd9+Nk5MTKpWKYcOGmdQvnU5HaGgoN2/eZObMmXTq1Al7e3t0Oh19+vSp8BwzZszA3t6eFStWsGDBAjQaDQMGDOCDDz6gZ8+e5bbfwsICNze3cn8uRdMhwZRo8DQaDffddx9//PEH169fN+svvGJ3/sIr/sUWGxtb4no3b940mi9lKjc3N2JjY0scv3nzJkC55zS1rpubmyGAuF1pk4Pv5OHhQVFREXFxcWX+Yt22bRs3b95kx44dhtEooNQ5KKZq1aoV3377LaAfIfr555+ZNWsW+fn5LFiwwNC3X3/91TAiYSpT63p4eACUWFxQHW5ubuzfvx9FUYzeXwkJCRQWFlbpPVTZ61fm/Wbq6lU3NzcOHDhQ4vid77G0tDTWr1/PW2+9xeuvv244npeXZ5QTrjwnT57k2LFjLFmyhIkTJxqOlzc5/nYWFha8/PLLvPzyy6SmprJlyxb+/e9/c//993Pt2jXs7OyM2t+sWTPD48LCQpKSkkoNckXTI7f5RKMwY8YMFEVhypQp5Ofnl3i+oKCAdevWme169957LwArVqwwOn7w4EHOnDnDfffdV+lz3nfffZw+fZojR44YHV+2bBkqlYp77rmn3LrFgcydde3s7AzLswcOHMjJkyc5ffq0Ubkff/yxwvYVL6ufP39+mWWKf+HeuaLy66+/rvD8pmjXrh1vvvkmnTp1MrxO999/PxYWFkRHR9OzZ89S/5XF1Lrt2rUjICCAxYsXl1hpd7vifpsyqnLfffeRmZnJmjVrjI4vW7bM8HxNMvU9U1n33HMPGRkZRis8AVauXGn0WKVSoShKiffKN998Q1FRkdGxsl5Xc77fnJ2dGT16NH/7299ITk4ukVTz+++/N3r8888/U1hYWOlErJV5j4iGQ0amRKMQHBzM/PnzmTp1Kj169OCFF17grrvuoqCggKNHj7Jw4UKCgoIYOXKkWa7Xvn17nn32Wb744gvUajUPPPCAYTVfixYtmD59eqXPOX36dJYtW8bw4cN5++23adWqFb///jtfffUVL7zwAu3atSuz7ltvvcX69eu55557+L//+z9cXV35/vvv+f333/nwww/RarUAvPTSSyxevJgHHniAt99+Gy8vL1auXMnZs2eB8m+J9e/fn/Hjx/Puu+8SHx/PiBEjsLa25ujRo9jZ2fHiiy8SEhKCi4sLzz//PG+99RaWlpZ8//33HDt2rNKvB+gz2k+bNo3HHnuMtm3bYmVlxbZt2zh+/LhhNMPPz4+3336bN954g0uXLjF06FBcXFyIj4/nwIED2NvbM3v27FLPX5m6//3vfxk5ciR9+vRh+vTptGzZkqtXr7Jx40bDL9pOnToB8NlnnzFx4kQsLS1p37690VynYhMmTOC///0vEydO5PLly3Tq1Ik9e/YwZ84chg0bxuDBg6v0mpnK1PdMZU2YMIFPP/2UCRMm8N5779G2bVs2bNjAxo0bjco5OTkxYMAAPvroI9zd3fHz82Pnzp18++23JRKeBgUFAbBw4UIcHR2xsbHB39+fDh06EBAQwOuvv46iKLi6urJu3To2b95sUltHjhxJUFAQPXv2xMPDgytXrjBv3jxatWpF27ZtjcquWrUKCwsLhgwZYljN16VLFx5//PFKvT5l9UVGuBq4Op3+LoSZRUVFKRMnTlRatmypWFlZKfb29kq3bt2U//u//1MSEhIM5Vq1aqUMHz68RP07V+MUr+Y7ePBgibJFRUXKBx98oLRr106xtLRU3N3dlXHjxinXrl0rcc677rqrRP07V8spiqJcuXJFGTt2rOLm5qZYWloq7du3Vz766COlqKjIqBx3rBBSFEU5ceKEMnLkSEWr1SpWVlZKly5dSl05dfLkSWXw4MGKjY2N4urqqkyePFlZunRpidV2pbWvqKhI+fTTT5WgoCDFyspK0Wq1SnBwsLJu3TpDmX379inBwcGKnZ2d4uHhoTzzzDPKkSNHSqzkMmU1X3x8vBIWFqZ06NBBsbe3VxwcHJTOnTsrn376qVJYWGhUds2aNco999yjODk5KdbW1kqrVq2U0aNHK1u2bKnwmqbUVRRFiYiIUB544AFFq9Uq1tbWSkBAQIlVXjNmzFB8fX0VtVpttGqrtJVeSUlJyvPPP6/4+PgoFhYWSqtWrZQZM2Youbm5RuUoZTWeoujfxxMnTiz3NSyvvinvmeLVfL/88kuF1yl2/fp15dFHH1UcHBwUR0dH5dFHH1X27dtX4j1QXM7FxUVxdHRUhg4dqpw8ebLUfs2bN0/x9/dXNBqN0XlOnz6tDBkyRHF0dFRcXFyUxx57TLl69WqpPyN3+s9//qOEhIQo7u7uipWVldKyZUtl8uTJyuXLlw1lit8zhw8fVkaOHGno05NPPqnEx8cbnc+U1Xzl9UU0XCpFUZTaD+GEEPXJs88+yw8//EBSUhJWVlZ13Rwh6o1Zs2Yxe/Zsbt26VePz2ETDJbf5hGhi3n77bXx9fWndujWZmZmsX7+eb775hjfffFMCKSGEqAIJpoRoYiwtLfnoo4+4fv06hYWFtG3blk8++UQ2NRZCiCqS23xCCCGEENUgqRGEEEIIIapBgikhhBBCiGqQYEoIIYQQohpkAroZ6HQ6bt68iaOjo8lbLgghhBCibimKQkZGBr6+vuUmLa6IBFNmcPPmzRI7rwshhBCiYbh27Vq19nWVYMoMireKuHbtGk5OTnXcmppRUFDApk2bCA0NxdLSsq6bU+OaWn+h6fVZ+tv4NbU+N7X+QvX7nJ6eTosWLUrd8qkyJJgyg+Jbe05OTo06mLKzs8PJyalJ/JA2tf5C0+uz9Lfxa2p9bmr9BfP1ubpTdGQCuhBCCCFENUgwJYQQQghRDRJMCSGEEEJUg8yZEkIIUauKioooKCio8esUFBRgYWFBbm4uRUVFNX69utbU+gsV99nS0hKNRlPj7ZBgSgghRK1QFIW4uDhSU1Nr7Xre3t5cu3atSeQAbGr9BdP67OzsjLe3d42+JhJMCSGEqBXFgZSnpyd2dnY1/gtfp9ORmZmJg4NDtRIyNhRNrb9Qfp8VRSE7O5uEhAQAfHx8aqwdEkwJIYSocUVFRYZAys3NrVauqdPpyM/Px8bGpkkEF02tv1Bxn21tbQFISEjA09Ozxm75NY1XWwghRJ0qniNlZ2dXxy0RTU3xe64m5+lJMCWEEKLWNJW5PKL+qI33nNzmq+eKdAoHYpJJyMjF09GGXv6uaNTyYSSEEELUFxJM1WPhJ2OZve40sWm5hmN2lhqGdfJmziOdsbKQgUUhhKgLgwYNomvXrsybN6+umyLqAfltXE+Fn4zlhRVHjAIpgOyCIn49coP2M/9g7obTddQ6IYQQptqxYwcqlarWUkKI2icjU/VQkU5h9rrTKOWUURT4elcMFxMyeaZ/gNz+E0I0CTL1QdRHMjJVDx2ISS4xIlWWrWdv8eSiSPp9sI3wk7E13DIhhKg74Sdj6ffBNp5cFMk/foyqtc++rKwsJkyYgIODAz4+PvznP/8xen7FihX07NkTR0dHvL29GTt2rCG30eXLl7nnnnsAcHFxQaVSERYWpu9PeDj9+vXD2dkZNzc3RowYQXR0dI32RdQMCabqoS2n4ypdJy4tlxdWHJGASgjRKJU19aE2PvteffVVtm/fzurVq9m0aRM7duzg8OHDhufz8/N55513OHbsGGvWrCEmJsYQMLVo0YLffvsNgHPnzhEbG8tnn30G6IO0l19+mYMHD7J161bUajUPP/wwOp2uxvoiaobc5qtninQKq47eMDxWFDBlVacCqIDZ604zJNBbhr2FEI1GeVMfavqzLzMzk2+//ZZly5YxZMgQAJYuXUrz5s0NZSZNmmT4unXr1nz++ef06tXLkJnb1dUVAE9PT5ydnQ1lH330UaNrffvtt3h6enL69GmCgoLM2g9Rs2Rkqp45EJNMSrY+sVherJa4FSEUJNmbVFcBYtNyORCTXIMtFEKI2lXR1Iea/OyLjo4mPz+f4OBgwzFXV1fat29veHz06FFGjRpFq1atcHR0ZNCgQQBcvXq1wnOPHTuW1q1b4+TkhL+/v0n1RP0jwVQ9k5Dx1wdGytZA8m+6ELukP+mH/FDKm5FexjmEEKKhM/UzrSY++5QKPnizsrIIDQ3FwcGBFStWcPDgQVavXg3ob/+VZ+TIkSQlJbFo0SL279/P/v37Taon6h8JpuoZe8u/7ry6jzqCjd8tlEINKVvvIuGnXhSm21R4Dk/HissIIURDYepnWk189rVp0wZLS0siIyMNx1JSUjh//jwAZ8+eJTExkffff5/+/fvToUMHw+TzYlZWVoB+f8JiSUlJnDlzhjfffJP77ruPjh07kpKSYvb2i9ohwVQ989WO84avLRzz8Hz8AK5DTqKyKCL3igexiweQddq3zPpqFaRkyV81QojGo5e/Kz5aG8qaDaUCfLT6NAnm5uDgwOTJk3n11VfZunUrJ0+eJCwszLCpbsuWLbGysuKLL77g0qVLrF27lnfeecfoHK1atUKlUrF+/Xpu3bpFZmYmLi4uuLm5sXDhQi5evMi2bdt4+eWXzd5+UTsaXDD11Vdf4e/vj42NDT169GD37t3llt+5cyc9evTAxsaG1q1bs2DBghJlfvvtNwIDA7G2tiYwMNAwRFsXLiflGD1WqcCx+xV8wnZj5ZOKLs+SxHXduPW/bhTlWJaor1PgbytlVZ8QovHQqFW8NTIQoERAVfz4rZGBNbbw5qOPPmLAgAE8+OCDDB48mH79+tGjRw8APDw8WLJkCb/88guBgYG8//77fPzxx0b1mzVrxuzZs3n99dfx8vJi2rRpqNVqfvzxRw4fPkxQUBDTp0/no48+qpH2i5rXoFbz/fTTT7z00kt89dVX9O3bl6+//poHHniA06dP07JlyxLlY2JiGDZsGFOmTGHFihXs3buXqVOn4uHhYVhFERERwRNPPME777zDww8/zOrVq3n88cfZs2cPvXv3ru0uUljGklhLtyy8n9pHWkQb0va1IfusL3nXXXEbdgxb/8QS5WevO829Hbw4fCXFkNyuRysXo8e3J7uTRHhCiPpsaJAP88d1L7HFlrfWhrdGBjI0yKfGru3g4MDy5ctZvny54dirr75q+PrJJ5/kySefNKpz51yrmTNnMnPmTKNjgwcP5vRp450sKpqjJeqnBhVMffLJJ0yePJlnnnkGgHnz5rFx40bmz5/P3LlzS5RfsGABLVu2NOyd1LFjRw4dOsTHH39sCKbmzZvHkCFDmDFjBgAzZsxg586dzJs3jx9++KF2OvanIp1CRm5Rmc+rNArO/S5gG5BA4vquFCY7kPBzbxy7X8Z50BnUlvpArHhlS493N5ORW2ior1bpR66KaW0tCQtphU6nsGhPDLkFfwVyPrXwASWEEJUxNMiHIYHe8oefqHcaTDCVn5/P4cOHef31142Oh4aGsm/fvlLrREREEBoaanTs/vvv59tvv6WgoABLS0siIiKYPn16iTLlbV6Zl5dHXl6e4XF6ejoABQUFFBQUVKZbRg7EJGOlqfivEuvmqThM3kXito6kHvYn44gfuZfd8XnwKDa+aYZy+QUFWGvKPk9ufj4Ldlz467y3lU3OzOGlHw7z6RNdGdzRy9Cv6vSvIWlq/YWm12fpb+1fX1EUdDpdtZJSqoDe/i63HVHQ6Ur/3Cwe5Sm+bmPX1PoLpvVZp9OhKAoFBQVoNMa/FM3189BggqnExESKiorw8vIyOu7l5UVcXOkZw+Pi4kotX1hYSGJiIj4+PmWWKeucAHPnzmX27Nkljm/atAk7OztTu1SqD3uZWrII+h7n6NFYvviiG8nJDlxf1pfHHz/P6NHnsbAwz1BxfsxhNsT89Xjz5s1mOW9D0dT6C02vz9Lf2mFhYYG3tzeZmZm1vvQ/IyOjVq9X15paf6H8Pufn55OTk8OuXbsoLCw0ei47O9ss128wwVQx1R3pwBVFKXGsovJ3Hq/sOWfMmGG06iI9PZ0WLVoQGhqKk5NTxZ0ow4GYZCYtPVjJWsm4TNxFQXgQGWea8eOPHVizywvvkVFYuWVVuS23Wzzxbro1d2Tz5s0MGTIES8uSE98bm4KCgibVX2h6fZb+1q7c3FyuXbuGg4MDNja1k75FURQyMjJwdHQs9zO9sWhq/QXT+pybm4utrS0DBgwo8d4rvrNUXQ0mmHJ3d0ej0ZQYMUpISCgxslTM29u71PIWFha4ubmVW6ascwJYW1tjbW1d4rilpWW1PqT6tPHEQqMhK7+Sw7NWhbg+GIV1mwSSNwWRe9OFK98OwOWeMzh0u2LSdjTlScwuNPSrun1saJpaf6Hp9Vn6WzuKiopQqVSo1WpDWoGaVnzbp/i6jV1T6y+Y1me1Wo1KpSr1vW+un4UG82pbWVnRo0ePEkPUmzdvJiQkpNQ6wcHBJcpv2rSJnj17Gl7AssqUdc6apFGruNuv6nlS7ANv4jNpFzat9Ik+kzcHkfDL3RRmlAz8KmPzqfhq1RdCCCEaswYTTAG8/PLLfPPNNyxevJgzZ84wffp0rl69yvPPPw/ob79NmDDBUP7555/nypUrvPzyy5w5c4bFixfz7bff8s9//tNQ5h//+AebNm3igw8+4OzZs3zwwQds2bKFl156qba7B0D/th7Vqm/hlIvnEwdwGXxKn+gzxlOf6PNM1Vfl/X4ylvzCpjGZUQghhKisBhVMPfHEE8ybN4+3336brl27smvXLjZs2ECrVq0AiI2NNdog0t/fnw0bNrBjxw66du3KO++8w+eff260U3dISAg//vgj3333HZ07d2bJkiX89NNPdZJjCmB8sF+1z6FSgVOPy/hM3IOVdyq6XCsS13bn1rquFOVW/s6uosBPB2XjTSGEEKI0DWbOVLGpU6cyderUUp9bsmRJiWMDBw7kyJEj5Z5z9OjRjB492hzNqzYrCzX3tndn27mSiTgry9I9E+9x+0jb15a0iACyTzcj76orbsOPYeuXVKlzXU3Jwa3aLRJCCCEanwY1MtVUdGnhUnEhE6k0Cs79z+P9VAQWLlkUZdqS8FMfkrcEoisw/dvf0sXWbG0SQoiGQlEUnn32WVxdXVGpVERFRTFo0KA6mwpS02bNmkXXrl0rVcfPz6/c3IxNgQRT9UyRTuGHA+a/pWbdLBWfsN04dLsCQMZhf+KW9iMvzrRUDtdTciouJIQQjUx4eDhLlixh/fr1xMbGEhQUxKpVq4w2M67LYGLJkiU4Ozub7Xz//Oc/2bp1a6XqHDx4kGeffdZsbWiIJJiqZw7EJBOXnldxwSpQWxXhFnoSz9EH0NjnUpDkSNzyvqTua4OiKz9/wvc1EOAJIUR9Fx0djY+PDyEhIXh7e2NhYYGrqyuOjo513bRKMTVRqoODgyF1kKk8PDyqnbC6oZNgqp5JyMituFA12QbcwmfyLuzax4JOTdru9sR9H0xBcsU/DH+cLDszfGmKdAoR0Un8L+oGEdFJFJWx7YMQQtQ3YWFhvPjii1y9ehWVSoWfnx+A0W2+QYMGceXKFaZPn45KpSo3WebVq1cZNWoUDg4OODk58fjjjxMf/1fqmeJbbMuXL8fPzw+tVsuYMWPKzO69Y8cOnn76adLS0lCpVGg0Gt5//31AP1r27rvvEhYWhlarZcqUKQD861//ol27dtjZ2dG6dWtmzpxptKXKnbf5wsLCeOihh/j444/x8fHBzc2Nv/3tb0Z17hyZU6lUfPPNNzz88MPY2dnRtm1b1q5da9T2tWvX0rZtW2xtbbnnnntYunQpKpWK1NTUMl+/+kyCqXrG07F2MgNrbAtwH3UEtxFRqKwKyL/pQuyS/mQcbUl5m5a/s+6UyQFR+MlY+r6/jScXRfKPH6N4clEkfd/fRvjJWDP1Qgghas5nn33G22+/TfPmzYmNjeXgwZI7VKxatYrmzZvz9ttvExsbS2xs6Z9viqLw0EMPkZyczM6dO9m8eTPR0dE88cQTRuWio6NZs2YN69evZ/369ezcudMQIN0pJCSEefPm4eTkRGxsLDdu3GDatGmG5z/66COCgoI4fPgwM2fOBMDR0ZElS5Zw+vRpPvvsMxYtWsSnn35a7uuwfft2oqOj2b59O0uXLmXJkiWlLvi63ezZs3n88cc5fvw4w4YN46mnniI5ORmAy5cvM3r0aB566CGioqJ47rnneOONN8o9X30nwVQ908vfFR+tDbWxEYBKBQ533cB38i6sWyaiFFiQvKkTCb/eTWFm6Yk+0/MKORCTXOG5w0/G8vyKI8SlG4+0xaXn8vyKIxJQCSGqJjkZRo+G5s31/ydX/HlUVVqtFkdHRzQaDd7e3nh4lMwD6OrqikajwdHREW9vb7y9vUs915YtWzh+/DgrV66kR48e9O7dm+XLl7Nz506jIE2n07FkyRKCgoLo378/48ePL3MOk5WVFVqtFpVKZbi2g4OD4fl7772Xf/7zn7Rp04Y2bdoA8OabbxISEoKfnx8jR47klVde4eeffy73dXBxceHLL7+kQ4cOjBgxguHDh1c4ryosLIwnn3ySNm3aMGfOHLKysjhw4AAACxYsoH379nz00Ue0b9+eMWPGEBYWVu756jsJpuoZjVrFWyMDAWoloAJ9ok+vMftxufcUaIrIvfRnos9zpX8o3EwtfzJ6kU7hlZ+PlVtmxqoTcstPCFF5zz4La9bAjRv6/xvIxOczZ87QokULWrRoYTgWGBiIs7MzZ86cMRzz8/Mzmo/l4+NDQkJCla7Zs2fPEsd+/fVX+vXrZwi8Zs6caZSfsTR33XUXGo2mUm3q3Lmz4Wt7e3scHR0Ndc6dO8fdd99tVL5Xr14V9qc+k2CqHhoa5MP8cd3x1hrf8nO2s0RrWzOpwVQqcLr7z0SfXmnocqxIXNODxPVd0OUZX/ON1cfLHVn6Yut5svKLyr1eSnYBkZcql+tKCCGIjISiPz9fior0jxsARVFKnU915/E794pTqVSG/ecqy97e3uhxZGQkY8aM4YEHHmD9+vUcPXqUN954o8LJ6VVpU3l1SnstlPLmlzQADS5pZ1MxNMiHIYHeHIhJJiEjF09HG3r56/ftG/75bs7GlT4hsbqsPDLxHr+X1L3tSI8MIOtUc3KvuuEzMgp66f+qyC1UeH7FERaM687QIONtaop0CvN3RJt0rX3RifRt427uLgghGrM+ffQjUkVFoNHoH9cxKysriorK/wMyMDCQq1evcu3aNcPo1OnTp0lLS6Njx441eu1ie/fupVWrVkbzk65cuVLla1dVhw4d2LBhg9GxQ4cO1Xo7zElGpuoxjVpFcIAbo7o2IzjADY1ahUat4o1hVf/BM4VKo+Ay4BxeYyOwcM6iKMOW6yuDWbz4LnSFf71lXr/jVl2RTmHxnkvkFZn2F8bGSq4MFEIIFi6Ehx6CZs30/y9cWNctws/Pj127dnHjxg0SE0vfvWLw4MF07tyZp556iiNHjnDgwAEmTJjAwIEDS70dV5lrZ2ZmsnXrVhITE8nOzi6zbJs2bbh69So//vgj0dHRfP7556xevbrK166q5557jrNnz/Kvf/2L8+fP8/PPPxsmtJe3GrI+k2CqAQpp414r3zib5in4PL0bhy76v1zWrm3D1cX9yI/XJ/pMzS5g34VEIqKTeHvdKe5+bwvvbThr8vkv3spi7obTNdJ2IUQj5eoKv/4K16/r/3d1resW8fbbb3P58mUCAgJKnaQO+iBhzZo1uLi4MGDAAAYPHkzr1q356aefqnXtkJAQnn/+eZ544gm8vLz4/PPPyyw7atQopk+fzrRp0+jatSv79u0zrPKrTf7+/vz666+sWrWKzp07M3/+fMNombV16Yuf6juV0tBvVNYD6enpaLVa0tLScHIyLaN4dT2//BDhp+IrLmgmBZc8yN7cmdRUG1DrcO53Hqfe0VhqoLAa7yAVsGxSL5Kz8w23MjXquv/LpKCggA0bNjBs2LAS9/4bq6bWZ+lv7crNzSUmJgZ/f39sbGonBYxOpyM9PR0nJyfU6sY/dtCQ+/vee++xYMECrl27Vql6pvS5vPeeuX5/y5ypBmp8sF+tBlMObROYO2I7f3uvK5nnfUjd1YGcaE/chh/D0qXsYeWKKMD4xQcMj320Nrw1MrDEXCwhhBCNx1dffcXdd9+Nm5sbe/fu5aOPPjLKkdXQNKzQVRj0ae2Gs13t/nWp1ebj8+hh3IbpE33m3XAl9rv+ZES1KDfRZ2XEpeXyguShEkKIRu3ChQuMGjWKwMBA3nnnHV555RVmzZpV182qMgmmGiiNWsX7j3Sq9euqVODQ6Qa+k3Zj3SJJn+hzY2du/daTojISfVZGcUw2e91pyUMlhBCN1KeffsrNmzfJzc3l/PnzzJw5EwuLhnuzTIKpBmxokA8LxnXH26l25h/czkKbg9eTkbjccxo0ReREe3FzcX+yz3tV+9wKEJuWa1KmdSGEEKKuNdwwUACl56NKycrnnd9PE5v211YuPlobHuziw8JdMcBfI0DVoVKBU68YbPwTSVzfhYIELbdW98Q+6Bqug0+jti6s1vlv3/S5SKeUyLlVHyaqCyGEEBJMNQLF+ahud39QyYSfGrWKbi1dmL2uZKA1orM3i3ZfrtL1rTwy8Bm/j9Q9bUnfH0DWyRbkXnXDffgxbFpWfXTpcqJ+Ynv4ydgSbfZ2suaJu1tQUKTjZmouzVxsCQlwp09rNwmyhBBC1CoJphqp0gIsKDuzukatIjohk23nSk84VxGVhQ6XQeewbZNA0vquFKbZEf9DH5x6XcK5/3lUFpXfDmHh7mhSc/L5bu/lEs/Fpefx2daLRsf+uz0ae2sNHz3amWGdfavUDyGEEKKyZM5UE1RaZnWAKQPaVPvc+kSfu3DofBVQkX4ggNhlfclPcKyw7p2y8opKDaQqqjN15VFJBiqEEKLWSDAlDHr5u+JqX/10C2rrItweOIHHIwdR2+VRcMuJ2KX9SItsjVK1/Tor7etdMWw4LukVhBBC1DwJpoSBRq3i4a7NzHY+u7YJ+E7ahW3bONCpSd3ZkfgfgilItTXbNcrz2m/HJb2CEKJaFEXh2WefxdXVFZVKRVRUFIMGDeKll16q66aZzaxZs+jatavhcVhYGA899FC5dcz1GjSW11KCKWHk3o7VT21wO419Ph4PH8btgWOorArJu+5K7HcDyDze3GyJPsuSmVfIl9suVlxQCCHKEB4ezpIlS1i/fj2xsbEEBQWxatUq3nnnHUMZPz8/5s2bV3eNNLPPPvvMsPGwuezYsQOVSkVqaqrR8Ttfy4ZKgilhrAYCHJUKHDpfx+fpXVg3T0LJtyDpjy7cWt2Doiwr81/wNt/ti5HRKSFElUVHR+Pj40NISAje3t5YWFjg6uqKo2Pl54E2FFqtFmdn51q5VmN5LSWYEkYSs/Jq7NyWzvpEn86DzoBaR84Fb24uHkD2Bc8au2ZqdoEk/xRCVElYWBgvvvgiV69eRaVS4efnBxjfmho0aBBXrlxh+vTpqFQqVKqyU7NcvXqVUaNG4eDggJOTE48//jjx8X/tsVp8u2358uX4+fmh1WoZM2YMGRkZpZ4vLS0NW1tbwsPDjY6vWrUKe3t7MjMzAfjXv/5Fu3btsLOzo3Xr1sycOZOCgoJy+337bb6srCwmTJiAg4MDPj4+/Oc//ylRZ8WKFfTs2RNHR0e8vb0ZO3YsCQkJAFy+fJl77rkHABcXF1QqFWFhYSVeS4CUlBQmTJiAi4sLdnZ2PPDAA1y4cMHw/JIlS3B2dmbjxo107NgRJycnRo8eTWxs3c6RlWBKGPF0rNls6io1aHtfwmfiHiw90tFlW3Nr1d0k/dEJXZ6mRq4Zl55bcSEhRK1SFMjKqpt/pk4x+Oyzz3j77bdp3rw5sbGxHDx4sESZVatW0bx5c95++21iY2PL/KWuKAoPPfQQycnJ7Ny5k82bNxMdHc0TTzxhVC46Opo1a9awfv161q9fz86dO3n//fdLPadWq2X48OF8//33Rsd/+OEHQ9AG4OjoyJIlSzh9+jSfffYZixYt4tNPPzXtRQBeffVVtm/fzurVq9m0aRM7duzg8OHDRmXy8/N55513OHbsGGvWrCEmJsYQMLVo0YLffvsNgHPnzhEbG8tnn31W6rXCwsI4dOgQa9euJSIiAkVRGDZsmFHwl52dzccff8zy5cvZsWMH169f59VXXzW5PzVB8kwJI738XfHR2hglyKwJVp4Z+EzYS+rudqQfaE3m8ZbkXnHHbUQUNs1TzHqt3edv8XA3802sF0JUX3Y2/Pm7vgapAecSRzMzwd6+4tparRZHR0c0Gg3e3t6llnF1dUWj0RhGZMqyZcsWjh8/TkxMDC1atABg+fLl3HXXXRw8eJC7774bAJ1Ox5IlSwy3vsaPH8/WrVt57733Sj3vU089xYQJE8jOzsbGxob09HQ2bNhgCF4A3nzzTcPXfn5+vPLKK/z000+89tprFb4GmZmZfPvttyxbtowhQ4YAsHTpUpo3b25UbtKkSYavW7duzeeff06vXr3IzMzEwcEBV1dXADw9Pcu8hXjhwgXWrl3L3r17CQkJAeD777+nRYsWrFmzhsceewyAgoICFixYQEBAADqdjmeeeYaPP/64wr7UJBmZEkY0ahVvjQyslWupLHS43HMWrycj0Thl6xN9fh9Myo72KIXme2uuOnqD8JOSJkEIUXfOnDlDixYtDIEUQGBgIM7Ozpw5c8ZwzM/Pz2gOkY+Pj+F2WWmGDx+OhYUFa9euBWDdunU4OjoSGhpqKPPrr7/Sr18/vL29cXBwYObMmVy9etWkdkdHR5Ofn09wcLDhmKurK+3btzcqd/ToUUaNGkWrVq1wdHRk0KBBACZfB/SvkYWFBb179zYcc3Nzo3379kavkZ2dHQEBAYbH3t7e5b5GtUGCKVFC8QbKznbVzzllCpuWyfhO2o190DVARfr+NsQuDyH/lvn+bH1+xRG2nI6XyehC1BN2dvoRopr8l56u4/r1VNLTdUbH7exqv7+KopQ6n+rO45aWxp+7KpUKna7sBH1WVlaMHj2alStXAvrA6fHHH8fCQn/jKTIykjFjxvDAAw+wfv16jh49yhtvvEF+fr7J7a5IVlYWoaGhODg4sGLFCg4ePMjq1asBTL5Oedcy5TUypZ01SW7ziVIVbzvz5baLfLPrIvlFRTV6PbV1Ie7Dj2PXNp6k8E4UJGiJXdoP5/7ncbr7EiozhP3PLDuEGvhybDfZbkaIOqZSmXarrTp0Oigq0l9HXYNDB1ZWVhRV8BkZGBjI1atXuXbtmmF06vTp06SlpdGxY8dqXf+pp54iNDSUU6dOsXv3bqNbgnv37qVVq1a88cYbhmNXrlwx+dxt2rTB0tKSyMhIWrZsCegniZ8/f56BAwcCcPbsWRITE3n//fcNfTt06JDReays9Cu3y3udAgMDKSwsZP/+/YbbfElJSZw/f77ar1FNk5EpUSaNWsU/BrdlwYS7a+2adu3i8Z20G9uAeCjSkLqjI/E/9qEwzTyJPnUg280IIczKz8+PXbt2cePGDRITS9/fdPDgwXTu3JmnnnqKI0eOcODAASZMmMDAgQPp2bNnta4/cOBAvLy8GD9+PC1btqRPnz6G59q0acPVq1f58ccfiY6O5vPPPzeMGpnCwcGByZMn8+qrr7J161ZOnjxJWFgY6tui05YtW2JlZcUXX3zBpUuXWLt2bYncUa1atUKlUrF+/Xpu3bplWGl4u7Zt2zJq1CimTJnCnj17OHbsGOPGjaNZs2aMGjWqCq9M7ZFgSlQoMbPm0iWURuOQh8ejh3AdehyVZSF519y4ubg/mSeamS3R59e7YlgfddM8JxNCNGlvv/02ly9fJiAgAA8Pj1LLqFQq1qxZg4uLCwMGDGDw4MG0bt2an376qdrXV6lUPPnkkxw7dswwSbvYqFGjmD59OtOmTaNr167s27ePmTNnVur8H330EQMGDODBBx9k8ODB9OvXjx49ehie9/DwYMmSJfzyyy8EBgby/vvvl5gQ3qxZM2bPns3rr7+Ol5cX06ZNK/Va3333HT169GDEiBEEBwejKAobNmwocWuvvlEpdX2jsRFIT09Hq9WSlpaGk5NTXTfH7CKikwhbHMGHvYp47YCGvKKy86iYW0GKHUm/dyHvhn4liG27ONzuP4HGzvT78GVRAf8d251hnX1KXreggA0bNjBs2LB6/0NsLk2tz9Lf2pWbm0tMTAz+/v7Y2NRsCpZiOp2O9PR0nJycjEZSGqum1l8wrc/lvffM9fu7abzaolp6+bvi7VT9Dz8vx8p/gFu6ZOM1NgLnAWf1iT7Pe3NzcX+yL1Y/0acCTF15RFb6CSGEqBYJpkSFNGoVrz/Qocr1rTUqvhrbjd3/Glyl+io1aIOj8ZmwF0u3DHRZNtz67W6SwoPQ5Vc/0efsdadllZ8QQogqk2BKmGTwnxsg3zlCZakp/5bfsCAvTr/zAMM6+2JloWZKf78qt8HKKx2fsD043n0JgMxjrYj9rj+5112qfE6A2LRc2XJGCCFElUlqBFEpG18awNHrGSRk5OLpaEMvf1c+DD/Dot0x3D64o1bBlP7+zBhmnAD0jeF3ceRqKoevpFbp+ioLHa73nsEuIIHE37tQmGpP/MpgnPpE49z3PCpN1UaYEjJkyxkhhBBVI8GUqBSNWkVwgJvRsRnDAnkltAPLIy5zJTmbVq52jA/2w8qi9IHPn58Locc7m0nNKXujzYrYtErCd/IukrfcRdbJ5qRHtCH3kgduw6Ow8ii55LYiMbeyqtwWIYTpZM2TqG218Z6T23zCLKws1Ezu35q3RwUxuX/rMgMp0Adk7z/aqdrX1Cf6PIb7qMOobfLJj9cn+kw/6F/pFArLIq/IvCkhalDxCsLs7Ow6boloaorfczW5ilVGpkSdGBrkw/TBbfl0y4Vqn8u+QxzWzVNI+qMzuZc8SdkWSPZFT9yHH8PCybTbd8lZ+RyISS4x6mZuRTqFAzHJRrdJNeraSzUhRF3RaDQ4Ozsb9lCzs7MrdXsVc9LpdOTn55Obm9skUgU0tf5C+X1WFIXs7GwSEhJwdnZGo6n+gqWySDAl6sy0e9vyw4FrxKVXf76ShUMenqMPknmsJSnbOpJ31Z2b3w7ANfQU9oE3MOUz+2ZqDqAPeCKjkwD4YusFerfxpE9rt2oHPeEnY5m97jSxaX/119vJmid7tcTP3V6CK9HoeXt7A9TaprSKopCTk4OtrW2NB271QVPrL5jWZ2dnZ8N7r6ZIMCXqjEatYtaDgTy/4ohZzqdSgWPXq9i0TCTx967k33QhaX1Xci544Xr/CTS25c/ROno1GXtrDa+vOkFOXj4f9oKvd1/i8x0xONtZ8v4jnRgaVDLBpynCT8bywooj3HkjMS49z2h0zkdrw1sjA6t8HSHqM5VKhY+PD56enhQUVH3OpKkKCgrYtWsXAwYMaDKJWZtSf6HiPltaWtboiFQxCaZEnRoa5MPkvn58u/ey2c5p6ZqN91MRpEUGkLa3LdnnfMi77oLbA8exDbhVZr0/TsaxYv81AKzv+NlLzS7g+RVHWDCue6UDnSKdwux1p0sEUqWJS8vlhRVHmF+F6wjRUGg0mlr5BafRaCgsLMTGxqZJBBdNrb9Qf/rcYG6qpqSkMH78eLRaLVqtlvHjx5OamlpuHUVRmDVrFr6+vtja2jJo0CBOnTpleD45OZkXX3yR9u3bY2dnR8uWLfn73/9OWlpaDfdG3G5woPmHX1VqBeeQi3iP1yf6LMqyIeHXXiRtLDvRZ1JWxX8pVyXB54GYZKNbe+UpPrMkEhVCiIajwQRTY8eOJSoqivDwcMLDw4mKimL8+PHl1vnwww/55JNP+PLLLzl48CDe3t4MGTKEjIwMAG7evMnNmzf5+OOPOXHiBEuWLCE8PJzJkyfXRpfEn3r5u+LlaGVSWTuryr1lrb3T8Z64B8ceMQBkRrUidkk/8m44V7aZQNUSfFY2h5VSxesIIYSoGw3iNt+ZM2cIDw8nMjKS3r17A7Bo0SKCg4M5d+4c7du3L1FHURTmzZvHG2+8wSOPPALA0qVL8fLyYuXKlTz33HMEBQXx22+/GeoEBATw3nvvMW7cOAoLC7GwaBAvT4OnUauYPSqowrlTzw3w57WhHYmMTiLiUiKgIjU7nxX7r5ZbT22pw3XwaWzbxJO0oQuFKQ7EfR+CNvgi2pALlU70GZeWU6nyno5V29dQEokKIUTD0CCihYiICLRarSGQAujTpw9arZZ9+/aVGkzFxMQQFxdHaGio4Zi1tTUDBw5k3759PPfcc6Veq3jn6PICqby8PPLy8gyP09PTAf1EuNqYVFkXivtVU/27r70788d24d+rTpBdUGT0nEoFTwe34uUhbdEVFdLLT0svPy0A+YU6fj10xaT5SNYBiThO2UnCxiAyTjUnbV9bci954P1gFNbuxok+rdWK0f+3e//3U4zo5GVy37o1d8Tb0YKU7Mq9dq62mlp9P9X097i+kf42fk2tz02tv1D9PpvrtVIpDSAd7Zw5c1iyZAnnz583Ot6uXTuefvppZsyYUaLOvn376Nu3Lzdu3MDX19dw/Nlnn+XKlSts3LixRJ2kpCS6d+/O+PHjeffdd8tsz6xZs5g9e3aJ4ytXrsTOzq4yXRN1ZM8eXxYs6EJmphVWVkVMmHCaYcMu0URSswghhECf0HPs2LGGgZSqqtORqbKCktsdPHgQoNT8EYqiVJhL487ny6qTnp7O8OHDCQwM5K233ir3nDNmzODll182qtuiRQtCQ0Or9c2ozwoKCti8eTNDhgypd6tEinQKIXO3knXHiFa5rOLxeHoXut87k33Jk2++6cTKLd54jTiGpVMu1mqFd3rqmHlITZ6u9PfYkTeHYGWhpkinsHDXJVZEXCYtr9DwvJejNTOGdWRwRy/e/f00Px68Vql+Pdffnxfva1epOtVRn7/HNUH62/g1tT43tf5C9ftcfGepuuo0mJo2bRpjxowpt4yfnx/Hjx8nPj6+xHO3bt3Cy6v02y3FCbri4uLw8flriXlCQkKJOhkZGQwdOhQHBwdWr15d4TfE2toaa2vrEsctLS0b/Ru4PvbREpgzumupeZzKZZeH++iDZB5tRcr2jmRf9uDKooG4hp7EtdMNAPJ0KvKKSg+mlu2/hr+7Pa//dpzUnOIg6q+yV1PzeWHlMRaM606ejjLPUxadyqJOXuv6+D2uSdLfxq+p9bmp9Req3mdzvU51Gky5u7vj7u5eYbng4GDS0tI4cOAAvXr1AmD//v2kpaUREhJSah1/f3+8vb3ZvHkz3bp1AyA/P5+dO3fywQcfGMqlp6dz//33Y21tzdq1a7GxqdpkYVG3hgb5MH9c9xIZxiuiUoFj9yvYtPoz0WesM4nrupF30ZOMjscAXZl1v9h2kez8ikfDXvnlGH5ulb/9GxzgJtvPCCFEA9AgJqB37NiRoUOHMmXKFL7++mtAP/dpxIgRRpPPO3TowNy5c3n44YdRqVS89NJLzJkzh7Zt29K2bVvmzJmDnZ0dY8eOBfQjUqGhoWRnZ7NixQrS09MNQ34eHh61klROmM/QIB+GBHobgo/EjDze+f2MSXUt3bLwfmofaRFtSNvXhowzzfjHP1yxDT2ORavEUuuYEkgBZOUVcepmhsn9KLb/UhJ/+/4IqTl/TZCUDOlCCFH/NIhgCuD777/n73//u2F13oMPPsiXX35pVObcuXNGCTdfe+01cnJymDp1KikpKfTu3ZtNmzbh6OgIwOHDh9m/fz8Abdq0MTpXTEwMfn5+NdgjURM0apVhs+IincI3e2JMHqlSaRSc+13ANiCBpPVdSU52gB9749j9Ms6DzqC2LHuUqiZ8vu1iiWOSIV0IIeqfBhNMubq6smLFinLL3LkwUaVSMWvWLGbNmlVq+UGDBpWoIxoPjVrFWyMDKz2XytonjVaTd9HuVAc2bGhNxhE/ci674z4iCmufus2Or6CflTV73WmGBHrLLT8hhKgHZCG4aNSK51I521bu7wa1pY5nnz1BszGRaBxyKUx2IG55CKl72qJUciK5uUmGdCGEqF8kmBKN3tAgH3a+em+V6tq3TsRn0i7sOt4ARU3a3nbEfR9CQZK9mVtZeZIhXQgh6gcJpkST8PGms1Wuq7EtwOPBKNxHHkVtXUB+rDOxS/qTcaQVdXmXuKrb1AghhDAvCaZEk3A5Kbva57APvInPpF3Y+N1CKdSQvDmIhJ97UZhRMudYTfPR6tMkCCGEqHsSTIkmoSp5nkpj4ZSL5+MHcBl8CpVFEbmXPYhdPICsM7W7ss7P1U4mnwshRD0hwZRoEv49LNBs51KpwKnHZXzCdmPlnYou14rEtd25tbYrRbm1s0D22I00inSyElUIIeoDCaZEk2BrpUFj5oEcS7csvMftQxtyHlQ6ss80I/bbAeRcdjPvhUqRnV8kq/mEEKKekGBKNBm2VubPaK/SKDj3v4D3uAgsXDIpyrQl4ac+JG8JRFdQsz9esppPCCHqBwmmRJPh7VRzE8WtfVPxCduDQ7crAGQc9id2SX/yYrU1dk1ZzSeEEPWDBFOiyXioW/MaPb/aqgi30JN4Pnbgr0SfK0JI3dsGRWfee4wWamQ1nxBC1BMSTIkmw9Lck6bKYNv6lj7RZ/uboFOTtqc9cSuCKUg2z4pCoFLb4wghhKhZEkyJJuNGau3NMdLYFuA+6ihuI46isi4gP9ZFn+jzaEuzJPos0kFkdFL1TySEEKLaJJgSTUYrV/ONDJlCpQKHu27iO2kXNq0SUQosSN7UiYRf76Yws/rzt/ZG3yr1eJFOISI6if9F3SAiOklSKAghRA2rnaQ4QtQD44P9eOf3M7V+XQunXDyf2E/GYT9SdnQg95Insd8OwPX+E9h3iKvyea8n5xg9LtIpfLntIt/tjSE1p8Bw3Edrw1sjAxkaVLuJRYUQoqmQkSnRZFhZqBnZ2btOrq1SgVPPy/iE7cHKK02f6PN/PUhc3wVdFRN9JmblG74OPxlLj3c38+mW80aBFEBsWi7PrzhC+MnYavVBCCFE6SSYEk3K4MC6CaaKWbln4j1+L07BF0ClkHWqOTcXDyDnSuUTfeYXFgH6QOr5FUdIzS4ot/zrq07ILT8hhKgBEkyJJqU+5GZSaRRcBpzH+6l9WDhnUZRhS8KPfUje2hGl0PQfSUWnUKRTmL3utEnlU7ML+HLbxao2WwghRBkkmBJNSi9/V5xtLeu6GQBYN0vF5+ndOHT9M9HnodbELulHfryTSfUPX0vjpR+PEJtm+irF/+64KKNTQghhZhJMiSZFo1bxdF8/k8tb13BuKrVVEW73n8Rj9EHU9rkUJDkSu6wvaREBJiX6XHe8chPY8wt1fLH1QlWbK4QQohQSTIkmZ9q9bXG2K390ystRn7rA2qJ2fkTsAhLwnbQLu3axoFOTuqsD8d8HU5Bi/nQOC3ZFs/qopE0QQghzkWBKNDkatYr3H+lEaeM+qj//zRjWEYD0vKLaa5ddAe4PHcFteBQqqwLybroQ+11/MqJamCXRZ7HcAh3Tf4riyUWR3P3eZjYcv2m+kwshRBMkwZRokoYG+TB/XHd8tMYT0r21Nswf153BHb1qvA0udpYsGNedBeO64+2kb4dKBQ5BN/CdtBvrlkn6RJ8bO3Prt54UmSHR552SswqYuvIo7/1+yuznFkKIpkKSdooma2iQD0MCvTkQk0xCRi6ejjb08ndFo1ZRUFB+moHqcLa15Om+fky7ty0atX587PZ2xKfmMif8LF5jIsk46E/KrvbkRHtxc7ELbvefwK591RN9lmXR7suoFR2BFZQr0imlvl5CCNGUSTAlmjSNWkVwQNk5nrydbLiaklfljYVV6Dclnj64LX7u9mUGILe3o0inMCf8rD7RZ68YbPxvkbi+KwUJWm6t6YF90DVcB59GbV1YxVaVbknEFT7sVfbz4Sdjmb3utNHqQcmuLoQQcptPiHK9/kAHgFLnV5nCW2vDgnHd+cfgdozq2ozgALcKR3I0ahVt3P66/WjlkYnP+H049bmoT/R5sgU3F/cn96prFVtVvvxCXYlj4SdjeWFFyTQMcWm5vCDZ1YUQTZwEU0KUY3BHL+aP64631rRkn95O1kwf3JbPxnTlhyl92POve6s0apNzx7x3lYUOl4Hn8BoboU/0mW5H/A99SNneoVKJPk1x3yc7jYKjIp3C66tOlDo6V3xs9rrTsjJQCNFkyW0+ISpw59wqd3trUEFiZp7R1+acQ1RWYGLTPAWfsN2kbAsk83hL0g8EkHPJA/eRUVh5ZlT7ugAp2fm8sOII88d1Z2iQD19uu1DuVjUK+v3/IqOT6NvW3SxtEEKIhkSCKSFMUNHcKnPzc7MjLj2v1OfU1kW4PXAC2zbxJIV3piDRidil/XDufw6nXpdQmWGgSkE/2nRvBy++3nXJpDpTlh3iuYGtjSbWCyFEUyC3+YSoh/zdHSosY9c2Ad/Ju7BtG6dP9LmzI/E/BFOQamuWNsSm5fLd3hiy803LtZVdUMSnWy7QefZGyV0lhGhSJJgSoh6yMHEbG41dPh4PH8btgWP6RJ/XXYn9bgAZx8yT6PPjjWcrXScrr4ipK48yd4NpGzALIURDJ8GUEPWQn5u9yWVVKnDofB2fp3dj3TwJJd+C5PDO3FrVg6Isq2q1o6Dkwj6Tfb0rhg3HZZWfEKLxk2BKiHpofLAflZ12ZOmcg9eTkTgPOgOaInIuenNz8QCyL9R8NveyzPzfSVnlJ4Ro9CSYEqIesrJQM6W/f6XrqdSg7X0Jnwl7sfRIR5dtza1VPUnc0BldnqYGWlq+pKx8DsQk1/p1hRCiNkkwJUQ9NWNYIM8NqHxABWDlmYHPhL049YoGFLJOtCD2uwHkXnMxbyNNkJCRW3EhIYRowCSYEqIemzEskA8f7VSluioLHS73nMVrbCQabTaFaXbErwwmZYf5E32Wx9PRtISnQgjRUEkwJUQ918zZrlr1bVok4/v0buw7XQNUpO8PIHZZX/JvOZqngeXQqKGXf81seyOEEPWFBFNC1HdmyH+pti7EfdhxPB4+hNo2j4JbTsQu7Uva/tYo1VixVyEFSeAphGj0JJgSop5LzCw9E3pV2LWL1yf6bBMPRRpSd3Qk/sc+FKaZJ9HnnYoUyMwtrJFzCyFEfSHBlBD1nLnnHGns8/F45BCuQ4+jsiwk75obNxf3J+14c7Mk+rzT9J+Omv+kQghRj0gwJUQ918vfFVd7S7OeU6UCxy7X9Ik+myWj5FsSv74rH3xwN4XVTPR5pytJWWY9nxBC1DcSTAlRz2nUKt4dFVQj57Z0ycZrbATOA8+CWkdkpC9XFg0k+6Kn2a6Rlm2+25RCCFEfSTAlRAMwrLNvlXNOVUSlBm2faFo+vYeWLdMpyrbm1m93kxTeCV1+9RN9xmcWEvbdfiKik0zOhl6kU4iITuJ/UTcqVU8IIepCgwmmUlJSGD9+PFqtFq1Wy/jx40lNTS23jqIozJo1C19fX2xtbRk0aBCnTp0qs+wDDzyASqVizZo15u+AENU0Y1ggX43tjo1lzfzY2nil8/HHO3H5M9Fn5rGWxH7Xn9zr1U/0ueNcIk8uiqTfB9sIP1n+fn3hJ2Pp+/5WnlwUyT9+jOLJRZH0fX9rhfWEEKKuNJhgauzYsURFRREeHk54eDhRUVGMHz++3Doffvghn3zyCV9++SUHDx7E29ubIUOGkJGRUaLsvHnzUKlkCbeo34Z19mHR+J41dn4rKx0eg8/g9WQkGqdsClPt9Yk+d7ZHKar+z0dsWi4vrDhSamCUX6jjlZ+jeH7FEeLSjW8NxqXn8XwZ9YQQoq41iGDqzJkzhIeH88033xAcHExwcDCLFi1i/fr1nDt3rtQ6iqIwb9483njjDR555BGCgoJYunQp2dnZrFy50qjssWPH+OSTT1i8eHFtdEeIaglp446zXfkT0u2tqvejbdMyGd9Ju7EPug6KivTINn8m+nSo1nkBFGD2utNGt+7mbjhNuzf/4LcjN8qt+8ovx8gvrMnEWEIIUXkNIpiKiIhAq9XSu3dvw7E+ffqg1WrZt29fqXViYmKIi4sjNDTUcMza2pqBAwca1cnOzubJJ5/kyy+/xNvbu+Y6IYSZaNQq3n+k/C1mPhrdBZcKAq6KqK0LcR9+DPeHDqO2zacgQUvs0n6kH/CvdgqF2LRcwwbIczec5utdMSbVy8oros9cueUnhKhfLOq6AaaIi4vD07Pk6iJPT0/i4uLKrAPg5eVldNzLy4srV64YHk+fPp2QkBBGjRplcnvy8vLIy/vrNkR6ejoABQUFFBQUmHyehqS4X421f3eq7/29r70788d2Ye6Gs8TftpGwt5MNrz/QgcEdPVB0HXn5l2Mmn9NarRj9bzgeGItTy2Tif+9MVrQXKdsDyb3kifeIKCy1Vd/E+MM/TrFicm+W7L2EdSXmuWfl5vHSD4f59ImuDO7oVXGFMtT377G5NbX+QtPrc1PrL1S/z+Z6reo0mJo1axazZ88ut8zBgwcBSp3PpChKhfOc7nz+9jpr165l27ZtHD1auaSCc+fOLbXdmzZtws6uevuo1XebN2+u6ybUqvre31c63nkki/yYw2z4c6Dnw16VP+c7PUu7jZaNck8kmza1YvHiIHKuuBP/3UCmTDnOoEHXqdp0wxS2bAqvUhsBo35WR33/HptbU+svNL0+N7X+QtX7nJ2dbZbr12kwNW3aNMaMGVNuGT8/P44fP058fHyJ527dulVi5KlY8S27uLg4fHx8DMcTEhIMdbZt20Z0dDTOzs5GdR999FH69+/Pjh07Sj33jBkzePnllw2P09PTadGiBaGhoTg5OZXbn4aqoKCAzZs3M2TIECwtzZtAsj5qTP3ddCqed34/TUp2vuHYXyNYXnyx9QJf776EtVrhnZ46Zh5Sk6crIzpyuY7P08nEretG9g0XPvusB9+G++L1wHE0dpX/C8/RSkNGflFVu8biiXdXeSPlxvQ9NkVT6y80vT43tf5C9ftcfGepuuo0mHJ3d8fd3b3CcsHBwaSlpXHgwAF69dL/Gbt//37S0tIICQkptY6/vz/e3t5s3ryZbt26AZCfn8/OnTv54IMPAHj99dd55plnjOp16tSJTz/9lJEjR5bZHmtra6ytrUsct7S0bPRv4KbQx9s1hv4O79qcoZ2bcSAmmYSMXDwdbejl72rYgLh3G08+3/HXEE+eTkVeeSv3tDl4jo0gPTKA1L1tyTznQ851F9weOI5twK1KtS0vR0d1dnJOzC6s9venMXyPK6Op9ReaXp+bWn+h6n021+vUIOZMdezYkaFDhzJlyhS+/vprAJ599llGjBhB+/btDeU6dOjA3Llzefjhh1GpVLz00kvMmTOHtm3b0rZtW+bMmYOdnR1jx44F9KNXpU06b9myJf7+NZMgUYi6oFGrCA5wK/W5Pq3dcLazJCcvv9TnS6NSK2hDLmLTOoGk9V0pSHIk4ddeOHS9gss9Z1BbVX20qTLMvW+hEEJURYNYzQfw/fff06lTJ0JDQwkNDaVz584sX77cqMy5c+dIS0szPH7ttdd46aWXmDp1Kj179uTGjRts2rQJR0fH2m6+EPWWKasDy+LdOhvviXtw7HkJgMyoVsQu6U/eDWcztrBsKVmmB4BCCFFTGsTIFICrqysrVqwot4xyx3ptlUrFrFmzmDVrlsnXufMcQjQFQ4N8mPdEV/JjDleqXo+WLmw5ewvX+85gG5BA0oYuFKbYE/d9CNo+F9H2vYBKU3M/U1NXHmF6Qlum3dvWcNtSCCFqW4MZmRJC1KziNAN/G9TGpPI+WhvmjelueGzrl4TvpF3Y36VP9JkW0Za45X0pSKx+os/yfLrlAj3f3cyG4zdr9DpCCFEWCaaEEEZeGBTAgnHdy82yrgLeGhmIg40FbdxtDcfVNoW4jziG+4NHUNvkkx//Z6LPQ37VTvRZnpTsAqauPMrcDadr7iJCCFEGCaaEECUMDfLh8JtDmD64Hc62xkGVj9aG+eO6MzRIn3LE36PkHET7jrH4TNqFjX8CSqGGlK13kfBTbwrTa3bC+Ne7YthwXLKjCyFqV4OZMyWEqF0atYp/DG7LtHvblJlWASC7jDxRFo55eD52kMyolqRsCyT3ijs3Fw/ALfQkdh1vVjHRZ8Wm/xyF1s6SPq3dZB6VEKJWSDAlhChXeWkVANwdrMp8TqUCx25XsWmVROL6LuTHupC4rht2F7xwDT2Jxtb8217kFep46pv9eDvZMOvBQMMImhBC1BQJpoQQ1dLcteItlCxds/AeF0FaRABpe9uSfdaXvOuuuD1wDNvWiTXSrrj0XJ5fcYTpg9vi526Pp6MNPVq5cPhKCgkZubjbycefEMI85NNECFEtIa3d+e/26ArLqdQKzn0vYtv6Fonru1KY7EDCL71x7H4Z50FnUFuWtidg9X265cJfbVBhmAhvrVH4sBdsORPPA52b18i1hRBNg0xAF0JUS58At3JX/t3J2icNn7DdOPbQb2GTccRPn+jzprammmhQ2orC6T9FEX5SJq0LIapOgikhRLVUJYO62lKH6+DTeD6+H41DDoXJDsStCCF1T1uU8vYFrAEKMHvdaYp0krBXCFE11Qqm8vLyzNUOIUQDNjTIh5fuMy3Z5+1s/RPxmbwLu443QFGTtrcdcStCKEiyr4FWli02LZcDMcm1ek0hRONRqWBq48aNhIWFERAQgKWlJXZ2djg6OjJw4EDee+89bt6UDMRCNFUv3tcOrW3lp2FqbArxeDAK95FHUFsXkB/nTOyS/qQfblWjiT7vlJCRW3sXE0I0KiYFU2vWrKF9+/ZMnDgRtVrNq6++yqpVq9i4cSPffvstAwcOZMuWLbRu3Zrnn3+eW7du1XS7hRD1jEat4oNHO1e5vn3gn4k+/W7pE31uCSLh514UZlibsZVl23w6vlauI4RofEz6M3LOnDl8/PHHDB8+HLW6ZPz1+OOPA3Djxg0+++wzli1bxiuvvGLelgoh6r2hQT4sGNed1387QWpO5XNIWTjl4vn4ATKOtCJ1R0dyL3sQu3gArqEnse9Ys5PEN5yIJb9Qh5WFTCUVQlSOScHUgQMHTDpZs2bN+PDDD6vVICFEwzY0yIchgd7su5DIxO8OUNmEByoVOPW4gq1fIonru5If50zi2u5kX7ihT/RpU1gj7dYpsDziMpP7t6ZIp5Sb9b0sVa0nhGjYJM+UEMLsNGoV/dt78OXYbkxdebRK57B0y8J73D7S9rUhLaIN2WeakXfNFbdhx7H1r5lEnzvP36KZiy2z150mNu2vOVQ+WhveGll+NvXwk7FVqieEaPgqHUwpisKvv/7K9u3bSUhIQKcz/rtz1apVZmucEKJhG9bZl+eup/L1rpgq1VdpFJz7X8A2IEGf6DPFgYSfe+PYIwbngWfNnuhz14VEdl0oGajFpeXywoojRhs83y78ZCwvrDjCnfPlK6onhGgcKj054B//+Afjx48nJiYGBwcHtFqt0T8hhLjdjGGBfDW2Oy6VSOx5J2vfNHzC9uDQ7TIAGYf99Yk+Y2vnM6c4SCotH1WRTuH1VSdKBFIV1RNCNB6VHplasWIFq1atYtiwYTXRHiFEIzSssw/3B3kb5hPF3Mrimz0xZOaZPv9JbVWEW+gp7NokkPRHZ0OiT23IBbTB0ajUNRusKPyVj+r2jZ+/3HaB1OyyJ9uXVU8I0XhUOpjSarW0bt26JtoihGjENGqVUTDx4n1tiYxOYsX+y+y+kEhmXpFJ57FtfQufSbtI3hhE9jlf0va0JyfaE/cRx7B0zaqp5hvcno+qSKfw3d7Lla4nhGhcKh1MzZo1i9mzZ7N48WJsbW1rok1CiCZAo1bRt607fdu6G62CS8zI453fz5Rf17YA91FHyTodT/LmIPJjXYhd0g+Xe87g0PUqqhpcQOfpaGP4+kBMsskpIG6vJ4RoXCodTD322GP88MMPeHp64ufnh6Wl8TyII0eOmK1xQoim4fZRqyKdwjd7YohLyy11HlIxlQoc7rqJTYtkkjZ0IfeKO8mbOpF9wQu3B45j4Vgz2131aOVi+NrU0SaNWoVOUSjSKZIqQYhGqNLBVFhYGIcPH2bcuHF4eXmhqsk/AYUQTY5GreKtkYG8sOIIKjAKqO58DH8m+nxiPxmH/Ujd2YHcGE99os/7T2DfIc7s7Rv66U46t3CmmYstzrZWJtUp0ik89c1+SZUgRCNV6WDq999/Z+PGjfTr168m2iOEEAwN8mH+uO4l8jZ5/xmM3NvBi5lrjvPToRvAn4k+e17Gxi+RpPVdyY/Xkvi/HuRcvI7r4FOozZjo81JSNpeSsg2PVSpM3kNQUiUI0ThVOphq0aIFTk5ONdEWIYQwKM6kXlZG8TmPdOG3IzcovC3VlJV7Jt7j95K2ty1pkW3IOtWc3KtuuA0/hm2rpBppZ2U2Y1bQj67NXneaIYHecstPiEai0nmm/vOf//Daa69x+fLlGmiOEEL8pXgu1aiuzQgOcDMKPjRqFZ+P6Vaijkqj4DzgPN5P7cPCJYuiDFsSfuxD8taO6Arqft+921MlCCEah0qPTI0bN47s7GwCAgKws7MrMQE9OVk+IIQQtaO8DOvWzVLxCdtNyvaOZEa1IuNQa3JjPHAfGYWVV3odtNaYpEoQovGodDA1b968GmiGEEJUzYxhgXRp7sLfVpbczkVtVYTb/SexaxNP0h+dKUhyJHZZX5z7XsCj78U6aW8xSZUgRONR6WBq4sSJNdEOIYSosmGdfXj2un+ZewDaBhQn+uxE9nkfUne3J/eSB7GtjgB1M0KUkpVfJ9cVQphflScQJCQkcPLkSY4fP270Twgh6sKAtp7lPq+xK8D9oSO4DY9CZVVA7g1Xpk8fROrRlpWaRG4ur/52TPbrE6KRqPTI1OHDh5k4cSJnzpxBueMTSKVSUVRk2pYQQghhTn0C3HC2syx3nzyVChyCbmDTIpnkDZ3JuepO7h+dsT3vhdvQE2gcaibRZ2my8orYdzGR/u08au2aQoiaUemRqaeffpp27dqxb98+Ll26RExMjOHfpUuXaqKNQghRIY1axfuPdDKprIU2h+ZPRTJp0glUmiJyor24uXgA2ee8a7iVxn47fK1WryeEqBmVHpmKiYlh1apVtGnTpibaI4QQVTY0yIcF47oza+0p4tLLH2VSqeDBBy+xVZ3MzbVdKUjQcmtND+yDruE6+DRqa/Ml+izL9VRZ0SdEY1DpYOq+++7j2LFjEkwJIeql25N9xqXlsOv8LVZH3SyzvLVnBj4T9pK6px3p+wPIOtmC3KtuuA8/hk3Lmk314qO1rtHzCyFqR6WDqW+++YaJEydy8uRJgoKCSuSZevDBB83WOCGEqIrbN0721tqWG0yBPtGny8Bz2AYkkPR7FwpT7Yn/oQ9Od8fgPOAcKgtdufWrysnGsuJCQoh6r9LB1L59+9izZw9//PFHiedkAroQor7p5e+Kj9aGuLTcEnmo7mTTPOXPRJ+BZB5rSfrB1uTEuOM+4liNJPpUyXYyQjQKlZ6A/ve//53x48cTGxuLTqcz+ieBlBCivtGoVbw1MtDk8mrrItyGnsDj0YOo7fIoSHQidllf0iIDUMw8QNXK1c68JxRC1IlKB1NJSUlMnz4dLy+vmmiPEEKY3dAgH+aP646P1vSs43ZtEvCdvAvbtnGgU5O6swPxK4MpSLU1W7s6eMum8UI0BpUOph555BG2b99eE20RQogaMzTIhz3/upcfpvRhUl8/bCwq/vjT2OXj8fBh3IYdQ2VVQN4NV2K/G0DGsRZmSfSZKFnQhWgUKj1nql27dsyYMYM9e/bQqVOnEhPQ//73v5utcUIIYU7FE9ODA9x4ZXAbtmwKr7COSgUOna5j0zKJxN+7kHfNjeTwzuRc9MJt6HE09lUPiBJls2MhGoUqreZzcHBg586d7Ny50+g5lUolwZQQokGw+nNkytQp4BbaHLzGRJJ+sDWpu9uRc1Gf6NPt/hPYtYuvUhvWHbvJlAEBVaorhKg/qpS0UwghGotPn+jK27+fIzat4lEilRq0vS9h63+LxPVdKbjlxK3VPbHvdA3X+yqf6PP4jXQ2HI9lWGefqjZfCFEPVHmjYyGEaAwGd/QyzKV6OqQVjjYV/41p9WeiT6fe0YBC1okW3PyuP7nXXCp9/dd+Oy4bHgvRwJkUTL3//vtkZ2ebdML9+/fz+++/V6tRQghRm4rnUr31YBBR/xdqmKReHpWFDpdBZ/EaG4FGm01Rmh3xK4NJ2dEBpdD0v1Mz8wpZvCdGAiohGjCTfuJPnz5Ny5YteeGFF/jjjz+4deuW4bnCwkKOHz/OV199RUhICGPGjMHJyfzLfVNSUhg/fjxarRatVsv48eNJTU0tt46iKMyaNQtfX19sbW0ZNGgQp06dKlEuIiKCe++9F3t7e5ydnRk0aBA5OTlm74MQov4rDqz+b+RdLBjXHW+n8rd8sWmRgu/Tu7HvdA1Qkb4/gNhlfclPcDT5mu9tOEO/D7YRfjK2mq0XQtQFk4KpZcuWsW3bNnQ6HU899RTe3t5YWVnh6OiItbU13bp1Y/HixYSFhXH27Fn69+9v9oaOHTuWqKgowsPDCQ8PJyoqivHjx5db58MPP+STTz7hyy+/5ODBg3h7ezNkyBAyMjIMZSIiIhg6dCihoaEcOHCAgwcPMm3aNNRquQMqRFM3NMiHva/fxz/ua1tuObV1Ie7DjuPxyCF9os9bfyb63N/a5ESfcWm5vLDiiARUQjRAJk9A79y5M19//TULFizg+PHjXL58mZycHNzd3enatSvu7u411sgzZ84QHh5OZGQkvXv3BmDRokUEBwdz7tw52rdvX6KOoijMmzePN954g0ceeQSApUuX4uXlxcqVK3nuuecAmD59On//+995/fXXDXXbti3/g1MI0XRo1CqmD2lHdn4Bi3ZfLresXdt4rH1TSArvRM5Fb1J3dCTnoifuI45hoS1/tLv4Jt/sdacZEuiNRraaEaLBqPRqPpVKRZcuXejSpUtNtKdUERERaLVaQyAF0KdPH7RaLfv27Ss1mIqJiSEuLo7Q0FDDMWtrawYOHMi+fft47rnnSEhIYP/+/Tz11FOEhIQQHR1Nhw4deO+99+jXr1+Z7cnLyyMvL8/wOD1dv2dXQUEBBQUF5uhyvVPcr8bavzs1tf5C0+tzZfv7Wmg71IqOJRFXyi/olIftY4dIP9aChC13kXfdjdjF/fEIPYVTp+uoKoiRkjNziLyYQC9/V5PaZaqm9v2FptfnptZfqH6fzfVaVTqYqgtxcXF4enqWOO7p6UlcXFyZdYAS2954eXlx5Yr+w/DSpUsAzJo1i48//piuXbuybNky7rvvPk6ePFnmCNXcuXOZPXt2ieObNm3Czq5x77W1efPmum5CrWpq/YWm1+fK9DcQ+LCXiYV7XybuwQQ++6w7Z864Eb++K363vJg6NQqttvxEn4lnItlwxuRmVUpT+/5C0+tzU+svVL3Ppi6uq0idBlOzZs0qNSi53cGDBwH9iNidFEUp9fjt7nz+9jo6nX4yw3PPPcfTTz8NQLdu3di6dSuLFy9m7ty5pZ5zxowZvPzyy4bH6enptGjRgtDQ0BqZfF8fFBQUsHnzZoYMGVIi631j1NT6C02vz1Xtb5FOIfTTXcRXkL1cBSjkoYyKwN07gMSd7dm/34dDJ1zxGn4Mh7YJZdb91/3tGR/sZ3KbTNHUvr/Q9Prc1PoL1e9z8Z2l6qrTYGratGmMGTOm3DJ+fn4cP36c+PiSGYZv3bpV5obL3t7egH6Eysfnr4R4CQkJhjrFxwMDjXeU79ixI1evXi2zTdbW1lhbl1zhY2lp2ejfwE2hj7drav2FptfnyvbXEvj3iLt4YcURykpmMKW/Hyv2XSG3SF/CvtclLFslkri+CwWJTtz8pRcOna/icu9p1NZFJeq7ONjW2PegqX1/oen1uan1F6reZ3O9TnW6ZM3d3Z0OHTqU+8/Gxobg4GDS0tI4cOCAoe7+/ftJS0sjJCSk1HP7+/vj7e1tNPSXn5/Pzp07DXX8/Pzw9fXl3LlzRnXPnz9Pq1ataqDHQojGYGiQD/PHdcdHa2N03NXekq/GduPeDt7kFBmHWlZe6fhM3IvT3ZcAhczjLYld0p/c6yUTfXo62pQ4JoSovyodTE2aNMkotUCxrKwsJk2aZJZG3aljx44MHTqUKVOmEBkZSWRkJFOmTGHEiBFGk887dOjA6tWrAf3tvZdeeok5c+awevVqTp48SVhYGHZ2dowdO9ZQ5tVXX+Xzzz/n119/5eLFi8ycOZOzZ88yefLkGumLEKJxGBrkY8ic/tmYrvwwpQ8H3xjCsM6+JJRxC1BlocPl3jN4PRmJximbwlR7faLPne1Rim6bkiAL+YRoUCp9m2/p0qW8//77ODoaJ6TLyclh2bJlLF682GyNu93333/P3//+d8PqvAcffJAvv/zSqMy5c+dIS0szPH7ttdfIyclh6tSppKSk0Lt3bzZt2mTU9pdeeonc3FymT59OcnIyXbp0YfPmzQQEyOajQojyFSf4vFNFI0s2LZPxnbSb5C2BZJ1sQXpkG3IueeA+Igorj0wSM/PKrS+EqF9MDqbS09NRFAVFUcjIyMDG5q8Pi6KiIjZs2FDqijtzcXV1ZcWKFeWWURTjYXWVSsWsWbOYNWtWufVef/11ozxTQghRHb38Xf+cgF42tXUh7sOPY9cmgaSNnShI0BK7tB8uA87hOqn8rOtCiPrF5GDK2dkZlUqFSqWiXbt2JZ5XqVQVrswTQoimQKNW0c7LnnPxWRWWtWsfh3WzFJL+6EzOJU9Stgfy93H5rPkFbp+6WaRTOBCTTEJGLp6ONvTyd5XEnkLUEyYHU9u3b0dRFO69915+++03XF3/SihnZWVFq1at8PX1rZFGCiFEQ/PvBwKZuOSgSWU1Dnl4jD5I5rEWpGwLJOqgFR0Ci5j/XzUTJ6rYeCqWt/53kviMv/JTOdlomNyvNdPubStBlRB1zORgauDAgYA+s3jLli0rzO8khBBNWXCbym2xpVKBY9dr2LRKIml9V3JvuvD00/DRonTSe5xAY2ecqTk9t4hPt1zgu32Xef+RTgwN8injzEKImlbp1Xxnzpxh7969hsf//e9/6dq1K2PHjiUlJcWsjRNCiIbq8JWqfR5aumTj9VQEzgPOglrH6X1O3Fw8gJxoj1LLp2YX8PyKI3y25TxFuvJmaQkhakqlg6lXX33VkDH0xIkTvPzyywwbNoxLly4ZZQUXQoimrKz0CKZQqRW0wdF4j9+LpVsGuiwbEn7tRdLGIHT5mlLrfLrlAj3f3cz6qBtERCfxvz//lwBLiJpX6dQIMTExhozhv/32GyNHjmTOnDkcOXKEYcOGmb2BQgjREJkj8aa1dzreE/eQuqs9GYdakxnVitzL7riPiMK6WWqJ8inZBUz7McromKu9Je+OCmJIx9JHtoQQ1VfpkSkrKyvDxoBbtmwx5H1ydXU12x43QgjR0PXyd8VHa1Pt/JtqSx2u953Bc0wkGsccClPtifs+hJRd7YwTfZYhOauAqSuP8smms9VsiRCiLJUOpvr168fLL7/MO++8w4EDBxg+fDig34KlefPmZm+gEEI0RBq1irdG6kfxzbFcx7ZVEr6TdmF/13VQVKRHtCVueV/yEx1Mqr943xUztEIIUZpKB1NffvklFhYW/Prrr8yfP59mzZoB8McffzB06FCzN1AIIRqq4j38vLXm2WtPbVOI+4hjuI86jNomn/x4LbFL+pF+0A/FxKlRm06V3DReCFE9lZ4z1bJlS9avX1/i+KeffmqWBgkhRGMyNMiHIYHeLNkbwzu/nzHLOe07/JXoMzfGk5Rtd5ET7YXbsGNYOJU/8f3lX6LQWGgklYIQZlTpkanb5eTkkJ6ebvRPCCGEMY1aRVhffzRmTM9n4ZiH52MHcQ09gcqykNwr7txcPIDMU74VjlK9+MNRMnMLzdcYIZq4SgdTWVlZTJs2DU9PTxwcHHBxcTH6J4QQoiSNWsXgjl5mPadKBY7druITtgcrnxSUPEuS1ncj8X/dKMqxLLNeQZFC0KyNTFlmWoZ2IUT5Kh1Mvfbaa2zbto2vvvoKa2trvvnmG2bPno2vry/Lli2riTYKIUSjMCHYr0bOa+mahfe4CLT9zoFaR/Y5X2IXDyDnUvnpEDafTpCASggzqHQwtW7dOr766itGjx6NhYUF/fv3580332TOnDl8//33NdFGIYRoFO72d624UBWp1ArOfS/iPW4fFq6ZFGXakPBLL5I23VVmok/QB1Q5+UU11i4hmoJKB1PJycn4+/sD4OTkRHJyMqBPmbBr1y7ztk4IIRqRqm4xUxnWPmn4hO3GsUcMAJlH/Yhd0o+cG85l1pmz4TRFOoW9FxL5eONZPt54jr0XEyV7uhAmqvRqvtatW3P58mVatWpFYGAgP//8M7169WLdunU4OzvXQBOFEKJxqM4WM5WhttThOvg0tgEJJG3oTGGKA9eWhfBD7nkUv+gS5bedTWDd8c2kZv+1mfKX2y/ibGcpmygLYYJKj0w9/fTTHDt2DIAZM2YY5k5Nnz6dV1991ewNFEKIxsIcW8xUhq1/Ij6Td2HX8QYoan76qQNXl/WlIMneqNyN1FyjQKpY8SbK4Sdja6vJQjRIlR6Zmj59uuHre+65h7Nnz3Lo0CECAgLo0qWLWRsnhBCNSS9/VyzVUKCrvWtqbArxeDCKvHbxZGwJIivWmdgl/XEedAbH7ldQmZCuYfa60wwJ9EajNmNuByEakWrlmQJ9Es9HHnlEAikhhKiARq3iwS6+dXJtp7tu8vnn27HzT0Ap1JCyJYiEn3tRmGFdYd3YtFwOxCTXQiuFaJhMDqaGDRtGWlqa4fF7771Hamqq4XFSUhKBgYFmbZwQQjQ2cx+tuz883dxyaTbmAK5DTqKyKCL3sgex3w4k63TFc6I2nLhJRHSSTEoXohQmB1MbN24kLy/P8PiDDz4wrOQDKCws5Ny5c+ZtnRBCNDJWFmqeG+BfZ9dXqcCx+xV8wnZj5ZOKLs+SxHXdubW2K0W5Zc/8WB55lScXRdLvg20yh0qIO5gcTCl37E9w52MhhBCmmTEskOcG+FOXM5As3bLwfmof2r7nQaUj+0wzYr8dQE6Me7n1YtNyZVK6EHeo9pwpIYQQlTdjWCDn3n2AmcM70qW5tk7aoNIoOPe7cFuiT1sSfu5N8pZAdAXl/3p4fdUJueUnxJ9MDqZUKhWqO5Z93PlYCCGE6aws1Ezu35pVU/uita304mqzsfb9M9Fn98sAZBz2J3ZJf/Jiyw7yUrML+NevxyWgEoJKpEZQFIWwsDCsrfUrP3Jzc3n++eext9fnK7l9PpUQQgjTadQqPni0M8+vOFJnbVBb6nAdcgrbgHiS/uhCYbIDcStC0IZcQBscjUpdMmj69ch19lxMZNaDgZLYUzRpJo9MTZw4EU9PT7RaLVqtlnHjxuHr62t47OnpyYQJE2qyrUII0WgNDfJhwbjudTqPCsC2dSI+k3Zh1+Em6NSk7WlP3IpgCpLtSy0fl57LCzKHSjRxJo9MfffddzXZDiGEaPKGBvmwbFIvxi8+UKft0NgW4P7gUbLbxpO0KYj8WBdiv+uPy72nceh6tUSiTwVJ7CmaNpmALoQQ9UhIG3fsrTV13QxUKrAPvInvpF3YtEpEKdSQvKkTCb/cXWqiT0nsKZoyCaaEEKIe0ahVfPRo57puhoGFUy6eT+zH5b5T+kSfMZ7ELh5A1lnvEmXj0nLqoIVC1D0JpoQQop4Z1tm33MSeKmBKfz9q646aSgVOPS/jM3EPVl5p6HKtSPxfDxLXdUV3W6LPxExZiCSaJgmmhBCiHpoxLJCvxnbH1d7K6LiP1ob547rzxvC7+PLJ7rXaJkv3TLzH70UbfAFUClmnm3Fz8QByLrsB8PHGc8zbfE7SJYgmp+4SmwghhCjXsM4+3B/kzYGYZBIycvF0tKGXv6thkvewzj4sUHdn9rrTxKblGur5aG2YObwjLvbW/HTwKmuibpqtTSqNgvOA89gGJJD4e1cKU+xJ+KkPjj1icB54lnlbL7Jg5yU+ebwLwzrXzabOQtQ2CaaEEKIe06hVBAe4lfn80CAfhgSWHXD1aOVi1mCqmHWzVHzCdpOyvSOZUa3IOOxPdt4FnINvgKsPU1ce5bnrqcwYFgjJyfDssxAZCX36wMKF+pPceczV1eztFKI2SDAlhBANXHkBl5WFmvs6eLDnQoLZr6u2KsLt/pPYtYkncVsLikInkWQfT9blaXh438uG/+3jpafvxTYh/q9Kv/0GERHQowds2ABFRbB6tf6YSiWBlWiQJJgSQohG7pn+ATUSTBWzDbiFt+9V4lO7UuT0O7kB87gev4eP1+dgc3sgVezmTf1oVVGR/rFOpz8GfwVbJ05IQCUaDJmALoQQjVwvf1esa3jpnzuFrNmdzLi190CuE4rXIZ4Ii2Fcj37oSquQnw+aMvJp3bwJYWE12FohzEuCKSGEaOQ0ahVDO5XMC2VOc8O/YOjF/Sw/sp298+1xjukKVtmsHLkH77E9iXLwMK5gaQmDB5d9wk2barS9QpiTBFNCCNEEvDUyqEbP3+3mOSwU/RhUSFost5ZFMSp8ABRac6vdIbpPLeLVjr3/quDsXH7AVFBQo+0VwpwkmBJCiCbAyqJmP+6P+ran8M+vFcBCgTWRu1jzdTNsY9uj2CXz8RP7CXioL1etHSE+HpRy8lHpdBAdXaNtFsJcJJgSQogmxK6Ggqq5g54GVCjoM7QXh0mjbl0i4ZtoQnYNBJ2aS1330voFJ+b5dan4pO3awejR+snqQtRjEkwJIUQTMqeG9v37v62L0KBQPM399unuDkWF7N22kwXfBWKR3IIi5xtMn3icnqEDSLWwKu10ejqdfnWfhwccPlwj7RbCHCSYEkKIJmRwRy8WjOuOs51liee0NmWsrjNB/5ijVLRe8LlrJ7m2IIkOh/uBSuFwyC68n23JT97tyq+o00HfvlVumxA1rcEEUykpKYwfPx6tVotWq2X8+PGkpqaWW0dRFGbNmoWvry+2trYMGjSIU6dOGZWJi4tj/PjxeHt7Y29vT/fu3fn1119rsCdCCFG3hgb5cPjNIXw/uTfT7glg2j1t+P6Z3hz5v/uZ0t+vSue00BVWXAjwzs/mzLo9zFzZE3WmB3meFxkzJYb7+w0kX1VOOJYnmyiL+qvBBFNjx44lKiqK8PBwwsPDiYqKYvz48eXW+fDDD/nkk0/48ssvOXjwIN7e3gwZMoSMjAxDmfHjx3Pu3DnWrl3LiRMneOSRR3jiiSc4evRoTXdJCCHqjEatom9bd/55fwf+eX97+rZxR6NW8cbwu+jRyrnS5ysvDirN2+cPcfKrInzO9AZNAZsG78T96SB2uDSv9LWFqGsNIpg6c+YM4eHhfPPNNwQHBxMcHMyiRYtYv349586dK7WOoijMmzePN954g0ceeYSgoCCWLl1KdnY2K1euNJSLiIjgxRdfpFevXrRu3Zo333wTZ2dnjhw5UlvdE0KIeuXn50Jwti15G7Bc5SzMK0vH7GSu/7SfZ1b3hTxHMlqe4J4XUpjYvYxEn0LUUw0imIqIiECr1dK79185Svr06YNWq2Xfvn2l1omJiSEuLo7Q0FDDMWtrawYOHGhUp1+/fvz0008kJyej0+n48ccfycvLY9CgQTXWHyGEqM80ahXvP9qpUnWUqkRT6H8JLTq2l93zndBe7gJWWSx7cA++T97NSXv3Kp1TiNrWIPbmi4uLw9PTs8RxT09P4uLiyqwD4OXlZXTcy8uLK1euGB7/9NNPPPHEE7i5uWFhYYGdnR2rV68mICCgzPbk5eWRd9v9+/T0dAAKCgooaKSJ5or71Vj7d6em1l9oen2W/pbvvvbuzB/bhVlrT5GaU3GdXHsnrHVVfy175yVz46cUHu9xDxsG7SW+/UE6T3Xnn3/05b3oI8WdqNQ55Xvc+FW3z+Z6reo0mJo1axazZ88ut8zBgwcBUJVyQ15RlFKP3+7O5++s8+abb5KSksKWLVtwd3dnzZo1PPbYY+zevZtOnUr/y2zu3LmltnvTpk3Y2dmV256GbvPmzXXdhFrV1PoLTa/P0t/y/dvEAaqt3y+rQmtKehYIih7Lp1fmUeB6io9GJ7Ii7jHe6fsY7hs2VOmc8j1u/Kra5+zsbLNcX6Uo5aWgrVmJiYkkJiaWW8bPz4+VK1fy8ssvl1i95+zszKeffsrTTz9dot6lS5cICAjgyJEjdOvWzXB81KhRODs7s3TpUqKjo2nTpg0nT57krrvuMpQZPHgwbdq0YcGCBaW2qbSRqRYtWpCYmIiTk5MpXW9wCgoK2Lx5M0OGDMHSspJzKRqgptZfaHp9lv5Wzvrjsby+6niZz2tzMtm9YJLZ5o6kqy0ZFtKDAyE7QKVgkdKcj64O5m8LPgAXF5POId/jxq+6fU5PT8fd3Z20tLRq/f6u05Epd3d33N0rviceHBxMWloaBw4coFevXgDs37+ftLQ0QkJCSq3j7++Pt7c3mzdvNgRT+fn57Ny5kw8++AD4KyJVq41//DUaDTpd2dMfra2tsba2LnHc0tKy0b+Bm0Ifb9fU+gtNr8/SX9N4O9uTV1T2nYAEK0f2eXVg0OWK802Zwo0c9m/ezpfnOjH94RQKXa4z3XkpK6cms2XpzzjZl/wMLot8jxu/qvbZXK9Tg5iA3rFjR4YOHcqUKVOIjIwkMjKSKVOmMGLECNq3b28o16FDB1avXg3ob++99NJLzJkzh9WrV3Py5EnCwsKws7Nj7NixhvJt2rThueee48CBA0RHR/Of//yHzZs389BDD9VFV4UQol7q5e+Kj9am3EDppQdfM/sqvGlXT3BlfgrtjugTfR7stBavf3Xl1z/2mvlKQlRdgwimAL7//ns6depEaGgooaGhdO7cmeXLlxuVOXfuHGlpaYbHr732Gi+99BJTp06lZ8+e3Lhxg02bNuHo6AjoI9INGzbg4eHByJEj6dy5M8uWLWPp0qUMGzasVvsnhBD1mUat4q2RgQBlBlRpto5l/1JRm/DrpowyvvlZnFu7hxk/3I0qy41cj7M8tu9ehr/3EfkFRRWfV4ga1iBW8wG4urqyYsWKcsvcOf1LpVIxa9YsZs2aVWadtm3b8ttvv5mjiUII0agNDfJh/rjuzF53mti0XMNxFzsLglu70drDET4opaK3N5w6pd9jr6wpFL6+sHw5DBtWZrbzOecO8tRXbgwe2Yu4DgfYUPgaHq+uY92kpQzo7F+yQkqK/v+OHaFrV1i4EFxdK9dpIUzQYIIpIYQQdW9okA9DAr05EJNMQkYuno429PJ3RaP+c7zKygry840r7dmjD2I8PCA+3vg5Ly/o1++vQGfECFizBopKH3G6KyuJGz8mMXn44yzpsoF0l90M/KkzT+/8nG/+FoZafdu42T/+AWPGwM2bcPmy/phsFyZqQIO5zSeEEKJ+0KhVBAe4MaprM4ID3P4KpKDkhsT33APFefv69TN+TqXSH/v1179GjCIjywykiqmB7w7tZPvQ3Tjd6A5WmXyXPIlm4/tyavchfaHkZNi48a9KRUXw22/w4IP654QwIwmmhBBCmM/582U/XrgQbGz+eqwo+uDpdn36gEZT8XXi4xn02bvc+uYoD2weAEWWxLWLoNPaB3iz530wdizk5past24ddOokAZUwKwmmhBBCmM/twZBGo39czNUVhg8v+3nQB1wPPWTahPXVq7FSFDbs3cVPC/2wjm+D4pDIeyO30cEqi5uWZSRRvnkTnn220l0ToiwSTAkhhDCf4mCoWTP9/wsXVu55V1f9bb+HH674WrdNZn88/gJxi67Sc+8AUFSc67GHNk/b8cfJG6XXLWNfVyGqQiagCyGEMJ/iYKiqzxdbuFA/x6kSnAvzObh5F5+d78wrDydR6HKNr/NfJKrfQLZs241DUeFfhetu8w/RCMnIlBBCiPrH1RVM2CGjNP+4cpzL89MIiOoPah37+27HY0prVnvetoG9zJkSZiTBlBBCiPqpjM3mTdE8L5MzGw/xcP4H+kSf3ud55NlrPBg8kEIVUFhY4TmEMJUEU0IIIeqniIhqn2Jir/YcXGyL57m7wSKfdffvxH1CV/Y6eoOtraRKEGYhwZQQQohGrXN2ErE/HGT82n6Qb0+afxT9Xsjk2fbd0a1bB2Fhdd1E0cBJMCWEEKJ+cnY226nUwLIje9g63xXHa0Fgk86ih/fR4vHenNu6B6KjzXYt0fRIMCWEEKJ+UpW1pXLV3ZtyjVvfnSJ06wAosuBm4H4Cp1ow64Ex+oSi3t4werTc+hOVIsGUEEKI+ikkpEZOa61T2Lh7FysXtcY6IQCdwy1mP3WIjkN6EZeSod8b0JSknsnJ+sCreXMJwJo4CaaEEELUTwsXwsiR+hEjUzKiV9KTceeJW3iN7hEDADjbczctnndnoU+HktvclObZZ/WB140bpgdgolGSYEoIIUT95OoKa9dCTg74+NTIJZwL8zm8cRcfL+2KJs2XQterPDfpDP16303myIf0K/7KWvW3Z89fmzIXb6R8330yQtUESTAlhBCi/rtzDz8zeyUmiuj5mbQ+FgJqHXs7r8Gz2VnWOvrqN0xev77kyFNqaskTbdsmI1RNkARTQggh6r879/CrAa1y04levY+Xf+6NKtuFHJ9zjHruBg/3GUAhSslbf3l5pZ9I9v1rciSYEkIIUf+5uoK1da1c6j+n93PkKws8LvQEizzWDN2F5/huRPQcaFywrHlc8fEyIb2JkWBKCCFEw2DGvFMV6Zp5i7jvD/Hk+v6Qb0dK66OEdPydFz79Bt2jj+pX8JW1d6BOJxPSmxgJpoQQQjQM/frV6uXUwMpDu9m0wB3763eBTRoL0qfQSnOTC8lZkJBQduXiCemyXU2TIMGUEEKIhmHhQrCyqnw9X1949FFYvbpKlx2SfJXExWe4b/s9UGTB9bsi6TDVmnfbdK+4smxX0yRIMCWEEKJhcHUFN7fSnystW3rxsTNn4Ndf4aGH9HmrqsBGp2PLzu0s/6YNVrdao3OMZ+a4IwQN70+CpW35lTdtqtI1RcMhwZQQQoiGIyQENJq/HtvY6AOkESP0uai8vfXHbGxg6NCS9Zcs0Y9SeXlV6fLjYs8S+/UNukTqE32euns3zZ/34ttmgWVXKmvVn2g0LOq6AUIIIYTJilMkREbqc08tXKgfsSpNQQFs2GB8zNVVP0oF+tt/sbGVboJrYR5R4bv48Hw3/j0qjgK3yzwzWcPS3QMJ37kHO11Rpc8pGjYZmRJCCNFwFAdD16/r/y8rkDLFnaNclfTapaNcmJ9Fq+MhoC5i98CdeDzTjg3ufsYFaymlg6g7EkwJIYRomhYu1M+jqgb/3HQur9rH33/pgyrHmWzfMwx/Lo7RvfpTWDyNKy9P8k41chJMCSGEaJqKR7mqOCn9dp+diuTAV9a4XewOlrn8Nmw3XuO6cdDJW1+gqnmnkpP1gVjz5hKQ1WMSTAkhhGjalizRT1ivpp4Z8SSsOMJjv/eHAluSA47S+4UcXgwK1uedunM7GlM8+6w+ELtxQxKB1mMSTAkhhGjaXF1h+PBqzZ8qpgZ+PribDQu8sL8RiGKbxpejI2j1aDDRd/ev/AkjI/WBGFQ9IBM1ToIpIYQQonj+lJkmiz+QdJmEb88xaPtA0Gm42imCdm13MffnSuac6tPnryBPo9E/FvWOBFNCCCFE8fypsvbbqwI7XRHbd+5kSbs1WKa3Q2d/k3+fuZ/Or79IYlq2aScpDvKaNdP/X5waQtQrEkwJIYQQxfr0KT2bejVM/OcUbv6YS6cDAwE4YfslzWZ3Y+nmgxVXNmcqCFFjJJgSQgghii1cCI88oh8Jqsyk9K1by86qHheH+82rHN+wkznLu6NO9yJfe56wPcHcM3s22bkF5mm7qDMSTAkhhBDFbh8JGj684vK+vnDxInTtatIE9hnRRzg/P5cWJ4NBXcQOZuE5ox8bD52vfttFnZFgSgghhCjNwoXlT0i3sdGnLAgI0KcsiIsz6bQBOWlc/TWCab+FoMpxJsv5AEPXdGXMf75Cp1OMCycnw4MP6q+l0YCtrf6x5JuqVySYEkIIIe6UnKwPkEzdpDgyEnS6Sl3iixP72P+jL67XeoNlDj9l/g3P6fdz5MJNfYHoaP3mzevW6duh00FuLqxfL/mm6hkJpoQQQog7FSfLLItKBUOG/PX49hQGlXB3XDTx3x3i0Q39ocCGJNfN9FwcxPRvfoYBAyA/v2QlRZF8U/WMBFNCCCHEnW5Plnk7a2v9RPNHHtFnTi92ewqDyuSqysvDQlfErwd2s+5rH+xudkSxSWHejSfw7+PHFRun0ut1716Z3ogaJsGUEEIIcac7k2U++qh+RCg3Vz836s40BbdPXD91qnLX+vM6IxJjuPXNefrv1Cf6vNx5HwEv2PORf1fj8mZO3SCqT4IpIYQQ4k7VSZYZEFC5aw0ebPjSTlfEru07WbS4PZZJrSjSxvLaxCi6DR1AssWfI16KAocOVe4aokZJMCWEEELcqbrJMp3KuD1Xmo0bSxx65vppri9I4K6D+v38ovrswue5Zqzw6aAvEBtrvKovORkmTNB/PWGCrParZRJMCSGEEObWs2e1T+FZkMPJ33cze0UP1Bme5HtcYvwzFxk8YCC5arV+ld/YsfrCzz6rX+UHstqvDkgwJYQQQpjbvn1mO9X/XTzM2a/yaXaqD2gK2XrvTjye7shm15b6Ua3Ro/XXK54wX1Qkq/1qWYMJplJSUhg/fjxarRatVsv48eNJTU0tt86qVau4//77cXd3R6VSERUVVaJMXl4eL774Iu7u7tjb2/Pggw9y/fr1mumEEEKIpqG0lAbV0DYnlau/RPL8qhDIdSKzxSlCn0/kqR790P32m3HCUJVKVvvVsgYTTI0dO5aoqCjCw8MJDw8nKiqK8ePHl1snKyuLvn378v7775dZ5qWXXmL16tX8+OOP7Nmzh8zMTEaMGEFRaUtihRBCCFNYWpr9lGpg/vF97Jtvj3NMV7DKZuXIPXiP7UmUvftfBRWlrFOIGmJR1w0wxZkzZwgPDycyMpLevXsDsGjRIoKDgzl37hzt27cvtV5xsHX58uVSn09LS+Pbb79l+fLlDP5zNcWKFSto0aIFW7Zs4f777zd/Z4QQQjR+oaH6OU01IDgtllvLYnms9wDWDN7PrXaH6D7VlZf+6M7A4kJHjtTItUXpGkQwFRERgVarNQRSAH369EGr1bJv374yg6mKHD58mIKCAkJDQw3HfH19CQoKYt++fWUGU3l5eeTdtsVAeno6AAUFBRQUNM7dv4v71Vj7d6em1l9oen2W/jZ+ddrnjz+GLVtq9BI/HzvI2mutGT9CIcfnLJ8+upeV4V7sdHSnde+7oQl8r6v7PTbXe6NBBFNxcXF4enqWOO7p6UmciRtLlnVeKysrXFxcjI57eXmVe965c+cye/bsEsc3bdqEnZ1dldvTEGzevLmum1Crmlp/oen1Wfrb+NVZn3/4ocYvYQF8m1fI2zu3cNZ9IfHeqwgc34KJ2kGM2rChxq9fX1T1e5ydnW2W69dpMDVr1qxSg5LbHTx4EABVKRlfFUUp9Xh1VXTeGTNm8PLLLxsep6en06JFC0JDQ3GqTG6RBqSgoIDNmzczZMgQLGtgLkB909T6C02vz9Lfxq9O+9yxI9y8WWuXGw0saNmT6cMSKdJe4jvd34naM42N/56Ds4NNrbWjtlX3e1x8Z6m66jSYmjZtGmPGjCm3jJ+fH8ePHyc+Pr7Ec7du3cLLy6vK1/f29iY/P5+UlBSj0amEhARCQkLKrGdtbY11KXsvWVpaNvoPqabQx9s1tf5C0+uz9Lfxq5M+d+0KMTGg0+kf+/rCiRP6r93cauSSz189gWPPpXzw45ec7bGLow5f0uLNcL67HsyT380zLfFocrI+R1VkpH5LnYULK5+wtA5U9XtsrvdFna7mc3d3p0OHDuX+s7GxITg4mLS0NA4cOGCou3//ftLS0soNeirSo0cPLC0tjYYHY2NjOXnyZLXOK4QQoolbuBC8vf96HB+vD1JcXWt0bz0XeyuObznIzJU9UWd6kOd5kbFdfuT+Z18gv8CEVerPPgtr1sCNG/r/JfmnSRpEaoSOHTsydOhQpkyZQmRkJJGRkUyZMoURI0YYTT7v0KEDq1evNjxOTk4mKiqK06dPA3Du3DmioqIM86G0Wi2TJ0/mlVdeYevWrRw9epRx48bRqVMnw+o+IYQQotLuDJpuT6R526KnmvL2+UOc/KoInzO9QVPApk4/4/7qALZFRZdfMTJSkn9WQYMIpgC+//57OnXqRGhoKKGhoXTu3Jnly5cblTl37hxpaWmGx2vXrqVbt24MHz4cgDFjxtCtWzcWLFhgKPPpp5/y0EMP8fjjj9O3b1/s7OxYt24dmuLdwoUQQoiq6NMHin+XaDT6xwArV4KVVY1fvmN2Mtd/2s8zq/tCniMZLvu475cuTJi3CJ2ujFxUZbVZlKtBrOYDcHV1ZcWKFeWWUe5IVBYWFkZYWFi5dWxsbPjiiy/44osvqttEIYQQ4i8LF+r/v33+EehHrUaOhN9+q/EmqIFFx/Yy8UozRjzUmjS/YyxPe5aNr6xl69+/Icj/jnnHZbVZlKvBjEwJIYQQDYqrK/z6K1y/rv//9oncCxfW6NypO/VLvUHi0mOM2DgACq1IcF5P5wV38a8e94KtrX4UqlkzSEkpu82iTBJMCSGEELXN1bVyc6esrcGmeikOLBRYF7GLX48/gU1CRxS7JD58cDtt7+/BdUs7fSqHu+6CBx+E5s31Gyj/f3v3Hhdllf8B/DMoAgqMDMhNERSVNLxQmnjJWyKUpqZr3jKpFLXU2mp7rb9fhdZL0f2ttr9ua5gL6VbirlpoG17yQgaoofxESbyEqCCogAyCXOf8/phmcmAYLnOf+bxfL17LPM95nnO+83SWr+c5z3lKS/Wq014wmSIiIjKHtsybkkiUT9jNnAk46Pene2bmYRQn38fw42MBIcHlsJ8QtEyK/w0cBNTUAPv28Wm+NmIyRUREZA5tfX+e6rbhxYvKdavaq6QE7vXVyDh0DJ8khKJjWQAauhbgtehsDIsYA7nDb9OpGxqAPXuAKy08AUhMpoiIiMwiPLz1o0wREb//HhysHDl6+un21VtdDfy2RNDL17KR//dS9Ds9GpAI/DwqFT4xQfi3Tx9lWYUCCA3l7b4WMJkiIiIyh/h44JlnAD8/5UiTn58yQYqMVM6RcnBQzpN6+mkgMbHp8YmJ+o1Q/ca/thK5ycfxX18Pg6TSE9U+lzArJh9PjRqLWolEmXy18GS8vbOapRGIiIhsiuq2nT4MOGK0NvcU5n3qiYlPP4aih07i+4hj6NZvEPbuKcGYAwcMVo8t4sgUERGRNYqJUY4aGdDDlSUo2HES0d+OAmpcIQ88i7HLyvHCgMeaX+iTmEwRERFZJSO96sUBQMKZn3Ds71K45w8CnO4hcdqP6L5gFM5Pn8v5U1owmSIiIrJGzb3qxcnJIKcfc7cAtxOz8eTBMUCDI4r6pWNg30P47xdeM8j5bQmTKSIiImsUH6+cnO7srPx58knl9gMH9F7gU6WTEPjPT6lIig+Cc3FfCNc7WPfIdoS89jwKSyoMUoctYDJFRERkjWQyIDkZuH9f+bNjh3L7nDkGn0v1bPElFMdfxbCflAt9XvTYjsC4wfh033HdB5aWKldSt/EV1ZlMERER2ZLiYqOc1r2hDicPHsOHiQPR4W531Lvl4ZWfxyD87T9DXlmj/aDoaGD3buW6WLt2KV9XY4OJFZMpIiIiW+LjY9TTr8g/i6tbqtCnIhqQCJxw3ACft4djz0/nmhY+eBAQDzwFWFSkTKx277aptauYTBEREdmS779XLuYpkRhs7lRjPSrLcOncTby17wlIqjxR3fX/MCPlUTwdtxH1t+8oX5bs4tL87UYhlHO7bASTKSIiIlvSq5dy9EehUM6lMpb9+7Hh5x9w9lMHeF8aDnSsxb7aN+H1VgR+Ss1sed5WTY3N3O5jMkVERETtFnrvNm5+eQLPJ48GarugPCgLo1+uwOLBo6Bo6eBvvlEuPmrlmEwRERGRXhwAfHH6OH74uwxu1wYCThX4/JmfEPDscOR29mj+wIYGoy0+akpMpoiIiOydr69BTjOh7DruJJxD5KGxQIMjCgecwICXO2J136HaD+jQofnFR60IkykiIiJb1lKi5OwM7NtnsJXTOwmBlOPH8NWWXnC6FQyF622smf8z+k95HEWdOmsWfuop5eKjVo7JFBERkS3bt0/3fqkUiIsD6usNWu3coosoir+OR9PGAEKCC0N/RMBSL3wWEPp7odpa5eKjVo7JFBERkS2Li2t+X4cOwOjRQFqacv6SgXWtr8XPB1Kx8YtB6FDuj3rZNSx9IQejJozFvQ4dgf37AT8/ICrKqhfzZDJFRERky7RN8HZyArp3B6ZPV95mk0ia7jeg16/+H379tAK9s0YBDgqkjTkG70XB+LZbb+VCnvv3K5dzsNKn+5hMERER2TJtE7w9PIAbN4B//1t5m+3BVcoB5baZMwEHw6UJPWsqcOWbn/Bm0nBIqmS475eL6UsK8Ez4GNSrcjkrfbqPyRQREZEt0zbyVFam+XnkSOUtP0D5vyNHKo975hnl62kMOFL1P7+cwOlPO6DbxaFAxxp8E5UK7wVhSJf6KQtY4dN9TKaIiIhsmUzWNBlqnFzFxytv+T14608mU45cFRUpVzM34Dv/hty7jaKvfsa8vaOB2s4o630GI5dVYtmgkVBs/uz3gqWlynlUFj6fiskUERGRrYuI+D2BkkiUnx+kSpwevPXXmGrkykAcAHyZeRwHNnvB9frDgLMcm2ekoee6pbh0o0RZKCZGOY/KwudTMZkiIiKydYmJwIwZypGnGTOUn9uq8bwqA4kovYbbCb/gicNjgYaOKJD+Gw/97WG898mXwHff/f6UoQXPp2IyRUREZOtaM/LUkpEjDd+u3zgrFDiUegzbP++DTrd7Q+FWjNg7z+HhJ4bhlqPL7wVDQ5s/iRkxmSIiIqKWxccbfMmExp67eQE3PyvAkIwxAICcYT+ix1IfbO0+QFkgK8uo9bcXkykiIiJqmUzWdOK6Maqpr8GZlFRs2BaGDuV+qPO8ikUvXcAz4WOA4mKj198eTKaIiIjI4rz16xlc+Xslgs6OBBwUGFksN+i6V4Zkma0iIiIiy9P4KcDmODgA3t6a21SrrrchIQqsliNvdxp2bO6HP+VlGfyJQkNhMkVEREStk5ioXBndzw/w91eupK5Np07K9/35+yuTJ39/4Px55QT4xklWK8wuuqj8pa6u/W03oo7mbgARERFZCdVTgQ/y81Mu7PmgiAggOFi5PlRjJph3ZWocmSIiIqL2O34c8PVV/u7gAERG6l7HyohLLJgLR6aIiIio/YKDgZs3W18+Ph7YswdQKIzXJhPjyBQRERGZjkymnFNlQ5hMERERkWm19qnAxiw0CWMyRURERKaVmKicW9XWdaOae3rQzJhMERERkWnJZEBKivLlxUIAJSUtH9OhAzB6tPHb1g5MpoiIiMi8ZDLd7/1zcACmT1dOXrdAVpNMlZWVYcGCBZBKpZBKpViwYAHu3r2r85jdu3cjMjISXl5ekEgkyGr0gsTS0lKsWLECISEh6Ny5M3r27ImVK1eivLzceIEQERFRU7pu4SkUyvWtZDLTtacNrCaZmjdvHrKyspCSkoKUlBRkZWVhwYIFOo+prKzEqFGjsH79eq37CwsLUVhYiL/+9a/Izs5GYmIiUlJS8NJLLxkjBCIiImqOFS/maRXrTP3yyy9ISUlBRkYGhg8fDgDYsmULRowYgdzcXISEhGg9TpVsXb16Vev+0NBQ7Nq1S/05ODgYa9euxXPPPYf6+np07GgVXw8REZF1Ky3VnUxZeKJlFSNT6enpkEql6kQKAMLDwyGVSpGWlmbQusrLy+Hu7s5EioiIyFRiYpq+kuZBuuZTWQCryBiKiorgreXFiN7e3ijS9eW3UUlJCd5//30sWbJEZ7mamhrU1NSoP8vlcgBAXV0d6iz0JYz6UsVlq/E1Zm/xAvYXM+O1ffYWs1XHm5WlO2EaM0brS471jdlQ35VZk6nVq1djzZo1OsucOnUKACDRMsQnhNC6vT3kcjkmT56MAQMGIDY2VmfZuLg4re0+cOAAOnfubJD2WKqDBw+auwkmZW/xAvYXM+O1ffYWs1XGu3Fjy2X+859md7U35qqqqnYd15hZk6nly5djzpw5OssEBQXh7NmzKC4ubrLv9u3b8PHx0bsdFRUViIqKgqurK/bs2QNHR0ed5VetWoXXX39d/VkulyMgIACTJk2Cu7u73u2xRHV1dTh48CAiIiJa/H5sgb3FC9hfzIzX9tlbzFYdb1kZ8OqrwLffNl9Gy5P2+sasurOkL7MmU15eXvDy8mqx3IgRI1BeXo6TJ0/iscceAwCcOHEC5eXlGKnn26flcjkiIyPh5OSE5ORkODs7t3iMk5MTnLQMRzo6Olrff8BtZA8xPsje4gXsL2bGa/vsLWarjNfbG/j6a2DqVGDv3qb7HRwAHTG1N2ZDfU9WMQG9f//+iIqKwuLFi5GRkYGMjAwsXrwYU6ZM0XiS76GHHsKePXvUn0tLS5GVlYWcnBwAQG5uLrKystTzrCoqKjBp0iRUVlZi69atkMvlKCoqQlFRERoaGkwbJBERkb1LTAT8/Ztu79bN5E1pC6tIpgDgyy+/xMCBAzFp0iRMmjQJgwYNwvbt2zXK5Obmaiy4mZycjLCwMEyePBkAMGfOHISFhWHz5s0AgMzMTJw4cQLZ2dno06cP/Pz81D/Xr183XXBERESkXJQzO7vpZPS2vsPPxKziaT4AkMlk+Oc//6mzjBBC43N0dDSio6ObLT9u3LgmxxAREZEZyWTAlCnAN98o393XoQOg55QeY7OaZIqIiIjshOodfBkZQHi4xb6TT4XJFBEREVkWmUz5Lj4rYdk3IYmIiIgsHJMpIiIiIj0wmSIiIiLSA5MpIiIiIj0wmSIiIiLSA5MpIiIiIj0wmSIiIiLSA5MpIiIiIj0wmSIiIiLSA5MpIiIiIj0wmSIiIiLSA5MpIiIiIj3wRccGIIQAAMjlcjO3xHjq6upQVVUFuVwOR0dHczfH6OwtXsD+Yma8ts/eYra3eAH9Y1b93Vb9HW8vJlMGUFFRAQAICAgwc0uIiIiorSoqKiCVStt9vETom44RFAoFCgsL4ebmBolEYu7mGIVcLkdAQACuX78Od3d3czfH6OwtXsD+Yma8ts/eYra3eAH9YxZCoKKiAv7+/nBwaP/MJ45MGYCDgwN69Ohh7maYhLu7u910UsD+4gXsL2bGa/vsLWZ7ixfQL2Z9RqRUOAGdiIiISA9MpoiIiIj0wGSKWsXJyQmxsbFwcnIyd1NMwt7iBewvZsZr++wtZnuLF7CcmDkBnYiIiEgPHJkiIiIi0gOTKSIiIiI9MJkiIiIi0gOTKSIiIiI9MJmyMXFxcRg2bBjc3Nzg7e2N6dOnIzc3V6OMEAKrV6+Gv78/XFxcMG7cOJw/f16jTE1NDVasWAEvLy906dIFU6dOxY0bN9T7jx49ColEovXn1KlTzbYvOjq6Sfnw8HCzxxsfH49x48bB3d0dEokEd+/ebVJXWVkZFixYAKlUCqlUigULFmgt19a6LTHeq1ev4qWXXkKvXr3g4uKC4OBgxMbGora2Vmf7DH19TRkzAAQFBTVp/5///Ged7bPWa2xLfbi0tBQrVqxASEgIOnfujJ49e2LlypUoLy/XOI8l9GFTxmwp/diU19hsfViQTYmMjBQJCQni3LlzIisrS0yePFn07NlT3Lt3T11m/fr1ws3NTezatUtkZ2eL2bNnCz8/PyGXy9Vlli5dKrp37y4OHjwoTp8+LcaPHy8GDx4s6uvrhRBC1NTUiJs3b2r8LFq0SAQFBQmFQtFs+xYuXCiioqI0jispKTF7vB988IGIi4sTcXFxAoAoKytrUldUVJQIDQ0VaWlpIi0tTYSGhoopU6bobF9r6rbEeL///nsRHR0t9u/fL65cuSK+/fZb4e3tLd544w2d7TP09TVlzEIIERgYKN577z2N9ldUVOhsn7VeY1vqw9nZ2WLGjBkiOTlZXL58Wfzwww+ib9++YubMmRp1WUIfNmXMltKPTXmNzdWHmUzZuFu3bgkA4tixY0IIIRQKhfD19RXr169Xl6murhZSqVRs3rxZCCHE3bt3haOjo9ixY4e6TEFBgXBwcBApKSla66mtrRXe3t7ivffe09mehQsXimnTpukZVfPaE++Djhw5ovUPT05OjgAgMjIy1NvS09MFAHHhwgWtbWlr3e1hrHi1+ctf/iJ69eqls4yxr68Qxo05MDBQfPDBB61uiy1dY1vpwyo7d+4UnTp1EnV1dUIIy+3DQhgvZm0soR8bM15z9WHe5rNxqiFQmUwGAMjLy0NRUREmTZqkLuPk5ISxY8ciLS0NAJCZmYm6ujqNMv7+/ggNDVWXaSw5ORl37txBdHR0i206evQovL290a9fPyxevBi3bt1qb3hNtCfe1khPT4dUKsXw4cPV28LDwyGVSps9j6Hq1sVY8TZXl6oeXYx5fVXtAIwX84YNG+Dp6YkhQ4Zg7dq1Om+J2NI1trU+XF5eDnd3d3TsqHwFraX2YVVbAcPH3FwZc/djY8drjj7MFx3bMCEEXn/9dYwePRqhoaEAgKKiIgCAj4+PRlkfHx/k5+ery3Tq1AkeHh5NyqiOb2zr1q2IjIxEQECAzjY9+eSTmDVrFgIDA5GXl4d33nkHEyZMQGZmpt4r2LY33tYoKiqCt7d3k+3e3t7NfieGqrs5xoy3sStXruCjjz7Cxo0bdZYz5vUFjB/zq6++ikceeQQeHh44efIkVq1ahby8PHz++eday9vSNbalPlxSUoL3338fS5YsUW+zxD4MGDfmxiyhHxs7XnP1YSZTNmz58uU4e/Ysjh8/3mSfRCLR+CyEaLKtsebK3LhxA/v378fOnTtbbNPs2bPVv4eGhmLo0KEIDAzEd999hxkzZrR4vC6Gjrelc7T2PIaoWxtjx6tSWFiIqKgozJo1C4sWLdJZ1pjXFzB+zH/84x/Vvw8aNAgeHh74wx/+oP6XbnOs/RrbUh+Wy+WYPHkyBgwYgNjYWJ3n0HWe9tTdHsaOWcVS+rGx4zVXH+ZtPhu1YsUKJCcn48iRI+jRo4d6u6+vLwA0+ZfYrVu31Jm5r68vamtrUVZW1myZByUkJMDT0xNTp05tczv9/PwQGBiIS5cutfnYB+kTb2v4+vqiuLi4yfbbt283ex5D1a2NseNVKSwsxPjx4zFixAjEx8e3+XhDXV/AdDE/SPUE0+XLl7Xut4VrDNhOH66oqEBUVBRcXV2xZ88eODo6apzHkvowYPyYVSylH5sq3geZrA+3enYVWQWFQiFeeeUV4e/vLy5evKh1v6+vr9iwYYN6W01NjdYJ6ElJSeoyhYWFWiegKxQK0atXrxafDmnOnTt3hJOTk/jiiy/adbwh4n1QSxPQT5w4od6WkZHRqsmrra27NUwVrxBC3LhxQ/Tt21fMmTNH/RRnW+l7fYUwbcyN7d27VwAQ+fn5zbbNmq+x6ny20IfLy8tFeHi4GDt2rKisrGxyHkvpw6rzmiJmISyjH5sy3sZM1YeZTNmYZcuWCalUKo4eParxaGhVVZW6zPr164VUKhW7d+8W2dnZYu7cuVqXRujRo4c4dOiQOH36tJgwYYLG0ggqhw4dEgBETk6O1vaEhISI3bt3CyGEqKioEG+88YZIS0sTeXl54siRI2LEiBGie/fu7X7M2FDx3rx5U5w5c0Zs2bJFABCpqanizJkzGo8DR0VFiUGDBon09HSRnp4uBg4c2OSx6gfjbW3dlhhvQUGB6NOnj5gwYYK4ceOGRl3NxWuM62vKmNPS0sSmTZvEmTNnxK+//iqSkpKEv7+/mDp1arMxt7ZuS4xXxRb6sFwuF8OHDxcDBw4Uly9f1jjPg/+fZQl92JQxW0o/NlW85uzDTKZsDACtPwkJCeoyCoVCxMbGCl9fX+Hk5CTGjBkjsrOzNc5z//59sXz5ciGTyYSLi4uYMmWKuHbtWpP65s6dK0aOHKmzPaq6q6qqxKRJk0S3bt2Eo6Oj6Nmzp1i4cKHW85o63tjY2BbPU1JSIubPny/c3NyEm5ubmD9/fpN/7benbkuMNyEhodm6movXGNfXlDFnZmaK4cOHC6lUKpydnUVISIiIjY1t8i9gW7nGKrbQh1Wjb9p+8vLy1OUsoQ+bMmZL6cemitecfVjy24mJiIiIqB04AZ2IiIhID0ymiIiIiPTAZIqIiIhID0ymiIiIiPTAZIqIiIhID0ymiIiIiPTAZIqIiIhID0ymiMgirV69GkOGDDFb/e+88w5iYmLMVn9rffzxx+16px4RGQ4X7SQik2vpbewLFy7Exx9/jJqaGp1vejeW4uJi9O3bF2fPnkVQUJDJ62+LmpoaBAUF4V//+hdGjx5t7uYQ2aWO5m4AEdmfmzdvqn9PSkrCu+++i9zcXPU2FxcXuLq6wtXV1RzNw9atWzFixAizJ1INDQ2QSCRwcGj+JoKTkxPmzZuHjz76iMkUkZnwNh8RmZyvr6/6RyqVQiKRNNnW+DZfdHQ0pk+fjnXr1sHHxwddu3bFmjVrUF9fjz/96U+QyWTo0aMH/vGPf2jUVVBQgNmzZ8PDwwOenp6YNm0arl69qrN9O3bs0Lh1tm3bNnh6eqKmpkaj3MyZM/H888+rP+/duxePPvoonJ2d0bt3b3X7VDZt2oSBAweiS5cuCAgIwMsvv4x79+6p9ycmJqJr167Yt28fBgwYACcnJ+Tn5+Po0aN47LHH0KVLF3Tt2hWjRo1Cfn6++ripU6fim2++wf3791v1/RORYTGZIiKrcfjwYRQWFiI1NRWbNm3C6tWrMWXKFHh4eODEiRNYunQpli5diuvXrwMAqqqqMH78eLi6uiI1NRXHjx+Hq6sroqKiUFtbq7WOsrIynDt3DkOHDlVvmzVrFhoaGpCcnKzedufOHezbtw8vvPACAGD//v147rnnsHLlSuTk5OCzzz5DYmIi1q5dqz7GwcEBH374Ic6dO4cvvvgChw8fxltvvaVRf1VVFeLi4vD555/j/PnzkMlkmD59OsaOHYuzZ88iPT0dMTExGrdKhw4dirq6Opw8eVL/L5mI2q5Nr0UmIjKwhIQEIZVKm2yPjY0VgwcPVn9euHChCAwMFA0NDeptISEh4vHHH1d/rq+vF126dBFff/21EEKIrVu3ipCQEKFQKNRlampqhIuLi9i/f7/W9pw5c0YAENeuXdPYvmzZMvHkk0+qP//tb38TvXv3Vp/78ccfF+vWrdM4Zvv27cLPz6/Z2Hfu3Ck8PT3VnxMSEgQAkZWVpd5WUlIiAIijR482ex4hhPDw8BCJiYk6yxCRcXDOFBFZjYcfflhj/pCPjw9CQ0PVnzt06ABPT0/cunULAJCZmYnLly/Dzc1N4zzV1dW4cuWK1jpUt8qcnZ01ti9evBjDhg1DQUEBunfvjoSEBERHR6tHiDIzM3Hq1CmNkaiGhgZUV1ejqqoKnTt3xpEjR7Bu3Trk5ORALpejvr4e1dXVqKysRJcuXQAAnTp1wqBBg9TnkMlkiI6ORmRkJCIiIjBx4kQ8++yz8PPz02ifi4sLqqqqWvdFEpFB8TYfEVkNR0dHjc8SiUTrNoVCAQBQKBR49NFHkZWVpfFz8eJFzJs3T2sdXl5eAJS3+x4UFhaGwYMHY9u2bTh9+jSys7MRHR2t3q9QKLBmzRqNerKzs3Hp0iU4OzsjPz8fTz31FEJDQ7Fr1y5kZmbik08+AQDU1dWpz+Pi4tLkaceEhASkp6dj5MiRSEpKQr9+/ZCRkaFRprS0FN26dWvpKyQiI+DIFBHZrEceeQRJSUnw9vaGu7t7q44JDg6Gu7s7cnJy0K9fP419ixYtwgcffICCggJMnDgRAQEBGnXl5uaiT58+Ws/7888/o76+Hhs3blSPru3cubPVsYSFhSEsLAyrVq3CiBEj8NVXXyE8PBwAcOXKFVRXVyMsLKzV5yMiw+HIFBHZrPnz58PLywvTpk3Djz/+iLy8PBw7dgyvvvoqbty4ofUYBwcHTJw4EcePH9d6voKCAmzZsgUvvviixr53330X27Ztw+rVq3H+/Hn88ssvSEpKwttvvw1AmaTV19fjo48+wq+//ort27dj8+bNLcaQl5eHVatWIT09Hfn5+Thw4AAuXryI/v37q8v8+OOP6N27N4KDg9vy9RCRgTCZIiKb1blzZ6SmpqJnz56YMWMG+vfvjxdffBH379/XOVIVExODHTt2qG8Xqri7u2PmzJlwdXXF9OnTNfZFRkZi3759OHjwIIYNG4bw8HBs2rQJgYGBAIAhQ4Zg06ZN2LBhA0JDQ/Hll18iLi6uVTFcuHABM2fORL9+/RATE4Ply5djyZIl6jJff/01Fi9e3IZvhogMiSugExE1IoRAeHg4XnvtNcydO1djX0REBPr3748PP/zQTK3TdO7cOTzxxBO4ePEipFKpuZtDZJc4MkVE1IhEIkF8fLzGgpulpaXYsWMHDh8+jFdeecWMrdNUWFiIbdu2MZEiMiOOTBERtUJQUBDKysrwzjvv4M033zR3c4jIgjCZIiIiItIDb/MRERER6YHJFBEREZEemEwRERER6YHJFBEREZEemEwRERER6YHJFBEREZEemEwRERER6YHJFBEREZEemEwRERER6eH/AYLPeh2y1SdkAAAAAElFTkSuQmCC", "text/plain": [ "
    " ] @@ -1174,14 +2145,14 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 274, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "mean of the velocity estimates 0.0000004.2 and the standard deviation 0.0000004.2\n", + "mean of the velocity estimates -0.0064404.2 and the standard deviation 0.0000004.2\n", "CV = 0.00\n" ] } @@ -1242,14 +2213,14 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 275, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "mean of the velocity estimates 0.00 and the standard deviation 0.00\n", + "mean of the velocity estimates -0.01 and the standard deviation 0.00\n", "mean MSE for training set : 0.00 and the validation set: 0.00\n" ] } diff --git a/searchindex.js b/searchindex.js index 62ab07a1..93be874a 100644 --- a/searchindex.js +++ b/searchindex.js @@ -1 +1 @@ -Search.setIndex({docnames:["Chapter1-GettingStarted/1.1_open_reproducible_science","Chapter1-GettingStarted/1.2_jupyter_environment","Chapter1-GettingStarted/1.3_python_environment","Chapter1-GettingStarted/1.4_computational_environments","Chapter1-GettingStarted/1.5_version_control_git","Chapter1-GettingStarted/1.6_data_gallery","Chapter1-GettingStarted/readme","Chapter2-DataManipulation/2.10_feature_engineering","Chapter2-DataManipulation/2.11_dimensionality_reduction","Chapter2-DataManipulation/2.12_MLready_data","Chapter2-DataManipulation/2.1_Data_Definitions","Chapter2-DataManipulation/2.2_data_formats_rendered","Chapter2-DataManipulation/2.3_pandas_rendered","Chapter2-DataManipulation/2.4_dataframes_prep","Chapter2-DataManipulation/2.5_Arrays","Chapter2-DataManipulation/2.6_resampling","Chapter2-DataManipulation/2.7_statistical_considerations","Chapter2-DataManipulation/2.8_data_spectral_transforms","Chapter2-DataManipulation/2.9_synthetic_noise","Chapter3-MachineLearning/3.1_clustering","Chapter3-MachineLearning/3.2_classification_regression","Chapter3-MachineLearning/3.3_binary_classification","Chapter3-MachineLearning/3.4_multiclass_classification","Chapter3-MachineLearning/3.5_logistic_regression","Chapter3-MachineLearning/3.6_randomForest_regression","Chapter3-MachineLearning/3.7_hyperparameter_tuning","Chapter3-MachineLearning/3.8_ensemble_learning","Chapter3-MachineLearning/3.9_autoML","Chapter4-DeepLearning/mlgeo_4.0_perceptrons","Chapter4-DeepLearning/mlgeo_4.1_neural_networks","Chapter4-DeepLearning/mlgeo_4.2_MultiLayerPerceptron","Chapter4-DeepLearning/mlgeo_4.3_CNN","Chapter4-DeepLearning/mlgeo_4.3_ModelTraining","Chapter4-DeepLearning/mlgeo_4.3_PINN","Chapter4-DeepLearning/mlgeo_4.5_RNN","Chapter4-DeepLearning/mlgeo_4.6_AutoEncoder","Chapter4-DeepLearning/mlgeo_4.6_NAS","Chapter5-ModelWorkflows/readme","about_this_book/0_mlgeo_project","about_this_book/about_this_book","about_this_book/acknowledgements","reference/bibliography","reference/glossary"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":5,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":3,"sphinx.domains.rst":2,"sphinx.domains.std":2,"sphinx.ext.intersphinx":1,"sphinxcontrib.bibtex":9,sphinx:56},filenames:["Chapter1-GettingStarted/1.1_open_reproducible_science.md","Chapter1-GettingStarted/1.2_jupyter_environment.md","Chapter1-GettingStarted/1.3_python_environment.md","Chapter1-GettingStarted/1.4_computational_environments.md","Chapter1-GettingStarted/1.5_version_control_git.md","Chapter1-GettingStarted/1.6_data_gallery.md","Chapter1-GettingStarted/readme.md","Chapter2-DataManipulation/2.10_feature_engineering.ipynb","Chapter2-DataManipulation/2.11_dimensionality_reduction.ipynb","Chapter2-DataManipulation/2.12_MLready_data.ipynb","Chapter2-DataManipulation/2.1_Data_Definitions.md","Chapter2-DataManipulation/2.2_data_formats_rendered.ipynb","Chapter2-DataManipulation/2.3_pandas_rendered.ipynb","Chapter2-DataManipulation/2.4_dataframes_prep.ipynb","Chapter2-DataManipulation/2.5_Arrays.ipynb","Chapter2-DataManipulation/2.6_resampling.ipynb","Chapter2-DataManipulation/2.7_statistical_considerations.ipynb","Chapter2-DataManipulation/2.8_data_spectral_transforms.ipynb","Chapter2-DataManipulation/2.9_synthetic_noise.ipynb","Chapter3-MachineLearning/3.1_clustering.ipynb","Chapter3-MachineLearning/3.2_classification_regression.ipynb","Chapter3-MachineLearning/3.3_binary_classification.ipynb","Chapter3-MachineLearning/3.4_multiclass_classification.ipynb","Chapter3-MachineLearning/3.5_logistic_regression.ipynb","Chapter3-MachineLearning/3.6_randomForest_regression.ipynb","Chapter3-MachineLearning/3.7_hyperparameter_tuning.ipynb","Chapter3-MachineLearning/3.8_ensemble_learning.ipynb","Chapter3-MachineLearning/3.9_autoML.ipynb","Chapter4-DeepLearning/mlgeo_4.0_perceptrons.ipynb","Chapter4-DeepLearning/mlgeo_4.1_neural_networks.ipynb","Chapter4-DeepLearning/mlgeo_4.2_MultiLayerPerceptron.ipynb","Chapter4-DeepLearning/mlgeo_4.3_CNN.ipynb","Chapter4-DeepLearning/mlgeo_4.3_ModelTraining.ipynb","Chapter4-DeepLearning/mlgeo_4.3_PINN.ipynb","Chapter4-DeepLearning/mlgeo_4.5_RNN.ipynb","Chapter4-DeepLearning/mlgeo_4.6_AutoEncoder.ipynb","Chapter4-DeepLearning/mlgeo_4.6_NAS.ipynb","Chapter5-ModelWorkflows/readme.md","about_this_book/0_mlgeo_project.md","about_this_book/about_this_book.md","about_this_book/acknowledgements.md","reference/bibliography.md","reference/glossary.md"],objects:{},objnames:{},objtypes:{},terms:{"0":[2,4,7,8,11,12,13,14,15,16,17,18,19,21,22,23,24,25,26,29,30,32,33,34,35,38],"00":[12,13,15,16,17,18,19,22,26,32,35],"000":[3,8,12,29],"000000":[12,13,15,16,24],"0000004":15,"000000e":13,"000000z":[17,18],"000009":13,"000055":13,"000081":13,"0000ff":30,"0001":28,"000111":13,"00015211022576318623":18,"0003":19,"0005":32,"000590":13,"0006263194954954088":33,"00077540e":25,"0009188263163747461":14,"00092988":25,"00095":25,"000951":25,"00095572":25,"00096354":25,"00096431":25,"00097799":25,"00097928":25,"000986":25,"00098691":25,"00098772":25,"00098853":25,"00099373":25,"00099473":25,"00099483":25,"00099893":25,"000e":32,"001":[22,23,28,29,30,31,32,33,35],"00100203":25,"00100331":25,"00100341":25,"0010047":25,"00100555":25,"00100613":25,"00100646":25,"00100651":25,"00100737":25,"00100942":25,"00101366":25,"00101843":25,"00102372":25,"00102644":25,"00103245":25,"00103259":25,"00103416":25,"00103521":25,"00103917":25,"00103965":25,"00104094":25,"00104437":25,"00104656":25,"00104809":25,"00104914":25,"00105019":25,"00105281":25,"00105462":25,"00105872":25,"00105924e":19,"00106049":25,"00106201":25,"00106554":25,"00106707":25,"00106764":25,"00106878":25,"00106978":25,"0010725":25,"0010726":25,"00107574":25,"00107622":25,"0010766":25,"00107718":25,"0010776":25,"00107789":25,"00107832":25,"00108519":25,"001086":25,"00108638":25,"00108681":25,"00108762":25,"00109024":25,"00109105":25,"00109315":25,"00109363":25,"00109911":25,"00110121":25,"00110216":25,"00110488":25,"00110974":25,"00111265":25,"00111418":25,"00111895":25,"001121":25,"0011219":25,"0011241":25,"00112505":25,"00112543":25,"00112891":25,"0011312":25,"00113409e":19,"00113697":25,"00114322":25,"00114336":25,"00114398":25,"00114417":25,"00114655":25,"00114799":25,"00114856":25,"00115099":25,"0011518":25,"00115423":25,"00115576":25,"00116277":25,"00116334":25,"00116444":25,"00116515":25,"00116839":25,"00117":13,"00117087":25,"00117283":25,"00117745":23,"00117784":25,"00117974":25,"00118184":25,"0011826":25,"00118356":25,"00118542":25,"00118771":25,"00118823":25,"00118876":25,"00118885":25,"00119176":25,"001193":25,"00120039":25,"00120368":25,"00120587":25,"0012094":25,"00122175":25,"00122461":25,"00123711":25,"00124407":25,"00125222":25,"00125556":25,"00125637":25,"00126467":25,"00126867":25,"00127654":25,"00128045":25,"00129204":25,"00129838":25,"00133281":25,"00133452":25,"00134025":25,"00134029":25,"0013628":25,"00136886":25,"00137367":25,"00137486":25,"00137854":25,"00138397":25,"00139098":25,"00139213":25,"00139284":25,"00139289":25,"00139799":25,"00140023":25,"00140777":25,"00141668":25,"001417":19,"00142055":25,"00144706":25,"00144835":25,"00151439":25,"00153746e":25,"00155859":25,"00157524e":19,"00189348e":25,"00219419e":25,"00219507":8,"003069":19,"0030715920533113":14,"00329":13,"003468":19,"00380339e":19,"003938":19,"004136":13,"004774":13,"004932182490752158":23,"005":[29,30,31,35],"00523":28,"005311":19,"00643465e":25,"006434906304516136":18,"007":7,"00744489":25,"007495006078435612":18,"00800":12,"008060063544843572":14,"00821080e":25,"00878350e":25,"008924":19,"00896047e":19,"008967":19,"00917668e":19,"009565":19,"009791921664626684":23,"01":[12,15,17,19,24,26,32,33],"010":12,"010000":[16,17],"01008876e":19,"0101010101010102":14,"010145":13,"01026":13,"010370":13,"010845":13,"010848":25,"0109":23,"01107147":25,"011097410604192354":23,"01124606":25,"0114562":25,"01150443e":19,"01150772":25,"01192058":25,"011982":19,"01206191":25,"01231908":25,"01241204":25,"01258343":25,"012774":13,"01284938":25,"01286752":25,"01287":13,"01289171":25,"01293827":25,"01298769":25,"01303417":25,"01304742":25,"01311811":25,"01314302e":25,"01317991e":19,"0132973926342017":18,"01330530e":25,"01338":13,"01357734":25,"01360224e":25,"0136416":25,"013847e":13,"01396018":8,"013998e":13,"01407104":25,"0141058":25,"01414058":25,"01417596":25,"0142139":25,"01432905":25,"0143383":25,"01434685":25,"01434876":25,"01437521":25,"01445313":25,"01446302":25,"01450577":25,"01455708":25,"01457076":25,"01462278":25,"01472216":25,"01476016":25,"01483183":25,"01484245e":19,"01484685":25,"01485596":25,"01493359":25,"01494575":25,"01497216":25,"01497725":25,"015":29,"01503067":25,"01503139":25,"01508956":25,"01510458":25,"01511592":25,"0151176":25,"01515818":25,"01519043":25,"01521006":25,"0152317":25,"015246388348034143":18,"0152606":25,"01526103":25,"01527653":25,"01528138":25,"0153625":25,"01540737":25,"01547699":25,"015568":19,"01559561":25,"01565228":25,"01576381":25,"01581057":25,"01630097e":25,"01647874":25,"01660968e":25,"01667988":25,"0169":12,"01691109":25,"01692484":25,"01693117":23,"01693139":25,"017019":13,"0171665":25,"0171936":25,"01721282":25,"01724968":25,"01750928":25,"01756458":25,"01758518":25,"01762635":25,"01790279e":19,"01795520e":25,"01812615":25,"018297":25,"01831212":25,"01833758":25,"01843243":25,"01845818":25,"018471":25,"01847563":25,"01862588":25,"01873102":25,"01874394":25,"01875048":25,"01880918":25,"01882305":25,"01882615":25,"01883609":25,"01885603":25,"01887064":25,"01887522":25,"01888666":25,"01897316":25,"01899896":25,"01901288":25,"01901824":25,"01904299":25,"01905718":25,"01908689":25,"01911283":25,"01913071":25,"01913462":25,"01921201":25,"01921757":25,"01922411":25,"0192246":25,"01923843":23,"01928401":25,"01928897":25,"01929832":25,"0192997":25,"01936684":25,"01936893":25,"01947122":25,"01948614":25,"01954636":25,"0195549":25,"01957004":25,"01957202":25,"0195775":25,"01961274":25,"0196908":25,"01971579":25,"01971922":25,"01973233":25,"01975498":25,"01980486":25,"0198133":25,"0198184":25,"01983519":25,"01985712":25,"01990356":25,"01991944":25,"01998029":25,"01998377":25,"02":[12,19,24,25,30],"02001534":25,"02002053":25,"02005477":25,"02011108":25,"02012463":25,"02015944":25,"02019405":25,"02020388":25,"02026519":25,"02032981":25,"02041302":25,"02054709":25,"02068725":25,"02095075":25,"02111402":25,"0211823":25,"02136241":25,"02145925":25,"02156137":25,"02172494":25,"021897810218978103":23,"0220214":25,"02207262":25,"02210412":25,"02210692":25,"02214394":25,"02232589":25,"02234629":25,"022358":19,"02243166":25,"02244415":25,"02267064":25,"02275643":25,"02293578":25,"02294638e":19,"02297895":25,"02298839":25,"02304196":25,"02311587":25,"02313848":25,"02317823":25,"02318607":25,"02328081":25,"02333975":25,"02335019":25,"02344284":25,"02348842":25,"02351891":25,"02353102":14,"0235342":25,"02355308":25,"02355585":25,"02355795":25,"02358461":25,"02359171":25,"02365112":25,"02366824":25,"02368955":25,"02369399":25,"02371317":25,"02377076":25,"02379055":25,"02379142":25,"02380972":25,"02381821":25,"02385512":25,"02386303":25,"02392955":25,"02400956":25,"02411374":25,"02415328":25,"02421236":25,"02424603":25,"02431536":25,"02442665":25,"02446957":25,"02453833":25,"02459221":25,"02464504":25,"02480783":25,"0248394":25,"02488422":25,"02499743":25,"025":21,"025000":24,"02505026":25,"0250979":25,"02514329":25,"02515011":25,"02530203":25,"02541871":25,"02555343":25,"02562881":25,"0257":12,"02574883":25,"02577629":25,"02578182":25,"0258419":25,"02588782":25,"02608404":25,"02635684":25,"02642287e":19,"02672602":25,"02673278":25,"02683849":25,"02696":12,"027":29,"02883570e":25,"02902726e":19,"029486":19,"02948785":25,"02956544":23,"02959356":25,"02991104":25,"02993002":8,"02998571":25,"03":[12,13,15,19,24,25,33],"030":35,"03006983":25,"03009968":25,"0301":12,"03030303":14,"03058095e":19,"03060265":25,"030637":19,"03071399":25,"030896":25,"03093848e":25,"03100":12,"03103009":23,"03337844e":19,"03416":13,"0344":12,"03440":12,"03447569e":25,"034483":24,"034800":13,"03494963e":19,"03501758e":19,"03566152e":19,"035698":13,"036229":19,"03760092e":19,"03815835e":19,"0386919":25,"039697":13,"03978648e":25,"04":[12,13,15,25,35],"04101425":23,"041580e":13,"041600":13,"04240":13,"042591":13,"043":29,"04303176034198916":14,"04314":12,"04350267e":19,"043535":13,"04372530e":25,"04460142e":25,"0454577":23,"04572756":23,"04648":13,"04690610e":19,"04767375e":19,"04798007e":19,"047994":19,"04842":13,"04955":13,"04966072e":19,"04984011e":19,"049902":19,"049911":13,"05":[7,12,14,15,17,18,19,22,24,25,31],"05010276e":19,"05152703e":19,"05211":13,"05213662e":25,"05242661":8,"052873":28,"05394413e":19,"05411581e":25,"056":29,"05651231":14,"05658198e":25,"05707018e":19,"05826066e":25,"05836797e":19,"05876537e":19,"05876856e":25,"05888410e":25,"05915033e":25,"06":[7,12,13,15,16,24,25],"060":12,"06025041e":19,"060298649528828":16,"06060606":14,"06078202e":25,"06092507e":25,"06168176e":19,"06172":13,"0625":22,"06278148e":25,"0635":12,"06380531e":19,"064":29,"06419769e":19,"06490653e":25,"06615794e":25,"067050":15,"067100":15,"06741252e":25,"067648":13,"067764":13,"06848084e":19,"069400":13,"07":[12,13,14,16,17,18,33,35],"07094755358789713":18,"07107204e":19,"07107968e":19,"07132985e":19,"07226722":14,"07230686e":19,"072650":13,"07493105e":19,"07508417348193797":16,"07561688e":25,"0777344413103096":17,"077800":12,"07841108":8,"07951792e":25,"07t03":7,"08":[12,16,33,35],"080":29,"0803":12,"08064872e":25,"08072608e":19,"080897":13,"08113310e":19,"08186501e":25,"08200949e":25,"0823":12,"08269":13,"082983":7,"08310640e":25,"08484803":23,"08537423e":19,"08593236e":19,"08732":13,"08764086e":19,"08831":13,"08846372e":25,"088800":13,"089693":13,"08998769e":19,"08t15":7,"09":[7,12,15,33],"09090909":14,"09091501e":19,"091":29,"092579":13,"0935":19,"09399618e":25,"094121":13,"09478493e":19,"09610147e":19,"09689906e":19,"098":29,"09816631e":19,"09887886e":25,"099000":7,"09t23":7,"0_wavelet":7,"0f":22,"0ffh4r23mitn2dz":7,"0m":[12,13,18,28],"0s":[22,25],"0x1060f17f0":23,"0x126f0e7f0":23,"0x145352250":25,"0x16b4d22e0":32,"0x17a5efa60":8,"0x17a96cb80":8,"0x17a9ebeb0":18,"0x17ca1a580":8,"0x1c90d4820":7,"0x1e1e75e10":30,"0x2af90f8b0":35,"0x2b17a0f10":19,"0x2b1edcd60":19,"0x2b26d6080":31,"0x2ba38ac10":19,"0x2ba44ab50":19,"0x2ba534b80":19,"0x2ba5f8bb0":19,"0x2bc2b4eb0":19,"0x2bdd92640":19,"0x2bde1d5e0":19,"0x2d0523130":35,"0x30baba520":15,"0x685db3790":14,"0x78d4ee490":14,"0x7f27e3ee9c00":21,"0x7f27e600fd90":21,"0x7f27e62d2980":21,"0x7fd65cb311b0":22,"1":[7,9,13,23,28,33,34,35,39,41],"10":[2,3,7,11,12,13,14,15,16,17,18,19,21,22,24,25,26,28,29,30,31,32,33,34,35,38,39],"100":[1,7,11,12,13,14,15,16,17,18,19,21,24,25,26,28,29,30,31,32,33,35,39,42],"1000":[8,9,10,12,13,14,15,16,17,24,26,28,29,31,32,33,35],"10000":[8,12,13,14,15,17,28,33,34],"100000":[12,15,16,24,28],"10000543e":19,"10013437e":19,"100ka":5,"101":[12,29,30],"10116954e":19,"10184613e":19,"102":30,"10227580e":19,"102557":13,"1029":31,"103":30,"1030":22,"1031":22,"1032":22,"1033":22,"1034":22,"10349180e":25,"1035":22,"1036":22,"1037":22,"1038":22,"103932":16,"104":[25,30],"1040":22,"1041":22,"10420561e":19,"10427394e":25,"10476158":14,"10487413e":19,"105":[12,25,29,30],"105000":12,"106":[25,30],"10639533e":25,"107":[25,30],"108":[13,25,30],"109":[12,13,25,30],"1094":12,"109400":12,"10942":13,"10974988":14,"10hz":17,"10k":34,"11":[7,8,12,13,14,15,16,17,18,24,26,28,29,30,35,39],"110":[11,12,25,30],"11022491e":19,"11046253e":25,"11049848e":19,"1106":12,"1107":12,"11070377e":25,"1108":12,"1109":12,"111":[8,12,13,17,19,25,29,30],"1110":12,"1111":12,"11111111":14,"1112":12,"11128084e":25,"1113":22,"1114":22,"1115":22,"1116":22,"11162756":14,"1117":22,"112":30,"11215633e":25,"113":[12,25,30],"113026":16,"1136":14,"114":[25,30],"1140":13,"1142":22,"1143":22,"1144":22,"1145":22,"1146":22,"1147":22,"1148":22,"1149":22,"1149757":14,"114x80":31,"115":30,"1150":22,"11504743e":25,"1151":22,"1152":22,"11535082e":19,"1159":22,"116":[25,30],"1160":22,"1162":22,"1164":22,"1166":22,"117":[24,30],"117873":13,"11794405e":19,"118":[25,29,30],"1181":22,"1182":22,"1183":[22,32],"1184":22,"1185":22,"119":[7,30],"1190913055":19,"1198":23,"12":[7,12,13,14,17,18,19,24,27,28,29,30,31,33,35],"120":[7,12,30,31],"12000":[12,33],"12045035":14,"120542":24,"121":[7,11,12,25,30],"12121212":14,"122":[25,30],"1225":23,"12263265e":19,"123":[25,27,30],"123111":13,"1233":22,"12332403":14,"1234":[11,22],"1235":22,"123783465":19,"1239":13,"124":30,"1240":22,"1241":22,"1242":22,"1244":22,"1245":22,"1246":22,"125":[8,12,14,16,22,29,30],"12571585":14,"126":[7,12,14,22,25,30],"126185":13,"12618569":14,"12662":13,"127":[11,14,22,30],"12701549e":25,"12745122e":25,"12750503e":25,"127k":12,"128":[14,25,30,31,34],"128000":7,"129":[25,30,31],"129629":12,"12977":13,"13":[7,12,13,14,16,17,19,25,28,29,30,33,35],"130":[25,30],"13003767e":25,"130547":13,"13058067e":19,"131":[25,30],"13147540e":19,"13176935e":25,"132":[25,30],"13200349e":25,"1320124":14,"13219411":14,"133":[12,13,25,29,30,31],"1331":13,"134":[25,30,31],"13455924e":25,"13463788e":25,"134956":13,"135":[25,30],"135285":13,"13535513e":25,"13559614e":19,"13571728e":19,"136":[13,25,30],"136646":13,"136778":19,"1369":27,"137":[25,30],"1377602":13,"138":[25,30],"13813089e":25,"13848864":14,"138856":13,"139":[25,30],"13m":35,"14":[7,12,13,14,17,18,19,29,30,31,33,35],"140":[13,25,30],"14000":33,"141":[25,29,30],"14118360e":19,"1412":13,"141447":13,"1416":19,"14169642e":19,"141790":13,"141805":13,"14186":13,"142":[12,13,25,30],"142010":13,"14262720e":19,"1427":13,"143":[25,30],"143726":13,"14398":13,"144":[25,30],"14403563e":19,"1445":11,"1447":11,"1448":11,"145":[12,13,25,30,35],"14508288":14,"14542351286436":32,"14581385e":25,"1459":[13,23],"14593293e":25,"146":[12,25,30],"1460":13,"146988":12,"147":[25,30],"14788620e":25,"148":[12,25,30],"148057":13,"14831120e":25,"149":[25,30],"14m":35,"15":[2,5,7,12,13,14,17,18,22,23,24,25,26,29,30,33,35,39],"150":[17,25,29,30],"15000":33,"15001":7,"150651":13,"15089793e":19,"15094544e":25,"151":[25,30],"1510":13,"1511":13,"15123857e":25,"15151515":14,"15199111":14,"152":[25,30],"15201264e":25,"152151":13,"15293862e":25,"153":[13,30],"154":[25,30],"15443469":14,"1548":8,"1549214831474401":32,"155":[25,30],"15525786e":19,"1553671407878263":19,"15547294e":19,"156":[25,26,30],"15607835e":19,"1561":32,"156750":7,"15688101":17,"157":[13,25,30],"157000":7,"158":[19,25,30],"158000":7,"159":[25,30],"1590":12,"15908766e":25,"15910416e":19,"15922828":14,"15924":16,"15975960e":19,"15m":35,"16":[7,12,13,14,15,16,18,19,28,29,30,31,32,33,35],"160":[13,25,29,30,35],"16000":33,"161":30,"16116":13,"16121009e":19,"161700":12,"162":[13,30],"16296722254477":32,"163":[13,30,35],"163786":13,"16392710e":19,"164":30,"165":[7,13,30],"16500907e":19,"165398":24,"166":[12,17,30],"1664":12,"16681005":14,"167":[29,30],"16783219e":25,"168":30,"16816806e":19,"16827078e":19,"169":30,"16900":12,"1691094658":17,"169214":13,"16m":35,"16x16":31,"17":[7,12,13,14,18,24,25,28,29,30,33,35],"170":30,"170000":16,"17002010e":19,"1703":11,"1704":11,"17049426e":19,"1705":11,"1706":11,"1707":11,"1708":11,"1709":11,"171":[29,30],"1710":11,"1711":11,"1712":11,"1713":11,"1714":11,"1715":11,"1716":11,"1719":35,"171915":13,"172":[13,30],"1720":7,"173":[19,30],"173233":13,"173333":13,"173370":13,"174":30,"17468526e":19,"1747":13,"17475284":14,"1748":13,"1749":13,"175":[13,30],"175485":13,"176":30,"176494":13,"176529":13,"1767563":17,"17675743e":19,"17681195":14,"177":[13,30],"17762":13,"178":[12,30],"1780":12,"178035":13,"178060":13,"1781":12,"1782":12,"1783":12,"1784":12,"1785":12,"178772":13,"1788":13,"179":[12,30],"1790":22,"1791":22,"179191":13,"1792":22,"1793":22,"1794":22,"179630":13,"17968626e":25,"1797":[22,25,26,29,30],"18":[2,7,13,14,16,19,29,30,33,35],"180":[8,13,30],"18000":33,"18035155e":19,"18068457e":25,"18092002e":19,"181":30,"18115211e":25,"18126811e":25,"181545":13,"18159":13,"18181818":14,"18181892e":19,"182":[29,30],"18209788e":25,"18281851e":25,"183":[13,30],"18307383":14,"18314361e":19,"1836":33,"18381967e":19,"184":[13,30,35],"18452379e":19,"18470":19,"18493938e":19,"185":[12,13,30],"186":[13,30],"1861":22,"1862":22,"1863":22,"1865":22,"1866":22,"1867":22,"1868":[13,22],"1869":22,"187":[11,13,30],"1870":22,"18712198e":19,"187675":12,"18767507003":12,"187840":7,"188":[22,30],"18899":13,"189":[22,30],"19":[7,12,13,14,28,29,30,31,35],"190":[22,30],"19044712e":25,"191":[22,30,33],"19169":13,"19179103":14,"192":[13,22,30],"19239174e":25,"19274190e":19,"193":[22,30],"19350":13,"194":[22,30],"19450078e":25,"19479893e":19,"195":[12,22,29,30],"196":[22,30],"19612071e":25,"197":[22,30],"1976":12,"1977":12,"198":30,"1981":12,"1984":12,"1985":12,"198503":13,"1987":12,"19876832e":19,"199":[12,13,22,30],"1990":11,"1995":38,"1998":31,"1d":[10,17,22,30,32,33],"1e":[14,17,28,32,33],"1e4":17,"1hz":[17,18],"1j":18,"1m":[12,13,18,28],"1pko9ormcllaxipzoa3aoztgzfpad2iwj":[24,27],"1s":[13,17,22,25],"1st":[8,19],"2":[1,2,3,4,23,27,28,35,39,41],"20":[7,12,13,14,16,18,19,22,24,27,28,29,30,32,33,34,35],"200":[1,12,13,17,19,23,30,32,39],"2000":[8,14,26,30,33],"20000":33,"200000":24,"20002856e":19,"2006":15,"2007":3,"20082908e":19,"20086303e":19,"2009233":14,"201":[13,22],"2010":[12,15],"2013":14,"2014":7,"2015":15,"20158980e":19,"20159493e":19,"2016":24,"2017":[7,12,18],"2018":[13,31,35],"2019":[19,35],"2019gl085870":31,"202":22,"2020":[2,7,13,15,28,31,35],"2021":[7,17,18],"2022":[4,7,13,17,28,35,40],"2023":[1,4,7,12,13,18,28,39],"2024":[12,13,15],"2026":12,"20269556e":19,"20294639e":25,"203":22,"203094":13,"203188":13,"20555138e":19,"206":13,"206_51_39":13,"207":[13,39],"20704562e":25,"207073":19,"208":[13,29,39],"208269":19,"20pm":13,"21":[12,14,18,29,30],"210":13,"21000":33,"21049041":14,"210926":13,"21113694e":25,"2113147933":28,"21153578e":19,"212":31,"21210983e":19,"21212121":14,"212207":13,"21236235e":19,"21307490e":19,"213167":13,"21362874e":19,"21400829":14,"21449":13,"21450115e":25,"21452746e":25,"21619273e":25,"21621959e":25,"21687591e":25,"2171b5":8,"21882842e":25,"21892":13,"21907473":32,"22":[11,12,13,14,18,28,29,30,32,33,35],"220":13,"2201005948153714":17,"22051307":14,"22080902":14,"221":29,"22140377e":19,"222":29,"22222222":14,"222370e":13,"222400e":13,"22247136e":25,"22501940e":25,"22531":13,"228":[11,13],"22872158e":19,"23":[7,12,13,14,18,19,24,28,29,30,33,35],"2300000":17,"23062432e":19,"23094":13,"23101297":14,"232053040564":32,"232080e":13,"23233":35,"232646":13,"232740e":13,"23284674":14,"23296":35,"23299271e":19,"234":14,"2343":12,"23439988e":25,"2344":12,"2346":12,"2347":12,"2348":12,"2349":12,"2350":12,"2351":12,"235100":13,"2352":12,"2354":12,"2355":12,"2356":12,"2357":12,"2358":12,"23605235e":19,"236217054087575":17,"237445":13,"237650e":13,"23810334e":25,"238506":24,"2389":13,"239270e":13,"2399":11,"24":[12,13,14,28,29,30],"240":14,"24000":33,"24052539":8,"24059":13,"241000":7,"241273":7,"24201283":14,"24203":13,"24211860e":25,"24242424":14,"24248697e":19,"242735":13,"24279855e":19,"24400":12,"24402698e":19,"2445":13,"24529984e":25,"24568202e":19,"24663131e":25,"24715790e":25,"24755566e":25,"24893725e":19,"24931771e":19,"24937819e":25,"24t10":7,"25":[12,13,14,15,16,17,19,21,24,25,28,29,30,35,38],"250":3,"251":13,"25170509e":25,"2519":35,"252":[7,12],"2520":35,"2521":35,"2522":35,"2523":35,"2524":35,"2525":35,"2526":35,"2527":35,"253":12,"2531":35,"2533":35,"25353645":14,"2539":35,"254":12,"2540":35,"2541":35,"2543":35,"254590":13,"2548":35,"25485059e":25,"2549":35,"255":12,"2550":35,"2551":35,"255175":13,"2552":35,"25525":13,"2553":35,"2554":35,"2555":35,"2556":35,"2557":35,"2558":[13,35],"2559":13,"256":[12,13,29],"2564":35,"2565":35,"25700":12,"25701972":14,"258550":13,"258610":13,"259070":13,"259232":13,"25hrequir":26,"26":[12,13,14,17,18,19,26,28,29,30,33,35],"260":13,"2600000":17,"261":24,"26122375e":19,"26138302e":25,"261756":13,"26189863e":19,"26342":13,"264":13,"26560878":14,"26564294e":19,"266":13,"266950":13,"267":13,"268":13,"269":13,"26974":13,"27":[7,12,13,14,25,29,30,32,35],"270":13,"27000":33,"270000":15,"27112239e":25,"271863":13,"272373":13,"27272727":14,"273":[13,14],"27390039e":25,"274":[7,13],"27408835e":25,"27419865e":25,"27454916":14,"274761":13,"27481244e":19,"274861":13,"27594":12,"27641682e":25,"27723895e":19,"277725":19,"278":29,"27825594":14,"27834627e":25,"27882059e":19,"2789":12,"27894486e":19,"27937344e":25,"28":[13,14,19,24,29,30,31,32,35],"28000":33,"28012":13,"28029144":14,"281325":13,"282202506964987":32,"28344035e":19,"28410467e":19,"28460883e":25,"28512736e":25,"28546337e":19,"28566571e":19,"28581684e":25,"28597742e":19,"286":11,"2862":13,"28664273e":25,"28679745e":19,"287":13,"2877":13,"2884356107":17,"28855255e":19,"28857":13,"28913069":8,"28915345e":25,"28975461e":19,"29":[12,14,17,18,24,25,29,30,33],"29150531":14,"29154967":14,"29233218e":19,"2926":13,"2934":13,"29352404e":19,"29363134e":25,"29365818e":25,"29377350344869":14,"2937735034487":14,"29385795e":19,"294":11,"29434":12,"29435":12,"29436":12,"29437":12,"29438":12,"29439":12,"294510e":13,"295":11,"296560":13,"297":11,"2970118992746436":16,"29739056e":19,"29746":13,"298149":13,"298557385097123":14,"29866468e":25,"299":[11,13],"29t04":[17,18],"29t06":[17,18],"2_multilayerperceptron":30,"2bcurli":[17,22],"2d":[8,10,19,28,30,31],"2dt":17,"2f":[8,15,16,22,30,33],"2fa":4,"2m":12,"2nd":19,"2p":16,"2x":30,"2x2":21,"3":[3,4,7,13,18,28,33,34,35,39],"30":[7,8,12,14,15,16,19,25,28,29,30,32,33,35],"300":[7,11,19,27,30,33],"3000":[12,33],"30000":33,"300000":12,"30014826e":25,"301":13,"30100":12,"302":[11,13],"3020249866927003":32,"302031":12,"30217568":14,"3030303":14,"303440e":13,"30379":13,"30468018e":19,"30472588e":19,"305024":13,"30538555":14,"305700":12,"3068295825":19,"307":39,"30767943e":25,"3077":13,"30773284e":25,"308":[13,39],"30845379e":19,"30t04":7,"31":[7,12,13,14,18,24,28,29,30],"31048681e":25,"311":13,"311191":13,"31177":13,"31240204e":19,"31248":13,"3125":22,"312878":13,"3133":11,"314213":13,"31478216e":19,"31551975e":19,"3159":12,"31675465e":19,"31707406e":19,"31771048e":25,"318":13,"318070e":13,"31840023":8,"31874":13,"31875618e":19,"31992671":14,"31993257e":25,"31m":13,"32":[7,12,13,14,18,28,29,30,31,32,35],"32000":33,"3200000":17,"3201":[11,17],"32081209e":19,"32138028e":19,"32268686e":25,"323":13,"3238846712":12,"32410070e":25,"3246":11,"32622034e":19,"32625132e":25,"32655998e":25,"32876128":14,"32968954e":25,"33":[7,12,14,19,29,30,32,38],"330000z":7,"33004834e":25,"33014":13,"330439":13,"3306":13,"33071950e":25,"33087274e":19,"331":[12,13],"33194":13,"333":29,"33333333":14,"33333333333333":19,"333333333333332":19,"3333333333333335":19,"333333333333334":19,"333333333333336":19,"33333333333334":19,"33335384e":25,"33459512e":25,"33516027":14,"335168":13,"33518319e":25,"33553382e":19,"33613971e":19,"33724303e":25,"33814553e":19,"33900561e":25,"33992835e":19,"34":[12,13,14,18,25,28,29,30,32],"34043406":8,"341243":13,"34277804e":19,"34298459e":25,"34351":13,"34400":12,"34400217e":25,"34510049e":19,"34570272":8,"34573837e":19,"34593598e":25,"347558e":15,"347592e":15,"347623e":15,"347626e":15,"347653e":15,"347683e":15,"348":24,"348280":13,"34913307e":19,"34929719e":19,"349380":13,"35":[12,13,14,24,25,29,30,32],"351":[13,39],"351101":13,"35111917":14,"35171223e":19,"352":39,"35214245e":25,"35235665e":19,"35258262":8,"35265098e":25,"35284738e":25,"353":13,"35304777":14,"353854":13,"35440":12,"35445482e":25,"35469237e":19,"354773":7,"355876":13,"35710083e":19,"35851976e":25,"35863021e":25,"36":[12,14,19,29,30,32],"360":[8,14],"3600":17,"36000":33,"360007":13,"36095430e":25,"36127618e":19,"36191":13,"36335407e":25,"36363636":14,"36448941":14,"365":32,"36608":31,"367375":13,"367623":19,"36783798":14,"368":7,"369437":13,"36967973e":19,"37":[7,12,14,25,26,28,29,30,32],"370":[7,12],"37029163e":19,"37087279e":25,"370946":13,"371":7,"371931":13,"372414":13,"373":13,"373563":24,"375":22,"37570999e":25,"37813526e":19,"37841317":8,"378927":13,"379":13,"38":[12,14,29,30],"380":[7,13],"380100":13,"38063281e":19,"38104":13,"381880":7,"38236679e":25,"382403":12,"382632":13,"38298":13,"38320642e":25,"38346417e":25,"3835":13,"38358033e":19,"38469443e":19,"38535286":14,"38561943":8,"38837774e":19,"388774":13,"389":[29,30],"389000":7,"389220e":13,"389248e":13,"38942222e":25,"389945":13,"389960":13,"39":[7,8,12,13,14,16,18,28,29,30,33],"390000":16,"39001736e":19,"39061200e":25,"390620e":13,"39150":13,"391540e":13,"391759":13,"391800":12,"39198186e":25,"392200":15,"3931145617":19,"39322864":23,"393638":13,"39393795e":19,"39393939":14,"394198":15,"394514":13,"39486211e":25,"39610759e":25,"397651":13,"39781005e":25,"398300":13,"39961":13,"39975399e":19,"3d":[7,10,14,17,19,22,30,31,32],"3f":[29,30,31,35],"3m":13,"3x3":31,"4":[2,7,11,16,21,25,39],"40":[11,12,14,16,17,19,24,26,29,30,33],"400":[7,12,31,32],"4000":33,"40000":33,"400000":24,"400365":15,"40079389e":19,"400x300":19,"403":12,"40331959e":19,"40352714e":25,"40367004e":19,"40370173":14,"40401":13,"404166":13,"40552474e":25,"40575570e":25,"405891":13,"40732739":8,"407906":13,"40928480e":19,"40953573e":25,"41":[13,14,24,25,29,30,33],"41001253e":25,"41018":13,"41197511e":25,"413":13,"41369110e":25,"414":13,"41413700e":19,"41443296e":25,"416752":13,"41679880e":19,"416857":19,"41747416":14,"41774748e":19,"41781333e":19,"41992596e":25,"42":[4,7,14,21,22,24,29,30,31,32,33],"420000z":7,"42113730e":25,"42195117e":25,"42250976e":25,"422833":13,"42292429":14,"423153":13,"42359606e":19,"423691":11,"42373896e":19,"42424242":14,"42674044e":25,"42788150e":19,"42819812e":19,"42892166e":19,"429012":12,"43":[12,13,14,18,19,24,25,28,29,30],"43035011e":25,"43046929":14,"431600":13,"431687":13,"4325":13,"43350268e":19,"43447":13,"43585916e":19,"43651998e":25,"436909":13,"43711":13,"437923":13,"43869":13,"44":[7,11,12,13,14,24,29,30],"440000":15,"44012308e":25,"441":13,"44265462e":19,"44278":13,"443":[12,13],"44306215":14,"444":[7,13,29],"44444444":14,"44483783e":25,"44506361e":25,"44576096e":25,"44617376e":25,"448":33,"44819809e":25,"44882771e":19,"44952179e":25,"45":[7,14,24,25,29,30,33],"450000":15,"45044537e":19,"45055":13,"4513":12,"45216271e":25,"45270114e":19,"45319":12,"4545":13,"45454545":14,"457200":13,"45789629e":19,"45857469e":19,"45899":13,"46":[7,14,19,24,29,30,35],"46154748e":25,"46166602e":19,"462018":19,"46227722":14,"46310032e":19,"46415888":14,"46473182e":19,"4649":12,"46554711e":19,"46725669e":19,"46769":13,"468830e":13,"469":39,"46903645e":19,"47":[7,11,13,14,17,24,29,30,31],"471614":13,"47165930e":25,"47192869":8,"47232592":8,"47406":13,"47428":13,"47469585e":25,"4757":13,"476825":13,"47691796e":19,"477011":24,"47707636":14,"47792":13,"47805102e":19,"47855870e":19,"478654":19,"478900":12,"479":13,"47963855e":19,"48":[14,24,29,30,33],"48002":13,"48032570e":19,"48094800e":25,"48252852e":25,"484142e":15,"48484848":14,"48496826":14,"48530636e":25,"48626016":14,"487":12,"488":12,"48879817e":19,"48922":13,"48948642e":19,"49":[14,16,18,22,24,25,29,30,33],"490":12,"4901":[11,17],"49084638e":19,"49099562e":25,"491":[12,13],"492":12,"49249982e":19,"49268":13,"493":12,"494":12,"495":12,"495126":8,"495135":13,"495150":13,"49539290e":19,"49559702e":25,"496":12,"496600":13,"497":12,"498380":24,"498535":13,"49858699e":25,"499":12,"49969726e":25,"49m":[12,13,18,28],"49m23":[12,13,18,28],"49m24":[12,13,18,28],"49mnotic":[12,13,18,28],"49mpip":[12,13,18,28],"4_multiclass_classif":22,"4d":[10,14],"4ducqnd7mfihnh7d":3,"4fb140e9d4b0":32,"4p":16,"5":[2,3,7,11,13,16,17,18,19,21,22,25,26,27,28,33,34,39],"50":[7,12,13,14,15,16,18,19,21,22,24,25,26,28,29,30,31,32,33,34,35],"500":[3,7,8,12,29,35],"5000":[21,28,34],"500000":24,"5007397612756534":17,"50087464e":25,"500935":13,"501":[12,17],"50128686e":25,"502":12,"50243315e":25,"50274156e":19,"503260e":13,"50342":13,"50654833e":19,"50777458":8,"50807":13,"50838706e":25,"5094138":14,"50998857e":25,"51":[12,14,17,29,30,34],"510":13,"51122842e":25,"512":13,"512675":13,"512870":13,"513":13,"51344574e":19,"51397":13,"514368":24,"51463199e":19,"515":13,"51515152":14,"51578":13,"51615":13,"51665":13,"517":[12,31],"517213":13,"518":4,"51900":13,"51909":13,"51942":13,"51997":13,"52":[12,14,29,30],"520":7,"52023":13,"52077":13,"52197574e":19,"52368":13,"52395":13,"52575621e":19,"526":7,"5268":23,"527306":24,"52807567e":19,"52854687e":19,"529":35,"52941":13,"52943":13,"52976973e":19,"529880":13,"52997":15,"529987":13,"53":[14,19,24,25,29,30],"53035":15,"53038":15,"53042":15,"53065":15,"531119":13,"53120750e":19,"531326":13,"53254559e":19,"532844":19,"533300":13,"53366992":14,"53412077e":19,"53487851":14,"53528":13,"53553593e":25,"53575704e":19,"53637802e":19,"5364":23,"53659577e":19,"538958":13,"539035":13,"539264":13,"54":[14,24,25,29,30,33],"54062965e":19,"540813":19,"541":13,"541062":13,"54140":13,"54158392e":19,"54175147e":25,"542":7,"54208":13,"54213":13,"542265":13,"54237061e":25,"543":7,"543103":24,"54375250e":19,"544":12,"54400":12,"54468":13,"54471":13,"54478269e":25,"54501126e":25,"5452":23,"54523":13,"54534953":8,"54545455":14,"54548457":14,"54573":13,"546":12,"54606369e":25,"54625":13,"54626":13,"54700385e":25,"547279":13,"54746":13,"547774":13,"548094":19,"548885":13,"54922":13,"549381":24,"54990193e":19,"55":[12,14,29,30],"550":12,"55025":13,"55140244e":25,"55171570e":25,"55188227e":19,"552":12,"55222759e":19,"55258449e":19,"55285629e":25,"55492":13,"554985":13,"5550078":8,"555270":13,"55538743e":19,"55555556":14,"55567437e":19,"55567614":14,"55570":13,"556":[29,30],"55617":13,"55729680e":19,"55799770e":19,"55808":13,"558363":12,"55846061e":19,"55908102":14,"55957757e":25,"559689":13,"56":[14,19,24,29,30],"560":[7,12],"56111":13,"56112":13,"561237":13,"561819":13,"5625":22,"56331337e":25,"56463328":14,"56598296e":19,"56653506e":19,"567089":13,"56749":13,"568":13,"56801387e":19,"569":[35,39],"569208":13,"56933621e":25,"57":[14,16,24,29,30],"570":[12,35],"57037499e":25,"571":35,"571252":13,"572":35,"57278414e":25,"57373200e":25,"574":35,"57472288e":19,"57481":13,"57545":13,"57569875e":19,"57575758":14,"57593123e":19,"57708":13,"577122":19,"577763":13,"5777710951796506":14,"578800":13,"579":7,"5792":12,"579308":12,"57933225":14,"57933225e":25,"57949544e":19,"58":[14,24,25,29,30,33],"58000":12,"580796":19,"583579":13,"583973":13,"58428941e":19,"58464736e":19,"58570208":14,"58690191e":25,"58804467e":19,"588516":11,"58880384e":25,"589":7,"58953285e":25,"59":[7,14,16,17,18,24,29,30,39],"59051900e":19,"59103728e":19,"59120796e":19,"591k":12,"59265875e":19,"593":35,"59316":13,"59364427e":19,"59380863e":19,"59381366":14,"594":35,"594047":13,"59461":13,"59461729e":19,"59470943e":25,"59473293e":25,"595":35,"59502421":14,"596":35,"59655748e":19,"59660":13,"597441":13,"59758546e":25,"598":22,"598370":13,"59843":13,"59924246e":25,"59939861e":19,"59943803e":25,"599900":13,"59995190e":19,"59k":12,"5e":33,"5x5":30,"6":[4,7,11,13,17,18,19,21,22,25,27,28,29,30,31,33,35,39],"60":[12,14,16,19,22,24,29,30],"600":12,"6000":33,"600000":12,"60009622e":19,"6001989060169071":23,"601":[12,13],"60272":13,"60324221e":25,"60365269e":19,"605":13,"60519969e":19,"605746":24,"60605548e":19,"60606061":14,"608":[11,12],"608510":12,"60857280e":25,"608674":12,"609":[7,35],"60928335e":19,"6098":12,"61":[14,22,24,29,30],"610":11,"610410":13,"611":11,"61107851e":25,"612":7,"61267658e":19,"613":11,"61326":13,"61359073":14,"613687":16,"613763":13,"614":11,"614986":13,"61636910e":25,"6173489951795071":17,"617955":13,"61819897e":19,"618285":13,"61908328e":25,"619206":13,"619355":13,"619527":13,"61971214e":19,"619920":13,"62":[14,22,24,29,30,33],"620":22,"621":[4,22],"621145":13,"62141":13,"622":[13,22],"62246648e":25,"6228":12,"623":22,"624":35,"625":22,"625297":13,"62606":13,"626179":24,"62618254e":25,"628":32,"62891172e":25,"62928":13,"62941687e":19,"62975083":14,"629794831291764":15,"63":[7,14,19,22,25,26,29,30,33],"63007403e":19,"63028776e":19,"633146":13,"63412378e":19,"63469071e":19,"6359":13,"6360":13,"63636364":14,"637131":15,"638140e":13,"63943160e":19,"64":[14,22,29,30,31,35],"640":35,"64019598":8,"64033033e":19,"64054926e":19,"64075181e":25,"64228344e":19,"64280731":14,"643135e":13,"64354655e":25,"643588":19,"643981":13,"645022e":13,"64575262e":19,"64575823e":19,"646886":8,"64705215e":19,"6480666066247558":17,"648700":13,"649397":13,"649801":13,"649835":13,"65":[7,8,12,14,22,29,30],"65073966e":19,"65095025e":19,"65140128e":19,"652299":24,"65301846e":19,"653386":19,"6541":12,"65587265e":25,"65681801e":19,"659365":13,"65958117e":19,"66":[13,14,19,24,29,30,35,38],"660":12,"661046":13,"6611":12,"66200710e":19,"66215858e":25,"66280":13,"66284056e":19,"6660137226595727":19,"666183":13,"66666666666666":19,"666666666666664":19,"6666666666666666":23,"666666666666667":19,"666666666666668":19,"66666666666667":19,"66666667":14,"666667":12,"666876":13,"667":29,"66848983e":19,"66887625e":19,"66980625e":25,"66982019e":19,"67":[7,14,16,25,29,30],"670000":15,"67049934e":25,"67071852e":25,"67081402e":19,"67131969e":25,"67262241e":25,"67295307e":19,"673280":13,"67341507":14,"67392941e":25,"67524768e":25,"67580740e":19,"67637":13,"6771":8,"67752249e":25,"678714":13,"6799":15,"68":[12,13,14,16,18,25,29,30,33],"68001571e":25,"680207":13,"68104510e":19,"68179228e":19,"68189771e":19,"68216093e":25,"685500":12,"68576456e":19,"68738041e":19,"68808391e":19,"6881":12,"689780e":13,"689790e":13,"69":[7,12,14,24,29,30,33],"690000z":7,"69033981e":19,"69039912e":19,"690544":13,"69104212e":19,"693652":13,"69490068e":19,"69565340e":19,"69596561e":25,"69664895e":19,"6969697":14,"69749003":14,"699557":13,"6_51_39":13,"7":[2,3,7,8,11,12,13,14,15,18,19,22,28,29,30,35,39],"70":[12,14,16,19,29,30],"700":17,"7000":34,"70089548e":19,"701149":24,"70130848e":19,"70181608e":19,"70308463e":19,"70522483e":25,"705256":[13,24],"70548023":14,"70611057e":25,"70684726e":19,"70735265":14,"70751":13,"708":7,"70801967e":19,"70832949e":19,"7093":13,"7094":13,"70985658e":19,"71":[14,16,24,29,30,33],"710000":16,"71049697e":19,"71090116e":25,"7129782153521722":15,"71456":13,"7159964058294":14,"71624672":8,"71644621e":25,"71659203e":25,"71775288e":19,"71858824":14,"719977":13,"72":[14,16,24,25,29,30],"7200":[17,18],"720000":[17,18],"72028530e":25,"72048413e":19,"721282":13,"72189621e":19,"722":29,"722360e":13,"72236766":14,"722370e":13,"72436206e":25,"72581564e":25,"72637647e":19,"72699":13,"72706875e":19,"72716534e":19,"72727273":14,"727430e":13,"73":[12,14,19,29,30],"73013118e":19,"7307":23,"73096308e":19,"73109557e":19,"731839":13,"732093":13,"7321":23,"73319":13,"73334082e":19,"73339668e":19,"73388":13,"73416701e":19,"73430":13,"73434481e":25,"7354":13,"73608":13,"73633":13,"73669760e":19,"73789973e":25,"73823302e":25,"7390722":14,"739250":15,"74":[12,14,16,29,30,33],"74009149e":25,"74095585e":19,"741430":13,"74176784":8,"742000":15,"74254149e":25,"74368878e":19,"7453":13,"74778663e":25,"749052":13,"75":[12,13,14,15,16,22,24,29,30,33],"750":12,"750000":[13,16,24],"75081016":14,"75116445e":25,"752":13,"752860e":13,"752870e":13,"75307036e":25,"75354527e":19,"754":17,"755898":13,"756":[13,17],"75642317e":19,"75732367e":19,"75757576":14,"75788452e":25,"7589433978306135":15,"76":[14,16,19,24,29,30],"76033":13,"760632":24,"76323776e":19,"7647wqr96rhr49q":[17,22],"76493581":14,"76536":13,"76546160e":19,"767943601369907":17,"768":13,"7682":12,"76846118e":19,"76971":13,"76975214e":19,"77":[12,14,24,29,30],"77200563e":19,"772982":24,"772989":24,"77316345e":25,"773574":13,"77388106e":25,"77426368":14,"774447":13,"77578831e":19,"7763568394002505e":16,"77653136e":25,"77777778":14,"777778":12,"77784322e":19,"778":29,"778371":13,"7793":13,"78":[12,14,29,30,33,35],"780000":16,"78193582e":19,"782500":12,"783439":13,"784":[30,35],"78425838e":25,"78721":13,"78724266e":25,"78787879":14,"788435":13,"78864953":14,"7889":23,"78909912e":25,"79":[14,24,29,30,35],"79046":13,"79400":13,"794146":24,"79615554e":19,"797":7,"799000e":15,"79905757e":19,"79932403e":25,"799550":13,"7999":13,"7_data_spectral_transform":17,"7_day_avg":12,"7_modeltrain":32,"8":[2,3,7,8,11,12,13,14,15,16,17,18,19,21,22,24,25,28,29,30,31,32,33,34,35,39],"80":[8,12,14,19,25,29,30],"800":25,"8000":33,"80046686e":19,"80125":13,"80184096e":19,"802":[23,29],"802040":13,"80232020e":25,"803":29,"804":29,"80414214e":19,"80467402e":19,"805":29,"805389":13,"8055555555555556":26,"806":29,"807":29,"8073373888433721":32,"80752904e":19,"808":29,"809":29,"81":[14,16,29,30,35],"810":29,"810000z":7,"811":29,"81113083":14,"81141063e":25,"812":29,"813":29,"81304750e":25,"814":[29,35],"815":29,"815100":13,"815140":13,"81525401e":25,"816":29,"81692591e":19,"817":29,"817346":13,"818":29,"8181818181818182":23,"81818182":14,"819":29,"81909580e":25,"81970102e":19,"82":[14,24,25,29,30,33],"820":29,"820579":13,"821":29,"82123482e":25,"822":29,"822220":13,"82295974e":25,"823":29,"824":29,"825":29,"826":29,"8263632119514472":26,"82639626e":19,"827":29,"82773":12,"828":7,"828204":13,"828656":13,"829":29,"82903172e":19,"82940078e":25,"83":[7,14,19,29,30],"830":29,"8309308755379773":17,"83111864e":25,"832":29,"832200":12,"83254010e":25,"83286861e":19,"833":[29,30],"833060":13,"834":29,"835":29,"836148":13,"837":29,"838":29,"83847536e":19,"84":[14,16,22,29,30,31,33],"840":29,"84020133e":19,"84028749e":19,"8406":12,"840700":12,"840963":13,"841":29,"8410":13,"841475":13,"843":29,"84315":13,"84388478e":19,"84424972e":25,"844845":13,"845":29,"8453316591120342":17,"84575843":8,"84583932e":19,"847":29,"847409":13,"84803587":14,"84805874e":19,"84848485":14,"849":29,"84975344":14,"85":[14,19,22,29,30,33],"850":[12,29],"852405":13,"852980":13,"853":29,"853095":13,"853705":13,"8537303444308123":15,"85382366e":25,"853950":13,"85430983e":25,"8545072":8,"85451879e":19,"855":29,"857":[7,29],"85702362e":25,"85775":13,"858":11,"85836044e":19,"858770":13,"859":11,"859240":13,"85946":13,"85955127e":19,"86":[14,19,22,25,29,30],"860":[11,29],"86090316e":25,"861":11,"86149975e":25,"862":11,"86269050e":25,"863":[11,29],"86349029869899":17,"864":11,"865":[11,29],"866":11,"86637":13,"867":[11,31],"8679961043240163":17,"868":11,"869":[11,29],"87":[14,22,24,25,29,30],"870":11,"870000z":7,"870529":13,"870622e":15,"871":11,"872":11,"87265918e":25,"873":29,"87381742":14,"873887":15,"875000":21,"87549147e":25,"876":29,"87810165e":19,"87812831e":19,"87876889e":19,"87878788":14,"88":[14,22,29,30],"880":[13,29],"880100e":13,"881180e":13,"881300e":13,"88163672":8,"88218788e":25,"88306815e":25,"883288":13,"88405566e":25,"884382":13,"884605":13,"88499613e":19,"885":29,"8861111111111111":26,"886273":13,"88678261e":19,"8888":27,"88888889":14,"89":[14,22,29,30,33],"890":29,"890000":16,"89021509":14,"89038735e":19,"89098648e":19,"89181306e":19,"8926121":14,"89347960e":25,"89595643e":19,"896":29,"89751882e":19,"89813112e":19,"898166":19,"899":[22,30],"89950044e":25,"8x8":[29,30],"9":[2,11,12,13,14,15,16,19,22,23,24,25,26,28,29,30,31,32,35,39],"90":[8,12,14,19,22,29,30,35],"900":30,"9000":[33,34],"901":[17,30],"902":30,"90265774":8,"903":[29,30],"90305907e":25,"904":30,"90438":13,"905":30,"905100":12,"90535107e":19,"906":[25,30,33],"90625":25,"907":30,"90700158e":25,"90781154e":19,"908":30,"909":30,"90909091":14,"90950553e":19,"90972222":25,"91":[14,22,29,30],"910":[25,30],"911":[12,30],"912":[7,30],"91289199":25,"913":[25,30],"91319444":25,"91336627e":25,"91363892e":25,"914":[29,30],"91468729e":19,"91615":13,"91666667":25,"916816615939592":15,"917":25,"918970":13,"91910361e":19,"9192":13,"91938238e":25,"91949590e":19,"91986063":25,"92":[14,22,24,29,30,31],"920":25,"92013889":25,"921":7,"92233225e":25,"923":25,"92334495":25,"92361111":25,"924":25,"92482898":14,"92495460e":25,"925":26,"925120":19,"92678":13,"92682927":25,"927":25,"92708333":25,"92742328e":19,"92780079e":25,"92810648e":19,"92820725e":25,"92855":13,"92880978865406":22,"929816":13,"93":[14,16,19,22,24,25,29,30],"930":25,"93031359":25,"93043423e":25,"93055556":25,"931":25,"93108787e":25,"932":29,"93205588e":19,"93260335":14,"93289237e":19,"93379791":25,"9339":23,"934":25,"93402778":25,"935":11,"936":[11,31],"9365":13,"937":[11,25],"93728223":25,"9375":25,"938":25,"93914670e":19,"93939394":14,"93946235":25,"94":[7,11,14,22,25,29,30],"94015921":25,"94076655":25,"94086334":25,"94097222":25,"941":[7,25],"94155536":25,"942135":16,"94225223":25,"94268501e":25,"94288096e":19,"942928":13,"94293215":25,"94293457":25,"94294425":25,"94337144e":25,"944":[11,25,29],"94420606":14,"94425087":25,"94433556":25,"94444444":25,"945":11,"94503":25,"94503242":25,"94503968":25,"945234":13,"945457":13,"945635":13,"946":11,"94642373":25,"94657351":8,"94699":13,"947":[7,29],"94711334":25,"94712544":25,"947210":13,"94773519":25,"94780778":25,"94781746":25,"9478223":25,"94782472":25,"94791667":25,"948":[11,25],"94850707":25,"94850949":25,"94851916":25,"94852158":25,"94915864":8,"94919909":25,"94921361":25,"94921603":25,"94921845":25,"94990321":25,"94990563":25,"94990805":25,"94991047":25,"95":[8,14,22,24,25,29,30,31],"95001412e":25,"9500949":8,"95032425e":25,"9506025":25,"95060492":25,"951":25,"95121951":25,"9512921":25,"95129694":25,"95129936":25,"95130178":25,"95138889":25,"95181":13,"95198897":25,"95199139":25,"95199381":25,"95199623":25,"95199864":25,"95200106":25,"95214107e":19,"95239386e":19,"95269793":25,"95338269":25,"95338753":25,"95407714":25,"95470383":25,"95476432":25,"95486111":25,"955":25,"95514458e":25,"95547329":25,"95547571":25,"9555061179087876":22,"956":29,"95616531":25,"95616773":25,"95617015":25,"95685734":25,"95686218":25,"95686943":25,"957200":12,"95754694":25,"95755662":25,"958":25,"95818815":25,"95825348":25,"95833333":25,"95894551":25,"95894793":25,"95895035":25,"9599473847106159":26,"96":[3,14,19,22,25,29,30,31],"9609":12,"96124":13,"9615219421101775":26,"96167247":25,"96180501e":25,"96180556":25,"962":[25,29],"96242741":25,"96243225":25,"96304065":14,"96312911":25,"9638163":25,"96382356":25,"96408":13,"965":25,"96515679":25,"96521003":25,"96527778":25,"96590447":25,"96590689":25,"96591415":25,"966550e":13,"966580e":13,"96660376":25,"9666666666666667":25,"96723179e":25,"968":29,"96841261e":25,"96864111":25,"96868709":25,"96875":25,"9687815126050421":26,"9688542825361512":22,"969":25,"96938637":25,"96969697":14,"97":[8,14,22,29,30],"97071249e":19,"972":25,"9720":23,"97212544":25,"97222222":25,"97260277e":25,"97287069":25,"975":29,"975000":[21,24],"97560976":25,"97569444":25,"976":25,"97699003e":25,"97700996":14,"97702356":14,"979":25,"97909408":25,"97916667":25,"9793790849673202":26,"98":[14,19,22,29,30],"98076449e":25,"981":[7,13],"981000e":13,"98100851e":19,"98156960e":25,"982":29,"98233":13,"9825784":25,"98263889":25,"9826966":8,"983":25,"98364724":14,"98533885":8,"986":25,"98606272":25,"98611111":25,"98629590e":25,"986400":13,"987420e":15,"98750850e":19,"98780850e":19,"988":29,"988460":13,"988970":13,"989040":13,"98945863e":19,"98954704":25,"98958333":25,"98965852e":25,"99":[12,14,22,29,30],"990":25,"990000z":[17,18],"99469224e":25,"9948425":14,"99549186e":19,"995780e":13,"996":29,"99606599e":25,"99685":13,"99702835e":19,"99746591":8,"99780493":8,"9981":13,"998100":12,"99908489e":19,"99918722e":19,"99947629e":25,"99958587e":19,"99964465e":25,"9999":13,"\u00b5s":17,"boolean":[11,20],"break":[1,28,35],"case":[8,11,13,14,15,18,20,24,27,28,31,32,35,37,38],"class":[5,6,7,8,9,12,13,14,15,16,17,18,19,20,21,22,23,25,26,28,30,31,32,33,35],"default":[2,3,4,8,12,14,19,26,32,34],"do":[4,8,9,11,12,15,16,17,19,21,22,23,25,26,28,29,30,31,32,34,35,38,39],"export":[24,27],"final":[9,19,22,26,31,33,34,37,38,39],"float":[8,13,14,15,19,22,23,29,30,31,32,33,35],"function":[2,4,6,7,8,13,14,15,16,17,18,19,20,21,22,23,25,26,27,28,31,33,34,35,38],"ga\u00ebl":21,"import":[2,4,7,8,11,12,13,14,15,16,17,18,19,21,22,23,25,26,27,28,29,30,31,32,33,34,35],"int":[7,8,14,15,17,18,19,22,24,29,30,31,33,35],"long":[15,16,17,29,30,31,34],"m\u00fcller":21,"new":[8,12,13,14,15,16,18,19,21,23,24,26,27,28,36,38,42],"null":[11,13,15],"public":[1,4,42],"return":[7,8,11,12,13,16,19,21,22,23,27,28,29,30,31,32,33,34,35],"short":[4,12,34,35,39],"super":[22,29,30,33,35],"switch":8,"transient":35,"true":[7,8,11,12,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35],"try":[12,14,15,19,21,23,25,26,27,28,31,32,34,38],"var":[12,15,16,17,19,23,28],"while":[12,19,23,25],A:[1,2,4,8,9,10,12,13,14,15,16,18,19,20,21,22,23,25,26,28,29,30,32,34,35,36,42],AND:12,And:[7,15],As:[8,10,12,15,26,27,31,32],At:[3,4,14,15,31,32,38],Be:4,But:[15,16,19,32],By:[4,8,15,26,32,39],For:[1,3,8,10,12,13,14,15,18,19,23,26,27,28,29,30,31,32,36],If:[3,4,8,9,13,14,15,17,19,20,22,23,24,27,28,29,30,32,42],In:[3,4,7,10,11,12,13,14,15,17,18,19,20,21,23,24,25,26,27,28,29,31,32,33,34,35,36,37],Is:[1,9,14,19,28,38],It:[1,3,4,6,7,8,10,11,12,13,14,15,16,17,19,20,21,22,23,25,27,29,30,31,32,34,35,37,38,42],Its:19,NEAR:12,No:[11,17,19,38],Not:[4,17],OF:12,On:[4,25],One:[1,3,8,9,16,17,19,23,25,26,27,30,31,35],Or:[1,9,31,34],THe:19,TO:[24,35],That:[23,26],The:[1,3,4,5,6,7,8,9,11,12,13,14,15,17,18,20,21,22,23,24,25,26,27,29,30,32,33,34,35,36,37,39,40,42],Their:3,Then:[4,19,29,31],There:[3,4,8,11,14,15,17,19,20,22,23,25,26,27,30,31,32,38],These:[2,3,5,8,18,19,27,30,31,35,38],To:[0,2,3,4,5,7,8,12,13,15,17,18,19,20,23,26,27,28,30,32,34,39],WITH:15,Will:[24,38],With:[12,16,26,32],_1:[8,32],_2:[14,16,32],_:[8,15,22,28,29,30,31,35],_________________________________________________________________:35,__call__:22,__class__:[26,31],__getitem__:[29,30],__init__:[11,28,29,30,33,35],__len__:[29,30],__main__:12,__name__:[26,31],__none:28,__sigmoid:28,__step:28,_array_strptime_with_fallback:12,_asarray_with_ord:22,_assert_all_finit:22,_base:[22,26],_c:30,_check_estimator_nam:22,_check_i:22,_convert_listlike_datetim:12,_coordinate_desc:32,_engin:11,_ensure_no_complex_data:22,_fit_and_predict:22,_fit_context:22,_funcwrapp:22,_get_sequential_output:22,_i:[20,23,32],_k:32,_kmean:19,_lib:12,_lock:22,_make_engin:11,_maybe_cach:12,_n:8,_read:11,_refine_defaults_read:11,_stochastic_gradi:32,_valid:22,_validate_data:22,_validate_nam:11,_validate_param:22,_validate_target:22,_with_config:22,a_:8,a_nparrai:14,aa:14,aar:12,ab:[14,17,18,19,23,24,31],abcseri:12,abil:[6,15,42],abl:[4,19,22,23,27,32,33,38,39],about:[2,4,9,11,12,14,15,17,18,19,23,27,31,33,34,39],abov:[4,8,17,19,21,30,31,32],absolut:[18,19,24,28,32],abund:19,ac29:32,academ:4,academia:27,acc:21,acceler:14,accentu:31,accept:[4,15],accept_large_spars:22,accept_spars:22,access:[3,4,5,10,11,14,24,38,39],accord:[8,29,30],accordingli:33,account:[3,8,15,19],accur:[17,38],accuraci:[9,15,21,22,23,24,25,26,29,30,31],accuracy_scor:[22,25,26],accuracy_tim:[29,30,31],accurraci:23,achiev:[9,25,27],acknowledg:4,acoust:3,across:[10,19,26,38,42],act:[26,32],actic:19,action:4,activ:[2,28,29,32,34,35],actual:[9,19,23,24,27,28,31,32,37],actualfalsevalu:21,actualtruevalu:21,ad:[3,6,14,30,31,32,33,34,35],ada_clf:26,adaboost:21,adaboostclassifi:[21,26],adagrad:32,adam:[30,31,32,33,34,35],adapt:[25,31,40],add:[2,4,8,9,10,11,12,14,16,18,19,24,28,29,30,31,33,35],add_subplot:[8,19],add_to:11,addit:[9,10,11,12,18,19,22,30,33],address:[1,4,7,9,15,39],adequ:9,adher:4,adityakadiw:23,adjac:15,adjust:[15,25,29,30,32],admiralti:12,adopt:[14,39],advanc:[3,39],advantag:[3,8,15,25,26,32],affect:[12,19],affin:30,afford:3,after:[4,13,14,15,19,29,30,31,32,35],again:[3,8,11,12,15,32],against:[15,19,21,30,32],agenc:42,agg:12,agglom:19,agglomerativeclust:19,aggreg:[14,19,26],agnost:33,ago:24,ahead:[14,27],ai:[10,13,27,32,37],aid:[19,40],aim:[1,4,5,12,32,34],air:14,air_temperatur:[11,14],aircraft:10,aka:[14,21],akash:39,akmehra:39,akshai:[39,40],al:[4,31,35],alana:4,alanabd:13,alaska:17,algebra:[14,20],algorithm:[8,9,19,23,25,26,28,30,31,32,34,35,37,38],alias:2,align:8,all:[1,4,6,7,8,9,11,12,14,15,17,18,19,21,22,23,24,25,26,27,29,30,31,32,33,38,39],allcorr:8,allevi:15,alloc:[3,14,31],allow:[1,3,4,8,10,11,12,13,14,15,23,25,31,32,33,34,38,42],allow_nd:22,allow_object:12,along:[11,19],alow:17,alpha:[8,15,16,19,21,23,24,30,31,32,33],alreadi:[2,3,7,12,13,14,18,23,26,27,28,31,33,37],also:[3,4,7,8,11,12,13,14,15,16,17,19,20,21,26,27,29,30,31,32,34,35,37,42],alter:37,although:23,alwai:[19,23],amath301:39,amath:39,amaz:27,amazon:3,ambient:[7,33],among:[7,10,13,15,19,30,32],amount:[8,11,15,32],amplitud:[17,18,31,38],an:[1,3,6,7,8,10,11,12,13,14,15,17,18,19,20,21,22,23,25,26,27,28,29,30,32,33,34,35,38,39,42],anaconda:2,analog:20,analys:9,analysi:[7,10,11,12,19,20,31,37,39],analyz:[4,17,18,32],anchor:8,andrea:21,android:4,angl:[17,19],ani:[4,6,7,11,12,15,16,17,26,30,34,35,37,42],annoi:27,annot:[8,13],annotate_heatmap:8,anomal:24,anonym:12,anoth:[8,9,12,17,19,26,29,32,35,37],answer:[12,14,15,16,27,32,39],anthoni:39,anticorrel:15,anyon:14,api:[4,11,32],app:42,appear:[8,14,17],append:[8,11,14,15,21,28,30,32,33],appli:[8,12,14,16,17,19,20,24,29,31,35,37,38,39],applic:[3,4,8,10,11,13,15,16,17,19,30,42],appnop:[7,28],approach:[8,9,12,15,19,25,26,30,36],appropri:[4,13,14,27,32,38,39],approxim:[8,15,17,23,30],ar:[3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,34,35,37,38,39],arang:[7,8,14,15,17,19,22,29,30,31,32,34],architectur:[3,6,30,31,32,35],archiv:[3,10,38],arcitectur:29,area:[3,4,14,15,21,22],arendt:39,arg:[12,22,33],argmax:8,argmin:19,argument:[8,15,26,30,32],arian:40,aris:17,arithmet:14,around:[3,8,16,19,30],arr:14,arra:14,arrai:[6,7,8,9,12,15,17,18,19,21,22,23,24,25,26,28,31,32,33],arrang:9,array_of_diff:15,array_to_datetim:12,arriv:3,arrow:5,art3d:19,art:[9,10],artefact:17,articl:17,artifici:24,artist:7,asarrai:[8,15,17,19,21,22,31,32],asid:32,ask:[4,23],aspect:[17,31,32],assembl:[9,19],assert:11,assess:[13,15,19,21,25,32],assign:[12,14,15,19,20,24,27,30,31],associ:[3,7,11,29,32],assum:[7,15,17,19,23,32],assumpt:[15,32],ast:8,asttoken:[7,28],astyp:[19,29,30,34],asynchron:12,atan2:8,atlow:17,atmospher:[3,5,10],attach:14,attach_respons:[17,18],attain:19,attempt:[32,35,39],attent:26,attr:14,attribut:[7,9,10,12,13,14,19,22,32,38],attriobut:7,auc:[21,22],augment:[9,32],author:[4,31],autmn22:4,autmn:39,auto:[17,19,25,27,36],autofmt_xd:24,autograd:33,autokera:27,autom:[4,27,36],automat:[2,4,7,8,9,14,27,32,38,39],autumn22:4,avail:[2,3,11,12,13,15,18,19,26,28,35,38],avalanch:7,avenu:19,averag:[12,15,19,23,24,26,27,29,30,32,38],averagepooling2d:31,avg:22,avgpool2d:31,avoid:[4,12,13,15,25,34,38],await:[12,13],awar:[4,17],awesom:[4,27,28],ax11:14,ax12:14,ax13:14,ax14:14,ax1:[8,14,19,24,29,30,31],ax2:[8,14,19,24,29,30,31],ax3:[14,24],ax4:[14,24],ax:[8,14,15,16,17,18,19,21,22,28,30,31,32],axes3d:19,axesimag:[8,25],axhlin:31,axi:[5,6,7,8,12,14,15,17,19,21,24,29,30,31,35,38],axisgrid:19,axvlin:[15,19,31],azimuth:[8,12],b:[8,9,11,12,14,15,17,19,21,23,24,28,29,30,31,32,34],b_i:29,b_j:29,b_k:29,b_w:28,back:[8,12,27,30,32,35],backcal:[7,28],backend:4,background:21,backprop:14,backpropag:[30,34],backward:[8,9,23,29,30,31,32,33,35],bad:[21,26,32,34,35],badg:4,bag_clf:26,baggingclassif:26,baggingclassifi:26,balanc:[7,12,22,32],ball_tre:25,band:[13,17,18],bandpass:17,bar:[4,17,24],barcontain:7,base:[8,10,11,12,14,15,18,19,20,22,23,25,30,32,42],base_estim:26,baseestim:22,baselibsvm:22,baselin:38,baseline_error:24,baseline_pr:24,bash:3,basi:[9,17,19,20,28,32],basic:[3,4,16,19,20,21,25,30,32,36,38,39],basin:10,batch:[19,29,30,31],batch_data:29,batch_label:29,batch_siz:[29,30,31,34,35],bay:[20,21],bayesian:25,bbox_to_anchor:15,beat:38,beauti:42,becaus:[4,10,12,14,15,19,21,23,29,30,31,32,34,35,37,38,39],becom:[3,4,10,17,20,23,34],been:[14,23,27,38],befor:[4,9,13,14,17,20,21,28,32,38,39],begin:[11,15,16,21,31,32],beginn:39,behav:[14,30,32],behavior:[16,21,25,32,38],behind:[26,42],being:[20,29],belong:[12,19,21,23,32],below:[1,3,4,6,7,8,11,12,14,16,17,18,19,20,25,26,30,32,33,35,39],benchmark:9,benefit:40,best:[4,14,19,21,23,25,30,31,32,36,38],best_epoch:32,best_i:32,best_model:32,best_params_:25,beta:35,better:[8,9,15,19,27,30,32,34],between:[3,4,6,7,12,13,14,15,16,17,18,19,21,22,23,26,29,30,31,32,35,38],beyond:[32,40],bia:[15,26,28,29,30,31,32],bias:[28,29,30,32],biasweightupd:28,bibtex:4,big:[3,11,23],bin:[12,14,16,18],binari:[2,11,18,20,23,26,29,30,32,35],binder:[4,42],binderhub:42,biomed:35,bit:32,bitbucket:4,black:[8,14,15,16,19,30,31],blank:[1,19],blast:7,blob:12,block:[34,35],blog:16,blue:[11,13,15,29,30,31],blurr:14,bmatrix:31,bo:19,bold:[1,19],book:[3,14,17,22,30,32,38,39,40,42],boost:27,bootstrap:[9,26],both:[9,14,15,18,19,20,21,23,27,32],bottleneck:35,bottom:8,boulder:40,bound:[11,30,38],boundari:[11,21,30,31],boundedfloattext:28,bourn:3,box:[4,15],bp:17,br:1,bracket:14,branc:35,branch:[4,6,30,35,39],branch_nam:4,breadth:39,brew:3,brief:4,briefli:4,bring:17,broader:31,broadli:15,broken:32,browser:[1,4,5,42],brute:25,bsd:21,bucket:7,bucketx:7,bug:4,build:[4,13,15,19,23,25,26,30,32,42],build_meta:4,built:[11,14,19,30,35,38],bundl:30,burden:15,butter:17,butterworth:17,button:[5,28],c1:[17,32],c2:[17,32],c:[8,14,15,16,19,21,22,28,30,31,33,35,38,42],c_:[8,30,32],cach:[7,12,17],cache_arrai:12,cache_d:[11,12],calcul:[7,8,12,13,14,15,16,17,18,19,20,21,22,23,24,27,28,29,30,31,32,33,35,38],calculat:18,california:[3,12],call:[3,8,11,12,14,17,18,20,21,22,23,26,27,28,29,30,32,34,35,38,42],callabl:30,callback:22,calucl:33,camcol:13,can:[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,25,26,27,29,30,31,32,33,35,36,37,38,39,42],candid:25,cannot:[12,17,20,30,35],canon:[17,35,39],canva:39,cap:19,capabl:3,capit:28,captur:[15,16,26,30],carbon:19,carefulli:[13,15,17],carlo:9,carpentri:[3,4,6,14,40],carri:31,carto:12,cascad:19,cascadia:15,casino:15,cast:29,cast_to_ndarrai:22,catalog:[3,12,31],categor:[10,11,24,30],categori:[7,12,20],causal:[17,32],caveat:19,cbar:[8,13],cbar_kw:8,cbarlabel:8,cc:[19,21,32],cd:4,cd_fast:32,cdot:[8,23,29,32],cell:[1,11,12,17,22,25,27,30,32,34],celsiu:[12,14],center:[3,4,8,14,15,19],central:[3,12,15,16,17],central_mo:16,centroid:19,certain:[19,26],certifi:18,cfg:7,chain:30,challeng:11,chang:[4,8,10,12,14,15,16,19,26,28,32,33,35,37],channel:[2,12,17,18,30,31,42],chapter2:17,chapter3:22,chapter4:[30,32],chapter:[3,27,32,39],charact:[11,13],character:[9,13,32],characterist:[17,21,22,32],charset:18,chart:24,chatgpt:40,cheat:4,chebyshev:[17,25],check:[2,4,11,12,14,15,17,18,30,32,35],check_arrai:22,check_consistent_length:22,check_param:22,check_x_i:22,check_y_param:22,checkout:4,checkpoint:[30,31,35],chemistri:10,chile:12,chine:39,choic:[12,15,25,26,28,32],choos:[3,4,8,12,17,18,19,20,29,30,31],choosealicens:4,chronolog:15,chunksiz:11,ci:4,cienc:39,circ:[14,23],circl:[15,19],citat:4,cite:4,classic:[17,19,20,25,31,32],classif:[5,9,18,19,23,26,29,30,31],classifi:[7,12,20,22,23,25,29,30,31,32,35],classificaiton:[20,26],classification_report:[21,22],claus:21,clean:[4,13,15,16,18,32,35,38],cleaned_data:13,cleanest:4,clear:[19,27,39],clear_output:[17,28],clearli:[15,19],clf2:25,clf:[21,22,25,26,28,30],cli:4,click:[4,5,9,28],client:[17,18],climat:[10,11,12,14],clipboard:4,clone:[4,6,22,32,39],close:[15,19,21,23,35],closer:[15,19],closest:19,cloud:[1,4,6,8,10,11,14,38,39,42],cloudstor:3,cluster:[3,5,31,38,39],cluster_centers_:19,cluster_label:19,clusterid:19,clusters_new:19,clusters_old:19,cm:[8,17,19,22,28,30],cm_bright:30,cmap:[7,8,13,17,21,22,30,31,35],cnn:[34,35],cnnautoencod:35,co2:5,co:[8,14,19,21],coarsen:14,coast:12,cobli:14,code:[1,3,4,8,12,13,19,21,23,27,31,32,38,39,42],codespac:[17,22],coef:15,coef_:[15,23,32],coeff:8,coeffic:15,coeffici:[8,13,14,15,17,19,32],cogt:10,coher:19,cohes:19,cohort:4,coin:31,col:14,col_index:19,col_label:8,colab:4,coll:33,collabor:42,colleagu:4,collect:[5,7,8,10,11,13,14,16,17,19,21,26,27,38],color:[8,11,12,13,14,15,16,18,19,21,28,29,30,31],color_threshold:19,colorbar:8,colorblind:14,colorinterp:11,colormap:8,column:[7,8,10,13,15,16,17,19,22,23,24,32],column_or_1d:[22,32],column_stack:19,columnar:11,com:[1,4,5,7,11,12,13,16,17,19,23,24,27,31,33,39,42],combin:[8,15,16,18,19,25,26,29,31,32,34],come:[2,10,14,19,27],comic:4,comm:28,comma:10,command:[3,4,23,24,30,42],comment:[11,19,33],commit:4,common:[4,7,10,11,12,13,16,17,19,20,21,32,35],commonli:[10,19],commun:[4,11,40,42],compact:[12,17],compar:[6,12,14,17,18,19,20,21,26,29,30,31,35,38],compare_model:27,compareoutput:28,comparison:[8,27],compil:[9,30,34],complet:[12,16,17,19,21,38],completeness_scor:19,complex:[8,10,11,14,15,17,19,20,26,30,31,32,38],complex_:18,complic:[23,34],compon:[7,15,35,37,39],components_:8,compos:[1,3,12,26,31,35],composit:16,compress:[11,12,17,32,35],compris:31,comput:[1,2,4,6,8,9,10,11,15,17,19,20,22,23,29,30,32,33,38,39,42],computation:[8,15,25],compute_cent:19,compute_clust:19,compute_dist:19,compute_elbow:19,compute_object:19,cona:2,concat:[7,15],concaten:[15,18,19,31],conceit:15,concept:[10,15,19,35,39],concurr:22,conda:[4,42],condit:[19,20,32,33,36,38],conduct:4,conern:3,conf:4,confid:[15,21],config:[4,14,22],config_context:22,configur:[4,11,25,27],confirm:27,conflict:4,confus:[21,22],confusion_matrix:[21,22],confusionmatrixdisplai:22,congrat:4,conj:18,connect:[3,4,12,13,29,30,34,35],consid:[9,17,20,21,27,28,31,32],consist:[12,19,25,32,36],console_script:4,constant:32,constrain:[17,30,32,33],constraint:32,construct:[5,18,19],consum:[25,36],contact:[4,10],contain:[1,2,4,8,10,11,12,13,14,15,19,24,32,35,39,42],contamin:18,content:[3,4,5,6,11,12,16,18],context:[13,14,18,19,29,30,31,35],continu:[4,8,11,15,17,32],contourf:[11,17,30],contourpi:[13,18,28],contribut:[3,6,8,19,26,30,32,40],contributor:4,control:[39,42],conv1:30,conv2:30,conv2d:[30,31,35],converg:[15,19,32,35],convergencewarn:32,convers:[12,19,28],convert:[8,11,12,14,15,17,22,23,24,25,26,29,33],convert_listlik:12,convert_str_to_tsobject:12,convien:11,convnetquak:31,convolut:30,convolve2d:31,convout:31,convtranspose2d:35,cool:[3,27,33],cooling_law:33,coolwarm:13,coord:14,coordin:[11,14,15,17,20,30,38],copi:[2,4,9,12,14,19,22,25,26,29,30,38,39],copilot:12,core:[3,12,13,14,19,26,42],corner:[4,11,17],corr:[7,8,13],corr_coef_collector:15,corr_matrix:13,corrcoef:[14,15],correct:[23,26,27,29,30,31],correctli:[21,23,27],correl:[7,8,9,14,15,19,32,38],correlated_data:15,correlation_matrix:15,correspond:[7,10,12,19,23,28,30,39],cosin:[17,19],cost:[3,15,19,20,27,28,30,32],costfunct:28,costum:12,could:[3,4,10,12,13,22,31,35],count:[12,13,15,16,17,18,21,22,24],cours:[1,4,5,6,11,12,14,15,40],cov:14,covari:[15,19],cover:[17,19,38,39],cpu:[3,14,26,33,35],cr:11,craft:33,crap2:35,crap:[7,8,15,18,35],creat:[2,6,8,9,11,13,14,15,16,17,18,19,20,22,23,24,26,27,30,31,32,33,34,35,38,39,42],create_graph:33,creation:11,credit:4,crispi:18,cristea:[39,40],criterion:[28,29,30,31,35],critic:[4,15,16,17],cross:[9,14,22,23,29,30,31,32,38],cross_val_predict:[22,26],cross_val_scor:[21,26],crossentropyloss:[29,30,31],crucial:[13,14,19],cruis:19,cryospher:[5,39],cs160:39,cs163:39,cs230:31,csr:22,csv:[1,5,7,9,10,13,16,19,23,24,27],cu:40,cubic:16,cuda:[3,14,33,35],cumsum:8,cumul:8,cumulativevarianceexplain:8,curat:5,curl:5,current:[2,8,19,22,23,24,34,38],curriculum:[30,32],curv:[21,22,26,30,31,32,35],curvatur:17,curve_fit:14,custom:[12,30],custom_dataset:[29,30],customdataset:[29,30],cutoff:17,cv:[13,15,22,25,26],cv_results_:25,cwt:[9,17,38],cwtm:17,cwtmatr:17,cyan:8,cycler:[2,13,18,28],cyto:19,cytomet:19,d1:14,d2:14,d2dl:34,d:[8,12,14,17,18,19,20,24,29,30,31,33,35],da:3,dai:[8,12,15,17,24,27],daili:[8,12,24],dall:10,dash:28,dask:14,data:[1,3,4,7,17,20,23,25,26,29,32,33,34,36,37,39,42],data_faith:19,data_loader_test:[29,30],data_loader_train:[29,30],data_rang:12,data_shrink:19,dataarrai:14,databas:[10,11,14,16],dataconversionwarn:32,datafram:[8,10,11,14,15,16,19,21,24,34],dataload:[30,31,35],datamanipul:17,dataset:[7,8,9,10,11,12,13,14,15,16,17,19,21,22,23,24,25,26,30,31,32,35,38],dataseta:25,datatyp:13,date:[4,8,10,12,15,19,24],date_format:11,date_pars:11,date_rang:12,date_year:[8,15,32],dateparseerror:12,datetim:[12,24],datetime64:12,datetimearrai:12,dateutil:[2,7,12,13,18,28],dateutil_pars:12,dayfirst:[11,12],db:23,de:8,deactiv:2,deal:[8,12,14,15,24,32],debug:38,dec:13,decai:18,decid:[13,19,21,23,30],decim:11,decis:[20,21,26,30],decision_funct:[22,30],decisionboundarydisplai:21,decisiontre:26,decisiontreeclassifi:[21,26],declar:[14,15],decod:12,decoder_cnn:35,decompos:[8,17,35],decomposit:[8,17,19,20],decor:[7,18,22,28],decreas:[8,9,19,21,23],dedic:30,deep:[3,14,19,31,35,37,39],deepdenois:35,deeplearn:[30,32],def:[7,8,12,13,16,19,21,23,28,29,30,31,32,33,34,35],default_rng:[15,28],defin:[2,4,9,12,14,15,16,18,19,21,23,25,28,29,30,32,33,35,42],definit:[8,9,19],degc:14,degre:[8,17,24,32],delai:22,delayed_func:22,delet:2,delim_whitespac:11,delimit:11,delta:[17,18,23,28],dem:17,demarc:19,demographisc:3,demonstr:[6,7,8,14,15,21,27,32,39],dendogram:19,dendrogram:19,denoisecnna:35,denol:[39,40],denot:[12,19],dens:[30,31,34],densiti:[13,19],depend:[2,4,8,9,10,13,17,19,30,42],deploi:[3,12,39,42],deploy:[4,12,39],deprec:[15,28],deprecationwarn:28,depth:[10,12,19,26,31,35],depth_km:12,deriv:[10,23,30,32,33,42],descent:[14,20,28,29,30,31],descr:[22,25],describ:[4,9,11,12,13,14,15,16,24,25,35,37,39],descript:[4,12,24,28],design:[11,14,15,19,22,26,31,32,33,39],desir:32,detach:[23,33,35],detail:[3,4,19,25,27,30,39],detect:[7,31,32,35],determin:[9,15,17,24,28,29,30,32],determini:15,detrend:[15,17,18],dev:[12,17],develop:[2,3,4,32,39,40,42],deviat:[14,15,16,17,38],devic:[3,14,33,35],devid:15,df:[7,8,11,12,13,15,16,19,21],df_clean:13,df_numer:13,df_read:11,diag:8,diagon:[8,21],dialect:11,diam:19,diam_lwr:19,diam_mid:19,diam_upr:19,diamet:19,dict:[8,22],dict_kei:[22,25],dictat:31,dictionari:[8,11,12,14,22,25,26,32],did:[12,15,27,32],diff:[4,15],diff_mean:15,differ:[2,4,6,7,11,12,14,15,17,18,19,21,25,26,32,35,37,38,42],differenti:[14,30,32,33],difficult:[17,19,37],diffus:[33,35],digit:[11,12,13,17,22,25,26,29,30,39],dim:14,dimens:[8,9,10,11,12,14,15,17,30,31,32,34,35,38],dimension:[9,10,11,12,14,19,20,32,39],dip:12,dir0:30,dir1:35,direct:[5,7,8,10,13,14,32],directli:[3,4,10,12,22,27],directori:[11,35],disabl:[29,30,31,35],disadvantag:[15,32],discern:19,disciplin:39,disciplinari:5,discov:19,discoveri:33,discret:[17,31],discrimin:[8,13,16,18,20],discriminant_analysi:21,discriminatori:17,discuss:[3,4,10,12,15,19],disp:22,displac:[8,15,32],displai:[12,13,14,16,17,24,28,31],display_styl:14,dissimilar:[14,19],dist:[14,19],distanc:[17,25],distance_threshold:19,distancemetr:19,distinct:19,distinguish:[13,14],distort:19,distribut:[3,7,8,9,12,14,15,17,18,19,25,32,38,42],distrubut:13,dive:[14,31],divers:[5,10,25,26,32],diversifi:32,divid:[9,15,16,17,18,38,39],divis:19,djf:14,dl:[7,11,17,19,23,31],dmatrix:26,dmc:[17,18],dn:19,doc:[4,12,14,15,19,24,27,30,32],docker:[4,27,39,42],docmument:4,document:[4,6,9,11,12,17,19,21,32,38,42],doe:[4,11,12,15,18,19,21,23,26,28,31,38,42],doi:[4,11,31,38],domain:[18,25,30,35],domin:[11,17],don:[27,34],done:[3,4,11,14,15,17,22,27,30,31],dot:[8,23,28,31,32],doublequot:11,dowload:11,down:[1,4,11,29,32],download:[2,4,7,8,11,12,13,15,17,18,19,23,26,27,31,35,42],downsampl:[14,30,31],dozen:42,draft:21,dramat:3,drastic:21,draw:[9,15,19],drawn:32,drive:39,driven:42,drlat:17,drlon:17,drone:10,drop:[4,7,13,16,23,24,28,30,38],dropbox:[4,7,11,17,19,30,31,32],dropdown:28,dropna:[12,13,16,23],dropout:[30,31,32,35],ds2:14,ds:[1,4,14,39,42],dt:[14,17,33],dta:12,dtype:[7,11,12,13,14,18,19,22,25,31],dtype_backend:11,du:14,dualiti:32,ducelli:40,due:[13,15,17,19,32,39],dummi:31,dump:11,duo:4,duplic:[4,15],durat:17,dure:[27,29,30,32,34,39],dw:23,dwa82x6xhjkhyw8:19,dynam:5,dz:16,e2019gl085870:31,e:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,19,23,25,26,27,29,30,31,32,35,37,38],e_b:15,e_train:15,e_val:15,each:[2,3,4,7,8,10,11,12,13,14,15,16,17,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,37,39,42],earli:[9,11,22,34,39],earlier:[30,35],earliest:12,early_stop:[30,32],earth:[4,7,10,14,19,39,40],earthchem:16,earthdatasci:[4,11,14,40],earthquak:[7,8,16,17,18,20,31,32,35],earthquake_magnitud:16,earthrocgranit:[5,16],eas:[15,32],easi:[4,11,14,23,27],easier:[8,14,23,30],easili:[15,35,38],east:[8,11,12,15,32],eastward:15,ecosystem:[25,39],edg:[17,31],edgecolor:[16,19,21,30],edit:[3,4,27,35],editor:4,edu:[4,8,15,39],educ:39,effect:[10,15,17,21,25,26,29,32],effici:[3,10,11,12,14,15,25,27,32,35],effort:[4,14,27,36],ehz:12,eigen:8,eigenvalu:8,eigenvector:8,either:[1,3,5,8,14,15,19,23,30,32,35,39],ela_reg:32,elaps:22,elasticnet:32,element:[11,12,14,15,19,21,28,31,32],elev:[11,12,17],elevation_m:11,elif:[11,12],elimin:32,ellips:19,els:[4,7,8,11,12,14,15,19,21,22,28,29,30,31,33,35],elsewher:31,email:[4,39],emb:32,embed:[8,11,37],emerg:[7,11],empir:19,emploi:[15,25],empti:[12,15,19,22,34],enabl:[3,17],encod:[11,27],encoder_cnn:35,encoding_error:11,encount:[5,10,17],end:[0,8,9,12,15,16,19,20,21,25,29,30,31,35,39],end_dim:[29,30],end_tim:12,enddat:12,endeavor:19,endtim:[17,18],energi:17,enet_coordinate_desc:32,enforc:17,engin:[11,15,32,39],enhanc:11,enivron:2,enough:[9,14,32,38],ensembl:[21,22,24],ensur:[4,12,15,24,28],ensure_2d:22,ensure_min_featur:22,ensure_min_sampl:22,enter:[12,16,17,27],entir:[4,12,15,19,26,29,31,32,37],entri:[4,8,11,13],entropi:[23,29,30,31,32],enumer:[8,13,18,19,21],env:[2,7,11,12,13,18,19,26,28,32],environ:[4,6,10,11,25,38,39,42],environment:[11,15],ep:[21,33],epal:28,epoch:[26,29,30,31,32,33,34,35],epr:15,epred_train:15,epred_v:15,epsilon:23,eq1:31,eq2:31,eq:[7,33],equal:[8,15,16,17,18,28],equat:[10,20,30,33,42],equial:14,equival:[10,12,14,23,29,30,32],er:28,err:21,errno:11,error:[8,9,11,12,13,15,19,20,21,23,24,28,29,30,31,32,35,38],error_scor:25,erupt:19,escapechar:11,escienc:3,esourc:39,espear:31,especi:[14,15,19,25,27,32,38],ess490:[30,32],ess:[1,4,39,42],essenc:19,essenti:[12,15],est:19,estim:[8,15,19,22,24,25,26,29,31,32,35,38],estimator__algorithm:25,estimator__leaf_s:25,estimator__metr:25,estimator__metric_param:25,estimator__n_job:25,estimator__n_neighbor:25,estimator__p:25,estimator__weight:25,estimator_nam:22,et:[4,31,35],eta0:32,eta:[26,28],etc:[1,4,10,12,14,27,29,32,38],euclidean:[19,25],euclidian:[14,19],eval:[7,28,33],evalu:[15,19,20,25,26,29,30,31,32,35,39],evaluate_model:27,evapor:12,evaporation_mm:12,even:[10,17,18,19,37],evenli:14,event:[5,7,12,16,17,19,31,42],event_id:7,eventu:42,everi:[9,14,17,25,31,37,39],everyth:[2,28,37],everytim:4,evolut:[29,32],exact:[2,12,15,23,37],exactli:15,exampl:[3,7,8,10,11,13,14,16,17,19,20,21,22,23,24,26,29,30,33,34,36,39],exce:29,excel:[4,14],except:[1,30],exceptiongroup:28,excess:32,exchang:11,exclud:[13,27],exclus:30,execut:[1,2,7,28],exercis:[5,7,11,15,19,21],exess:32,exhibit:15,exist:[9,15,17,19,23,25,42],exist_ok:[11,30,31,35],exp:[12,14,17,18,23,28,29,30,32,33],exp_reg101:27,expand:1,expans:3,expect:[6,12,21,27,32,38],expens:[3,25],experi:[3,19,25,27,36,42],expert:[9,25,39],expertis:38,expir:4,explain:[8,9,19,23,30,31,33],explained_variance_:8,explained_variance_ratio_:8,explanatori:12,explicitli:[15,19],explor:[9,15,16,18,19,22,25,26,28,29,36,38],explort:13,explos:7,expon:16,exponenti:[16,32],express:[12,19],extend:[21,29,31],extens:[2,6,25,28,42],extent:[9,17],extern:[2,25],extract:[7,9,16,17,18,24,27,28,29,35,39],extractal:11,extrem:[5,15],f0e1ywupdbuv3l3:7,f1:[21,22,23,32,34],f1_score:21,f2:34,f4:15,f:[7,11,13,14,16,17,18,21,22,23,24,25,26,28,29,30,31,33],f_1:21,f_:17,f_a:17,f_c:17,f_path:[30,31,35],f_x:23,facecolor:19,facet:14,facil:38,facilit:[11,14],fact:[15,19,31],factor:[4,13,17,18,30],fahrenheit:12,fail:[12,30],fair:38,faith:19,fake:19,fall:12,faller:4,fals:[8,11,12,13,15,16,19,21,22,23,24,25,26],false_valu:11,famili:17,familiar:[14,29],far:15,fashion:31,fashionmnist:35,fast:[3,12],faster:[11,14],fastica:[8,9],fc1:[30,35],fc2:[30,35],fc3:30,fc4e2a:8,fc:19,fdsn:[17,18],fdsn_client:[17,18],feather:19,featur:[9,10,12,14,17,18,19,20,23,25,27,30,31,32,33,35,38,39,42],feature_import:24,feature_importances_:24,feature_list:24,feature_nam:[8,22,25,28],fee:4,feed:[13,35],fetch:[4,39],fetch_openml:[22,31,35],few:[12,13,15,19,32],fewer:8,ff0000:30,ff:12,fft2:17,fft:[9,17,18],fftfreq:[17,18],fftpack:[17,18],fftshift:17,fiberid:13,fidel:35,field:[8,10,12,13,14,27,31,32,33,35,36],fig1:14,fig2:14,fig:[8,12,14,15,16,17,18,19,24,28,29,30,31,32],figsiz:[8,13,14,15,16,17,18,19,22,24,28,30,31,32,34],figur:[5,8,11,12,13,18,19,22,27,28,29,30,31],figure_:22,figure_format:14,fiji:12,file1:[4,11,17],file2:[4,11,17],file:[1,3,7,9,11,13,14,16,19,21,22,31,38,39],file_url:[8,15],filenam:[11,19],filenotfounderror:11,filepath_or_buff:11,fill:[13,17,18,31,38],fill_betweenx:19,fill_valu:25,filter:[12,13,14,31],filterdimens:31,filtered_imag:31,find:[3,4,7,8,9,12,13,14,15,17,19,20,21,23,25,26,29,30,31,32,35,36,38,39],finder:27,fine:[25,32],finit:[7,17,31],first:[1,3,4,7,8,9,12,13,14,15,16,17,18,19,21,22,23,26,28,29,30,31,32,33,34,35,38,39],fisher:16,fit:[8,14,15,19,21,22,23,24,25,26,30,33,34,36],fit_method:22,fit_param:22,fit_predict:19,fit_transform:[8,19,21,22,25,26,32,35],fivethirtyeight:24,fix:[4,12,15,30,31,32,38],flag:19,flat:18,flatten:[14,26,29,30,31,34,35],flavor:42,flexibl:[10,14],flip:14,float32:[14,29,30,31,34],float64:[12,13,22],float_precis:11,floatlogslid:28,floor:17,flouresc:19,flow:[10,16,19],fluctuat:12,fluor:19,fly:14,fmi:19,fn:[19,21,23],fname:[11,12],focu:[3,7,11,14,15,25,27],focus:[13,19,39],fold:[22,25,32],fold_shuffl:27,folder:[9,11,12,17,19,28,31,38],folium:11,follow:[0,3,4,5,7,8,11,15,16,19,21,26,27,28,31,32,39],font:[14,18,19],fontsiz:[14,19],fonttool:[13,18,28],fontweight:19,forc:[4,23,25,39],force_all_finit:22,forecast:[24,27],forecast_acc:24,forecast_noaa:[24,27],forecast_und:24,forest:[20,21,22,26,27,30,39],forestri:5,forg:2,forget:32,fork:4,forlin:28,form:[10,11,14,15,18,19,20,32],format:[1,5,7,8,9,12,19,21,22,24,29,30,31,35,38,39],formatt:8,former:40,formul:[9,20,23],formula:[19,22,23],forth:27,fortran:42,forward:[8,9,14,29,31,33,35],found:[4,11,14,23,29,31,32,39],foundat:[10,14,39],four:7,fourier:[7,9,18,35,39],fourth:[1,14,16,18],fowlk:19,fp:[19,21,23],fpr:[21,22],frac:[8,14,16,17,18,19,20,21,23,29,30,31,32,33],fraction:[19,21],frame:[7,12,13,15,16,20,22,25],framework:[4,11,17,39],free:[3,4,35,38,42],freedom:32,freq:[12,17],frequenc:[14,16,17,18],frequent:[8,12,19],freqvec1:17,freqvec:[17,18],fri:24,friend:[2,24,27],friendli:[4,30],fritz:32,from:[1,2,4,7,8,9,10,11,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,38,39,42],from_estim:[21,22],from_numpi:[23,33],fs:[7,17,18],ft:17,ftp:12,full:[12,27,31,32],full_matric:8,fulli:[29,30,34,35],func:22,functool:33,fundament:[9,10,15,19,21,32,33],further:[4,30,35],futur:[4,10,28],futurewarn:[19,26],g2:32,g:[1,2,3,4,5,8,9,10,11,12,13,14,15,19,20,23,25,26,27,29,30,31,32,37,38],gain:42,galaxi:13,game:3,gamma:[21,22],gap:[13,17,32,38],gate:[19,34],gather:[3,20,32],gaussian:[14,21,32,38],gaussian_filt:14,gaussian_process:21,gaussiannb:[21,26],gaussiannois:35,gaussianprocessclassifi:21,gb:26,gca:[8,15,16],gcp:3,gd:32,gdoutput:28,gdrive:4,ge:14,gener:[4,8,9,10,11,14,15,16,19,20,26,28,30,31,32,34,35,36,37,38,39],generaliz:[26,38],generate_time_seri:34,geo:39,geodes:19,geodesi:[8,15,39],geodet:[5,19],geograph:[10,11],geographi:19,geohackweek:[11,40],geolog:[11,17],geologi:[11,17,39],geometr:10,geometri:11,geophys:[5,10,16,19,31],georeferenc:11,georg:40,geoscien:39,geoscienc:[3,5,11,12,13,16,17,19,32,37,38,40],geoscientif:[10,12,13,17],geoscientist:12,geosmart:[4,39],geospati:[10,15,17,19,26,30,32,37,38,39],geostatist:19,geotiff:10,geq:23,get:[3,4,5,8,9,11,12,13,14,15,16,19,22,23,24,26,29,30,31,32,35],get_arrai:8,get_config:22,get_dummi:[24,27],get_features_by_domain:7,get_handl:11,get_param:25,get_waveform:[17,18],get_xticklabel:8,getattr:22,getitem:29,geyser:19,gh:12,gi:10,giant:37,gist_dir:12,git:[6,26,39,42],github:[1,3,5,6,12,25,27,31,33,35,38,40,42],githubusercont:[5,12,13,16],gitignor:4,gitlab:4,give:[1,2,4,15,17,18,19,21,23,27,32],given:[1,8,10,12,15,19,21,25,31,33,38],glacier:19,glass:1,glob:[8,15],global:[3,4,12,19,31,32],global_quakes_iri:12,global_skip_valid:22,go:[4,7,11,12,14,15,17,23,26,27,28,29,30,32],goal:[15,19,25],goe:[29,32,33],gone:27,good:[4,9,14,15,19,25,32,38],googl:[24,27,39],got:22,gouraud:17,gov:[11,24],gp:[8,15,19],gpd:11,gps_timeseri:[8,15],gpu:[3,14,35],grad:[23,33],grad_a:14,grad_b:14,grad_c:14,grad_d:14,grad_fn:23,grad_output:33,grad_y_pr:14,gradient:[14,20,28,29,30,31,33,34,35],gradientdesc:28,graduat:40,grai:[28,31],granit:16,grant:4,grant_sudo:27,graph:[14,24,30],graphic:[3,31],graviti:10,gray_r:22,great:[3,4,27,28,30,31,35],greater:[17,24,31,32],green:[11,13,15,19],grei:29,grid:[8,10,11,12,14,15,17,18,19,21,22,28,29,30,31,32,33,34],gridsearchcv:25,gridsearchcvgridsearchcv:25,grobler:21,ground:[7,10,16,17,19,32,38],group:[3,7,11,12,14,15,19,20,22,38],groupbi:[12,14],growth:3,gudelin:4,gueron:26,guess:11,gui:4,guid:[4,12],guidelin:[4,38],gzip:[8,15],h2o:27,h5:[5,7,9,11,31],h5py:[7,11,31,35],h:[8,12,23,30,33],h_w:20,h_y:23,ha:[4,7,8,11,12,14,15,18,19,20,23,25,27,29,30,31,32,34,35,38],hackweek:42,had:[4,29],half:39,hand:[26,29,42],handl:[3,4,10,12,20,29,30],handwritten:22,happen:[8,12,14,15,17,19,21,32],happi:[28,30],hard:[4,26,39],hardwar:[1,3,42],harmon:21,has_index_nam:11,hasattr:30,hasn:28,hat:[15,17,20,23,29,32],have:[2,3,4,7,9,11,12,13,14,15,16,17,18,19,23,25,26,27,29,30,31,32,33,34,35,37,38,40],hazard:16,hdf5:7,hdf:[10,11],head:[1,4,7,8,11,12,13,16,19,24,27],headach:4,header:[11,12],heartbeat:32,heat:33,heatmap:[8,13],heavi:[3,16],height:[11,12,31],help:[4,6,14,15,19,25,32,38],henderson:[39,40],here:[3,4,7,8,11,12,14,15,16,17,18,19,20,22,23,25,27,28,29,30,31,32,34,35,39],heterogen:11,hhz:[17,18],hidden:[30,33,34],hidden_layer_s:30,hide:8,hierarch:[10,31],hierarchi:19,high:[3,10,13,15,16,17,19,21,25,32,35,39],higher:[12,21],highest:[8,17],highli:13,highlight:13,highpass:17,hint:12,hist:[7,12,14,15,16,17,18],histogram:[7,9,12,13,14,16,17,18],histor:[24,27],histori:[9,29,30,31,34,35],histplot:13,hnz:12,hold:11,home:[3,4,9,11],homepag:4,homewgrown:38,homework:4,homgeneity_scor:19,homogen:[19,32],homogeneity_completeness_v_measur:19,honshu:12,hood:[19,27],hook:23,hopefulli:19,horizont:[3,8,15,31],horizontalalign:[8,30],host:[4,39,42],hot:27,hour:[3,12,17],hover_data:12,hover_nam:12,how:[3,4,7,8,9,10,11,12,13,14,15,16,19,20,21,22,23,28,29,30,37,38,39],howev:[3,4,8,9,11,13,15,23,30],hp:17,hpc:[6,14],href:[17,22,30,32],html:[1,4,8,12,14,19,25,30,32,35,38],htop:3,http:[1,3,4,5,7,8,11,12,13,14,15,16,17,19,21,23,24,27,30,31,32,33,35,36,38,39,42],hub:[3,6,11,39],hue:19,hulbert:31,human:[10,11,38],hyak:3,hydrolog:[5,8,10],hydrotherm:19,hyp_50m_sr:11,hyper:[20,25,27,30],hyperbol:30,hyperparamet:[15,26,27,31,32,38],hyperplan:20,hyperspectr:10,hypothesi:[15,20],hz:[17,18],i2:17,i6tv3ug15oe6yh:17,i8:12,i:[3,7,8,12,13,15,17,18,19,20,22,23,28,29,30,31,32,35,38],i_it:23,i_j:28,ic:[19,31],ica:[8,9,38],iclass:21,icon:4,id:[4,7,19,22,24,27],idai:[8,15],idea:[19,26,27,35],ideal:[8,10,14,21,32],ident:[14,21],identifi:[5,8,19,22,24,31,32,38],idna:18,idx:35,ifft2:17,ifft:[17,18],ifram:12,ignor:[4,17,19],ignore_index:7,igs14:[8,15],ii:[8,15,21],iik:15,il:13,illustr:[4,15,17,19,35],iloc:[7,11,12,24,27],im:8,imag:[1,8,9,10,11,16,17,18,19,22,25,27,29,30,32,35,39],image_index:35,imageri:[10,11,14],imagin:[15,35],imaginari:35,img:[1,31],immedi:22,impact:[25,26,28,32,37],imperfect:26,implement:[3,19,20,25,26,28,29,30,32,35],impli:[8,19,31],important_indic:24,importantli:16,importlib:[13,18,28],impos:32,improv:[26,32,35,38],impuls:7,imput:13,imputation_typ:27,imshow:[8,17,22,31,35],in_channel:31,in_circl:15,in_featur:[29,30],in_squar:15,inaccess:4,includ:[1,4,5,6,10,16,19,30,31,32,35,38,39],incomplet:4,incoropor:39,incorpor:[19,42],incorrect:13,increas:[14,15,19,21,23,26,32,33,34],increment:33,ind:17,inde:[15,21,35],independ:[4,11,22,23,26,32],index:[4,5,7,11,12,13,14,19,24,29,30],index_col:11,indic:[13,15,16,19,32],indirect:10,individu:[3,12,14,19,26,29,32],induc:15,industri:27,ineffici:11,inertia:19,inexact:23,inf:[13,32],infer:12,infer_datetime_format:[11,12],infin:23,infinit:17,influenc:[15,27],info:[2,12,13],inform:[4,8,9,10,11,30,32,37,38,42],infrastructur:42,infti:[16,17,31],inher:19,inherit:[29,35],inhomogen:32,init:[4,15,19],init_cent:19,initi:[4,13,14,19,23,25,28,29,30,31,32,33,35,38],initiali:19,inlin:[7,8,14,15,24,28,30,32],inlinebackend:14,inplac:[12,13,23],input:[7,8,9,12,13,14,17,27,28,29,30,31,32,33,34,35,38],input_dim:33,input_nam:22,input_s:35,input_shap:[30,31,34],inquiri:11,inscrib:15,insert:[1,19],insid:[2,8,15],insight:[13,19],inspect:21,inspir:[4,33],instal:[2,3,4,6,7,12,13,17,18,26,27,28],instanc:[1,3,8,10,12,18,21,22,26,30,31,32,38,39],instanti:[24,35],instead:[4,12,16,17,19,21,22,23,26,32,35,38],institut:[3,38],instruct:4,instructor:[4,12,17,22,39],instrument:[10,17,19],int32:[19,25],int64:[12,13,22,25,26],int_:[16,17],integ:[14,22,29],integr:[4,9,14,27],intend:[10,39,42],intens:[8,15],interact:[1,3,11,12,30,42],intercept:15,intercept_:[23,32],interest:[7,10,13,17,35,40],interfac:[1,2,4,42],intermedi:[4,17,29,30,31,35,38,39],intermingl:19,intern:34,internet:42,interpol:[13,22],interpret:[2,11,19,20,30,31,32,39],interpret_model:27,interrupt:22,intersect:14,interv:[15,16,30],intro:[12,14,39],introduc:[4,14,15,27,30,34,35,37,39],introduct:[3,12],introductori:11,intuit:[19,25,30],inv_test_indic:22,invari:31,invers:[8,20],inverse_transform:8,invert:20,investig:17,involv:[9,14,15,25,26,32,33],io:[4,8,11,12,15,31,32,35,36],ioarg:11,iohandl:11,ipykernel_26544:12,ipykernel_47043:17,ipykernel_60185:19,ipykernel_70516:28,ipynb:[17,22,30,32],ipython:[7,17,28],ipywidget:28,iq1:31,iq2:31,iq:31,iri:[8,17,18],irisdf:8,irreduc:32,irrelev:13,is_avail:[33,35],is_text:11,isel:14,isfinit:31,isin:12,isinst:[8,11,12],island:12,isnul:13,isol:[2,8,37,42],isomap:8,issu:[4,6,9,27,34,38],issue_templ:4,ital:1,item:[1,4,12,14,28,29,30,31,33,35],iter:[7,11,15,19,22,23,24,25,27,28,29,30,31,32,35],iterable_with_config:22,iterationsran:28,iterationsslid:28,ith_cluster_silhouette_valu:19,its:[2,5,7,9,14,15,18,19,25,26,27,30,31,32,34,38],itself:[4,11,19,32],j5lxhd8uxrtsxko:11,j:[8,19,23,28,29,32],jaqu:21,java:42,javascript:42,jedi:[7,28],jja:14,job:3,joblib:[22,28],johnson:31,journal:41,js:[11,12,17,19,28],json:1,juli:17,julia:[38,42],jump:[9,29],jupyt:[2,3,6,24,25,27,30,38,39,42],jupyterhub:[3,4,42],jupyterlab:[2,4,12,28,42],jupyternotebook:42,just:[4,7,12,15,16,19,23,28,29,30,31,32,34,37],k:[8,16,20,21,22,23,24,26,28,29,31,32],k_means_cyto_3:19,k_means_cyto_8:19,k_means_cyto_bad_init:19,kaggl:[13,23],katherin:19,kb:[12,13],kcbp:12,kcpb:12,kd_tree:25,kde:13,keep:[4,14,15,17,23,28,32,35],keep_date_col:11,keep_default_na:11,kei:[7,10,11,12,13,14,22,24,25,26],kelvin:14,kept:15,kera:[26,29,30,31,32,34,35,36,39],keras_tun:36,kerasclassif:30,kerasregressor:30,kernel:[1,20,21,22,30,31],kernel_s:[31,35],kf:15,kfold:15,kharita:39,khbb:12,kilomet:12,kind:11,kit:[19,26],kiwisolv:[2,13,18,28],klat:17,klon:17,km:[12,17],kmean:19,kmeans_model:19,kneighborsclassifi:[21,22,25,26],kneighborsclassifierkneighborsclassifi:25,knn:[20,21,25,26],knn_clf:22,knn_predict:[22,25],know:[1,3,20,23,32],knowledg:[25,35,39],known:[15,19,22,27,31,32],ko:19,koehrsen:24,kurtosi:[13,17],kurtosis_valu:16,kw:8,kwarg:[8,22],kwd:11,kwds_default:11,kxk:21,l1:[19,32],l1_ratio:32,l2:[14,32,33],l2_reg:33,l:[23,29,31,32,35],l_1:14,l_2:14,l_old:23,lab:[4,23,40],label:[6,7,8,9,12,13,14,18,19,20,21,22,26,27,29,30,31,32,33,34,35,38],label_binar:22,labelbottom:8,labelcolor:[29,30,31],labels:14,labels_:19,labeltop:8,laden:26,lambda:[24,32],lambda_meters2kilomet:12,land:[3,11],landsat:[3,10],landslid:[7,16],languag:[1,3,4,38,42],laplac:[16,32],laps:10,laptop:[2,4],larg:[3,4,10,12,14,16,17,23,25,26,30,32,38],larger:[3,8,11,16,19],largest:[8,17],lasso_reg:32,last:[4,11,12,14,17,22,23,24,26,27,30,32,34],lat:[12,14,17,19],later:[2,15,19,23,24,30,34],latex:1,latitud:[11,12,14,17,30],latter:28,launch:1,law:[14,16,32,33],layer1:[29,30],layer2:30,layer:[4,11,29,32,33,34,35],layout:[14,24],lbfg:30,lda:[20,21],ldata:7,lead:[8,15,17,36],leader:3,leaf_siz:25,learn:[2,3,8,9,11,12,13,14,15,20,21,22,23,24,25,27,28,29,31,33,34,35,38,40,42],learn_rat:26,learner:[26,32],learning_r:[14,26,29,30,31,32,35],learningr:28,learningrateslid:28,leas:38,least:[17,32,39],leav:[1,12],leaveoneout:15,lectur:[7,13,14,15,17,19,31,39],lecun:31,leduc:31,left:[4,8,12,14,15,20,30,31,32],legend:[8,13,14,15,17,18,22,24,28,30,31,32,33,34],legend_el:[8,28],len:[7,8,11,12,15,17,18,19,21,22,23,24,26,28,29,30,31,32,33,35],lenet:32,lenet_checkpoint:31,length:[8,12,13,14,15,18,20,23,28,31],length_a:15,length_sub:15,leq:[19,23],less:[8,10,12,15,17,26,27,28,38],lesson:[3,6,40],let:[7,8,11,12,14,15,16,17,18,19,20,21,22,23,29,30,32,34],letter:31,level:[1,7,12,21,39],leverag:31,lh:[12,14],lib:[7,11,12,13,18,19,22,26,28,32],librari:[2,10,11,14,27,38],licens:[4,5,21],lidar:10,lie:[19,30],lighgbm:27,light:19,lightgbm:27,lightweight:11,like:[3,4,9,10,11,12,13,14,15,16,18,19,23,25,26,28,31,32],likewis:9,lil:35,lilianweng:35,limit:[11,14,15,17,20,25,26,30,31,35,38],linalg:[8,14],line2d:[7,18,19,32,35],line:[1,2,4,7,8,11,12,14,15,17,18,19,20,22,24,27,30,32,35,42],linear:[8,14,17,18,21,22,23,25,28,29,30,31,32,33,35],linear_model:[15,20,23,28,32],lineardiscriminantanalysi:21,linearli:[14,17,28],linearly_separ:30,linearregress:[15,20,28],linestyl:[8,14,19,28,31],linetermin:11,linewidth:[8,14,15,21,28,31,32],link:[1,4,7,12,39],linkag:19,linregress:15,linspac:[8,14,15,17,18,28,30,31,33,34],linux:[3,6,38],list:[1,2,3,4,6,7,8,11,12,14,15,19,22,24,27,38],listedcolormap:[21,30],literatur:[9,31,38],littl:[20,21,32],live:42,ll:[4,13],ln:8,load:[8,16,25,30,31],load_dataset:14,load_digit:[22,25,26,29,30,31,35],load_iri:[8,28],loaded_test:[31,35],loaded_train:[31,35],loc:[15,16,19,22,28],local:[4,6,12,17,19,22,31,32,39],locat:[1,7,9,10,11,12,16,17,18,19,24,31],log10:[7,17,19],log:[14,16,17,18,19,23,29,30,32,33,35],log_:18,log_i:19,log_x:19,logarithm:38,logic:29,logist:[20,29,32,39],logistic_regress:23,logisticregress:[23,32],logit:29,lognorm:16,logspac:[14,17,30],lon:[12,14,19],longer:[17,19,23,32,34,35],longitud:[11,12,14,17,30],loo:15,loocv:15,look:[4,7,8,9,11,12,13,14,16,18,21,26,27,28,29,31,32],loop:[6,8,12,15,17,19,29,30,31,35],loos:[3,42],loot:28,loss2:33,loss2_weight:33,loss:[8,9,14,19,20,23,25,30,31,33,34,35],loss_funct:[30,31],loss_tim:[29,30,31,35],loss_val:35,loss_val_tim:35,losses2:33,lot:[3,26,27,32,34,38],low:[3,15,17,18,19,21,25,26,27,32],low_memori:11,lower:[8,15,17,20,22,26,28,32,35],lower_critical_valu:15,lowest:[19,35],lowpass:17,lp:17,lr:[29,30,31,33,35],ls:[12,14],lstrip:30,lt:[31,35],lua:42,lucidlenn:13,lucki:3,lunch:38,lw:19,lxml:18,lzmy975n0l5bjbmr9db291m00000gn:[12,17,19,28],m1:27,m2km:12,m8:17,m:[4,8,11,12,14,17,20,24,26,32,35],m_3:16,m_4:16,ma:39,mac:27,mach:29,machin:[3,9,11,13,14,15,19,20,22,25,26,32,38,40],machinelearn:22,maco:3,macosx:[3,4],macosx_12_0_arm64:26,macro:22,made:[4,5,8,12,29],madison:40,mae:[24,32],mag:12,magic:24,magmat:19,magnesium:16,magnet:10,magnitud:[16,17,26,32],magnitude_bin:12,mai:[1,2,3,4,7,8,9,11,12,13,15,17,18,19,23,26,30,32,33,34,35,38],mail:4,main:[5,11,12,13,16,19,29,39],maintain:15,major:[8,19,26,27],make:[2,4,6,7,11,12,14,15,17,18,21,22,23,24,27,28,30,31,32,33,34,37,38,39],make_circl:[21,30],make_classif:[21,30],make_moon:[21,30],make_pipelin:30,makedir:[11,30,31,35],malfunct:13,mallow:19,mam:14,manag:[2,12,29,30,31,35,42],manhattan:[19,25],mani:[2,3,7,8,11,12,15,17,19,20,21,22,23,27,28,29,31,32,37,38,40,42],manifold:35,manipul:[6,7,9,10,11,24,27,39],manual:[25,38],manual_se:[30,31,33],map:[8,10,11,30,31],mapbox_styl:12,mape:24,march:32,margin:20,mariana:12,marin:[39,40],marinedenol:[7,12,13,18,19,26,28,30,32],mark:39,markdown:[4,42],markedli:42,marker:[11,12,14,15,19],marker_clust:11,marker_s:12,markerclust:11,markers:12,market:27,mask:[11,25,35],masked_arrai:25,mass:19,master:4,match:[15,19,27,32],materi:[11,14,31,39,40,42],math:[8,14,19,23,39],mathbf:[8,19,20,30,32],mathcal:[23,29,32],mathemat:[14,23],matlab:[38,39],matmul:8,matplolib:39,matplotlib:[2,6,7,8,11,12,13,15,16,17,18,19,21,22,24,25,28,29,30,31,32,33,34,35],matric:9,matrix:[13,15,17,19,20,21,22,23,30],matshow:[7,25],max:[8,11,12,13,14,15,16,17,18,19,22,24,25,26,28,29,30,31,32,35,38],max_depth:[21,26],max_featur:21,max_it:[23,30,32],max_percentag:[17,18],max_pool2d:30,max_sampl:26,maxim:[20,25,29,33],maximum:[12,19,23,24,27,29,30,31,32,38],maxlat:17,maxlon:17,maxpool2d:31,maxpool:31,maxpooling2d:31,mayb:30,mb:[12,13,26,35],mcbrearti:31,md:[1,4,38],mdenol:39,mean:[3,4,11,12,13,14,15,17,18,20,21,23,24,26,28,29,31,32,33,38],mean_a:15,mean_b:15,mean_filt:31,mean_fit_tim:25,mean_score_tim:25,mean_squared_error:[15,32],mean_temp:16,mean_test_scor:25,meaning:13,meant:42,measur:[8,10,12,13,15,16,19,21,24,27,30,32,38],mechan:32,media:10,median:[12,13,15,38],meet:[27,38],mehra:[39,40],member:[15,19,42],memori:[3,11,12,13,14,23,29,30,31,34],memory_map:11,mention:4,menu:[1,4],mere:30,merg:[1,4,17,18,19,39],mesh:30,meshgrid:30,messag:4,messi:4,meta:26,metadat:14,metadata:[4,9,10,11,12,14,38],meter:12,meters2kilomet:12,meters2kilometers2:12,metho:9,method:[5,8,9,10,12,13,14,16,17,20,22,23,24,25,26,29,31,35,36,39],methodolog:39,metric:[15,17,19,22,23,24,25,26,30,31,32,34,36],metric_param:25,mgo:16,microsoft:[3,27],microstoft:3,middl:[8,18,19,30],might:[8,9,11,12,13,15,16,17,18,21,26,27,31,32],mimic:[11,35],min:[11,12,13,14,15,16,17,19,22,24,25,28,30,32,38],mini:[19,29,30],minibatch:32,miniconda3:[7,11,12,13,18,19,26,28,32],miniconda:2,minim:[12,13,19,20,23,29,32,33,38],minima:[19,32],minimum:[8,12,19,29,32,38],minimum_val_error:32,minipnw_metadata:7,minipnw_waveform:7,minkowski:25,minlat:17,minlon:17,minmax:[32,38],minmaxscal:[22,25,26,38],minor:[8,12],minu:[24,27],minut:[19,39],mirror:[9,16],misclassifi:[19,21,26],misenterpret:17,misinterpret:17,miss:[38,41],mistak:23,mit:4,mitig:[15,17,26,30,32],mix:[8,10,12],mixing_:8,mjd:13,ml:[3,7,13,19,21,27,32,34,36,38,39],mlgeo2022:4,mlgeo2022_uwnetid:4,mlgeo2023:4,mlgeo2023_uwnetid:[4,39],mlgeo:[1,4,6,7,11,12,13,16,17,18,19,22,26,28,32,39],mlgeo_4:[30,32],mlhub:3,mllab:2,mlp:34,mlpclassifi:30,mlxtend:28,mm:[8,15,32],mnist:[22,31],mobil:4,mode:[11,14,20,26,31],model:[8,10,11,13,14,16,17,19,20,22,23,25,26,28,34,36,39],model_lenet:31,model_select:[15,21,22,24,25,26,30,31,32,35],moder:[12,30],modern:4,modif:4,modifi:[4,9,12,14,21,22,24,25,26,29,30,31,35,39],modul:[2,4,7,8,9,12,14,15,16,17,19,20,29,30,31,32,33,35,38,39],module1:4,module2:4,modulenotfounderror:17,moistur:[10,13],moment:[16,18,31],momentum:32,mon:24,monaco:15,mondai:[20,39],monitor:3,monoton:13,mont:9,month:[3,17,24],monthli:14,more:[2,4,8,9,10,11,12,13,14,15,16,17,19,20,21,23,25,26,30,32,35,36,38,42],morlet2:17,morlet:17,morn:39,most:[2,3,4,6,7,8,9,11,12,16,17,18,19,20,22,24,26,27,30,32,34,38],mostli:[3,7,15,19],mother:17,motion:[7,8,10,16,17,38],motiv:38,mousavi:35,move:[3,10,11,14,29,31],movement:19,mpl_toolkit:19,mplot3d:19,ms:[12,17],mse:[15,20,28,32,34,35],mse_train:15,mse_val:15,msecost:28,mseed:5,mseloss:[33,35],mt:19,mu:16,much:[3,8,19,23,27,30,32],mulbackward0:23,mult:35,multi:[12,14,17,20,21,26,29,32],multi_output:22,multiclass:[20,30],multiclassif:31,multicollinear:13,multidimension:[8,10,11,14,19,34],multilabel:35,multilay:31,multinomi:32,multipl:[3,4,8,10,14,15,17,26,29,30,31,32,34,38,42],multipli:[8,12,18],multiscal:32,multispectr:10,multivariate_norm:15,must:31,mxn:28,my:[1,4,14],my_kmean:19,my_metadata:12,my_mlp:30,my_mlp_checkpoint:30,my_pd:12,mybind:42,mycod:4,myenv:2,myst:42,n:[7,8,11,14,15,17,18,19,20,21,22,23,27,32,33],n_cluster:19,n_clusters_per_class:30,n_completed_task:22,n_compon:[8,19],n_dispatched_batch:22,n_dispatched_task:22,n_epoch:[29,30,31,35],n_estim:[21,24,26],n_featur:30,n_imag:35,n_inform:30,n_init:19,n_iter:25,n_j:19,n_job:[22,25,26],n_neighbor:25,n_redund:30,n_sampl:[8,15,32,33],n_select:27,n_split:15,n_step:34,n_unit:33,na:13,na_filt:11,na_valu:11,naiv:[20,21,34],naive_bay:[21,26],name:[2,4,7,8,11,12,14,15,17,19,21,24,30,31,38,42],nameerror:30,nan:[7,12,16,25],narr:42,narrai:7,narrow:9,nat:18,nation:[3,11],nativ:[12,20],natur:[7,10,15,16],navig:[4,5,19],nb:[20,26],nb_clf:26,nbin:12,nbviewer:25,nc:[11,12,14,17],ncedc:12,nclass:[22,26],ncluster:19,ncm_geologicframeworkgrid:[11,17],ncm_spatialgrid:[11,17],ncol:[22,24],ndarrai:[8,14,22,25,26],ndata:7,ndim:28,ndimag:14,nearest:[14,19,20,21,22],necessari:[4,15,16,23,32],necessarili:9,need:[4,7,8,9,12,13,15,17,19,20,23,26,27,28,29,30,31,32,34,35,38,39],neg:[16,19,21,23,32],negbackward:23,neighbor:[8,19,20,21,22,25,26],neighborhood:31,neither:27,nenad:4,neonscienc:11,neq1:31,nest:[11,30],net:[12,30,33],net_water_bal:12,netcdf4:17,netcdf:[5,10,14],netdisc:33,netdiscoveri:33,netreg:33,network:[3,10,11,12,17,18,23,28,32,35,37],neural:[17,23,28,32,35,37],neural_network:30,neuron:[29,30,31,34],nevada:15,never:26,new_a:15,new_b:15,new_nois:18,new_pair:15,newaxi:34,newcrap:18,newdata:[22,25,26],newer:4,newfil:4,newi:32,newli:15,newlin:11,newnoisef:18,newweight:28,next:[15,19,22,26,27,28,29,30,31,32,34,35,42],next_fast_len:[17,18],nf:17,nfft1:17,nfft:[17,18],nhat:[17,18],ni:39,nice:[4,11,18,23],nicoleta:[39,40],nipy_spectr:19,nlabel:31,nn1:29,nn:[18,29,30,31,32,33,35],no12:31,no1:31,no2:31,no_grad:[29,30,31,35],no_val_x:22,noaa:[24,27],node:[3,11],nois:[7,8,17,19,20,21,26,28,30,31,32,33,34,35,38],noise2:31,noise_factor:28,noisi:[8,16,18,26,32,33,35],noisy_sign:18,nomal:23,non:[1,13,17,35],none:[7,8,11,12,14,17,19,22,25,26,28,29,30,31,32,33,34,35],nonlinear:30,nor:27,norm:[8,19,32,33],norm_x1:14,norm_x1_norm:14,normal:[5,8,13,14,15,16,18,19,20,21,22,25,26,30,31,32,35,38],north:[8,11,15],northern:12,northwest:[7,15],note:[11,15,16,17,22,23,25,26,30,32,35,39],notebook:[2,3,4,6,12,14,17,22,24,25,27,30,32,38,39,42],noth:[14,18,23],notic:[14,15,17,32],notifi:4,notion:19,noverlap:17,now:[4,7,8,11,12,13,14,15,16,17,18,19,21,23,25,28,29,32,33],np:[2,7,8,11,12,14,15,16,17,18,19,21,22,23,24,25,26,28,29,30,31,32,33,34,35],np_to_th:33,nperseg:17,npmap:11,npoint:8,npt:[17,18],npts1:17,nqso:13,nrow:[11,22,24],nstar:13,nsubset:15,nt:7,num:28,num_class:[26,29,30],num_images_to_displai:31,number:[2,7,8,9,11,12,14,15,16,17,18,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,37,38],number_run:15,numel:14,numer:[10,11,13,14,20,24],numinput:28,numiter:28,numpi:[2,4,7,8,9,11,12,13,15,16,17,18,19,20,21,22,23,24,25,26,28,29,30,31,32,33,34,35,39],numsv:8,nvidia:3,nyq:17,o:[3,12,14,15,19,28,33,38],obei:[32,33],obj:19,object:[7,10,12,13,14,19,20,23,24,25,26,30,31,32,35],object_:12,objective_new:19,objective_old:19,objects_to_datetime64n:12,objid:13,observ:[8,9,10,12,15,16,19,23,24,28,33],obspi:[17,18],obtain:[15,23,24,32],obviou:32,occur:32,occurr:16,ocean:[3,5,10],oceanographi:[3,39],oct:12,off1:34,off2:34,off:[8,21,31,32,35],offer:[3,4,10,12,14,39],offic:14,offici:4,offset:5,ofr20191081:11,often:[2,3,10,11,13,14,15,16,17,19,25,31],ok027:31,ok029:31,ok:[12,13,18],okai:[15,21,32],ol:28,old:19,olsoutput:28,omega:23,on_bad_lin:11,on_click:28,onc:[4,12,15,23,27,29,32],one:[1,3,4,7,8,9,10,11,12,13,14,15,16,17,19,20,21,23,24,26,27,28,29,30,31,32,35,36,37],ones:[7,8,20,26,31,32],ones_lik:33,oneself:9,onevsrestclassifi:22,onli:[3,4,8,9,11,13,15,17,19,24,26,28,30,31,32,35,39],onlin:[4,28],onto:[8,17],oob_scor:26,open:[1,3,4,5,6,11,38,39,42],openeew:3,oper:[3,11,12,14,21,22,28,30,31],opportun:32,opt:[7,11,12,13,18,19,26,28,32],optic:19,optim:[3,10,11,14,19,20,23,25,26,27,31,33,34,35,36,38],optimis:33,optimist:15,optimizi:20,option:[4,8,11,13,23,28],oracl:14,orang:[8,16,19],ord:14,order:[1,12,14,17,22,30,42],ordinai:33,oregon:8,org:[8,11,12,14,19,21,23,25,30,31,32,38,42],organ:[4,8,9,11],orient:[8,24],origin:[4,7,8,11,12,15,16,17,19,21,31,32,35,39],origin_dist:15,orthogon:8,orthograph:12,orthonorm:17,os:[3,4,7,8,11,15,17,19,30,31,35],oscillatori:32,other:[1,2,4,5,7,9,10,11,13,14,15,17,19,20,21,26,27,28,29,30,34,37,38,40],otherwis:[29,32],ouput:32,our:[0,8,13,15,19,21,22,23,24,30,32],ourperceptron:28,out:[2,3,4,11,16,17,22,24,27,30,31,33,34],out_channel:31,out_featur:[29,30],outcom:12,outfil:11,outlier:[26,32,38],outofboundsdatetim:12,output:[1,8,9,10,11,12,14,15,17,20,22,26,28,29,30,31,32,33,34,35,38,39],output_dim:33,output_lay:30,output_pad:35,outputwidget:28,outstand:38,over:[1,4,5,8,10,12,15,16,17,18,19,29,30,31,32],overal:[6,15,19,31,32],overestim:15,overfit:[15,25,26,27,30],overlai:[7,8,17],overlap:[17,19],overli:15,overview:[4,14,35],overwrit:[4,9,12],overwritten:8,ovject:32,own:[3,4,5,14,19,23,38,39,42],owner:4,p395:[8,15],p:[14,15,16,19,21,23,25,27,28,29,31,32,33,35],p_valu:15,pacif:[7,15],packag:[2,4,7,8,11,12,13,14,15,17,18,19,21,22,23,26,28,32,36,39,42],pad:[24,31,35],page:[4,11,12,25,27],pai:26,pair:[8,11,19,24,38],pairgrid:19,pairplot:19,panda:[2,4,7,8,9,10,11,13,14,15,16,17,19,21,23,24,27,28,31,32,34,35,39],pandrarrai:21,panopt:31,paper:[4,9,31,37,39],paragraph:1,parallel:[3,22],param:[14,25,26,35],param_algorithm:25,param_distribut:25,param_grid:25,param_metr:25,param_n_neighbor:25,param_weight:25,paramet:[14,15,16,19,20,23,25,26,27,29,30,32,33,35],parameter:[17,32],parametr:[13,15],parent:35,pareto:16,park:11,parks_wa:11,pars:[12,27],parse_d:11,parse_datetime_str:12,parser:11,parso:[7,28],part:[4,29,30,31,32,34,35,39],partial:[23,32,33],particip:42,particl:19,particular:[7,11,14,32,38],particularli:[3,10,11,13,14,15,19,26,30,32],partit:[15,19,21],pass:[3,12,14,17,22,29,30,31,32,33,35],password:4,past:[15,17,34],path3dcollect:19,path:[4,13,19],path_or_buf:11,pathcollect:[8,19,21],pathwai:39,pattern:[5,24,31],pc:[8,19],pca:[9,20,35,38],pcolor:14,pcolormesh:17,pd:[7,8,11,12,13,15,16,17,19,21,23,24,27,31,32,34,35],pde:33,pdf:[17,39],pdist:19,pdt:39,peak:[19,31],pearson:[14,15,19],peform:21,penal:32,penalti:32,peopl:[4,27,37],pep:4,per:[10,12,17,22,30],percentag:[23,24,29],percept:28,perceptron:[29,31],perfect:[15,19,28],perfectli:32,perform:[3,4,12,13,14,15,17,19,20,25,26,28,29,30,31,32,35,36,38,39],period:[12,17],permiss:[4,39],permut:28,perol:31,person:4,perspect:19,petal:28,pexpect:[7,28],pga:38,phase:[17,18],phd:4,phenomena:16,phi:30,phone:4,physi:33,physic:32,physics_loss:33,physics_loss_discoveri:33,phytoplankton:19,pi:[8,14,15,17,18,19],pi_est:15,pick:31,pickl:22,pickleshar:[7,28],picoeuk:19,piec:4,pillow:[13,18,28],pinn:32,pio:12,pip3:2,pip:[4,7,12,13,17,18,26,27,28],pipelin:[9,13,19,20,30,32],pitfal:17,pivot:19,pixel:[8,11,29,31,35],piyg:21,place:[15,22,31],plai:[4,19],plain:[11,12,13],planetari:[3,39],plate:[8,13,18],plateau:[19,32],platform:[3,4,38,42],pleas:[0,3,4,6,12,17,25,27,32],plenti:[3,14],plot:[6,7,8,9,11,12,13,15,16,17,18,19,21,22,24,25,27,28,29,30,31,32,33,34,35,38],plot_decision_region:28,plot_imag:35,plot_learning_curv:32,plot_test:14,plotli:[19,39],plotoutput:28,plt:[7,8,11,12,13,14,15,16,17,18,19,21,22,24,25,28,29,30,31,32,33,34,35],pltcount:28,plu:[24,27,32,34],plugin:11,pm:[13,39],png:[1,12,14],point:[4,8,10,11,14,15,16,17,18,19,20,26,27,28,30,31,34],poisson:14,polar:32,poly_featur:32,poly_scal:32,polynomi:[17,20,32],polynomialfeatur:32,polyquadmesh:14,pool:30,poorli:[19,26,32],pop:19,popul:[3,15,19],popular:[7,10,19,20,26,27,30,32,35,42],popup:[11,27],porotomo:3,port:3,portion:[15,26],posit:[8,12,14,15,16,19,21,22,23,29,30,31,32,38],positron:12,possibl:[6,9,14,16,19,23,25,26,32,35,38,42],possibleactiv:28,post1:[13,28],post:4,potabl:23,potenti:[17,38],pow:[14,33],power:[12,14,16,18,19,30,32],power_law_data:16,pq:12,pr:21,practic:[3,4,6,12,14,15,17,20,22,32,35],practition:36,pre:[8,9,16,17,19,21],pre_dispatch:[22,25],precalcul:19,precipit:[10,12,13],precis:[21,22,23,32],precision_recall_curv:22,precision_recall_fscore_support:23,precision_scor:21,precisionrecallcollector:21,precisionrecalldisplai:22,precison:21,precondit:38,precursor:17,pred:[15,26,33],predecessor:26,predefin:25,predict:[7,9,10,14,15,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,35],predict_proba:[21,26,30],predictions_data:24,predictor:26,predsreg:33,prefer:4,prefer_skip_nested_valid:22,preferred_source_magnitud:7,preferred_source_magnitude_typ:7,preferred_source_magnitude_uncertainti:7,preinstal:2,preliminari:38,prep:32,prepar:[9,13,29,32,39],preprocess:[8,14,19,21,22,23,25,26,30,31,32,35,38],prescrib:19,presenc:[26,35],present:[0,17,18],preserv:17,pressur:10,preval:19,prevent:22,previou:[9,15,20,22,25,26,30,32,34,37],previous:[19,31],previouscost:28,primari:[15,19],primarili:[14,15],princip:39,principl:[33,39],print:[7,8,11,12,13,14,15,16,17,18,19,21,22,23,24,25,26,27,29,30,31,32,33,34,35],print_progress:22,printer:14,prior:[18,24,25,27],privat:[4,39],pro:[4,19],proba:26,probabilist:[15,25],probabl:[19,20,22,23,26,29,30,31,32,35],probe:[10,31],problem:[9,14,17,18,19,20,23,25,27,29,30,31,38],proce:30,procedur:15,process:[1,3,7,8,9,10,12,15,16,17,19,21,25,31,37],prochloro:19,produc:[11,20,27,28,37],product:[12,17,20,27,31,37],profession:27,profit:1,program:[1,3,4,10,39,42],progress:[26,32,39],project:[1,4,8,9,11,14,17,19,39,42],projection_typ:12,promis:[25,38],promot:0,prompt:[7,12,28],propag:[9,15,29,30,31,35],proper:[2,17,32],properli:32,properti:[9,10,14,16,17,18,19,23,26,32,35],proport:18,propos:[7,35,38],proven:38,provid:[2,3,4,5,8,12,13,14,15,19,20,26,27,29,30,31,33,36,38,39,42],proxim:14,pseudo:17,pseudoinvers:20,pseuo:17,psi:17,pt:[30,31,35],ptyprocess:[7,28],pub:12,publish:[37,42],puget:17,pull:[4,6,12,27,39],pull_request_templ:4,puor:8,pure:[7,18,28],purpos:[3,4,28],push:[4,6],put:[23,30],px:[12,19],py3:[7,17,26],py:[2,4,11,12,17,19,22,26,28,32],pycr:11,pydata:19,pygment:[7,28],pylab:14,pypars:[2,13,18,28],pypi:4,pyplot:[7,8,11,12,13,14,15,16,17,18,19,21,22,24,25,28,29,30,31,32,33,34,35],pytest:4,python3:[2,7,11,12,13,18,19,22,26,28,32],python:[3,4,6,7,9,10,11,13,14,16,17,18,19,23,28,30,38,39,42],pytorch:[2,32,35,36,39],pytz:[2,7,13,28],pyx:12,q:12,qc:19,qc_lwr:19,qc_mid:19,qc_upr:19,qda:21,qi:19,qso:13,quadrat:32,quadraticdiscriminantanalysi:21,quak:[12,31],quakes2:31,quakes2plot:12,qualit:[20,23,39],qualiti:[13,19,27,32,42],quantifi:[13,19,21,32],quantil:15,quantit:[20,23],quarri:7,quarter:[15,39],queri:[11,17,18],question:[9,37,38,39],queue:3,quick:[12,38],quickli:12,quot:11,quota:19,quotechar:11,r2:[15,27],r2_score:15,r:[7,8,10,12,13,14,15,24,26,28,30,31,32,33,34,38,39,42],r_valu:15,ra:13,radar:10,radial:20,radiant:3,radiu:[15,19],rain:39,rainfal:[10,12,13,16],rainfall_mm:12,rais:22,ran:3,rand:[14,18,23,31,34],randint:[21,25],randn:[8,14,18,19,33],random:[7,8,16,19,20,21,22,23,26,27,28,30,31,32,33,34,37,38,39],random_project:8,random_split:[29,30,31,35],random_st:[15,19,21,22,23,24,25,30,32],randomforestclassifi:[21,22,26],randomforestregressor:24,randomizedsearchcv:[25,30],randomizedsearchcvrandomizedsearchcv:25,randomli:[14,15,17,19,21,25,27,30,32],randomst:[22,30],rang:[7,8,11,12,14,15,18,19,21,22,24,28,29,30,31,32,33,34,35,38],range_color:12,rangeindex:13,rank:[13,19,20],rank_test_scor:25,ransac:27,rare:[15,16,17,32],raster:10,rate:[10,12,17,18,21,22,26,28,29,30,31,33],rather:[3,35],ratio:[8,15,18,21],ratt:[17,18],ravel:[30,32],raw:[5,7,9,12,13,16,17,18,22,25,26],raw_moment:16,rbf:21,rcparam:[14,19],rdbu:30,rdylbu:17,re:[4,14,15,28,32,33],reach:[3,19,23,32],read:[7,8,9,14,15,17,19,24,27,29,32,37,38],read_csv:[7,11,12,13,16,19,23,24,27],read_data:7,read_feath:19,read_fil:11,read_parquet:11,readabl:[9,10,11,29,38],reader:11,readi:[13,29,39],readm:[1,4,38],real:[3,17,18,30,35,38],realist:9,realli:[4,32],realpython:12,reason:[13,19,27,30,32],reassign:38,rec:21,recal:[21,22,23,32],recalcul:15,recall_scor:21,receiv:[8,21,22,31,34,37],recent:[11,12,17,22,30,32],recogn:[4,6,9,12,27],recommend:[2,3,8,19,39,42],reconstruct:[8,32,35],record:[7,8,12,15,16,24],recov:[8,12,35],recreat:17,rectifi:[30,31],recurs:19,red:[8,11,13,14,15,16,19,29,30,31],redefin:15,redshift:13,redshift_zero:13,reduc:[4,8,9,14,15,17,19,21,26,31,32,35,38],reduct:[9,20,26,32,35,39],redund:13,ref:[12,13],refer:[3,14,15,20,24,28,30],refit:25,refresh:39,regard:30,region:[3,10,11,12,25],register_hook:23,regr:15,regress:[5,9,14,25,26,27,29,30,33,34,39],regressor:25,regrid:14,regular:[26,30,31,33,34],regularis:32,regularli:[14,17,33],reinstal:27,reject:15,rel:[16,18,25,28,32,34],relat:[2,9,15,17,19],relationship:[13,15,19,26],releas:[12,13,18,28],relev:[19,32,38],reli:[31,42],reliabl:[13,15,26,27,38],relu1:30,relu2:30,relu:[29,30,31,33,35],remain:[4,15,32],remedi:34,rememb:23,remot:[3,4,6,10,14,39,42],remov:[2,4,8,9,13,14,16,17,24,26,32,35,38],removablehandl:23,remove_anyth:12,renam:[12,26],render:[12,25],reno:15,repeat:[15,17,27,31],repeat_kmean:19,repeatedli:15,replac:[4,11,12,13,15,19,26,31,42],replic:19,repo:[1,4],report:[7,11,15,16,21,22,30,39],reposistori:39,repositori:[3,6,27,39],repres:[5,8,10,13,15,17,20,35],represent:[17,19,25,30,31,35],reproduc:[2,9,15,19,30,31,32,38,39,42],request:[3,4,6,8,11,12,13,15,18,32],requir:[2,3,4,7,12,13,14,17,18,20,22,25,26,28,30,32,35,38],require_grad:33,requires_grad:[23,33],requires_grad_:33,rerun:[13,25],resampl:[14,26],rescal:12,research:[3,4,10,31,35,38,40],reset:[4,22,34,39],reset_index:[11,23],reshap:[7,8,14,15,17,19,22,28,29,30,31,32,33,35],resid:4,residu:[14,15,20,26,32,33,35],resnet:35,resolut:[12,35],resolv:[4,12,13,17],resour:3,resourc:[3,6,11,13,18,28,38,40],respect:[7,8,14,15,19,21,23,28,30,32,33],respons:[13,17,20,39],rest:32,restart:1,restrict:19,result:[12,14,15,19,20,21,23,25,26,27,29,30,31,32,35,37,38],result_horizont:31,result_vert:31,retain:[8,13],retain_grad:23,retina:14,retrain:32,retriev:14,return_gener:22,return_sequ:34,return_train_scor:25,returnprecisionandrecal:21,reus:[4,38],revers:[14,23,24,30],revert:30,review:[0,6,9,30,38],rf:[20,24,26],rf_clf:[22,26],rf_most_import:24,rf_predict:22,rich:42,ricker:18,ridg:33,ridge2:32,ridge_reg2:32,ridge_reg:32,right:[2,4,8,20,22,28,30,32],rise:5,risk:[15,26,32],river:[10,16],rlat:17,rlon:17,rmse:[27,32],rmsprop:32,rng:[15,28,30],ro:[19,24],robust:[8,19,25,26,32],roc:[21,22],roc_auc:22,roc_auc_scor:22,roc_curv:[21,22],roccurvedisplai:22,role:[19,31],roll:[12,14],root:[11,16,31,35],rotat:[8,9,19,24,32],rotation_mod:8,rouet:31,round:[24,30],routin:14,row:[7,8,10,11,12,13,14,16,17,18,19,23,24,27,28],row_index:19,row_label:8,rs:15,rst:4,rstudio:1,rt:33,rubi:42,rule:[20,30],run:[1,3,4,5,12,13,14,15,17,18,19,21,22,23,28,32,37,38,39,42],runner:27,running_loss:[29,30,31,35],running_val_loss:35,runtimewarn:17,rv:25,rw:12,s1:8,s2:8,s3:[3,8],s6x10hzdyra:3,s:[4,7,8,10,11,12,13,14,15,16,17,18,19,21,22,24,25,26,27,30,32,33,34,35],s_:8,s_i:32,s_k:32,sa:18,sagemak:3,sai:[7,9,31,32],sake:15,same:[2,4,8,9,12,14,15,18,19,22,26,27,28,31,35,37,38],samm:26,sampl:[8,10,11,12,14,15,16,17,18,19,20,21,22,25,26,29,30,31,32,35],sample_data:[29,30],sample_label:[29,30],sample_silhouette_valu:19,sample_weight:22,sampler:[31,35],sampling_r:17,sat:24,satellit:[10,11,14],satisfi:[7,12,13,18,26,28,32,33,36],save:[2,4,8,9,11,12,13,14,21,24,27,29,31,32,35,38],savefig:14,saw:8,sawtooth:8,sc:19,scala:42,scalar:[23,28,30,34],scale:[3,5,8,12,14,16,17,19,26,29,30,31,32,38],scaleogram:17,scaler:[19,22,23,25,26],scan:11,scatter:[8,15,16,19,21,28,30,35],scatter_3d:19,scatter_geo:12,scatter_mapbox:12,scatterplot:14,scenario:[12,19,26],schedul:3,schemat:31,scheme:[19,25],scholarship:39,sci:[19,26],scienc:[1,5,11,14,33,39,42],scientif:[1,10,11,14,17,38,39],scikit:[2,8,9,15,20,21,25,28,31,32,38],scikitlearn:[21,23],scipi:[2,7,8,9,13,14,15,16,17,18,19,25,26,28,31,33],scitkit:9,score:[19,20,21,22,25,26,30,31,32],scott:[39,40],scratch:[1,3,12,33],screen:[29,30,31,35],script:[4,9,39],se:[8,15],sea:[10,16],seaborn:[2,13,19],seaflow:19,search:[30,31],season:[5,14],seasonal_mean:14,seattl:[14,24],second:[1,5,8,10,14,15,16,17,18,23,26,31,33,34,35,39],section:[17,39],see:[1,3,4,8,11,14,15,17,18,19,21,27,30,32,42],seed:[8,19,30,31,33,38],seeed:30,seek:19,seem:[15,27,31],seemingli:32,seen:[16,28,32],segment:[9,35],seismic:[3,5,7,10,12,14,16,17,18,19],seismogram:[10,31,32,35],seismolog:[5,39],seismomet:[3,10,17],sel:14,select:[1,4,7,9,12,14,15,17,19,24,25,27,31,38],select_dtyp:13,self:[11,12,22,28,29,30,31,33,35],selu:35,semant:31,send:[3,30,35],sens:[3,9,10,14,19,32],sensit:[16,17,18,19,21,23,32,38],sensor:[12,13,17,32],sent:[12,13],sep:[11,12],sepal:[8,28],separ:[8,10,19,20,28,35,38,42],sequenc:[10,14,32,35],sequenti:[26,30,31,33,34,35],sequential_15:35,seri:[4,5,7,8,10,14,15,17,18,31,32,33,34,35,38,39],serv:19,server:[3,4,17,18],servic:[3,42],session:4,session_id:27,set:[3,5,7,8,11,12,13,14,15,17,21,22,25,26,28,29,30,31,34,35,38,39],set_aspect:[8,15,16,28],set_axis_off:22,set_axisbelow:[8,28],set_grad:23,set_opt:14,set_size_inch:19,set_them:19,set_titl:[8,14,17,18,19,22,24,28,30,31],set_vis:8,set_xlabel:[8,14,15,16,17,18,19,24,28,29,30,31],set_xlim:[16,17,19,30],set_xscal:[17,18],set_xtick:[8,19,30],set_ylabel:[8,14,15,16,17,19,24,28,29,30,31,32],set_ylim:[16,17,19,30,32],set_yscal:[14,17],set_ytick:[8,19,30],set_zlabel:8,setp:8,settingwithcopywarn:19,settl:27,setup:[4,27],setuptool:[4,7,18],setw:28,sever:[4,9,11,12,13,14,15,17,18,19,20,22,25,26,31,35,36,38],sgd:[20,29,30,32],sgd_reg:32,sgdclassifi:32,sgdregressor:32,sh:14,shade:17,shap:27,shape:[7,8,11,14,16,17,18,19,22,24,25,26,28,29,30,31,32,34,35],shapefil:10,share:[10,11,39,42],sharex:[15,17],sheet:4,shell:[3,39],shift:[16,17,32],shortcut:12,shorter:17,shortest:19,should:[0,4,8,9,14,15,22,25,27,28,30,31,32,38,39],show:[8,11,12,13,14,15,16,17,18,19,21,22,25,26,27,28,29,30,31],show_reconstruct:35,showcountri:12,shown:[12,35],shuffl:[15,22,25,26,28,29,30,34,35],shufflesplit:15,si:3,side:[15,16],sidebar:4,sig:[8,16,18],sigm:30,sigma:[8,14,16,23,30,32],sigmoid:[28,29,30,31,32,35],sign:[8,19,32],signal:[5,8,16,17,31,32,35],signatur:[17,32],signifi:19,significantli:[25,37],silhouett:19,silhouette_avg:19,silhouette_sampl:19,silhouette_scor:19,silic:16,silica:16,sim:15,similar:[5,10,14,17,18,19,24,26,32],similarli:[14,17,23,29],simpl:[1,6,7,9,10,11,12,15,19,20,23,27,30,31,32,33,34,38,39],simpleinput:28,simpleoutput:28,simpleperceptron:28,simpler:[8,32],simplernn:34,simplest:[29,34],simpli:[11,14,18,30,31],simplifi:[14,19,31],simul:[10,14,15,16,21],sin:[8,14,19,34],sinc:[11,12,15,22,30,32,34],sine:[14,17],singl:[7,8,9,10,11,19,26,27,28,29,30,32,34],singular:[8,20],sinusoid:[8,14],sio2:16,sio:16,sit:[15,16],site:[2,7,10,11,12,13,18,19,22,26,28,32],situ:10,six:[2,7,13,18,28],size:[8,11,12,14,15,16,17,19,23,25,26,28,29,30,31,32,35],size_cluster_i:19,size_img:[29,30],skew:[9,13,17],skicit:24,skill:[6,12],skimag:31,skip:35,skip_blank_lin:11,skip_parameter_valid:22,skipfoot:11,skipinitialspac:11,skiprow:[11,12],sklean:8,sklearn:[8,15,19,20,21,22,23,24,25,26,27,28,29,30,31,32,35,38,39],sky:13,skyblu:16,skyserv:13,skyserver_sql2_27_2018:13,skyserver_sql2_27_2:13,slack:42,sleep:17,slice:[14,15,19],slick:4,slide:9,slightli:[30,37],sloan:13,slope:15,slow:[19,31],small:[5,8,9,11,12,16,19,23,25,26,32,34],smaller:[8,9,11,15,19,23,26,30,32,38],smallest:[19,35],smi:3,smooth:[12,14,17,18,30],sn:[8,13,15,19],snapshot:10,snow:19,snr:18,so:[2,4,8,9,12,13,15,17,22,23,27,29,30,31,32,34,35,38],sobel:31,sobel_filter_horizont:31,sobel_filter_vert:31,societ:38,soft:26,softmax:[26,29,30,31,32],softplu:30,softwar:[3,6,10,11,16,40,42],software_carpentries_intermedi:41,sofwar:14,soil:[10,11,13],solid:27,solut:[9,19,20,27,28,29,32,33,38,39],solv:[10,11,19,20,23,34,38],solver:30,some:[2,3,4,8,9,11,13,14,15,17,18,19,20,23,27,30,32,39,40],somebodi:4,sometim:[13,37],somewhat:34,somewher:4,son:[11,14],sonic_boom:7,soon:32,sophist:[4,13],sort:[7,12,17,19,24,33],sort_valu:12,sosfilt:17,sound:17,sourc:[1,4,6,7,8,10,11,18,21,32,38,39,42],source_depth_km:7,source_duration_magnitud:7,source_duration_magnitude_uncertainti:7,source_hand_magnitud:7,source_latitude_deg:7,source_local_magnitud:7,source_local_magnitude_uncertainti:7,source_longitude_deg:7,source_origin_tim:7,source_typ:7,source_type_pnsn_label:7,south:[11,12],southern:[3,12],space:[8,9,10,14,16,19,25,30,32,33,36,42],span:17,spars:[30,32],spatial:[10,12,14,17,19,31],spatiotempor:19,spearman:[13,19],spearman_corr_matrix:13,speci:8,special:[11,14],specif:[1,2,3,4,5,7,9,10,11,12,14,16,17,18,21,22,23],specifi:[4,12,18,23,25,30],specobjid:13,spectra:17,spectral:[7,9,18],spectrogram:[17,31],spectrum:[17,18],speed:[16,17,18,19],spend:39,sphere:19,sphinx:4,spine:8,split0_test_scor:25,split1_test_scor:25,split2_test_scor:25,split3_test_scor:25,split4_test_scor:25,split:[7,8,15,19,21,25,26,30,31,34],splitlin:[8,15],spread:16,spreadsheet:10,spyder:2,sql2:13,sqlalchemi:18,sqrt:[1,8,14,17,18,19,31,32],squar:[8,14,15,16,19,20,28,30,31,32],squeez:[31,35],src:1,ssh:4,st:[7,16],sta:[8,15],stabil:26,stabl:[8,14,17,19,26,30,32,38],stack:[7,28,31,34,35],stacked_a:35,stacked_ae_checkpoint:35,stacked_cnna:35,stacked_decod:35,stacked_encod:35,stackeda:35,stackeddecod:35,stackedencod:35,stacklevel:22,staff:12,stage:[4,35],stai:35,stain:19,stamp:7,standalon:12,standard:[4,8,11,12,14,15,16,17,20,25,38,39,42],standardscal:[19,21,23,30,31,32,35,38],stanford:31,star:[2,13],start:[3,4,8,9,12,14,15,19,21,23,27,28,29,30,32,35,38],start_dim:[29,30],start_tim:12,startdat:12,startingbia:28,startingweight:28,starttim:[17,18],stat:[7,13,15,16,17,18,25],state:[9,11,15,32,34,38],state_dict:[30,31,35],statement:6,station:[10,12,15,17,18,31],stationari:35,statist:[7,9,10,12,13,14,15,17,18,20,24,26],statu:4,std:[8,12,13,14,15,16,17,24],std_err:15,std_fit_tim:25,std_scaler:32,std_score_tim:25,std_temp:16,std_test_scor:25,steelblu:8,stefan:[39,40],step:[5,9,14,16,19,23,25,27,28,29,30,31,32,33,35,38],step_ahead:34,stft:[17,38],still:[4,19,22,30,42],stochast:[8,20,29,31,38],stop:[14,19,28],stop_alg:19,stoppingcriterion:28,stoppingcriterionslid:28,storag:[3,4,7,10,11,14,38],storage_opt:11,store:[3,5,7,9,10,11,12,14,15,22,25,26,30,38],str:[8,11,12,15,18,19,24,27],straight:19,strategi:[15,19,31,32,35,38,39],strength:13,stretch:[9,21],strict:11,strictli:[20,30,31],stride:[31,35],string:[7,8,11,12,13,14],stringio:12,strive:[0,42],strmethodformatt:8,strong:[15,26,32],stronger:26,strongli:[15,19,26],strptime:24,structur:[9,10,11,12,13,14,15,18,19,31,35,38,42],strutur:19,student:[5,6,40],studi:[10,19,38],studio:[3,4],style:[19,21,24],sub:4,subarrai:14,subclass:29,subdata:19,subduct:15,subgroup:[19,26],submiss:[4,39],subplot:[6,8,13,14,15,16,17,18,19,21,22,24,28,29,30,31,32,35],subplots_adjust:30,subsequ:30,subset:[11,13,14,15,19,22,25,26,27,29,30,32,35,38],subsetrandomsampl:[31,35],substanti:25,subsurfac:10,subtract:[12,28],success:19,successfulli:[7,17,26],suffici:[3,20,32],suggest:[4,19,38],suitabl:19,sum:[8,12,13,14,16,19,23,26,28,29,30,31,32,33,35],sum_:[15,19,20,23,29,32],sum_i:14,sumatra:12,summar:[13,19,20,39],summari:[12,13,19,31,34,35],summarize_distribut:13,summary_galaxi:13,summary_qso:13,summary_star:13,sumup:30,sumvalu:21,sun:[24,39,40],sundai:24,superimpos:17,superposit:32,superseismo:4,supervis:[8,20,38],supplementari:31,suppli:8,support:[1,10,11,14,20,22,25,39],suppos:[12,38],suppress:19,suptitl:[19,22],sure:[2,4,7,14,15,22,34,38],surfac:[3,7,8,10,11,17,19],surface_ev:7,survei:[10,13],suscept:26,sv:[8,15],svc:[21,22,25,26],svc_clf:26,svc_predict:22,svg:21,svm:[20,21,22,26],symm:31,symmetr:[8,16,35],synchron:4,synecho:19,syntax:[14,15,30],synthet:[14,19,33,34,38],synthetics_pca:19,synthetics_sc:19,system:[3,4,6,8,10,11,14,15,20,37,42],systemat:[14,21,25,30,36],t0:33,t20:19,t:[8,12,14,15,16,17,18,19,20,23,27,28,30,31,33,34,39],t_0:33,t_1:33,t_b:15,t_train:15,t_val:15,tab10:35,tab:[29,30,31],tabl:[10,12,27],tabular:[10,12],tacc:3,tackl:19,tag:[8,11,39],tail:[16,17],take:[7,9,12,14,15,17,18,19,23,26,28,29,31,32,33,34,35],taken:[10,16,19],takewai:4,talk:23,tangent:30,tanh:[30,34],taper:[17,18],target:[8,15,22,25,26,27,28,29,30,38],target_nam:[8,22,25,28],task:[3,4,9,12,22,30,38],tau:31,taught:39,team:[31,37,39,42],technic:42,techniqu:[13,26,27,32,39],technolog:38,tecton:19,tediou:27,tell:[12,27],temp:[24,27,33],temp_1:[24,27],temp_2:[24,27],temperatur:[10,12,14,16,24,27,32,33],temperature_c:[11,12],temperature_f:12,templat:[4,31,39],templates_027:31,templates_029:31,tempor:[5,7,9,10,12,17],temporari:3,tenac:12,tend:[17,23,26,29,32,38],tensor:[3,23,29,30,33],tensorflow:[26,29,30,31,34],tenv:[8,15,33],term:[8,9,12,15,16,21,34],termin:[1,3,4,5,27],terminolog:4,test1:19,test:[4,12,15,19,21,23,25,26,30,31,32,34,35,38],test_dat:24,test_dataset:[29,30],test_df:27,test_featur:24,test_import:24,test_index:15,test_indic:22,test_label:24,test_module1:4,test_module2:4,test_siz:[15,21,22,24,25,26,29,30,31,32],testarrai:28,testcost:28,testinput:28,testload:[29,30,31,35],testpredict:28,texa:3,text:[1,4,8,11,13,14,15,17,18,19,27,28,30,32,33,42],textcolor:8,textfileread:11,textkw:8,textur:9,tf:[17,34],th:[19,23],than:[8,9,15,17,18,19,20,21,25,26,28,31,32,34,38],the_turing_way_community_2022_6909298:41,thei:[3,8,10,11,12,15,17,18,19,20,23,30,31,32,34,35,38],them:[4,7,8,9,10,12,18,19,21,27,32,39],themselv:7,thenarrai:7,theodorewolf:33,theorem:38,theoret:33,theori:39,therefor:[15,17,19,30,35],theta:[8,19],thi:[1,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,29,30,31,32,33,34,35,36,38,39,40,42],thing:[9,28,38,42],think:[15,27],third:[1,16,18,23,26],thiscost:28,thisinput:28,thispandr:21,thistarget:28,thorough:25,those:[8,14,27],though:[3,6,37],thought:[10,31],thousand:11,threadpoolctl:28,three:[3,8,11,13,14,19,23,31,39],thresh:[17,19],threshod:19,threshold:[8,19,21,29,30,31,32],through:[3,8,10,13,15,19,29,30,31,32,37,39],throughout:[5,39],thu:[8,21,23,32],thunder:7,ti:10,tick:[8,19,24],tick_param:[8,14,29,30,31],ticker:8,tier:3,tif:11,tiff:11,tight:[14,19],tight_layout:[8,13,14,16,24,28,29,30,31],tightli:3,tile:8,tiledb:[5,10],time:[3,5,7,8,9,10,11,14,15,16,18,19,20,25,27,29,30,31,32,33,34,35,36,38,39],time_series_features_extractor:7,timedelta:12,timedistribut:34,timeit:[12,14,17],timestamp:12,tip:14,titl:[8,12,13,14,15,16,17,18,19,22,24,28,30,32],tlu:29,tn:[7,21,23],tnr:21,to_csv:[11,12,13],to_datetim:12,to_netcdf:14,to_numpi:[19,23],to_parquet:[11,12],to_zarr:14,todai:[24,27],todoran:[39,40],togeth:2,toi:[8,19,32,33,38],token:4,tol:32,toler:32,too:[12,15,21,23,32,34,38],tool:[2,4,11,12,19,21,25,38,39],toolbox:[17,19],toolkit:[7,28,39],tooth:8,top3:27,top:[1,3,4,8,12,31],topic:39,toplot:28,topographi:[10,11],torch:[14,23,29,30,31,33,35],torchinfo:35,torchvis:[31,35],total:[4,13,14,21,25,26,29,30,31,35],totalfals:21,totaltru:21,totensor:[31,35],touch:4,toward:9,towardsdatasci:24,towfish_001:19,towfish_002:19,towfish_003:19,towfish_004:19,towfish_005:19,towfish_006:19,towfish_007:19,towfish_008:19,towfish_009:19,towfish_010:19,towfish_011:19,towfish_012:19,towfish_013:19,towfish_014:19,towfish_015:19,towfish_016:19,towfish_017:19,towfish_018:19,towfish_019:19,towfish_020:19,tp:[19,21,23],tpr:[21,22],tpu:3,trace:7,trace_nam:7,trace_p_onset:7,trace_s_onset:7,trace_snr_db:7,traceback:[11,12,17,22,30,32],track:[4,5,14,15],trade:21,tradeoff:32,tradit:4,train:[15,19,20,21,23,25,26,28,33,34,35,37,39],train_data:35,train_dataset:[29,30],train_df:27,train_error:32,train_featur:24,train_import:24,train_index:15,train_label:[24,31],train_set:31,train_siz:[29,30],train_test_split:[21,22,24,25,26,30,31,32,35],trainabl:35,traininput:28,trainload:[29,30,31,35],traintarget:28,traitlet:[7,28],transform:[7,8,9,11,12,13,14,19,22,23,25,26,30,31,32,35,38,39],transit:14,translat:[17,31],transmit:37,transpos:8,treat:[13,31],tree:[11,20,21,26,30],tremend:40,trend:[15,32],trial:30,trick:32,tricki:27,trim:17,triplic:19,true_data:24,true_label:19,true_valu:11,trust:25,truth:[19,32,34],ts:33,tsfel:[7,9],tsfresh:[7,9],tslib:12,tsne:35,tstart:[17,18],tt:15,tue:24,tunabl:19,tune:[15,18,27,32,35,38],tuner:31,tupl:24,ture:[4,40],turn:[8,17,30,34],tutori:[3,4,11,12,14,15,22,24,25,27,30,33,35,40],twin:18,twinx:[29,30,31],two:[4,8,10,11,12,13,14,15,16,17,19,20,21,24,28,31,35,36],txt:[2,4],type:[1,4,6,7,10,11,12,14,17,18,19,20,22,25,26,27,28,30,31,35,38,39],typic:[3,4,5,7,10,12,13,14,15,16,17,19,26,32,35],tz_local:12,tz_pars:12,tz_to_dtyp:12,tzdata:[7,13,28],u:[1,8,13,19,32],u_:15,u_n:15,uc:[24,27],ue:[8,15,32],ug3_fcm_distribut:19,un:[8,15],unabl:[12,25],uncertain:[15,26],uncertainti:[9,15,19,34],unclear:31,uncom:14,under:[4,7,19,21,27],underestim:15,underfit:[25,26,27,32],underli:[14,15,42],underlin:1,understand:[8,10,13,19,25,31,39],undertak:8,underwai:19,underway_002:19,underway_003:19,underway_004:19,underway_005:19,underway_006:19,underway_007:19,underway_008:19,underway_009:19,underway_010:19,underway_011:19,underway_012:19,underway_013:19,underway_014:19,underway_015:19,underway_017:19,underway_018:19,underway_019:19,underway_020:19,underway_021:19,underway_022:19,underway_023:19,underway_024:19,underway_025:19,underway_026:19,underway_027:19,underway_028:19,underway_029:19,underway_030:19,underway_031:19,underway_032:19,underway_033:19,underway_034:19,underway_035:19,underway_036:19,underway_037:19,underway_038:19,underway_039:19,underway_040:19,underway_041:19,underway_042:19,underway_043:19,underway_044:19,underway_045:19,underway_046:19,underway_047:19,underway_048:19,underway_049:19,underway_050:19,underway_051:19,underway_052:19,underway_053:19,underway_054:19,underway_055:19,underway_056:19,underway_057:19,underway_058:19,underway_059:19,underway_060:19,underway_061:19,underway_062:19,underway_063:19,underway_064:19,underway_065:19,underway_066:19,underway_067:19,underway_068:19,underway_069:19,underway_070:19,underway_071:19,underway_072:19,underway_073:19,underway_074:19,underway_075:19,underway_076:19,underway_077:19,underway_078:19,underway_079:19,underway_080:19,underway_081:19,underway_082:19,underway_083:19,underway_084:19,underway_085:19,underway_086:19,underway_087:19,underway_088:19,underway_g3:19,unecessari:8,unifi:[3,4],uniform:[14,15,16,18,19,25,30,38],uniqu:[7,8,12,19,22,26,31],unique_d:12,unit:[3,4,8,12,14,17,19,29,30,31,33],univers:[15,30,39,40],unix:[6,12],unknown:12,unlik:[15,17],unnam:7,unord:1,unr:[8,15],unread:14,unrealist:17,unseen:[15,27],unstag:4,unsupervis:[8,19,38,39],unsur:14,until:[17,18,19,23,26,28,31,32],unveil:19,unzip:11,up:[8,12,15,17,18,20,21,26,27,31],updat:[8,11,12,13,14,18,19,23,28,29,30,31,32,34,35,39],update_geo:12,update_layout:12,updatebtn:28,updateclick:28,upgrad:[12,13,18,28],upload:[4,39],upper:[4,15],upper_critical_valu:15,upsampl:14,upstream:37,url:[1,4,5,11,12,16],urllib3:18,us:[1,2,3,5,6,7,8,9,10,11,13,14,16,17,18,19,20,21,22,23,24,25,26,27,29,30,31,32,33,34,35,37,38,39,42],usabl:30,usag:[3,4,13],usecol:[11,12],user:[1,2,4,7,11,12,13,14,18,19,26,28,30,32,42],user_guid:19,usernam:4,userwarn:12,usg:11,usual:[3,7,15,19,20,27,30,32],utc:12,utcdatetim:[17,18],utf:[11,12],util:[15,22,23,29,30,31,32,35,42],uv:[8,15,32],uw60888282:7,uw61361706:7,uw61639436:7,uw61669232:7,uw61735446:7,uw:[1,3,4,5,6,12,13,16,17,18,19,39,40,42],v:[8,19],v_e:15,v_measure_scor:19,v_n:15,v_size:15,va:8,vae:35,val:[32,35],val_data:35,val_error:32,val_index:15,val_loss:35,val_set:31,valfmt:8,valid:[13,22,32,34,35,38,39],validate_separ:22,validation_data:34,valu:[8,10,12,14,15,16,17,18,19,20,21,23,24,25,26,27,28,29,30,31,32,33,34,35,38],valuabl:[13,15,19],value_count:12,valueerror:[22,32],vanish:[30,34],vanuatu:12,varaibl:15,vari:[7,10,14,18,21],variabl:[6,8,9,10,11,12,13,14,15,16,17,19,22,23,24,27,30,32],varianc:[8,15,17,19,20,26,32],variance_1:7,variat:[14,16,19,32],varieti:11,variogram:19,variou:[3,4,5,7,10,15,17,18,19,21,26],varoquaux:21,ve:[13,15],vector:[8,10,14,15,17,19,20,22,23,25,28,30,32,33,39],veget:13,vel:15,veloc:[15,17],venv:2,verbos:[11,22,25],veri:[2,4,12,14,17,18,19,20,23,26,27,30,34,38],verifi:[12,15],version:[1,2,11,26,30,31,37,42],versu:19,vertic:[3,7,8,17,19,24,31,32],verticalalign:8,vi9gmjy8d4zd5jv:31,via:[2,10,19,30,39],vibrat:7,video:[3,42],view:[5,12,19,30,31,33,35,39],viewoutput:30,virginica:28,viridi:17,virtual:[3,4],visit:2,visual:[3,4,8,11,14,15,16,19,21,24,27,35,38,39,42],vmax:[7,8,14,17],vmin:[7,8,14,17],volcan:19,volcano:19,volum:19,voting_clf:26,votingclassifi:26,vs:[4,8,11,15,16,26],vscode:[3,12,17,22,30,32],vstack:[8,19],vt:8,w1sdnnjb2rllxjlbw90zq:17,w:[8,11,14,17,20,23,28,29,30,31,32],w_0:20,w_1:20,w_ela:32,w_i:[29,32],w_j:[23,28,29,32],w_k:29,w_lasso:32,w_n:20,w_ridg:32,w_sgd:32,wa:[11,12,15,16,19,20,21,22,24,25,26,31,32,35],wai:[2,4,8,11,12,13,14,15,19,23,25,27,32,35,38,40],wait:[17,19,28],walk:13,want:[11,12,14,15,17,23,24,29,30,32,33,34],ward:19,warm_start:32,warn:[8,17,19,22,23,26,32],washington:[11,39],watch:[3,22,25,26],water:[10,12,23],water_pot:23,wave:[5,10,34,35],wavedecompnet:35,wavefield:[10,35],waveform:[7,17,18,19,35],wavelength:10,wavelet:[7,9,18,39],wavenumb:17,wavespe:10,wcwidth:[7,28],wdb25puxh3u07dj:[11,17],we:[0,2,3,4,5,7,8,10,11,12,13,14,15,16,17,18,19,20,21,22,23,25,26,28,29,30,32,33,34,35,39,42],weak:26,weather:[5,10,11],web:[3,5,11,42],wednesdai:39,week:[24,39],week_fri:24,week_mon:24,week_sat:24,week_sun:24,week_thur:24,week_tu:24,week_w:24,weigh:32,weight:[14,16,21,22,25,26,28,29,30,31,32,33,34],weightedsum:28,weightupd:28,weka:27,welcom:[4,42],well:[4,14,15,19,20,21,22,23,26,28,30,32,38],went:37,were:[3,11,12,14,19,21,22,23,26,28,31,32,40],west:[11,14],westward:15,wget:[5,7,11,12,13,17,19,24,27,31],what:[3,4,7,8,9,12,13,14,15,16,17,18,19,21,23,25,26,27,31,33,38],wheel:4,when:[3,4,11,12,13,14,15,19,21,22,23,25,26,27,28,30,32,35,38,39],where:[1,3,4,7,8,10,11,12,13,15,16,17,19,20,23,27,28,29,30,31,32,33,37,38],whether:[9,11,15,21,30,32],which:[2,4,8,10,11,12,13,14,15,16,17,18,19,20,23,25,26,27,29,30,31,32,35,36,38,39,42],whichitem:28,white:[8,14,18,19],whl:[7,17,26],who:[4,14],who_is_awesom:14,whole:[11,16,23],why:[3,15,27,31,32],wich:14,wide:[10,11,15,16,21,25,27,30,35,42],widget:[27,28],widgetsnbextens:28,width:[1,8,11,12,17,18,28,31],wiggl:32,wiki:21,wikimedia:21,wildfir:16,willustr:32,wind:16,window:[3,4,12,13,14,17,18,30,31],winner:[17,22],wise:[14,27],within:[3,11,12,14,15,17,19,24,26,27,30,31],without:[4,8,9,12,18,26,30,32,38],wmp:12,won:34,work:[0,2,3,8,11,12,13,14,15,19,23,25,26,27,31,34,38],worker:22,workflow:[3,7,9,15,17,27,39],workspac:[17,22],world:[3,27,38],worlpert:38,would:[3,4,7,8,14,17,23,24,26,28,30,31,32,35,37,38],wrap:[14,29],wrapper:22,write:[4,9,11,12,14,23,31,33,38,39],written:1,wrong:[19,27,32],wrote:3,wsl:12,wt:16,wwvb:12,www:[7,11,13,14,17,19,23,24,31],wx:[29,30],x1:[14,19,31],x1_norm:14,x25sdnnjb2rllxjlbw90zq:22,x27:25,x2:[14,19],x2_smooth:14,x30szmlszq:32,x3:[14,19],x41szmlszq:30,x4:14,x:[1,5,7,8,9,11,12,14,15,16,17,19,20,21,22,23,24,28,29,30,31,32,33,34,35,38],x_1:20,x_:[15,23],x_a:15,x_b:15,x_i:[14,15,19,23,29],x_int:14,x_label_list:17,x_lat:14,x_lon:14,x_max:30,x_min:30,x_n:20,x_new:[8,30],x_p:19,x_pca:8,x_poli:32,x_scale:38,x_std:38,x_t:14,x_test:[21,22,25,26,30,31,34],x_tl:14,x_train:[21,22,25,26,30,31,32,34],x_train_poly_sc:32,x_val:[32,34,35],x_val_2d:35,x_val_compress:35,x_val_poly_sc:32,x_valu:24,xarrai:[9,11],xarrrai:14,xavg:8,xaxi:28,xc:8,xgb:26,xgboost:[26,30],xkcd:21,xlabel:[8,12,14,15,16,17,18,19,21,22,24,28,30,32,33,34],xlat:17,xlim:[8,16,17,18,19,22,30,32],xlon:17,xp:22,xr:14,xrang:28,xscale:18,xt:33,xtick:[8,14,15,17,24],xx:[7,30],y2:19,y3:19,y:[5,7,8,9,11,12,14,15,17,19,20,21,22,23,24,25,26,28,29,30,31,32,33,34,35],y_ela:32,y_i:[14,19,20,23,32],y_k:29,y_lasso:32,y_lower:19,y_max:30,y_min:30,y_numer:22,y_pred:[14,22,25,26,34],y_predict:32,y_proba:30,y_relu:31,y_ridg:32,y_ridge2:32,y_score:[21,22],y_sgd:32,y_sridg:32,y_test:[21,22,25,26,30,31,34],y_test_pr:21,y_train:[21,22,25,26,30,31,32,34],y_train_pr:22,y_train_predict:32,y_true:[22,25],y_upper:19,y_val:[32,34,35],y_val_predict:32,yaxi:19,ye:[2,23,27],year:[4,5,7,8,12,15,17,24,30,38],yearfirst:12,yellowston:[11,19],yesterdai:[24,27],yet:[4,32],yhat:23,yield:[17,32,36],yin:35,yiyu:39,ylabel:[8,14,15,16,17,18,19,21,22,24,28,32,33],ylim:[8,17,18,19,22,32],yml:[4,38,39],you:[1,3,4,5,7,8,9,11,12,13,14,15,17,18,19,21,23,26,27,28,29,30,31,32,35,37,38,42],your:[3,5,9,11,12,13,14,15,17,19,21,23,27,28,29,30,32,38,39,42],your_command:4,your_packag:4,yourusernam:4,youtu:3,yrang:28,yscale:[17,18,33],yt:33,ytick:[14,15,17],yy:30,z:[7,11,12,13,16,17,18,19,23,29,30],zarr:[9,10,14],zel:17,zenodo:4,zero:[7,8,15,17,18,19,21,23,28,29,30,31,32,35,38],zero_grad:[29,30,31,33,35],zf:17,zhat:[17,18],zhu:35,ziheng:[39,40],zip:[8,11,22,24,30],zipfil:[8,11,15],zipp:[13,18,28],zone:15,zoom_start:11,zorder:8,zp:16,zsort:17,zxx:17},titles:["1.1 Open Reproducible Science","1.3 Jupyter Environment","1.3 Python Ecosystem","1.4 Computing Environments","1.5 Version Control & GitHub","1.6 Data Gallery","Getting Started","2.9 Feature engineering","2.10 Dimensionality Reduction","2.11 ML-ready data","2.1 Data Definitions","2.2 Data Formats","2.3 Pandas","2.4 DataFrame Exploration","2.5 Data Arrays","2.6 Resampling Methods","2.7 Statistical Considerations for geoscientific Data and Noise","2.7 Spectral Transforms","2.9 Synthetic noise","3.1 Clustering","3.2 Classification and Regression","3.3 Binary classification","3.4 Multiclass Classification","3.5 Logistic regression","3.6 Random Forests","3.7 Hyperparameter Tuning","3.8 Ensemble learning","3.9 AutoML","4.0 The Perceptron","4.1 Neural Networks","4.2 Multi Layer Perceptrons","4.3 Convolutional Neural Networks","4.3 Model Training","4.2 Physics-Informed Neural Networks","4.4 Recurrent Neural Networks: Processing sequences","4.5 Auto-encoders","4.6 NAS: Network Architecture Search","This chapter focuces on model workflow and ML reproducibility","The MLGeo Project","Machine Learning in the Geosciences","Acknowledgements from Contributors","Bibliography","Glossaries"],titleterms:{"0":[28,31],"1":[0,1,2,3,4,5,8,10,11,12,14,15,16,17,18,19,20,21,22,24,25,26,29,30,31,32,38],"10":8,"11":9,"1d":14,"2":[7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,24,25,26,29,30,31,32,33,34,38],"2d":[14,17],"3":[1,2,8,11,12,14,15,16,17,19,20,21,22,23,24,25,26,27,29,30,31,32,38],"3d":8,"4":[3,8,12,13,14,15,17,18,19,22,24,26,28,29,30,31,32,33,34,35,36,38],"5":[4,8,12,14,15,23,24,29,30,31,32,35,38],"6":[5,8,12,14,15,24,32,36,38],"7":[16,17,24,25,38],"8":26,"9":[7,18,27],"class":29,"do":2,"final":13,"function":[12,29,30,32],"import":24,"new":4,"short":17,A:31,But:11,One:[15,24],The:[16,19,28,31,38],To:31,about:28,account:4,acknowledg:40,activ:[30,31],adaboost:26,addit:4,advanc:12,aggreg:12,ahead:34,algorithm:20,an:[2,4,31],analysi:[8,13],app:4,appendix:23,ar:2,architectur:36,arrai:[10,11,14,29],asid:31,assembl:31,assess:24,authent:4,auto:35,autoencod:35,automat:23,automl:27,aw:3,azur:3,bag:26,baselin:24,basic:[1,2,12,14,17],batch:32,befor:19,best:27,bibliographi:41,binari:21,bonu:14,boost:26,bootstrap:15,build:39,can:34,canon:16,carlo:15,chapt:38,chapter:[37,38],check:[13,24,27],checklist:32,choic:[19,31],choos:14,classic:12,classif:[20,21,22,32],classifi:[21,26],clever:32,cloud:3,cluster:19,cnn:31,code:2,colab:3,column:[12,27],comma:11,command:[1,2],compar:27,comparison:14,compon:8,comput:[3,14,24],conda:2,condit:12,connect:31,consider:16,contribut:4,contributor:40,control:4,convers:14,convex:32,convolut:[31,35],correl:13,cours:39,covari:8,creat:[4,12,28,29],cross:[15,25],csv:[11,12],custom:29,data:[5,8,9,10,11,12,13,14,15,16,18,19,21,22,24,27,28,30,31,35,38],datafram:[12,13],dataload:29,dataset:[5,28,29],deal:2,decis:24,decod:35,deep:32,defin:31,definit:[10,31,42],denois:35,descent:[23,32],descript:5,design:[29,30,38],desktop:4,determin:8,differenti:23,dimension:[8,35,38],directori:4,discov:33,displai:27,distanc:[14,19],distribut:[13,16],download:[5,24,38],earli:32,earthquak:12,ecosystem:2,elast:32,elbow:19,encod:[24,35],engin:7,enhanc:4,ensembl:26,environ:[1,2,3],evalu:27,event:18,exampl:[2,4,12,15,31,32,35],exercis:[12,13,14,18,32],exist:4,explan:4,explor:[7,8,13,21,24],extract:[8,14],far:34,featur:[7,8,13,16,24],file:[2,4,5,12],filter:17,fine:30,first:[24,27],fit:[28,32],focuc:37,fold:15,forecast:34,forest:24,format:[10,11],forward:30,fourier:17,frame:[10,38],freez:2,from:[5,6,12,40],fulli:31,fundament:12,futur:34,galleri:5,gener:[12,42],geodet:15,geojson:11,geolog:16,geopanda:11,geoscienc:[10,39],geoscientif:[14,16],geospati:11,geotiff:11,get:[6,27],git:4,github:[4,39],glossari:42,googl:3,gradient:[23,26,32],grid:25,handl:[11,13],hassl:27,hdf5:11,hierarch:[11,19],high:14,homework:39,hot:24,how:[2,5,31,34],hpc:3,hub:1,hyperparamet:[25,30],i:11,imag:31,implement:[23,31],independ:8,infer:15,inform:[18,33],initi:24,intermedi:12,interpret:27,introduct:23,iri:28,javascript:11,json:11,jupyt:1,k:[15,19],kei:4,kurtosi:16,lab:1,label:24,lambda:12,larg:11,lasso:32,latent:35,layer:[30,31],learn:[6,19,26,30,32,39],leav:15,lectur:10,lenet:31,let:[28,31],level:[14,15,16,17,18],line:28,linear:[15,20],littl:28,load:29,local:3,logic:12,logist:23,loss:[29,32],low:35,lstm:34,machin:39,magnitud:12,main:4,manipul:[12,14],map:12,markdown:1,matplotlib:14,matrix:8,mean:[8,16,19],measur:14,metadata:7,method:[15,19],metric:[21,27],mini:32,miss:13,ml:[9,31,37],mlgeo:[5,38],mlp:30,modal:10,model:[15,21,24,27,29,30,31,32,33,35,37,38],mont:15,more:27,motion:15,multi:[30,35],multiclass:22,multipl:12,na:36,nan:13,need:2,net:[32,35],netcdf4:11,netcdf:11,network:[29,30,31,33,34,36],neural:[29,30,31,33,34],nois:[16,18],norm:14,notat:11,note:[4,31],notebook:1,number:19,numpi:14,nyquist:17,o:11,object:[6,11,39],open:0,optim:[29,30,32],organ:38,other:[8,32],our:[28,31],out:[15,28],outcom:8,overfit:32,overview:39,panda:12,paramet:[8,31],parquet:[11,12],past:26,pca:[8,19],perceptron:[28,30],perform:[21,24],physic:[18,33],pinn:33,plate:15,plot:14,plotli:12,pool:31,practic:[19,31],predict:34,prep:31,prepar:[22,24,30,38],prerequisit:39,princip:8,problem:[32,34],process:34,project:38,publish:[4,31],pycaret:27,pyproject:4,python:[2,12],pytorch:[14,23,29,30,31],qualiti:24,random:[14,15,18,24,25,29],randomli:24,raster:11,rasterio:11,rate:32,re:22,read:[11,12,13,31,39],readi:[9,27],realist:18,recod:31,recommend:4,recurr:34,reduct:[8,38],regress:[15,20,23,24,32],regular:32,rememb:28,repeat:19,repositori:[4,5],reproduc:[0,37],resampl:15,resourc:4,respons:12,restor:30,review:31,ridg:32,right:14,rnn:34,robust:15,rule:28,run:[2,27],s:[28,31],save:30,scale:22,scienc:0,scikit:[19,30],search:[25,36],section:12,segment:31,seismic:31,seismolog:35,select:8,separ:[11,24],sequenc:34,seri:12,set:[4,16,19,24,32],sever:34,shape:27,signal:18,skew:16,skill:39,slide:10,slow:11,softwar:4,solut:34,some:[28,31],space:[7,17,35],specif:39,spectral:17,split:[22,24,27,29],stack:26,start:[6,31],statist:16,step:[4,8,34],stochast:32,stop:32,structur:[4,30],student:[12,14,39],subtract:8,svd:8,syllabu:39,synthet:[18,21],tabular:11,task:[14,35],team:4,technic:39,techniqu:[8,15],technolog:42,tensor:14,test:[22,24,27,28,29],text:12,thi:[2,28,37],tier:39,time:[12,17],tip:19,toml:4,tool:[14,42],train:[22,24,27,29,30,31,32,38],transform:17,tree:24,troubleshoot:27,tune:[25,30,31],tutori:[19,39],typic:30,u:35,uncertainti:17,under:32,up:[4,19,24,32],us:[4,12,15,28],valid:[15,25],valu:[11,13],varianc:16,version:[4,39],via:8,virtual:2,vote:26,vs:12,wavelet:17,we:[24,27,31],webinar:39,what:[1,2,28],why:14,work:4,workflow:[4,37],xarrai:14,yml:2,you:[2,34],your:[2,4],zarr:11,zero:[6,13]}}) \ No newline at end of file +Search.setIndex({docnames:["Chapter1-GettingStarted/1.1_open_reproducible_science","Chapter1-GettingStarted/1.2_jupyter_environment","Chapter1-GettingStarted/1.3_python_environment","Chapter1-GettingStarted/1.4_computational_environments","Chapter1-GettingStarted/1.5_version_control_git","Chapter1-GettingStarted/1.6_data_gallery","Chapter1-GettingStarted/readme","Chapter2-DataManipulation/2.10_feature_engineering","Chapter2-DataManipulation/2.11_dimensionality_reduction","Chapter2-DataManipulation/2.12_MLready_data","Chapter2-DataManipulation/2.1_Data_Definitions","Chapter2-DataManipulation/2.2_data_formats_rendered","Chapter2-DataManipulation/2.3_pandas_rendered","Chapter2-DataManipulation/2.4_dataframes_prep","Chapter2-DataManipulation/2.5_Arrays","Chapter2-DataManipulation/2.6_resampling","Chapter2-DataManipulation/2.7_statistical_considerations","Chapter2-DataManipulation/2.8_data_spectral_transforms","Chapter2-DataManipulation/2.9_synthetic_noise","Chapter3-MachineLearning/3.1_clustering","Chapter3-MachineLearning/3.2_classification_regression","Chapter3-MachineLearning/3.3_binary_classification","Chapter3-MachineLearning/3.4_multiclass_classification","Chapter3-MachineLearning/3.5_logistic_regression","Chapter3-MachineLearning/3.6_randomForest_regression","Chapter3-MachineLearning/3.7_hyperparameter_tuning","Chapter3-MachineLearning/3.8_ensemble_learning","Chapter3-MachineLearning/3.9_autoML","Chapter4-DeepLearning/mlgeo_4.0_perceptrons","Chapter4-DeepLearning/mlgeo_4.1_neural_networks","Chapter4-DeepLearning/mlgeo_4.2_MultiLayerPerceptron","Chapter4-DeepLearning/mlgeo_4.3_CNN","Chapter4-DeepLearning/mlgeo_4.3_ModelTraining","Chapter4-DeepLearning/mlgeo_4.3_PINN","Chapter4-DeepLearning/mlgeo_4.5_RNN","Chapter4-DeepLearning/mlgeo_4.6_AutoEncoder","Chapter4-DeepLearning/mlgeo_4.6_NAS","Chapter5-ModelWorkflows/readme","about_this_book/0_mlgeo_project","about_this_book/about_this_book","about_this_book/acknowledgements","reference/bibliography","reference/glossary"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":5,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":3,"sphinx.domains.rst":2,"sphinx.domains.std":2,"sphinx.ext.intersphinx":1,"sphinxcontrib.bibtex":9,sphinx:56},filenames:["Chapter1-GettingStarted/1.1_open_reproducible_science.md","Chapter1-GettingStarted/1.2_jupyter_environment.md","Chapter1-GettingStarted/1.3_python_environment.md","Chapter1-GettingStarted/1.4_computational_environments.md","Chapter1-GettingStarted/1.5_version_control_git.md","Chapter1-GettingStarted/1.6_data_gallery.md","Chapter1-GettingStarted/readme.md","Chapter2-DataManipulation/2.10_feature_engineering.ipynb","Chapter2-DataManipulation/2.11_dimensionality_reduction.ipynb","Chapter2-DataManipulation/2.12_MLready_data.ipynb","Chapter2-DataManipulation/2.1_Data_Definitions.md","Chapter2-DataManipulation/2.2_data_formats_rendered.ipynb","Chapter2-DataManipulation/2.3_pandas_rendered.ipynb","Chapter2-DataManipulation/2.4_dataframes_prep.ipynb","Chapter2-DataManipulation/2.5_Arrays.ipynb","Chapter2-DataManipulation/2.6_resampling.ipynb","Chapter2-DataManipulation/2.7_statistical_considerations.ipynb","Chapter2-DataManipulation/2.8_data_spectral_transforms.ipynb","Chapter2-DataManipulation/2.9_synthetic_noise.ipynb","Chapter3-MachineLearning/3.1_clustering.ipynb","Chapter3-MachineLearning/3.2_classification_regression.ipynb","Chapter3-MachineLearning/3.3_binary_classification.ipynb","Chapter3-MachineLearning/3.4_multiclass_classification.ipynb","Chapter3-MachineLearning/3.5_logistic_regression.ipynb","Chapter3-MachineLearning/3.6_randomForest_regression.ipynb","Chapter3-MachineLearning/3.7_hyperparameter_tuning.ipynb","Chapter3-MachineLearning/3.8_ensemble_learning.ipynb","Chapter3-MachineLearning/3.9_autoML.ipynb","Chapter4-DeepLearning/mlgeo_4.0_perceptrons.ipynb","Chapter4-DeepLearning/mlgeo_4.1_neural_networks.ipynb","Chapter4-DeepLearning/mlgeo_4.2_MultiLayerPerceptron.ipynb","Chapter4-DeepLearning/mlgeo_4.3_CNN.ipynb","Chapter4-DeepLearning/mlgeo_4.3_ModelTraining.ipynb","Chapter4-DeepLearning/mlgeo_4.3_PINN.ipynb","Chapter4-DeepLearning/mlgeo_4.5_RNN.ipynb","Chapter4-DeepLearning/mlgeo_4.6_AutoEncoder.ipynb","Chapter4-DeepLearning/mlgeo_4.6_NAS.ipynb","Chapter5-ModelWorkflows/readme.md","about_this_book/0_mlgeo_project.md","about_this_book/about_this_book.md","about_this_book/acknowledgements.md","reference/bibliography.md","reference/glossary.md"],objects:{},objnames:{},objtypes:{},terms:{"0":[2,4,7,8,11,12,13,14,15,16,17,18,19,21,22,23,24,25,26,29,30,32,33,34,35,38],"00":[12,13,15,16,17,18,19,22,26,32,35],"000":[3,8,12,29],"00000":15,"000000":[12,13,16,24],"0000004":15,"000000e":13,"000000z":[17,18],"0000064":15,"000009":13,"000055":13,"000081":13,"0000ff":30,"0001":28,"000111":13,"00015211022576318623":18,"00021":15,"0003":19,"0005":32,"000590":13,"0006263194954954088":33,"00067":15,"00068":15,"00069":15,"00077540e":25,"0009188263163747461":14,"00092988":25,"00095":25,"000951":25,"00095572":25,"00096354":25,"00096431":25,"00097799":25,"00097928":25,"000986":25,"00098691":25,"00098772":25,"00098853":25,"00099373":25,"00099473":25,"00099483":25,"00099893":25,"000e":32,"001":[22,23,28,29,30,31,32,33,35],"00100203":25,"00100331":25,"00100341":25,"0010047":25,"00100555":25,"00100613":25,"00100646":25,"00100651":25,"00100737":25,"00100942":25,"00101":15,"00101366":25,"00101843":25,"00102372":25,"00102644":25,"00103245":25,"00103259":25,"00103416":25,"00103521":25,"00103917":25,"00103965":25,"00104":15,"00104094":25,"00104437":25,"00104656":25,"00104809":25,"00104914":25,"00105":15,"00105019":25,"00105281":25,"00105462":25,"00105872":25,"00105924e":19,"00106049":25,"00106201":25,"00106554":25,"00106707":25,"00106764":25,"00106878":25,"00106978":25,"0010725":25,"0010726":25,"00107574":25,"00107622":25,"0010766":25,"00107718":25,"0010776":25,"00107789":25,"00107832":25,"00108519":25,"001086":25,"00108638":25,"00108681":25,"00108762":25,"00109024":25,"00109105":25,"00109315":25,"00109363":25,"00109911":25,"00110121":25,"00110216":25,"00110488":25,"00110974":25,"00111265":25,"00111418":25,"00111895":25,"001121":25,"0011219":25,"0011241":25,"00112505":25,"00112543":25,"00112891":25,"0011312":25,"00113409e":19,"00113697":25,"00114322":25,"00114336":25,"00114398":25,"00114417":25,"00114655":25,"00114799":25,"00114856":25,"00115099":25,"0011518":25,"00115423":25,"00115576":25,"00116277":25,"00116334":25,"00116444":25,"00116515":25,"00116839":25,"00117":13,"00117087":25,"00117283":25,"00117745":23,"00117784":25,"00117974":25,"00118184":25,"0011826":25,"00118356":25,"00118542":25,"00118771":25,"00118823":25,"00118876":25,"00118885":25,"00119176":25,"001193":25,"00120039":25,"00120368":25,"00120587":25,"0012094":25,"00122175":25,"00122461":25,"00123711":25,"00124407":25,"00125":15,"00125222":25,"00125556":25,"00125637":25,"00126467":25,"00126867":25,"00127654":25,"00128045":25,"00129204":25,"00129838":25,"00133281":25,"00133452":25,"00134025":25,"00134029":25,"0013628":25,"00136886":25,"00137367":25,"00137486":25,"00137854":25,"00138397":25,"00139098":25,"00139213":25,"00139284":25,"00139289":25,"00139799":25,"00140023":25,"00140777":25,"00141668":25,"001417":19,"00142055":25,"00144706":25,"00144835":25,"00150":15,"00151439":25,"00153746e":25,"00155":15,"00155859":25,"00157524e":19,"00162":15,"00165":15,"00169":15,"00189348e":25,"00219419e":25,"00219507":8,"00228":15,"00271":15,"003069":19,"0030715920533113":14,"00321":15,"00324":15,"00326":15,"00327":15,"00328":15,"00329":13,"003468":19,"00380339e":19,"003938":19,"004136":13,"004774":13,"004932182490752158":23,"005":[29,30,31,35],"00523":28,"005311":19,"00619":15,"006250720119447979":15,"00643465e":25,"006434906304516136":18,"006437910455226973":15,"0064397312911273945":15,"006439731291127403":15,"0064404":15,"00675":15,"007":7,"00704":15,"00744489":25,"007495006078435612":18,"00800":12,"008060063544843572":14,"00817":15,"00821080e":25,"0083":15,"00878350e":25,"008924":19,"00896047e":19,"008967":19,"00908":15,"00917668e":19,"009565":19,"009791921664626684":23,"01":[12,15,17,19,24,26,32,33],"010":12,"010000":[16,17],"01008876e":19,"0101010101010102":14,"010145":13,"01026":13,"010370":13,"010845":13,"010848":25,"0109":23,"01107147":25,"011097410604192354":23,"01124606":25,"0114562":25,"01150443e":19,"01150772":25,"01192058":25,"011982":19,"01206191":25,"01231908":25,"01241204":25,"01258343":25,"012774":13,"01284938":25,"01286752":25,"01287":13,"01289171":25,"01293827":25,"01298769":25,"01303417":25,"01304742":25,"01311811":25,"01314302e":25,"01317991e":19,"0132973926342017":18,"01330530e":25,"01338":13,"01357734":25,"01360224e":25,"0136416":25,"013847e":13,"01396018":8,"013998e":13,"01407104":25,"0141058":25,"01414058":25,"01417596":25,"0142139":25,"01432905":25,"0143383":25,"01434685":25,"01434876":25,"01437521":25,"01445313":25,"01446302":25,"01450577":25,"01455708":25,"01457076":25,"01462278":25,"01472216":25,"01476016":25,"01483183":25,"01484245e":19,"01484685":25,"01485596":25,"01493359":25,"01494575":25,"01497216":25,"01497725":25,"015":29,"01503067":25,"01503139":25,"01508956":25,"01510458":25,"01511592":25,"0151176":25,"01515818":25,"01519043":25,"01521006":25,"0152317":25,"015246388348034143":18,"0152606":25,"01526103":25,"01527653":25,"01528138":25,"0153625":25,"01540737":25,"01547699":25,"015568":19,"01559561":25,"01565228":25,"01576381":25,"01581057":25,"01630097e":25,"01647874":25,"01660968e":25,"01667988":25,"0169":12,"01691109":25,"01692484":25,"01693117":23,"01693139":25,"01695":15,"017019":13,"0171665":25,"0171936":25,"01721282":25,"01724968":25,"01750928":25,"01756458":25,"01758518":25,"01762635":25,"01790279e":19,"01795520e":25,"01812615":25,"018297":25,"01831212":25,"01833758":25,"01843243":25,"01845818":25,"018471":25,"01847563":25,"01862588":25,"01873102":25,"01874394":25,"01875048":25,"01880918":25,"01882305":25,"01882615":25,"01883609":25,"01885603":25,"01887064":25,"01887522":25,"01888666":25,"01897316":25,"01899896":25,"01901288":25,"01901824":25,"01904299":25,"01905718":25,"01908689":25,"01911283":25,"01913071":25,"01913462":25,"01921201":25,"01921757":25,"01922411":25,"0192246":25,"01923843":23,"01928401":25,"01928897":25,"01929832":25,"0192997":25,"01936684":25,"01936893":25,"01947122":25,"01948614":25,"01954636":25,"0195549":25,"01957004":25,"01957202":25,"0195775":25,"01961274":25,"0196908":25,"01971579":25,"01971922":25,"01973233":25,"01975498":25,"01980486":25,"0198133":25,"0198184":25,"01983519":25,"01985712":25,"01990356":25,"01991944":25,"01998029":25,"01998377":25,"02":[12,19,24,25,30],"02001534":25,"02002053":25,"02005477":25,"02011108":25,"02012463":25,"02015944":25,"02019405":25,"02020388":25,"02026519":25,"02032981":25,"02037839":15,"02041302":25,"02054709":25,"02068725":25,"02095075":25,"02111402":25,"0211823":25,"02136241":25,"02145925":25,"02156137":25,"02172494":25,"021897810218978103":23,"0220214":25,"02207262":25,"02210412":25,"02210692":25,"02214394":25,"02232589":25,"02234629":25,"022358":19,"02243166":25,"02244415":25,"02267064":25,"02275643":25,"02293578":25,"02294638e":19,"02297895":25,"02298839":25,"02304196":25,"02311587":25,"02313848":25,"02317823":25,"02318607":25,"02328081":25,"02333975":25,"02335019":25,"02344284":25,"02348842":25,"02351891":25,"02353102":14,"0235342":25,"02355308":25,"02355585":25,"02355795":25,"02358461":25,"02359171":25,"02365112":25,"02366824":25,"02367":15,"02368955":25,"02369399":25,"02371317":25,"02377076":25,"02379055":25,"02379142":25,"02380972":25,"02381821":25,"02385512":25,"02386303":25,"02392955":25,"02400956":25,"02411374":25,"02415328":25,"02421236":25,"02424603":25,"02431536":25,"02442665":25,"02446957":25,"02453833":25,"02459221":25,"02464504":25,"02480783":25,"0248394":25,"02488422":25,"02499743":25,"025":21,"025000":24,"02505026":25,"0250979":25,"02514329":25,"02515011":25,"02530203":25,"02541871":25,"02555343":25,"02562881":25,"0257":12,"02574883":25,"02577629":25,"02578182":25,"0258419":25,"02588782":25,"02608404":25,"02635684":25,"02642287e":19,"02672602":25,"02673278":25,"02683849":25,"02696":12,"027":29,"02883570e":25,"02902726e":19,"029486":19,"02948785":25,"02956544":23,"02959356":25,"02991104":25,"02993002":8,"02998571":25,"03":[12,13,19,24,25,33],"030":35,"03003":15,"03006983":25,"03009968":25,"0301":12,"03030303":14,"03058095e":19,"03060265":25,"030637":19,"03071399":25,"030896":25,"03093848e":25,"03100":12,"03103009":23,"03331803":15,"03337844e":19,"03416":13,"0344":12,"03440":12,"03447569e":25,"034483":24,"034800":13,"03494963e":19,"03501758e":19,"03513":15,"03566152e":19,"035698":13,"036229":19,"03678":15,"03681":15,"03760092e":19,"03815835e":19,"0386919":25,"03906":15,"039697":13,"03978648e":25,"04":[12,13,25,35],"04101425":23,"041580e":13,"041600":13,"04240":13,"042591":13,"043":29,"04303176034198916":14,"04314":12,"04350267e":19,"043535":13,"04372530e":25,"04382":15,"04460142e":25,"0454577":23,"04572756":23,"04648":[13,15],"04690610e":19,"04767375e":19,"04798007e":19,"047994":19,"04815":15,"04832":15,"04842":13,"04955":13,"04966072e":19,"04984011e":19,"049902":19,"049911":13,"05":[7,12,14,15,17,18,19,22,24,25,31],"05010276e":19,"05152703e":19,"05211":13,"05213662e":25,"05242661":8,"052873":28,"05371048":15,"05394413e":19,"05411581e":25,"056":29,"05651231":14,"05658198e":25,"05707018e":19,"05826066e":25,"05836797e":19,"05876537e":19,"05876856e":25,"05888410e":25,"05915033e":25,"06":[7,12,13,15,16,24,25],"060":12,"06025041e":19,"060298649528828":16,"06060606":14,"06078202e":25,"06092507e":25,"06168176e":19,"06172":13,"0625":22,"06278148e":25,"0635":12,"06380531e":19,"064":29,"06419769e":19,"06490653e":25,"06615794e":25,"0671":15,"06741252e":25,"067648":13,"067764":13,"06848084e":19,"069400":13,"0698":15,"06jan25":15,"06jan26":15,"06jan27":15,"06jan28":15,"06jan29":15,"07":[12,13,14,16,17,18,33,35],"07094755358789713":18,"07107204e":19,"07107968e":19,"07132985e":19,"07226722":14,"07230686e":19,"0726":15,"072650":13,"07493105e":19,"07508417348193797":16,"0753":15,"07561688e":25,"0777344413103096":17,"077800":12,"0780":15,"07841108":8,"07951792e":25,"07t03":7,"08":[12,16,33,35],"080":29,"0803":12,"08064872e":25,"08072608e":19,"080897":13,"08113310e":19,"08149552":15,"08186501e":25,"08200949e":25,"0823":12,"08269":13,"082983":7,"08310640e":25,"08484803":23,"08537423e":19,"08593236e":19,"08732":13,"08764086e":19,"08831":13,"08846372e":25,"088800":13,"089693":13,"08998769e":19,"08t15":7,"09":[7,12,33],"09090909":14,"09091501e":19,"091":29,"092579":13,"0935":19,"09399618e":25,"094121":13,"09478493e":19,"09610147e":19,"09689906e":19,"098":29,"09816631e":19,"09887886e":25,"099000":7,"09t23":7,"0_wavelet":7,"0f":22,"0ffh4r23mitn2dz":7,"0m":[12,13,18,28],"0s":[22,25],"0x1060f17f0":23,"0x126f0e7f0":23,"0x145352250":25,"0x16b4d22e0":32,"0x17a5efa60":8,"0x17a96cb80":8,"0x17a9ebeb0":18,"0x17ca1a580":8,"0x1c90d4820":7,"0x1e1e75e10":30,"0x2af90f8b0":35,"0x2b17a0f10":19,"0x2b1edcd60":19,"0x2b26d6080":31,"0x2ba38ac10":19,"0x2ba44ab50":19,"0x2ba534b80":19,"0x2ba5f8bb0":19,"0x2bc2b4eb0":19,"0x2bdd92640":19,"0x2bde1d5e0":19,"0x2d0523130":35,"0x318353900":15,"0x318690940":15,"0x319394a90":15,"0x3195279a0":15,"0x3196996a0":15,"0x685db3790":14,"0x78d4ee490":14,"0x7f27e3ee9c00":21,"0x7f27e600fd90":21,"0x7f27e62d2980":21,"0x7fd65cb311b0":22,"1":[7,9,13,23,28,33,34,35,39,41],"10":[2,3,7,11,12,13,14,15,16,17,18,19,21,22,24,25,26,28,29,30,31,32,33,34,35,38,39],"100":[1,7,11,12,13,14,15,16,17,18,19,21,24,25,26,28,29,30,31,32,33,35,39,42],"1000":[8,9,10,12,13,14,15,16,17,24,26,28,29,31,32,33,35],"10000":[8,12,13,14,15,17,28,33,34],"100000":[12,16,24,28],"10000543e":19,"10013437e":19,"100ka":5,"101":[12,29,30],"10116954e":19,"10184613e":19,"102":30,"10227580e":19,"102557":13,"1029":31,"103":30,"1030":22,"1031":22,"1032":22,"1033":22,"1034":22,"10349180e":25,"1035":22,"1036":22,"1037":22,"1038":22,"103932":16,"104":[25,30],"1040":22,"1041":22,"10420561e":19,"10427394e":25,"10476158":14,"10487413e":19,"105":[12,25,29,30],"105000":12,"106":[25,30],"10639533e":25,"107":[25,30],"108":[13,25,30],"109":[12,13,25,30],"1094":12,"109400":12,"10942":13,"10974988":14,"10hz":17,"10k":34,"11":[7,8,12,13,14,16,17,18,24,26,28,29,30,35,39],"110":[11,12,25,30],"11022491e":19,"11046253e":25,"11049848e":19,"1106":12,"1107":12,"11070377e":25,"1108":12,"1109":12,"111":[8,12,13,17,19,25,29,30],"1110":12,"1111":12,"11111111":14,"1112":12,"11128084e":25,"1113":22,"1114":22,"1115":22,"1116":22,"11162756":14,"1117":22,"112":30,"11215633e":25,"113":[12,25,30],"113026":16,"1136":14,"114":[25,30],"1140":13,"1142":22,"1143":22,"1144":22,"1145":22,"1146":22,"1147":22,"1148":22,"1149":22,"1149757":14,"114x80":31,"115":30,"1150":22,"11504743e":25,"1151":22,"1152":22,"11535082e":19,"1159":22,"116":[25,30],"1160":22,"1162":22,"1164":22,"1166":22,"117":[24,30],"117873":13,"11794405e":19,"118":[25,29,30],"1181":22,"1182":22,"1183":[22,32],"1184":22,"1185":22,"119":[7,30],"1190913055":19,"1198":23,"12":[7,12,13,14,17,18,19,24,27,28,29,30,31,33,35],"120":[7,12,30,31],"12000":[12,33],"12045035":14,"120542":24,"121":[7,11,12,25,30],"12121212":14,"122":[25,30],"1225":23,"12263265e":19,"123":[15,25,27,30],"123111":13,"1233":22,"12332403":14,"1234":[11,22],"1235":22,"123783465":19,"1239":13,"124":30,"1240":22,"1241":22,"1242":22,"1244":22,"1245":22,"1246":22,"125":[8,12,14,16,22,29,30],"12571585":14,"126":[7,12,14,22,25,30],"126185":13,"12618569":14,"12662":13,"127":[11,14,22,30],"12701549e":25,"12745122e":25,"12750503e":25,"127k":12,"128":[14,25,30,31,34],"128000":7,"129":[25,30,31],"129629":12,"12977":13,"13":[7,12,13,14,16,17,19,25,28,29,30,33,35],"130":[25,30],"13003767e":25,"130547":13,"13058067e":19,"131":[25,30],"13147540e":19,"13176935e":25,"132":[25,30],"13200349e":25,"1320124":14,"13219411":14,"133":[12,13,25,29,30,31],"1331":13,"134":[25,30,31],"13428352":15,"13455924e":25,"13463788e":25,"134956":13,"135":[25,30],"135285":13,"13535513e":25,"13559614e":19,"13571728e":19,"1359":15,"136":[13,25,30],"1360":15,"136646":13,"136778":19,"1369":27,"137":[25,30],"1377602":13,"138":[25,30],"13813089e":25,"13848864":14,"138856":13,"139":[25,30],"13976786":15,"13m":35,"14":[7,12,13,14,17,18,19,29,30,31,33,35],"140":[13,25,30],"14000":33,"141":[25,29,30],"14118360e":19,"1412":13,"141447":13,"1416":19,"14169642e":19,"141790":13,"141805":13,"14186":13,"142":[12,13,25,30],"142010":13,"14262720e":19,"1427":13,"143":[25,30],"143726":13,"14398":13,"144":[25,30],"14403563e":19,"1445":11,"1447":11,"1448":11,"145":[12,13,25,30,35],"14508288":14,"14542351286436":32,"14581385e":25,"1459":[13,23],"14593293e":25,"146":[12,25,30],"1460":13,"146988":12,"147":[25,30],"14788620e":25,"148":[12,25,30],"148057":13,"14831120e":25,"149":[25,30],"14m":35,"15":[2,5,7,12,13,14,17,18,22,23,24,25,26,29,30,33,35,39],"150":[17,25,29,30],"15000":33,"15001":7,"15064708":15,"150651":13,"15089793e":19,"15094544e":25,"151":[25,30],"1510":13,"1511":13,"15123857e":25,"15151515":14,"15199111":14,"152":[25,30],"15201264e":25,"152151":13,"15293862e":25,"153":[13,30],"154":[25,30],"15443469":14,"1548":8,"1549214831474401":32,"155":[25,30],"15525786e":19,"1553671407878263":19,"15547294e":19,"156":[25,26,30],"15607835e":19,"1561":32,"156750":7,"15688101":17,"157":[13,25,30],"157000":7,"158":[19,25,30],"158000":7,"159":[25,30],"1590":12,"15908766e":25,"15910416e":19,"15922828":14,"15924":16,"15975960e":19,"15998988":15,"15m":35,"16":[7,12,13,14,15,16,18,19,28,29,30,31,32,33,35],"160":[13,25,29,30,35],"16000":33,"161":30,"16116":13,"16121009e":19,"161700":12,"162":[13,30],"16296722254477":32,"163":[13,30,35],"163786":13,"16392710e":19,"164":30,"165":[7,13,30],"16500907e":19,"165398":24,"166":[12,17,30],"1664":12,"16681005":14,"167":[29,30],"16783219e":25,"168":30,"16816806e":19,"16827078e":19,"169":30,"16900":12,"1691094658":17,"169214":13,"16m":35,"16x16":31,"17":[7,12,13,14,18,24,25,28,29,30,33,35],"170":30,"170000":16,"17002010e":19,"1703":11,"1704":11,"17049426e":19,"1705":11,"1706":11,"1707":11,"1708":11,"1709":11,"171":[29,30],"1710":11,"1711":11,"1712":11,"1713":11,"1714":11,"1715":11,"1716":11,"1719":35,"171915":13,"172":[13,30],"1720":7,"173":[19,30],"173233":13,"173333":13,"173370":13,"174":30,"17468526e":19,"1747":13,"17475284":14,"1748":13,"1749":13,"175":[13,30],"175485":13,"176":30,"176494":13,"176529":13,"1767563":17,"17675743e":19,"17681195":14,"177":[13,30],"17762":13,"178":[12,30],"1780":12,"178035":13,"178060":13,"1781":12,"1782":12,"1783":12,"1784":12,"1785":12,"178772":13,"1788":13,"179":[12,30],"1790":22,"1791":22,"179191":13,"1792":22,"1793":22,"1794":22,"179630":13,"17968626e":25,"1797":[22,25,26,29,30],"18":[2,7,13,14,16,19,29,30,33,35],"180":[8,13,30],"18000":33,"18035155e":19,"18068457e":25,"18092002e":19,"181":30,"18115211e":25,"18126811e":25,"181545":13,"18159":13,"18181818":14,"18181892e":19,"182":[29,30],"18209788e":25,"18281851e":25,"183":[13,30],"18307383":14,"18314361e":19,"1836":33,"18381967e":19,"184":[13,30,35],"18452379e":19,"18470":19,"18493938e":19,"185":[12,13,30],"186":[13,30],"1861":22,"1862":22,"1863":22,"1865":22,"1866":22,"1867":22,"1868":[13,22],"1869":22,"187":[11,13,30],"1870":22,"18712198e":19,"187675":12,"18767507003":12,"187840":7,"188":[22,30],"18899":13,"189":[22,30],"19":[7,12,13,14,28,29,30,31,35],"190":[22,30],"19044712e":25,"191":[22,30,33],"19169":13,"19179103":14,"192":[13,22,30],"19239174e":25,"19274190e":19,"193":[22,30],"19350":13,"194":[22,30],"19450078e":25,"19479893e":19,"195":[12,22,29,30],"196":[22,30],"19612071e":25,"197":[22,30],"19742697173045337":15,"1976":12,"1977":12,"198":30,"1981":12,"1984":12,"1985":12,"198503":13,"1987":12,"19876832e":19,"199":[12,13,22,30],"1990":11,"1995":38,"1998":31,"1d":[10,17,22,30,32,33],"1e":[14,17,28,32,33],"1e4":17,"1hz":[17,18],"1j":18,"1m":[12,13,18,28],"1pko9ormcllaxipzoa3aoztgzfpad2iwj":[24,27],"1s":[13,17,22,25],"1st":[8,19],"2":[1,2,3,4,23,27,28,35,39,41],"20":[7,12,13,14,16,18,19,22,24,27,28,29,30,32,33,34,35],"200":[1,12,13,17,19,23,30,32,39],"2000":[8,14,26,30,33],"20000":33,"200000":24,"20002856e":19,"2006":15,"2007":3,"20082908e":19,"20086303e":19,"2009233":14,"201":[13,22],"2010":12,"2013":14,"2014":7,"20158980e":19,"20159493e":19,"2016":24,"2017":[7,12,18],"2018":[13,31,35],"2019":[19,35],"2019gl085870":31,"202":22,"2020":[2,7,13,28,31,35],"2021":[7,17,18],"2022":[4,7,13,17,28,35,40],"2023":[1,4,7,12,13,18,28,39],"2024":[12,13],"2026":12,"20269556e":19,"20294639e":25,"203":22,"203094":13,"203188":13,"20555138e":19,"206":13,"206_51_39":13,"207":[13,39],"20704562e":25,"207073":19,"208":[13,29,39],"208269":19,"20pm":13,"21":[12,14,18,29,30],"210":13,"21000":33,"21049041":14,"210926":13,"21113694e":25,"2113147933":28,"21153578e":19,"212":31,"21210983e":19,"21212121":14,"212207":13,"21236235e":19,"21307490e":19,"213167":13,"21362874e":19,"21400829":14,"21449":13,"21450115e":25,"21452746e":25,"21619273e":25,"21621959e":25,"21687591e":25,"2171b5":8,"21882842e":25,"21892":13,"21907473":32,"22":[11,12,13,14,18,28,29,30,32,33,35],"220":13,"2201005948153714":17,"22051307":14,"22080902":14,"221":29,"22140377e":19,"222":29,"22222222":14,"222370e":13,"222400e":13,"22247136e":25,"22501940e":25,"22531":13,"22763649":15,"228":[11,13],"22872158e":19,"23":[7,12,13,14,18,19,24,28,29,30,33,35],"2300000":17,"23062432e":19,"23094":13,"23101297":14,"232053040564":32,"232080e":13,"23233":35,"232646":13,"232740e":13,"23284674":14,"23296":35,"23299271e":19,"234":14,"2343":12,"23439988e":25,"2344":12,"2346":12,"2347":12,"2348":12,"2349":12,"2350":12,"2351":12,"235100":13,"2352":12,"2354":12,"2355":12,"2356":12,"2357":12,"2358":12,"23605235e":19,"236217054087575":17,"237445":13,"237650e":13,"23810334e":25,"238506":24,"2389":13,"239270e":13,"2399":11,"24":[12,13,14,28,29,30],"240":14,"24000":33,"24026582":15,"24052539":8,"24059":13,"241000":7,"241273":7,"24201283":14,"24203":13,"24211860e":25,"24242424":14,"24248697e":19,"242735":13,"24279855e":19,"24400":12,"24402698e":19,"2445":13,"24529984e":25,"24568202e":19,"24663131e":25,"24715790e":25,"24755566e":25,"24893725e":19,"24931771e":19,"24937819e":25,"24t10":7,"25":[12,13,14,16,17,19,21,24,25,28,29,30,35,38],"250":3,"251":13,"25170509e":25,"2519":35,"252":[7,12],"2520":35,"2521":35,"2522":35,"2523":35,"2524":35,"2525":35,"2526":35,"2527":35,"253":12,"2531":35,"2533":35,"25353645":14,"2539":35,"254":12,"2540":35,"2541":35,"2543":35,"254590":13,"2548":35,"25485059e":25,"2549":35,"255":12,"2550":35,"2551":35,"255175":13,"2552":35,"25525":13,"2553":35,"2554":35,"2555":35,"2556":35,"2557":35,"2558":[13,35],"2559":13,"256":[12,13,29],"2564":35,"2565":35,"25700":12,"25701972":14,"258550":13,"258610":13,"259070":13,"259232":13,"25hrequir":26,"26":[12,13,14,17,18,19,26,28,29,30,33,35],"260":13,"2600000":17,"261":24,"26122375e":19,"26138302e":25,"261756":13,"26189863e":19,"26342":13,"264":13,"26560878":14,"26564294e":19,"266":13,"266950":13,"267":13,"268":13,"269":13,"26974":13,"27":[7,12,13,14,25,29,30,32,35],"270":13,"27000":33,"27112239e":25,"271863":13,"272373":13,"27272727":14,"273":[13,14],"27390039e":25,"274":[7,13],"27408835e":25,"27419865e":25,"27454916":14,"274761":13,"27481244e":19,"274861":13,"27594":12,"27641682e":25,"27723895e":19,"277725":19,"278":29,"27825594":14,"27834627e":25,"27882059e":19,"2789":12,"27894486e":19,"27937344e":25,"28":[13,14,15,19,24,29,30,31,32,35],"28000":33,"28012":13,"28029144":14,"281325":13,"282202506964987":32,"28344035e":19,"28410467e":19,"28460883e":25,"28512736e":25,"28546337e":19,"28566571e":19,"28581684e":25,"28597742e":19,"286":11,"2862":13,"28664273e":25,"28679745e":19,"287":13,"2877":13,"2884356107":17,"28855255e":19,"28857":13,"28913069":8,"28915345e":25,"28975461e":19,"29":[12,14,17,18,24,25,29,30,33],"29150531":14,"29154967":14,"29233218e":19,"2926":13,"2934":13,"29352404e":19,"29363134e":25,"29365818e":25,"29377350344869":14,"2937735034487":14,"29385795e":19,"294":11,"29434":12,"29435":12,"29436":12,"29437":12,"29438":12,"29439":12,"294510e":13,"295":11,"296560":13,"297":11,"2970118992746436":16,"29739056e":19,"29746":13,"298149":13,"298557385097123":14,"29866468e":25,"299":[11,13],"29t04":[17,18],"29t06":[17,18],"2_multilayerperceptron":30,"2bcurli":[17,22],"2d":[8,10,19,28,30,31],"2dt":17,"2f":[8,15,16,22,30,33],"2fa":4,"2m":12,"2nd":19,"2p":16,"2x":30,"2x2":21,"3":[3,4,7,13,18,28,33,34,35,39],"30":[7,8,12,14,15,16,19,25,28,29,30,32,33,35],"300":[7,11,19,27,30,33],"3000":[12,33],"30000":33,"300000":12,"30014826e":25,"301":13,"30100":12,"302":[11,13],"3020249866927003":32,"302031":12,"30217568":14,"3030303":14,"303440e":13,"30379":13,"30468018e":19,"30472588e":19,"305024":13,"30515":15,"30538555":14,"305700":12,"3068295825":19,"307":39,"30767943e":25,"3077":13,"30773284e":25,"308":[13,39],"30845379e":19,"30970":15,"30t04":7,"31":[7,12,13,14,18,24,28,29,30],"31048681e":25,"311":13,"311191":13,"31177":13,"31240204e":19,"31248":13,"3125":22,"312878":13,"3133":11,"31375":15,"314213":13,"31478216e":19,"31551975e":19,"3159":12,"31675465e":19,"31707406e":19,"31771048e":25,"318":13,"318070e":13,"31816":15,"31840023":8,"31874":13,"31875618e":19,"31941":15,"31992671":14,"31993257e":25,"31m":13,"32":[7,12,13,14,18,28,29,30,31,32,35],"32000":33,"3200000":17,"3201":[11,17],"32081209e":19,"32138028e":19,"32268686e":25,"323":13,"3238846712":12,"32410070e":25,"3246":11,"32622034e":19,"32625132e":25,"32655998e":25,"32876128":14,"32968954e":25,"33":[7,12,14,19,29,30,32,38],"330000z":7,"33004834e":25,"33014":13,"33029":15,"330439":13,"3306":13,"33071950e":25,"33087274e":19,"331":[12,13],"33194":13,"333":29,"33333333":14,"33333333333333":19,"333333333333332":19,"3333333333333335":19,"333333333333334":19,"333333333333336":19,"33333333333334":19,"33335384e":25,"33459512e":25,"3347":15,"33516027":14,"335168":13,"33518319e":25,"33553382e":19,"33613971e":19,"33724303e":25,"33814553e":19,"33900561e":25,"33992835e":19,"34":[12,13,14,18,25,28,29,30,32],"34043406":8,"341243":13,"34277804e":19,"34298459e":25,"34351":13,"34400":12,"34400217e":25,"34510049e":19,"34570272":8,"34573837e":19,"34593598e":25,"348":24,"348280":13,"34913307e":19,"34929719e":19,"349380":13,"35":[12,13,14,24,25,29,30,32],"351":[13,39],"351101":13,"35111917":14,"35171223e":19,"352":39,"35214245e":25,"35235665e":19,"35258262":8,"35265098e":25,"35284738e":25,"353":13,"35304777":14,"353854":13,"35440":12,"35445482e":25,"35469237e":19,"354773":7,"355876":13,"35710083e":19,"35851976e":25,"35863021e":25,"36":[12,14,19,29,30,32],"360":[8,14],"3600":17,"36000":33,"360007":13,"36095430e":25,"36127618e":19,"36191":13,"36335407e":25,"36363636":14,"36448941":14,"365":32,"36608":31,"367375":13,"367623":19,"36783798":14,"368":7,"36898269":15,"369437":13,"36967973e":19,"37":[7,12,14,25,26,28,29,30,32],"370":[7,12],"37029163e":19,"37087279e":25,"370946":13,"371":7,"371931":13,"372414":13,"373":13,"373563":24,"375":22,"37570999e":25,"37813526e":19,"37841317":8,"378927":13,"379":13,"38":[12,14,29,30],"380":[7,13],"380100":13,"38063281e":19,"38104":13,"381880":7,"38236679e":25,"382403":12,"382632":13,"38298":13,"38320642e":25,"38346417e":25,"3835":13,"38358033e":19,"38469443e":19,"38535286":14,"38561943":8,"38837774e":19,"388774":13,"389":[29,30],"389000":7,"389220e":13,"389248e":13,"38942222e":25,"389945":13,"389960":13,"39":[7,8,12,13,14,16,18,28,29,30,33],"390000":16,"39001736e":19,"39061200e":25,"390620e":13,"39150":13,"391540e":13,"391759":13,"391800":12,"39198186e":25,"3931145617":19,"39322864":23,"393638":13,"39393795e":19,"39393939":14,"394514":13,"39486211e":25,"39610759e":25,"397651":13,"39781005e":25,"398300":13,"39961":13,"39975399e":19,"3d":[7,10,14,17,19,22,30,31,32],"3f":[29,30,31,35],"3m":13,"3x3":31,"4":[2,7,11,16,21,25,39],"40":[11,12,14,16,17,19,24,26,29,30,33],"400":[7,12,31,32],"4000":33,"40000":33,"400000":24,"40079389e":19,"400x300":19,"403":12,"40331959e":19,"40352714e":25,"40367004e":19,"40370173":14,"40401":13,"404166":13,"40552474e":25,"40575570e":25,"405891":13,"40732739":8,"407906":13,"40928480e":19,"40953573e":25,"41":[13,14,24,25,29,30,33],"41001253e":25,"41018":13,"41197511e":25,"413":13,"41369110e":25,"414":13,"41413700e":19,"41443296e":25,"416752":13,"41679880e":19,"416857":19,"41747416":14,"41774748e":19,"41781333e":19,"41992596e":25,"42":[4,7,14,15,21,22,24,29,30,31,32,33],"420000z":7,"42113730e":25,"42195117e":25,"42250976e":25,"422833":13,"42292429":14,"423153":13,"42359606e":19,"423691":11,"42373896e":19,"42424242":14,"42511267":15,"42674044e":25,"42788150e":19,"42819812e":19,"42892166e":19,"429012":12,"43":[12,13,14,18,19,24,25,28,29,30],"43035011e":25,"43046929":14,"431600":13,"431687":13,"4325":13,"43350268e":19,"43447":13,"43585916e":19,"43651998e":25,"436909":13,"43711":13,"437923":13,"43869":13,"44":[7,11,12,13,14,24,29,30],"44012308e":25,"441":13,"44265462e":19,"44278":13,"443":[12,13],"44306215":14,"444":[7,13,29],"44444444":14,"44483783e":25,"44506361e":25,"44576096e":25,"44617376e":25,"448":33,"44819809e":25,"44882771e":19,"44952179e":25,"45":[7,14,24,25,29,30,33],"45044537e":19,"45055":13,"4513":12,"45216271e":25,"45270114e":19,"45319":12,"4545":13,"45454545":14,"457200":13,"45789629e":19,"45857469e":19,"45899":13,"46":[7,14,19,24,29,30,35],"46154748e":25,"46166602e":19,"462018":19,"46227722":14,"46310032e":19,"46415888":14,"46473182e":19,"4649":12,"46554711e":19,"46725669e":19,"46769":13,"468830e":13,"469":39,"46903645e":19,"47":[7,11,13,14,17,24,29,30,31],"471614":13,"47165930e":25,"47192869":8,"47232592":8,"473420405447642":15,"47406":13,"47428":13,"47469585e":25,"4757":13,"476825":13,"47691796e":19,"477011":24,"47707636":14,"47792":13,"47805102e":19,"47855870e":19,"478654":19,"47888931":15,"478900":12,"479":13,"47963855e":19,"48":[14,24,29,30,33],"48002":13,"48032570e":19,"48094800e":25,"48252852e":25,"48484848":14,"48496826":14,"48530636e":25,"48626016":14,"487":12,"488":12,"48879817e":19,"48922":13,"48948642e":19,"49":[14,16,18,22,24,25,29,30,33],"490":12,"4901":[11,17],"49084638e":19,"49099562e":25,"491":[12,13],"492":12,"49249982e":19,"49268":13,"493":12,"494":12,"495":12,"495126":8,"495135":13,"495150":13,"49539290e":19,"49559702e":25,"496":12,"496600":13,"497":12,"498380":24,"498535":13,"49858699e":25,"4987420":15,"499":12,"49969726e":25,"49m":[12,13,18,28],"49m23":[12,13,18,28],"49m24":[12,13,18,28],"49mnotic":[12,13,18,28],"49mpip":[12,13,18,28],"4_multiclass_classif":22,"4d":[10,14],"4ducqnd7mfihnh7d":3,"4fb140e9d4b0":32,"4p":16,"5":[2,3,7,11,13,16,17,18,19,21,22,25,26,27,28,33,34,39],"50":[7,12,13,14,15,16,18,19,21,22,24,25,26,28,29,30,31,32,33,34,35],"500":[3,7,8,12,15,29,35],"5000":[21,28,34],"500000":24,"5007397612756534":17,"50087464e":25,"500935":13,"501":[12,17],"50128686e":25,"502":12,"50243315e":25,"50274156e":19,"503260e":13,"50342":13,"50654833e":19,"50777458":8,"50807":13,"50838706e":25,"5094138":14,"50998857e":25,"51":[12,14,17,29,30,34],"510":13,"51122842e":25,"512":13,"512675":13,"512870":13,"513":13,"51344574e":19,"51397":13,"514368":24,"51463199e":19,"515":13,"51515152":14,"51578":13,"51615":13,"51665":13,"517":[12,31],"517213":13,"518":4,"51900":13,"51909":13,"51942":13,"51951422":15,"51967288":15,"51997":13,"52":[12,14,29,30],"520":7,"52023":13,"52077":13,"52197574e":19,"52368":13,"52395":13,"52575621e":19,"526":7,"5268":23,"527306":24,"52807567e":19,"52854687e":19,"529":35,"52941":13,"52943":13,"52976973e":19,"529880":13,"529987":13,"53":[14,15,19,24,25,29,30],"531119":13,"53120750e":19,"531326":13,"53254559e":19,"532844":19,"533300":13,"53366992":14,"53412077e":19,"53487851":14,"53528":13,"53553593e":25,"53575704e":19,"53637802e":19,"5364":23,"53659577e":19,"53760":15,"53761":15,"53762":15,"53763":15,"53764":15,"538958":13,"539035":13,"539264":13,"54":[14,24,25,29,30,33],"54062965e":19,"540813":19,"541":13,"541062":13,"54140":13,"54158392e":19,"54175147e":25,"542":7,"54208":13,"54213":13,"542265":13,"54237061e":25,"543":7,"543103":24,"54375250e":19,"544":12,"54400":12,"54468":13,"54471":13,"54478269e":25,"54501126e":25,"5452":23,"54523":13,"54534953":8,"54545455":14,"54548457":14,"54573":13,"546":12,"54606369e":25,"54625":13,"54626":13,"54700385e":25,"547279":13,"54746":13,"547774":13,"548094":19,"548885":13,"54922":13,"549381":24,"54990193e":19,"55":[12,14,29,30],"550":12,"55025":13,"55140244e":25,"55171570e":25,"55188227e":19,"552":12,"55222759e":19,"55258449e":19,"55285629e":25,"55492":13,"554985":13,"5550078":8,"555270":13,"55538743e":19,"55555556":14,"55567437e":19,"55567614":14,"55570":13,"556":[29,30],"55617":13,"55729680e":19,"55799770e":19,"55808":13,"558363":12,"55846061e":19,"55908102":14,"55957757e":25,"559689":13,"56":[14,19,24,29,30],"560":[7,12],"56111":13,"56112":13,"561237":13,"561819":13,"5625":22,"56331337e":25,"56463328":14,"56598296e":19,"56653506e":19,"567089":13,"56749":13,"568":13,"56801387e":19,"569":[35,39],"569208":13,"56933621e":25,"57":[14,16,24,29,30],"570":[12,35],"57037499e":25,"571":35,"571252":13,"57151718":15,"572":35,"57278414e":25,"57373200e":25,"574":35,"57472288e":19,"57481":13,"57545":13,"57569875e":19,"57575758":14,"57593123e":19,"57708":13,"577122":19,"577763":13,"5777710951796506":14,"578800":13,"579":7,"5792":12,"579308":12,"57933225":14,"57933225e":25,"57949544e":19,"58":[14,24,25,29,30,33],"58000":12,"580796":19,"583579":13,"583973":13,"58428941e":19,"58464736e":19,"58570208":14,"58669726":15,"58690191e":25,"58804467e":19,"588516":11,"58880384e":25,"589":7,"58953285e":25,"59":[7,14,16,17,18,24,29,30,39],"59051900e":19,"59103728e":19,"59120796e":19,"591k":12,"59265875e":19,"593":35,"59316":13,"59364427e":19,"59380863e":19,"59381366":14,"594":35,"594047":13,"59461":13,"59461729e":19,"59470943e":25,"59473293e":25,"595":35,"59502421":14,"596":35,"59655748e":19,"59660":13,"597441":13,"59758546e":25,"598":22,"598370":13,"59843":13,"5990944341572852":15,"59924246e":25,"59939861e":19,"59943803e":25,"599900":13,"59995190e":19,"59k":12,"5e":33,"5x5":30,"6":[4,7,11,13,17,18,19,21,22,25,27,28,29,30,31,33,35,39],"60":[12,14,16,19,22,24,29,30],"600":12,"6000":33,"600000":12,"60009622e":19,"6001989060169071":23,"601":[12,13],"60272":13,"60324221e":25,"60365269e":19,"605":13,"60519969e":19,"605746":24,"60605548e":19,"60606061":14,"608":[11,12],"608510":12,"60857280e":25,"608674":12,"609":[7,35],"60928335e":19,"6098":12,"61":[14,22,24,29,30],"610":11,"610410":13,"611":11,"61107851e":25,"612":7,"61267658e":19,"613":11,"61326":13,"61359073":14,"613687":16,"613763":13,"614":11,"614986":13,"61636910e":25,"6173489951795071":17,"617955":13,"61819897e":19,"618285":13,"61908328e":25,"619206":13,"619355":13,"619527":13,"61971214e":19,"619920":13,"62":[14,22,24,29,30,33],"620":22,"621":[4,22],"621145":13,"62141":13,"622":[13,22],"62246648e":25,"6228":12,"623":22,"624":35,"625":22,"625297":13,"62606":13,"626179":24,"62618254e":25,"628":32,"62891172e":25,"62928":13,"62941687e":19,"62975083":14,"63":[7,14,19,22,25,26,29,30,33],"63007403e":19,"63028776e":19,"633146":13,"63412378e":19,"63469071e":19,"6359":13,"6360":13,"63636364":14,"638140e":13,"63943160e":19,"64":[14,22,29,30,31,35],"640":35,"64019598":8,"64033033e":19,"64054926e":19,"64075181e":25,"64228344e":19,"64280731":14,"643135e":13,"64354655e":25,"643588":19,"643981":13,"645022e":13,"64575262e":19,"64575823e":19,"646886":8,"64705215e":19,"6480666066247558":17,"648700":13,"649397":13,"649801":13,"649835":13,"65":[7,8,12,14,22,29,30],"65073966e":19,"65095025e":19,"65140128e":19,"652299":24,"65301846e":19,"653386":19,"6541":12,"65587265e":25,"65681801e":19,"659365":13,"65958117e":19,"66":[13,14,19,24,29,30,35,38],"660":12,"661046":13,"6611":12,"66200710e":19,"66215858e":25,"66280":13,"66284056e":19,"6660137226595727":19,"666183":13,"66666666666666":19,"666666666666664":19,"6666666666666666":23,"666666666666667":19,"666666666666668":19,"66666666666667":19,"66666667":14,"666667":12,"666876":13,"667":29,"66848983e":19,"66887625e":19,"66980625e":25,"66982019e":19,"67":[7,14,16,25,29,30],"67049934e":25,"67071852e":25,"67081402e":19,"67131969e":25,"67262241e":25,"67295307e":19,"673280":13,"67341507":14,"67392941e":25,"67524768e":25,"67580740e":19,"67637":13,"6771":8,"67752249e":25,"678714":13,"67917":15,"67938":15,"68":[12,13,14,16,18,25,29,30,33],"68001571e":25,"680207":13,"68042":15,"68072":15,"68086":15,"68104510e":19,"68179228e":19,"68189771e":19,"68216093e":25,"685500":12,"68576456e":19,"68738041e":19,"68808391e":19,"6881":12,"689780e":13,"689790e":13,"69":[7,12,14,24,29,30,33],"690000z":7,"69033981e":19,"69039912e":19,"690544":13,"69104212e":19,"693652":13,"69490068e":19,"69565340e":19,"69596561e":25,"69664895e":19,"6969697":14,"69749003":14,"699557":13,"6_51_39":13,"7":[2,3,7,8,11,12,13,14,18,19,22,28,29,30,35,39],"70":[12,14,16,19,29,30],"700":17,"7000":34,"70089548e":19,"701149":24,"70130848e":19,"70181608e":19,"70308463e":19,"70522483e":25,"705256":[13,24],"70548023":14,"70611057e":25,"70684726e":19,"70735265":14,"70751":13,"708":7,"70801967e":19,"70832949e":19,"7093":13,"7094":13,"70985658e":19,"71":[14,16,24,29,30,33],"710000":16,"71049697e":19,"71090116e":25,"71456":13,"7159964058294":14,"71624672":8,"71644621e":25,"71659203e":25,"71775288e":19,"71858824":14,"719977":13,"72":[14,16,24,25,29,30],"7200":[17,18],"720000":[17,18],"72028530e":25,"72048413e":19,"721282":13,"72189621e":19,"722":29,"722360e":13,"72236766":14,"722370e":13,"72436206e":25,"72540304":15,"7254030411293304":15,"72581564e":25,"72637647e":19,"72699":13,"72706875e":19,"72716534e":19,"72727273":14,"727430e":13,"73":[12,14,19,29,30],"73013118e":19,"7307":23,"73096308e":19,"73109557e":19,"731839":13,"732093":13,"7321":23,"73319":13,"73334082e":19,"73339668e":19,"73388":13,"73416701e":19,"73430":13,"73434481e":25,"7354":13,"73608":13,"73633":13,"73669760e":19,"73789973e":25,"73823302e":25,"7390722":14,"74":[12,14,16,29,30,33],"74009149e":25,"74081486":15,"74095585e":19,"741430":13,"74176784":8,"74254149e":25,"74368878e":19,"7453":13,"74778663e":25,"749052":13,"75":[12,13,14,15,16,22,24,29,30,33],"750":12,"750000":[13,16,24],"75081016":14,"75116445e":25,"752":13,"752860e":13,"752870e":13,"75307036e":25,"75354527e":19,"754":17,"75473902":15,"755898":13,"756":[13,17],"75642317e":19,"75732367e":19,"75757576":14,"75788452e":25,"76":[14,16,19,24,29,30],"76033":13,"760632":24,"76323776e":19,"7647wqr96rhr49q":[17,22],"76493581":14,"76536":13,"76546160e":19,"767943601369907":17,"768":13,"7682":12,"76846118e":19,"76971":13,"76975214e":19,"77":[12,14,24,29,30],"77200563e":19,"772982":24,"772989":24,"77316345e":25,"773574":13,"77388106e":25,"77426368":14,"774447":13,"77578831e":19,"7763568394002505e":16,"77653136e":25,"77777778":14,"777778":12,"77784322e":19,"778":29,"778371":13,"7793":13,"78":[12,14,29,30,33,35],"780000":16,"78193582e":19,"782500":12,"783439":13,"784":[30,35],"78425838e":25,"78721":13,"78724266e":25,"78787879":14,"788435":13,"78864953":14,"7889":23,"78909912e":25,"79":[14,24,29,30,35],"79046":13,"79400":13,"794146":24,"79615554e":19,"797":7,"79905757e":19,"79932403e":25,"799550":13,"7999":13,"7_data_spectral_transform":17,"7_day_avg":12,"7_modeltrain":32,"8":[2,3,7,8,11,12,13,14,15,16,17,18,19,21,22,24,25,28,29,30,31,32,33,34,35,39],"80":[8,12,14,19,25,29,30],"800":25,"8000":33,"80046686e":19,"80125":13,"80184096e":19,"802":[23,29],"802040":13,"80232020e":25,"803":29,"804":29,"80414214e":19,"80467402e":19,"805":29,"805389":13,"8055555555555556":26,"806":29,"807":29,"8073373888433721":32,"80752904e":19,"808":29,"809":29,"81":[14,16,29,30,35],"810":29,"810000z":7,"811":29,"81113083":14,"81141063e":25,"812":29,"813":29,"81304750e":25,"814":[29,35],"815":29,"815100":13,"815140":13,"81525401e":25,"816":29,"81692591e":19,"817":29,"817346":13,"818":29,"8181818181818182":23,"81818182":14,"819":29,"81909580e":25,"81970102e":19,"82":[14,24,25,29,30,33],"820":29,"820579":13,"821":29,"82123482e":25,"822":29,"822220":13,"82295974e":25,"823":29,"824":29,"825":29,"826":29,"8263632119514472":26,"82639626e":19,"827":29,"82773":12,"828":7,"828204":13,"828656":13,"829":29,"82903172e":19,"82940078e":25,"83":[7,14,19,29,30],"830":29,"8309308755379773":17,"83111864e":25,"832":29,"832200":12,"83254010e":25,"83286861e":19,"833":[29,30],"833060":13,"834":29,"835":29,"836148":13,"837":29,"838":29,"83847536e":19,"84":[14,16,22,29,30,31,33],"840":29,"84020133e":19,"84028749e":19,"8406":12,"840700":12,"840963":13,"841":29,"8410":13,"841475":13,"843":29,"84315":13,"84388478e":19,"84424972e":25,"844845":13,"845":29,"8453316591120342":17,"84575843":8,"84583932e":19,"847":29,"847409":13,"84803587":14,"84805874e":19,"84848485":14,"849":29,"84975344":14,"85":[14,19,22,29,30,33],"850":[12,29],"852405":13,"852980":13,"853":29,"853095":13,"853705":13,"85382366e":25,"853950":13,"85430983e":25,"8545072":8,"85451879e":19,"855":29,"857":[7,29],"85702362e":25,"85775":13,"858":11,"85836044e":19,"858770":13,"859":11,"859240":13,"85946":13,"85955127e":19,"86":[14,19,22,25,29,30],"860":[11,29],"86090316e":25,"861":11,"86149975e":25,"862":11,"86269050e":25,"863":[11,29],"86349029869899":17,"864":11,"865":[11,29],"866":11,"86637":13,"867":[11,31],"8679961043240163":17,"868":11,"869":[11,29],"87":[14,22,24,25,29,30],"870":11,"870000z":7,"870529":13,"871":11,"872":11,"87265918e":25,"873":29,"87381742":14,"874325971290356":15,"875000":21,"87549147e":25,"876":29,"87810165e":19,"87812831e":19,"87876889e":19,"87878788":14,"88":[14,22,29,30],"880":[13,29],"880100e":13,"881180e":13,"881300e":13,"88163672":8,"88218788e":25,"88306815e":25,"883288":13,"88405566e":25,"88421426":15,"884382":13,"884605":13,"88499613e":19,"885":29,"8861111111111111":26,"886273":13,"88678261e":19,"8888":27,"88888889":14,"89":[14,22,29,30,33],"890":29,"890000":16,"89021509":14,"89038735e":19,"89098648e":19,"89181306e":19,"8926121":14,"89347960e":25,"89595643e":19,"896":29,"89751882e":19,"89813112e":19,"898166":19,"899":[22,30],"89950044e":25,"8x8":[29,30],"9":[2,11,12,13,14,15,16,19,22,23,24,25,26,28,29,30,31,32,35,39],"90":[8,12,14,19,22,29,30,35],"900":30,"9000":[33,34],"901":[17,30],"902":30,"90265774":8,"903":[29,30],"90305907e":25,"904":30,"90438":13,"905":30,"905100":12,"90535107e":19,"906":[25,30,33],"90625":25,"907":30,"90700158e":25,"90781154e":19,"908":30,"909":30,"90909091":14,"90950553e":19,"90972222":25,"91":[14,22,29,30],"910":[25,30],"911":[12,30],"912":[7,30],"91289199":25,"913":[25,30],"91319444":25,"91336627e":25,"91363892e":25,"914":[29,30],"91468729e":19,"91615":13,"91666667":25,"917":25,"918970":13,"91910361e":19,"9192":13,"91938238e":25,"91949590e":19,"91986063":25,"92":[14,15,22,24,29,30,31],"920":25,"92013889":25,"921":7,"92233225e":25,"923":25,"92334495":25,"92361111":25,"924":25,"92482898":14,"92495460e":25,"925":26,"925120":19,"92678":13,"92682927":25,"927":25,"92708333":25,"92742328e":19,"92780079e":25,"92810648e":19,"92820725e":25,"92855":13,"92880978865406":22,"929816":13,"93":[14,16,19,22,24,25,29,30],"930":25,"93031359":25,"93043423e":25,"93055556":25,"931":25,"93108787e":25,"932":29,"93205588e":19,"93260335":14,"93289237e":19,"93379791":25,"9339":23,"934":25,"93402778":25,"935":11,"936":[11,31],"9365":13,"937":[11,25],"93728223":25,"9375":25,"938":25,"93914670e":19,"93939394":14,"93946235":25,"94":[7,11,14,22,25,29,30],"94015921":25,"94076655":25,"94086334":25,"94097222":25,"941":[7,25],"94155536":25,"942135":16,"94225223":25,"94268501e":25,"94288096e":19,"942928":13,"94293215":25,"94293457":25,"94294425":25,"94337144e":25,"944":[11,25,29],"94420606":14,"94425087":25,"94433556":25,"94444444":25,"945":11,"94503":25,"94503242":25,"94503968":25,"945234":13,"945457":13,"945635":13,"946":11,"94642373":25,"94657351":8,"94699":13,"947":[7,29],"94711334":25,"94712544":25,"947210":13,"94773519":25,"94780778":25,"94781746":25,"9478223":25,"94782472":25,"94791667":25,"948":[11,25],"94850707":25,"94850949":25,"94851916":25,"94852158":25,"94915864":8,"94919909":25,"94921361":25,"94921603":25,"94921845":25,"94990321":25,"94990563":25,"94990805":25,"94991047":25,"95":[8,14,22,24,25,29,30,31],"95001412e":25,"9500949":8,"95032425e":25,"9506025":25,"95060492":25,"951":25,"95121951":25,"9512921":25,"95129694":25,"95129936":25,"95130178":25,"95138889":25,"95181":13,"95198897":25,"95199139":25,"95199381":25,"95199623":25,"95199864":25,"95200106":25,"95214107e":19,"95239386e":19,"95269793":25,"95338269":25,"95338753":25,"95407714":25,"95470383":25,"95476432":25,"95486111":25,"955":25,"95514458e":25,"95547329":25,"95547571":25,"9555061179087876":22,"956":29,"95616531":25,"95616773":25,"95617015":25,"95685734":25,"95686218":25,"95686943":25,"957200":12,"95754694":25,"95755662":25,"958":25,"95818815":25,"95825348":25,"95833333":25,"95894551":25,"95894793":25,"95895035":25,"9599473847106159":26,"96":[3,14,19,22,25,29,30,31],"9609":12,"96124":13,"9615219421101775":26,"96167247":25,"96180501e":25,"96180556":25,"962":[25,29],"96242741":25,"96243225":25,"96304065":14,"96312911":25,"9638163":25,"96382356":25,"96408":13,"965":25,"96515679":25,"96521003":25,"96527778":25,"96590447":25,"96590689":25,"96591415":25,"966550e":13,"966580e":13,"96660376":25,"9666666666666667":25,"96723179e":25,"968":29,"96841261e":25,"96864111":25,"96868709":25,"96875":25,"9687815126050421":26,"9688542825361512":22,"969":25,"96938637":25,"96969697":14,"97":[8,14,22,29,30],"97071249e":19,"972":25,"9720":23,"97212544":25,"97222222":25,"97260277e":25,"97287069":25,"975":29,"975000":[21,24],"97560976":25,"97569444":25,"976":25,"97699003e":25,"97700996":14,"97702356":14,"979":25,"97909408":25,"97916667":25,"9793790849673202":26,"98":[14,19,22,29,30],"98076449e":25,"981":[7,13],"981000e":13,"98100851e":19,"98156960e":25,"982":29,"98233":13,"9825784":25,"98263889":25,"9826966":8,"983":25,"98364724":14,"98533885":8,"986":25,"98606272":25,"98611111":25,"98629590e":25,"986400":13,"987420e":15,"98750850e":19,"98780850e":19,"988":29,"988460":13,"988970":13,"989040":13,"98945863e":19,"98954704":25,"98958333":25,"98965852e":25,"99":[12,14,15,22,29,30],"990":25,"990000z":[17,18],"99469224e":25,"9948425":14,"99549186e":19,"995780e":13,"996":29,"99606599e":25,"99685":13,"9970084":15,"99702835e":19,"99746591":8,"99780493":8,"9981":13,"998100":12,"99908489e":19,"99918722e":19,"99947629e":25,"99958587e":19,"99964465e":25,"9999":13,"\u00b5s":17,"boolean":[11,20],"break":[1,28,35],"byte":15,"case":[8,11,13,14,15,18,20,24,27,28,31,32,35,37,38],"class":[5,6,7,8,9,12,13,14,15,16,17,18,19,20,21,22,23,25,26,28,30,31,32,33,35],"default":[2,3,4,8,12,14,19,26,32,34],"do":[4,8,9,11,12,15,16,17,19,21,22,23,25,26,28,29,30,31,32,34,35,38,39],"export":[24,27],"final":[9,19,22,26,31,33,34,37,38,39],"float":[8,13,14,19,22,23,29,30,31,32,33,35],"function":[2,4,6,7,8,13,14,15,16,17,18,19,20,21,22,23,25,26,27,28,31,33,34,35,38],"ga\u00ebl":21,"import":[2,4,7,8,11,12,13,14,15,16,17,18,19,21,22,23,25,26,27,28,29,30,31,32,33,34,35],"int":[7,8,14,15,17,18,19,22,24,29,30,31,33,35],"long":[15,16,17,29,30,31,34],"m\u00fcller":21,"new":[8,12,13,14,15,16,18,19,21,23,24,26,27,28,36,38,42],"null":[11,13,15],"public":[1,4,42],"return":[7,8,11,12,13,16,19,21,22,23,27,28,29,30,31,32,33,34,35],"short":[4,12,34,35,39],"super":[22,29,30,33,35],"switch":8,"transient":35,"true":[7,8,11,12,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35],"try":[12,14,15,19,21,23,25,26,27,28,31,32,34,38],"var":[12,15,16,17,19,23,28],"while":[12,19,23,25],A:[1,2,4,8,9,10,12,13,14,15,16,18,19,20,21,22,23,25,26,28,29,30,32,34,35,36,42],AND:12,And:[7,15],As:[8,10,12,15,26,27,31,32],At:[3,4,14,15,31,32,38],Be:4,But:[15,16,19,32],By:[4,8,15,26,32,39],For:[1,3,8,10,12,13,14,15,18,19,23,26,27,28,29,30,31,32,36],If:[3,4,8,9,13,14,15,17,19,20,22,23,24,27,28,29,30,32,42],In:[3,4,7,10,11,12,13,14,15,17,18,19,20,21,23,24,25,26,27,28,29,31,32,33,34,35,36,37],Is:[1,9,14,19,28,38],It:[1,3,4,6,7,8,10,11,12,13,14,15,16,17,19,20,21,22,23,25,27,29,30,31,32,34,35,37,38,42],Its:19,NEAR:12,No:[11,17,19,38],Not:[4,17],OF:12,On:[4,25],One:[1,3,8,9,16,17,19,23,25,26,27,30,31,35],Or:[1,9,31,34],THe:19,TO:[24,35],That:[23,26],The:[1,3,4,5,6,7,8,9,11,12,13,14,15,17,18,20,21,22,23,24,25,26,27,29,30,32,33,34,35,36,37,39,40,42],Their:3,Then:[4,19,29,31],There:[3,4,8,11,14,15,17,19,20,22,23,25,26,27,30,31,32,38],These:[2,3,5,8,18,19,27,30,31,35,38],To:[0,2,3,4,5,7,8,12,13,15,17,18,19,20,23,26,27,28,30,32,34,39],WITH:15,Will:[24,38],With:[12,16,26,32],_1:[8,32],_2:[14,16,32],_:[8,15,22,28,29,30,31,35],_________________________________________________________________:35,__call__:22,__class__:[26,31],__getitem__:[29,30],__init__:[11,28,29,30,33,35],__len__:[29,30],__main__:12,__name__:[26,31],__none:28,__sigmoid:28,__step:28,_array_strptime_with_fallback:12,_asarray_with_ord:22,_assert_all_finit:22,_base:[22,26],_c:30,_check_estimator_nam:22,_check_i:22,_convert_listlike_datetim:12,_coordinate_desc:32,_engin:11,_ensure_no_complex_data:22,_fit_and_predict:22,_fit_context:22,_funcwrapp:22,_get_sequential_output:22,_i:[20,23,32],_k:32,_kmean:19,_lib:12,_lock:22,_make_engin:11,_maybe_cach:12,_n:8,_read:11,_refine_defaults_read:11,_stochastic_gradi:32,_valid:22,_validate_data:22,_validate_nam:11,_validate_param:22,_validate_target:22,_with_config:22,a_:8,a_nparrai:14,aa:14,aar:12,ab:[14,17,18,19,23,24,31],abcseri:12,abil:[6,15,42],abl:[4,19,22,23,27,32,33,38,39],about:[2,4,9,11,12,14,15,17,18,19,23,27,31,33,34,39],abov:[4,8,15,17,19,21,30,31,32],absolut:[18,19,24,28,32],abund:19,ac29:32,academ:4,academia:27,acc:21,acceler:14,accentu:31,accept:[4,15],accept_large_spars:22,accept_spars:22,access:[3,4,5,10,11,14,24,38,39],accord:[8,29,30],accordingli:33,account:[3,8,15,19],accur:[17,38],accuraci:[9,15,21,22,23,24,25,26,29,30,31],accuracy_scor:[22,25,26],accuracy_tim:[29,30,31],accurraci:23,achiev:[9,25,27],acknowledg:4,acoust:3,across:[10,19,26,38,42],act:[26,32],actic:19,action:4,activ:[2,28,29,32,34,35],actual:[9,19,23,24,27,28,31,32,37],actualfalsevalu:21,actualtruevalu:21,ad:[3,6,14,30,31,32,33,34,35],ada_clf:26,adaboost:21,adaboostclassifi:[21,26],adagrad:32,adam:[30,31,32,33,34,35],adapt:[25,31,40],add:[2,4,8,9,10,11,12,14,15,16,18,19,24,28,29,30,31,33,35],add_subplot:[8,19],add_to:11,addit:[9,10,11,12,18,19,22,30,33],address:[1,4,7,9,15,39],adequ:9,adher:4,adityakadiw:23,adjac:15,adjust:[15,25,29,30,32],admiralti:12,adopt:[14,39],advanc:[3,39],advantag:[3,8,15,25,26,32],affect:[12,19],affin:30,afford:3,after:[4,13,14,15,19,29,30,31,32,35],again:[3,8,11,12,15,32],against:[15,19,21,30,32],agenc:42,agg:12,agglom:19,agglomerativeclust:19,aggreg:[14,19,26],agnost:33,ago:24,ahead:[14,27],ai:[10,13,27,32,37],aid:[19,40],aim:[1,4,5,12,32,34],air:14,air_temperatur:[11,14],aircraft:10,aka:[14,21],akash:39,akmehra:39,akshai:[39,40],al:[4,31,35],alana:4,alanabd:13,alaska:17,algebra:[14,20],algorithm:[8,9,19,23,25,26,28,30,31,32,34,35,37,38],alias:2,align:8,all:[1,4,6,7,8,9,11,12,14,15,17,18,19,21,22,23,24,25,26,27,29,30,31,32,33,38,39],allcorr:8,allevi:15,alloc:[3,14,31],allow:[1,3,4,8,10,11,12,13,14,15,23,25,31,32,33,34,38,42],allow_nd:22,allow_object:12,along:[11,19],alow:17,alpha:[8,15,16,19,21,23,24,30,31,32,33],alreadi:[2,3,7,12,13,14,18,23,26,27,28,31,33,37],also:[3,4,7,8,11,12,13,14,15,16,17,19,20,21,26,27,29,30,31,32,34,35,37,42],alter:37,although:23,alwai:[19,23],amath301:39,amath:39,amaz:27,amazon:3,ambient:[7,33],among:[7,10,13,15,19,30,32],amount:[8,11,15,32],amplitud:[17,18,31,38],an:[1,3,6,7,8,10,11,12,13,14,15,17,18,19,20,21,22,23,25,26,27,28,29,30,32,33,34,35,38,39,42],anaconda:2,analog:20,analys:9,analysi:[7,10,11,12,19,20,31,37,39],analyz:[4,17,18,32],anchor:8,andrea:21,android:4,angl:[17,19],ani:[4,6,7,11,12,15,16,17,26,30,34,35,37,42],annoi:27,annot:[8,13],annotate_heatmap:8,anomal:24,anonym:12,anoth:[8,9,12,17,19,26,29,32,35,37],answer:[12,14,15,16,27,32,39],antenna:15,anthoni:39,anticorrel:15,anyon:14,api:[4,11,32],app:42,appear:[8,14,17],append:[8,11,14,15,21,28,30,32,33],appli:[8,12,14,15,16,17,19,20,24,29,31,35,37,38,39],applic:[3,4,8,10,11,13,15,16,17,19,30,42],appnop:[7,28],approach:[8,9,12,15,19,25,26,30,36],appropri:[4,13,14,27,32,38,39],approxim:[8,15,17,23,30],ar:[3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,34,35,37,38,39],arang:[7,8,14,15,17,19,22,29,30,31,32,34],architectur:[3,6,30,31,32,35],archiv:[3,10,38],arcitectur:29,area:[3,4,14,15,21,22],arendt:39,arg:[12,22,33],argmax:8,argmin:19,argument:[8,15,26,30,32],arian:40,aris:17,arithmet:14,around:[3,8,16,19,30],arr:14,arra:14,arrai:[6,7,8,9,12,15,17,18,19,21,22,23,24,25,26,28,31,32,33],arrang:9,array_of_diff:15,array_to_datetim:12,arriv:3,arrow:5,art3d:19,art:[9,10],artefact:17,articl:17,artifici:24,artist:7,asarrai:[8,15,17,19,21,22,31,32],asid:32,ask:[4,23],aspect:[17,31,32],assembl:[9,19],assert:11,assess:[13,15,19,21,25,32],assign:[12,14,15,19,20,24,27,30,31],associ:[3,7,11,29,32],assum:[7,15,17,19,23,32],assumpt:[15,32],ast:8,asttoken:[7,28],astyp:[19,29,30,34],asynchron:12,atan2:8,atlow:17,atmospher:[3,5,10],attach:14,attach_respons:[17,18],attain:19,attempt:[32,35,39],attent:26,attr:14,attribut:[7,9,10,12,13,14,19,22,32,38],attriobut:7,auc:[21,22],augment:[9,32],author:[4,31],autmn22:4,autmn:39,auto:[17,19,25,27,36],autofmt_xd:24,autograd:33,autokera:27,autom:[4,27,36],automat:[2,4,7,8,9,14,27,32,38,39],autumn22:4,avail:[2,3,11,12,13,15,18,19,26,28,35,38],avalanch:7,avenu:19,averag:[12,15,19,23,24,26,27,29,30,32,38],averagepooling2d:31,avg:22,avgpool2d:31,avoid:[4,12,13,15,25,34,38],await:[12,13],awar:[4,17],awesom:[4,27,28],ax11:14,ax12:14,ax13:14,ax14:14,ax1:[8,14,19,24,29,30,31],ax2:[8,14,19,24,29,30,31],ax3:[14,24],ax4:[14,24],ax:[8,14,15,16,17,18,19,21,22,28,30,31,32],axes3d:19,axesimag:[8,25],axhlin:31,axi:[5,6,7,8,12,14,15,17,19,21,24,29,30,31,35,38],axisgrid:19,axvlin:[15,19,31],azimuth:[8,12],b:[8,9,11,12,14,15,17,19,21,23,24,28,29,30,31,32,34],b_i:29,b_j:29,b_k:29,b_w:28,back:[8,12,27,30,32,35],backcal:[7,28],backend:4,background:21,backprop:14,backpropag:[30,34],backward:[8,9,23,29,30,31,32,33,35],bad:[21,26,32,34,35],badg:4,bag_clf:26,baggingclassif:26,baggingclassifi:26,balanc:[7,12,22,32],ball_tre:25,band:[13,17,18],bandpass:17,bar:[4,17,24],barcontain:7,base:[8,10,11,12,14,15,18,19,20,22,23,25,30,32,42],base_estim:26,baseestim:22,baselibsvm:22,baselin:38,baseline_error:24,baseline_pr:24,bash:3,basi:[9,17,19,20,28,32],basic:[3,4,16,19,20,21,25,30,32,36,38,39],basin:10,batch:[19,29,30,31],batch_data:29,batch_label:29,batch_siz:[29,30,31,34,35],bay:[20,21],bayesian:25,bbox_to_anchor:15,beat:38,beauti:42,becaus:[4,10,12,14,15,19,21,23,29,30,31,32,34,35,37,38,39],becom:[3,4,10,17,20,23,34],been:[14,23,27,38],befor:[4,9,13,14,17,20,21,28,32,38,39],begin:[11,15,16,21,31,32],beginn:39,behav:[14,30,32],behavior:[16,21,25,32,38],behind:[26,42],being:[20,29],belong:[12,19,21,23,32],below:[1,3,4,6,7,8,11,12,14,16,17,18,19,20,25,26,30,32,33,35,39],benchmark:9,benefit:40,best:[4,14,19,21,23,25,30,31,32,36,38],best_epoch:32,best_i:32,best_model:32,best_params_:25,beta:35,better:[8,9,15,19,27,30,32,34],between:[3,4,6,7,12,13,14,15,16,17,18,19,21,22,23,26,29,30,31,32,35,38],beyond:[32,40],bia:[15,26,28,29,30,31,32],bias:[28,29,30,32],biasweightupd:28,bibtex:4,big:[3,11,23],bin:[12,14,16,18],binari:[2,11,18,20,23,26,29,30,32,35],binder:[4,42],binderhub:42,biomed:35,bit:32,bitbucket:4,black:[8,14,15,16,19,30,31],blank:[1,19],blast:7,blob:12,block:[34,35],blog:16,blue:[11,13,15,29,30,31],blurr:14,bmatrix:31,bo:19,bold:[1,19],book:[3,14,17,22,30,32,38,39,40,42],boost:27,bootstrap:[9,26],both:[9,14,15,18,19,20,21,23,27,32],bottleneck:35,bottom:8,boulder:40,bound:[11,30,38],boundari:[11,21,30,31],boundedfloattext:28,bourn:3,box:[4,15],bp:17,br:1,bracket:14,branc:35,branch:[4,6,30,35,39],branch_nam:4,breadth:39,brew:3,brief:4,briefli:4,bring:17,broader:31,broadli:15,broken:32,browser:[1,4,5,42],brute:25,bsd:21,bucket:7,bucketx:7,bug:4,build:[4,13,15,19,23,25,26,30,32,42],build_meta:4,built:[11,14,19,30,35,38],bundl:30,burden:15,butter:17,butterworth:17,button:[5,28],c1:[17,32],c2:[17,32],c:[8,14,15,16,19,21,22,28,30,31,33,35,38,42],c_:[8,30,32],cach:[7,12,17],cache_arrai:12,cache_d:[11,12],calcul:[7,8,12,13,14,15,16,17,18,19,20,21,22,23,24,27,28,29,30,31,32,33,35,38],calculat:18,california:[3,12],call:[3,8,11,12,14,17,18,20,21,22,23,26,27,28,29,30,32,34,35,38,42],callabl:30,callback:22,calucl:33,camcol:13,can:[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,25,26,27,29,30,31,32,33,35,36,37,38,39,42],candid:25,cannot:[12,17,20,30,35],canon:[17,35,39],canva:39,cap:19,capabl:3,capit:28,captur:[15,16,26,30],carbon:19,carefulli:[13,15,17],carlo:9,carpentri:[3,4,6,14,40],carri:31,carto:12,cascad:19,cascadia:15,casino:15,cast:29,cast_to_ndarrai:22,catalog:[3,12,31],categor:[10,11,24,30],categori:[7,12,20],causal:[17,32],caveat:19,cbar:[8,13],cbar_kw:8,cbarlabel:8,cc:[19,21,32],cd:4,cd_fast:32,cdot:[8,23,29,32],cell:[1,11,12,15,17,22,25,27,30,32,34],celsiu:[12,14],center:[3,4,8,14,15,19],central:[3,12,15,16,17],central_mo:16,centroid:19,certain:[19,26],certifi:18,cfg:7,chain:30,challeng:11,chang:[4,8,10,12,14,15,16,19,26,28,32,33,35,37],channel:[2,12,17,18,30,31,42],chapter2:17,chapter3:22,chapter4:[30,32],chapter:[3,27,32,39],charact:[11,13,15],character:[9,13,32],characterist:[17,21,22,32],charset:18,chart:24,chatgpt:40,cheat:4,chebyshev:[17,25],check:[2,4,11,12,14,15,17,18,30,32,35],check_arrai:22,check_consistent_length:22,check_param:22,check_x_i:22,check_y_param:22,checkout:4,checkpoint:[30,31,35],chemistri:10,chile:12,chine:39,choic:[12,15,25,26,28,32],choos:[3,4,8,12,17,18,19,20,29,30,31],choosealicens:4,chronolog:15,chunksiz:11,ci:4,cienc:39,circ:[14,23],circl:[15,19],citat:4,cite:4,classic:[17,19,20,25,31,32],classif:[5,9,18,19,23,26,29,30,31],classifi:[7,12,20,22,23,25,29,30,31,32,35],classificaiton:[20,26],classification_report:[21,22],claus:21,clean:[4,13,15,16,18,32,35,38],cleaned_data:13,cleanest:4,clear:[19,27,39],clear_output:[17,28],clearli:[15,19],clf2:25,clf:[21,22,25,26,28,30],cli:4,click:[4,5,9,28],client:[17,18],climat:[10,11,12,14],clipboard:4,clone:[4,6,22,32,39],close:[15,19,21,23,35],closer:[15,19],closest:19,cloud:[1,4,6,8,10,11,14,38,39,42],cloudstor:3,cluster:[3,5,31,38,39],cluster_centers_:19,cluster_label:19,clusterid:19,clusters_new:19,clusters_old:19,cm:[8,17,19,22,28,30],cm_bright:30,cmap:[7,8,13,17,21,22,30,31,35],cnn:[34,35],cnnautoencod:35,co2:5,co:[8,14,19,21],coarsen:14,coast:12,cobli:14,code:[1,3,4,8,12,13,19,21,23,27,31,32,38,39,42],codespac:[17,22],coef:15,coef_:[15,23,32],coeff:8,coeffic:15,coeffici:[8,13,14,15,17,19,32],cogt:10,coher:19,cohes:19,cohort:4,coin:31,col:14,col_index:19,col_label:8,colab:4,coll:33,collabor:42,colleagu:4,collect:[5,7,8,10,11,13,14,16,17,19,21,26,27,38],color:[8,11,12,13,14,15,16,18,19,21,28,29,30,31],color_threshold:19,colorbar:8,colorblind:14,colorinterp:11,colormap:8,column:[7,8,10,13,15,16,17,19,22,23,24,32],column_or_1d:[22,32],column_stack:19,columnar:11,com:[1,4,5,7,11,12,13,16,17,19,23,24,27,31,33,39,42],combin:[8,15,16,18,19,25,26,29,31,32,34],come:[2,10,14,19,27],comic:4,comm:28,comma:10,command:[3,4,23,24,30,42],comment:[11,19,33],commit:4,common:[4,7,10,11,12,13,16,17,19,20,21,32,35],commonli:[10,19],commun:[4,11,40,42],compact:[12,17],compar:[6,12,14,17,18,19,20,21,26,29,30,31,35,38],compare_model:27,compareoutput:28,comparison:[8,27],compil:[9,30,34],complet:[12,16,17,19,21,38],completeness_scor:19,complex:[8,10,11,14,15,17,19,20,26,30,31,32,38],complex_:18,complic:[23,34],compon:[7,15,35,37,39],components_:8,compos:[1,3,12,26,31,35],composit:16,compress:[11,12,17,32,35],compris:31,comput:[1,2,4,6,8,9,10,11,15,17,19,20,22,23,29,30,32,33,38,39,42],computation:[8,15,25],compute_cent:19,compute_clust:19,compute_dist:19,compute_elbow:19,compute_object:19,cona:2,concat:7,concaten:[15,18,19,31],conceit:15,concept:[10,15,19,35,39],concurr:22,conda:[4,42],condit:[19,20,32,33,36,38],conduct:4,conern:3,conf:4,confid:[15,21],config:[4,14,22],config_context:22,configur:[4,11,25,27],confirm:27,conflict:4,confus:[21,22],confusion_matrix:[21,22],confusionmatrixdisplai:22,congrat:4,conj:18,connect:[3,4,12,13,29,30,34,35],consid:[9,17,20,21,27,28,31,32],consist:[12,19,25,32,36],console_script:4,constant:32,constrain:[17,30,32,33],constraint:32,construct:[5,18,19],consum:[25,36],contact:[4,10],contain:[1,2,4,8,10,11,12,13,14,15,19,24,32,35,39,42],contamin:18,content:[3,4,5,6,11,12,15,16,18],content_str:15,context:[13,14,18,19,29,30,31,35],continu:[4,8,11,17,32],contourf:[11,17,30],contourpi:[13,18,28],contribut:[3,6,8,19,26,30,32,40],contributor:4,control:[39,42],conv1:30,conv2:30,conv2d:[30,31,35],converg:[15,19,32,35],convergencewarn:32,convers:[12,19,28],convert:[8,11,12,14,15,17,22,23,24,25,26,29,33],convert_listlik:12,convert_str_to_tsobject:12,convien:11,convnetquak:31,convolut:30,convolve2d:31,convout:31,convtranspose2d:35,cool:[3,27,33],cooling_law:33,coolwarm:13,coord:14,coordin:[11,14,15,17,20,30,38],copi:[2,4,9,12,14,19,22,25,26,29,30,38,39],copilot:12,core:[3,12,13,14,19,26,42],corner:[4,11,17],corr:[7,8,13],corr_coef_collector:15,corr_matrix:13,corrcoef:[14,15],correct:[23,26,27,29,30,31],correctli:[21,23,27],correl:[7,8,9,14,15,19,32,38],correlated_data:15,correlation_matrix:15,correspond:[7,10,12,19,23,28,30,39],cosin:[17,19],cost:[3,15,19,20,27,28,30,32],costfunct:28,costum:12,could:[3,4,10,12,13,22,31,35],count:[12,13,15,16,17,18,21,22,24],cours:[1,4,5,6,11,12,14,15,40],cov:14,covari:[15,19],cover:[17,19,38,39],cpu:[3,14,26,33,35],cr:11,craft:33,crap2:35,crap:[7,8,18,35],creat:[2,6,8,9,11,13,14,15,16,17,18,19,20,22,23,24,26,27,30,31,32,33,34,35,38,39,42],create_graph:33,creation:11,credit:4,crispi:18,cristea:[39,40],criterion:[28,29,30,31,35],critic:[4,15,16,17],cross:[9,14,22,23,29,30,31,32,38],cross_val_predict:[22,26],cross_val_scor:[21,26],crossentropyloss:[29,30,31],crucial:[13,14,19],cruis:19,cryospher:[5,39],cs160:39,cs163:39,cs230:31,csr:22,csv:[1,5,7,9,10,13,16,19,23,24,27],cu:40,cubic:16,cuda:[3,14,33,35],cumsum:8,cumul:8,cumulativevarianceexplain:8,curat:5,curl:5,current:[2,8,19,22,23,24,34,38],curriculum:[30,32],curv:[21,22,26,30,31,32,35],curvatur:17,curve_fit:14,custom:[12,30],custom_dataset:[29,30],customdataset:[29,30],cutoff:17,cv:[13,15,22,25,26],cv_results_:25,cwt:[9,17,38],cwtm:17,cwtmatr:17,cyan:8,cycler:[2,13,18,28],cyto:19,cytomet:19,d1:14,d2:14,d2dl:34,d:[8,12,14,17,18,19,20,24,29,30,31,33,35],da:3,dai:[8,12,15,17,24,27],daili:[8,12,24],dall:10,dash:28,dask:14,data:[1,3,4,7,17,20,23,25,26,29,32,33,34,36,37,39,42],data_faith:19,data_loader_test:[29,30],data_loader_train:[29,30],data_rang:12,data_shrink:19,dataarrai:14,databas:[10,11,14,16],dataconversionwarn:32,datafram:[8,10,11,14,15,16,19,21,24,34],dataload:[30,31,35],datamanipul:17,dataset:[7,8,9,10,11,12,13,14,15,16,17,19,21,22,23,24,25,26,30,31,32,35,38],dataseta:25,datatyp:13,date:[4,8,10,12,15,19,24],date_format:11,date_pars:11,date_rang:12,date_year:[8,32],dateparseerror:12,datetim:[12,24],datetime64:12,datetimearrai:12,dateutil:[2,7,12,13,18,28],dateutil_pars:12,dayfirst:[11,12],db:23,de:8,deactiv:2,deal:[8,12,14,15,24,32],debug:38,dec:13,decai:18,decid:[13,19,21,23,30],decim:[11,15],decis:[20,21,26,30],decision_funct:[22,30],decisionboundarydisplai:21,decisiontre:26,decisiontreeclassifi:[21,26],declar:[14,15],decod:[12,15],decoder_cnn:35,decompos:[8,17,35],decomposit:[8,17,19,20],decor:[7,18,22,28],decreas:[8,9,19,21,23],dedic:30,deep:[3,14,19,31,35,37,39],deepdenois:35,deeplearn:[30,32],def:[7,8,12,13,16,19,21,23,28,29,30,31,32,33,34,35],default_rng:[15,28],defin:[2,4,9,12,14,15,16,18,19,21,23,25,28,29,30,32,33,35,42],definit:[8,9,19],degc:14,degre:[8,15,17,24,32],delai:22,delayed_func:22,delet:2,delim_whitespac:11,delimit:11,delta:[15,17,18,23,28],dem:17,demarc:19,demographisc:3,demonstr:[6,7,8,14,15,21,27,32,39],dendogram:19,dendrogram:19,denoisecnna:35,denol:[39,40],denot:[12,19],dens:[30,31,34],densiti:[13,19],depend:[2,4,8,9,10,13,17,19,30,42],deploi:[3,12,39,42],deploy:[4,12,39],deprec:[15,28],deprecationwarn:28,depth:[10,12,19,26,31,35],depth_km:12,deriv:[10,23,30,32,33,42],descent:[14,20,28,29,30,31],descr:[22,25],describ:[4,9,11,12,13,14,16,24,25,35,37,39],descript:[4,12,24,28],design:[11,14,15,19,22,26,31,32,33,39],desir:32,detach:[23,33,35],detail:[3,4,19,25,27,30,39],detect:[7,31,32,35],determin:[9,15,17,24,28,29,30,32],determini:15,detrend:[15,17,18],dev:[12,17],develop:[2,3,4,32,39,40,42],deviat:[14,15,16,17,38],devic:[3,14,33,35],devid:15,df:[7,8,11,12,13,15,16,19,21],df_clean:13,df_numer:13,df_read:11,diag:8,diagon:[8,21],dialect:11,diam:19,diam_lwr:19,diam_mid:19,diam_upr:19,diamet:19,dict:[8,22],dict_kei:[22,25],dictat:31,dictionari:[8,11,12,14,22,25,26,32],did:[12,15,27,32],diff:[4,15],diff_mean:15,differ:[2,4,6,7,11,12,14,15,17,18,19,21,25,26,32,35,37,38,42],differenti:[14,30,32,33],difficult:[17,19,37],diffus:[33,35],digit:[11,12,13,17,22,25,26,29,30,39],dim:14,dimens:[8,9,10,11,12,14,15,17,30,31,32,34,35,38],dimension:[9,10,11,12,14,19,20,32,39],dip:12,dir0:30,dir1:35,direct:[5,7,8,10,13,14,32],directli:[3,4,10,12,22,27],directori:[11,35],disabl:[29,30,31,35],disadvantag:[15,32],discern:19,disciplin:39,disciplinari:5,discov:19,discoveri:33,discret:[17,31],discrimin:[8,13,16,18,20],discriminant_analysi:21,discriminatori:17,discuss:[3,4,10,12,15,19],disp:22,displac:[8,15,32],displai:[12,13,14,16,17,24,28,31],display_styl:14,dissimilar:[14,19],dist:[14,19],distanc:[17,25],distance_threshold:19,distancemetr:19,distinct:19,distinguish:[13,14],distort:19,distribut:[3,7,8,9,12,14,15,17,18,19,25,32,38,42],distrubut:13,dive:[14,31],divers:[5,10,25,26,32],diversifi:32,divid:[9,15,16,17,18,38,39],divis:19,djf:14,dl:[7,11,17,19,23,31],dmatrix:26,dmc:[17,18],dn:19,doc:[4,12,14,15,19,24,27,30,32],docker:[4,27,39,42],docmument:4,document:[4,6,9,11,12,17,19,21,32,38,42],doe:[4,11,12,15,18,19,21,23,26,28,31,38,42],doi:[4,11,31,38],domain:[18,25,30,35],domin:[11,17],don:[27,34],done:[3,4,11,14,15,17,22,27,30,31],dot:[8,23,28,31,32],doublequot:11,dowload:11,down:[1,4,11,29,32],download:[2,4,7,8,11,12,13,15,17,18,19,23,26,27,31,35,42],downsampl:[14,30,31],dozen:42,draft:21,dramat:3,drastic:21,draw:[9,15,19],drawn:32,drive:39,driven:42,drlat:17,drlon:17,drone:10,drop:[4,7,13,16,23,24,28,30,38],dropbox:[4,7,11,17,19,30,31,32],dropdown:28,dropna:[12,13,15,16,23],dropout:[30,31,32,35],ds2:14,ds:[1,4,14,39,42],dt:[14,17,33],dta:12,dtype:[7,11,12,13,14,18,19,22,25,31],dtype_backend:11,du:14,dualiti:32,ducelli:40,due:[13,15,17,19,32,39],dummi:31,dump:11,duo:4,duplic:[4,15],durat:17,dure:[27,29,30,32,34,39],dw:23,dwa82x6xhjkhyw8:19,dynam:5,dz:16,e2019gl085870:31,e:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,19,23,25,26,27,29,30,31,32,35,37,38],e_b:15,e_train:15,e_val:15,each:[2,3,4,7,8,10,11,12,13,14,15,16,17,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,37,39,42],earli:[9,11,22,34,39],earlier:[30,35],earliest:12,early_stop:[30,32],earth:[4,7,10,14,19,39,40],earthchem:16,earthdatasci:[4,11,14,40],earthquak:[7,8,16,17,18,20,31,32,35],earthquake_magnitud:16,earthrocgranit:[5,16],eas:[15,32],easi:[4,11,14,23,27],easier:[8,14,23,30],easili:[15,35,38],east:[8,11,12,15,32],eastward:15,ecosystem:[25,39],edg:[17,31],edgecolor:[16,19,21,30],edit:[3,4,27,35],editor:4,edu:[4,8,15,39],educ:39,effect:[10,15,17,21,25,26,29,32],effici:[3,10,11,12,14,15,25,27,32,35],effort:[4,14,27,36],ehz:12,eigen:8,eigenvalu:8,eigenvector:8,either:[1,3,5,8,14,15,19,23,30,32,35,39],ela_reg:32,elaps:22,elasticnet:32,element:[11,12,14,15,19,21,28,31,32],elev:[11,12,17],elevation_m:11,elif:[11,12],elimin:32,ellips:19,els:[4,7,8,11,12,14,19,21,22,28,29,30,31,33,35],elsewher:31,email:[4,39],emb:32,embed:[8,11,37],emerg:[7,11],empir:19,emploi:[15,25],empti:[12,15,19,22,34],en:15,enabl:[3,17],encod:[11,27],encoder_cnn:35,encoding_error:11,encount:[5,10,17],end:[0,8,9,12,15,16,19,20,21,25,29,30,31,35,39],end_dim:[29,30],end_tim:12,enddat:12,endeavor:19,endtim:[17,18],energi:17,enet_coordinate_desc:32,enforc:17,engin:[11,15,32,39],enhanc:11,enivron:2,enough:[9,14,32,38],ensembl:[21,22,24],ensur:[4,12,15,24,28],ensure_2d:22,ensure_min_featur:22,ensure_min_sampl:22,enter:[12,16,17,27],entir:[4,12,15,19,26,29,31,32,37],entri:[4,8,11,13],entropi:[23,29,30,31,32],enumer:[8,13,18,19,21],env:[2,7,11,12,13,18,19,26,28,32],environ:[4,6,10,11,25,38,39,42],environment:[11,15],ep:[21,33],epal:28,epoch:[26,29,30,31,32,33,34,35],epr:15,epred_train:15,epred_v:15,epsilon:23,eq1:31,eq2:31,eq:[7,33],equal:[8,15,16,17,18,28],equat:[10,20,30,33,42],equial:14,equival:[10,12,14,23,29,30,32],er:28,err:21,errno:11,error:[8,9,11,12,13,15,19,20,21,23,24,28,29,30,31,32,35,38],error_scor:25,erupt:19,escapechar:11,escienc:3,esourc:39,espear:31,especi:[14,15,19,25,27,32,38],ess490:[30,32],ess:[1,4,39,42],essenc:19,essenti:[12,15],est:19,estim:[8,15,19,22,24,25,26,29,31,32,35,38],estimator__algorithm:25,estimator__leaf_s:25,estimator__metr:25,estimator__metric_param:25,estimator__n_job:25,estimator__n_neighbor:25,estimator__p:25,estimator__weight:25,estimator_nam:22,et:[4,31,35],eta0:32,eta:[26,28],etc:[1,4,10,12,14,27,29,32,38],euclidean:[19,25],euclidian:[14,19],ev:15,eval:[7,28,33],evalu:[15,19,20,25,26,29,30,31,32,35,39],evaluate_model:27,evapor:12,evaporation_mm:12,even:[10,17,18,19,37],evenli:14,event:[5,7,12,16,17,19,31,42],event_id:7,eventu:42,everi:[9,14,15,17,25,31,37,39],everyth:[2,28,37],everytim:4,evolut:[29,32],exact:[2,12,15,23,37],exactli:15,exampl:[3,7,8,10,11,13,14,16,17,19,20,21,22,23,24,26,29,30,33,34,36,39],exce:29,excel:[4,14],except:[1,30],exceptiongroup:28,excess:32,exchang:11,exclud:[13,27],exclus:30,execut:[1,2,7,28],exercis:[5,7,11,15,19,21],exess:32,exhibit:15,exist:[9,15,17,19,23,25,42],exist_ok:[11,30,31,35],exp:[12,14,17,18,23,28,29,30,32,33],exp_reg101:27,expand:1,expans:3,expect:[6,12,21,27,32,38],expens:[3,25],experi:[3,19,25,27,36,42],expert:[9,25,39],expertis:38,expir:4,explain:[8,9,19,23,30,31,33],explained_variance_:8,explained_variance_ratio_:8,explanatori:12,explicitli:[15,19],explor:[9,15,16,18,19,22,25,26,28,29,36,38],explort:13,explos:7,expon:16,exponenti:[16,32],express:[12,19],extend:[21,29,31],extens:[2,6,25,28,42],extent:[9,17],extern:[2,25],extract:[7,9,16,17,18,24,27,28,29,35,39],extractal:11,extrem:[5,15],f0e1ywupdbuv3l3:7,f1:[21,22,23,32,34],f1_score:21,f2:34,f4:15,f:[7,11,13,14,16,17,18,21,22,23,24,25,26,28,29,30,31,33],f_1:21,f_:17,f_a:17,f_c:17,f_path:[30,31,35],f_x:23,facecolor:19,facet:14,facil:38,facilit:[11,14],fact:[15,19,31],factor:[4,13,17,18,30],fahrenheit:12,fail:[12,30],fair:38,faith:19,fake:19,fall:12,faller:4,fals:[8,11,12,13,15,16,19,21,22,23,24,25,26],false_valu:11,famili:17,familiar:[14,29],far:15,fashion:31,fashionmnist:35,fast:[3,12],faster:[11,14],fastica:[8,9],fc1:[30,35],fc2:[30,35],fc3:30,fc4e2a:8,fc:19,fdsn:[17,18],fdsn_client:[17,18],feather:19,featur:[9,10,12,14,17,18,19,20,23,25,27,30,31,32,33,35,38,39,42],feature_import:24,feature_importances_:24,feature_list:24,feature_nam:[8,22,25,28],fee:4,feed:[13,35],fetch:[4,39],fetch_openml:[22,31,35],few:[12,13,15,19,32],fewer:8,ff0000:30,ff:12,fft2:17,fft:[9,17,18],fftfreq:[17,18],fftpack:[17,18],fftshift:17,fiberid:13,fidel:35,field:[8,10,12,13,14,27,31,32,33,35,36],fig1:14,fig2:14,fig:[8,12,14,16,17,18,19,24,28,29,30,31,32],figsiz:[8,13,14,16,17,18,19,22,24,28,30,31,32,34],figur:[5,8,11,12,13,18,19,22,27,28,29,30,31],figure_:22,figure_format:14,fiji:12,file1:[4,11,17],file2:[4,11,17],file:[1,3,7,9,11,13,14,16,19,21,22,31,38,39],file_url:8,filenam:[11,19],filenotfounderror:11,filepath_or_buff:11,fill:[13,17,18,31,38],fill_betweenx:19,fill_valu:25,filter:[12,13,14,31],filterdimens:31,filtered_imag:31,find:[3,4,7,8,9,12,13,14,15,17,19,20,21,23,25,26,29,30,31,32,35,36,38,39],finder:27,fine:[25,32],finit:[7,17,31],first:[1,3,4,7,8,9,12,13,14,15,16,17,18,19,21,22,23,26,28,29,30,31,32,33,34,35,38,39],fisher:16,fit:[8,14,15,19,21,22,23,24,25,26,30,33,34,36],fit_method:22,fit_param:22,fit_predict:19,fit_transform:[8,19,21,22,25,26,32,35],fivethirtyeight:24,fix:[4,12,15,30,31,32,38],flag:19,flat:18,flatten:[14,26,29,30,31,34,35],flavor:42,flexibl:[10,14],flip:14,float32:[14,29,30,31,34],float64:[12,13,22],float_precis:11,floatlogslid:28,floor:17,flouresc:19,flow:[10,16,19],fluctuat:12,fluor:19,fly:14,fmi:19,fn:[19,21,23],fname:[11,12],focu:[3,7,11,14,15,25,27],focus:[13,19,39],fold:[22,25,32],fold_shuffl:27,folder:[9,11,12,17,19,28,31,38],folium:11,follow:[0,3,4,5,7,8,11,15,16,19,21,26,27,28,31,32,39],font:[14,18,19],fontsiz:[14,19],fonttool:[13,18,28],fontweight:19,forc:[4,23,25,39],force_all_finit:22,forecast:[24,27],forecast_acc:24,forecast_noaa:[24,27],forecast_und:24,forest:[20,21,22,26,27,30,39],forestri:5,forg:2,forget:32,fork:4,forlin:28,form:[10,11,14,15,18,19,20,32],format:[1,5,7,8,9,12,19,21,22,24,29,30,31,35,38,39],formatt:8,former:40,formul:[9,20,23],formula:[19,22,23],forth:27,fortran:42,forward:[8,9,14,29,31,33,35],found:[4,11,14,23,29,31,32,39],foundat:[10,14,39],four:7,fourier:[7,9,18,35,39],fourth:[1,14,16,18],fowlk:19,fp:[19,21,23],fpr:[21,22],frac:[8,14,16,17,18,19,20,21,23,29,30,31,32,33],fraction:[19,21],frame:[7,12,13,16,20,22,25],framework:[4,11,17,39],free:[3,4,35,38,42],freedom:32,freq:[12,17],frequenc:[14,16,17,18],frequent:[8,12,19],freqvec1:17,freqvec:[17,18],fri:24,friend:[2,24,27],friendli:[4,30],fritz:32,from:[1,2,4,7,8,9,10,11,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,38,39,42],from_estim:[21,22],from_numpi:[23,33],fs:[7,17,18],ft:17,ftp:12,full:[12,27,31,32],full_matric:8,fulli:[29,30,34,35],func:22,functool:33,fundament:[9,10,15,19,21,32,33],further:[4,30,35],futur:[4,10,28],futurewarn:[19,26],g2:32,g:[1,2,3,4,5,8,9,10,11,12,13,14,15,19,20,23,25,26,27,29,30,31,32,37,38],gain:42,galaxi:13,game:3,gamma:[21,22],gap:[13,17,32,38],gate:[19,34],gather:[3,20,32],gaussian:[14,21,32,38],gaussian_filt:14,gaussian_process:21,gaussiannb:[21,26],gaussiannois:35,gaussianprocessclassifi:21,gb:26,gca:[8,15,16],gcp:3,gd:32,gdoutput:28,gdrive:4,ge:14,gener:[4,8,9,10,11,14,15,16,19,20,26,28,30,31,32,34,35,36,37,38,39],generaliz:[26,38],generate_time_seri:34,geo:39,geodes:19,geodesi:[8,15,39],geodet:[5,19],geograph:[10,11],geographi:19,geohackweek:[11,40],geolog:[11,17],geologi:[11,17,39],geometr:10,geometri:11,geophys:[5,10,16,19,31],georeferenc:11,georg:40,geoscien:39,geoscienc:[3,5,11,12,13,16,17,19,32,37,38,40],geoscientif:[10,12,13,17],geoscientist:12,geosmart:[4,39],geospati:[10,15,17,19,26,30,32,37,38,39],geostatist:19,geotiff:10,geq:23,get:[3,4,5,8,9,11,12,13,14,15,16,19,22,23,24,26,29,30,31,32,35],get_arrai:8,get_config:22,get_dummi:[24,27],get_features_by_domain:7,get_handl:11,get_param:25,get_waveform:[17,18],get_xticklabel:8,getattr:22,getitem:29,geyser:19,gh:12,gi:10,giant:37,gist_dir:12,git:[6,26,39,42],github:[1,3,5,6,12,25,27,31,33,35,38,40,42],githubusercont:[5,12,13,16],gitignor:4,gitlab:4,give:[1,2,4,15,17,18,19,21,23,27,32],given:[1,8,10,12,15,19,21,25,31,33,38],glacier:19,glass:1,glob:[8,15],global:[3,4,12,19,31,32],global_quakes_iri:12,global_skip_valid:22,go:[4,7,11,12,14,15,17,23,26,27,28,29,30,32],goal:[15,19,25],goe:[29,32,33],gone:27,good:[4,9,14,15,19,25,32,38],googl:[24,27,39],got:22,gouraud:17,gov:[11,24],gp:[8,15,19],gpd:11,gps_timeseri:[8,15],gpu:[3,14,35],grad:[23,33],grad_a:14,grad_b:14,grad_c:14,grad_d:14,grad_fn:23,grad_output:33,grad_y_pr:14,gradient:[14,20,28,29,30,31,33,34,35],gradientdesc:28,graduat:40,grai:[28,31],granit:16,grant:4,grant_sudo:27,graph:[14,24,30],graphic:[3,31],graviti:10,gray_r:22,great:[3,4,27,28,30,31,35],greater:[17,24,31,32],green:[11,13,15,19],grei:29,grid:[8,10,11,12,14,15,17,18,19,21,22,28,29,30,31,32,33,34],gridsearchcv:25,gridsearchcvgridsearchcv:25,grobler:21,ground:[7,10,16,17,19,32,38],group:[3,7,11,12,14,15,19,20,22,38],groupbi:[12,14],growth:3,gudelin:4,gueron:26,guess:11,gui:4,guid:[4,12],guidelin:[4,38],gzip:[8,15],h2o:27,h5:[5,7,9,11,31],h5py:[7,11,31,35],h:[8,12,23,30,33],h_w:20,h_y:23,ha:[4,7,8,11,12,14,15,18,19,20,23,25,27,29,30,31,32,34,35,38],hackweek:42,had:[4,29],half:39,hand:[26,29,42],handl:[3,4,10,12,20,29,30],handwritten:22,happen:[8,12,14,15,17,19,21,32],happi:[28,30],hard:[4,26,39],hardwar:[1,3,42],harmon:21,has_index_nam:11,hasattr:30,hasn:28,hat:[15,17,20,23,29,32],have:[2,3,4,7,9,11,12,13,14,15,16,17,18,19,23,25,26,27,29,30,31,32,33,34,35,37,38,40],hazard:16,hdf5:7,hdf:[10,11],head:[1,4,7,8,11,12,13,15,16,19,24,27],headach:4,header:[11,12],heartbeat:32,heat:33,heatmap:[8,13],heavi:[3,16],height:[11,12,15,31],help:[4,6,14,15,19,25,32,38],henderson:[39,40],here:[3,4,7,8,11,12,14,15,16,17,18,19,20,22,23,25,27,28,29,30,31,32,34,35,39],heterogen:11,hhz:[17,18],hidden:[30,33,34],hidden_layer_s:30,hide:8,hierarch:[10,31],hierarchi:19,high:[3,10,13,15,16,17,19,21,25,32,35,39],higher:[12,21],highest:[8,17],highli:13,highlight:13,highpass:17,hint:12,hist:[7,12,14,15,16,17,18],histogram:[7,9,12,13,14,16,17,18],histor:[24,27],histori:[9,29,30,31,34,35],histplot:13,hnz:12,hold:11,home:[3,4,9,11],homepag:4,homewgrown:38,homework:4,homgeneity_scor:19,homogen:[19,32],homogeneity_completeness_v_measur:19,honshu:12,hood:[19,27],hook:23,hopefulli:19,horizont:[3,8,15,31],horizontalalign:[8,30],host:[4,39,42],hot:27,hour:[3,12,17],hover_data:12,hover_nam:12,how:[3,4,7,8,9,10,11,12,13,14,15,16,19,20,21,22,23,28,29,30,37,38,39],howev:[3,4,8,9,11,13,15,23,30],hp:17,hpc:[6,14],href:[17,22,30,32],html:[1,4,8,12,14,19,25,30,32,35,38],htop:3,http:[1,3,4,5,7,8,11,12,13,14,15,16,17,19,21,23,24,27,30,31,32,33,35,36,38,39,42],hub:[3,6,11,39],hue:19,hulbert:31,human:[10,11,38],hyak:3,hydrolog:[5,8,10],hydrotherm:19,hyp_50m_sr:11,hyper:[20,25,27,30],hyperbol:30,hyperparamet:[15,26,27,31,32,38],hyperplan:20,hyperspectr:10,hypothesi:[15,20],hz:[17,18],i2:17,i6tv3ug15oe6yh:17,i8:12,i:[3,7,8,12,13,15,17,18,19,20,22,23,28,29,30,31,32,35,38],i_it:23,i_j:28,ic:[19,31],ica:[8,9,38],iclass:21,icon:4,id:[4,7,15,19,22,24,27],idai:8,idea:[19,26,27,35],ideal:[8,10,14,21,32],ident:[14,21],identifi:[5,8,19,22,24,31,32,38],idna:18,idx:35,ifft2:17,ifft:[17,18],ifram:12,ignor:[4,15,17,19],ignore_index:7,igs14:[8,15],ii:[8,15,21],iik:15,il:13,illustr:[4,15,17,19,35],iloc:[7,11,12,24,27],im:8,imag:[1,8,9,10,11,16,17,18,19,22,25,27,29,30,32,35,39],image_index:35,imageri:[10,11,14],imagin:[15,35],imaginari:35,img:[1,31],immedi:22,impact:[25,26,28,32,37],imperfect:26,implement:[3,19,20,25,26,28,29,30,32,35],impli:[8,19,31],important_indic:24,importantli:16,importlib:[13,18,28],impos:32,improv:[26,32,35,38],impuls:7,imput:13,imputation_typ:27,imshow:[8,17,22,31,35],in_channel:31,in_circl:15,in_featur:[29,30],in_squar:15,inaccess:4,includ:[1,4,5,6,10,16,19,30,31,32,35,38,39],incomplet:4,incoropor:39,incorpor:[19,42],incorrect:13,increas:[14,15,19,21,23,26,32,33,34],increment:33,ind:17,inde:[15,21,35],independ:[4,11,15,22,23,26,32],index:[4,5,7,11,12,13,14,19,24,29,30],index_col:11,indic:[13,15,16,19,32],indirect:10,individu:[3,12,14,19,26,29,32],induc:15,industri:27,ineffici:11,inertia:19,inexact:23,inf:[13,32],infer:12,infer_datetime_format:[11,12],infin:23,infinit:17,influenc:[15,27],info:[2,12,13],inform:[4,8,9,10,11,30,32,37,38,42],infrastructur:42,infti:[16,17,31],inher:19,inherit:[29,35],inhomogen:32,init:[4,15,19],init_cent:19,initi:[4,13,14,19,23,25,28,29,30,31,32,33,35,38],initiali:19,inlin:[7,8,14,15,24,28,30,32],inlinebackend:14,inplac:[12,13,23],input:[7,8,9,12,13,14,17,27,28,29,30,31,32,33,34,35,38],input_dim:33,input_nam:22,input_s:35,input_shap:[30,31,34],inquiri:11,inscrib:15,insert:[1,19],insid:[2,8,15],insight:[13,19],inspect:21,inspir:[4,33],instal:[2,3,4,6,7,12,13,17,18,26,27,28],instanc:[1,3,8,10,12,18,21,22,26,30,31,32,38,39],instanti:[24,35],instead:[4,12,16,17,19,21,22,23,26,32,35,38],institut:[3,38],instruct:4,instructor:[4,12,17,22,39],instrument:[10,17,19],int32:[19,25],int64:[12,13,22,25,26],int_:[16,17],integ:[14,22,29],integr:[4,9,14,27],intend:[10,39,42],intens:[8,15],interact:[1,3,11,12,30,42],intercept:15,intercept_:[23,32],interest:[7,10,13,17,35,40],interfac:[1,2,4,42],intermedi:[4,17,29,30,31,35,38,39],intermingl:19,intern:34,internet:42,interpol:[13,22],interpret:[2,11,19,20,30,31,32,39],interpret_model:27,interrupt:22,intersect:14,interv:[15,16,30],intro:[12,14,39],introduc:[4,14,15,27,30,34,35,37,39],introduct:[3,12],introductori:11,intuit:[19,25,30],inv_test_indic:22,invari:31,invers:[8,20],inverse_transform:8,invert:20,investig:17,involv:[9,14,15,25,26,32,33],io:[4,8,11,12,15,31,32,35,36],ioarg:11,iohandl:11,ipykernel_26544:12,ipykernel_47043:17,ipykernel_60185:19,ipykernel_70516:28,ipynb:[17,22,30,32],ipython:[7,17,28],ipywidget:28,iq1:31,iq2:31,iq:31,iri:[8,17,18],irisdf:8,irreduc:32,irrelev:13,is_avail:[33,35],is_text:11,isel:14,isfinit:31,isin:12,isinst:[8,11,12],island:12,isnan:15,isnul:13,isol:[2,8,37,42],isomap:8,issu:[4,6,9,27,34,38],issue_templ:4,ital:1,item:[1,4,12,14,15,28,29,30,31,33,35],iter:[7,11,15,19,22,23,24,25,27,28,29,30,31,32,35],iterable_with_config:22,iterationsran:28,iterationsslid:28,ith_cluster_silhouette_valu:19,its:[2,5,7,9,14,15,18,19,25,26,27,30,31,32,34,38],itself:[4,11,19,32],j5lxhd8uxrtsxko:11,j:[8,19,23,28,29,32],jaqu:21,java:42,javascript:42,jedi:[7,28],jja:14,job:3,joblib:[22,28],johnson:31,journal:41,js:[11,12,17,19,28],json:1,juli:17,julia:[38,42],julian:15,jump:[9,29],jupyt:[2,3,6,24,25,27,30,38,39,42],jupyterhub:[3,4,42],jupyterlab:[2,4,12,28,42],jupyternotebook:42,just:[4,7,12,15,16,19,23,28,29,30,31,32,34,37],k:[8,16,20,21,22,23,24,26,28,29,31,32],k_means_cyto_3:19,k_means_cyto_8:19,k_means_cyto_bad_init:19,kaggl:[13,23],katherin:19,kb:[12,13],kcbp:12,kcpb:12,kd_tree:25,kde:13,keep:[4,14,15,17,23,28,32,35],keep_date_col:11,keep_default_na:11,kei:[7,10,11,12,13,14,22,24,25,26],kelvin:14,kept:15,kera:[26,29,30,31,32,34,35,36,39],keras_tun:36,kerasclassif:30,kerasregressor:30,kernel:[1,20,21,22,30,31],kernel_s:[31,35],kf:15,kfold:15,kharita:39,khbb:12,kilomet:12,kind:11,kit:[19,26],kiwisolv:[2,13,18,28],klat:17,klon:17,km:[12,17],kmean:19,kmeans_model:19,kneighborsclassifi:[21,22,25,26],kneighborsclassifierkneighborsclassifi:25,knn:[20,21,25,26],knn_clf:22,knn_predict:[22,25],know:[1,3,20,23,32],knowledg:[25,35,39],known:[15,19,22,27,31,32],ko:19,koehrsen:24,kurtosi:[13,17],kurtosis_valu:16,kw:8,kwarg:[8,22],kwd:11,kwds_default:11,kxk:21,l1:[19,32],l1_ratio:32,l2:[14,32,33],l2_reg:33,l:[23,29,31,32,35],l_1:14,l_2:14,l_old:23,lab:[4,23,40],label:[6,7,8,9,12,13,14,15,18,19,20,21,22,26,27,29,30,31,32,33,34,35,38],label_binar:22,labelbottom:8,labelcolor:[29,30,31],labels:14,labels_:19,labeltop:8,laden:26,lambda:[24,32],lambda_meters2kilomet:12,land:[3,11],landsat:[3,10],landslid:[7,16],languag:[1,3,4,38,42],laplac:[16,32],laps:10,laptop:[2,4],larg:[3,4,10,12,14,16,17,23,25,26,30,32,38],larger:[3,8,11,16,19],largest:[8,17],lasso_reg:32,last:[4,11,12,14,17,22,23,24,26,27,30,32,34],lat:[12,14,17,19],later:[2,15,19,23,24,30,34],latex:1,latitud:[11,12,14,17,30],latter:28,launch:1,law:[14,16,32,33],layer1:[29,30],layer2:30,layer:[4,11,29,32,33,34,35],layout:[14,24],lbfg:30,lda:[20,21],ldata:7,lead:[8,15,17,36],leader:3,leaf_siz:25,learn:[2,3,8,9,11,12,13,14,15,20,21,22,23,24,25,27,28,29,31,33,34,35,38,40,42],learn_rat:26,learner:[26,32],learning_r:[14,26,29,30,31,32,35],learningr:28,learningrateslid:28,leas:38,least:[17,32,39],leav:[1,12],leaveoneout:15,lectur:[7,13,14,15,17,19,31,39],lecun:31,leduc:31,left:[4,8,12,14,15,20,30,31,32],legend:[8,13,14,15,17,18,22,24,28,30,31,32,33,34],legend_el:[8,28],len:[7,8,11,12,15,17,18,19,21,22,23,24,26,28,29,30,31,32,33,35],lenet:32,lenet_checkpoint:31,length:[8,12,13,14,15,18,20,23,28,31],length_a:15,length_sub:15,leq:[19,23],less:[8,10,12,15,17,26,27,28,38],lesson:[3,6,40],let:[7,8,11,12,14,15,16,17,18,19,20,21,22,23,29,30,32,34],letter:31,level:[1,7,12,21,39],leverag:31,lh:[12,14],lib:[7,11,12,13,18,19,22,26,28,32],librari:[2,10,11,14,27,38],licens:[4,5,21],lidar:10,lie:[19,30],lighgbm:27,light:19,lightgbm:27,lightweight:11,like:[3,4,9,10,11,12,13,14,15,16,18,19,23,25,26,28,31,32],likewis:9,lil:35,lilianweng:35,limit:[11,14,15,17,20,25,26,30,31,35,38],linalg:[8,14],line2d:[7,15,18,19,32,35],line:[1,2,4,7,8,11,12,14,15,17,18,19,20,22,24,27,30,32,35,42],linear:[8,14,17,18,21,22,23,25,28,29,30,31,32,33,35],linear_model:[15,20,23,28,32],lineardiscriminantanalysi:21,linearli:[14,17,28],linearly_separ:30,linearregress:[15,20,28],linestyl:[8,14,19,28,31],linetermin:11,linewidth:[8,14,15,21,28,31,32],link:[1,4,7,12,39],linkag:19,linregress:15,linspac:[8,14,15,17,18,28,30,31,33,34],linux:[3,6,38],list:[1,2,3,4,6,7,8,11,12,14,15,19,22,24,27,38],listedcolormap:[21,30],literatur:[9,31,38],littl:[20,21,32],live:42,ll:[4,13,15],ln:8,load:[8,16,25,30,31],load_dataset:14,load_digit:[22,25,26,29,30,31,35],load_iri:[8,28],loaded_test:[31,35],loaded_train:[31,35],loc:[15,16,19,22,28],local:[4,6,12,17,19,22,31,32,39],locat:[1,7,9,10,11,12,16,17,18,19,24,31],log10:[7,17,19],log:[14,16,17,18,19,23,29,30,32,33,35],log_:18,log_i:19,log_x:19,logarithm:38,logic:29,logist:[20,29,32,39],logistic_regress:23,logisticregress:[23,32],logit:29,lognorm:16,logspac:[14,17,30],lon:[12,14,19],longer:[17,19,23,32,34,35],longitud:[11,12,14,15,17,30],loo:15,loocv:15,look:[4,7,8,9,11,12,13,14,16,18,21,26,27,28,29,31,32],loop:[6,8,12,15,17,19,29,30,31,35],loos:[3,42],loot:28,loss2:33,loss2_weight:33,loss:[8,9,14,19,20,23,25,30,31,33,34,35],loss_funct:[30,31],loss_tim:[29,30,31,35],loss_val:35,loss_val_tim:35,losses2:33,lot:[3,26,27,32,34,38],low:[3,15,17,18,19,21,25,26,27,32],low_memori:11,lower:[8,15,17,20,22,26,28,32,35],lower_critical_valu:15,lowest:[19,35],lowpass:17,lp:17,lr:[29,30,31,33,35],ls:[12,14],lstrip:30,lt:[31,35],lua:42,lucidlenn:13,lucki:3,lunch:38,lw:19,lxml:18,lzmy975n0l5bjbmr9db291m00000gn:[12,17,19,28],m1:27,m2km:12,m8:17,m:[4,8,11,12,14,15,17,20,24,26,32,35],m_3:16,m_4:16,ma:39,mac:27,mach:29,machin:[3,9,11,13,14,15,19,20,22,25,26,32,38,40],machinelearn:22,maco:3,macosx:[3,4],macosx_12_0_arm64:26,macro:22,made:[4,5,8,12,29],madison:40,mae:[24,32],mag:12,magic:24,magmat:19,magnesium:16,magnet:10,magnitud:[16,17,26,32],magnitude_bin:12,mai:[1,2,3,4,7,8,9,11,12,13,15,17,18,19,23,26,30,32,33,34,35,38],mail:4,main:[5,11,12,13,16,19,29,39],maintain:15,major:[8,19,26,27],make:[2,4,6,7,11,12,14,15,17,18,21,22,23,24,27,28,30,31,32,33,34,37,38,39],make_circl:[21,30],make_classif:[21,30],make_moon:[21,30],make_pipelin:30,makedir:[11,30,31,35],malfunct:13,mallow:19,mam:14,manag:[2,12,29,30,31,35,42],manhattan:[19,25],mani:[2,3,7,8,11,12,15,17,19,20,21,22,23,27,28,29,31,32,37,38,40,42],manifold:35,manipul:[6,7,9,10,11,24,27,39],manual:[25,38],manual_se:[30,31,33],map:[8,10,11,30,31],mapbox_styl:12,mape:24,march:32,margin:20,mariana:12,marin:[39,40],marinedenol:[7,12,13,18,19,26,28,30,32],mark:39,markdown:[4,42],markedli:42,marker:[11,12,14,15,19],marker_clust:11,marker_s:12,markerclust:11,markers:12,market:27,mask:[11,25,35],masked_arrai:25,mass:19,master:4,match:[15,19,27,32],materi:[11,14,31,39,40,42],math:[8,14,19,23,39],mathbf:[8,19,20,30,32],mathcal:[23,29,32],mathemat:[14,23],matlab:[38,39],matmul:8,matplolib:39,matplotlib:[2,6,7,8,11,12,13,15,16,17,18,19,21,22,24,25,28,29,30,31,32,33,34,35],matric:9,matrix:[13,15,17,19,20,21,22,23,30],matshow:[7,25],max:[8,11,12,13,14,15,16,17,18,19,22,24,25,26,28,29,30,31,32,35,38],max_depth:[21,26],max_featur:21,max_it:[23,30,32],max_percentag:[17,18],max_pool2d:30,max_sampl:26,maxim:[20,25,29,33],maximum:[12,19,23,24,27,29,30,31,32,38],maxlat:17,maxlon:17,maxpool2d:31,maxpool:31,maxpooling2d:31,mayb:30,mb:[12,13,26,35],mcbrearti:31,md:[1,4,38],mdenol:39,mean:[3,4,11,12,13,14,15,17,18,20,21,23,24,26,28,29,31,32,33,38],mean_a:15,mean_b:15,mean_filt:31,mean_fit_tim:25,mean_score_tim:25,mean_squared_error:[15,32],mean_temp:16,mean_test_scor:25,meaning:13,meant:42,measur:[8,10,12,13,15,16,19,21,24,27,30,32,38],mechan:32,media:10,median:[12,13,15,38],meet:[27,38],mehra:[39,40],member:[15,19,42],memori:[3,11,12,13,14,23,29,30,31,34],memory_map:11,mention:4,menu:[1,4],mere:30,merg:[1,4,17,18,19,39],meridian:15,mesh:30,meshgrid:30,messag:4,messi:4,meta:26,metadat:14,metadata:[4,9,10,11,12,14,38],meter:12,meters2kilomet:12,meters2kilometers2:12,metho:9,method:[5,8,9,10,12,13,14,16,17,20,22,23,24,25,26,29,31,35,36,39],methodolog:39,metric:[15,17,19,22,23,24,25,26,30,31,32,34,36],metric_param:25,mgo:16,microsoft:[3,27],microstoft:3,middl:[8,18,19,30],might:[8,9,11,12,13,15,16,17,18,21,26,27,31,32],mimic:[11,35],min:[11,12,13,14,15,16,17,19,22,24,25,28,30,32,38],mini:[19,29,30],minibatch:32,miniconda3:[7,11,12,13,18,19,26,28,32],miniconda:2,minim:[12,13,19,20,23,29,32,33,38],minima:[19,32],minimum:[8,12,19,29,32,38],minimum_val_error:32,minipnw_metadata:7,minipnw_waveform:7,minkowski:25,minlat:17,minlon:17,minmax:[32,38],minmaxscal:[22,25,26,38],minor:[8,12],minu:[24,27],minut:[19,39],mirror:[9,16],misclassifi:[19,21,26],misenterpret:17,misinterpret:17,miss:[38,41],mistak:23,mit:4,mitig:[15,17,26,30,32],mix:[8,10,12],mixing_:8,mjd:13,ml:[3,7,13,19,21,27,32,34,36,38,39],mlgeo2022:4,mlgeo2022_uwnetid:4,mlgeo2023:4,mlgeo2023_uwnetid:[4,39],mlgeo:[1,4,6,7,11,12,13,16,17,18,19,22,26,28,32,39],mlgeo_4:[30,32],mlhub:3,mllab:2,mlp:34,mlpclassifi:30,mlxtend:28,mm:[8,15,32],mnist:[22,31],mobil:4,mode:[11,14,20,26,31],model:[8,10,11,13,14,16,17,19,20,22,23,25,26,28,34,36,39],model_lenet:31,model_select:[15,21,22,24,25,26,30,31,32,35],moder:[12,30],modern:4,modif:4,modifi:[4,9,12,14,15,21,22,24,25,26,29,30,31,35,39],modul:[2,4,7,8,9,12,14,15,16,17,19,20,29,30,31,32,33,35,38,39],module1:4,module2:4,modulenotfounderror:17,moistur:[10,13],moment:[16,18,31],momentum:32,mon:24,monaco:15,mondai:[20,39],monitor:3,monoton:13,mont:9,month:[3,17,24],monthli:14,more:[2,4,8,9,10,11,12,13,14,15,16,17,19,20,21,23,25,26,30,32,35,36,38,42],morlet2:17,morlet:17,morn:39,most:[2,3,4,6,7,8,9,11,12,16,17,18,19,20,22,24,26,27,30,32,34,38],mostli:[3,7,15,19],mother:17,motion:[7,8,10,16,17,38],motiv:38,mousavi:35,move:[3,10,11,14,29,31],movement:19,mpl_toolkit:19,mplot3d:19,ms:[12,17],mse:[15,20,28,32,34,35],mse_train:15,mse_val:15,msecost:28,mseed:5,mseloss:[33,35],mt:19,mu:16,much:[3,8,19,23,27,30,32],mulbackward0:23,mult:35,multi:[12,14,17,20,21,26,29,32],multi_output:22,multiclass:[20,30],multiclassif:31,multicollinear:13,multidimension:[8,10,11,14,19,34],multilabel:35,multilay:31,multinomi:32,multipl:[3,4,8,10,14,15,17,26,29,30,31,32,34,38,42],multipli:[8,12,18],multiscal:32,multispectr:10,multivariate_norm:15,must:31,mxn:28,my:[1,4,14],my_kmean:19,my_metadata:12,my_mlp:30,my_mlp_checkpoint:30,my_pd:12,mybind:42,mycod:4,myenv:2,myst:42,n:[7,8,11,14,15,17,18,19,20,21,22,23,27,32,33],n_cluster:19,n_clusters_per_class:30,n_completed_task:22,n_compon:[8,19],n_dispatched_batch:22,n_dispatched_task:22,n_epoch:[29,30,31,35],n_estim:[21,24,26],n_featur:30,n_imag:35,n_inform:30,n_init:19,n_iter:25,n_j:19,n_job:[22,25,26],n_neighbor:25,n_redund:30,n_sampl:[8,15,32,33],n_select:27,n_split:15,n_step:34,n_unit:33,na:13,na_filt:11,na_valu:11,naiv:[20,21,34],naive_bay:[21,26],name:[2,4,7,8,11,12,14,15,17,19,21,24,30,31,38,42],nameerror:30,nan:[7,12,15,16,25],narr:42,narrai:7,narrow:9,nat:18,nation:[3,11],nativ:[12,20],natur:[7,10,15,16],navig:[4,5,19],nb:[20,26],nb_clf:26,nbin:12,nbviewer:25,nc:[11,12,14,17],ncedc:12,nclass:[22,26],ncluster:19,ncm_geologicframeworkgrid:[11,17],ncm_spatialgrid:[11,17],ncol:[22,24],ndarrai:[8,14,22,25,26],ndata:7,ndim:28,ndimag:14,nearest:[14,19,20,21,22],necessari:[4,15,16,23,32],necessarili:9,need:[4,7,8,9,12,13,15,17,19,20,23,26,27,28,29,30,31,32,34,35,38,39],neg:[16,19,21,23,32],negbackward:23,neighbor:[8,19,20,21,22,25,26],neighborhood:31,neither:27,nenad:4,neonscienc:11,neq1:31,nest:[11,30],net:[12,30,33],net_water_bal:12,netcdf4:17,netcdf:[5,10,14],netdisc:33,netdiscoveri:33,netreg:33,network:[3,10,11,12,17,18,23,28,32,35,37],neural:[17,23,28,32,35,37],neural_network:30,neuron:[29,30,31,34],nevada:15,never:26,new_a:15,new_b:15,new_nois:18,new_pair:15,newaxi:34,newcrap:18,newdata:[22,25,26],newer:4,newfil:4,newi:32,newli:15,newlin:[11,15],newnoisef:18,newweight:28,next:[15,19,22,26,27,28,29,30,31,32,34,35,42],next_fast_len:[17,18],nf:17,nfft1:17,nfft:[17,18],nhat:[17,18],ni:39,nice:[4,11,18,23],nicoleta:[39,40],nipy_spectr:19,nlabel:31,nn1:29,nn:[18,29,30,31,32,33,35],no12:31,no1:31,no2:31,no_grad:[29,30,31,35],no_val_x:22,noaa:[24,27],node:[3,11],nois:[7,8,17,19,20,21,26,28,30,31,32,33,34,35,38],noise2:31,noise_factor:28,noisi:[8,16,18,26,32,33,35],noisy_sign:18,nomal:23,non:[1,13,17,35],none:[7,8,11,12,14,17,19,22,25,26,28,29,30,31,32,33,34,35],nonlinear:30,nor:27,norm:[8,19,32,33],norm_x1:14,norm_x1_norm:14,normal:[5,8,13,14,15,16,18,19,20,21,22,25,26,30,31,32,35,38],north:[8,11],northern:12,northwest:[7,15],note:[11,15,16,17,22,23,25,26,30,32,35,39],notebook:[2,3,4,6,12,14,15,17,22,24,25,27,30,32,38,39,42],noth:[14,18,23],notic:[14,15,17,32],notifi:4,notion:19,noverlap:17,now:[4,7,8,11,12,13,14,15,16,17,18,19,21,23,25,28,29,32,33],np:[2,7,8,11,12,14,15,16,17,18,19,21,22,23,24,25,26,28,29,30,31,32,33,34,35],np_to_th:33,nperseg:17,npmap:11,npoint:8,npt:[17,18],npts1:17,nqso:13,nrow:[11,22,24],nstar:13,nsubset:15,nt:7,num:28,num_class:[26,29,30],num_images_to_displai:31,number:[2,7,8,9,11,12,14,15,16,17,18,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,37,38],number_run:15,numel:14,numer:[10,11,13,14,15,20,24],numinput:28,numiter:28,numpi:[2,4,7,8,9,11,12,13,15,16,17,18,19,20,21,22,23,24,25,26,28,29,30,31,32,33,34,35,39],numsv:8,nv:15,nvidia:3,nyq:17,o:[3,12,14,15,19,28,33,38],obei:[32,33],obj:19,object:[7,10,12,13,14,19,20,23,24,25,26,30,31,32,35],object_:12,objective_new:19,objective_old:19,objects_to_datetime64n:12,objid:13,observ:[8,9,10,12,15,16,19,23,24,28,33],obspi:[17,18],obtain:[15,23,24,32],obviou:32,occur:32,occurr:16,ocean:[3,5,10],oceanographi:[3,39],oct:12,off1:34,off2:34,off:[8,21,31,32,35],offer:[3,4,10,12,14,39],offic:14,offici:4,offset:5,ofr20191081:11,often:[2,3,10,11,13,14,15,16,17,19,25,31],ok027:31,ok029:31,ok:[12,13,18],okai:[15,21,32],ol:28,old:19,olsoutput:28,omega:23,on_bad_lin:11,on_click:28,onc:[4,12,15,23,27,29,32],one:[1,3,4,7,8,9,10,11,12,13,14,15,16,17,19,20,21,23,24,26,27,28,29,30,31,32,35,36,37],ones:[7,8,20,26,31,32],ones_lik:33,oneself:9,onevsrestclassifi:22,onli:[3,4,8,9,11,13,15,17,19,24,26,28,30,31,32,35,39],onlin:[4,28],onto:[8,17],oob_scor:26,open:[1,3,4,5,6,11,38,39,42],openeew:3,oper:[3,11,12,14,21,22,28,30,31],opportun:32,opt:[7,11,12,13,18,19,26,28,32],optic:19,optim:[3,10,11,14,19,20,23,25,26,27,31,33,34,35,36,38],optimis:33,optimist:15,optimizi:20,option:[4,8,11,13,23,28],oracl:14,orang:[8,16,19],ord:14,order:[1,12,14,17,22,30,42],ordinai:33,oregon:8,org:[8,11,12,14,19,21,23,25,30,31,32,38,42],organ:[4,8,9,11],orient:[8,24],origin:[4,7,8,11,12,15,16,17,19,21,31,32,35,39],origin_dist:15,orthogon:8,orthograph:12,orthonorm:17,os:[3,4,7,8,11,15,17,19,30,31,35],oscillatori:32,other:[1,2,4,5,7,9,10,11,13,14,15,17,19,20,21,26,27,28,29,30,34,37,38,40],otherwis:[29,32],ouput:32,our:[0,8,13,15,19,21,22,23,24,30,32],ourperceptron:28,out:[2,3,4,11,16,17,22,24,27,30,31,33,34],out_channel:31,out_featur:[29,30],outcom:12,outfil:11,outlier:[26,32,38],outofboundsdatetim:12,output:[1,8,9,10,11,12,14,15,17,20,22,26,28,29,30,31,32,33,34,35,38,39],output_dim:33,output_lay:30,output_pad:35,outputwidget:28,outstand:38,over:[1,4,5,8,10,12,15,16,17,18,19,29,30,31,32],overal:[6,15,19,31,32],overestim:15,overfit:[15,25,26,27,30],overlai:[7,8,17],overlap:[17,19],overli:15,overview:[4,14,35],overwrit:[4,9,12],overwritten:8,ovject:32,own:[3,4,5,14,19,23,38,39,42],owner:4,p395:[8,15],p:[14,15,16,19,21,23,25,27,28,29,31,32,33,35],p_valu:15,pacif:[7,15],packag:[2,4,7,8,11,12,13,14,15,17,18,19,21,22,23,26,28,32,36,39,42],pad:[24,31,35],page:[4,11,12,25,27],pai:26,pair:[8,11,19,24,38],pairgrid:19,pairplot:19,panda:[2,4,7,8,9,10,11,13,14,15,16,17,19,21,23,24,27,28,31,32,34,35,39],pandrarrai:21,panopt:31,paper:[4,9,31,37,39],paragraph:1,parallel:[3,22],param:[14,25,26,35],param_algorithm:25,param_distribut:25,param_grid:25,param_metr:25,param_n_neighbor:25,param_weight:25,paramet:[14,15,16,19,20,23,25,26,27,29,30,32,33,35],parameter:[17,32],parametr:[13,15],parent:35,pareto:16,park:11,parks_wa:11,pars:[12,27],parse_d:11,parse_datetime_str:12,parser:11,parso:[7,28],part:[4,29,30,31,32,34,35,39],partial:[23,32,33],particip:42,particl:19,particular:[7,11,14,32,38],particularli:[3,10,11,13,14,15,19,26,30,32],partit:[15,19,21],pass:[3,12,14,17,22,29,30,31,32,33,35],password:4,past:[15,17,34],path3dcollect:19,path:[4,13,19],path_or_buf:11,pathcollect:[8,19,21],pathwai:39,pattern:[5,24,31],pc:[8,19],pca:[9,20,35,38],pcg64:15,pcolor:14,pcolormesh:17,pd:[7,8,11,12,13,15,16,17,19,21,23,24,27,31,32,34,35],pde:33,pdf:[17,39],pdist:19,pdt:39,peak:[19,31],pearson:[14,15,19],peform:21,penal:32,penalti:32,peopl:[4,27,37],pep:4,per:[10,12,17,22,30],percentag:[23,24,29],percept:28,perceptron:[29,31],perfect:[15,19,28],perfectli:32,perform:[3,4,12,13,14,15,17,19,20,25,26,28,29,30,31,32,35,36,38,39],period:[12,17],permiss:[4,39],permut:28,perol:31,person:4,perspect:19,petal:28,pexpect:[7,28],pga:38,phase:[17,18],phd:4,phenomena:16,phi:30,phone:4,physi:33,physic:32,physics_loss:33,physics_loss_discoveri:33,phytoplankton:19,pi:[8,14,15,17,18,19],pi_est:15,pick:31,pickl:22,pickleshar:[7,28],picoeuk:19,piec:4,pillow:[13,18,28],pinn:32,pio:12,pip3:2,pip:[4,7,12,13,17,18,26,27,28],pipelin:[9,13,19,20,30,32],pitfal:17,pivot:19,pixel:[8,11,29,31,35],piyg:21,place:[15,22,31],plai:[4,19],plain:[11,12,13],planetari:[3,39],plate:[8,13,18],plateau:[19,32],platform:[3,4,38,42],pleas:[0,3,4,6,12,17,25,27,32],plenti:[3,14],plot:[6,7,8,9,11,12,13,15,16,17,18,19,21,22,24,25,27,28,29,30,31,32,33,34,35,38],plot_decision_region:28,plot_imag:35,plot_learning_curv:32,plot_test:14,plotli:[19,39],plotoutput:28,plt:[7,8,11,12,13,14,15,16,17,18,19,21,22,24,25,28,29,30,31,32,33,34,35],pltcount:28,plu:[24,27,32,34],plugin:11,pm:[13,39],png:[1,12,14],point:[4,8,10,11,14,15,16,17,18,19,20,26,27,28,30,31,34],poisson:14,polar:32,poly_featur:32,poly_scal:32,polynomi:[17,20,32],polynomialfeatur:32,polyquadmesh:14,pool:30,poorli:[19,26,32],pop:19,popul:[3,15,19],popular:[7,10,19,20,26,27,30,32,35,42],popup:[11,27],porotomo:3,port:3,portion:[15,26],posit:[8,12,14,15,16,19,21,22,23,29,30,31,32,38],positron:12,possibl:[6,9,14,16,19,23,25,26,32,35,38,42],possibleactiv:28,post1:[13,28],post:4,potabl:23,potenti:[17,38],pow:[14,33],power:[12,14,16,18,19,30,32],power_law_data:16,pq:12,pr:21,practic:[3,4,6,12,14,15,17,20,22,32,35],practition:36,pre:[8,9,16,17,19,21],pre_dispatch:[22,25],precalcul:19,precipit:[10,12,13],precis:[21,22,23,32],precision_recall_curv:22,precision_recall_fscore_support:23,precision_scor:21,precisionrecallcollector:21,precisionrecalldisplai:22,precison:21,precondit:38,precursor:17,pred:[15,26,33],predecessor:26,predefin:25,predict:[7,9,10,14,15,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,35],predict_proba:[21,26,30],predictions_data:24,predictor:26,predsreg:33,prefer:4,prefer_skip_nested_valid:22,preferred_source_magnitud:7,preferred_source_magnitude_typ:7,preferred_source_magnitude_uncertainti:7,preinstal:2,preliminari:38,prep:32,prepar:[9,13,29,32,39],preprocess:[8,14,19,21,22,23,25,26,30,31,32,35,38],prescrib:19,presenc:[26,35],present:[0,17,18],preserv:17,pressur:10,preval:19,prevent:22,previou:[9,15,20,22,25,26,30,32,34,37],previous:[19,31],previouscost:28,primari:[15,19],primarili:[14,15],princip:39,principl:[33,39],print:[7,8,11,12,13,14,15,16,17,18,19,21,22,23,24,25,26,27,29,30,31,32,33,34,35],print_progress:22,printer:14,prior:[18,24,25,27],privat:[4,39],pro:[4,19],proba:26,probabilist:[15,25],probabl:[19,20,22,23,26,29,30,31,32,35],probe:[10,31],problem:[9,14,17,18,19,20,23,25,27,29,30,31,38],proce:30,procedur:15,process:[1,3,7,8,9,10,12,15,16,17,19,21,25,31,37],prochloro:19,produc:[11,20,27,28,37],product:[12,17,20,27,31,37],profession:27,profit:1,program:[1,3,4,10,39,42],progress:[26,32,39],project:[1,4,8,9,11,14,17,19,39,42],projection_typ:12,promis:[25,38],promot:0,prompt:[7,12,28],propag:[9,15,29,30,31,35],proper:[2,17,32],properli:32,properti:[9,10,14,16,17,18,19,23,26,32,35],proport:18,propos:[7,35,38],proven:38,provid:[2,3,4,5,8,12,13,14,15,19,20,26,27,29,30,31,33,36,38,39,42],proxim:14,pseudo:17,pseudoinvers:20,pseuo:17,psi:17,pt:[30,31,35],ptyprocess:[7,28],pub:12,publish:[37,42],puget:17,pull:[4,6,12,27,39],pull_request_templ:4,puor:8,pure:[7,18,28],purpos:[3,4,28],push:[4,6],put:[23,30],px:[12,19],py3:[7,17,26],py:[2,4,11,12,17,19,22,26,28,32],pycr:11,pydata:19,pygment:[7,28],pylab:14,pypars:[2,13,18,28],pypi:4,pyplot:[7,8,11,12,13,14,15,16,17,18,19,21,22,24,25,28,29,30,31,32,33,34,35],pytest:4,python3:[2,7,11,12,13,18,19,22,26,28,32],python:[3,4,6,7,9,10,11,13,14,16,17,18,19,23,28,30,38,39,42],pytorch:[2,32,35,36,39],pytz:[2,7,13,28],pyx:12,q:12,qc:19,qc_lwr:19,qc_mid:19,qc_upr:19,qda:21,qi:19,qso:13,quadrat:32,quadraticdiscriminantanalysi:21,quak:[12,31],quakes2:31,quakes2plot:12,qualit:[20,23,39],qualiti:[13,19,27,32,42],quantifi:[13,19,21,32],quantil:15,quantit:[20,23],quarri:7,quarter:[15,39],queri:[11,17,18],question:[9,37,38,39],queue:3,quick:[12,38],quickli:12,quot:11,quota:19,quotechar:11,r2:[15,27],r2_score:15,r:[7,8,10,12,13,14,15,24,26,28,30,31,32,33,34,38,39,42],r_valu:15,ra:13,radar:10,radial:20,radiant:3,radiu:[15,19],rain:39,rainfal:[10,12,13,16],rainfall_mm:12,rais:22,ran:3,rand:[14,18,23,31,34],randint:[21,25],randn:[8,14,18,19,33],random:[7,8,16,19,20,21,22,23,26,27,28,30,31,32,33,34,37,38,39],random_project:8,random_split:[29,30,31,35],random_st:[15,19,21,22,23,24,25,30,32],randomforestclassifi:[21,22,26],randomforestregressor:24,randomizedsearchcv:[25,30],randomizedsearchcvrandomizedsearchcv:25,randomli:[14,15,17,19,21,25,27,30,32],randomst:[22,30],rang:[7,8,11,12,14,15,18,19,21,22,24,28,29,30,31,32,33,34,35,38],range_color:12,rangeindex:13,rank:[13,19,20],rank_test_scor:25,ransac:27,rare:[15,16,17,32],raster:10,rate:[10,12,17,18,21,22,26,28,29,30,31,33],rather:[3,35],ratio:[8,15,18,21],ratt:[17,18],ravel:[30,32],raw:[5,7,9,12,13,16,17,18,22,25,26],raw_moment:16,rbf:21,rcparam:[14,19],rdbu:30,rdylbu:17,re:[4,14,15,28,32,33],reach:[3,19,23,32],read:[7,8,9,14,17,19,24,27,29,32,37,38],read_csv:[7,11,12,13,16,19,23,24,27],read_data:7,read_feath:19,read_fil:11,read_parquet:11,readabl:[9,10,11,29,38],reader:11,readi:[13,29,39],readm:[1,4,38],real:[3,17,18,30,35,38],realist:9,realli:[4,32],realpython:12,reason:[13,19,27,30,32],reassign:38,rec:21,recal:[21,22,23,32],recalcul:15,recall_scor:21,receiv:[8,21,22,31,34,37],recent:[11,12,17,22,30,32],recogn:[4,6,9,12,27],recommend:[2,3,8,19,39,42],reconstruct:[8,32,35],record:[7,8,12,15,16,24],recov:[8,12,35],recreat:17,rectifi:[30,31],recurs:19,red:[8,11,13,14,15,16,19,29,30,31],redefin:15,redshift:13,redshift_zero:13,reduc:[4,8,9,14,15,17,19,21,26,31,32,35,38],reduct:[9,20,26,32,35,39],redund:13,ref:[12,13],refer:[3,14,15,20,24,28,30],refit:25,refresh:39,regard:30,region:[3,10,11,12,25],register_hook:23,regr:15,regress:[5,9,14,25,26,27,29,30,33,34,39],regressor:25,regrid:14,regular:[26,30,31,33,34],regularis:32,regularli:[14,17,33],reinstal:27,reject:15,rel:[15,16,18,25,28,32,34],relat:[2,9,15,17,19],relationship:[13,15,19,26],releas:[12,13,18,28],relev:[19,32,38],reli:[31,42],reliabl:[13,15,26,27,38],relu1:30,relu2:30,relu:[29,30,31,33,35],remain:[4,15,32],remedi:34,rememb:23,remot:[3,4,6,10,14,39,42],remov:[2,4,8,9,13,14,15,16,17,24,26,32,35,38],removablehandl:23,remove_anyth:12,renam:[12,26],render:[12,25],reno:15,repeat:[15,17,27,31],repeat_kmean:19,repeatedli:15,replac:[4,11,12,13,15,19,26,31,42],replic:19,repo:[1,4],report:[7,11,15,16,21,22,30,39],reposistori:39,repositori:[3,6,27,39],repres:[5,8,10,13,15,17,20,35],represent:[17,19,25,30,31,35],reproduc:[2,9,15,19,30,31,32,38,39,42],request:[3,4,6,8,11,12,13,15,18,32],requir:[2,3,4,7,12,13,14,17,18,20,22,25,26,28,30,32,35,38],require_grad:33,requires_grad:[23,33],requires_grad_:33,rerun:[13,25],resampl:[14,26],rescal:12,research:[3,4,10,31,35,38,40],reset:[4,22,34,39],reset_index:[11,23],reshap:[7,8,14,15,17,19,22,28,29,30,31,32,33,35],resid:4,residu:[14,15,20,26,32,33,35],resnet:35,resolut:[12,35],resolv:[4,12,13,17],resour:3,resourc:[3,6,11,13,18,28,38,40],respect:[7,8,14,15,19,21,23,28,30,32,33],respons:[13,17,20,39],rest:32,restart:1,restrict:19,result:[12,14,15,19,20,21,23,25,26,27,29,30,31,32,35,37,38],result_horizont:31,result_vert:31,retain:[8,13],retain_grad:23,retina:14,retrain:32,retriev:14,return_gener:22,return_sequ:34,return_train_scor:25,returnprecisionandrecal:21,reus:[4,38],revers:[14,23,24,30],revert:30,review:[0,6,9,30,38],rf:[20,24,26],rf_clf:[22,26],rf_most_import:24,rf_predict:22,rich:42,ricker:18,ridg:33,ridge2:32,ridge_reg2:32,ridge_reg:32,right:[2,4,8,20,22,28,30,32],rise:5,risk:[15,26,32],river:[10,16],rlat:17,rlon:17,rmse:[27,32],rmsprop:32,rng:[15,28,30],ro:[19,24],robust:[8,19,25,26,32],roc:[21,22],roc_auc:22,roc_auc_scor:22,roc_curv:[21,22],roccurvedisplai:22,role:[19,31],roll:[12,14],root:[11,16,31,35],rotat:[8,9,19,24,32],rotation_mod:8,rouet:31,round:[24,30],routin:14,row:[7,8,10,11,12,13,14,16,17,18,19,23,24,27,28],row_index:19,row_label:8,rs:15,rst:4,rstudio:1,rt:33,rubi:42,rule:[20,30],run:[1,3,4,5,12,13,14,15,17,18,19,21,22,23,28,32,37,38,39,42],runner:27,running_loss:[29,30,31,35],running_val_loss:35,runtimewarn:17,rv:25,rw:12,s1:8,s2:8,s3:[3,8],s6x10hzdyra:3,s:[4,7,8,10,11,12,13,14,15,16,17,18,19,21,22,24,25,26,27,30,32,33,34,35],s_:8,s_i:32,s_k:32,sa:18,sagemak:3,sai:[7,9,31,32],sake:15,same:[2,4,8,9,12,14,15,18,19,22,26,27,28,31,35,37,38],samm:26,sampl:[8,10,11,12,14,15,16,17,18,19,20,21,22,25,26,29,30,31,32,35],sample_data:[29,30],sample_label:[29,30],sample_silhouette_valu:19,sample_weight:22,sampler:[31,35],sampling_r:17,sat:24,satellit:[10,11,14],satisfi:[7,12,13,18,26,28,32,33,36],save:[2,4,8,9,11,12,13,14,21,24,27,29,31,32,35,38],savefig:14,saw:8,sawtooth:8,sc:19,scala:42,scalar:[23,28,30,34],scale:[3,5,8,12,14,16,17,19,26,29,30,31,32,38],scaleogram:17,scaler:[19,22,23,25,26],scan:11,scatter:[8,15,16,19,21,28,30,35],scatter_3d:19,scatter_geo:12,scatter_mapbox:12,scatterplot:14,scenario:[12,19,26],schedul:3,schemat:31,scheme:[19,25],scholarship:39,sci:[19,26],scienc:[1,5,11,14,33,39,42],scientif:[1,10,11,14,17,38,39],scikit:[2,8,9,15,20,21,25,28,31,32,38],scikitlearn:[21,23],scipi:[2,7,8,9,13,14,15,16,17,18,19,25,26,28,31,33],scitkit:9,score:[19,20,21,22,25,26,30,31,32],scott:[39,40],scratch:[1,3,12,33],screen:[29,30,31,35],script:[4,9,39],se:8,sea:[10,16],seaborn:[2,13,19],seaflow:19,search:[30,31],season:[5,14],seasonal_mean:14,seattl:[14,24],second:[1,5,8,10,14,15,16,17,18,23,26,31,33,34,35,39],section:[17,39],see:[1,3,4,8,11,14,15,17,18,19,21,27,30,32,42],seed:[8,15,19,30,31,33,38],seeed:30,seek:19,seem:[15,27,31],seemingli:32,seen:[16,28,32],segment:[9,35],seismic:[3,5,7,10,12,14,16,17,18,19],seismogram:[10,31,32,35],seismolog:[5,39],seismomet:[3,10,17],sel:14,select:[1,4,7,9,12,14,15,17,19,24,25,27,31,38],select_dtyp:13,self:[11,12,22,28,29,30,31,33,35],selu:35,semant:31,send:[3,30,35],sens:[3,9,10,14,19,32],sensit:[16,17,18,19,21,23,32,38],sensor:[12,13,17,32],sent:[12,13],sep:[11,12],sepal:[8,28],separ:[8,10,15,19,20,28,35,38,42],sequenc:[10,14,32,35],sequenti:[26,30,31,33,34,35],sequential_15:35,seri:[4,5,7,8,10,14,15,17,18,31,32,33,34,35,38,39],serv:19,server:[3,4,17,18],servic:[3,42],session:4,session_id:27,set:[3,5,7,8,11,12,13,14,15,17,21,22,25,26,28,29,30,31,34,35,38,39],set_aspect:[8,15,16,28],set_axis_off:22,set_axisbelow:[8,28],set_grad:23,set_opt:14,set_size_inch:19,set_them:19,set_titl:[8,14,17,18,19,22,24,28,30,31],set_vis:8,set_xlabel:[8,14,16,17,18,19,24,28,29,30,31],set_xlim:[16,17,19,30],set_xscal:[17,18],set_xtick:[8,19,30],set_ylabel:[8,14,16,17,19,24,28,29,30,31,32],set_ylim:[16,17,19,30,32],set_yscal:[14,17],set_ytick:[8,19,30],set_zlabel:8,setp:8,settingwithcopywarn:19,settl:27,setup:[4,27],setuptool:[4,7,18],setw:28,sever:[4,9,11,12,13,14,15,17,18,19,20,22,25,26,31,35,36,38],sgd:[20,29,30,32],sgd_reg:32,sgdclassifi:32,sgdregressor:32,sh:14,shade:17,shap:27,shape:[7,8,11,14,16,17,18,19,22,24,25,26,28,29,30,31,32,34,35],shapefil:10,share:[10,11,39,42],sharex:17,sheet:4,shell:[3,39],shift:[16,17,32],shortcut:12,shorter:17,shortest:19,should:[0,4,8,9,14,15,22,25,27,28,30,31,32,38,39],show:[8,11,12,13,14,15,16,17,18,19,21,22,25,26,27,28,29,30,31],show_reconstruct:35,showcountri:12,shown:[12,35],shuffl:[15,22,25,26,28,29,30,34,35],shufflesplit:15,si:3,side:[15,16],sidebar:4,sig:[8,16,18],sigm:30,sigma:[8,14,15,16,23,30,32],sigmoid:[28,29,30,31,32,35],sign:[8,19,32],signal:[5,8,16,17,31,32,35],signatur:[17,32],signifi:19,significantli:[25,37],silhouett:19,silhouette_avg:19,silhouette_sampl:19,silhouette_scor:19,silic:16,silica:16,sim:15,similar:[5,10,14,17,18,19,24,26,32],similarli:[14,17,23,29],simpl:[1,6,7,9,10,11,12,15,19,20,23,27,30,31,32,33,34,38,39],simpleinput:28,simpleoutput:28,simpleperceptron:28,simpler:[8,32],simplernn:34,simplest:[29,34],simpli:[11,14,18,30,31],simplifi:[14,19,31],simul:[10,14,15,16,21],sin:[8,14,19,34],sinc:[11,12,15,22,30,32,34],sine:[14,17],singl:[7,8,9,10,11,19,26,27,28,29,30,32,34],singular:[8,20],sinusoid:[8,14],sio2:16,sio:16,sit:[15,16],site:[2,7,10,11,12,13,18,19,22,26,28,32],situ:10,six:[2,7,13,18,28],size:[8,11,12,14,15,16,17,19,23,25,26,28,29,30,31,32,35],size_cluster_i:19,size_img:[29,30],skew:[9,13,17],skicit:24,skill:[6,12],skimag:31,skip:35,skip_blank_lin:11,skip_parameter_valid:22,skipfoot:11,skipinitialspac:11,skiprow:[11,12],sklean:8,sklearn:[8,15,19,20,21,22,23,24,25,26,27,28,29,30,31,32,35,38,39],sky:13,skyblu:16,skyserv:13,skyserver_sql2_27_2018:13,skyserver_sql2_27_2:13,slack:42,sleep:17,slice:[14,15,19],slick:4,slide:9,slightli:[30,37],sloan:13,slope:15,slow:[19,31],small:[5,8,9,11,12,16,19,23,25,26,32,34],smaller:[8,9,11,15,19,23,26,30,32,38],smallest:[19,35],smi:3,smooth:[12,14,17,18,30],sn:[8,13,19],snapshot:10,snow:19,snr:18,so:[2,4,8,9,12,13,15,17,22,23,27,29,30,31,32,34,35,38],sobel:31,sobel_filter_horizont:31,sobel_filter_vert:31,societ:38,soft:26,softmax:[26,29,30,31,32],softplu:30,softwar:[3,6,10,11,16,40,42],software_carpentries_intermedi:41,sofwar:14,soil:[10,11,13],solid:27,solut:[9,19,20,27,28,29,32,33,38,39],solv:[10,11,19,20,23,34,38],solver:30,some:[2,3,4,8,9,11,13,14,15,17,18,19,20,23,27,30,32,39,40],somebodi:4,sometim:[13,37],somewhat:34,somewher:4,son:[11,14],sonic_boom:7,soon:32,sophist:[4,13],sort:[7,12,17,19,24,33],sort_valu:12,sosfilt:17,sound:17,sourc:[1,4,6,7,8,10,11,18,21,32,38,39,42],source_depth_km:7,source_duration_magnitud:7,source_duration_magnitude_uncertainti:7,source_hand_magnitud:7,source_latitude_deg:7,source_local_magnitud:7,source_local_magnitude_uncertainti:7,source_longitude_deg:7,source_origin_tim:7,source_typ:7,source_type_pnsn_label:7,south:[11,12],southern:[3,12],space:[8,9,10,14,16,19,25,30,32,33,36,42],span:17,spars:[30,32],spatial:[10,12,14,17,19,31],spatiotempor:19,spearman:[13,19],spearman_corr_matrix:13,speci:8,special:[11,14],specif:[1,2,3,4,5,7,9,10,11,12,14,15,16,17,18,21,22,23],specifi:[4,12,18,23,25,30],specobjid:13,spectra:17,spectral:[7,9,18],spectrogram:[17,31],spectrum:[17,18],speed:[16,17,18,19],spend:39,sphere:19,sphinx:4,spine:8,split0_test_scor:25,split1_test_scor:25,split2_test_scor:25,split3_test_scor:25,split4_test_scor:25,split:[7,8,15,19,21,25,26,30,31,34],splitlin:8,spread:16,spreadsheet:10,spyder:2,sql2:13,sqlalchemi:18,sqrt:[1,8,14,17,18,19,31,32],squar:[8,14,15,16,19,20,28,30,31,32],squeez:[31,35],src:1,ssh:4,ssss:15,st:[7,16],sta:[8,15],stabil:26,stabl:[8,14,17,19,26,30,32,38],stack:[7,28,31,34,35],stacked_a:35,stacked_ae_checkpoint:35,stacked_cnna:35,stacked_decod:35,stacked_encod:35,stackeda:35,stackeddecod:35,stackedencod:35,stacklevel:22,staff:12,stage:[4,35],stai:35,stain:19,stamp:7,standalon:12,standard:[4,8,11,12,14,15,16,17,20,25,38,39,42],standardscal:[19,21,23,30,31,32,35,38],stanford:31,star:[2,13],start:[3,4,8,9,12,14,15,19,21,23,27,28,29,30,32,35,38],start_dim:[29,30],start_tim:12,startdat:12,startingbia:28,startingweight:28,starttim:[17,18],stat:[7,13,15,16,17,18,25],state:[9,11,15,32,34,38],state_dict:[30,31,35],statement:6,station:[10,12,15,17,18,31],stationari:35,statist:[7,9,10,12,13,14,15,17,18,20,24,26],statu:4,std:[8,12,13,14,15,16,17,24],std_err:15,std_fit_tim:25,std_scaler:32,std_score_tim:25,std_temp:16,std_test_scor:25,steelblu:8,stefan:[39,40],step:[5,9,14,16,19,23,25,27,28,29,30,31,32,33,35,38],step_ahead:34,stft:[17,38],still:[4,19,22,30,42],stochast:[8,20,29,31,38],stop:[14,19,28],stop_alg:19,stoppingcriterion:28,stoppingcriterionslid:28,storag:[3,4,7,10,11,14,38],storage_opt:11,store:[3,5,7,9,10,11,12,14,15,22,25,26,30,38],str:[8,11,12,15,18,19,24,27],straight:19,strategi:[15,19,31,32,35,38,39],strength:13,stretch:[9,21],strict:11,strictli:[20,30,31],stride:[31,35],string:[7,8,11,12,13,14,15],stringio:12,strive:[0,42],strmethodformatt:8,strong:[15,26,32],stronger:26,strongli:[15,19,26],strptime:24,structur:[9,10,11,12,13,14,15,18,19,31,35,38,42],strutur:19,student:[5,6,40],studi:[10,19,38],studio:[3,4],style:[19,21,24],sub:4,subarrai:14,subclass:29,subdata:19,subduct:15,subgroup:[19,26],submiss:[4,39],subplot:[6,8,13,14,16,17,18,19,21,22,24,28,29,30,31,32,35],subplots_adjust:30,subsequ:30,subset:[11,13,14,15,19,22,25,26,27,29,30,32,35,38],subsetrandomsampl:[31,35],substanti:25,subsurfac:10,subtract:[12,28],success:19,successfulli:[7,17,26],suffici:[3,20,32],suggest:[4,19,38],suitabl:19,sum:[8,12,13,14,16,19,23,26,28,29,30,31,32,33,35],sum_:[15,19,20,23,29,32],sum_i:14,sumatra:12,summar:[13,19,20,39],summari:[12,13,19,31,34,35],summarize_distribut:13,summary_galaxi:13,summary_qso:13,summary_star:13,sumup:30,sumvalu:21,sun:[24,39,40],sundai:24,superimpos:17,superposit:32,superseismo:4,supervis:[8,20,38],supplementari:31,suppli:8,support:[1,10,11,14,20,22,25,39],suppos:[12,38],suppress:19,suptitl:[19,22],sure:[2,4,7,14,15,22,34,38],surfac:[3,7,8,10,11,17,19],surface_ev:7,survei:[10,13],suscept:26,sv:8,svc:[21,22,25,26],svc_clf:26,svc_predict:22,svg:21,svm:[20,21,22,26],symm:31,symmetr:[8,16,35],synchron:4,synecho:19,syntax:[14,15,30],synthet:[14,19,33,34,38],synthetics_pca:19,synthetics_sc:19,system:[3,4,6,8,10,11,14,15,20,37,42],systemat:[14,21,25,30,36],t0:33,t20:19,t:[8,12,14,15,16,17,18,19,20,23,27,28,30,31,33,34,39],t_0:33,t_1:33,t_b:15,t_train:15,t_val:15,tab10:35,tab:[29,30,31],tabl:[10,12,27],tabular:[10,12],tacc:3,tackl:19,tag:[8,11,39],tail:[16,17],take:[7,9,12,14,15,17,18,19,23,26,28,29,31,32,33,34,35],taken:[10,16,19],takewai:4,talk:23,tangent:30,tanh:[30,34],taper:[17,18],target:[8,15,22,25,26,27,28,29,30,38],target_nam:[8,22,25,28],task:[3,4,9,12,22,30,38],tau:31,taught:39,team:[31,37,39,42],technic:42,techniqu:[13,26,27,32,39],technolog:38,tecton:19,tediou:27,tell:[12,27],temp:[24,27,33],temp_1:[24,27],temp_2:[24,27],temperatur:[10,12,14,16,24,27,32,33],temperature_c:[11,12],temperature_f:12,templat:[4,31,39],templates_027:31,templates_029:31,tempor:[5,7,9,10,12,17],temporari:3,tenac:12,tend:[17,23,26,29,32,38],tensor:[3,23,29,30,33],tensorflow:[26,29,30,31,34],tenv:[8,15,33],term:[8,9,12,15,16,21,34],termin:[1,3,4,5,27],terminolog:4,test1:19,test:[4,12,15,19,21,23,25,26,30,31,32,34,35,38],test_dat:24,test_dataset:[29,30],test_df:27,test_featur:24,test_import:24,test_index:15,test_indic:22,test_label:24,test_module1:4,test_module2:4,test_siz:[15,21,22,24,25,26,29,30,31,32],testarrai:28,testcost:28,testinput:28,testload:[29,30,31,35],testpredict:28,texa:3,text:[1,4,8,11,13,14,15,17,18,19,27,28,30,32,33,42],textcolor:8,textfileread:11,textkw:8,textur:9,tf:[17,34],th:[19,23],than:[8,9,15,17,18,19,20,21,25,26,28,31,32,34,38],the_turing_way_community_2022_6909298:41,thei:[3,8,10,11,12,15,17,18,19,20,23,30,31,32,34,35,38],them:[4,7,8,9,10,12,18,19,21,27,32,39],themselv:7,thenarrai:7,theodorewolf:33,theorem:38,theoret:33,theori:39,therefor:[15,17,19,30,35],theta:[8,19],thi:[1,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,29,30,31,32,33,34,35,36,38,39,40,42],thing:[9,28,38,42],think:[15,27],third:[1,16,18,23,26],thiscost:28,thisinput:28,thispandr:21,thistarget:28,thorough:25,those:[8,14,27],though:[3,6,37],thought:[10,31],thousand:11,threadpoolctl:28,three:[3,8,11,13,14,19,23,31,39],thresh:[17,19],threshod:19,threshold:[8,19,21,29,30,31,32],through:[3,8,10,13,15,19,29,30,31,32,37,39],throughout:[5,39],thu:[8,21,23,32],thunder:7,ti:10,tick:[8,19,24],tick_param:[8,14,29,30,31],ticker:8,tier:3,tif:11,tiff:11,tight:[14,19],tight_layout:[8,13,14,16,24,28,29,30,31],tightli:3,tile:8,tiledb:[5,10],time:[3,5,7,8,9,10,11,14,15,16,18,19,20,25,27,29,30,31,32,33,34,35,36,38,39],time_series_features_extractor:7,timedelta:12,timedistribut:34,timeit:[12,14,17],timestamp:12,tip:14,titl:[8,12,13,14,15,16,17,18,19,22,24,28,30,32],tlu:29,tn:[7,21,23],tnr:21,to_csv:[11,12,13],to_datetim:12,to_netcdf:14,to_numer:15,to_numpi:[19,23],to_parquet:[11,12],to_zarr:14,todai:[24,27],todoran:[39,40],togeth:2,toi:[8,19,32,33,38],token:4,tol:32,toler:32,too:[12,15,21,23,32,34,38],tool:[2,4,11,12,19,21,25,38,39],toolbox:[17,19],toolkit:[7,28,39],tooth:8,top3:27,top:[1,3,4,8,12,15,31],topic:39,toplot:28,topographi:[10,11],torch:[14,23,29,30,31,33,35],torchinfo:35,torchvis:[31,35],total:[4,13,14,21,25,26,29,30,31,35],totalfals:21,totaltru:21,totensor:[31,35],touch:4,toward:9,towardsdatasci:24,towfish_001:19,towfish_002:19,towfish_003:19,towfish_004:19,towfish_005:19,towfish_006:19,towfish_007:19,towfish_008:19,towfish_009:19,towfish_010:19,towfish_011:19,towfish_012:19,towfish_013:19,towfish_014:19,towfish_015:19,towfish_016:19,towfish_017:19,towfish_018:19,towfish_019:19,towfish_020:19,tp:[19,21,23],tpr:[21,22],tpu:3,trace:7,trace_nam:7,trace_p_onset:7,trace_s_onset:7,trace_snr_db:7,traceback:[11,12,17,22,30,32],track:[4,5,14,15],trade:21,tradeoff:32,tradit:4,train:[15,19,20,21,23,25,26,28,33,34,35,37,39],train_data:35,train_dataset:[29,30],train_df:27,train_error:32,train_featur:24,train_import:24,train_index:15,train_label:[24,31],train_set:31,train_siz:[29,30],train_test_split:[21,22,24,25,26,30,31,32,35],trainabl:35,traininput:28,trainload:[29,30,31,35],traintarget:28,traitlet:[7,28],transform:[7,8,9,11,12,13,14,15,19,22,23,25,26,30,31,32,35,38,39],transit:14,translat:[17,31],transmit:37,transpos:8,treat:[13,31],tree:[11,20,21,26,30],tremend:40,trend:[15,32],trial:30,trick:32,tricki:27,trim:17,triplic:19,true_data:24,true_label:19,true_valu:11,trust:25,truth:[19,32,34],ts:33,tsfel:[7,9],tsfresh:[7,9],tslib:12,tsne:35,tstart:[17,18],tt:15,tue:24,tunabl:19,tune:[15,18,27,32,35,38],tuner:31,tupl:24,ture:[4,40],turn:[8,17,30,34],tutori:[3,4,11,12,14,15,22,24,25,27,30,33,35,40],twin:18,twinx:[29,30,31],two:[4,8,10,11,12,13,14,15,16,17,19,20,21,24,28,31,35,36],txt:[2,4],type:[1,4,6,7,10,11,12,14,17,18,19,20,22,25,26,27,28,30,31,35,38,39],typic:[3,4,5,7,10,12,13,14,15,16,17,19,26,32,35],tz_local:12,tz_pars:12,tz_to_dtyp:12,tzdata:[7,13,28],u:[1,8,13,19,32],u_:15,u_n:15,uc:[24,27],ue:[8,32],ug3_fcm_distribut:19,un:8,unabl:[12,25],uncertain:[15,26],uncertainti:[9,15,19,34],unclear:31,uncom:14,under:[4,7,19,21,27],underestim:15,underfit:[25,26,27,32],underli:[14,15,42],underlin:1,understand:[8,10,13,19,25,31,39],undertak:8,underwai:19,underway_002:19,underway_003:19,underway_004:19,underway_005:19,underway_006:19,underway_007:19,underway_008:19,underway_009:19,underway_010:19,underway_011:19,underway_012:19,underway_013:19,underway_014:19,underway_015:19,underway_017:19,underway_018:19,underway_019:19,underway_020:19,underway_021:19,underway_022:19,underway_023:19,underway_024:19,underway_025:19,underway_026:19,underway_027:19,underway_028:19,underway_029:19,underway_030:19,underway_031:19,underway_032:19,underway_033:19,underway_034:19,underway_035:19,underway_036:19,underway_037:19,underway_038:19,underway_039:19,underway_040:19,underway_041:19,underway_042:19,underway_043:19,underway_044:19,underway_045:19,underway_046:19,underway_047:19,underway_048:19,underway_049:19,underway_050:19,underway_051:19,underway_052:19,underway_053:19,underway_054:19,underway_055:19,underway_056:19,underway_057:19,underway_058:19,underway_059:19,underway_060:19,underway_061:19,underway_062:19,underway_063:19,underway_064:19,underway_065:19,underway_066:19,underway_067:19,underway_068:19,underway_069:19,underway_070:19,underway_071:19,underway_072:19,underway_073:19,underway_074:19,underway_075:19,underway_076:19,underway_077:19,underway_078:19,underway_079:19,underway_080:19,underway_081:19,underway_082:19,underway_083:19,underway_084:19,underway_085:19,underway_086:19,underway_087:19,underway_088:19,underway_g3:19,unecessari:8,unifi:[3,4],uniform:[14,15,16,18,19,25,30,38],uniqu:[7,8,12,19,22,26,31],unique_d:12,unit:[3,4,8,12,14,17,19,29,30,31,33],univers:[15,30,39,40],unix:[6,12],unknown:12,unlik:[15,17],unnam:7,unord:1,unr:[8,15],unread:14,unrealist:17,unseen:[15,27],unstag:4,unsupervis:[8,19,38,39],unsur:14,until:[17,18,19,23,26,28,31,32],unveil:19,unzip:11,up:[8,12,15,17,18,20,21,26,27,31],updat:[8,11,12,13,14,18,19,23,28,29,30,31,32,34,35,39],update_geo:12,update_layout:12,updatebtn:28,updateclick:28,upgrad:[12,13,18,28],upload:[4,39],upper:[4,15],upper_critical_valu:15,upsampl:14,upstream:37,url:[1,4,5,11,12,16],urllib3:18,us:[1,2,3,5,6,7,8,9,10,11,13,14,16,17,18,19,20,21,22,23,24,25,26,27,29,30,31,32,33,34,35,37,38,39,42],usabl:30,usag:[3,4,13],usecol:[11,12],user:[1,2,4,7,11,12,13,14,18,19,26,28,30,32,42],user_guid:19,usernam:4,userwarn:12,usg:11,usual:[3,7,15,19,20,27,30,32],utc:12,utcdatetim:[17,18],utf:[11,12,15],util:[15,22,23,29,30,31,32,35,42],uv:[8,32],uw60888282:7,uw61361706:7,uw61639436:7,uw61669232:7,uw61735446:7,uw:[1,3,4,5,6,12,13,16,17,18,19,39,40,42],v:[8,15,19],v_e:15,v_measure_scor:19,v_n:15,v_size:15,va:8,vae:35,val:[32,35],val_data:35,val_error:32,val_index:15,val_loss:35,val_set:31,valfmt:8,valid:[13,22,32,34,35,38,39],validate_separ:22,validation_data:34,valu:[8,10,12,14,15,16,17,18,19,20,21,23,24,25,26,27,28,29,30,31,32,33,34,35,38],valuabl:[13,15,19],value_count:12,valueerror:[22,32],vanish:[30,34],vanuatu:12,varaibl:15,vari:[7,10,14,18,21],variabl:[6,8,9,10,11,12,13,14,15,16,17,19,22,23,24,27,30,32],varianc:[8,15,17,19,20,26,32],variance_1:7,variat:[14,16,19,32],varieti:11,variogram:19,variou:[3,4,5,7,10,15,17,18,19,21,26],varoquaux:21,ve:[13,15],vector:[8,10,14,15,17,19,20,22,23,25,28,30,32,33,39],veget:13,vel:15,veloc:[15,17],venv:2,verbos:[11,22,25],veri:[2,4,12,14,17,18,19,20,23,26,27,30,34,38],verifi:[12,15],version:[1,2,11,26,30,31,37,42],versu:19,vertic:[3,7,8,17,19,24,31,32],verticalalign:8,vi9gmjy8d4zd5jv:31,via:[2,10,19,30,39],vibrat:7,video:[3,42],view:[5,12,19,30,31,33,35,39],viewoutput:30,virginica:28,viridi:17,virtual:[3,4],visit:2,visual:[3,4,8,11,14,15,16,19,21,24,27,35,38,39,42],vmax:[7,8,14,17],vmin:[7,8,14,17],volcan:19,volcano:19,volum:19,voting_clf:26,votingclassifi:26,vs:[4,8,11,15,16,26],vscode:[3,12,17,22,30,32],vstack:[8,19],vt:8,w1sdnnjb2rllxjlbw90zq:17,w:[8,11,14,17,20,23,28,29,30,31,32],w_0:20,w_1:20,w_ela:32,w_i:[29,32],w_j:[23,28,29,32],w_k:29,w_lasso:32,w_n:20,w_ridg:32,w_sgd:32,wa:[11,12,15,16,19,20,21,22,24,25,26,31,32,35],wai:[2,4,8,11,12,13,14,15,19,23,25,27,32,35,38,40],wait:[17,19,28],walk:13,want:[11,12,14,15,17,23,24,29,30,32,33,34],ward:19,warm_start:32,warn:[8,17,19,22,23,26,32],washington:[11,39],watch:[3,22,25,26],water:[10,12,23],water_pot:23,wave:[5,10,34,35],wavedecompnet:35,wavefield:[10,35],waveform:[7,17,18,19,35],wavelength:10,wavelet:[7,9,18,39],wavenumb:17,wavespe:10,wcwidth:[7,28],wdb25puxh3u07dj:[11,17],we:[0,2,3,4,5,7,8,10,11,12,13,14,15,16,17,18,19,20,21,22,23,25,26,28,29,30,32,33,34,35,39,42],weak:26,weather:[5,10,11],web:[3,5,11,42],wednesdai:39,week:[15,24,39],week_fri:24,week_mon:24,week_sat:24,week_sun:24,week_thur:24,week_tu:24,week_w:24,weigh:32,weight:[14,16,21,22,25,26,28,29,30,31,32,33,34],weightedsum:28,weightupd:28,weka:27,welcom:[4,42],well:[4,14,15,19,20,21,22,23,26,28,30,32,38],went:37,were:[3,11,12,14,19,21,22,23,26,28,31,32,40],west:[11,14],westward:15,wget:[5,7,11,12,13,17,19,24,27,31],what:[3,4,7,8,9,12,13,14,15,16,17,18,19,21,23,25,26,27,31,33,38],wheel:4,when:[3,4,11,12,13,14,15,19,21,22,23,25,26,27,28,30,32,35,38,39],where:[1,3,4,7,8,10,11,12,13,15,16,17,19,20,23,27,28,29,30,31,32,33,37,38],whether:[9,11,15,21,30,32],which:[2,4,8,10,11,12,13,14,15,16,17,18,19,20,23,25,26,27,29,30,31,32,35,36,38,39,42],whichitem:28,white:[8,14,18,19],whl:[7,17,26],who:[4,14],who_is_awesom:14,whole:[11,16,23],why:[3,15,27,31,32],wich:14,wide:[10,11,15,16,21,25,27,30,35,42],widget:[27,28],widgetsnbextens:28,width:[1,8,11,12,17,18,28,31],wiggl:32,wiki:21,wikimedia:21,wildfir:16,willustr:32,wind:16,window:[3,4,12,13,14,17,18,30,31],winner:[17,22],wise:[14,27],within:[3,11,12,14,15,17,19,24,26,27,30,31],without:[4,8,9,12,18,26,30,32,38],wmp:12,won:34,work:[0,2,3,8,11,12,13,14,15,19,23,25,26,27,31,34,38],worker:22,workflow:[3,7,9,15,17,27,39],workspac:[17,22],world:[3,27,38],worlpert:38,would:[3,4,7,8,14,17,23,24,26,28,30,31,32,35,37,38],wrap:[14,29],wrapper:22,write:[4,9,11,12,14,23,31,33,38,39],written:1,wrong:[19,27,32],wrote:3,wsl:12,wt:16,wwvb:12,www:[7,11,13,14,17,19,23,24,31],wx:[29,30],x1:[14,19,31],x1_norm:14,x25sdnnjb2rllxjlbw90zq:22,x27:25,x2:[14,19],x2_smooth:14,x30szmlszq:32,x3:[14,19],x41szmlszq:30,x4:14,x:[1,5,7,8,9,11,12,14,15,16,17,19,20,21,22,23,24,28,29,30,31,32,33,34,35,38],x_1:20,x_:[15,23],x_a:15,x_b:15,x_i:[14,15,19,23,29],x_int:14,x_label_list:17,x_lat:14,x_lon:14,x_max:30,x_min:30,x_n:20,x_new:[8,30],x_p:19,x_pca:8,x_poli:32,x_scale:38,x_std:38,x_t:14,x_test:[21,22,25,26,30,31,34],x_tl:14,x_train:[21,22,25,26,30,31,32,34],x_train_poly_sc:32,x_val:[32,34,35],x_val_2d:35,x_val_compress:35,x_val_poly_sc:32,x_valu:24,xarrai:[9,11],xarrrai:14,xavg:8,xaxi:28,xc:8,xgb:26,xgboost:[26,30],xkcd:21,xlabel:[8,12,14,15,16,17,18,19,21,22,24,28,30,32,33,34],xlat:17,xlim:[8,16,17,18,19,22,30,32],xlon:17,xp:22,xr:14,xrang:28,xscale:18,xt:33,xtick:[8,14,17,24],xx:[7,30],y2:19,y3:19,y:[5,7,8,9,11,12,14,15,17,19,20,21,22,23,24,25,26,28,29,30,31,32,33,34,35],y_ela:32,y_i:[14,19,20,23,32],y_k:29,y_lasso:32,y_lower:19,y_max:30,y_min:30,y_numer:22,y_pred:[14,22,25,26,34],y_predict:32,y_proba:30,y_relu:31,y_ridg:32,y_ridge2:32,y_score:[21,22],y_sgd:32,y_sridg:32,y_test:[21,22,25,26,30,31,34],y_test_pr:21,y_train:[21,22,25,26,30,31,32,34],y_train_pr:22,y_train_predict:32,y_true:[22,25],y_upper:19,y_val:[32,34,35],y_val_predict:32,yaxi:19,ye:[2,23,27],year:[4,5,7,8,12,15,17,24,30,38],yearfirst:12,yellowston:[11,19],yesterdai:[24,27],yet:[4,32],yhat:23,yield:[17,32,36],yin:35,yiyu:39,ylabel:[8,14,15,16,17,18,19,21,22,24,28,32,33],ylim:[8,17,18,19,22,32],yml:[4,38,39],you:[1,3,4,5,7,8,9,11,12,13,14,15,17,18,19,21,23,26,27,28,29,30,31,32,35,37,38,42],your:[3,5,9,11,12,13,14,15,17,19,21,23,27,28,29,30,32,38,39,42],your_command:4,your_packag:4,yourusernam:4,youtu:3,yrang:28,yscale:[17,18,33],yt:33,ytick:[14,17],yy:30,yymmmdd:15,z:[7,11,12,13,16,17,18,19,23,29,30],zarr:[9,10,14],zel:17,zenodo:4,zero:[7,8,15,17,18,19,21,23,28,29,30,31,32,35,38],zero_grad:[29,30,31,33,35],zf:17,zhat:[17,18],zhu:35,ziheng:[39,40],zip:[8,11,22,24,30],zip_file_url:15,zipfil:[8,11,15],zipp:[13,18,28],zone:15,zoom_start:11,zorder:8,zp:16,zsort:17,zxx:17},titles:["1.1 Open Reproducible Science","1.3 Jupyter Environment","1.3 Python Ecosystem","1.4 Computing Environments","1.5 Version Control & GitHub","1.6 Data Gallery","Getting Started","2.9 Feature engineering","2.10 Dimensionality Reduction","2.11 ML-ready data","2.1 Data Definitions","2.2 Data Formats","2.3 Pandas","2.4 DataFrame Exploration","2.5 Data Arrays","2.6 Resampling Methods","2.7 Statistical Considerations for geoscientific Data and Noise","2.7 Spectral Transforms","2.9 Synthetic noise","3.1 Clustering","3.2 Classification and Regression","3.3 Binary classification","3.4 Multiclass Classification","3.5 Logistic regression","3.6 Random Forests","3.7 Hyperparameter Tuning","3.8 Ensemble learning","3.9 AutoML","4.0 The Perceptron","4.1 Neural Networks","4.2 Multi Layer Perceptrons","4.3 Convolutional Neural Networks","4.3 Model Training","4.2 Physics-Informed Neural Networks","4.4 Recurrent Neural Networks: Processing sequences","4.5 Auto-encoders","4.6 NAS: Network Architecture Search","This chapter focuces on model workflow and ML reproducibility","The MLGeo Project","Machine Learning in the Geosciences","Acknowledgements from Contributors","Bibliography","Glossaries"],titleterms:{"0":[28,31],"1":[0,1,2,3,4,5,8,10,11,12,14,15,16,17,18,19,20,21,22,24,25,26,29,30,31,32,38],"10":8,"11":9,"1d":14,"2":[7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,24,25,26,29,30,31,32,33,34,38],"2d":[14,17],"3":[1,2,8,11,12,14,15,16,17,19,20,21,22,23,24,25,26,27,29,30,31,32,38],"3d":8,"4":[3,8,12,13,14,15,17,18,19,22,24,26,28,29,30,31,32,33,34,35,36,38],"5":[4,8,12,14,15,23,24,29,30,31,32,35,38],"6":[5,8,12,14,15,24,32,36,38],"7":[16,17,24,25,38],"8":26,"9":[7,18,27],"class":29,"do":2,"final":13,"function":[12,29,30,32],"import":24,"new":4,"short":17,A:31,But:11,One:[15,24],The:[16,19,28,31,38],To:31,about:28,account:4,acknowledg:40,activ:[30,31],adaboost:26,addit:4,advanc:12,aggreg:12,ahead:34,algorithm:20,an:[2,4,31],analysi:[8,13],app:4,appendix:23,ar:2,architectur:36,arrai:[10,11,14,29],asid:31,assembl:31,assess:24,authent:4,auto:35,autoencod:35,automat:23,automl:27,aw:3,azur:3,bag:26,baselin:24,basic:[1,2,12,14,17],batch:32,befor:19,best:27,bibliographi:41,binari:21,bonu:14,boost:26,bootstrap:15,build:39,can:34,canon:16,carlo:15,chapt:38,chapter:[37,38],check:[13,24,27],checklist:32,choic:[19,31],choos:14,classic:12,classif:[20,21,22,32],classifi:[21,26],clever:32,cloud:3,cluster:19,cnn:31,code:2,colab:3,column:[12,27],comma:11,command:[1,2],compar:27,comparison:14,compon:8,comput:[3,14,24],conda:2,condit:12,connect:31,consider:16,contribut:4,contributor:40,control:4,convers:14,convex:32,convolut:[31,35],correl:13,cours:39,covari:8,creat:[4,12,28,29],cross:[15,25],csv:[11,12],custom:29,data:[5,8,9,10,11,12,13,14,15,16,18,19,21,22,24,27,28,30,31,35,38],datafram:[12,13],dataload:29,dataset:[5,28,29],deal:2,decis:24,decod:35,deep:32,defin:31,definit:[10,31,42],denois:35,descent:[23,32],descript:5,design:[29,30,38],desktop:4,determin:8,differenti:23,dimension:[8,35,38],directori:4,discov:33,displai:27,distanc:[14,19],distribut:[13,16],download:[5,24,38],earli:32,earthquak:12,ecosystem:2,elast:32,elbow:19,encod:[24,35],engin:7,enhanc:4,ensembl:26,environ:[1,2,3],evalu:27,event:18,exampl:[2,4,12,15,31,32,35],exercis:[12,13,14,18,32],exist:4,explan:4,explor:[7,8,13,21,24],extract:[8,14],far:34,featur:[7,8,13,16,24],file:[2,4,5,12],filter:17,fine:30,first:[24,27],fit:[28,32],focuc:37,fold:15,forecast:34,forest:24,format:[10,11],forward:30,fourier:17,frame:[10,38],freez:2,from:[5,6,12,40],fulli:31,fundament:12,futur:34,galleri:5,gener:[12,42],geodet:15,geojson:11,geolog:16,geopanda:11,geoscienc:[10,39],geoscientif:[14,16],geospati:11,geotiff:11,get:[6,27],git:4,github:[4,39],glossari:42,googl:3,gradient:[23,26,32],grid:25,handl:[11,13],hassl:27,hdf5:11,hierarch:[11,19],high:14,homework:39,hot:24,how:[2,5,31,34],hpc:3,hub:1,hyperparamet:[25,30],i:11,imag:31,implement:[23,31],independ:8,infer:15,inform:[18,33],initi:24,intermedi:12,interpret:27,introduct:23,iri:28,javascript:11,json:11,jupyt:1,k:[15,19],kei:4,kurtosi:16,lab:1,label:24,lambda:12,larg:11,lasso:32,latent:35,layer:[30,31],learn:[6,19,26,30,32,39],leav:15,lectur:10,lenet:31,let:[28,31],level:[14,15,16,17,18],line:28,linear:[15,20],littl:28,load:29,local:3,logic:12,logist:23,loss:[29,32],low:35,lstm:34,machin:39,magnitud:12,main:4,manipul:[12,14],map:12,markdown:1,matplotlib:14,matrix:8,mean:[8,16,19],measur:14,metadata:7,method:[15,19],metric:[21,27],mini:32,miss:13,ml:[9,31,37],mlgeo:[5,38],mlp:30,modal:10,model:[15,21,24,27,29,30,31,32,33,35,37,38],mont:15,more:27,motion:15,multi:[30,35],multiclass:22,multipl:12,na:36,nan:13,need:2,net:[32,35],netcdf4:11,netcdf:11,network:[29,30,31,33,34,36],neural:[29,30,31,33,34],nois:[16,18],norm:14,notat:11,note:[4,31],notebook:1,number:19,numpi:14,nyquist:17,o:11,object:[6,11,39],open:0,optim:[29,30,32],organ:38,other:[8,32],our:[28,31],out:[15,28],outcom:8,overfit:32,overview:39,panda:12,paramet:[8,31],parquet:[11,12],past:26,pca:[8,19],perceptron:[28,30],perform:[21,24],physic:[18,33],pinn:33,plate:15,plot:14,plotli:12,pool:31,practic:[19,31],predict:34,prep:31,prepar:[22,24,30,38],prerequisit:39,princip:8,problem:[32,34],process:34,project:38,publish:[4,31],pycaret:27,pyproject:4,python:[2,12],pytorch:[14,23,29,30,31],qualiti:24,random:[14,15,18,24,25,29],randomli:24,raster:11,rasterio:11,rate:32,re:22,read:[11,12,13,31,39],readi:[9,27],realist:18,recod:31,recommend:4,recurr:34,reduct:[8,38],regress:[15,20,23,24,32],regular:32,rememb:28,repeat:19,repositori:[4,5],reproduc:[0,37],resampl:15,resourc:4,respons:12,restor:30,review:31,ridg:32,right:14,rnn:34,robust:15,rule:28,run:[2,27],s:[28,31],save:30,scale:22,scienc:0,scikit:[19,30],search:[25,36],section:12,segment:31,seismic:31,seismolog:35,select:8,separ:[11,24],sequenc:34,seri:12,set:[4,16,19,24,32],sever:34,shape:27,signal:18,skew:16,skill:39,slide:10,slow:11,softwar:4,solut:34,some:[28,31],space:[7,17,35],specif:39,spectral:17,split:[22,24,27,29],stack:26,start:[6,31],statist:16,step:[4,8,34],stochast:32,stop:32,structur:[4,30],student:[12,14,39],subtract:8,svd:8,syllabu:39,synthet:[18,21],tabular:11,task:[14,35],team:4,technic:39,techniqu:[8,15],technolog:42,tensor:14,test:[22,24,27,28,29],text:12,thi:[2,28,37],tier:39,time:[12,17],tip:19,toml:4,tool:[14,42],train:[22,24,27,29,30,31,32,38],transform:17,tree:24,troubleshoot:27,tune:[25,30,31],tutori:[19,39],typic:30,u:35,uncertainti:17,under:32,up:[4,19,24,32],us:[4,12,15,28],valid:[15,25],valu:[11,13],varianc:16,version:[4,39],via:8,virtual:2,vote:26,vs:12,wavelet:17,we:[24,27,31],webinar:39,what:[1,2,28],why:14,work:4,workflow:[4,37],xarrai:14,yml:2,you:[2,34],your:[2,4],zarr:11,zero:[6,13]}}) \ No newline at end of file