diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py index 05fd70171de38..5a18c0a2805be 100755 --- a/convert-hf-to-gguf.py +++ b/convert-hf-to-gguf.py @@ -13,7 +13,7 @@ from enum import IntEnum from pathlib import Path from hashlib import sha256 -from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Sequence, TypeVar, cast +from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast import math import numpy as np @@ -490,6 +490,9 @@ def get_vocab_base_pre(self, tokenizer) -> str: if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee": # ref: https://huggingface.co/LumiOpen/Viking-7B res = "viking" + if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901": + # ref: https://huggingface.co/core42/jais-13b + res = "jais" if res is None: logger.warning("\n") @@ -674,6 +677,51 @@ def _set_vocab_llama_hf(self): special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) special_vocab.add_to_gguf(self.gguf_writer) + def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int): + tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf" + logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'") + vocab_reader = gguf.GGUFReader(tokenizer_path, "r") + + default_pre = "mpt" if model_name == "gpt-neox" else "default" + + field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL) + assert field # tokenizer model + self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8")) + + field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE) + self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre) + + field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST) + assert field # token list + self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size]) + + if model_name == "llama-spm": + field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES) + assert field # token scores + self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size]) + + field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE) + assert field # token types + self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size]) + + if model_name != "llama-spm": + field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES) + assert field # token merges + self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data]) + + if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None: + self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0]) + if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None: + self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0]) + if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None: + self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0]) + if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None: + self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0]) + if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None: + self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0]) + if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None: + self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0]) + @Model.register("GPTNeoXForCausalLM") class GPTNeoXModel(Model): @@ -1603,6 +1651,14 @@ def set_gguf_parameters(self): def set_vocab(self): self._set_vocab_llama_hf() + @staticmethod + def permute(weights: Tensor, n_head: int, n_head_kv: int | None): + if n_head_kv is not None and n_head != n_head_kv: + n_head = n_head_kv + return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) + .swapaxes(1, 2) + .reshape(weights.shape)) + def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor: if n_kv_head is not None and n_head != n_kv_head: n_head //= n_kv_head @@ -1939,7 +1995,7 @@ def set_gguf_parameters(self): if len(rope_scaling_type) == 0: raise KeyError('Missing the required key rope_scaling.type') - if rope_scaling_type == 'su': + if rope_scaling_type == 'su' or rope_scaling_type == 'longrope': attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0 elif rope_scaling_type == 'yarn': attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0 @@ -2313,6 +2369,8 @@ def set_vocab(self): special_vocab._set_special_token("eot", 107) special_vocab.add_to_gguf(self.gguf_writer) + self.gguf_writer.add_add_space_prefix(False) + def set_gguf_parameters(self): hparams = self.hparams block_count = hparams["num_hidden_layers"] @@ -2363,6 +2421,7 @@ def set_vocab(self): special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) special_vocab.add_to_gguf(self.gguf_writer) + self.gguf_writer.add_add_space_prefix(False) def set_gguf_parameters(self): @@ -2433,39 +2492,7 @@ def set_vocab(self): self._set_vocab_sentencepiece() else: # Use the GPT-NeoX tokenizer when no tokenizer files are present - tokenizer_path = Path(sys.path[0]) / "models" / "ggml-vocab-gpt-neox.gguf" - logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'") - neox_reader = gguf.GGUFReader(tokenizer_path, "r") - - field = neox_reader.get_field(gguf.Keys.Tokenizer.MODEL) - self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8") if field else "gpt2") - - field = neox_reader.get_field(gguf.Keys.Tokenizer.PRE) - self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else "mpt") - - field = neox_reader.get_field(gguf.Keys.Tokenizer.LIST) - assert field - self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size]) - - field = neox_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE) - assert field - self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size]) - - field = neox_reader.get_field(gguf.Keys.Tokenizer.MERGES) - assert field - self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data]) - - field = neox_reader.get_field(gguf.Keys.Tokenizer.BOS_ID) - self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0] if field else 1) - - field = neox_reader.get_field(gguf.Keys.Tokenizer.EOS_ID) - self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0] if field else 0) - - field = neox_reader.get_field(gguf.Keys.Tokenizer.UNK_ID) - self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0] if field else 0) - - field = neox_reader.get_field(gguf.Keys.Tokenizer.PAD_ID) - self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0] if field else 0) + self._set_vocab_builtin("gpt-neox", vocab_size) def set_gguf_parameters(self): d_model = self.find_hparam(["hidden_size", "d_model"]) @@ -2617,6 +2644,82 @@ def set_vocab(self, *args, **kwargs): self.gguf_writer.add_add_eos_token(True) +@Model.register("OpenELMForCausalLM") +class OpenELMModel(Model): + model_arch = gguf.MODEL_ARCH.OPENELM + + @staticmethod + def _make_divisible(v: float | int, divisor: int) -> int: + # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38 + new_v = max(divisor, int(v + divisor / 2) // divisor * divisor) + # Make sure that round down does not go down by more than 10%. + if new_v < 0.9 * v: + new_v += divisor + return new_v + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + + ffn_multipliers: list[float] = self.hparams["ffn_multipliers"] + ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"] + self._n_embd: int = self.hparams["model_dim"] + self._num_kv_heads: list[int] = self.hparams["num_kv_heads"] + self._num_query_heads: list[int] = self.hparams["num_query_heads"] + self._ffn_dims: list[int] = [ + OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor) + for multiplier in ffn_multipliers + ] + assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int) + assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int) + + # Uses the tokenizer from meta-llama/Llama-2-7b-hf + def set_vocab(self): + try: + self._set_vocab_sentencepiece() + except FileNotFoundError: + self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"]) + + def set_gguf_parameters(self): + n_embd = self._n_embd + head_dim = self.hparams["head_dim"] + rot_pct = 1.0 + assert self.block_count == len(self._num_kv_heads) + assert self.block_count == len(self._num_query_heads) + assert self.block_count == len(self._ffn_dims) + + self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name) + self.gguf_writer.add_block_count(self.block_count) + self.gguf_writer.add_context_length(self.hparams["max_context_length"]) + self.gguf_writer.add_embedding_length(n_embd) + self.gguf_writer.add_feed_forward_length(self._ffn_dims) + self.gguf_writer.add_head_count(self._num_query_heads) + self.gguf_writer.add_head_count_kv(self._num_kv_heads) + self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"]) + # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30 + self.gguf_writer.add_layer_norm_rms_eps(1e-6) + self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim)) + self.gguf_writer.add_key_length(head_dim) + self.gguf_writer.add_value_length(head_dim) + self.gguf_writer.add_file_type(self.ftype) + + def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any: + if "n_layers" in keys: + return self.hparams["num_transformer_layers"] + + return super().find_hparam(keys, optional) + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + + # split ff + if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight": + ff_dim = self._ffn_dims[bid] + yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]) + yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]) + return + + yield (self.map_tensor_name(name), data_torch) + + @Model.register("ArcticForCausalLM") class ArcticModel(Model): model_arch = gguf.MODEL_ARCH.ARCTIC @@ -2847,11 +2950,17 @@ def write_tensors(self): raise ValueError(f"Unprocessed experts: {experts}") -@Model.register("T5ForConditionalGeneration") @Model.register("T5WithLMHeadModel") +@Model.register("T5ForConditionalGeneration") +@Model.register("MT5ForConditionalGeneration") +@Model.register("UMT5ForConditionalGeneration") class T5Model(Model): model_arch = gguf.MODEL_ARCH.T5 + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + self.shared_token_embeddings_found = False + def set_vocab(self): # to avoid TypeError: Descriptors cannot be created directly # exception when importing sentencepiece_model_pb2 @@ -2859,17 +2968,29 @@ def set_vocab(self): from sentencepiece import SentencePieceProcessor from sentencepiece import sentencepiece_model_pb2 as model - tokenizer_path = self.dir_model / 'spiece.model' + tokenizer_path = self.dir_model / 'tokenizer.model' + + # many older models use spiece.model tokenizer model filename + if not tokenizer_path.is_file(): + tokenizer_path = self.dir_model / 'spiece.model' if not tokenizer_path.is_file(): raise FileNotFoundError(f"File not found: {tokenizer_path}") sentencepiece_model = model.ModelProto() sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read()) + + # some models like Pile-T5 family use BPE tokenizer instead of Unigram + if sentencepiece_model.trainer_spec.model_type == 2: # BPE + # assure the tokenizer model file name is correct + assert tokenizer_path.name == 'tokenizer.model' + return self._set_vocab_sentencepiece() + else: + assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM + add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap - assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM tokenizer = SentencePieceProcessor() tokenizer.LoadFromFile(str(tokenizer_path)) @@ -2939,7 +3060,10 @@ def set_vocab(self): def set_gguf_parameters(self): self.gguf_writer.add_name("T5") - self.gguf_writer.add_context_length(self.hparams["n_positions"]) + if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None: + logger.warning("Couldn't find context length in config.json, assuming default value of 512") + n_ctx = 512 + self.gguf_writer.add_context_length(n_ctx) self.gguf_writer.add_embedding_length(self.hparams["d_model"]) self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"]) self.gguf_writer.add_block_count(self.hparams["num_layers"]) @@ -2955,16 +3079,111 @@ def set_gguf_parameters(self): def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: del bid # unused - # Sometimes T5 and Flan-T5 based models contain "encoder.embed_tokens.weight" tensor or - # "decoder.embed_tokens.weight" tensors that are duplicates of "shared.weight" tensor - # To prevent errors caused by an unnecessary unmapped tensor, skip both of them and use only "shared.weight". - if name == "decoder.embed_tokens.weight" or name == "encoder.embed_tokens.weight": - logger.debug(f"Skipping tensor {name!r} in safetensors so that convert can end normally.") - return [] + # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight", + # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored + # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder + # and decoder and ignore the remaining ones. + if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]: + if not self.shared_token_embeddings_found: + name = "shared.weight" + self.shared_token_embeddings_found = True + else: + logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.") + return [] return [(self.map_tensor_name(name), data_torch)] +@Model.register("JAISLMHeadModel") +class JaisModel(Model): + model_arch = gguf.MODEL_ARCH.JAIS + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + + # SwigLU activation + assert self.hparams["activation_function"] == "swiglu" + # ALiBi position embedding + assert self.hparams["position_embedding_type"] == "alibi" + + # Embeddings scale + self.embeddings_scale = 1.0 + # note: For some JAIS flavors, output is tied to (same as) wte in original model + self.output_is_wte = False + if 'mup_embeddings_scale' in self.hparams: + self.output_is_wte = True # Hack (?) + self.embeddings_scale = self.hparams['mup_embeddings_scale'] + elif 'embeddings_scale' in self.hparams: + self.embeddings_scale = self.hparams['embeddings_scale'] + else: + assert False + + self.width_scale = 1.0 + if 'mup_output_alpha' in self.hparams: + assert 'mup_width_scale' in self.hparams + self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale'] + elif 'width_scale' in self.hparams: + self.width_scale = self.hparams['width_scale'] + else: + assert False + + self.max_alibi_bias = 8.0 + + def set_vocab(self): + self._set_vocab_gpt2() + + def set_gguf_parameters(self): + self.gguf_writer.add_name(self.dir_model.name) + self.gguf_writer.add_block_count(self.hparams["n_layer"]) + self.gguf_writer.add_context_length(self.hparams["n_positions"]) + self.gguf_writer.add_embedding_length(self.hparams["n_embd"]) + self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"]) + self.gguf_writer.add_head_count(self.hparams["n_head"]) + self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"]) + self.gguf_writer.add_file_type(self.ftype) + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + del bid # unused + + tensors: list[tuple[str, Tensor]] = [] + + # we don't need these + if name.endswith((".attn.bias")): + return tensors + + if name.endswith(("relative_pe.slopes")): + # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation) + # Some other models has max_alibi_bias spelled out explicitly in the hyperparams, + # but Jais's PyTorch model simply precalculates the slope values and places them + # in relative_pes.slopes + n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"])) + first_val = float(data_torch._data[0]) + self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2) + + return tensors + + if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")): + data_torch = data_torch.transpose(1, 0) + + new_name = self.map_tensor_name(name) + + if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD): + tensors.append((new_name, data_torch * self.embeddings_scale)) + if self.output_is_wte: + tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch * self.width_scale)) + elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT): + assert not self.output_is_wte + tensors.append((new_name, data_torch * self.width_scale)) + else: + tensors.append((new_name, data_torch)) + + return tensors + + def write_tensors(self): + super().write_tensors() + self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias) + + ###### CONVERSION LOGIC ######