@@ -599,6 +599,16 @@ void llama_model::load_hparams(llama_model_loader & ml) {
599
599
hparams.use_kq_norm = false;
600
600
}
601
601
} break;
602
+ case LLM_ARCH_ARCEE:
603
+ {
604
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
605
+
606
+ // Arcee uses the same structure as Llama
607
+ switch (hparams.n_layer) {
608
+ case 36: type = LLM_TYPE_4B; break;
609
+ default: type = LLM_TYPE_UNKNOWN;
610
+ }
611
+ } break;
602
612
case LLM_ARCH_DECI:
603
613
{
604
614
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
@@ -4190,6 +4200,37 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
4190
4200
}
4191
4201
}
4192
4202
} break;
4203
+ case LLM_ARCH_ARCEE:
4204
+ {
4205
+ tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
4206
+
4207
+ // output
4208
+ output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
4209
+ output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
4210
+
4211
+ // if output is NULL, init from the input tok embed
4212
+ if (output == NULL) {
4213
+ output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
4214
+ }
4215
+
4216
+ for (int i = 0; i < n_layer; ++i) {
4217
+ auto & layer = layers[i];
4218
+
4219
+ layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
4220
+
4221
+ layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
4222
+ layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
4223
+ layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
4224
+ layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
4225
+
4226
+ layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
4227
+
4228
+ layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
4229
+
4230
+ layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
4231
+ layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
4232
+ }
4233
+ } break;
4193
4234
default:
4194
4235
throw std::runtime_error("unknown architecture");
4195
4236
}
@@ -13411,6 +13452,141 @@ struct llm_build_dots1 : public llm_graph_context {
13411
13452
}
13412
13453
};
13413
13454
13455
+ struct llm_build_arcee : public llm_graph_context {
13456
+ llm_build_arcee(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
13457
+ const int64_t n_embd_head = hparams.n_embd_head_v;
13458
+
13459
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
13460
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
13461
+
13462
+ ggml_tensor * cur;
13463
+ ggml_tensor * inpL;
13464
+
13465
+ inpL = build_inp_embd(model.tok_embd);
13466
+
13467
+ // inp_pos - contains the positions
13468
+ ggml_tensor * inp_pos = build_inp_pos();
13469
+
13470
+ auto * inp_attn = build_attn_inp_kv_unified();
13471
+
13472
+ const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
13473
+
13474
+ for (int il = 0; il < n_layer; ++il) {
13475
+ ggml_tensor * inpSA = inpL;
13476
+
13477
+ // norm
13478
+ cur = build_norm(inpL,
13479
+ model.layers[il].attn_norm, NULL,
13480
+ LLM_NORM_RMS, il);
13481
+ cb(cur, "attn_norm", il);
13482
+
13483
+ // self-attention
13484
+ {
13485
+ // rope freq factors for llama3; may return nullptr for llama2 and other models
13486
+ ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
13487
+
13488
+ // compute Q and K and RoPE them
13489
+ ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
13490
+ cb(Qcur, "Qcur", il);
13491
+ if (model.layers[il].bq) {
13492
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
13493
+ cb(Qcur, "Qcur", il);
13494
+ }
13495
+
13496
+ ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
13497
+ cb(Kcur, "Kcur", il);
13498
+ if (model.layers[il].bk) {
13499
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
13500
+ cb(Kcur, "Kcur", il);
13501
+ }
13502
+
13503
+ ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
13504
+ cb(Vcur, "Vcur", il);
13505
+ if (model.layers[il].bv) {
13506
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
13507
+ cb(Vcur, "Vcur", il);
13508
+ }
13509
+
13510
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
13511
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
13512
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
13513
+
13514
+ Qcur = ggml_rope_ext(
13515
+ ctx0, Qcur, inp_pos, rope_factors,
13516
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
13517
+ ext_factor, attn_factor, beta_fast, beta_slow
13518
+ );
13519
+
13520
+ Kcur = ggml_rope_ext(
13521
+ ctx0, Kcur, inp_pos, rope_factors,
13522
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
13523
+ ext_factor, attn_factor, beta_fast, beta_slow
13524
+ );
13525
+
13526
+ cb(Qcur, "Qcur", il);
13527
+ cb(Kcur, "Kcur", il);
13528
+ cb(Vcur, "Vcur", il);
13529
+
13530
+ cur = build_attn(inp_attn, gf,
13531
+ model.layers[il].wo, model.layers[il].bo,
13532
+ Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
13533
+ cb(cur, "attn_out", il);
13534
+ }
13535
+
13536
+ if (il == n_layer - 1) {
13537
+ // skip computing output for unused tokens
13538
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
13539
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
13540
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
13541
+ }
13542
+
13543
+ ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
13544
+ cb(ffn_inp, "ffn_inp", il);
13545
+
13546
+ // feed-forward network
13547
+ // ARCEE uses relu^2 instead of silu
13548
+ cur = build_norm(ffn_inp,
13549
+ model.layers[il].ffn_norm, NULL,
13550
+ LLM_NORM_RMS, il);
13551
+ cb(cur, "ffn_norm", il);
13552
+
13553
+ cur = build_ffn(cur,
13554
+ model.layers[il].ffn_up, NULL, NULL,
13555
+ NULL, NULL, NULL,
13556
+ model.layers[il].ffn_down, NULL, NULL,
13557
+ NULL,
13558
+ LLM_FFN_RELU_SQR, LLM_FFN_SEQ, il);
13559
+ cb(cur, "ffn_out", il);
13560
+
13561
+ cur = ggml_add(ctx0, cur, ffn_inp);
13562
+ cb(cur, "ffn_out", il);
13563
+
13564
+ cur = build_cvec(cur, il);
13565
+ cb(cur, "l_out", il);
13566
+
13567
+ // input for next layer
13568
+ inpL = cur;
13569
+ }
13570
+
13571
+ cur = inpL;
13572
+
13573
+ cur = build_norm(cur,
13574
+ model.output_norm, NULL,
13575
+ LLM_NORM_RMS, -1);
13576
+
13577
+ cb(cur, "result_norm", -1);
13578
+ res->t_embd = cur;
13579
+
13580
+ // lm_head
13581
+ cur = build_lora_mm(model.output, cur);
13582
+
13583
+ cb(cur, "result_output", -1);
13584
+ res->t_logits = cur;
13585
+
13586
+ ggml_build_forward_expand(gf, cur);
13587
+ }
13588
+ };
13589
+
13414
13590
llama_memory_i * llama_model::create_memory(const llama_memory_params & params, llama_cparams & cparams) const {
13415
13591
llama_memory_i * res;
13416
13592
@@ -13753,6 +13929,10 @@ llm_graph_result_ptr llama_model::build_graph(
13753
13929
{
13754
13930
llm = std::make_unique<llm_build_dots1>(*this, params, gf);
13755
13931
} break;
13932
+ case LLM_ARCH_ARCEE:
13933
+ {
13934
+ llm = std::make_unique<llm_build_arcee>(*this, params, gf);
13935
+ } break;
13756
13936
default:
13757
13937
GGML_ABORT("fatal error");
13758
13938
}
@@ -13902,6 +14082,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
13902
14082
case LLM_ARCH_GRANITE_MOE:
13903
14083
case LLM_ARCH_CHAMELEON:
13904
14084
case LLM_ARCH_BAILINGMOE:
14085
+ case LLM_ARCH_ARCEE:
13905
14086
return LLAMA_ROPE_TYPE_NORM;
13906
14087
13907
14088
// the pairs of head values are offset by n_rot/2
0 commit comments