-
Notifications
You must be signed in to change notification settings - Fork 0
/
gexf2json.py
153 lines (132 loc) · 4.57 KB
/
gexf2json.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import argparse
import json
from json import encoder
from lxml import etree
encoder.FLOAT_REPR = lambda f: format(f, '.6g')
BASE_W = 800
BASE_H = 700
PADDING = 30
MIN_EDGE_WIDTH = 1
MAX_EDGE_WIDTH = 50
parser = argparse.ArgumentParser()
parser.add_argument('input', type=argparse.FileType('r'), help='Input GEXF File')
parser.add_argument('output', nargs='?', type=argparse.FileType('w'), help='Output JSON File')
args = parser.parse_args()
tree = etree.parse(args.input)
base_nsmap = tree.getroot().nsmap
nsmap = {
'g': base_nsmap[None],
'viz': base_nsmap['viz'],
}
attribute_list = set()
# Normalizing positions and attribute list
node_x = []
node_y = []
for node in tree.xpath('//g:node', namespaces=nsmap):
pos = node.xpath('viz:position', namespaces=nsmap)[0]
node_x.append(float(pos.get('x')))
node_y.append(float(pos.get('y')))
attributes = node.xpath('g:attvalues/g:attvalue', namespaces=nsmap)
attribute_list.update([(attribute.get('for') or attribute.get('id')) for attribute in attributes])
x_min = min(node_x)
x_max = max(node_x)
y_min = min(node_y)
y_max = max(node_y)
scale = min((BASE_W-PADDING)/(x_max-x_min),(BASE_H-PADDING)/(y_max-y_min))
offset_x = (BASE_W-scale*(x_min+x_max))/2
offset_y = (BASE_H-scale*(y_min+y_max))/2
attribute_list = list(attribute_list)
attribute_lookup = dict((v,k) for k,v in enumerate(attribute_list))
nodes = []
nodes_rgb = []
node_index = {}
graph_is_directed = ((tree.xpath('//g:graph/@defaultedgetype',namespaces=nsmap) or [''])[0] == 'directed')
print('Processing nodes')
k = 0
for node in tree.xpath('//g:node', namespaces=nsmap):
id = node.get('id')
label = node.get('label') or id
pos = node.xpath('viz:position', namespaces=nsmap)[0]
x = float(pos.get('x'))
y = float(pos.get('y'))
size = float(node.xpath('viz:size', namespaces=nsmap)[0].get('value'))
color = node.xpath('viz:color', namespaces=nsmap)[0]
r = int(color.get('r'))
g = int(color.get('g'))
b = int(color.get('b'))
attributes = node.xpath('g:attvalues/g:attvalue', namespaces=nsmap)
attributes = [[
attribute_lookup[attribute.get('for') or attribute.get('id')],
attribute.get('value'),
] for attribute in attributes]
attributes.sort(key=lambda a: a[0])
node_data = {
'id': id,
'l': label,
'x': offset_x + scale * x,
'y': offset_y - scale * y,
'r': scale * size,
'B': "rgba(%d,%d,%d,.7)"%(r,g,b),
'G': "rgba(%d,%d,%d,.5)"%(tuple(84+.33*k for k in (r,g,b))),
'a': attributes,
}
nodes.append(node_data)
nodes_rgb.append((r,g,b))
node_index[id] = k
k += 1
if not (k % 1000):
print("%7d nodes processed"%k, end='\r')
print("Total: %d nodes processed"%k)
edges = []
def get_attribute(edge, attlabel, default):
attribute = edge.xpath('g:attvalues/g:attvalue[@for="%s"]'%attlabel,namespaces=nsmap)
return (attribute or [{'value':edge.get(attlabel)}])[0].get('value') or default
print('Processing edges')
k = 0
for edge in tree.xpath('//g:edge', namespaces=nsmap):
edgesource = edge.get('source')
edgetarget = edge.get('target')
sourceindex = node_index[edgesource]
targetindex = node_index[edgetarget]
weight = float(get_attribute(edge, 'weight', 1))
edge_is_directed = graph_is_directed
directed_attr = edge.get('type')
if directed_attr == 'directed':
edge_is_directed = True
if directed_attr == 'undirected':
edge_is_directed = False
owncolor = edge.xpath('viz:color', namespaces=nsmap)
if owncolor:
color = tuple(int(owncolor[0].get(k)) for k in ["r", "g", "b"])
else:
sourcecolor = nodes_rgb[sourceindex]
targetcolor = nodes_rgb[targetindex]
color = sourcecolor if edge_is_directed else tuple((sourcecolor[k] + targetcolor[k])/2 for k in range(3))
edges.append({
's': sourceindex,
't': targetindex,
'C': "rgba(%d,%d,%d,.7)"%color,
'w': weight,
'W': max(MIN_EDGE_WIDTH, min(MAX_EDGE_WIDTH, weight)) * scale,
'l': get_attribute(edge, 'label', ''),
'd': int(edge_is_directed),
})
k += 1
if not (k % 1000):
print("%7d edges processed"%k, end='\r')
print("Total: %d edges processed"%k)
res = {
'nodeList': nodes,
'edgeList': edges,
'directed': int(graph_is_directed),
'attributes': attribute_list,
}
if args.output is None:
filename = ".".join(args.input.name.split(".")[:-1] + ['json'])
output = open(filename,'w')
else:
output = args.output
print("Saving to %s"%output.name)
json.dump(res, output)
output.close()
args.input.close()