This repository was archived by the owner on Aug 15, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmulticombi_ifc.m
47 lines (42 loc) · 1.49 KB
/
multicombi_ifc.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
function [W,A,out3] = multicombi_ifc(X, opt)
% multicombi_ifc() - Interface function to MULTICOMBI
%
% Usage:
% >> [W,A] = efica_ifc(X [,opt])
%
% Inputs:
% X - data matrix (dxN, data channels are rowwise)
% opt.nbsources - number of sources (def: same as number of data channels)
% opt.eigratio - maximum spread of data covariance eigenvalues. The
% spread is measured as lambda_max/lambda_min
% (def: 1e6)
%
% Output:
% W - Separation matrix
% A - Mixing matrix
%
% Notes:
% 1) See comments in install.txt and multicombi.m for references and credit
% for the MULTICOMBI code.
% 2) If the maximum spread of eigenvalues is violated, the most redundant
% mixtures will be discarded in the estimation process.
% 3) IMPORTANT: note that if the unkonwn mixing matrix is not of
% full-column rank we will have that size(A,1)>size(W,1).
%
% See also:
% MULTICOMBI, POP_AUTOBSSEMG, POP_AUTOBSSEOG, AUTOBSS, EEGLAB
% Copyright (C) <2007> German Gomez-Herrero, http://germangh.com
if ~exist('opt','var') || ~isfield(opt, 'nbsources') || isempty(opt.nbsources),
opt.nbsources = size(X,1);
end
if ~isfield(opt, 'eigratio') || isempty(opt.eigratio),
opt.eigratio = 1e6;
end
% reduce the dimensionality of the data
[Wpca,X] = pca(X,opt.nbsources,opt.eigratio);
% call MULTICOMBI
[W] = multicombi(X);
A = inv(W);
A = pinv(Wpca)*A;
W = W*Wpca;
out3 = [];